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Notation 
 
Sets 
 

𝑊 The set of batches (work orders) 
 

𝑊𝑚 ⊂ 𝑊 The (sub)set of make batches (batches that produce intermediate products) 
 

𝑊𝑝 ⊂ 𝑊 The (sub)set of pack batches (batches that produce final products) 
 

𝑊𝑤
𝑚 ⊆ 𝑊𝑚 The (sub)set of make batches that supply pack batch 𝑤 ∈ 𝑊𝑝 

 
𝑊𝑤

𝑟 ⊆ 𝑊𝑚 The (sub)set of make batches required to be finished before make batch 𝑤 ∈ 𝑊𝑚 
can be started 
 

𝐽 The set of work centers (production units) 
 

𝐽𝑤 ⊆ 𝐽 The (sub)set of work centers that can produce batch 𝑤 ∈ 𝑊 
 

𝐽𝑤𝑤′ ⊆ 𝐽 The (sub)set of work centers that can produce both 𝑤 ∈ 𝑊 𝑎𝑛𝑑 𝑤′ ∈ 𝑊 
 

 
Parameters 
 
 

𝛼𝑤 Equal to the processing time, in hours, required to produce one unit of batch 𝑤 ∈ 𝑊 
 

𝛽𝑤 Number of units required to be produced of batch 𝑤 ∈ 𝑊 
 

𝐷 Preferred time, in hours, at which all work centers should have completed their 
batches 
 

𝐷𝑤 Preferred time, in hours at which work order 𝑤 ∈ 𝑊 should be finished 
 

𝛿𝑤 Equal to the time required before batch 𝑤 ∈ 𝑊 can be used in another batch 
 

𝐺𝑤 This parameter contains the starting times of work orders 𝑤 ∈ 𝑊 
 

𝐾𝑤𝑤′ Equal to 1 if for a pair of batches w and w’ the variable 𝑌𝑤𝑤′ should be fixed to 0, 0 
otherwise.   
 

𝑀 A sufficiently large number 
 

𝜔𝑤𝑤′ A penalty for a switchover from batch 𝑤 ∈ 𝑊 to batch 𝑤′ ∈ 𝑊 
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Variables 
 

𝐹𝑤𝑗 Binary variable. Equal to 1 if batch 𝑤 ∈ 𝑊 starts the processing sequence on 
workcenter 𝑗 ∈ 𝐽𝑤, 0 otherwise. 
 

𝑋𝑤𝑗 Binary Variable. Equal to 1 if batch 𝑤 ∈ 𝑊 is assigned to work center 𝑗 ∈ 𝐽 but not 
the first to be processed, 0 otherwise. 
 

𝑌𝑤𝑤′ Binary Variable. Equal to 1 if batch 𝑤 ∈ 𝑊 is processed right before batch 𝑤′ ∈ 𝑊, 0 
otherwise 
 

𝑆𝑤 Nonnegative variable. Equals the start time, in hours, of batch 𝑤 ∈ 𝑊 
 

𝐷𝑤
+ Nonnegative variable. Equal to the amount of time that batch 𝑤 ∈ 𝑊𝑝 finishes after 

the preferred completion time 𝐷 
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Abstract 
 
W. Heemskerk BV is one of the largest fresh processed vegetable production companies in Europe. 
Weekly, more than two million products find their way to well-known supermarket chains and fast-
food restaurants in the Netherlands and abroad.  
 
The production process consists of two well-defined stages. In the first stage, vegetables are cut and 
washed into a large range of intermediate products. In the second stage, these products are packaged 
into various types of packaging material. Most of this work is performed on highly specialized 
production lines. 
 
The processed vegetables have a very short lifetime. This means that the production follows a daily 
cycle. Each day the entire range of products is produced at least once. In the current situation the 
production schedule is fixed. Each product is initially assigned to the same machine in the same 
sequence. To arrive at a feasible production schedule that satisfies all constraints, experienced team 
leaders manually adjust the schedule during the production day.  
This practice of manually adjusting the production schedule is not ideal. Due to the complexity of the 
process, changes in the schedule can only be made very close to the actual production time. At that 
point many potentially better options have already been excluded. Furthermore, the production 
process is constantly becoming more complex. New production lines and product recipes are 
constantly being added. Because of this, the process is a good candidate for combinatorial 
optimization. 
 
In this thesis a mathematical formulation is given for the scheduling problem. The production process 
includes various process-specific constraints. For example, the production sequence of the different 
products is restricted because of cross-contamination risks. All these process-specific constraints are 
included in the model. This results in a continuous-time immediate precedence batch-scheduling 
model that minimizes the amount of bad changeovers, the idle time in the schedule and the tardiness 
of the different batches. 
 
A first attempt was made to solve the MIP-model by making use of the commercial solver CPLEX. Due 
to the sheer size of problem instance, this solver is unable to find a feasible solution for the model in a 
reasonable amount of time. Therefore, a sequential approach is proposed to solve the problem.  
 
The sequential approach consists of a number of steps. In the first step, only the packaging orders are 
scheduled. The solution of this first step is used as input for the second step in which all pre-
processing orders are scheduled. A last step is then required to re-solve the schedule of the packaging 
orders to arrive at an overall feasible production schedule. For each step of this approach, the same 
commercial solver is utilized. However, due to the sequential approach, the number of variables and 
constraints in each of the problem instances is greatly reduced. This results in a greatly reduced 
solution time.  
 
The sequential approach is compared to the MIP-based approach using a relatively small problem 
instance. The results of this comparison show that the sequential approach gives solutions of equal or 
better quality than the MIP-based approach while requiring considerably less solution time.  
 
The capabilities of the sequential approach are further amplified by solving an actual real-world 
problem instance and by comparing it to the current situation at the case-company.  
 
Key words: Production-scheduling, Optimization, Modeling, Fresh Vegetable Production.  
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1. Introduction 
 
The last part of the master program Operations Research and Quantitative Logistics at the Erasmus 
University is the completion of the master’s thesis. This report is the final part of the thesis. In this 
section, an introduction to production-scheduling problems and the case-company will be given. 
Furthermore, the contents of the rest of the paper will be introduced.   
 

1.1 Production-scheduling 
 
Production processes have traditionally seen an increase in complexity and a strive for more 
efficiency. To cope with this, production planning and scheduling has seen a large amount of interest 
during the past few decades. The problem has been studied extensively by an array of different 
disciplines. This has resulted in a very large library of solution approaches. Creating a feasible and 
favorable production schedule has turned out to be very difficult when the number of variables and 
constraints increases. Many of the problems considered are strongly NP-hard. Herrmann (2006) states 
that algorithms that can find optimal solutions in polynomial time are unlikely to exist. 
 
The introduction of computers to business’ in the 1950s has resulted in a large development of 
software solutions in the following decades. Today, the majority of production companies use material 
requirement planning (MRP) in Enterprise Resource Planning (ERP) software. These modules are used 
to plan material requirements and release purchasing and work orders to the shop floor. Several 
methods exist to schedule these orders in an adequate way. Some businesses may release the orders 
to the floor, where experienced workers make a decision about the schedule. Others may use more 
advanced methods like scheduling algorithms. It is generally believed that much can be improved with 
regard to manual scheduling. Because of this, academics have been trying to formulate scheduling 
techniques for decades. Software developers have always been eager to implement these techniques. 
Solutions incorporating these techniques are often named Advanced Planning and Scheduling (APS) 
modules (Gayialis & Tatsiopoulos, 2009). 
 
APS modules are usually implemented as extensions to already existing ERP systems. After the orders 
have been released from the MRP system, they are scheduled in the APS module. Unfortunately, 
many companies are unsatisfied with their APS implementations (Stadtler & Kilger, 2005). A case study 
performed by Kjellsdotter (2010) studies the implementation of an APS system in an equipment 
production company. She finds that general objectives like the minimization of total tardiness or the 
make span often do not directly apply to (all of) the objectives that a company may have regarding 
their production scheduling. Another important aspect of the implementations is the acceptance of 
the generated schedule by the workers on the shop floor. The study shows that when the idea behind 
the new schedule is not clearly explained, workers tend to doubt the correctness of it and implement 
their own version of the schedule.  This supports the idea that production-scheduling problems are 
very company specific problems that cannot be caught by a single general model and that a more 
customized approach should be pursued. 
 

1.2 The case-company  
 
W. Heemskerk BV was founded in 1960. Today, it is one of the top 10 vegetable processing companies 
in Europe. Heemskerk processes vegetables in Rijnsburg (The Netherlands) and employs 
approximately 500 employees. Every day, around 60 types of vegetables are processed into as many 
as 300 different end products. In 2012, more than 80 million fresh products were delivered to well-
known supermarkets, fast-food restaurants and catering firms in the Netherlands and abroad.  
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Heemskerk operates in a complex and demanding market. Customers expect near 100% fill rates and a 
high flexibility. Furthermore, the availability of unprocessed vegetables varies highly over the seasons. 
This, along with the fact that the lifetime of products ranges from just 6 to 9 days, makes the 
production process complex to manage.  
 
In order to cope with high demands of customers and perishability issues, all the different end 
products are produced every single day. This means the production process is highly flexible and that 
sufficient capacity is usually available. However, because the lifetime of products is so short, it is not 
possible to produce products in advance. This means the workload cannot be spread over a month or 
even over a week. Everything has to be produced one or at most two days before delivery. 
 
The case-company currently employs an ERP system based on MRP. The planning department makes 
demand prognoses 2 weeks in advance. From these, the total number of required end products, 
intermediate products and unprocessed vegetables is calculated per day. These figures are then used 
by the buying department to make sure that enough unprocessed vegetables are available. One day 
before the actual production day the final demand of end products is determined from sales orders. 
With this demand, work orders for end products and intermediate products are released to the shop 
floor for production on the next day. 
 
Production on the shop floor occurs from 6 a.m. until approximately 3 a.m. on the next day. In the 
current situation, every product is assigned a fixed routing. This means that a certain product will 
always be planned on the same machine in the same order. After the work orders have been released 
to the shop floor, an experienced team leader or operator will decide the final machine assignment 
and production sequence. This usually means that a considerable amount of the work will be 
produced on a different machine and in a different order than originally planned. The amount of 
changes required to reach the production goals increases as the workload increases.  
 
The fresh vegetable market is quickly changing and new products are constantly being introduced. 
This, along with a constant increase in volume, makes production capacity more scarce and the 
scheduling more complex. As humans are not well equipped to control or optimize a large and 
complex production schedule by hand, Heemskerk investigated the possible implementation of an APS 
system. They quickly found that general APS systems are not able to cope with the demands of the 
company. Managers at Heemskerk do however realize that a lot can be improved by investing in a 
more sophisticated approach to machine allocation and production scheduling. 

 
Throughout the rest of this thesis W. Heemskerk BV will be mentioned as either ‘Heemskerk’ or the 
‘case-company’.  
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2. Problem Description 
 
In this section the production-scheduling problem at Heemskerk will be explained. This problem may 
also be referred to as ‘the problem’ or ‘the case’ throughout the rest of this thesis. A set of research 
questions will be given that will provide a guideline for the rest of the thesis.  
 

2.1 Description and research questions 
 
In the current situation at Heemskerk, work orders are released to the shop floor with a fixed machine 
allocation and production sequence. It is then up to experienced team leaders and operators to adjust 
this as they see fit. The size and the complexity of the production process make it impossible to do this 
optimally by hand. In practice, managers see that this results in team leaders optimizing the process 
locally in their own department or even their own shift. Although the preconditions are met, this 
never ensures an optimal solution for the entire production chain. 
 
In figure 2.1 the entire production chain of Heemskerk is shown. Unprocessed vegetables and other 
goods are delivered and stored in the unprocessed goods inventory. From this inventory the goods are 
released to the different pre-processing production lines when requested by the operators. On these 
production lines products are washed, cut and mixed to form intermediate products. These 
intermediate products are then stored into small metal storage containers called ‘trolleys’. Next, these 
trolleys are pulled into the buffer inventory by a conveyor system. Intermediate products can be 
stored in this buffer inventory for a limited amount of time due to capacity and lifetime restrictions. 
From the buffer, intermediate products are released to the different packaging lines when requested 
by the operators of the machines. The packaging lines can be divided into 3 distinct types. Products 
cannot be interchanged between these lines because of their package type or their specific production 
process. Distinction is made between lines that package into bags, into bowls and lines where extra 
hygienic rules apply (so-called HighCare lines). After the packaging is complete, the finished products 
are stored at the logistics department until their orders are due and the delivery to the customer can 
be completed. 
 
The current approach to scheduling and machine allocation results in solutions that are at most locally 
optimal for the pre-processing and packaging stages of the production process. Any infeasibilities 
(product unavailability, under capacity, etc.) that result from this are solved by either postponing 
production or by advancing production of intermediate products to the day before they are required. 
The managers of the company realize that this approach is suboptimal and have requested a solution 
approach that results in a better connection between the pre-processing and packaging production 
stages. Of course this approach should not violate any of the constraints set by the surrounding 
departments. To support this request, a number of research questions will be proposed here. 
Throughout the following sections an attempt is made to answer these questions. 
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The above results in the following research question for the thesis:  
How can the connection between the pre-processing and packaging production stages at 
Heemskerk be optimized by the allocation of production resources to the available work? 

 
To be able to answer this question, at least the following sub-questions should be answered: 
 

- How can the problem be modeled using a mathematical formulation? 
o Which data will be required in order to correctly model the production process 
o What are the constraints that define the production process? 
o What are the main objectives of the production process? 

- How can we solve this mathematical formulation within a reasonable amount of time? 
- How usable is the solution and how does it compare to the current situation? 

 
These research questions should give the perspective from which the topic of the thesis is 
approached. 
 
 

2.2 Problem complexity  
 
Isolating the two High Care packaging lines and the orders that are need to be scheduled on these 
lines can show the complexity of the problem. This isolated problem of two production lines can be 
described as a parallel machine-scheduling problem without preemption. Preemption means that the 
processing of an order can be stopped to rush through another order first. 
 
In a parallel machine-scheduling problem, a set of 𝑤 orders has to be scheduled on a set of 𝑗 identical 
machines. A popular performance measure for the generated schedule is the weighted total tardiness 
of the orders ∑ 𝑝𝑤𝐷𝑤

+. Here 𝑝𝑤 is the weight that is given for each order 𝑚 and 𝐷𝑤
+ is the tardiness of 

order 𝑤. 𝐷𝑤
+ is defined by 𝐷𝑤

+ = max {0, 𝑆𝑤 + 𝛼𝑤𝛽𝑤 − 𝐷𝑤} where 𝑆𝑤 + 𝛼𝑤𝛽𝑤 is equal to the finishing 
time of order 𝑤 and 𝐷𝑤 is equal to the due time of order 𝑤.   
 
It was already shown in 1977 that such a parallel machine scheduling problem without preemption 
and where the weighted total tardiness is minimized belongs to the class of NP-Complete problems 
even for 𝑗 = 2 (Lenstra & Rinnooy Kan, 1977). The isolated exemplary problem of the two high care 
lines would thus already be NP-complete.  
 
The minimization of the total tardiness is one of the performance measures that will be included in the 
model. The two High Care lines only contribute to a very small part of the total problem. The problem 
presented here has several aspects that add to the complexity of the problem; there is a large amount 
of unrelated parallel machines, it includes sequence dependent changeovers and a lot of other 
process-specific aspects. 
 
The presented problem is therefore at least NP-hard. Each day there are more than 700 orders waiting 
to be produced. This makes the problem a very large NP-hard problem. 
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Figuur 2.1: Flow diagram of the production process at Heemskerk
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3. Literature Review 
In this section a review is presented of literature that was deemed relevant for this research. Different 
aspects of the problem can be supported by interesting views from other authors. Their findings will 
support the different choices that were made during the course of this research. 
The use of some of the information presented in this section might not directly be apparent. The actual 
use of this information will be further explained in the relevant sections. Where possible, references will 
be made to the studies presented in this section. 
 

3.1 APS systems 
 
Because the implementation of an APS system was investigated by the case-company, some research 
was done into the implementation of APS systems by other companies. Although the interest for APS 
systems has increased a lot, only a few studies into the user experiences and difficulties exist (Lin, 
Hwang, & Min-Yang Wang, 2007). Lin, Hwang, & Min-Yang Wang (2007) find that the implementation 
of an APS system at a semiconductor manufacturer did not result in a reduction of manual labor by 
the planners. In fact, there was no easy method to verify correctness of the model and the IT 
specialists or planners could not fully grasp solutions produced by the system. A similar conclusion is 
drawn by Kjellsdotter (2010) for the implementation of an APS system at an equipment manufacturing 
company. In addition she finds that the scheduling objectives of the system are hard to match with the 
actual objectives of the company. Overall, many companies are unsatisfied with their APS 
implementations (Stadtler & Kilger, 2005). This raises the question of whether the general scheduling 
models included in APS systems can ever provide satisfactory results.   

3.2 Discrete and continuous time representations 
 
The most widely reported methods for process scheduling problems are based on mathematical 
programming approaches. In recent years, especially methods based on Mixed Integer Linear 
Programming (MILP) have become popular because of their flexibility and extensive modeling 
capabilities (Christodoulos, 2005). One of the first major decisions in the formulation of such a model 
is to choose a representation of time. Time representations can be either discrete or continuous. 
Stefansson & Sigmarsdottir (2011) give an extensive comparison between discrete and continuous 
time representations for a large scheduling problem in the pharmaceutical industry. They state that 
discrete formulations have the advantage that they are in general very flexible and are capable of 
incorporating many scheduling features. However, two major drawbacks are given. The time domain 
representation is only an approximation of the real time needed and the number of variables and 
constraints often become very large when actual industrial problems are being modeled. In addition, it 
can be difficult to model operations where the processing time is dependent on the batch size. 
Continuous time representations on the other hand, generally result in a lower number of constraints 
and variables. The constraints required for this formulation can be more complicated. This can result 
in a more computationally complex model even though the model has fewer constraints. They 
conclude that their continuous model results in more useful solutions and generally outperforms the 
discrete model for the larger problem instances. 
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3.3 Production-scheduling models 
 
There is a wide range of different production-scheduling models available. Therefore, choosing a 
model type that fits the problem presented here is no easy task. Each model type has its own 
strengths, weaknesses and limitations. As was mentioned in the introduction, scheduling problems are 
some of the hardest combinatorial problems to exist. They belong to the set of NP-complete problems 
(Garey & Johnson, 1979), which results in solution times that scale exponentially with the size of the 
problem. This means that choosing the right model for the problem is of vital importance for the 
project.   
 
Over the years a number of studies comparing different scheduling models were written. Reklaitis 
(1992) presents an overview of different methods for the scheduling and planning of batch processes. 
Focus was given to the main components of the chemical process and the available solution methods. 
Grossmann, Quesada, Raman, & Voudouris (1996) created an overview of mixed-integer optimization 
techniques. They also include models for the design of chemical batch processes and focus on recent 
basic solution methods for the problems. Later Pekny & Reklaitis (1998) discussed the different 
solution techniques available to them. Their study includes an overview of randomized search, 
constraint guided search, simulation-based strategies and basic mathematical programming 
approaches.  
 
More recently, a good overview of different MILP-based approaches for the chemical processing 
industry is given by Floudas & Xiaoxia (2005). This study is focuses on general network represented 
processes. The choice of time representations is presented as one of the most important decisions. 
Different models are presented for both discrete- and continuous-time scale representations. 
Continuous-time models are further split up into Global event-based, Unit-specific event based 
models. They find that the latter generally results in models of smaller size in terms of the number of 
variables, compared to discrete-time models and global event-based models. Furthermore, different 
methods to decrease the time required to solve the models are presented. These methods are 
supported with examples of small-scale problems. 
 
Another excellent overview of optimization methods for the scheduling of batch processes is 
presented by Mendez & Cerda (2006). Their review is very complete. In addition to the models 
presented by Floudas & Xiaoxia (2005) they present continuous-time precedence based models. This 
includes unit-specific precedence, immediate precedence and general precedence based models. This 
type of model is very suited for sequential batch oriented processes where changeovers are of 
concern. General precedence models result in less variables than unit-specific and immediate 
precedence based models but lack the possibility to model the exact results of sequence-dependent 
changeover times. 
 

3.4 Solving real-world scheduling problems 
 
Due to the complex nature of scheduling problems, solving actual real-world industrial problems is 
often challenging. It is now widely recognized that practice and theory should come closer together 
(Mendez & Cerda, 2006) and (Ruiz & Stutzle, 2008). New academic studies are usually tested on 
relatively small problems while real-world industrial problems can contain hundreds of batches. A 
number of studies investigate different methods to solve large-scale problem. 
 
Kopanos, Mendez, & Puigjaner (2010) state that in addition to hundreds of batches, real-world 
industrial applications have multiple processing units available for each task and their processes are 
made up from a long sequence of processing stages. Additionally, to create a feasible schedule a wide 
range of operational constraints has to be formulated. Therefore, optimization solvers have to find 
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optimal or near-optimal solutions in a huge search space within a small feasible region. In their study 
they introduce a MIP-based solution strategy for a real-world scheduling problem in the 
pharmaceutical industry. To solve the problem they introduce a 2-step optimization approach where 
they first insert all orders 1-by-1 and solve the MIP model iteratively. In the second step, after all 
orders have been inserted, this solution is iteratively improved by taking out and reinserting orders. To 
quickly solve the MIP model in each iteration, variables of the already inserted orders are fixed to 
some extent. With this approach they are able to obtain good solutions for a large problem (60 
products) within an hour.  
 
Kopanos, Puigjaner, & Geogiadis (2012b) first optimize their model formulation of an ice-cream 
production process by introducing an additional set of tightening constraints. The model is then 
further refined by introducing another set of constraints that breaks the symmetry of allocation 
decisions. To solve the model another MIP-based solution strategy is introduced. This strategy uses 
specific aspects of the production process to find solutions efficiently. Again, the orders are inserted 
into the problem iteratively, however this time they are inserted according to their rank. The nature of 
the production process allows an easy division of the orders into ranks. Products with a higher rank 
are inserted into the problem before orders with a lower rank. This results in very good solutions 
without extensive computational requirements.   
 
Wauters & Verbeeck (2012) developed a specialized scheduler for real-world production-scheduling 
problems. Their approach focuses mainly on finding acceptable, better than manual, solutions quickly. 
The presented approach uses multiple steps to construct a production schedule. The scheduler uses a 
routing problem to first assign all orders a route through the production plant. The route that has 
most capacity left is chosen for each order here. After that a translation step translates the problem 
into multiple resource-constrained project scheduling problems that are then solved by use of fast 
heuristics. Finally, an improvement step improves the solution in a guided way. Many optimization 
methods can serve as a guiding mechanism here. Examples include steepest descent, simulated 
annealing and tabu-search.   
 

