Waarom gebruiken olie en gas ondernemingen financiële hedging activiteiten?

Master thesis PTO Bedrijfskunde
Rotterdam School of Management
Major Financieel Management

Auteur : Norman Meerkerk
Studentnummer : 335039
Scriptie begeleider : Prof. Dr. Abe de Jong
Meelezer : Dr. Jan van Dalen
Datum : 15 augustus 2011
Abstract

Dit onderzoek houdt zich bezig met de vraag waarom ondernemingen binnen de olie en gas industrie financiële risico activiteiten toepassen. Uit onderzoek naar de 10 grootste olie en gas ondernemingen ter wereld vind ik ten dele empirische ondersteuning van de theorieën dat hedging de waarde van de onderneming vergroot. Tevens heeft het gebruik van financiële hedging activiteiten enige invloed op de mate van Financial distress en de investeringen van de ondernemingen. Echter heb ik bij de variabelen exposure en ondernemingswaarde een tegengestelde uitkomst gevonden ten opzichte van de veronderstelde relaties. Uit de descriptieve analyse blijkt tevens dat de omvang van de onderneming een belangrijke verklarende factor heeft voor de resultaten. Uit de studie blijkt dat de olie en gas ondernemingen uit de steekproef significante exposures hebben aan de olie- en gasprijzen. De ondernemingen met een lage hedge hebben echter een significant lagere exposure coëfficiënt dan de ondernemingen met een hoge hedge. Dit is in tegenstelling tot de veronderstelde relatie dat de ondernemingen welke meer hedgen lagere exposure hebben. Ook in dit geval kan ik geen empirische ondersteuning vinden voor de stelling dat financiële hedging activiteiten hiervoor een effectief instrument zijn.

(Sleutelwoorden: Hedging, olie en gas industrie, exposure, waarde, financial distress, investeringen)
Voorwoord

De masterscriptie welke u zodra gaat lezen is niet vanzelf tot stand gekomen. Voor aanvang van het scriptietraject hebben we ons, als PTO studenten, 3 semesters moeten klaarstomen om tot dit memorabele moment te komen. De weg naar de scriptie was soms lastig, veeleisend, vermoeiend en afzien. Maar bovenal was het traject leerzaam, boeiend, motiverend en spannend. De positieve energie welke de studie mij gaf heeft bij mij de volledige duur de boventoon gevoerd en was de rede waarom ik het traject zonder al te veel hindernissen heb kunnen doorlopen.

Zonder de steun van een aantal belangrijke mensen in mijn leven was het echter niet mogelijk geweest om deze studie te voltooien. Als eerste wil ik dan ook mijn vrouw Natalie bedanken voor alle zorgen welke ze op zich heeft genomen voor onze dochter Madelief en de ondersteuning welke ze mij heeft gegeven gedurende het gehele studie traject. Ten tweede wil ik mijn schoonzus en zwager, Anouk en Bastian, bedanken voor het opvangen van Natalie en Madelief op de momenten dat ik er niet voor hen kon zijn door studieverplichtingen. Ten derde wil ik mijn vorige werkgever Albert Martinus bedanken voor de mogelijkheid welke hij mij heeft geboden om deze studie te gaan doen.

Tot slot wil ik mijn scriptiebegeleider en meelezer, Abe de Jong en Jan van Dalen, bedanken voor de uitermate belangrijke inbreng welke ze mij hebben gegeven om tot dit resultaat te komen.

Norman Ingen Meerkerk, 5 juli 2011.
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTIE</td>
<td>6</td>
</tr>
<tr>
<td>1.1 Probleem- en vraagstelling</td>
<td>8</td>
</tr>
<tr>
<td>1.2 Implicaties van de studie</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Structuur van de scriptie</td>
<td>10</td>
</tr>
<tr>
<td>2 LITERATUUR</td>
<td>11</td>
</tr>
<tr>
<td>2.1 Hedging en waardecreatie</td>
<td>12</td>
</tr>
<tr>
<td>2.2 Ondernemingen en prijs-exposure</td>
<td>14</td>
</tr>
<tr>
<td>2.3 Financial distress en investeringsmogelijkheden</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Concluderend</td>
<td>19</td>
</tr>
<tr>
<td>3 Olie en gas, de markt en prijsverandering</td>
<td>20</td>
</tr>
<tr>
<td>3.1 Historie olieprijs</td>
<td>20</td>
</tr>
<tr>
<td>3.2 Historie gasprijs</td>
<td>22</td>
</tr>
<tr>
<td>3.3 Derivatengebruik binnen de olie en gas industrie</td>
<td>25</td>
</tr>
<tr>
<td>3.4 De markten</td>
<td>25</td>
</tr>
<tr>
<td>3.5 Forward contract</td>
<td>26</td>
</tr>
<tr>
<td>3.6 Futures contract</td>
<td>28</td>
</tr>
<tr>
<td>3.7 Swaps</td>
<td>29</td>
</tr>
<tr>
<td>3.8 Opties</td>
<td>31</td>
</tr>
<tr>
<td>3.9 Concluderend</td>
<td>34</td>
</tr>
<tr>
<td>4 ONDERZOEKSAANPAK</td>
<td>35</td>
</tr>
<tr>
<td>4.1 Methodologische aanpak</td>
<td>35</td>
</tr>
<tr>
<td>4.2 Onderzoeksaanpak</td>
<td>36</td>
</tr>
<tr>
<td>4.3 Vraagstelling en deelvragen</td>
<td>37</td>
</tr>
<tr>
<td>4.4 Conceptueel model</td>
<td>37</td>
</tr>
<tr>
<td>4.5 Hypothesen en variabelen</td>
<td>38</td>
</tr>
<tr>
<td>4.5.1 De afhankelijke hedging variabele</td>
<td>40</td>
</tr>
<tr>
<td>4.5.2 De onafhankelijke variabelen</td>
<td>44</td>
</tr>
<tr>
<td>4.6 Steekproef omschrijving</td>
<td>47</td>
</tr>
<tr>
<td>4.7 Data analyse</td>
<td>49</td>
</tr>
<tr>
<td>4.8 Dataverzameling</td>
<td>51</td>
</tr>
<tr>
<td>5 RESULTATEN</td>
<td>52</td>
</tr>
<tr>
<td>5.1 Descriptieve resultaten</td>
<td>52</td>
</tr>
<tr>
<td>5.2 Hedging ratio</td>
<td>57</td>
</tr>
<tr>
<td>5.2.1 Hedging ratio absolute fair values</td>
<td>57</td>
</tr>
<tr>
<td>5.2.2 Hedging ratio netto fair values</td>
<td>58</td>
</tr>
<tr>
<td>5.3 Toetsing hypothesen 1 en 2</td>
<td>59</td>
</tr>
<tr>
<td>5.3.1 Toetsing hypothese 1a en 1b</td>
<td>59</td>
</tr>
<tr>
<td>5.3.2 Toetsing hypothese 2 investments</td>
<td>60</td>
</tr>
<tr>
<td>5.4 Toetsing hypothese 3 exposure</td>
<td>61</td>
</tr>
</tbody>
</table>
5.4.1 Exposuremeting gehele sample ... 61
5.4.2 Exposure meting splitsing steekproef periode .. 63
5.4.3 Verband hedging ratio en exposure ... 64
5.5 Toetsing hypothese 4 ondernemingswaarde ... 66
5.6 Concluserend .. 67
6 Conclusie .. 68
LITERATUURLIJST ... 73
BIJLAGE 1 DESCRIPTIEVE RESULTATEN PER ONDERNEMING ... 78
1 Introductie

Het managen van risico’s is al decennia lang een item dat hoog op de agenda staat bij ondernemingen uit diverse branches. Zeker na de financiële crisis heeft het onderwerp nog meer aan kracht gewonnen omdat ogenschijnlijk juist het managen van risico’s gefaald heeft in het bankwezen. Om risico’s te managen zijn diverse activiteiten ontwikkeld welke worden toegepast door een grote hoeveelheid ondernemingen in diverse branches. Één van die activiteiten is het stabiliseren van volatiliteit in de markt voor bijvoorbeeld de prijzen van grondstoffen of valutaverschillen, genaamd hedging. Een voorbeeld van een dergelijk risico voor een onderneming is de volatiliteit van inkomsten door toedoen van veranderende wisselkoersen van valuta, rentes en grondstoffen.