3.5 Planning and scheduling in the processing industry 
 
Although a lot of research has been performed in the field of production scheduling, relatively little 
attention was given to the food processing industry. Here, an overview is given of literature that is, at 
least partly, similar to the problem studied for this thesis.  
Mendez & Cerdá (2002) present a MILP-based approach for a scheduling problem in a make-and-pack 
production process. Although their formulation lacks an extensive objective function and the studied 
problems are of a relatively small size, the structure of the process is similar to the structure of the 
case-company.  
 
Entrup & Günther (2005) present three MIP models for scheduling and planning problems in yoghurt 
packaging lines. The process is somewhat similar to fresh vegetable processing. Shelf life issues and 
intermediate product storage capacities were included, however the models lack details on 
changeovers and their costs. Marinelli & Nenni (2007) present a model for a similar yoghurt 
production line and give an effective two-stage heuristic to solve the problem.  
Akkerman & Donk (2009) realized that very few studies address the scheduling problem in the food-
processing industry and present a general analysis methodology for scheduling problems in food 
processing.  
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More recently, a number of contributions to the field were made to reduce the gap between practice 
and theory in the area of short-term scheduling. Kopanos & Puigjaner (2010) present a mixed 
discrete/continuous-time MIP formulation for the simultaneous lot sizing and scheduling in yoghurt 
packing lines. This model is more specialized and now also includes sequence-dependent changeover 
times and costs along with a more extensive objective function. This formulation was further extended 
by Kopanos & Puigjaner (2011) to also include manpower constraints and other constraints that are 
specific to different product families (e.g., packing rates, setup times).  The same authors present a 
model for a multiproduct multistage ice cream production factory (Kopanos & Puigjaner, 2011). This 
formulation includes strong integer cuts that allow the problem to be solved to optimality for a real-
life industrial case. The formulation is further enhanced by introducing new sets of tightening 
constraints resulting in low computational requirements and solutions of very good quality (Kopanos & 
Puigjaner, 2012).  
 
The different studies show the recent development of models that are more applicable to real-world 
and large-scale problems. However, the models also show a tendency to become more specialized 
towards the process that is being modeled.  This makes the presented models less useful for use in the 
production-scheduling problems that arise in other production processes. 
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4 Motivation 
Research into the problem is motivated from both the operating and the scientific point-of-view. In this 
section both these motivations will be explained. 
 

4.1 Company point-of-view 
 
For the company, the increasing complexity and the decreasing free capacity of the production 
process mainly motivates research into this topic. Over the year of 2012 a healthy growth of more 
than 20% was realized. The same is expected for the year 2013. Although production capacity is in the 
process of being extended, lead times for new machinery are often long. This puts a strain on the 
current available capacity and requires more efficient production planning. Furthermore an increase in 
available machinery increases the number of possible production schedules. Currently, the schedule is 
only altered when problems are encountered. At that time, a lot of potentially good scheduling 
options have already been lost. Without an optimization approach, the gap between what a human 
can manually schedule and the solution of an optimization approach will only grow larger.  
 
As mentioned in the introduction, in 2007, an attempt was made to implement an APS module into 
the existing ERP system. After a long implementation period it was concluded that the system was not 
able to cope with the specific needs of the company. Dependency between the different batches and 
the zero lead-times of a lot of the products could not be accurately modeled. The APS system was 
unable to incorporate all the constraints of the process and was only able to incorporate some general 
objective functions. These general objectives did not match the actual objectives the company has for 
the optimization of the production process. Without the proper way to model the process, the 
schedules produced by the module were illogical and unfeasible. As a result, the implementation was 
halted.  
 
Even though the attempts at a more sophisticated approach to the problem did not result in a 
workable solution, the managers realize that the current manual approach will become insufficient in 
the near future. This research should provide an insight into the problem and provide a possible 
solution approach for the problem. 
 

4.2 Scientific point-of-view 
 
The literature review showed that planning and scheduling problems are often complex of nature and 
very process specific. Although some attempts at general frameworks have been made, these often 
lack the specialization required for practical real-world applications. It also showed that although some 
research of similar production processes in the dairy industry exists, no research into fresh vegetable 
production processes was found. 
 
The fresh vegetable processing industry provides a very interesting challenge because of the short 
lead-time and the very high fill rates of orders. Any sales that are not fulfilled on time are directly lost. 
Apart from having to produce every product daily, this means that the production should fulfill every 
order completely and that production cannot be postponed. 
 
 
 
 
 
 
 



11 
 

Furthermore, the production process itself provides some interesting and complex challenges. 
Because of cross-contamination risks, some products can only be produced and packaged in a specific 
order. If this order is not kept, extensive cleaning of the machine has to be performed. This usually 
means that less-colored vegetables like white cabbage and cauliflower have to be produced before 
more colored vegetables like red cabbage and beets. Other challenges of the process include the 
limited capacity of the buffer inventory and the rules set for the different intermediate products. 
Because of these rules, all intermediate products have a limited time frame in which they have to be 
packaged in order to preserve their freshness. Especially these points make the process different from 
the more conventional production processes often found in literature.   
 
Apart from challenging modeling aspects, the solving of scheduling problems in general is considered 
to be very hard. Although over the years a lot of different attempts have been made to solve these 
problems quickly, no polynomial algorithms that provide optimal solutions exist today. This may mean 
that solving this large scale real-world problem will require a heuristic solution approach or that 
suboptimal solutions will have to be considered.  
 
 
This research will attempt address the lack of knowledge of production scheduling in fresh vegetable 
production processes. Specifically, a better understanding of sequence restricted scheduling and 
intermediate products with lifetime restrictions should be provided.  This will be done by formulating 
a specialized mathematical formulation of the problem.  After this, an attempt should be made to 
solve the problem using a commercial solver, a fast heuristic or a combination of both. 
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5 Data  
In order to successfully model the productions process, a lot of different data will be necessary. 
Although some data was easily obtainable from files, a lot of it was constructed with the help of 
experienced workers at Heemskerk because it was not digitally available. This section will discuss the 
necessary data for the model, their origin and their accurateness.  
 

5.1 Batches / Orders 
 
The main parts of a scheduling problem are the orders that are required to be scheduled. One of the 
first decisions to make is which part of the orders should be scheduled in a single instance of the 
problem. At Heemskerk, production is scheduled on a daily basis. Every day, orders for the production 
day of tomorrow are prepared. Furthermore, due to the very short lead-time of orders, the entire 
range of products is produced every day. This effectively means that when we look at a single instance 
of the problem, every day is a repetition of the day before. It is therefore sufficient to model only the 
orders of one day in a single instance of the problem. The scheduling horizon of the model will thus be 
equal to one day. 
 
The short planning horizon should result in a lower number of orders that needs to be scheduled. 
However, the number of orders is still quite large. Because the entire assortment of products is 
produced every day there is no reduction in the variety of the orders even though the planning 
horizon is so small. In table 5.1 we list some of the main characteristics of a typical production day at 
Heemskerk 
 
 
Table 5.1: Characteristics of a typical production day at Heemskerk 

Description Amount 

Total number of orders 942 

Total number of orders for final products 710 

Total number of orders for intermediate 
products 

232 

Amount of work centers in use 31 

Amount of packaging lines in use 16 

Amount of pre-processing lines in use 15 

 
 
Fortunately these numbers can be greatly reduced when a feasible schedule for the production 
process needs to be created. Every customer has his or her own range of final products. For each of 
these products, an order is entered into the ERP-system resulting in the large number of orders shown 
in table 5.1. Often the only difference between these products is the label that is put on the package. 
The rest of the product is exactly the same. This means that the product, the amount of product per 
package and the packaging are equal. Whenever the label is removed and another label is put on the 
package, it can directly be sold to another customer. Since changing the label used on a production 
line only takes a short amount of time (< 1 minute) compared to the actual production of a product, 
we can combine all orders that differ only by the kind of label used on the package. This results in a 
large reduction in the amount of orders that needs to be scheduled. 
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The number of orders can be further reduced because some of the required intermediate products 
are produced in the off-hours in advance of their respective production day. These are usually 
products that have longer lifetimes once they have been processed. Pre-processing lines are often 
finished before the end of the day. In these off-hours the strong products are produced to stock on 
the day before they are actually required. This means that on a production day, these products are 
already available and do not have to be scheduled in the scheduling problem. Therefore the orders for 
these products can be removed from the problem instance. 
 
Although this practice removes these orders from the problem instance, the amounts required of 
these specific products on the next production day will be added to the workload. Fortunately, this is 
only a small amount of the total pre-processing orders and they have very little interchangeability 
between the different machines. Furthermore, there are no other batches that are dependent on 
these orders because their respective packaging orders are scheduled for the next day. This means 
they can be scheduled anywhere in time. 
 
Because these independent orders will only be scheduled after all dependent orders have been 
finished, this essentially results in a number of small scheduling problems of at most a couple of 
batches that need to be scheduled in the time available after all other dependent order have been 
scheduled. These small problems, e.g. the scheduling of two or three batches on a single work center, 
can easily be solved by hand. This is further supported by the fact that even on one of the busiest 
days, the total workload of the pre-processing lines contributes to only 48% of the available 
production time (see section 8.3 for an example). It is therefore assumed that the batches concerning 
these products can be completely left out of the problem.  
 
Removing some of work centers from the problem instance can also further reduce the number of 
orders. This will be further explained in section 5.2. 
 
Throughout this thesis a single representative production day will be used to show the results that can 
be achieved. This day is the 11th of July 2013. This day is a Thursday and is usually the busiest or 2nd 
busiest day of the week. Therefore results for this day should give a good representation of the 
possibilities of the model. In table 5.2 the details of this production day are listed. These details 
include the reduction in the number of orders explained above. 
 
Table 5.2: Production details of the 11th of July 2013 including the reduction in the amount of orders 

Description Amount (difference after reduction) 

Total number of orders 357 (-584) 

Total number of orders for final products 234 (-476) 

Total number of orders for intermediate 
products 

123 (-109) 

Amount of work centers in use 27 (-4) 

Amount of packaging lines in use 16 (0) 

Amount of pre-processing lines in use 11 (-5) 

 
 
The reduction in the amount of orders for final products is entirely realized by the combination of 
orders that have the same label while the reduction of orders for intermediate products is mainly 
realized by leaving out orders on 4 work centers. 
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To retrieve all orders for the production day of 11-7-2013 the demand of final products was taken 
from the ERP system. After that, an MRP (material requirements planning) script was used to explode 
all the requirements from the bill-of-materials into a list of required intermediate products. Together 
with the orders for final products, these intermediate orders form the list of orders that will need to 
be scheduled by the model.  
 
 

5.2 Work centers and available work centers for each product 
 
As was mentioned in section 5.1, orders need to be scheduled on a large number of work centers. 
There are, in total, 31 work centers that see regular use. Next to that, a number of small orders are 
performed by hand. These orders can be left out of the scheduling problem because they do not form 
a bottleneck. Whenever these orders for intermediates are required in the packaging process, they 
can be processed on time.  
 
A small number of work centers are far from being at their maximum used capacity. These are small 
washing and mixing machines. Like the orders that are performed by hand, orders assigned to these 
work centers are no bottleneck for the scheduling process. Plenty of capacity is available here and 
using extra manpower can increase it further. Therefore, orders on these machines can be left out of 
the problem instance. We can assume that intermediates coming from these machines are always 
available in time. Removing the orders on these machines results in the reduction of orders shown in 
table 5.2. 
 
In table 5.3 we list all the work centers that are included for the scheduling problem. 
 
Table 5.3: Type and availability of scheduled work centers at Heemskerk 

Type of work center Amount available Descriptions of work centers 

Pre-processing line 11 A01, A02, A03, A04, A05, A07, 
A09, A11, A13, A15, A20, C01 

Bag-packaging line 11 B00, B01, B03, B04, B05, B06, 
B07, B08, B09, B10, B11 

Bowl-packaging line 3 B12, B13, B14 
 

High-Care line  2 HC01, HC02 
 

 
 
We can distinguish 4 main types of work centers. The first type includes pre-processing machines. 
These machines are used to turn unprocessed vegetables or other intermediates into intermediate 
products that are ready for packaging on the 3 different types of packaging lines. These lines have 
little flexibility. They are equipped to produce a certain type of intermediate. Only in rare occasions 
these machines are used for product types for which they are not designed.  
 
The first type of packaging line is the bag-packaging line. There are 11 of these work centers available 
and they are highly flexible. These lines package intermediates into bags and seal them. By exchanging 
the format part and the packaging film they can produce a wide range of different end products. 
Orders that are produced on these machines are often changed from their standard work center 
assignment. 
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The second type of packaging line is the bowl-packaging line. On these lines intermediate products are 
dropped into bowls and then sealed by a plastic cover on top of the bowl. This is a more specialized 
type of packaging than bag packaging and this results in less flexibility between the different lines. The 
standard machine assignment for orders on these machines is also the only possible machine 
assignment. 
 
The last type of production line includes 2 High-Care lines. Essentially these lines are equal to the 
bowl-packaging lines in their form of packaging. However, next to vegetables they also package meat, 
nuts, pasta and other non-vegetable products alongside the vegetables. Because of cross-
contamination risks they are produced in a separate area of the factory where extra hygienic rules are 
applied. There are 2 of these packaging lines in the factory and they are both identical. They can both 
produce all products that require a High-Care line.  
 
It is important to note that there is no interchangeability of orders possible between the different 
types of production lines. If an order is assigned to a pre-processing line it can never be produced on 
another type of line. However, assigning orders to a different work center may be possible when it is 
within the same type of machine. 
 
In table 5.4 an overview is given how many of the orders required on 11-7-2013 are assigned to each 
type of machine. Along with this the amount of these orders each work center can produce is listed on 
the row for each machine. 
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Table 5.4: Table listing the amount of orders per type of machine and the possible amount of orders per 

machine on 11-7-2013 

Machine Type Machine Amount of (possible) orders 

Bag-packaging Line Total amount of orders: 147 

 B00 67 

 B01 73 

 B03 20 

 B04 102 

 B05 54 

 B06 86 

 B07 100 

 B08 87 

 B09 92 

 B10 71 

 B11 110 

   

Bowl-packaging Line Total amount of orders 57 

 B12 13 

 B13 19 

 B14 24 

   

High-Care Packaging Line Total amount of orders 33 

 HC01 33 

 HC02 33 

   

Pre-processing line Total amount of orders 122 

 A01 17 

 A02 10 

 A03 7 

 A05 17 

 A07 16 

 A09 3 

 A11 9 

 A13 25 

 A15 7 

 A20 8 

 C01 3 

 
 
As becomes clear from the table, the bag-packaging lines and high-care lines are the most flexible type 
of line. Along with the high number of orders on the bag-packaging lines, this will results in the highest 
number of possible scheduling options.  
 
All the data presented in this section was gathered from the companies’ ERP system and with the help 
of an experienced production team leader. He provided all possible alternative machine assignments 
because the ERP system currently only contains the standard routing for each product. The data was 
finally translated into a binary matrix holding all products on the rows and all the work centers in the 
columns. A value of 1 indicates that a certain product/work center combination is allowed. A value of 
0 indicates it is not. 
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It is important to note that the standard assignment in the companies’ ERP system can be viewed as 
the preferred assignment for each product. In case the workload of a work center is not above of what 
the machine is capable of daily, a product should preferably be assigned to its preferred work center. 
The difference between the preferred production line and other production lines might not always be 
that large but it can be assumed that in most cases it is better to assign a product to its preferred 
machine. 
 

5.3 Changeovers  
 
One of the main disturbers of the production process is a changeover between the different products 
on the different work centers. In order to more accurately model the process it is necessary to gather 
the data on these changeovers. Changeovers that are considered to be bad result in extra work for 
workers on the shop floor. Naturally, introducing a lot of these bad changeovers results in a lot of 
opposition from the workforce. Apart from this, having a production schedule with a lot of difficult 
changeovers results in longer processing times.  
 
The changeover process on pre-processing lines is very different from the process on packaging lines. 
Therefore, they will be listed separately here. 
 

5.3.1 Changeovers on pre-processing lines 
Whenever the order for an intermediate product finishes, the production line may have to be cleaned. 
On this type of production line, the amount of cleaning required to produce the next product 
according to its specifications indicates how bad the changeover actually is.  For the pre-processing 
lines three types of changeovers can be identified. These three types are listed in table 5.5. 
 
Table 5.5: Types of changeovers on pre-processing lines 

Description of changeover type Amount of time (min) required for changeover 

1. Emptying machine and/or changing the type 
of cut made by the machine 

5 minutes 

2. Light cleaning of the machine 10 minutes 

3. Thorough cleaning of the machine 45 minutes 

 
In order to indicate which type of changeover occurs when the work center changes over to a 
different product, a large matrix was created that lists the type of changeover that occurs for each 
possible combination of two products. This means that when a type 2 changeover occurs when 
changing from product i to product j, the value in the matrix in cell (i,j) equals 2. 
 
It is important to note that if a type 2 changeover occurs when switching from product i to product j, 
this will usually not be the same when switching from product j to i. In many cases when it is easy to 
switch from i to j, it is a lot more work to switch from j to i. This means that the changeover matrix is 
not symmetrical. As a result of this, the choice of event representation in the model will be limited 
(Baumann & Trautmann, 2013). This will be further explained in section 6.1.3. 
Figure 5.1 shows a small part of a changeover matrix for pre-processing line A01. 
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Figure 5.1: Part of the changeover matrix for preprocessing line A01. 
 

5.3.2 Changeovers on packaging lines 
Changeovers on packaging lines mainly depend on the recipes of the products. Three components of 
the bill-of-materials of a product determine which type of changeover occurs when switching between 
products. These 3 components are the film used for packaging, the kind of intermediate vegetable 
used, and the label on the packaging.  
 
Whenever the film of a product is different from the previous product, the roll of film has to be 
changed. The type of film also directly relates the format part that is used on a machine. The format 
part determines the size of the package. A package that contains 600 gr of product requires a larger 
format part than a package containing only 200 gr of product. A larger format part requires a wider 
roll of film. Therefore, the type of film used in the bill-of-material of a product can be used to 
determine if a format part exchange is required. 
 
If the intermediate product used in the recipe changes significantly when the product on a machine is 
changed, the machine should be cleaned. This means that leftover parts of the previous product are 
removed with compressed air.  
 
Last, when the label on a product is different from the product previously produced, the roll of labels 
in the label printer has to be changed. Orders are set up in such a way, that a different label is the 
smallest change that results in a different order. This means that on every order change the type of 
label has to be exchanged. Therefore the time required for this can be included in the processing time. 
Due to this, as was mentioned in section 5.1, we can combine all orders that differ only by the type 
label used into a single order. This significantly reduces the number of orders that are required to be 
scheduled. 
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The required changes described above result in three distinguishable types of changeovers. Whenever 
the type of product changes, the machine has to be cleaned. When the type of film changes, the roll 
of film has to be exchanged and when the size of the film also changes, the format part of the machine 
has to be exchanged as well. In table 5.6 we list these operations and the times required to finish 
them. 
 
Table 5.6: Type of changeovers and their respective durations. 

Type of Changeover Duration 

Change of format part 10 minutes 

Change of film 5 minutes 

Change of product 4 minutes 

   
 
The change of product is an independent event. However, the change of film and format part are 
related. When a format part changes, the film always has to be changed as well. When the type of film 
is changed, the format part does not necessarily have to change as well. This results in a limited 
number of changeover combinations. These combinations are listed in table 5.7. An x denotes that 
this type of changeover occurs in this combination. 
 
Table 5.7: Possible changeover combinations on packaging lines 

Changeover # Format change Film Change Product change 

1 x x x 

2 x x  

3  x x 

4   x 

5  x  

 
The changeover matrix, which denotes what changeover occurs when product j is produced after 
product i, was created using a script that compares the bill-of-materials of all products to each other. 
In this comparison the changeover number (table 5.7) is retrieved for each possible combination of 
two products. 
 

5.4 Processing and other durations 
 
To correctly schedule the orders, the processing time required to finish each order is required. 
Unfortunately the processing times at Heemskerk are not frequently updated and stored in a single 
database. However, there is extensive transaction data available. A transaction is a data entry that 
includes: the time and date at which the transaction occurred, the amount and type of product that 
was designated as completed by the transaction, and the work center on which the transaction 
occurred. With this data it is possible to calculate how much time was used to complete a certain 
amount of a product.  
 
This transaction data was gathered over a period of three months. This resulted in a total of over 
250.000 transactions. This data was further refined by removing workforce lunch breaks and errors. 
From this data estimated processing times required per unit were calculated. These processing times 
were made dependent of the size of the orders. A larger order results in shorter processing times per 
unit. These processing times also include the time required for changeovers.  
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Since then, these processing times have been used in expected workload overviews and capacity 
planning software. The overall view of the workforce at Heemskerk is that these times quite accurately 
describe the actual time required to produce the orders. They are now also constantly being updated 
with new transaction data. 
 
Another important time frame is the time required before an intermediate product can be used in 
another product. This ‘quarantine time’ will be included as a restriction in the model. This time is 
required to transport the products from their respective production line through the buffer inventory 
to the production line where they are required. Production of intermediates happens at a greater rate 
than the rate at which they can be used up. Furthermore, intermediates are stored into small metal 
containers on wheels. This way orders for intermediates that are only partially finished can already be 
used in the next step of the production process. Therefore, it will be sufficient to have started 
production of any intermediates at least 30 minutes before they are required.  
 

5.5 Contamination levels 
 
An important aspect of the production process is the prevention of cross-contamination. A product is 
defined as contaminated when the product contains visual traces from other products or does not 
taste the way it should. To prevent this there are clear restrictions on the order in which products are 
allowed to be produced. Every night, after the production day has finished, all production lines are 
thoroughly cleaned (>1 hour). This means that at the start of a new production day, all packaging lines 
are clean and everything can be produced. As soon as a product with a certain contamination is 
produced on a packaging line, a range of products can no longer be produced without being 
contaminated. These products are only allowed to be produced again after the production line has 
been thoroughly cleaned during the next night. 
 
A clear example of this; is the packaging of white onion rings. Any product that is not white as well 
easily contaminates this product. If a green-colored product like spinach is produced before this 
product, green parts will easily contaminate the packaging of the onions and they will be clearly 
visible. It is clear that these white onion rings should always be produced before anything that is not 
white.  
 
In order to correctly model these restrictions, a list containing the contamination level for each 
product was composed. In this list, products with a high contaminations risk are assigned a high level 
while products with a lower contamination level are assigned a lower contamination levels. Once a 
product with a certain contamination level is produced, only products that have an equal or higher 
contamination level are allowed to be produced.  
 
The onion rings discussed in the example have a contamination level equal to 1. The spinach has a 
contamination level of 3. When enforcing the rule above, the spinach can only be produced after the 
onions. Figure 5.2 shows an example of the contamination levels on the B04 packaging line. 
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Figure 5.2: Contamination levels of products with a standard assignment to the B04 packaging line. 
 