Binnen dit onderzoek staat de olie en gas industrie centraal. De keuze voor deze specifieke branche is gemaakt omdat de ondernemingen binnen de branche geacht zijn sterk te maken hebben met een veranderende olie- en gasprijs. De handelsomgeving van de oliemarkt is relatief onstabiel door de invloed van geologie, geopolitiek, economieën, wetten, belastingen, financiën, technologieën en milieubelangen. Sommige van deze risico’s kunnen worden weggenomen door deze te alternatief te managen. Zo kunnen geologische risico’s worden gemanaged door het ontwikkelen en toepassen van nieuwe technologieën en moderne technieken, echter kunnen de risico’s nooit volledig worden uitgesloten. Een recent voorbeeld hiervan is het ongeluk op de Deepwater Horizon in de Golf van Mexico. Ondanks moderne technieken en technologieën is men toch niet in staat geweest een ongeluk te voorkomen. Na het ongeluk is het tevens zeer lastig gebleken de oliebron tijdig te dichten om een milieuramp te voorkomen. Al de mogelijke risico’s samen vormen de achtergrond voor de groei van risico management activiteiten binnen de olie en gas industrie.

Het vraag en aanbod equilibrium van de oliemarkt werd in het verleden sterk beïnvloed door de fysieke oliemarkt. De olie welke werd gekocht werd daadwerkelijk fysiek geleverd bij de onderneming welke de olie had aangekocht op de handelsmarkt. Olie ondernemingen en olie importerende landen beschouwden de oliemarkt als een soort tegenwicht tegen de dominantie van de olie producerende en exporterende landen (OPEC). De ontwikkeling van de oliemarkt heeft er toe geleid dat de fysieke markt is getransformeerd in een meer financiële markt. Deze verandering trok nieuwe marktparticipanten aan zoals banken,
verzekeraars en hedge fondsen. Deze nieuwe investeerders gebruikte de markt om te speculeren op koerswijzigingen om daar winst te kunnen behalen. Tevens werd het mogelijk om door middel van financiële derivaten de exposure van de onderneming aan de olieprijs te verminderen. Hedendaags bestaat de markt slechts uit een klein fysiek deel en meer uit een geavanceerd financieel deel. Dit geeft de marktparticipanten de mogelijkheid om uit een uitgebreid scala van financiële derivaten te kiezen om de risico management portfolio samen te stellen.

In hun artikel hebben FSS (1994) een theoretisch raamwerk opgesteld waarin ze beargumenteren dat externe financiële middelen duurder zijn dan interne financiële middelen. Door het toepassen van financiële hedging activiteiten kunnen bedrijven borgen dat er voldoende interne financiële middelen beschikbaar zijn en dat er minder extern kapitaal hoeft te worden aangetrokken om groei van de onderneming te stimuleren. Volgens het risico management raamwerk van FSS (1994) zijn er drie basis principes voor het toepassen van de juiste hedging strategie. Het eerste principe is voor het creëren van waarde is op de goede manier investeren. Ten tweede is er de noodzaak om voldoende interne liquide middelen te genereren om de juiste investeringen te financieren. Als de onderneming

Er zijn diverse onderzoeken geweest naar hedging activiteiten binnen de olie en gas industrie en of deze activiteiten invloed hebben op de performance van de onderneming (Jin en Jorion 2006, Lookman 2004, Haushalter 2000). De olie en gas industrie is in een bepaalde mate afhankelijk van de marktprijzen voor olie en gas. Omdat de marktprijzen van olie en gas sterk kunnen correleren met de inkomsten van de onderneming, afhankelijk van de mate waarin de onderneming afhankelijk is van deze wisselkoersen, is het evident om te bekijken of het hedgen van deze risico’s ook echt waarde toevoegt aan de onderneming. Omdat niet iedere onderneming even gevoelig is voor de wisselkoersen, zal niet iedere onderneming binnen een homogene branche dezelfde hedgingstrategie toepassen (FSS,1994). In het artikel van FSS (1994) wordt dit geïllustreerd aan de hand van een fictieve case van Omega Oil en Epsilon Oil. Omega Oil heeft de beschikking over relatief goedkope olie reserves in Saoedi Arabie, terwijl Epsilon Oil zijn olie uit de Noordzee haalt welke relatief duur is. Bij een dalende olieprijs zal Epsilon Oil eerder de oliewinning moeten stopzetten waardoor er een belangrijke bron van inkomsten verloren gaat. Omega Oil zal zijn activiteiten kunnen voortzetten doordat het winnen van de olie nog steeds goedkoper is dan de olieprijs. In dit geval zijn de kasstromen van Epsilon Oil gevoeliger voor de dalende olieprijs.