The contamination levels were determined in a dialogue with a production team leader. On each 
production line, all products that can be produced on that line were taken into account.  
 
The contaminations levels are only used on packaging lines because these cannot be cleaned 
sufficiently during a production day. On pre-processing machines this is not a problem since cleaning 
takes less time and can be performed between production runs.    
 

5.6 Available manufacturing timeframe 
 
The process at Heemskerk knows a fixed preferred ending time at which all production should be 
finished. This allows for the overnight cleaning of the production lines to take place. Only in rare 
occasions where the workload is simply too high to be finished within this timeframe, production lines 
are allowed to produce after this ending time. 
 
Production happens during two shifts. Each shift includes 9,5 hours of production time and 1 hour for 
breaks. This results in a 4-day workweek of 38 hours for the production personnel. The total 
production time available on each work center is thus equal to 19 hours per day. With rotating shifts, 
the production facility is opened for all 7 days in a week. 
 
Pre-processing production lines start their first shift at 5:15am while packaging machines start their 
first shift at 6:15am. Due to this time shift, pre-processing lines are allowed to build up a small buffer 
inventory of intermediates to be used for the first production runs on the packaging lines. 
 
The second and last shift of the pre-processing and packaging lines ends at 1:15am and 2:15am 
respectively. After this, the thorough cleaning of the production lines can commence.     
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6 A mathematical optimization model for the scheduling problem 
 
In this section, a mathematical optimization model for the problem will be proposed. The choice of 
model type will be defended and the incorporation of the key process constraints in the model will be 
explained. It will also be shown how the data presented in section 5 will be included in the model 
description.  
 

6.1 Choice of model type  
 
As was mentioned in the literature review, production-scheduling problems appear in a wide range of 
different types. Each type of model has its own strengths and weaknesses but some are more suited 
for certain processes than others. Here, the decision is made which type of model to use for the 
problem. Several independent choices lead to the final decision. 
 

6.1.1 Discrete- or Continuous-time representations 
The first choice for every scheduling model is whether time should be represented on a discrete or on 
a continuous time-scale. A discrete time-scale will result in a simpler model but the time 
representation will only be as accurate as the smallest chosen time interval. For this type of model, 
the number of constraints and variables will increase when the size of the time intervals becomes 
smaller. On the other hand a continuous time scale will have an accurate representation of time but 
the model may be more complicated and require more sophisticated constraints. 
 
At Heemskerk the shortest time required per order is 2 to 5 minutes. A typical production day should 
finish within a timeframe of 21 hours. However to leave a large enough feasible region (to allow to 
scheduling in overtime), a timeframe of at least 36 hours would be required. Even taking a relatively 
inaccurate timeframe of 10 minutes would already lead to 216 intervals. Stefansson & Sigmarsdottir 
(2011) furthermore show that scheduling a discrete model that has more than 100 orders already 
results in solution times greater than 60 minutes. The continuous model they present performs 
significantly better than the discrete model for any model size of over 100 orders.  
 
The time intervals required to accurately model the process at Heemskerk result in a large amount of 
intervals for the discrete model.  Furthermore, the amount of orders that needs to be scheduled far 
exceeds 100 orders. This makes the choice for a continuous-time representation easy to defend.  
 

6.1.2 Material Balances 
According to (Mendez, Cerda, & Grossmann, 2006) the handling of batches and batch sizes gives rise 
to two types of optimization model categories. The first type refers to approaches that simultaneously 
deal with an optimal set of batches (number and size), the allocation and sequencing of manufacturing 
resources and the timing of processing tasks. Including all of these into one model usually results in 
large model. This restricts their use to processes involving only a limited number of tasks. These 
models use network representations to model the flow of materials. The two types of network 
representations are the state-task network (STN) and the resource-task network (RTN).  
 
The second category includes models that assume that the number of batches of each size is known in 
advance. This is a type that allows wide use in industrial applications. First the batching problem is 
solved separately. After this the scheduling problem is solved where the batches are assigned to the 
available manufacturing resources. This two-stage approximate approach is able to cope with much 
larger problems than the first model type.  
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At Heemskerk the production is batch-oriented. Since each day almost every end product in the 
assortment is produced, the batch sizes are not very large and do not often need splitting. Since the 
planning horizon is only one day, producing the same product multiple times within that same day is 
not very efficient. Introducing the additional changeovers required does not outweigh the benefits of 
producing products twice or more per day. Next to that, the restrictions in place to prevent cross-
contamination often do not allow products to be produced again at a later time. 
 
The process at Heemskerk is therefore well suited for the employment of a batch-oriented model 
from the second category. Because orders are not split, the batch sizes are known in advance. 
Furthermore the amount of orders that need to be scheduled will most likely be too high for any 
network-based representation to handle.  
 

6.1.3 Event representation 
The batch-oriented continuous-time model that will be used for the problem allows events to be 
represented in one of three different ways. These event representations mainly differ in the way in 
which the allocation and sequencing variables are defined.  
 
In the first type of event representation, unit-specific immediate precedence, both the sequence of 
the production and the machine assignment are represented by a single variable. The binary variable 
𝑋𝑖𝑖′𝑗 then denotes if order i is processed right before order i’ on work center j. This also requires an 

additional variable in the form of 𝑋𝐹𝑖𝑗  which denotes if order i is the first processed order on machine 

j. This type of event representation is very specific and allows for more specific constraints and 
objective functions. It does however result in a large amount of variables since sequencing variables 
exist for every separate work center. 
 
The second type of event representation, immediate precedence, separates the variables for machine 
assignment and sequencing. Here, 𝑋𝑖𝑖′  denotes if order i is processed right before order i’. 𝐹𝑖𝑗  / 𝑋𝑖𝑗  

denote if order i is the first / is assigned to work center j. Splitting these variables results in a large 
reduction of variables without losing much details. 
 
In the final type of event representation, general precedence, 𝑋𝑖𝑖′  denotes if order i is processed 
before or after order i’.In this type of representation, the immediate relationship between orders that 
are processed right after each other is lost. However the variable 𝐹𝑖𝑗  is no longer required in this 

representation. This simply halves the number of assignment variables required compared to the 
immediate precedence representation. If no additional constraints have to be added to accompany 
this change, this representation will thus result in the lowest solution times. 
 
In the model for the production process bad changeovers will be penalized. In order for this to work 
with a general precedence event representation, the changeover matrix should satisfy the triangle 
inequality (Baumann & Trautmann, 2013). This means that the penalty for switching over from 
product i to product j should always be lower than the penalty for first switching over from product i 
to product j via product k. At Heemskerk this is not the case as a result of the cross-contamination 
restrictions. The general precedence event representation can therefore not be used as an accurate 
representation. 
 
In contrast to general precedence, an immediate precedence event representation will allow for 
accurate modeling of the exact changeovers between products. Therefore it will be used for the 
model. A unit-specific immediate representation would increase the amount of variables without 
giving a clear advantage over immediate precedence. 
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6.2 Including the company specific constraints 
 
A number of process-specific constraints that limit the production process should be incorporated into 
the model. Some additional constraints will be required to model an objective function that is in line 
with the objectives of the company. How this was done will be explained in this section. 
 

6.2.1 Modeling changeovers 
One of the main objectives of production scheduling at Heemskerk is the minimization of bad 
changeovers. The main aspect that qualifies a changeover as bad is the willingness of an operator to 
perform that changeover. Exchanging the roll of film or the format part on a production line is heavy 
work and no easy task. Introducing a lot of these changeovers will greatly lower the morale of the 
operator. When a format part only has to be exchanged once or twice a day, the operator will feel that 
he is producing very efficiently and will try to finish the changeover as quickly as possible. On the other 
hand, when a format part has to be exchanged 4 consecutive times in a row, the operator may no 
longer feel the necessity to hurry up because he is not producing efficiently anyway. 
 
Another aspect of changeovers is the time they require. On paper, they may not require a lot of time 
but when the amount of them is increased they can sum up to a considerable amount of time. 
 
In order to model changeovers, changeover penalties are introduced to the model. Good changeovers 
will have a lower penalty than bad changeovers. Using a penalty will make it easier to implement this 
objective into the model. It will also allow for more steering. If a certain changeover turns up too many 
times in the model results, the penalty can be increased. The drawback of this is that we cannot model 
the changeover durations directly into the required processing times. The influence of this choice will 
however be limited. The actual time saved by reducing bad changeovers does not contribute to a large 
part of the total required processing time.  
 
For example, the B00 production line has an average of 7 product exchanges, 7 film roll exchanges and 
2 format part exchanges per day. According to table 5.6 these will results in a total time required for 
changeovers of 86 minutes. Part of these changeovers will be mandatory to be able to produce all 
products assigned to that line (3 different format parts per day would already require at least 2 
exchanges). Therefore the model can influence only a small part of the total changeover time. 
 
Furthermore, as will be shown later, one of the main objectives of the scheduling problem is for each 
work center to be finished within a certain time frame. Since the used processing times will include 
average changeover times required in the current situation, and the model will be equal to or improve 
upon this current solution, this time frame will never be exceeded by the solution that the model 
provides.   
 
Therefore using penalties for changeover instead of changeover times should better represent the 
objectives of the company without introducing extra inaccuracies. 
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6.2.2 Modeling cross-contamination restrictions 
In section 5.5 the cross-contamination rules that apply to the production process were discussed. 
These rules only apply to batches that need to be assigned to packaging lines.  
 
It was shown that contamination levels were gathered for each packaging batch. These contamination 
levels were set up in such a way that they are valid for every possible packaging line to which a certain 
product can be assigned. This means that if onions are assigned contamination level 1 for the B00 
production line, they will also have a contamination level of 1 for the B10 production line. 
 
The rule that should be incorporated in the model to prevent cross-contamination is stated in (6.1). 
 

On work center j an order i’ with a contamination level equal to k is only allowed to 
start after order i when 𝑘 ≥ l . where l is the contamination level or order i 

(6.1) 

 
  
In the first few iterations of the model, the cross-contamination restrictions were included in the form 
of big M-constraints. This constraint prohibited any order i that is assigned to work center j and which 
has a lower contamination level than order i’ from starting after the finishing time of order i’. 
However, big M-constraints are an inefficient modeling practice often resulting in bad LP-relaxations.  
 
The final version of the model will include rule (6.1) by fixing the sequencing variables to 0. This means 
that all sequencing (binary) variables that result in orders with a lower contamination level being 
sequenced after something with a higher contamination level are fixed to 0. These variables effectively 
become parameters and therefore result in a much more efficient model. 
 
The method of fixing the sequencing variables results in a large reduction in the number of variables 
and constraints. The difference this makes for the model instance of the exemplary production day of 
11 July 2013 are shown in table 6.1 
 
Table 6.1: Difference between using big-M constraints and fixing the variables to model cross-

contamination restrictions. 

Method used # of Variables # of Constraints 

Big M-constraint 139,266 650,384 

Fixing sequencing variables 17,944 529,677 

% difference -87.11% -18.56% 
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6.2.3 Modeling time restrictions 
In section 5.6 the timeframe during which production is allowed to be scheduled is explained. 
Introducing this time limit as a hard constraint limits the available scheduling interval for the model. 
Any solution that does not finish exactly within this timeframe would be infeasible. Furthermore, 
solutions that fall just outside the time interval but may still be acceptable would be infeasible as well. 
Also it would not be possible to get a possible solution for problem instances that have no feasible 
solution that fits within the timeframe. 
 
Because solutions that do not fit exactly into the restricted timeframe should still be shown and 
because these solutions may be improved iteratively later, the production time frame restrictions will 
be introduced to the model as soft constraints.  
 
Orders that are scheduled by the model to finish after the allowed production timeframe will be 
penalized in the objective function. The weight of this part of the objective function can then be varied 
to modify the degree in which the constraint is allowed to be violated. 
 
Generally, only solutions that (almost) fit into the production timeframe should be accepted as 
solutions to the problem. 
 
 

6.2.4 Modeling the dependencies between intermediates and end products. 
Before final products can be produced, all required intermediates should be available. In section 5.4 it 
was mentioned that production of orders that are required for other orders should start at least 30 
minutes before the starting time of said order.  
 
Creating subsets of orders that are required for each order enforces this constraint.  The constraints 
are then enforced only for the orders that are in this subset.  
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6.3 A mathematical formulations for the production-scheduling problem 
 
The presented data and process restrictions can be used to formulate a mathematical optimization 
model for the scheduling problem. Here, an immediate precedence, continuous-time batch scheduling 
model is presented. The model can be used to simultaneously schedule both the pre-processing and 
packaging orders at once. 
 
In section 6.3.1 on this page the mathematical formulation will be given. In section 6.3.2 the sets, 
variables and parameters will be explained, in section 6.3.3 the constraints will be explained and in 
section 6.3.4 the objective function will be discussed. 
 
 

6.3.1 Mathematical formulation 
 
 
Sets 

𝑊 Batches / Work Orders 
𝑊𝑚 ⊂ 𝑊 Make batches (batches that produce intermediates) 
𝑊𝑝 ⊂ 𝑊 Pack batches (batches that produce final products) 

𝑊𝑤
𝑚 ⊆ 𝑊𝑚 Make batches that supply pack batch 𝑤 ∈ 𝑊𝑝 

𝑊𝑤
𝑟 ⊆ 𝑊𝑚 Make batches required to be finished before make batch 𝑤 ∈ 𝑊𝑚 

𝐽 Work centers (production units) 
𝐽𝑤 ⊆ 𝐽 Work centers that can produce batch 𝑤 ∈ 𝑊 

𝐽𝑤𝑤′ ⊆ 𝐽 Work centers that can produce both 𝑤 ∈ 𝑊 𝑎𝑛𝑑 𝑤′ ∈ 𝑊 
 
 
Parameters 
 

𝛼𝑤 Processing time required per unit of batch 𝑤 ∈ 𝑊 
𝛿𝑤 Time required before batch 𝑤 ∈ 𝑊 can be used in another batch 

𝜔𝑤𝑤′  Penalty for a switchover between batch 𝑤 ∈ 𝑊 and batch 𝑤′ ∈ 𝑊 
𝛽𝑤 Number of units required of batch 𝑤 ∈ 𝑊 
𝑀 A sufficiently large number 

𝐷𝑤 Preferred time at which work order w should be completed  
𝐾𝑤𝑤′ Binary matrix that is equal to 1 when for a pair of batches w and w’  the variable 

𝑌𝑤𝑤′  should be equal to 0.   
 

Continuous Variables 
 

𝑆𝑤 Start time of batch 𝑤 ∈ 𝑊 
𝐷𝑤

+ Amount of time that batch 𝑤 ∈ 𝑊𝑝 finishes after the preferred completion time 𝐷, 
i.e., the tardiness of order w 

 
Binary Variables 
 

𝐹𝑤𝑗 1, if batch 𝑤 ∈ 𝑊 starts the processing sequence on workcenter 𝑗 ∈ 𝐽𝑤 

𝑋𝑤𝑗 1, if batch 𝑤 ∈ 𝑊 is assigned to but not the first to be processed on workcenter 𝑗 ∈ 𝐽 

𝑌𝑤𝑤′  1, if batch 𝑤 ∈ 𝑊 is processed right before batch 𝑤′ ∈ 𝑊 
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Objective function 
 

𝒎𝒊𝒏  𝒑𝟏  ∑ ∑ 𝝎𝒘𝒘′ ∙ 𝒀𝒘𝒘′

𝒘′∈𝑾𝒘∈𝑾

+ 𝒑𝟐 ∑ 𝑺𝒘 + 𝒑𝟑  ∑ 𝑫𝒘
+

𝒘∈𝑾𝒘∈𝑾

 (6.2) 

 

 

 
 
Allocation constraints 
 

∑ 𝐹𝑤𝑗 ≤ 1   ∀  𝑗 ∈ 𝐽𝑤∈𝑊   (6.3) 

∑ 𝐹𝑤𝑗 +  ∑ 𝑋𝑤𝑗   = 1    ∀  𝑤 ∈ 𝑊𝑗∈𝐽𝑗∈𝐽   (6.4) 

 
Sequencing-allocation matching constraints 
 

𝐹𝑤𝑗 + 𝑋𝑤𝑗 ≤ 𝑋𝑤′𝑗 − 𝑌𝑤𝑤′ + 1   ∀(𝑤 ∈ 𝑊 ; 𝑤′ ∈ 𝑊 ;  𝑗 ∈ 𝐽𝑤𝑤′) (6.5) 

𝑌𝑤𝑤′ + 𝑌𝑤′𝑤 ≤ 1 ∀ (𝑤 ∈ 𝑊 ; 𝑤 ∈ 𝑊) (6.6) 
𝐹𝑤𝑗 + 𝑋𝑤𝑗 ≤ 1 − 𝑌𝑤𝑤′  ∀ (𝑤 ∈ 𝑊 ; 𝑤′ ∈ 𝑊; 𝑗 ∈ (𝐽𝑤\𝐽𝑤𝑤′)) (6.7) 

 
Sequencing constraints 
 

∑ 𝐹𝑤𝑗 + ∑ 𝑌𝑤′𝑤 = 1𝑤′𝑗∈𝐽𝑤
  ∀ 𝑤 ∈ 𝑊  (6.8) 

∑ 𝑌𝑤𝑤′ ≤ 1   ∀ 𝑤 ∈ 𝑊𝑤′∈𝑊   (6.9) 
𝑌𝑤𝑤′ = 0   ∀(𝑤 ∈ 𝑊 ; 𝑤′ ∈ 𝑊) | 𝐾𝑤𝑤′ = 1  (6.10) 

 
 
Timing constraints 
 

𝑆𝑤′ ≥ 𝑆𝑤 +  𝛽𝑤𝛼𝑤 + 𝛿𝑤    ∀   (𝑤′ ∈ 𝑊𝑚 ; 𝑤 ∈ 𝑊𝑤′
𝑟 ) (6.11) 

𝑆𝑤′ ≥ 𝑆𝑤 + 𝛿𝑤′  ∀  (𝑤′ ∈ 𝑊𝑝 ; 𝑤 ∈  𝑊𝑤′
𝑚) (6.12) 

𝑆𝑤′ ≥ 𝑆𝑤 + 𝛽𝑤𝛼𝑤 − 𝑀(1 − 𝑌𝑤𝑤′) ∀ (𝑤 ∈ 𝑊 ; 𝑤′ ∈ 𝑊 (6.13) 
𝑆𝑤 ≥ 1   ∀ (𝑤 ∈ 𝑊𝑝) (6.14) 

 
 
Additional constraints 
 

𝑆𝑤 + 𝛼𝑤𝛽𝑤 ≤ 𝐷𝑤 + 𝐷𝑤
+   ∀ 𝑤 ∈ 𝑊𝑝 (6.15) 

𝐹𝑤𝑗 + 𝑋𝑤𝑗 = 0 ∀ (𝑤 ∈ 𝑊𝑝 ; 𝑗 ∉ 𝐽𝑤) (6.16) 

𝑌𝑤𝑤′ = 0 ∀ (𝑤 ∈ 𝑊; 𝑤′ ∈ 𝑊; 𝑗 ∉ 𝐽𝑤𝑤′)  
 

(6.17) 

 
 
Variable constraints 
 

𝑆𝑤 ≥ 0   ∀ 𝑤 ∈ 𝑊 (6.18) 
𝐷𝑤

+ ≥ 0   ∀ 𝑤 ∈ 𝑊  (6.19) 
𝑋𝑤𝑗 ∈ {0,1}  ∀ (𝑤 ∈ 𝑊 ; 𝑗 ∈ 𝐽𝑤 ) (6.20) 

𝑌𝑤𝑤′ ∈ {0,1} ∀ (𝑤 ∈ 𝑊 ; 𝑤′ ∈ 𝑊) (6.21) 
𝐹𝑤𝑗 ∈ {0,1} ∀ (𝑤 ∈ 𝑊 ;   𝑗 ∈ 𝐽𝑤) (6.22) 
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6.3.2 Sets, parameters and variables. 
 
Sets 
The set 𝑊 contains all batches or orders that need to be scheduled by the model whereas the subsets 
𝑊𝑚 and 𝑊𝑝 contain only the pre-processing (make) and packaging (pack) batches respectively. 
 
A subset 𝑊𝑤

𝑚 of the set of make batches 𝑊𝑚 is created for every order 𝑤. It contains all make 
batches that are required for order w. The subset 𝑊𝑤

𝑟 of the set of make batches contains all batches 
required in pack batch w. 
 
All work centers are included in the set of work centers 𝐽. To indicate which work centers are available 
for each order, the subset 𝐽𝑤 is introduced for each order. It contains the available work centers for 
order w. A second subset 𝐽𝑤𝑤′ is the subset of work centers that can produce both order 𝑤 and 𝑤′. 
 
Parameters 
The processing time required for each unit of order 𝑤 is given by the parameter 𝛼𝑤 while the amount 
required of each order 𝑤 is given by 𝛽𝑤. The total amount of time required for each order will thus be 
given by 𝛼𝑤 ∙ 𝛽𝑤 
 
The parameter 𝛿𝑤 contains the time before an order 𝑤 can be used in another order. This is set equal 
to 0,5 hours for all orders that are processed.  
 
The penalty matrix discussed in section 6.2.1 is contained in the parameter 𝜔𝑤𝑤′ where for each 
changeover from order 𝑤 to 𝑤′ the penalty is given. 
 
The parameter 𝑀 equals a single sufficiently large number. To test the influence of this parameter, it 
was varied from 2 planning horizons (48 hours) to 109. Any number higher than about 106 would 
result in rounding errors. No significant differences in the final results were found for any of the values 
that did not give errors. Setting this parameter relatively high (in the order of multiple planning 
horizons) did however result in a slight reduction in the time required to find a feasible solution (< 10 
seconds).  
 
𝐷𝑤 gives the time, in hours, at which order 𝑤 should preferably be finished. For pre-processing orders 
the value of this parameter will equal 19 (the shift start at 0 and has a duration of 19 hours) and for 
packaging orders this parameter will equal 20 (since the 19 hour shift starts 1 hour later).  
 
In section 6.2.2 the inclusion of the cross-contamination rules in the model was discussed. To enforce 
these rules, certain changeovers are prohibited. The parameter 𝐾𝑤𝑤′ is equal to 1 if a switchover from 
order 𝑤 to 𝑤′ is prohibited.  
 
Variables 
The continuous variable indicating the start time of each batch 𝑤 is given by 𝑆𝑤 while the amount of 
time that each order 𝑤 exceeded the preferred finishing time 𝐷𝑤, i.e., the tardiness, is represented by 
the variable 𝐷𝑤

+. 
 
Machine assignment for order 𝑤 to work center 𝑗 happens through the binary variables 𝐹𝑤𝑗 and 𝑋𝑤𝑗 

Here 𝐹𝑤𝑗 indicates if a work order is the first to be processed on work center j and 𝑋𝑤𝑗 indicates if 

batch 𝑤 is assigned to work center 𝑗 but not the first to be processed on that workcenter.  
 