1.1 Probleem- en vraagstelling

Op basis van de inleidende theorie, zoals in de vorige paragraaf beschreven, en de theorie zoals deze verder is uitgediept in hoofdstuk 2, is de volgende hoofdvraag opgesteld.

* Waarom passen olie en gas ondernemingen hedging activiteiten toe?

In de theorie worden een aantal belangrijke aspecten genoemd waarom olie en gas ondernemingen financiële hedging activiteiten toepassen. Ten eerste dient de onderneming exposure te hebben aan een wisselkoers van een onderliggende waarde. Dit kunnen bijvoorbeeld grondstoffenprijzen, rentekosten of valutakoersen zijn. Het uitgangspunt is dat hedging de exposure van de onderneming kan verminderen en derhalve minder afhankelijk wordt van deze wisselkoersen. Ten tweede kan de waarde van de onderneming toenemen
door het reduceren van faillissementkosten (Smith en Stulz, 1984). Ten derde worden de intern gegenereerde kasstromen in een bepaalde mate zeker gesteld. Hierdoor zijn er altijd voldoende intern gegenereerde liquide middelen om de juiste investeringen te doen welke waarde toevoegen aan de onderneming. In navolging op deze theorie, welke in hoofdstuk 2 verder wordt toegelicht, heb ik de volgende vier deelvragen samengesteld:

1. *Hedgen ondernemingen, met een hogere mate van financial distress, meer dan ondernemingen met een lagere mate van financial distress?*

2. *Hedgen ondernemingen, welke meer investeren, meer dan ondernemingen welke minder investeren?*

3. *Hebben onderneming die veel gebruik maken van hedging een lager exposure dan ondernemingen die weinig gebruik maken van hedging?*

4. *Hebben ondernemingen welke veel gebruik maken van een hedging een hogere ondernemingswaarde dan ondernemingen welke minder gebruik maken van hedging?*

Deze deelvragen worden later in paragraaf 4.3 uitgewerkt tot hypothesen. De testen welke per hypothese worden gedaan, en de antwoorden welke hieruit voortvloeien, zullen moeten leiden tot een correcte beantwoording van de hoofdvraag waarom olie en gas ondernemingen gebruik maken van financiële hedging activiteiten.

1.2 Implicaties van de studie

Dit onderzoek heeft als doel inzicht te verkrijgen in het gebruik van financiële risicomanagement activiteiten en de invloed hiervan op bepaalde ondernemings karakteristieken. In dat kader tracht ik een contributie te leveren aan de bestaande literatuur en praktisch inzicht te geven over de implicaties van het gebruik van financiële risicomanagement activiteiten.

Er zijn drie theoretische contributies welke ik lever aan de bestaande literatuur. Ten eerste levert het onderzoek een bijdrage aan de discussie over het gebruik van financiële risicomanagement activiteiten en de invloed hiervan op de performance van de onderneming. Deze discussie is inmiddels een langlopend, maar nog steeds actueel, onderwerp binnen de financieel economische literatuur. Ten tweede maakt deze studie gebruik van een
wereldwijde steekproef. Het verschil met de gevestigde literatuur is dat de onderzoekers voornamelijk gebruik maakt van steekproeven van Noord-Amerikaanse olie en gas ondernemingen. Het gebruiken van een wereldwijde steekproef geeft inzicht over het gebruik van financiële instrumenten wereldwijd en of hier verschillen zijn. En ten derde kan, door het kiezen van een afwijkende steekproef, deze studie als een robuustheids analyse gezien worden van de bestaande literatuur en op die wijze een contributie leveren aan de lopende discussie over het gebruik van financiële risico management activiteiten.