Finally, the binary variable 𝑌𝑤𝑤′  indicates that order 𝑤′ is processed right after order 𝑤. 
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6.3.3 Constraints 
 
Allocation constraints 
 
Constraints (6.3) ensure that only one order can be the first processed order on each work center. To 
make sure that all orders are assigned to a work center, constraints (6.4) are introduced. For these 
constraints an order should either be the first (𝐹𝑤𝑗 = 1) assigned or not (𝑋𝑤𝑗 = 1).   

 
Sequencing-allocation matching constraints 
 
To ensure that all orders allocated to a work center are also assigned valid production sequences, a 
number of sequencing-allocation matching constraints are introduced. Constraints (6.5) ensure that 
when two batches 𝑤 and 𝑤′ are linked through the immediate precedence constraints 𝑌𝑤𝑤′ they are 
also assigned to the same work center. Constraints (6.6) enforce that a batch 𝑤 cannot be both the 
successor and the predecessor of batch 𝑤′. Constraints (6.7) then ensure that batches that are not 
linked through the immediate precedence variable are not assigned to the same work center.  
 
Sequencing constraints 
 
The following constraints ensure that the sequence of all orders is valid and makes sense. Constraints 
(6.8) make sure that a batch  𝑤 is either the first order to be processed on a machine or that it is the 
successor of another order. Constraints (6.9) ensure that the order 𝑤 can at most be succeeded by 
one other order 𝑤′. Finally, constraints (6.10) make sure that all sequencing variables 𝑌𝑤𝑤′ are equal 
to 0 for pairs of orders for which 𝐾𝑤𝑤′ is equal to 1. These last constraints are used to enforce the 
contamination restrictions of the process that were discussed in section 5.5. 
 
Timing constraints 
 
The timing constraints are used to enforce the correct timing of the orders on the continuous 
timescale used. Constraints (6.11) ensure that make batch 𝑤′ ∈ 𝑊𝑚 only starts after all its required 
components 𝑤 ∈ 𝑊𝑤′

𝑟   have been finished and available for at least 𝛿𝑤 hours. 

Constraints (6.12) then enforce that pack batch 𝑤′ ∈ 𝑊𝑝 starts at least 𝛿𝑤 hours after its required 
make batches 𝑤 ∈ 𝑊𝑤′

𝑚  have started production. 

 
The third type of timing constraints (6.13) ensures that batches that are assigned to the same work 
center cannot overlap in time. When batch 𝑤′ is linked to batch 𝑤 through the immediate precedence 
variable 𝑌𝑤𝑤′ then batch 𝑤′ is only allowed to start after the finishing time of batch 𝑤. 
 
The last type of timing constraints (6.14) enforce that pack batches start one hour after the lowest 
possible starting time of make batches (=0). This is the result of the one hour difference between the 
starting time of the pre-processing shift and the packaging shift.  
 
Additional constraints 
 
To complete the entire model some additional constraints are required. Constraints (6.15) are used to 
calculate the 𝐷𝑤

+ variable. Since 𝐷𝑤 is a fixed parameter, variable 𝐷𝑤
+ has to be raised when order 𝑤 

finishes after the desired finishing time. 
 
Constraints (6.16) are tightening constraints that ensure that the assignment variables 𝑋𝑤𝑗 and 𝐹𝑤𝑗 

are equal to zero for orders w that cannot be processed on work center j (work centers that are not in 
the set  𝐽𝑤). 
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Constraints (6.17) are additional tightening constraints that ensure the immediate precedence 
variable is equal to zero for combinations of orders 𝑤 and 𝑤′ that have no common work center on 
which they can be produced. In other words, there are no work centers 𝑗 in the set 𝐽𝑤𝑤′. 
 
Constraints (6.18) to (6.22) are standard variable constraints 
 
  

6.3.4 The objective function 
 
Production scheduling at Heemskerk is subject to a number of main objectives: 
 

- The connection between pre-processing and packaging should be fluent. This means that 
whenever packaging of a product is scheduled to start, its components should be readily 
available. 

- Production should be fluent. This means limiting the amount of changeover to only the 
ones that are absolutely necessary. 

- The amount of idle time on packaging lines should be as low as possible. Operators on 
packaging lines are specialized workers that should not have to fill their shifts with work 
other than operating their production line. 

- All production lines should have finished their work before the end of the last shift (before 
the preferred finishing time 𝐷). 

 
The first objective is included as a hard constraint in the model. Constraints (6.11) and (6.12) ensure 
intermediates are readily available when the orders consuming them start. 
 
The objective function of the model is a weighted sum. It consists of 3 separate parts which each have 
their own separate weight factor (𝑝1, 𝑝2 and 𝑝3). These weight factors can be used to steer the results 
of the model solution. Giving one of the factors a higher weight than the other should result in a more 
apparent result of that optimization aspect in the solution. 
 
The first part of the objective function, the part associated with weight 𝑝1, limits the total changeover 
penalty. Whenever a changeover from 𝑤 to 𝑤′ is scheduled, the variable 𝑌𝑤𝑤′  will become equal to 1. 
This means that a changeover penalty equal to 𝜔𝑤𝑤′  is introduced. Because bad changeovers have 
higher penalties, the total sum associated with this part of the objective function will become higher 
when a lot of bad changeovers are introduced. 
 
The second part of the objective function is associated with weight factor 𝑝2. This part is equal to the 
sum of all starting times. It is used to minimize the amount of idle time that will occur on each line. 
Without this constraint there is little incentive for the model to schedule all orders right after each 
other when the total workload does not exceed the preferred finishing time. A clear example of this 
mechanic is given in figure 6.1. Both bars in this figure represent the same production line with an 
equal number of the same orders. In both schedules the part of the objective function associated with 
𝑝3 is equal to zero. However, there is a lot of idle time (white spaces) in the second schedule. By 
introducing the second part of the objective function (𝑝2 > 0) this idle time can be effectively limited. 
The first bar in figure 6.1 shows the result of this. 
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Figure 6.1: Example of a schedule with and without the inclusion of the 2nd part of the objective function. 
 
The total weighted sum of the 3 parts of the objective function includes all the objectives that a good 
solution to the scheduling problem should have. Since all parts of the objective function are penalties 
that should be kept as low as possible, the objective function is to be minimized.  
 
The third part of the objective function is associated with penalty 𝑝3. This part is used to minimize the 
amount of time each order is finished after its preferred completion time. Since 𝐷𝑤

+ is only greater 
than zero when an order is finished late, this penalty will be equal to zero when no orders finish late. 
This part of the objective function is used to enforce the last of the objectives at Heemskerk. As was 
mentioned before in section 6.2.3, this objective is not introduced as a hard constraint. It is introduced 
into the objective function. Generally only solutions where this part of the objective function is at or 
very close to zero will be accepted.  
 
Figure 6.2 shows an example where this part of the objective function is not equal to zero. The 
workload of two work centers is shown. Production line B04 finishes before the preferred delivery 
time 𝐷𝑤 while line B05 finishes after 𝐷𝑤. Therefore, in order to satisfy constraints (6.15),  𝐷𝑤

+ is not 
equal to zero. 
 

 
Figure 6.2: Example of a schedule in which one production line exceeds the preferred delivery time. 
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6.4 Preliminary model results 
 
The first idea was to solve the model presented here for a single instance (one production day) of the 
problem. This was attempted using the CPlex 12.5 solver within the modeling software solution 
AIMMS. The size of the problem was gradually increased by introducing more orders into the problem. 
The first results are listed in table 6.2. 
 
These results were obtained on a notebook with an Intel i5-3317U CPU and 8GB of DDR3 ram.  
 
Table 6.2: List of preliminary results to test the performance of the CPLEX solver at solving the presented 

model. 

# of orders  Solution 
Feasible(s) 

Sol. time (s) #  Variables # Constraints Gap % 

22 0.02s 1.83s 1028 (961 integer) 1980 optimal 

48 0.53s 1111.23s 3045 (2900 integer) 8661 11.43% 

86 58.47s 1667.02s 7838 (7579 integer) 32573 30.39% 

357 (all) n/a 47,160.00s 17944 (16872 integer) 529677 n/a 

 
 
 
The solutions show that it is hard to find an optimal solution. The LP bound of the problem is not very 
tight. This results in greater optimality gaps for problem instances involving a higher number of orders. 
However, as will be shown in section 8, the feasible solutions the solver obtains are very good. The 
solutions on line 2 and 3 of table 6.2 were found by letting the solver run until no better feasible 
solution was found for 600 seconds. For the last problem instance, which involves all 357 orders, no 
feasible solution was found. After 47,160 seconds the solver ran out of memory to use. 
 
These preliminary results show that it is unlikely that just using a commercial solver on the model 
described in this section can solve the problem. A feasible solution was not found before the solver 
ran out of memory. To find an acceptable solution within a reasonable amount of time (< 1-2 hours), a 
different approach will need to be pursued. This approach will be presented in section 7. 
 
From here on, the approach presented in this section, i.e. simply solving the model presented here 
using a commercial solver, will be referred to as the ‘MIP-based approach’. 
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7 Solving the model for a large-scale real world problem 
 
Section 6 showed that the usage of a commercial solver to simply solve the model will not be sufficient 
to obtain acceptable solutions within a reasonable amount of time. In this section a MIP-based 
sequential solution strategy is introduced that reduces the size of the problem instances. Furthermore, 
an initial solution is provided which is then iteratively improved using a commercial solver.  
 

7.1 Process aspects that can be used to solve the model 
 
The production process has a few distinct aspects. Knowledge of these aspects can be effectively used 
to obtain better solutions in a more reasonable amount of time. In this section a number of these key 
aspects will be listed. Knowledge of these aspects is then used in combination with a commercial 
solver to find good solutions 
 

7.1.1 Separation between different production departments 
At Heemskerk there is a rather strict separation between the three different packaging departments 
and the pre-processing department. Because the four departments each have their own 
specialization, and the production lines have been adjusted for this, order assignment cannot be easily 
switched between the different departments.  
 
A bag-packaging production line is not able to package products into bowls and a bowl-packaging line 
cannot seal products into bags. The third type of production line, the high care line, is technically able 
to produce products that are normally produced on a bowl-packaging line. However, it is not possible 
to produce high care products on the bowl-packaging lines due to the contamination restrictions that 
apply to the former. Furthermore, because high care products contain more ingredients and therefore 
require more workers at the production line, it is highly inefficient to produce products from the bowl-
packaging department on a high care production line. So although technically possible, this is never 
done in practice. 
 
Because orders assigned to the three different packaging departments do not depend or interfere 
with each other, the problem instances of these departments can be split into three instances that are 
much smaller. This can be done without influencing the solutions for the departments because orders 
that belong to one department cannot be assigned to work centers in other departments. 
 
The challenge in splitting the problem for the packaging lines into three separate problem instances 
lies with the pre-processing department. Although production orders for intermediates can only be 
assigned to pre-processing work centers, the production of intermediates is linked to all other 
departments. A single intermediate may be needed for a separate production order in all three 
packaging departments.  
 
Fortunately constraints (6.12) are the only constraints that connect orders that are assigned to the 
pre-processing department to the other departments. These constraints ensure that the packaging 
process can only start when the required intermediates are available. 
 
To be able to split the model into 4 smaller problem instances for each production department, two 
versions of the model will be created. The first model will be used to schedule the pre-processing 
orders while the second model will be used to schedule the packaging orders. Constraints (6.12) will 
be enforced through a set of constraints that link the solution of the make model to constraints in the 
packaging model. This solution approach will be explained further on in this section. 
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7.1.2 Standard and preferred production line assignments 
The production schedule that is currently used at the case-company is based on a standard fixed 
machine assignment and production sequence for each order. This practice often results in 
unfavorable schedules that may even be infeasible if they are not changed by an experienced team 
leader along the way. 
 
However, an advantage of the standard routing is that the machine assignment for each order is 
actually the preferred assignment for that order. This preference is based on two aspects of the 
process.  
 
The first of these aspects is the ease of packaging a certain order on a certain production line. 
Although work orders can often be produced on an array of different machines, one machine may be 
able to produce these products at a higher quality or at a slightly greater rate because it is specialized 
for that type of product.  
The second aspect is based on the experience of the operator that operates a certain work center. 
Operators are usually assigned to work centers on which they have prior experience. This means that 
they know every recipe of the products that are normally assigned to that line by heart. If an operator 
has to produce an order that is not normally assigned to his production line, he might have to look up 
the recipe before he can start. This will delay the production process and result in a longer processing 
time for the order. Furthermore, the operator may not notice production flaws because he has little 
experience with how the product should look.  
 
Both these aspects of the process result in a desire to limit the amount of orders that are not assigned 
to their standard production line. In order to include this desire into the model presented in section 6, 
the objective function would have to be extended. A penalty would be introduced that penalizes the 
assignment of orders to non-preferred production lines. This would make the model more complex 
and harder to steer because a fourth penalty would have to be introduced. 
 
The sequential solution approach that is presented in this section will not introduce an extra penalty 
to the objective function. The approach will make use of the standard preferred machine of each 
order to find an initial solution to the scheduling problem. In this solution, all orders are assigned and 
fixed to their standard routing. This may result in model solutions that are infeasible because the 
schedule does not fit in the available production time. However, all orders will be assigned to their 
preferred machine. 
 
After this initial solution is generated, the solution can be iteratively improved by relaxing the variables 
that were fixed earlier. This will get rid of the infeasibilities in the solution but because only a limited 
amount of changes will be made to achieve this, the major part of the orders will still be assigned to 
their preferred work centers. 
 
The preferred machine assignment of orders will thus be used to easily generate an initial starting 
solution. This starting solution will, at the same time, ensure that a high number of orders will be 
assigned to their preferred work centers in the final solution. 
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7.2 A mathematical model for the pre-processing orders 
 
To reduce the size of the problem instance, the scheduling problem will be split. This will result in a 
separate problem instance for each of the four departments at Heemskerk. These problem instances 
will only contain orders that are assigned to that department. As was explained in the previous 
section, in order to satisfy the constraints that connect the pre-processing orders to the packaging 
orders (6.12), a separate model has to be created for the pre-processing and packaging orders. 
 
For completeness sake both models will be listed completely here. The changes that were made from 
the original model will be shown and explained as well. 
 

7.2.1 Mathematical formulation 
 
Sets 

𝑊 Batches / Work Orders 
𝑊𝑚 ⊂ 𝑊 Make batches (batches that produce intermediates) 

𝑊𝑤
𝑚 ⊆ 𝑊𝑚 Make batches that supply pack batch 𝑤 ∈ 𝑊𝑝 

𝑊𝑤
𝑟 ⊆ 𝑊𝑚 Make batches required to be finished before make batch 𝑤 ∈ 𝑊𝑚 

𝐽 Work centers (production units) 
𝐽𝑤 ⊆ 𝐽 Work centers that can produce batch 𝑤 ∈ 𝑊 

𝐽𝑤𝑤′ ⊆ 𝐽 Work centers that can produce both 𝑤 ∈ 𝑊 𝑎𝑛𝑑 𝑤′ ∈ 𝑊 
 
Parameters 
 

𝛼𝑤 Processing time per unit of batch 𝑤 ∈ 𝑊 
𝛿𝑤 Time required before batch 𝑤 ∈ 𝑊 can be used in another batch 

𝜔𝑤𝑤′  Penalty for a switchover between batch 𝑤 ∈ 𝑊 and batch 𝑤′ ∈ 𝑊 
𝛽𝑤 Number of units required of batch 𝑤 ∈ 𝑊 
𝑀 A sufficiently large number 

𝐷𝑤 Preferred time at which all work centers should have completed their batches 
  

 
Continuous Variables 
 

𝑆𝑤 Start time of batch 𝑤 ∈ 𝑊 
𝐷𝑤

+ Amount of time that batch 𝑤 ∈ 𝑊𝑝 finishes after the preferred completion time 𝐷, 
i.e., the tardiness of order 𝑤 

 
Binary Variables 
 

𝐹𝑤𝑗 1, if batch 𝑤 ∈ 𝑊 starts the processing sequence on workcenter 𝑗 ∈ 𝐽𝑤 

𝑋𝑤𝑗 1, if batch 𝑤 ∈ 𝑊 is assigned to but not the first to be processed on workcenter 𝑗 ∈ 𝐽 

𝑌𝑤𝑤′  1, if batch 𝑤 ∈ 𝑊 is processed right before batch 𝑤′ ∈ 𝑊 
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Objective function 
 

𝒎𝒊𝒏  𝒑𝟏  ∑ ∑ 𝝎𝒘𝒘′ ∙ 𝒀𝒘𝒘′ 

𝒘′∈𝑾𝒘∈𝑾

+ 𝒑𝟐 ∑ 𝑺𝒘

𝒘∈𝑾

+ 𝒑𝟑 ∙ ∑ 𝑫𝒘
+

𝒘∈𝑾

 

 

(7.1) 

 
Allocation constraints 
 

∑ 𝐹𝑤𝑗 ≤ 1   ∀  𝑗 ∈ 𝐽𝑤∈𝑊𝑚
  (7.2) 

∑ 𝐹𝑤𝑗 +  ∑ 𝑋𝑤𝑗   = 1    ∀  𝑤 ∈ 𝑊𝑗∈𝐽𝑗∈𝐽   (7.3) 

 
Sequencing-allocation matching constraints 
 

𝐹𝑤𝑗 + 𝑋𝑤𝑗 ≤ 𝑋𝑤′𝑗 − 𝑌𝑤𝑤′ + 1   ∀(𝑤 ∈ 𝑊𝑚 ;  𝑤′ ∈ 𝑊𝑚 ;  𝑗 ∈ 𝐽𝑤𝑤′) (7.4) 

𝑌𝑤𝑤′ + 𝑌𝑤′𝑤 ≤ 1 ∀ (𝑤 ∈ 𝑊𝑚 ; 𝑤 ∈ 𝑊𝑚) (7.5) 
𝐹𝑤𝑗 + 𝑋𝑤𝑗 ≤ 1 − 𝑌𝑤𝑤′  ∀ (𝑤 ∈ 𝑊𝑚 ; 𝑤′ ∈ 𝑊𝑚; 𝑗 ∈ (𝐽𝑤\𝐽𝑤𝑤′)) (7.6) 

 
 
Sequencing constraints 
 

∑ 𝐹𝑤𝑗 + ∑ 𝑌𝑤′𝑤 = 1𝑤′𝑗∈𝐽𝑤
  ∀ 𝑤 ∈ 𝑊𝑚  (7.7) 

∑ 𝑌𝑤𝑤′ ≤ 1   ∀ 𝑤 ∈ 𝑊𝑤′∈𝑊
𝒎

  (7.8) 

 
 
Timing constraints 
 

𝑆𝑤′ ≥ 𝑆𝑤 +  𝛽𝑤𝛼𝑤 + 𝛿𝑤    ∀   (𝑤′ ∈ 𝑊𝑚 ; 𝑤 ∈ 𝑊𝑤′
𝑟 ) (7.9) 

𝑆𝑤′ ≥ 𝑆𝑤 + 𝛽𝑤𝛼𝑤 − 𝑀(1 − 𝑌𝑤𝑤′) ∀ (𝑤 ∈ 𝑊𝑚 ; 𝑤′ ∈ 𝑊𝑚) (7.10) 
 
 
Additional constraints 
 

𝑆𝑤  ≤ 𝐷 + 𝐷𝑤
+   ∀ 𝑤 ∈ 𝑊𝑚 (7.11) 

𝐹𝑤,𝑗 + 𝑋𝑤,𝑗 = 1 ∀ (𝑤 ∈ 𝑊 , 𝑗 ∈ 𝐽𝑤) (7.12) 

 
 
Variable constraints 
 

𝑆𝑤 ≥ 0   ∀ 𝑤 ∈ 𝑊𝑚 (7.13) 
𝐷𝑤

+ ≥ 0   ∀ 𝑤 ∈ 𝑊𝑚  (7.14) 
𝑋𝑤𝑗 ∈ {0,1}  ∀ (𝑤 ∈ 𝑊𝑚 ; 𝑗 ∈ 𝐽𝑤  ) (7.15) 

𝑌𝑤𝑤′ ∈ {0,1} ∀ (𝑤 ∈ 𝑊𝑚 ; 𝑤′ ∈ 𝑊𝑚) (7.16) 
𝐹𝑤𝑗 ∈ {0,1} ∀ (𝑤 ∈ 𝑊𝑚 ;   𝑗 ∈ 𝐽𝑤) (7.17) 
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7.2.2 Changes made to the original model 
 
This model will be used to schedule the orders of the pre-processing department. Therefore the set 
𝑊𝑝 is not included because it contains only pack batches. 
 
Although the preferred finishing time 𝐷𝑤 for each order w is still included, it is used in a different way 
here. Here, the preferred finishing time is no longer set by the time at which the last shift ends but it is 
the time at which the intermediate is required to be ready for packaging into the final product. Since 
each intermediate product may be required at a different time. This time is dependent on w.  
 
This means that when product 𝑤′ is required in product 𝑤 and the solution of the packaging problem 
shows that product 𝑤 starts production at time 𝑇𝑤 then the preferred delivery time 𝐷𝑤′ of product 𝑤′ 
is equal to 𝑇𝑤 − 𝛿𝑤. 
 
By setting the preferred delivery time in this way, the solution of the pre-processing model can be 
linked to the solution of the packaging model. Because 𝐷𝑤 will be lower in this case than in the 
original case the objective function will still minimize the amount of orders that finish after the last 
shift ends as well. This will therefore not result in negative side effects for the scheduled finishing 
times of the orders. 
 
In this model the constraints that are associated with the cross-contamination restrictions (6.10) are 
excluded because they are only valid for packaging orders. Furthermore constraints (6.12), which 
involve the connection between pre-processing and packaging orders, are also excluded because the 
model will contain no packaging orders.  
 
The last constraints that are not included in this version of the model are (6.14) because they are 
specific to the packaging orders as well.  
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7.3 A Mathematical model for the packaging orders 
 
A separate model was created to solve the scheduling problem for each of the three packaging 
departments at the case-company. This model differs slightly from the original model and the model 
for the pre-processing stage. It is listed here along with an explanation of the changes. 
 