Naast de contributie aan de wetenschappelijke literatuur is er ook een praktische implicatie. De uitkomsten van dit onderzoek kunnen financieel managers inzicht geven over de werking en de toegevoegde waarde van hedging activiteiten. Hierdoor kunnen ze een beslissing gefundeerd nemen over toepassen van de instrumenten en met welk doel de instrumenten worden ingezet. Tevens geeft het onderzoek inzicht over de gevoeligheid van de ondernemingen ten opzichte van de grondstoffen prijzen waar ze mee te maken hebben.

1.3 Structuur van de scriptie

Deze scriptie is vanuit methodologisch oogpunt gestructureerd. Vanwege het deductieve karakter van de studie wordt eerste het theoretische deel besproken in hoofdstuk 2. In dit hoofdstuk wordt de belangrijkste literatuur besproken en worden de concepten toegelicht welke ten grondslag liggen aan de hypothesen. Als ondersteuning aan de relevantie van het onderzoek wordt er in hoofdstuk 3 besproken wat de ontwikkeling van de olie- en gasprijs is geweest vanaf 1970 tot aan 2009. Het doel hiervan is het weergeven van de sterke volatiliteit van de grondstoffen prijzen waaraan de ondernemingen zijn blootgesteld. Tevens worden in hoofdstuk 3 de diverse markten en instrumenten beschreven welke worden gebruikt binnen de olie- en gasindustrie. Het is belangrijk om begrip te hebben van de werking van deze instrumenten om te kunnen plaatsen welke invloed ze zouden kunnen hebben op kasstroomen. In hoofdstuk 4 worden de concepten van hoofdstuk 2 uitgewerkt tot hypothesen en wordt de aanpak van het onderzoek beschreven. Tevens wordt in hoofdstuk 4 de aanpak van het onderzoek toegelicht. In Hoofdstuk 5 worden de resultaten van het empirische onderzoek weergegeven en worden de hypothesen getoetst. Tevens vindt de beantwoording van de deelvragen, en tot slot de hoofdvraag, plaats. In hoofdstuk 6 wordt de eindconclusie van het gehele onderzoek getrokken. In deze eindconclusie geef ik tevens een aantal opties van toekomstig werk.
2 Literatuur

In dit hoofdstuk zal ik een aantal belangrijke theoretische inzichten toelichten welke beschrijven op welke manieren hedging waardevol is voor een onderneming en waarom ondernemingen financiële instrumenten gebruiken om bepaalde risico’s af te dekken. Binnen dit onderzoek draait het om de vraag waarom ondernemingen gebruik maken financiële risico management activiteiten. Op welke manier hebben deze activiteiten invloed op de performance van de onderneming en is het gebruik van de activiteiten te rechtvaardigen op basis van empirische bewijzen. In de wetenschappelijke literatuur is er een substantiële hoeveelheid studies geweest naar het gebruik van financiële hedging activiteiten en de uitwerking hiervan op verschillende financiële karakteristieken van de onderneming.

borgen van gelijkmatig intern gegenereerde kasstromen om te kunnen investeren in de juiste projecten.

In dit hoofdstuk zal eerst hedging en waardecreatie toegelicht worden. Vervolgens zullen respectievelijk de determinanten exposure, financial distress en investeringen worden uitgediept.

2.1 Hedging en waardecreatie.

De theoretische modellen zijn door meerdere onderzoekers in de empirie getest. Een goede samenvatting van de empirische bevindingen van diverse onderzoeken is gegeven door Smithson en Simkins (2005). Zij stellen uit een ISDA onderzoek uit 2004 dat het erop lijkt dat er een geloof is onder academici dat risico management de waarde van de onderneming verhoogd. De kritische noot hierbij is of dit nu werkelijk zo is en of er robust wetenschappelijk bewijs te vinden is.

Voor het meten van de waarde van onderneming gebruiken de onderzoekers Tobin’s Q. Dit is de ratio tussen de marktwaarde van de onderneming en de vervangingswaarde van de activa. De studies onderzoeken echter niet allen dezelfde wijzen van risico management. Zo hebben Allayannis en Weston onderzoek gedaan naar het gebruik van rentelast en/of valuta risico management onder 720 niet-financiële bedrijven. Ze vonden een positief resultaat tussen het toepassen van risico management en de waarde van de onderneming. Daarentegen blijkt uit diverse studies dat er bij bedrijven die grondstoffen, zoals de olieprijs, hedgen geen positieve relatie te vinden is tussen risico management en de waarde van de onderneming. Zo vinden Jin en Jorion (2005) uit een steekproef van 119 Amerikaanse olie en gas producenten dat er wel een relatie lijkt te zijn tussen de gevoeligheid van de aandelenkoers en de olie en gasprijs maar dat het niet leidt tot een hogere waarde van de onderneming. Ook concluderen Jin en Jorion dat de hoogte van de hedging premie afhankelijk is van het type risico.

vindt hij voor niet-gediversifieerde ondernemingen een negatieve relatie tussen hedging en de waarde van de onderneming. Echter voor gediversifieerde ondernemingen vindt hij een positieve relatie.

Op basis van bovenstaande argumenten is er geen eensgezindheid over de invloed van financiële hedging-activiteiten op de waarde van de onderneming.

2.2 Ondernemingen en prijs-exposure.

Naast de theoretische studies zijn er een aantal empirische studies welke zich specifiek bezighouden met de vraag of hedging exposure reduceert. Zo kan een onderneming op twee manieren zijn exposure managen; door middel van financieel en/of operationeel hedgen. Er zijn diverse studies welke concluderen dat het gebruik van financiële derivaten leidt tot een lagere exposure (Allayannis en Ofek 2001; Guay 1999; Jin and Jorion 2006; Schrand 1997,
Kim, Mathur en Nam (2006). Guay en Kothari (2003) bekritiseren deze studies, welke de conclusie trekken dat hedging economisch significant is, door de methoden van operationeel hedgen als belangrijkste waarde creator aan te wijzen. Ze geven aan dat het gebruik van operationeel hedging dominant is ten opzichte van het gebruik van financiële derivaten. Tevens geven zij aan dat het hedgen met financiële derivaten van weinig invloed is ten opzichte van bijvoorbeeld de omvang, de assets en de inkomsten van de onderneming.

2.3 Financial distress en investeringsmogelijkheden.

De theorie van FSS (1994) laat zien dat ondernemingen welke extern kapitaal nodig hebben zullen desinvesteren wanneer de interne cashflows laag zijn. De mate van financial distress kan een manager ervan weerhouden om te investeren in waardevolle projecten Stulz(1996). De financial distress neemt toe wanneer de kasstromen afnemen en de onderneming niet meer in staat is de schuld af te lossen. Dus wanneer financial distress kostbaar is, en het heeft voordelen om een bepaalde hoeveelheid schuld als onderneming te hebben (door toenemende belasting voordelen), kan hedging worden gebruikt om ervoor te zorgen dat de onderneming in staat is deze schuld te kunnen aflossen en op een bepaald niveau te houden (FSS, 1994). Een aanvullend argument is dat door het failliet gaan van de onderneming er exogene transactiekosten ontstaan (Smith en Stulz, 1985). Door deze mogelijkheid tot faillissement te beperken kan de onderneming aandeelhouderswaarde toevoegen.

Grafiek 2.3.1: Theoretische invloed hedging

Een uitgangspunt in deze stelling is dat er een nagenoeg een perfecte correlatie bestaat tussen het aanbod van financiering en de vraag ernaar. Indien Omega Oil geen risico management toepast hebben ze in het geval van een hoge olieprijs een overschot, en bij een lage olieprijs een tekort aan liquide middelen.

weergegeven in grafiek 2.3.2 Deze equivalent van Omega Oil noemt Tufano Alpha Omega Oil met het verschil dat binnen Alpha Omega Oil de managers niet altijd in lijn handelen met de belangen van de aandeelhouder.

Grafiek 2.3.2: Vraag naar interne middelen

Met dit model wil Tufano illustreren dat de managers van Alpha Omega Oil prefereren bij hoge olieprijzen alle kasstromen te investeren in exploratie en ontwikkeling. De blauwe lijn in figuur 2.3.2 geeft tevens aan dat de managers de investeringen niet tot onder het huidige niveau laten zakken. Jensen (1993) stelt deze onwilligheid om in te krimpen ter discussie en geeft aan dat veel corporate investeringen aandeelhouderswaarde vernietigen.