7.3.1 Mathematical formulation 
 
Sets 

𝑊𝑚 Make batches (batches that produce intermediates) 
𝑊𝑝 Pack batches (batches that produce final products) 

𝑊𝑤
𝑚 ⊆ 𝑊𝑚 Make batches that supply pack batch 𝑤 ∈ 𝑊𝑝 

𝐽 Work centers (production units) 
𝐽𝑤 ⊆ 𝐽 Work centers that can produce batch 𝑤 ∈ 𝑊𝑝 

𝐽𝑤𝑤′ ⊆ 𝐽 Work centers that can produce both 𝑤 ∈ 𝑊𝑝 𝑎𝑛𝑑 𝑤′ ∈ 𝑊𝑝 
 
Parameters 
 

𝛼𝑤 Processing time per unit of batch 𝑤 ∈ 𝑊𝑝 
𝛿𝑤 Time required before batch 𝑤 ∈ 𝑊𝑝 can be used in another batch 

𝜔𝑤𝑤′  Penalty for a switchover between batch 𝑤 ∈ 𝑊𝑝 and batch 𝑤′ ∈ 𝑊𝑝 
𝛽𝑤 Number of units required of batch 𝑤 ∈ 𝑊𝑝 
𝑀 A sufficiently large number 
𝐷 Preferred time at which all work centers should have completed their batches 

𝐺𝑤 Starting time of Make Batch w according to the solution of the make batches 
𝐾𝑤𝑤′ Binary matrix that is equal to 1 when for a pair of batches w and w’  the variable 

𝑌𝑤𝑤′  should be equal to 0.   
 
Continuous Variables 
 

𝑆𝑤 Start time of batch 𝑤 ∈ 𝑊 
𝐷𝑤

+ Amount of time that batch 𝑤 ∈ 𝑊𝑝 finishes after the preferred completion time 𝐷, 
i.e., the tardiness of order 𝑤 

 
Binary Variables 
 

𝐹𝑤𝑗 1, if batch 𝑤 ∈ 𝑊 starts the processing sequence on workcenter 𝑗 ∈ 𝐽𝑤 

𝑋𝑤𝑗 1, if batch 𝑤 ∈ 𝑊 is assigned to but not the first to be processed on workcenter 𝑗 ∈ 𝐽 

𝑌𝑤𝑤′  1, if batch 𝑤 ∈ 𝑊 is processed right before batch 𝑤′ ∈ 𝑊 
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Objective function 
 

𝒎𝒊𝒏  𝒑𝟏  ∑ ∑ 𝝎𝒘𝒘′ ∙ 𝒀𝒘𝒘′

𝒘′∈𝑾𝒘∈𝑾

+ 𝒑𝟐 ∑ 𝑺𝒘 + 𝒑𝟑  ∑ 𝑫𝒘
+

𝒘∈𝑾𝒘∈𝑾

 (7.18) 

 

Allocation constraints 
 

∑ 𝐹𝑤𝑗 ≤ 1   ∀  𝑗 ∈ 𝐽𝑤∈𝑊𝑝   (7.19) 

∑ 𝐹𝑤𝑗 +  ∑ 𝑋𝑤𝑗   = 1    ∀  𝑤 ∈ 𝑊𝑝
𝑗∈𝐽𝑗∈𝐽   (7.20) 

 
Sequencing-allocation matching constraints 
 

𝐹𝑤𝑗 + 𝑋𝑤𝑗 ≤ 𝑋𝑤′𝑗 − 𝑌𝑤𝑤′ + 1   ∀(𝑤 ∈ 𝑊𝑝 ;  𝑤′ ∈ 𝑊𝑝 ;  𝑗 ∈ 𝐽𝑤𝑤′) (7.21) 

𝑌𝑤𝑤′ + 𝑌𝑤′𝑤 ≤ 1 ∀ (𝑤 ∈ 𝑊 ; 𝑤 ∈ 𝑊) (7.22) 
𝐹𝑤𝑗 + 𝑋𝑤𝑗 ≤ 1 − 𝑌𝑤𝑤′  ∀ (𝑤 ∈ 𝑊 ; 𝑤′ ∈ 𝑊; 𝑗 ∈ (𝐽𝑤\𝐽𝑤𝑤′)) (7.23) 

 
 
Sequencing constraints 
 

∑ 𝐹𝑤𝑗 + ∑ 𝑌𝑤′𝑤 = 1𝑤′𝑗∈𝐽𝑤
  ∀ 𝑤 ∈ 𝑊𝑝  (7.24) 

∑ 𝑌𝑤𝑤′ ≤ 1   ∀ 𝑤 ∈ 𝑊𝑤′∈𝑊
𝒑

  (7.25) 

𝑌𝑤𝑤′ = 0   ∀(𝑤 ∈ 𝑊𝑝 ; 𝑤′ ∈ 𝑊𝑝) | 𝐾𝑤𝑤′ = 1  (7.26) 
 
 
Timing constraints 
 

𝑆𝑤′ ≥ 𝐺𝑤 + 𝛿𝑤′    ∀  (𝑤′ ∈ 𝑊𝑝 ; 𝑤 ∈  𝑊𝑤′
𝑚) (7.27) 

𝑆𝑤′ ≥ 𝑆𝑤 + 𝛽𝑤𝛼𝑤 − 𝑀(1 − 𝑌𝑤𝑤′) ∀ (𝑤 ∈ 𝑊𝑝 ; 𝑤′ ∈ 𝑊) (7.28) 
𝑆𝑤 ≥ 1   ∀ (𝑤 ∈ 𝑊𝑝) (7.29) 

 
 
Additional constraints 
 

𝑆𝑤 + 𝛼𝑤𝛽𝑤 ≤ 𝐷 + 𝐷𝑤
+   ∀ 𝑤 ∈ 𝑊𝑝 (7.30) 

𝐹𝑤𝑗 + 𝑋𝑤𝑗 = 0 ∀ (𝑤 ∈ 𝑊𝑝 ; 𝐽 ∉ 𝐽𝑤) (7.31) 

𝑌𝑤𝑤′ = 0 ∀ (𝑤 ∈ 𝑊𝑝; 𝑤′ ∈ 𝑊𝑝; 𝑗 ∉ 𝐽𝑤𝑤′)  (7.32) 
 
 
Variable constraints 
 

𝑆𝑤 ≥ 0   ∀ 𝑤 ∈ 𝑊 (7.33) 
𝐷𝑤

+ ≥ 0   ∀ 𝑤 ∈ 𝑊  (7.34) 
𝑋𝑤𝑗 ∈ {0,1}  ∀ (𝑤 ∈ 𝑊 ; 𝑗 ∈ 𝐽𝑤 ) (7.35) 

𝑌𝑤𝑤′ ∈ {0,1} ∀ (𝑤 ∈ 𝑊 ; 𝑤′ ∈ 𝑊) (7.36) 
𝐹𝑤𝑗 ∈ {0,1} ∀ (𝑤 ∈ 𝑊 ;   𝑗 ∈ 𝐽𝑤) (7.37) 
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7.3.2 Changes made to the original model 
The separate model that will be used for the packaging orders of each of the three packaging 

departments slightly differs from the original model presented in section 6. 

Although this model is only used for the scheduling of pack batches, the sets of make batches 𝑊𝑚 and 

𝑊𝑤
𝑚 are included as well. These will be used to enforce the constraints that link the starting times of 

make batches to the starting time of the pack batches they are required in. The subset of make 

batches 𝑊𝑤
𝑟 is no longer included because it is only required to schedule the make batches. 

The set of parameters has been extended by the parameter 𝐺𝑤. This parameter can be used to store 
the starting times of all pre-processing batches in the set 𝑊𝑚. This parameter will be used to connect 
this model to the model for make batches (section 7.2) after it has been solved. The parameter will be 
provided when the solution from a certain instance of the make model is connected to the model 
presented here.    
 
To connect the pre-processing batches to the pack batches, constraints (6.12) are altered. Because the 
model for the make batches is solved separately, the starting times 𝑆𝑤 of these batches is not 
available. The starting time will be provided in the form of parameter 𝐺𝑤. The resulting constraints 
(7.27) ensure that a packaging batch 𝑤′ starts at least 𝛿𝑤′ after the starting time of its required make 
batches 𝑤 ∈ 𝑊𝑤′

𝑚 .  

 
Through these constraints a solution generated using the model for pre-processing orders can be 
connected to this model for the packaging orders. This ensures that the complete solution is still 
feasible. This will be used in the sequential approach that is presented in the next section. 
 
From here on, the approach presented in this section, i.e. sequentially solving different parts of the 
model in 3 distinct steps will be referred to as the ‘sequential approach’.  
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7.4 A sequential solution approach to solve the scheduling problem 
 
Until now three different optimization models have been presented. The first presented model in 
section 6 is an optimization model that can be used to schedule an entire instance of the scheduling 
problem at once. Unfortunately, as was shown in section 6.4, using this method, the problem size of 
one production day is too large for a commercial solver to efficiently handle. 
 
To be able to find a good solution in a reasonable amount of time, the problem instance was split up. 
After this separation each of the four instances of the separate processing departments will be solved 
independently of each other. In order to be able to create feasible schedules using this approach, two 
different versions of the original model were presented. The model presented in section 7.2 will be 
used to solve the model for the pre-processing department while the model presented in section 7.3 
will be used for all three instances of the packaging department.  
 
Here, a step-by-step explanation of the used approach will be given. Because the connection between 
pre-processing orders and packaging orders needs to stay feasible, the models for these instances will 
be solved sequentially. In each step the solution of the previous step will be used as input for the 
model in the next step. It should be noted that when it is indicated that a model instance is ‘solved’, 
the commercial solver CPLEX 12.5 is used to find a solution for the presented problem instance.  
 
The approach will start at the back of the production process. All packaging orders will be scheduled 
first. After this, the solution to this problem will be used as input to solve the model for the pre-
processing orders. This choice was made because the packaging process is considered to be the most 
important process. During the packaging of products, most of the value is added to the product. The 
production of intermediates is also faster than the time it takes to package the intermediates. This 
makes the packaging process the bottleneck. Lastly, idle time on packaging work centers is generally 
considered a bad thing because personnel are not able to go do something else. The operator of a 
packaging line is often only trained to operate that specific work center. In the pre-processing 
department, idle time is of less concern. When workers there have to wait before they can continue 
processing on their line, they can do other things like cleaning, processing pre-work for tomorrow, or 
helping out their colleagues on other lines. 
 
The sequential approach employs the following steps to solve the model for all orders of a single 
production day: 
 

1. In the first step, the three different instances for the three separate packaging departments 
are solved independently using the model presented in section 7.3. In this step the instances 
are solved without the connection to their respective required pre-processing orders (𝐺𝑤 =
0 ∀ 𝑤).  
 
When 𝐺𝑤 equal 0 for all orders, constraints (7.27) are effectively removed from the problem. 
This holds because 𝑆𝑤′ ≥ 1 and 𝛿𝑤′ = 0,5 for all packaging orders. This means that packaging 
orders can be scheduled anywhere in time without taking into account the time at which their 
required intermediates become available. This passes with the fact that a good schedule for 
the packaging orders is considered most important and that these orders should at first be 
allowed to be scheduled anywhere in time. 
 
The three different problem instances for the bag, bowl and high care packaging departments 
can be solved independently and in parallel because none of the orders in these departments 
can be assigned to work centers in the other departments. 
To further increase the speed at which the three model instances can be solved. The following 
steps will be performed during the solving of the problem instances: 
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a. As explained in section 7.1.2, all orders have a preferred work center assignment. In 

the first iteration, the model will be solved while all orders are fixed to their preferred 
work centers. This means that 𝐹𝑤𝑗 and 𝑋𝑤𝑗 are fixed to 0 for all combinations of 𝑤 

and 𝑗 that are not preferred order-work center combinations. 
 
Furthermore, all changeover variables 𝑌𝑤𝑤′  of combinations of orders 𝑤 and 𝑤′ that 
do not have the same preferred machine assignment, are fixed to 0 as well. After all it 
is not possible for a changeover to occur from order 𝑤 to order 𝑤′ when both are 
assigned to different work centers. 
 
Because any fixed variables can be treated as parameters, this greatly reduces the 
number of variables in the model and allows for much quicker solving during this step. 
 

b. After step 1a has been performed, the solution may not be very good. Because orders 
are fixed to their preferred machines, the entire workload is assigned to that 
production line. If the total workload is larger than what is available during the two 
available shifts, an unfavorable and unfeasible solution will be the result. In this case 
the third part of the objective function (associated with 𝑝3) will be greater than 0. 
 
In order to arrive at a feasible and/or favorable solution, some of the workload on the 
overburdened production lines will have to be assigned to alternative production lines 
that still have capacity available. This will be done in this step. 
 
The variables that were fixed in step 1a are now selectively unfixed. The variables 
𝐹𝑤𝑗 , 𝑋𝑤𝑗 and 𝑌𝑤𝑤′  that denote orders that are assigned to overburdened machines 

are unfixed. This means that these orders can be freely assigned to any work center 
they can be processed on.  
 
After this, the model is solved again until an acceptable solution is found in which 
production lines are no longer overburdened. Because only orders that are assigned 
to overburdened production lines are allowed to switch over to another production 
line, only a limited amount of orders will be assigned to non-preferred work centers. 
This passes with the objective of having as many preferred work center assignments 
as possible. 
 

An illustrative but over exaggerated example of what happens during step 1a and 1b is given in figure 
7.1 and 7.2 respectively. 
 
In this example, the preferred production line for all orders is the HC01. Naturally, all orders are thus 
assigned to this production line in step 1a. Because the shift of this production line normally ends at 
𝐷𝑤 = 20, this schedule finishes long after the last shift ends and is therefore infeasible. In step 1b the 
variables of the orders on line HC01 are relaxed (in this case all orders). The result is shown figure 7.2. 
It can be seen that after this step, the complete schedule finishes within the set timeframe. The 
penalty in the objective function that is associated with 𝑝3 is reduced to 0 and the overburdened 
workload has been moved to alternative packaging line HC02. 
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Figure 7.1: Schedule for order that have preferred work center HC01. Result after step 1a of the sequential approach. 
 
 
 
 
 
 

Figure 7.2: Schedule for order that have preferred work center HC01. Result after step 1b of the sequential approach. 
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2. In step 1 the initial solution for the three instances of the packaging departments was found. 
In step 2 the solution for the pre-processing department will be generated. Because the final 
solution will have to be feasible, the constraints that link the pre-processing department to 
the packaging departments are already included to some extent.  
 
From the solution for the packaging departments, the earliest times at which each 
intermediate is required can be calculated. If a certain intermediate 𝑤 is required in three 
different packaging orders, then the packaging order 𝑤′with the earliest starting time is 
leading. If the intermediate available on time for this order, then it will be on time for the 
other two orders as well.  
 
To connect the pre-processing order to its related packaging orders, the original model uses 
constraints (6.12) 
 
These constraints ensure that a packaging order 𝑤′ starts at least 𝛿𝑤′ after production of the 
intermediates it requires have started. Since the starting times of the packaging orders are 
known from the solutions in step 1, the preferred starting times of the intermediates are 
known as well. These times are equal to 𝑆𝑤′ − 𝛿𝑤′ for all of the intermediates required in 
packaging order 𝑤′. 
 
In this step, the relationship between pre-processing and packaging orders is not enforced 
through a constraint but through an incentive in the objective function. This is done by setting 
the preferred delivery time 𝐷𝑤 of each of the orders to their preferred starting time (as 
calculated above). The amount of orders that starts after this preferred starting time is then 
minimized in the objective function. If an order finishes after its preferred starting time 𝐷𝑤 it 
is given a penalty in the objective function. 
 
In this way, the number of orders that result in an infeasible intermediate-final product 
connection is minimized. This number can be steered through penalty factor 𝑝3. A higher 
penalty factor will result in a higher number of orders that satisfy constraints (6.12). 
 
Summarizing step 2 of the solution approach:  
 

a. Preferred starting times for all intermediates are calculated from the solutions found 
for the packaging problems in step 1. This is done by setting: 
  
  𝐷𝑤 =  𝑆𝑤′ − 𝛿𝑤′    ∀  (𝑤′ ∈ 𝑊𝑝 ; 𝑤 ∈  𝑊𝑤′

𝑚) 

 
b. The calculated 𝐷𝑤 are then used to solve the model for the pre-processing orders. 

This model was presented in section 7.2. 
 

c. Penalty factor 𝑝3 can be used to steer the amount of orders that are scheduled ‘on-
time’ for usage in their respective final products. 

 
It should be noted that in solving the model for pre-processing batch; it is unnecessary to fix or 
unfix variables (like in step 1a and 1b). Almost all pre-processing orders have only one allowed 
machine assignment. Therefore almost all assignment variables have only one option for 
assignment. 

  



46 
 

3. In step 1 and 2 of the solution approach, solutions have been found for all orders in the pre-
processing and packaging departments. Although these solutions are feasible in their 
respective departments, the total solution may not be feasible.  
 
The total solution may be infeasible because not all pre-processing orders are scheduled to 
start at an appropriate time during step 2 of the approach. This will result in packaging orders 
that start before their required intermediates are ready for consumption. 
 
To arrive at a uniformly feasible solution, one of two options can be chosen: 
 
1. Use the available capacity at the pre-processing department to schedule the pre-

processing batches that result in infeasibilities on the day before they are required. This is 
known as pre-work. 

2. Adjust the schedules of the packaging departments to the solution for the make batches 
found in step 2. 

 
When only a small amount of pre-processing batches results in infeasibilities, choosing option 
1 may be an easy way to arrive at a feasible schedule. If all these batches can be scheduled on 
the day before, the schedule for the packaging orders does not have to be adjusted.  
 
In the current situation at Heemskerk it is common practice in the pre-processing department 
to perform some ‘pre-work’ for the next day in the off-hours or when the orders of the 
current day are finished. There is often plenty of time available for this pre-work. Therefore it 
would not be hard to adapt option 1 and select a number of the orders as obligatory pre-
work. 
 
When the number of infeasibilities in the overall solution is high or when not all infeasible 
orders can be executed as pre-work, choosing option 1 may not be viable. In this case, the 
solution of the packaging departments will have to be adjusted. This is option 2. 
 
For option 2, constraints (7.27) are used to introduce the connection between the pre-
processing and packaging orders into the model for the packaging departments. 
 
In this step, 𝐺𝑤 is set equal to the starting times of the make orders that were found when 
solving the model in step 2. Constraints (7.27) then ensure that packaging orders can only 
start production after their intermediates are available. Solving this model for the packaging 
departments thus ensures a feasible solution for the entire problem. 
 
Subsequently the model for the packaging departments is solved again with constraints (7.27) 
included. For this, the same approach is used as in step 1a and 1b. 
 
It is also possible to use a combination of option 1 and 2 where a part of the infeasible orders 
are scheduled as pre-work and the remaining infeasibilities are resolved by adjusting the 
packaging solution. This is essentially the same as choosing option 2 because the instances of 
the packaging departments still have to be resolved. 
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Summarizing step 3 of the solution approach: 
 

a. Step two of the approach may result in an infeasible overall schedule. One of 
two options can be chosen to arrive at a feasible solution: 

i. Schedule the infeasible pre-processing orders as pre-work on the day 
before. This effectively removes the orders and their infeasibilities 
from the problem. 

ii. Adjust the schedule of the packaging department to the solution 
found in step 2 (or the remaining infeasibilities after partially 
rescheduling some orders as pre-work).  
 

b. If option ii is chosen, the problem instances of the three packaging 
departments have to be solved again. Here, constraints (7.27), based on the 
solution found in step 2, ensure an overall feasible solution. 

 
Ultimately it is up to the management of the company to decide which approach should be taken in 
step 3 of the approach. Option 1 may result in more changeovers on the pre-processing department. 
On the other hand option 2 may result in a worse solution for the packaging department because they 
will have to wait for their intermediates to be ready.  
 
For a good comparison, both approaches for step 3 that were listed here will be discussed in the 
results section. These can be found in section 8.  
 
Because the solution approach is rather complex and involves a lot of different aspects, a visual 
representation of the process is given in figure 7.3. The denotations used are equal to the ones used in 
the textual description (Step 1, 2, etc.). 
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7.4.1 Iterations 
The approach presented in this section solves the problem sequentially. Different parts of the problem 
are solved in sequence and independent of each other. Due to this independence, it may be possible 
that the overall solution can be improved by iterating between the different parts of the problem. This 
would mean solving the instance in step 2, then solving step 3 and then go back to the instance of pre-
processing batches from step 2 to see if this can somehow be adjusted to give a better solution for the 
packaging orders. 
 
There are several challenges that make it hard to introduce these iterations into the current approach. 
First, it would require introducing an extra incentive into step 2 of the approach. The few pre-
processing orders that still result in infeasibilities after step 2 would have to be given an extra 
incentive, e.g. extra individual weights for the third part of the objective function, to be scheduled on 
time. This may then result in other orders that are scheduled late. These, in turn, will require further 
adjustment of schedule for the packaging orders. 
 
A second challenge is that the variable 𝑆𝑤 used to minimize the idle time is not an ideal candidate for 
this job. In section 8.2.1 it will be shown that a large part of the sum of this variable cannot be 
removed without introducing overlap, and thus infeasibility, in the schedule. When, for example, the 
total sum of all starting times is 800 hours and the total idle time is 3 hours. Then the second part of 
the objective function could only be reduced by a small amount before the ideal situation is achieved 
(no idle time). This would only have a small effect on the total value of the objective function. The 
result of this, as will be shown in section 8, is that it is hard to limit the idle time during step 3. When 
iterations are introduced to the approach, step 3 would have to be performed multiple times. In each 
iteration the amount of idle time would increase. To prevent this, a different way of limiting the idle 
time would have to be found. This will however require extensive adjustments of the model.  
 
Furthermore, the schedule for the packaging orders that is found during step 1b can be viewed as the 
most ideal schedule for these orders that can be found using this approach. By solving the problem for 
the packaging orders first and then solving the problem for the pre-processing orders in step 2, the 
packaging orders have more freedom in the scheduling process. This is exactly what this approach is 
trying to achieve. As a result of this unbalance, each iteration between step 2 and 3 will worsen the 
schedule of the packaging orders found in step 1b. Introducing iterations would thus go against one of 
the objectives of the sequential approach. 
 
Lastly, it is unlikely that introducing iterations will show a great improvement in the overall solution. As 
will be shown in a comparison between the MIP-based approach and the sequential approach in 
section 8.2, the difference between the solutions of these two approaches is rather small.  
 
Because of the above, iterations were not performed between step 2 and step 3.  
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Figure 7.3: Visual representation of the sequential approach used to solve the production-scheduling problem at Heemskerk 
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8 Model results and comparison 
 
So far, two different approaches were presented to solve the problem. The first approach involves 
solving a single optimization model for the complete problem instance of a single production day. It 
was presented in section 6. The preliminary results for this approach showed that finding a feasible 
solution in a reasonable amount of time using a commercial solver was unlikely.. Therefore, in section 
7, a sequential approach was presented to find a solution for the problem. In this section, a number of 
exemplary results will be presented to illustrate the way in which a schedule is generated by the 
models. Furthermore, the approach from section 6 will be compared to the sequential approach from 
section 7. The solution will also be compared to the current situation at Heemskerk. This should give 
some insight in the possibilities of the approach. All solutions were found using an Intel Core i5-3317U 
CPU and 8GB DDR3 ram. 
 