Concluderend kan worden gesteld dat er door een goed investeringsbeleid waarde kan worden toegevoegd aan de onderneming. Hedging kan dit investeringsbeleid ondersteuning door ervoor te zorgen dat de kasstromen stabiel zijn en er altijd voldoende kasstromen aanwezig zijn om het investeringsbeleid uit te voeren.

2.4 Concluderend

Het onderwerp hedging is inmiddels een redelijk veel besproken onderwerp binnen de financieel economische literatuur. Over het algemeen is de mening van de onderzoekers dat hedging waarde toevoegt aan de onderneming. De manier waarop is echter op verschillende manier onderzocht. De studies waarin het vergelijk wordt gemaakt tussen tobin’s Q en verschillende hedging proxies (zoals de hoeveelheid productie dat voor het volgende jaar wordt gehedged) vormen een rode draad in de empirische onderzoeken. Als de hypotheses van deze studie getoetst worden aan de literatuur zouden ze alle drie gehandhaafd blijven. Zo is een groot aantal onderzoeken eensgezind over de uitkomst dat hedging exposure reduceert, hedging waarde toevoegt aan de onderneming en dat hedging leidt tot betere investeringsmogelijkheden.
3 Olie en gas, de markt en prijsveranderingen

De afgelopen decennia is gebleken dat de prijs van een barrel ruwe olie zeer volatiel is. Deze volatiliteit wordt veroorzaakt door bijvoorbeeld dagelijkse productie met overschot of tekorten, een politieke crisis in een land, stormen, terrorisme, oorlog enz. Een kouder of warmer seizoen in de Verenigde Staten of in Europa is voldoende om de prijs van de huishoudelijke brandstof met een tiental procent te verhogen of te verlagen, dit zal ook invloed hebben op de prijs van de ruwe aardolie. Een ander probleem dat de prijzen doet schommelen is de voorraad in geval van oorlog. In de meeste landen vereist de wet dat de raffinaderijen een ruwe aardolievoorraad, of zijn equivalente hoeveelheid in afgewerkte producten, bezitten van tenminste drie maanden nationaal verbruik. Om zo te vermijden dat in geval van oorlog het leger een tekort zou hebben aan brandstof. Dit, en speculatie op de markt, zijn de belangrijkste factoren die de prijs van ruwe aardolie bepalen.

3.1 Historie olieprijs

De prijs van een vat ruwe olie is echter niet altijd zo volatiel geweest als dat hij de laatste 4 decennia is geweest. Tussen de eerste wereldoorlog tot aan 1973 laat de olieprijs weinig volatiliteit zien en ligt de prijs tussen de $2,50 en $3,00 / vat. De eerste stijging doet zich voor in 1973 wanneer de eerste oliecrisis zich ontspint door de Yom Kippur oorlog in het midden Oosten. Hierdoor steg de prijs in 1973 tot $12,00 / vat. De volgende mijlpaal in de stijging van de olieprijs is de Irak/Iran oorlog, hierdoor steg de prijs voor een vat ruwe olie door naar $35,00 in 1981.

![Historie olieprijs grafiek]

Grafiek 3.1 Ontwikkeling van de olieprijs van 1976 t/m 2010
De revolutie in Iran leidde tot een verlies van 2 tot 2,5 miljoen vaten olie per dag tussen november 1978 en juni 1979. In 1980 viel de olieproductie in Irak terug met 2,7 miljoen vaten per dag en in Iran met 600.000 vaten per dag. In de periode na de sterke stijging heeft de OPEC getracht de olieprijs te stabiliseren voor de productiequota’s vast te stellen. Tussen 1982 en 1985 is dit herhaaldelijk mislukt omdat diverse leden van de OPEC zich niet hielden aan deze quota’s. Saoedi Arabie vertolkte als swing producer een belangrijk rol hierin door wel te snijden en productie. In augustus 1985 waren ze moe van deze rol en hebben ze besloten hun olieprijs te koppelen aan de spot market prijs. Na deze beslissing heeft Saoedi Arabie in begin 1986 de olieproductie weer opgeschroefd van 2 miljoen naar 5 miljoen vaten per dag.