8.1 A toy problem to illustrate the process. 
 
In order to verify the correct working of the model and to illustrate the results, a toy problem was 
devised. This problem includes a few exemplary orders to show the different aspects of the process. 
 
In the toy problem, orders for the packaging of two different types of cut vegetables and their 
intermediates are scheduled. Different packaging sizes and intermediates result in a total of 10 
packaging orders and 4 intermediate orders that need to be scheduled. Table 8.1 lists all the orders 
and their properties. 
 
Table 8.1: Orders and details for a toy problem of the production process. 

Order nr.  Description Amount 
required 

Time per 
unit (m) 

Available 
work centers 

Required 
intermediates 

Dirt Level Type of product 

1 Andijvie 600gr 1688 ce 0,0444 B01, B04 13 3 Final 
2 Soepgroenten 

500gr 
1550 ce 0,0208 B03  3 Final 

3 Andijvie 400gr 3455 ce 0,0336 B01, B04 13 2 Final 
4 Soepgroenten 

150gr 
1342 ce 0,0180 B03 14 1 Final 

5 Sal. Andijvie 400gr 7250 ce 0,0299 B01, B04 13 2 Final 
6 Andijvie fijn 200gr 3145 ce 0,0343 B01, B04 11 1 Final 
7 Sal. Soepgroenten 

300gr 
15300 ce 0,0140 B03 14 2 Final 

8 Soepgroenten fijn 
200gr 

1008 ce 0,0198 B03 14 1 Final 

9 Andijvie fijn 450gr 1450 ce 0,0547 B01, B04 11 1 Final 
10 Soepgroenten 

300gr 
3008 ce 0,0164 B03 14 2 Final 

11 Andijvie sliert 
4mm 

1333 kg 0,1098 A09 - 1 Intermediate 

12 Winterpeen blok 
8mm 

726 kg 0,0281 C01 - 1 Intermediate 

13 Andijvie sliert 
8mm 

5698 kg 0,0501 
 

A09 - 1 Intermediate 

14 Soepgroenten 
Mengsel 

6670 kg 0,0191 A01 12 1 Intermediate 
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This toy problem is forged in such a way that a lot of aspects of the solution are known in advance. All 
curly endive (“Andijvie” in the table) should be scheduled to either the B01 or B04 production line 
while all soup vegetables (“Soepgroenten” in the table) should be assigned to machine B03. 
Furthermore, the dirt levels are set up in such a way that the largest packaging weights should be 
scheduled last. Lastly the preferred delivery time 𝐷𝑤 for the packaging orders was set equal to 5 
hours. Because the total endive workload is 9,92 hours, the model should distribute this work 
between production line B01 and B04. 
 
The model presented in section 6 was translated using the mathematical modeling software suite 
AIMMS. Subsequently, the commercial solver CPLEX 12.5 was used to solve the model using the main 
data presented in table 8.1.  
 
The solution that was found is presented below. Table 8.2 gives a summary of the results found with 
the model while table 8.3, 8.4, 8.5 and 8.6 respectively give the variables 𝐹𝑤𝑗, 𝑋𝑤𝑗, 𝑌𝑤𝑤′ and 𝑆𝑤. 

Figure 8.1 shows a visual representation of the schedule. 
 
 
Table 8.2: Summary of the solution found after solving the model for the toy problem 

Description Value 

Used penalty factor (𝑝1, 𝑝2, 𝑝3) (1,.01,10) 
Best Solution (Objective value) 82.92 
Best LP bound 82.92 
% Gap  Optimal solution 
Solution time (s) 0.27 s 
# of Constraints 719 
# of Variables 326 
# of orders that are scheduled late (Finishing 
time > 𝐷𝑤) 

3 

Total amount of idle time (h) 1,18 (h) 
Total changeover penalty 28 

 
 
Because the solved problem is a toy problem, the figures presented in table 8.2 do not say much. 
What can be concluded is that the model solves problem instances of this small size very quickly and 
that it is possible to find optimal solutions. The results also show that the model correctly minimized 
the different penalties in the objective function. 
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Table 8.3: Values of variable 𝑭𝒘𝒋 after solving the model for the toy problem 

w j value 

Andijvie fijn 200gr B01 1 
Soepgroenten fijn 200gr B03 1 

Andijvie fijn 450gr B04 1 
Andijvie sliert 4mm A09 1 

Winterpeen blok 8mm C01 1 
Soepgroenten Mengsel A01 1 

 
The variable 𝐹𝑤𝑗 in table 8.3 is equal to 1 when an order 𝑤 is the first to be processed on production 

line j. It can be seen that the orders with the lowest dirt levels are processed first indeed. This is in 
concurrence with the cross-contamination restrictions that are enforced by constraints (6.10) of the 
model. 
 
Table 8.4: Values of variable 𝑿𝒘𝒋 after solving the toy problem 

w j value 

Andijvie 600gr B04 1 

Soepgroenten 500gr B03 1 

Andijvie 400gr B04 1 

Soepgroenten 150gr B03 1 

Sal. Andijvie 400gr B01 1 

Sal. Soepgroenten 300gr B03 1 

Soepgroenten 300gr B03 1 

Andijvie sliert 8mm A09 1 

 
The variable 𝑋𝑤𝑗 is equal to 1 if order 𝑤 is assigned to work center 𝑗 but is not the first to be 

processed. As expected, the model assigns all endive to the B01 and B04 production lines and all soup 
vegetables to the B03 production line. This is exactly the expected result. 
 

Table 8.5: Values of the variable 𝒀𝒘𝒘′ after solving the toy problem 

w w’ value 

Andijvie 400gr Andijvie 600gr 1 

Soepgroenten 150gr Soepgroenten 300gr 1 

Andijvie fijn 200gr Sal. Andijvie 400gr 1 

Sal. Soepgroenten 300gr Soepgroenten 500gr 1 

Soepgroenten fijn 200gr Soepgroenten 150gr 1 

Andijvie fijn 450gr Andijvie 400gr 1 

Soepgroenten 300gr Sal. Soepgroenten 300gr 1 

Andijvie sliert 4mm Andijvie sliert 8mm 1 

 
 
The variable 𝑌𝑤𝑤′ is equal to 1 when order 𝑤′ is processed right after order 𝑤 on the same 
production line. Again, it is clear from table 8.5 that the cross-contamination requirements are met. 
For example; Andijvie 600gr (dirt level 3) is processed after Andijvie 400gr (dirt level 2). The same can 
be shown for the other pairs of orders for which 𝑌𝑤𝑤′ = 1. 
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Table 8.6: Values of starting time variable 𝑺𝒘 after solving the toy problem 

Product Starting time (h) 

Andijvie 600gr 4,871 

Soepgroenten 500gr 6,474 

Andijvie 400gr 2,939 

Soepgroenten 150gr 1,672 

Sal. Andijvie 400gr 2,939 

Andijvie fijn 200gr 1,000 

Sal. Soepgroenten 300gr 2,895 

Soepgroenten fijn 200gr 1,340 

Andijvie fijn 450gr 1,000 

Soepgroenten 300gr 2,073 

Andijvie sliert 4mm 0,000 

Winterpeen blok 8mm 0,000 

Andijvie sliert 8mm 2,439 

Soepgroenten Mengsel 0,840 

 
 
Variable 𝑆𝑤 denotes the scheduled starting time of order w. The results in table 8.6 show that 
constraints (6.14) are kept. These constraints ensure that all packaging orders start at least 1 hour 
after the start of the first pre-processing shift.  
 
In order to illustrate what a complete schedule looks like, figure 8.1 has been created. It shows the 
schedule that is found after the toy problem has been solved. The different colored bars represent the 
work orders that are assigned to each of the work centers. The numbers on the bars are equal to the 
order numbers shown in table 8.1. Furthermore, the arrows in the figure indicate that a certain 
intermediate is required in another intermediate or final product. 
 
The figure shows that the resulting solution complies with how the toy problem was designed. All 
endive-packaging orders (1, 3, 5, 6 and 9) are assigned to either machine B01 or B04. Furthermore the 
workload of these orders is evenly distributed between these two machines. Lastly, the largest 
packaging sizes (1 and 2 for example) are scheduled last.  
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Figure 8.1: Production schedule after solving the toy problem. 
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8.2 Comparison of the MIP-based approach to the sequential approach. 
 
In section 6 the complete mathematical formulation for the problem was presented. In order to be 
able to find a feasible solution in a reasonable amount of time, a sequential approach was presented 
for solving the problem in section 7. For this approach, some concessions were made to arrive at a 
usable approach. In this section a comparison between the two approaches is made in order to see 
the effects of these concessions. 
 
To be able to solve the instance using both approaches, the size of the exemplary instance of the 
production day of the 11th of July 2013 was reduced. This was necessary to be able to solve the 
problem using the MIP-based approach. Only selecting the orders that are normally assigned to 3 of 
the 10 bag-packaging lines reduced the problem size to a manageable level. The required intermediate 
orders for these packaging orders are included as pre-processing orders in this instance.  
 
Only selecting the packaging orders from 3 of the 10 bag-packaging lines does not result in a low 
number of pre-processing lines that need to be scheduled. Because the required intermediates for the 
selected final product orders are so omnifarious, 9 of the 11 pre-processing lines would have to be 
included in the model. If this would not be changed, the model would be rather easy to solve. Because 
a lot of other intermediates would not be included, there would be very little workload on each of the 
pre-processing lines and scheduling each intermediate on time would be easy. 
 
To prevent this, all pre-processing orders are converged onto two production lines. This means that in 
the problem instance used here, any intermediate order can be scheduled on either of two pre-
processing machines. Because the total workload of all pre-processing orders is equal to about 33 
hours and the available production time is 38 hours, this will result in a problem that is harder to 
solve. This will make the problem instance more similar to a problem instance for a full production 
day. 
 
The main characteristics of the problem instance that was simulated for this test are given in table 8.6. 
 
Table 8.6: Main characteristics of the simulated problem to compare the two solution methods 

Description Value 

Total # of orders 60 
# of packaging orders 38 
# of pre-processing orders 22 
Packaging  lines 3 (B01, B04, B06) 
Pre-processing lines 2 (A01, A02) 
Total packaging workload 46.16 (h) 
Available packaging time 57 (h) 
Total pre-processing workload 33.09 (h) 
Available pre-processing time 39 (h) 
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8.2.1 Results after solving the complete model 
The problem instance created for this comparison is solved using the model presented in section 6 
and the commercial solver CPLEX 12.5. A summary of the results is given in table 8.7. 
 
It should be noted that the solver is not able to find optimal solutions for problems of this size. 
Therefore a stopping criterion has to be used to stop the solver. In the cases presented here, the 
solver was stopped after a period of 600s (10m) during which no improvement of the best feasible 
solution was found. All solution times presented here include these 600 seconds. 
 
Table 8.7: Main results after solving the comparison problem using the complete model.  

Description Value 

Used penalties in objective (𝑝
1
, 𝑝2 𝑎𝑛𝑑 𝑝3) (1,1,1) 

Best Solution (Objective value) 583,67 
Best LP bound 281,72 
% Gap  51,73% 
Solution time until feasible (s) 10.28 s 
Total solution time 2661 s 
# of Constraints 14,804 
# of Variables 3,196 
# of orders that are scheduled late (Finishing time > 𝐷𝑤) 0 
Total amount of idle time (h) 2.29 h 
Total changeover penalty  147 
Changeover penalty for packaging orders 102 
Changeover penalty for pre-processing orders 45 
# of orders assigned to non-preferred packaging lines 5 

 
 
The work load in both the packaging department and the pre-processing department is quite high for 
this problem instance. The utilizations of the departments are 80.9% and 84.8% for respectively the 
packaging and the pre-processing departments. Even with utilization this high, the model finds a very 
good solution. 
 
The optimality gap (51.73%) is rather large. This does however not per se mean that the solution that 
was found is bad. The LP relaxation of the problem is just very weak. This can be shown by a simple 
example. Below the objective function (6.2) is shown. 
 
 

𝒎𝒊𝒏  𝒑𝟏  ∑ ∑ 𝝎𝒘𝒘′ ∙ 𝒀𝒘𝒘′

𝒘′∈𝑾𝒘∈𝑾

+ 𝒑𝟐 ∑ 𝑺𝒘 + 𝒑𝟑  ∑ 𝑫𝒘
+

𝒘∈𝑾𝒘∈𝑾

 (6.2) 

 
 
The first part of the objective function is the changeover penalty (associated with 𝑝1). In the solution 
that was found this part is equal to 147. This value is the sum of 50 changeovers that each have a 
penalty which ranges from 1 to 10. In the highly unlikely situation that all of these changeover 
penalties are equal to 1, the value of the first part of the objective function would still be equal to 50. 
 
The second part of the objective function is equal to the sum of all starting times of the orders. This 
part is equal to 357.43 in the solution. This number could be reduced only by reducing the amount of 
idle time, i.e. the time during which a production line is not used, for every production line. From table 
8.7 it can be seen that the current solution already has a very small idle time. Even when the idle time 
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could be reduced to 0, part 2 would still be equal to 330.17. Reducing this part further cannot be done 
without having to overlap certain orders. 
 
Because there are no orders that finish late, part 3 of (6.2) is already equal to 0. When these numbers 
are put together, a ‘lower bound’ can be calculated for the objective function. This lower bound is 
equal to 380,17. This is still significantly higher than the best-found LP bound. Even when a feasible 
solution with this objective value would be found, the optimality gap would still be equal to 25.9%. It is 
highly unlikely that this solution even exists. The LP-relaxation thus gives a very weak bound. 
 
Overall, the solution that was found is very good. The idle time on all production lines is very low at 
only 2.29 hours over all lines. There are no orders that finish late and there are very few changeovers 
that have a high changeover penalty (see table 8.8) 
 
Table 8.8: # of occurrences of each changeover in the solution of the complete model 

Individual changeover penalty  # of occurrences of this changeover 

0 8 
1 5 
2 28 
4 4 
5 6 

10 4 
Total changeover penalty: 147 

 
 
Remarkably there are also very few orders that are not assigned to their preferred work center (5 out 
of 38 packaging orders), even though there is no incentive in the objective function for these orders to 
be assigned to their preferred production line.  
 
This phenomenon is likely the result of the minimization of bad changeovers. Because products that 
are normally assigned to the same work center have similar recipes and because changeovers largely 
depend on these recipes, the result is that by minimizing the changeover penalty, the amount of 
orders assigned to non-preferred production lines is also minimized.  
 
Figure 8.2 shows the solution schedule that was found using this approach. Each differently colored 
block again indicates a period during which one work order is processed on that production line. The 
white spaces indicate that during that period, the machine is idle and no work is assigned to that line 
during that period. 
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Figure 8.2: Complete production schedule after solving the problem instance using the complete model (section 6) 
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8.2.2 Results after solving the model using the sequential approach 
For comparison, the same problem instance will now be solved using the sequential approach that 
was presented in section 7. Because this approach consists of several steps, each of the intermediate 
results will be presented and finally the complete solution will be given and it will be compared to the 
solution found in section 8.2.1. 
 
 
Step 1a 
As explained in section 7, during step 1a, the model presented in section 7.3 will be solved for all 
packaging orders. Because the problem instance used in this section only involves bag packaging only 
a single instance, instead of the three in a full instance, has to be solved. All packaging orders 
scheduled here, belong to the same department. 
 
The main characteristics of the solution after step 1a are given in table 8.9. It should be noted that the 
results only include packaging orders in this step. They cannot be compared to the results in table 8.7 
yet. 
 
Table 8.9: Main solution characteristics of the packaging orders after step 1a of the solution approach 

Description Value 

Used penalties in objective (𝑝
1

, 𝑝
2

 𝑎𝑛𝑑 𝑝
3

) (1,1,1) 

Best Solution (Objective value) 368,48 
Best LP bound 216,31 
% Gap  41.46% 
Solution time until feasible (s) During pre-solve (<0.44s) 
Total solution time 714s 
# of Constraints 4575 
# of Variables 655 
# of orders that are scheduled late (Finishing time > 𝐷𝑤) 2  
Sum of workload scheduled after shifts have finished 3.69 h 
Total amount of idle time (h) 0 
Total changeover penalty  96 
# of orders assigned to non-preferred packaging lines 0 

 
 
 

Figure 8.3: Schedule after step 1a of the sequential approach  
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Figure 8.3 shows the schedule after step 1a of the solution approach. It is clear that the schedule 
finishes outside of the normal working hours and that it should thus be adjusted to be feasible. Step 
1b will have to be performed. 
 
Step 1b 
During step 1b, the variables associated with orders that are assigned to the B06 production lines will 
be relaxed. This means orders assigned to this machine can be freely assigned to the other production 
lines to reduce the work load on the B06 line. 
 
After unfixing the set of variables, the model is solved again. The solution found during step 1a of the 
approach is used as a starting point. The main characteristics of the solution that is found after this 
step is performed are given in Table 8.10 and Figure 8.4. 
 
 
Table 8.10: Main solution characteristics of the packaging orders after step 1b of the solution approach 

Description Value 

Used penalties in objective (𝑝
1
, 𝑝2 𝑎𝑛𝑑 𝑝3) (1,1,1) 

Best Solution (Objective value) 347,74 
Best LP bound 197,31 
% Gap  44.76% 
Solution time until feasible (s) Feasible at start 
Total solution time 711s 
# of Constraints 5641 
# of Variables 1174 
# of orders that are scheduled late (Finishing time > 𝐷𝑤) 0  
Sum of workload scheduled after shifts have finished 0 h 
Total amount of idle time (h) 0 
Total changeover penalty  94 
# of orders assigned to non-preferred packaging lines 3 

 
 

Figure 8.4: Schedule after step 1b of the sequential solution approach 
 
The newfound solution is now feasible because all work centers finish before the end of the last shift 
(𝐷𝑤 = 20). Table 8.10 further shows that only 3 orders were assigned to another line to achieve this 
result and that the total changeover penalty even decreased.  
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Step 2 
Now that a feasible schedule for the packaging orders has been found, the orders for the intermediate 
products will be scheduled in step 2. From the schedule of the packaging orders, the times at which 
the intermediates for these orders should be available can be calculated. These times will serve as the 
preferred delivery times (𝐷𝑤) of the pre-processing orders. 
 
The model presented in section 7.2 will be used to solve the problem for the pre-processing orders. 
Because this approach will be compared to the other approach, the weights in the objective function 
will remain the same. Later in this section, the effects of using different weights will be shown.  
 
Figure 8.5 and table 8.11 show the results of this step of the approach. The solution shows that the 
model can quite easily adapt to the schedule of the packaging orders. Only 3 of the orders are 
scheduled too late for their respective packaging orders. 
 
 
Table 8.11: Main solution characteristics of the pre-processing orders after step 2 of the solution 

approach. 

Description Value 

Used penalties in objective (𝑝
1

, 𝑝
2

 𝑎𝑛𝑑 𝑝
3

) (1,1,1) 

Best Solution (Objective value) 160,04 
Best LP bound 97,94 
% Gap  38.80% 
Solution time until feasible (s) 0,55s 
Total solution time 730,52s 
# of Constraints 1942 
# of Variables 545 
# of orders that violate the intermediate to final product 
connection (Starting time  > 𝐷𝑤) 

3 

Sum of workload scheduled after shifts have finished 3,15h 
Total amount of idle time (h) 0,0024h 
Total changeover penalty  55 
# of orders assigned to non-preferred packaging lines 0 

 
 

Figure 8.5: Schedule of all pre-processing orders after step performing step 2 of the sequential approach. 
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Step 3 
The weights that were chosen in step 2 of the approach result in a total of 3 intermediate-final 
product connection infeasibilities. This means that intermediates are not scheduled to be available on 
time for use in the final products. At this point a choice will have to be made to either schedule the 
orders that result in infeasibilities ahead of time, or to adjust the schedule for the packaging orders. 
For comparative reasons, the only choice presented here is the adjustment of the schedule found in 
step 1b for the solution that was found in step 2. Scheduling the infeasible orders ahead of time would 
give the method that is tested here an unfair advantage over the first method. A number of orders 
would be removed from the problem instance entirely. Step 3 will thus be used to adjust the schedule 
found in step 1b in order to arrive at a solution that is overall feasible.  
 
The solution that was found in step 1b is used as a starting point for this step. The starting times of the 
intermediates that were found in step 2 are entered into the parameter 𝐺𝑤. Using this parameter 
constraints (7.27) now enforce that the connection between the intermediates and final products is 
feasible.  
 
The model from section 7.3 is solved again with this information. The result is the final solution that is 
feasible and can be compared to the solution found using the first approach. An overview of the 
solution is given in table 8.12 and figure 8.6s 
 
Table 8.12: Main solution characteristics of the packaging orders after step 3 of the solution approach 

Description Value 

Used penalties in objective (𝑝
1
, 𝑝2 𝑎𝑛𝑑 𝑝3) (1,1,1) 

Best Solution (Objective value) 383,05 
Best LP bound 294,07 
% Gap  23,23% 
Solution time until feasible (s) During pre-solve (<0,58s) 
Total solution time 714,07s 
# of Constraints 5641 
# of Variables 1174 
# of orders that are scheduled late (Finishing time > 𝐷𝑤) 0  
Sum of workload scheduled after shifts have finished 0 h 
Total amount of idle time (h) 2,30 h 
Total changeover penalty  102 
# of orders assigned to non-preferred packaging lines 3 

 
 
No major adjustments were made in order to make the full production schedule feasible. Compared to 
the solution found during step 1b (table 8.10), there was a small increase in the changeover penalty 
(+8) and a small increase in the idle time on production line B01 (+ 2,30 h). 
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Figure 8.6: Schedule for the packaging orders after step 3 of the sequential approach 
 
 
Complete solution 
In the sequential approach the packaging and pre-processing orders are scheduled separately. In step 
2, a schedule was found for all pre-processing orders and in step 3 a final feasible schedule for the 
packaging orders was found. 
 
These two schedules can now be merged to form the full schedule for the problem instance. This 
schedule can be compared to the solution found using the sequential approach (section 8.2.1). The 
result is shown in table 8.13 and figure 8.7.  
 
 
Table 8.13: Main solution characteristics of the packaging orders after step 3 of the solution approach 

Description Value 

Used penalties in objective (𝑝
1
, 𝑝2 𝑎𝑛𝑑 𝑝3) (1,1,1) all problems 

Best Solution (Objective value) 583,67 
Best LP bound 281,72 
% Gap  51,73% 
Solution time until feasible (s)  n/a (multiple models) 
Total solution time 2869,59 s (all steps) 
# of Constraints n/a (not a single model) 
# of Variables n/a (not a single model) 
# of orders that are scheduled late (Finishing time > 𝐷𝑤) 0 
Total amount of idle time (h) 2.30 h 
Total changeover penalty  157 
Changeover penalty for packaging orders 102 
Changeover penalty for pre-processing orders 55 
# of orders assigned to non-preferred packaging lines 3 
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Figure 8.7: Complete production schedule after solving the problem instance using the sequential approach (Section 7) 
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8.2.3 Comparing the two approaches 
Now that solutions have been found for an exemplary problem instance using both approaches, a 
comparison can be made. The comparison will be made using a few key performance indicators. These 
indicators are: 
 

1. Total time required to find the presented feasible solution 
2. Total time used for solving the model(s) 
3. The number of orders that are scheduled to finish after a shift has ended 
4. The total changeover penalty 
5. Total changeover penalty for the pre-processing orders 
6. Total changeover penalty for the packaging orders 
7. The amounts of idle time that are part of the schedule (the time during which work centers 

are not utilized). 
8. The amount of orders that are not assigned to their preferred work center. 

 
These KPIs should give a good view of the capabilities of both approaches. Figure 8.8 shows a 
histogram in which each of the KPIs are compared. All data has been normalized for it to be easily 
compared. In the histogram all values for the sequential approach form the basis and are equal to 1. 
This means that if the value for the first approach is < 1, then it is smaller than that value for the MIP-
based approach.  
 
 

Figure 8.8: Comparison of Key Performance indicators of both solution approaches. 
 
It can be easily seen that the sequential approach performs at least as good as or better than the MIP-
based approach for all but some indicators. KPI 2 shows that the total solution times used to solve 
both models lie close to each other. This is however the result of the choice of stopping criterion. For 
the sequential approach, almost 84 % of the total solution time is used to check if the stopping 
criterion has been met (22% for the MIP-based approach). When only the time used until the 
presented solutions were found is compared (KPI 1), it can be seen that the sequential approach 
outperforms the MIP-based approach by a large amount. The next section will show that the waiting 

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

5

1 2 3 4 5 6 7 8

N
o

rm
al

iz
ed

 v
al

u
e 

(1
 =

 s
eq

u
en

ti
al

)

Key Performance Indicators

Comparison of KPI's of the two approaches

Sequential approach MIP-based Approach



66 
 

used in the stopping criteria can be significantly reduced without affecting the solution much. The 
result of this is that the sequential approach requires less solution time than the MIP-based approach. 
 
Apart from the solution time, the solutions found by both approaches are relatively equal. The only 
other differences can be found in Key Performance Indicators 4, 5 and 7. This is a direct result of the 
sequential solving of parts of the problem instance in the sequential approach. In contrast to the    
MIP-based approach, where orders are all scheduled at the same time, the sequential approach 
schedules the packaging orders before the pre-processing orders. This means that the packaging 
orders will have more ‘freedom’ or scheduling possibilities than the pre-processing orders. The result 
is a higher changeover penalty for the pre-processing orders (KPI 4 and 5) when the sequential 
approach is used.  
 
A positive result of this sequential approach is that more packaging orders are assigned to their 
preferred production lines (KPI 8).  
 
One thing that is not directly clear from figure 8.8 are the differences in changeovers for the packaging 
department in both solutions. Whereas both solutions have the same total changeover penalty for this 
department (KPI 6), the individual changeovers are not equal. This can be seen in table 8.14. 
 
 
Table 8.14: Comparison of the occurrence of different changeover penalties for the packaging 

departments in the schedules found by the two approaches 

Individual changeover penalty  # of occurrences of this 
changeover in the MIP-based 
approach 

# of occurrence of this 
changeover in the sequential 
approach 

1 5 4 
2 28 25 
4 16 5 
5 6 9 

6 0 3 

10 4 2 
Total changeover penalty: 147 157 

 
 
As can be seen in the table, both solutions have changeover penalties that lie close to each other. 
However, the solution found using the sequential approach contains only half the amount of format 
part changes (which have a penalty of 10). The exchange of format parts on production machines is 
considered to be the worst possible changeover. Because of this, even though both total changeover 
penalties are equal, the sequentially generated solution schedule could be perceived as being more 
convenient.  
 
Overall, the schedules produced by both approaches do not differ much. Both schedules have the 
characteristics of a good schedule. They both contain little idle time, delays or bad changeovers. 
However, the sequential approach has a clear advantage over the MIP-based approach. The solution 
time required to find the solution for the first is a lot less than the time it requires to solve the 
problem using the latter. Furthermore, the sequential approach contains the possibility to individually 
steer the solutions for the pre-processing and packaging departments during the different steps. 
Because the management of the case-company has indicated that the packaging department should 
be the leading factor in the scheduling process, this can be considered as an advantage. 
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8.2.4 Progress of the solution while solving the model. 
Until now, only final solutions have been presented. However, while solving a model it is interesting to 
see how quickly the objective function converges to the final solution. When the solution quickly 
converges, it may be interesting to stop the solver early. This will still result in solutions that lie close 
to the final solution but would require considerably less time to find. 
 
To see the development of the objective function during the solving of the model, the logger of the 
solver was used to create a log file that contains all feasible solution and the times at which they were 
found. From this data a graph can be created that shows the course of the objective function during 
solving. 
 
Logs were created while solving the comparison problem presented in this section for both the MIP-
based approach and step 1a of the sequential approach. Figure 8.9 shows the results for the first. 
 

 
Figure 8.9: Progress of the objective value while using the MIP-based approach to solve the comparison 
problem. 
 
 
Figure 8.9 shows that the objective value improves rather rapidly at the start of the solving process. 
Almost 95% of the improvement is achieved within the first 25% of the time used to arrive at the final 
solution. This indicates that the solver could have been stopped a lot earlier and the resulting solution 
would still be close to the final solution. 
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Figure 8.10: Progress of the objective value while using step 1a of the sequential approach to solve the 
comparison problem. 
 
Figure 8.10 shows the same graph but for the sequential approach. The rapid convergence is even 
clearer in this graph. Almost 99% of the improvement is made in the first 25 seconds of the procedure. 
This certainly indicates that using a stopping criterion that stops the solver more quickly, would not 
degrade the solution.   
 
Results that are similar to the ones presented here were found for the other instances of the problem. 
 
Plenty of time is available to solve the scheduling problem. The required orders are known one day in 
advance. A solving time of one or two hours to find a good solution would still be reasonable. However 
the results presented here indicate that using that time may not be necessary when solutions that are 
just slightly worse are accepted.  
 
This knowledge can be useful when the size of the problem increases or when orders have to be 
rescheduled in a short amount of time after a change has been made to the orders.  
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8.3 Solving the real-world industrial-scale problem at Heemskerk 
 
The preliminary results from section 6.2 have already shown that simply solving the model with a 
commercial solver is not possible for the large problem instances that are encountered at Heemskerk 
Section 8.2 has shown that the sequential approach that was presented in section 7 performs very 
well when compared to the MIP-based approach. The solutions that are found using the sequential 
approach are of similar quality and only require a lot less solution time. 
 
The only viable solution to solve the problem instance of a single production day at Heemskerk is 
therefore the sequential approach. In this section, this approach will be used to find a production 
schedule for a representative real production day. The data that is used for the problem instance 
presented in this section is the actual real-world data from the production process at Heemskerk. 
 
The day that was chosen as a representative production day was a busy day on Wednesday the 11th of 
July 2013. The Wednesday is usually the 2nd busiest day of the week and should therefore provide an 
appropriate scheduling challenge.  
 
The main characteristics of production orders that were required to be scheduled on the 11th of July 
2013 are presented in table 8.15. 
 
Table 8.15: Main characteristics of the production day of 11-07-2013 

Description Value 

Total # of orders required to be scheduled 357 
# of packaging orders 235 
# of bag-packaging orders 146 
# of bowl-packaging orders 56 
# of high care packaging orders 33 
# of pre-processing orders 122 
Total number of packaging lines 16 
Pre-processing lines 11 
Total packaging workload 234,61 h 
Available packaging time 304 
Utilization of packaging lines 75,93% 
Total pre-processing workload 98,46 
Available pre-processing time 209 
Utilization of pre-processing lines 47,59% 

 
 
The objective function used in both models of the sequential approach contains three separate parts. 
As explained before, these three parts represent the following process aspects: 
 

1. The total changeover penalty (weight factor = 𝑝1) 
2. The amount of idle time in the production schedule (weight factor = 𝑝2) 
3. The of time the schedule finishes after the end of the shift (weight factor = 𝑝3) 

 
In this section, weights will be chosen that generally give good results during the solving of different 
instances of the problem. The next section will show the actual influence of these weights on the 
solutions found by the models. 
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To measure the quality of found production schedule, a number of KPIs will be given for the solution 
after each step of the solution process. These KPIs are: 
 

1. Total changeover penalty score 
2. Total amount of idle time in the schedule in hours 
3. Total number of orders that are delivered too late. These orders finish either after the shift 

has ended (step 1a, 1b and 3) or finish too late to be used in their respective packaging orders 
(step 2, pre-processing orders). 

4. Sum of workload that is scheduled after normal operation hours (total late time). 
5. Number of packaging orders that are not assigned to their preferred work center. 

 
In this section, the 4 individual steps (1a, 1b, 2 and 3) of the sequential approach will be discussed in 
succession. For each of the steps, the resulting solution will be presented along with a visual 
representation of the schedule that is found. This will give a good example of the progress that is 
made in each step of the approach. Finally, the final production schedule that is found for the 
complete problem instance will be presented. 
 

8.3.1 Step 1a 
In step 1a all packaging orders are scheduled. During this step, all orders are assigned to their 
preferred work centers. This is done by fixing the assignment variables. A more thorough explanation 
of this step can be found in section 7. 
 
Because there is no connection between the 3 different packaging departments, the packaging orders 
can be split into three parts. Table 8.15 shows the size of the problem instance for each of the three 
departments. Each of these three smaller problem instances is solved separately using the CPLEX 
solver. Afterwards, the solution for all packaging orders is found by recombining the results for each of 
the three instances. 
 
The first and largest packaging instance includes al orders of products that are packed into bags. A 
total of 146 orders have to be scheduled on 11 work centers. The second instance includes all 56 
orders that are packaged into bowls. These orders have 3 work centers available to them. The last 
instance contains 33 HighCare work orders that need to be assigned to two different machines. The 
results for these three separate instances are shown in table 8.16. Each column represents one of the 
instances. 
 
Table 8.16: Main solution characteristics for the three instances of packaging orders after step 1a of the 

solution approach 

Description Bag-packaging 
orders 

Bowl-packaging 
orders 

HighCare packaging 
orders 

Used penalties in objective 
(𝑝

1
, 𝑝2 𝑎𝑛𝑑 𝑝3) 

(1,0.01,1) (1, 0.01, 1) (1, 0.01, 1) 

Best Solution (Objective value) 460,64 121,97 66,67 
Best LP bound 358,98 105,40 56,74 
% Gap (%) 22,07 13,58 14,91 
Solution time until feasible (s) During pre-solve 

(<6,53) 
During pre-solve 

(<0,99) 
During pre-solve 

(<1.39) 
Time until solution was found (s) 134,53s 36,72s 29,53 
Total solution time (s) 734,53 636,72 629,53 
# of Constraints 65515 7707 4475 
# of Variables 2989 1241 1321 
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The solver was stopped using the same stopping criterion as in section 8.2. This was done in order to 
present the quality of the solutions that can be achieved with the presented approach. As explained 
before, the waiting time for the stopping criterion can be reduced without affecting the solution 
much. All presented total solution times in this section include the 600 seconds during which no 
change in the best found feasible solution occurs. 
 
From the results in table 8.16 it is clear that the bag-packaging instance is the largest and most 
difficult of the three instances to solve. The other two instances are considerably smaller in size and 
take less time to solve. Nevertheless, the solution times are very acceptable.  
 
It should be noted that because HighCare packaging orders have no preferred production lines (both 
available lines are identical). Therefore the assignment variables were not fixed. This also explains why 
the smaller HighCare instance contains more variables than the bowl-packaging instance. Because only 
33 orders need to be scheduled for this instance, this does not result a large increase in solution times. 
 
To show the combined solution for all packaging orders that was found during this step, the solutions 
from all three instances are combined. Table 8.17 lists the resulting solution characteristics. 
 
Table 8.17: Main solution characteristics for the solution of all packaging orders after step 1a of the 

solution approach. 

Description Value 

# of orders that are scheduled late (Finishing time > 𝐷𝑤) 12 
# of work centers that finish after the last shift ends 3 
Sum of workload scheduled after shifts have finished 18,03 
Total amount of idle time (h) 0 
Total changeover penalty  566 
# of orders assigned to non-preferred packaging lines 0 
Time until presented solution was found (sequential) 200,78 s 
Total solution time (sequential) 2000,78 s 
Total solution time (simultaneously) 734,53 s 

 
The results show that the actual solution is infeasible at this point. 12 production orders on 3 different 
work centers are scheduled after the last production shift has ended. During this step, these orders 
cannot be moved because the assignment variables are fixed. All work orders are also assigned to 
their preferred production line because of this. 
 
Figure 8.11 gives a visual representation of the production schedule that was found. Each colored bar 
again indicates an individual work order assigned to that machine in that timeslot. 
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Figure 8.11: Production schedule for all packaging orders after step 1a of the solution approach. 
 
The figure clearly shows that the B07, B06 and B05 production lines finish after the last shift ends 
(𝐷𝑤 = 20). The B11 production line has no orders assigned to it. This is because no orders have the 
B11 as their preferred production line. One could call this production line a ‘Jack of all trades, master 
of none’.  
 

8.3.2 Step 1b 
It became clear in step 1a that the solution for the packaging orders was still infeasible. During step 
1b, the orders that are assigned to late finishing work centers will be unfixed. This means that the 
assignments variables of all orders that are assigned to these three machines are unfixed. The orders 
on these machines are thus allowed to freely be assigned to other work centers on which they can be 
processed. 
 
Because all work centers that finish late are part of the bag-packaging department, only the solution 
for this instance will have to be adjusted in this step. The solutions for the other two departments can 
be reused. 
 
The solution found in step 1a is used as a starting point in this step. After all required variables are 
unfixed, the model is solved again using the CPLEX solver. The results after solving this instance are 
shown in table 8.18 
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Table 8.18: Main solution characteristics for the bag-packaging instance after step 1b of the solution 

approach 

Description Bag-packaging orders 

Used penalties in objective (𝑝
1
, 𝑝2 𝑎𝑛𝑑 𝑝3) (1,0.01,5) 

Best Solution (Objective value) 362,63 
Best LP bound 286,01 
% Gap (%) 21,13 
Solution time until feasible (s) feasible at start 
Time until presented solution was found (s)  1138,63 
Total solution time (s) 1738,63 
# of Constraints 137252 
# of Variables 9599 

 
This table shows that both the amount of variables and the amount of constraints increases 
dramatically by unfixing the assignment variables on 3 machines. This considerably increases the 
solution time required for this step. Unfixing the variables on each of the 3 overburdened machines 
sequentially could reduce the solution time required. In this case, first all orders on the most 
overburdened production line would be relaxed. After resolving the model, all orders would be fixed 
again except for the orders on the 2nd most overburdened machine. This will decrease the total 
solution time required. For now, this is unnecessary because 20 minutes is still a reasonable solving 
time for this part of the problem.  
 
Table 8.19 lists the performance indicators of the full solution after the orders of the bag-packaging 
department have been adjusted in this step. 
 
Table 8.19: Key Performance Indicators for the solution of all packaging orders after step 1b of the 

solution approach. 

Description Value 

# of orders that are scheduled late (Finishing time > 𝐷𝑤) 0 
# of work centers that finish after the last shift ends 0 
Sum of workload scheduled after shifts have finished 0 
Total amount of idle time (h) 0 
Total changeover penalty  534 
# of orders assigned to non-preferred packaging lines 28 (of 235) 
Time until presented solution was found (s) 1138,63 
Total solution time (s) 1738,63 

 
The table shows that all work that was scheduled outside of regular work times has been rescheduled 
to other machines. For this 28 orders were moved to different production lines. This has also resulted 
in a reduction of the total changeover penalty. This is mainly the result of the usage of the B11 
production line. This line did not have any orders assigned to it before, when the number of used 
production lines increases, the number of changeover automatically decreases as well. 
 
Figure 8.12 shows the schedule of all packaging orders after they have been rescheduled in this step. 
It is clear that now 𝐷𝑤 < 20 for all work orders. 
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Figure 8.12: Production schedule for all packaging orders after step 1b of the solution approach.  
 

8.3.3 Step 2 
In step 2 all pre-processing orders are scheduled. This is a relatively straightforward process. All orders 
for this department are scheduled at once. The main characteristics of the solution for this step are 
given in table 8.20 
 
Table 8.20: Main solution characteristics for the solution of all packaging orders after step 2 of the 

solution approach. 

Description Value 

Used penalties in objective (𝑝
1
, 𝑝2 𝑎𝑛𝑑 𝑝3) (1, 0.01, 10) 

Best Solution (Objective value) 616,61 
Best LP bound 387,39 
% Gap (%) 37,17 
Solution time until feasible (s) 7.23 
Time until presented solution was found (s) 902,04 
Total solution time (s) 1502,04 
# of Constraints 31860 
# of Variables 2187 
# of orders that are scheduled late for usage in their 
respective final production(Finishing time > 𝐷𝑤) 

7 

# of work centers that finish after the last shift ends 0 
Sum of workload scheduled late 11,43 
Total amount of idle time (h) 2,97  
Total changeover penalty  424 
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The table shows that only 7 of the 122 pre-processing orders are scheduled too late for usage in their 
respective final products. Furthermore there is relatively little idle time (2,97h) on the production 
lines. 
 
Figure 8.13 shows the schedule of the pre-processing orders after they have been scheduled in this 
step. 
 
 

 
Figure 8.13: Production schedule for all pre-processing orders after step 2 of the solution approach.  
 
 

8.3.4 Step 3 
In this step the complete schedule will be adjusted to be overall feasible. The schedule found in step 2 
of the approach results in 7 intermediates that are not scheduled on time for usage in the final 
products they are required in. 
 
At this point, the choice could be made to reschedule those 7 orders as ‘pre-work’ orders at the end of 
the previous production day. These orders would thus be brought forward by one day. After doing 
this, both the schedule for the pre-processing orders found in step 2 and the schedule for the 
packaging orders found in step 1b are feasible and would need no further adjustments. 
 
As was presented in section 7, bringing the infeasible pre-processing orders forward is often a good 
choice that has few negative side effects. However, to show the capabilities of the approach, it will be 
assumed that these orders cannot be brought forward. The result of this is that the solution of the 
packaging orders needs to be readjusted for late delivery of those 7 pre-processing orders. 
 
To adjust the schedule, the parameter 𝐺𝑤 will contain the starting times of all the pre-processing 
orders found in step 2. The model for the packaging orders (section 7.3) will then be re-solved. 
Constraints (7.27) then enforce that packaging orders can only be scheduled after their required 
intermediates are available. 
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Table 8.21 lists the main characteristics of the model after it was re-solved. Because the infeasibilities 
only occur in the bag-packaging department, only this instance has to be solved again. The solution 
that was found in step 1b is used as a starting point for this solution. 
 
Table 8.21: Main solution characteristics for the bag-packaging instance after step 3 of the solution 

approach. 

Description Bag-packaging orders 

Used penalties in objective (𝑝
1
, 𝑝2 𝑎𝑛𝑑 𝑝3) (1,0.01,5) 

Best Solution (Objective value) 364,38 (+1,75) 
Best LP bound 287,99 
% Gap (%) 20,96 
Solution time until feasible (s) Feasible at start 
Time until presented solution was found (s) 1010,89 
Total solution time (s) 1610,89 
# of Constraints 137252 
# of Variables 9599 
# of orders that are scheduled late (Finishing time > 𝐷𝑤) 0 
# of work centers that finish after the last shift ends 0 
Sum of workload scheduled after shifts have finished 0 
Total amount of idle time (h) 7,28 h (+7,28) 
Total changeover penalty  534 (+/- 0) 
# of orders assigned to non-preferred packaging lines 42 (+14) 

 
 
As can be seen from the table, the impact of adjusting the schedule is significant. An additional 14 
orders were assigned to non-preferred production lines and a total of 7,28 hours of idle time is 
introduced. Figure 8.14 shows the schedule that was found. 
 
The schedule shows that a lot of idle time is introduced on production line B09, other lines see much 
less or no idle time at all. Generally, idle time on packaging lines is unwanted. However, the small 
amount of idle time that is introduced to, for example, machine B03 may not be much of a problem. 
Ultimately, it is a manual decision on how to treat these infeasibilities. The company will have to 
create a set of rules for this. They may want to move forward as many pre-processing orders as 
needed or they may only want to move the orders that result in a lot of idle time (B09). This is 
something that will need to be decided by the management.  
 
Overall, as will be shown in the next section, the re-adjustment of the packaging orders in step 3 will 
result in quite some idle time being introduced to the schedule. 
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Figure 8.14: Production schedule for all packaging orders after step 3 of the solution approach 
 
 

8.3.5 Complete solution 
The solution for the packaging orders found in step 3 and the solution for the pre-processing orders 
found in step 2 can be combined to form the complete feasible production schedule for the selected 
production day. This solution is the combination of all steps of the sequential approach. The total 
solution time is the sum of all steps of the solution. All other performance indicators can be summed 
as well.  
 
Table 8.22 shows the full list of results for the complete solution. On the next page, the schedule that 
is found for all production lines is shown in figure 8.15. 
 
Table 8.22: Main solution characteristics for the bag-packaging instance after step 3 of the solution 

approach. 

Description Bag-packaging orders 

Sum of workload scheduled after shifts have finished 0 
# of orders that finish outside regular production times 0 
Total amount of idle time (h) 10,25 
Total changeover penalty  958 
# of orders assigned to non-preferred packaging lines 42 
Time until presented solution was found (s) 3251,34 
Total solution time (s) 5651,34 

 
The table shows that the total required solution time to find the complete schedule is less than one 
hour. Due to the generous stopping criteria a little over 93 minutes were used solving the problem. 
Since the definitive workload for the next day is known circa 12 hours in advance, the problem can be 
solved in a reasonable amount of time.
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Figure 8.15: Complete schedule for the production day of 11-7-2013. 
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8.3.6 Results for different production days 
In order to confirm that the sequential approach gives similar results when used on the data of other 
production days, the problem instances of two additional days were solved. These days are the 10th of 
July 2013 and the 10th of October 2013.  
 
For both these instances, no significant change in either the solution times or the quality of the found 
solutions was found. This suggests that it should be possible to use the presented approach for the 
data of any production day. 
 
 

8.4 Influence of the penalty factors in the objective function 
 
The objective function of the mathematical model contains three individual parts. Each of these parts 
has a weight factor associated with it. These weight factors are used to steer the solution of the 
model. Ideally, when one of the weight factors is higher than the others, the aspect associated with 
that factor should be more profound in the solution that is found. 
 
To see the effects of varying these weights in the objective function, a large number of tests has been 
performed. All these tests were conducted on the data for a full production day at Heemskerk The day 
used for the tests presented here is the 11th of July 2013. This is the same representative day as was 
used in the previous section. 
 
For a good review of the influence of the penalty factors in the objective function, all 3 (4 when 
including 1a and 1b separately) steps of the sequential approach were solved with a range of different 
weights. For each step, a table with different weights and the main characteristics will be given.  
 
Step 2 and 3 of the solution approach require data input from the previous step of the approach. For 
the tests in this section, a representative solution that shows good results will be used for the next 
step when this data input is required. In most cases this data will be equal to the solution found for 
the problem in section 8.3. 
 
The effect of the weight will be measured by listing the first four of the five key performance 
indicators that were used to measure the quality of the solution in the previous section. These KPIs 
are: 
 

1. Total changeover penalty score 
2. Total amount of idle time in the schedule in hours 
3. Total number of orders that are delivered too late. These orders finish either after the shift 

has ended (step 1a, 1b and 3) or finish too late to be used in their respective packaging orders 
(step 2, pre-processing orders). 

4. Sum of workload that is scheduled after normal operation hours (total late time). 
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8.4.1 Step 1a 
Step 1a is used to schedule all packaging orders for the first time. In this step all packaging orders have 
a fixed assignment to their preferred production line. The only unfixed variables are the changeover 
variable (𝑌𝑤𝑣) and the starting times (𝑆𝑤). 
 
Table 8.23 lists all five characteristics of the solutions that were found for this step by varying the 
different weights. For each different combination of weight factors in this table, the solver was run for 
1200 seconds. In all cases presented the objective value of the best-found feasible solution did not 
change by more than 1 during the last 600 seconds of the solving period. 
 
Table 8.23: Key performance indicators for different weight factors used in the objective function during 

step 1a of the sequential approach. 

Instance 
no. 

(𝑝1, 𝑝2, 𝑝3) Total changeover 
penalty 

Total amount 
of idle time  

Number of 
late work 
centers 

Sum of all 
work load 
scheduled late 

1 (1, 0.01, 1) 566 0 3 18,03 
2 (1, 0.01, 2) 566 0 3 18,03 
3 (1, 0.01, 10) 568 0 3 18,03 
4 (1, 0.01, 100) 574 0 3 18,03 
5 (2, 0.01, 1) 566 0 3 18,03 
6 (10, 0.01, 1) 566 0 4 33,23 
7 (100, 0.01, 1) 566 0 4 33,23 
8 (1, 1, 1) 628 0 3 18,03 
9 (1, 0, 0) 566 13817 10 6900 

 
 
In almost all of the instances, weight factor 𝑝2 was chosen very small. This factor can be this small 
because during step 1a, the connection with the pre-processing orders is not yet made. This means 
orders can be freely scheduled in time without being restricted by the availability of their 
intermediates. This mechanism is explained in figure 6.2 in section 6. Choosing any weight larger than 
zero already results in all orders being scheduled adjacent in time, i.e. each next order starts right 
after the previous order has finished. By keeping 𝑝2 this low, the other parts of the objective function 
have a large influence. Comparing instance 1 and instance 8 can easily show this. The only difference 
between these instances is the factor 𝑝2. Both solutions have zero idle time and the same amount of 
late orders. However, the total changeover penalty of instance 8 is 62 points higher than the penalty 
of instance 1. This shows that by setting 𝑝2 very low, the influence of the other two parts of the 
objective function can be increased.  
 
From instance 1 to 4, the weight associated with the late delivery of orders is gradually increased. This 
has no positive effect on the actual late finishing times of orders. This is a direct result of the method 
used during step 1a. To reduce the number of orders that finish late, the orders have to be assigned to 
a different machine. Because all orders are fixed to their preferred machine, this is not possible. 
Therefore 𝑝3 has little influence in this step. Instances 1 to 4 do however show that when 𝑝3 ≫ 𝑝1, 
the influence of 𝑝1 is reduced and the total changeover penalty increases. 
 
Instance 5,6 and 7 show a gradual increase of factor 𝑝1 compared to the other factors. It can be seen 
that this does not result in a lower changeover penalty. Again, when 𝑝1 ≫ 𝑝3, it can be seen that the 
influence of 𝑝3 decreases and that more orders are scheduled late. 
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To find out whether it is possible to lower the changeover penalty below 566, instance 9 was ran. This 
shows that even when only the changeover penalty is of concern, it will still not go lower than a total 
of 566. This also indicates that it is no use to use a lower weight for 𝑝3 than the weight used in 
instance 1. 
 
Overall, instance 1 with the weights (1, 0.01, 1) gives the best results in this step. These weights give 
the lowest idle time, the lowest number of late orders and the lowest total changeover penalty. 
 
 

8.4.2 Step 1b 
During step 1b the orders that are scheduled on machines that finish late are relaxed. This means the 
orders on these production lines can be freely assigned to other work centers on which they are 
allowed to be produced. 
 
Table 8.24 lists the various results that were found using different weights in the objective function 
during this step 
 
Table 8.24: Key performance indicators for different weight factors used in the objective function during 

step 1b of the sequential approach. 

Instance 
no. 

(𝑝1, 𝑝2, 𝑝3) Total changeover 
penalty 

Total amount 
of idle time  

Number of 
late work 
centers 

Sum of all 
work load 
scheduled late 

1 (1, 0.01, 1) 546 0 3 7,18 
2 (1, 0.01, 2) 538 0 0 0 
3 (1, 0.01, 5) 538 0 0 0 
4 (1, 0.01, 10) 548 0 0 0 
5 (1, 0.01, 100) 550 0 0 0 
6 (5, 0.01, 1) 534 0 3 3,62 
7 (10, 0.01, 1) 558 0 3 22,4 

 
 
For the same reasons as during step 1a, weight factor 𝑝2 has been set very low. From instance 1 to 5 
weight factor 𝑝3 is gradually increased. It can be seen that only after 𝑝3 has been increased to 2, it has 
enough influence to complete eliminate all orders that finish late. Increasing this factor any higher has 
no further influence until the point is reached after which the total changeover penalty suffers from 
the difference (𝑝3 > 5).  
 
When more weight is given to the changeover penalty (instance 6 & 7), not much is gained. Although a 
small decrease in changeover penalty is noticed in instance 6, this directly introduces orders that finish 
late again. This is unfeasible and therefore of no use.  
The best results are obtained for instance 2 and 3. Both of these give the exact same results. Because 

it is very important that orders do not finish late, the solution found by using the weights of instance 3 

is used for step 2 of the approach. 
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8.4.3 Step 2 
In step 2 all pre-processing orders are scheduled. The schedule that was found for the packaging 
orders in step 1b is used to determine the preferred starting time of the orders. The on-time delivery 
of the pre-processing orders is then maximized by part 3 of the objective function. Increasing the 
weight of 𝑝3 should thus result in less intermediate to final product infeasibilities. 
 
In contrast to what was seen in step 1a and 1b, weight factor 𝑝2 cannot be set arbitrarily low without 
influencing the results. Because some intermediates are dependent on other intermediates, not all 
intermediate orders can be scheduled anywhere in time. An order that requires another intermediate 
should always be scheduled after that intermediate has finished production. Because of this, weight 
factor 𝑝2 should directly influence the amount of idle time the production schedule contains. 
 
The characteristics of the solutions that were found using different objective function weights during 
step 2 are found in table 8.25.  
 
Table 8.25: Key performance indicators for different weight factors used in the objective function during 

step 1b of the sequential approach. 

Instance 
no. 

(𝑝1, 𝑝2, 𝑝3) Total changeover 
penalty 

Total amount 
of idle time  

Number of 
orders 
delivered late 

Sum of all 
work load 
scheduled late 

1 (1, 1, 1) 409 2,56 17 31,47 
2 (1, 1, 2) 427 1,2 14 26,58 
3 (1, 1, 10) 449 1,81 10 14,32 
4 (1, 1, 100) 450 1,18 7 9,86 
5 (1, 1, 0) 405 2,56 22 51,16 
6 (0, 0, 1) 601 12,5 4 8,58 
7 (2, 1, 1) 391 1,97 18 42,45 
8 (10, 1, 1) 374 0,96 24 62,78 
9 (100, 1, 1) 369 2,02 25 66,35 
10 (1, 0.01, 1) 386 1,83 13 22,99 
11 (1, 0.01, 2) 395 2,4 10 17,06 
12 (1, 0.01, 10) 424 2,97 7 11,43 
13 (1, 0.01, 100) 447 2,67 4 9,79 
14 (2, 0.01, 1) 378 5,04 12 31,23 
15 (10, 0.01, 1) 369 3,02 16 59,13 
16 (100, 0.01, 1) 369 3,02 16 57,93 

 
The table shows that the influence of 𝑝2 is limited. The amount of idle time varies between 1,18 hours 
and 6,03 hours when 𝑝2 > 0. Neither of these values is very high when one considers that 122 pre-
processing orders were scheduled. This is especially so because idle time is not a big concern in this 
department.  
 
It can also be seen in the table that weight factor 𝑝1 does have a big influence on the total changeover 
penalty of the solution. Especially for instance 14, 15 and 16, the changeover penalty is reduced 
significantly when compared to the other instances. This does however result in a lot of orders being 
delivered too late for their respective final product. To cope with this, a lot of changes to the schedule 
for the packaging orders would have to be made.  
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Because the packaging department is leading, having a somewhat increased changeover penalty is 
acceptable in the pre-processing department. Therefore the solutions found for instance 12 and 13 
are considered sufficient. The increase of weight factor 𝑝3 results in a low amount of orders that are 
scheduled too late. This makes it easy to either produce these orders on the previous day or to adjust 
the schedule for the packaging orders in step 3.  
 

8.4.4 Step 3 
In step 3, a choice is made to either advance the pre-processing orders resulting in infeasibilities to the 
previous day or to adjust the schedule of the packaging orders to be feasible. 
 
When looking at the influence of the weights, only the last choice is interesting. If orders are advanced 
to the previous day, the schedule of the pre-processing orders would not have to be rigorously 
adjusted. Orders that are advanced are simply removed from the problem instance and all other 
orders can just be moved forward as much as possible. The schedule of the packaging would not have 
to be adjusted at all. Therefore only the second option, i.e. the adjustment of the scheduling of the 
packaging orders until they comply with the delivery of their intermediates, will be considered in this 
step. 
 
To re-solve the model of the packaging orders in this step, input data is required. The starting times of 
the intermediates are used as input in parameter 𝐺𝑤 of the model. Constraints (7.27) then ensure that 
packaging orders can only be scheduled after their required intermediates are available. Both instance 
number 12 and 13 from table 8.18 are used as input in this step. These instances give relatively good 
results with few intermediate – final product infeasibilities and should therefore require fewer 
adjustments in the schedule of the packaging orders.  
 
The results that were found for the different sets of weight factors are given in table 8.26. 
 
 
Table 8.26: Key performance indicators for different weight factors used in the objective function during 

step 3 of the sequential approach. 

Instance 
no. 

(𝑝1, 𝑝2, 𝑝3) Used step 
2 instance 

Total 
changeover 
penalty 

Total 
amount of 
idle time  

Number of 
late work 
centers 

Sum of all 
work load 
scheduled 
late 

1 (1, 0,01, 5) 12 536 18,41 0 0 
2 (1, 1, 5) 12 614 18,41 0 0 
3 (1, 5, 5) 12 690 16,14 0 0 
4 (1, 10, 5) 12 792 8,56 2 12,39 
5 (1, 100, 5) 12 866 17,81 2 19,03 
6 (1, 0.01, 5) 13 542 16,8 2 0,22 
7 (1, 1, 5) 13 602 4,05 0 0 

8 (1, 5, 5) 13 766 10,8 2 6,8 

9 (1, 10, 5) 13 766 12,76 2 8,4 

10 (1, 100, 5) 13 872 13,59 0 0 
 
 
The results show that it is hard to bring the amount of idle time down by raising factor 𝑝2. Although 
the amount of idle time is somewhat lower for instance number 4, it is higher again for instance 
number 5. Factor 𝑝2 is therefore not very effective at lowering the amount of idle time in the 
schedule.  
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When factor 𝑝2 is higher than factors 𝑝1 and or 𝑝3, the quality of the aspects associated with these 
last two weights decreases. The total changeover penalty sees a very large increase when the weight 
factor 𝑝1 is small compared to the other weights. There is no single one solution that stands out from 
the rest. All instances show a significant amount of idle time. Although instances 2 and 7 contain no 
orders that finish late, the increase in the changeover penalty from respectively instances 1 and 6 is 
considerable. At this point it is unclear whether solutions that are significantly better even exist. The 
comparison in section 8.2 suggests that when the MIP-based approach could be used, results would 
have been similar. 
 

8.5 Using the feasible solution from the sequential approach in the MIP-based approach 
 
In section 6.4 it was shown that it was not possible to find a feasible solution for presented problem 
instance in a reasonable amount of time. After more than 13 hours the solver ran out of memory 
without finding a solution. In the previous section, a feasible solution was found using the sequential 
approach. It is therefore interesting to see how the initial model from section 6 performs when this 
feasible solution is used as a starting point for solving the model.  
 
The problem instance of the 11th of July 2013 was reused for this purpose. As a starting point for the 
solving process, the solution that was found using the sequential approach in section 8.3 was used as 
the advanced basis for the solver. Table 8.27 shows the results after running the CPLEX solver for 10 
hours. The numbers between brackets show the difference with the solution that was found in section 
8.3. 
 
Table 8.27: Main characteristics of the problem instance and solution after using a starting point to 

initialize the MIP-based approach. 

Description Bag-packaging orders 

Used penalties in objective (𝑝
1
, 𝑝2 𝑎𝑛𝑑 𝑝3) (1,1,10) 

Solution time until feasible (s) Feasible at start 
Time until presented solution was found (s) 34536 
Total solution time (s) 36000 
# of Constraints 496734 
# of Variables 88352 
# of orders that are scheduled late (Finishing time > 𝐷𝑤) 2 (+2) 
# of work centers that finish after the last shift ends 1 (+1) 
Sum of workload scheduled after shifts have finished 2,62h (+2,62) 
Total amount of idle time (h) 28,43h (+18,18) 
Total changeover penalty  1010 (+52) 

 
The test immediately shows that this is not a viable approach. After running the solver for the large 
amount of 10 hours, only a small number (<10) of small improvements in the best-found objective 
value have occurred. Furthermore, the solution is actually worse than the solution that was found 
using the sequential approach. This is probably the result of the penalties that were used in the 
objective function. In the sequential approach the weights used for the objective function of the pre-
processing orders are independent of the weights used for the packaging orders. This is not possible in 
the MIP-based approach and this seems to result in a worse solution. 
 
Due to the relatively long time it takes to solve these instances and because there is no indication that 
this method will result in large improvements in the solution, no further tests were performed. 
Although unpractical, It may be possible to improve the solution when the solver is ran for an even 
longer amount of time.  
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8.6 Comparison to the current situation at Heemskerk 
 
In this thesis an approach has been presented to find a good production schedule for a production day 
at Heemskerk. It is interesting to see how this approach compares to the current way in which 
production orders are scheduled. Due to the format of the available transaction data, it will not be 
possible to compare the two approaches for all key performance indicators. However, in this section a 
number of aspects will be used to show how the sequential approach compares to the current manual 
approach. 
 

8.6.1 Feasibility of the schedule 
The current approach at the company uses a fixed machine assignment and production sequence for 
all orders as a starting point. Because this schedule is fixed and equal for every day of the week, it very 
often contains infeasibilities at the start. The most common infeasibilities occur because intermediate 
products are scheduled too late for usage in the final products. This is usually resolved by either 
postponing packaging, which introduces idle time, or by changing the production sequence. The latter 
may result in additional changeovers or cleaning. 
 
Another common infeasibility is the overburdening of work centers. Due to promotions or seasonal 
changes it may be that a certain production line has more work assigned to it than it can process in a 
single production day. This issue is usually only resolved at the end of the production day when other 
production lines have completed their assigned orders. These other work centers will then ‘help’ the 
overburdened work center by doing a part of its work. Obviously this is rather inefficient. The orders 
that are rescheduled at the end of the production day might have fit better on another production line 
earlier in the schedule. However, at that point, that opportunity has already been lost.  
 
The approach presented in this thesis provides schedules that are feasible from the start. The 
relationship between pre-processing and packaging orders is enforced by a fixed constraint that 
ensures that each intermediate is available when it needs to be packaged. Furthermore the workload 
on overburdened work centers is distributed over other production lines right at the start of a 
production day.  
 

8.6.2 Time involved in scheduling of the process 
The current manual approach results in a schedule that requires a large amount of on-the-fly 
adjustments to the schedule. During every shift there is at least one worker that uses all of his time to 
adjust the production schedule. All these adjustments also result in efficiency losses. An operator may 
already be halfway through a changeover to another product when his team leader tells him that the 
schedule of his work center needs to be adjusted.  
 
The approach presented here will not result in the complete removal of all of these adjustments. 
Adjustments will always be necessary when machines break down, when demand changes or when 
unprocessed vegetables are unavailable. However, almost all of the other infeasibilities that require 
changes to the schedule will be taken care of by the optimization approach. This will result in a large 
reduction in the number of adjustments and will thus increase the efficiency of the process. 
 
 
 
 
 
 
 



86 
 

8.6.3 Amount of changeovers 
From the transaction data that is available at the company, it is unclear whether idle time in the 
schedule is the result of infeasibilities, machine breakdowns or the unavailability of unprocessed 
vegetables. It is however possible to extract the amount and type of all changeovers in a schedule. 
This makes it possible to compare the changeovers in the schedules of both approaches. 
 
The transaction data of the 7th of July 2013 will be used to see how the current approach compares to 
the designed sequential approach. For each work center the transactions are extracted separately. 
This will show the exact type and sequence of the orders that were produced on that machine that 
day. For comparison the different types of changeovers will have the same penalty scores as were 
used for the sequential approach. Table 8.28 shows a comparison of the total changeover penalty in 
the schedule of the sequential approach and the actual schedule of the production day. 
 
8.28 Comparison of changeover penalties of the sequential approach and an actual schedule. 

Sum of changeover penalties Schedule Sequential Approach Actual schedule 

Pre-processing department 424 620 
Packaging department 534 786 

Total 958 1406 
 
 
It should be noted that the shown total changeover for the actual schedule is rather high as it also 
includes changeovers that are the result of rush orders and rework. The two total numbers can 
therefore not be exactly compared. Nevertheless the table shows that the schedule that is found using 
the sequential approach is at least in the same ballpark as the schedules that are currently used at the 
company. It also shows that there is a lot to be gained by using more sophisticated scheduling 
methods. 
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9 Conclusion and Recommendations 
 
 

9.1 Conclusion 
 
In this thesis, the scheduling problem at the large fresh vegetable production company W. Heemskerk 
was reviewed. The main objective during the research was finding a way to optimize the connection 
between pre-processing and packaging orders by assigning production resources to the available 
work. This objective was pursued by creating a mathematical optimization model for the problem and 
finding a favorable solution for it in a reasonable amount of time. Three research questions were 
formulated to further investigate this problem.  
 
The first question involves finding a mathematical formulation for the scheduling problem. In section 6 
a continuous-time immediate precedence batch-scheduling model was proposed. This model 
incorporates all process-specific constraints, e.g., the cross-contamination rules and the timely 
availability of the intermediate products for packaging. The objective function of the presented model 
minimizes the total tardiness of the orders, the total changeover penalty and the idle time of the 
orders. 
 
After a mathematical formulation of the problem was found, an attempt was made to solve an 
instance of the scheduling problem using the commercial solver CPLEX. This attempt proved unfruitful 
due to the large size of the problem instance. To cope with the large size of the problem, a sequential 
approach to solve the problem was presented in section 7. This sequential approach splits the 
problem instance into several smaller instances that can be solved using the commercial solver. In this 
approach, all packaging batches are scheduled first. Next, the schedule that was found for these 
batches is used as input to schedule the pre-processing batches. Last the solution of the packaging 
batches is adjusted to find an overall feasible schedule. This approach greatly reduces the number of 
constraints and variables in each of the instances. This in turn results in better solution times. 
The sequential approach was compared to the MIP-based approach using a relatively small problem 
instance. This comparison shows that the results that are found using the sequential approach are 
very similar to the results found using the MIP-based approach. However, the sequential approach 
requires significantly less time to solve the problem.  
 
The strength of the sequential approach was illustrated by solving an actual real-world problem 
instance at the case company. The results show that, depending on the stopping criteria used, a good 
solution to the problem can be found in 1 to 2 hours. To further illustrate the possibilities of the 
approach, the problem was solved using several different combinations of weight factors in the 
objective function. This showed that increasing or decreasing the weights associated with these 
objectives directly influences the objectives. This gives the management of the company the possibility 
to influence the approach.  
 
The approach presented in this thesis was shown to have several advantages over the current manual 
approach of the case company. In contrast to the current approach, a schedule generated using the 
sequential approach will be feasible at the start of the production day. This means that a good 
connection between the pre-processing and the packaging department is ensured by the way in which 
the model was formulated. Furthermore, the current approach only reschedules excessive workload 
on production lines at the end of the production day. The method presented in this thesis will evenly 
distribute the workload in the available production time in the initial schedule. This means that a lot 
more, potentially better, scheduling options are considered in the process. To conclude, the 
sequential approach most likely results in a considerable reduction in the amount and the severity of 
the required changeovers on production lines.  
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9.2 Recommendations 
 
Several recommendations for further research can be given. 
 
In the current approach, minimizing the sum of all starting times enforces the minimization of the idle 
time. This is inefficient because a large part of this sum is not influenced by the idle time but by the 
constraints of the problem. A starting point for improvement could be to maximize the number of 
orders that have their finishing and starting times in common. This measure would be closer related to 
the amount of idle time. 
 
Each production day at the case company is a separate problem instance. Because the variety and the 
sizes of the orders on the same day in different weeks are often very comparable in nature, it may be 
useful to use the solutions from these days as starting points for the problem instances of future 
production days. This could further reduce the solution time required to solve a problem instance. It 
will also be interesting to see how much these schedules differ from each other and which aspects of 
the problem result in those differences. 
 
It was shown that the stopping criterion used for the solver greatly influences the required solution 
time. A more intelligent stopping criterion could be formulated by further investigating the results 
when the solver is stopped after a shorter amount of time. It may well be that when a solution is 
quickly accepted in the first two steps of the sequential approach, it will not result in a big reduction in 
the quality of the solution. A start for this was made in section 8.2.4 but further tests would be 
required to verify the idea that stopping the solver sooner may not result in significantly worse 
solutions. After all, only little time is required to find a feasible solution in each step of the approach. 
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