In de periode na 1985 daalde de olieprijs weer naar de $10,00 / vat om vervolgens voor een lange periode binnen een relatief kleine bandbreedte te bewegen. Vanaf 2002 is er een rally begonnen welke werd gestart door de problemen in Venezuela in 2002 en inval van Amerika in Irak in 2003. De olieproductie ging omlaag terwijl de vraag, mede gedreven door een sterk groeiende vraag uit Azië, sterk steeg. Hierdoor liepen de prijzen op naar $50,00 per vat in 2005 om vervolgens nog verder door te stijgen naar een prijs van boven de $147,27 per vat in 2008. De stijging van de olieprijs is in 2008 een halt toegeroepen door de financiële crisis. Door de krimpende economie daalde ook de vraag naar olie en daalde prijs naar $34,00 per vat in 2009.
Uit hierboven beschreven historie blijkt dat de olieprijs gevoelig is voor externe factoren zoals conflicten in de olie producerende landen en recessies in de economie. Hierdoor is er een grillig verloop in vraag naar olie en deze grilligheid reflecteert zich op de koers van een vat ruwe olie.

3.2 Historie gasprijs

Aardgas is, net als ruwe aardolie, geen nieuwe grondstof welke de laatste jaren is ontwikkeld. Het meeste aardgas dat vanuit de grond naar boven wordt gebracht is miljoenen jaren oud. Echter zijn de methodes om de gasvelden te vinden, het gas te winnen en op te slaan pas de laatste decennia sterk ontwikkeld. Pas na de tweede wereldoorlog, met name in de zestiger jaren, werden er nieuwe mogelijkheden ontwikkeld en werden de technieken geavanceerder. Het gevolg van de ontwikkeling van de technieken was dat men het gas, tot dan toe werd het alleen voor verlichting gebruikt, ging gebruiken voor meerdere toepassingen. Voorbeelden hiervan zijn het verwarmen van woningen en het verwarmen van water in boilers. De productie industrie ging het gas gebruiken om delen van de fabrieken te laten draaien door het genereren van stoom en elektriciteit.

In 1938 werd de natural gas industry gereguleerd door de Amerikaanse overheid. Tot dan toe werd de gasmarkt verondersteld een natuurlijke monopoly te zijn. De vrees kwam echter dat er misbruik gemaakt zou gaan worden met de verkoopprijzen van het gas door de toename van het belang voor het gebruik van aardgas. In dat kader werd de Natural Gas Act opgericht,
deze groep legde producenten regels op voor de verkoopprijs om de gebruikers te beschermen tegen woekerprijzen. In de jaren ’70 en ’80 bleek dat, door een te kort aan gas en prijs onregelmatigheden, een gereguleerde markt niet het beste was voor de gebruikers en de producten. In de jaren ’80 en ’90 werden de regels versoepeld en werd er meer gezonde competitie toegestaan en op de markt gebaseerde prijzen. Deze deregulatie leidde tot een sterke markt, lagere prijzen voor gebruikers en meer mogelijkheden tot exploratie.

Net als bij ruwe aardolie wordt de prijs voor aardgas voor een groot gedeelte bepaald door vraag en aanbod. Het weer heeft, zowel bij koude als bij warme temperaturen, een belangrijke invloed op de prijs van aardgas. Zo zal er in koude winters meer aardgas nodig zijn om de woningen en gebouwen te verwarmen. Bij warme temperaturen worden de woningen en gebouwen vaak gekoeld door airconditioning. De extra elektriciteit welke benodigd is voor het koelen van de gebouwen leidt weer tot een grotere vraag bij de centrales welke weer meer aardgas nodig hebben om elektriciteit op te wekken. Een demografisch aspect is de verplaatsing van bevolkingsdichtheden per gebied. Zo zijn er in de afgelopen decennia meer mensen gaan wonen in de westelijke en zuidelijke staten van Amerika. Deze staten worden getypeerd door warm weer en daardoor is de vraag naar elektriciteit gestegen. Hierdoor steeg de vraag naar aardgas van de centrales en steeg derhalve de prijs mee.

Economische groei is tevens een belangrijke variabele in de prijsbepaling. In tijden van economische groei neemt de vraag naar aardgas, vooral vanuit de industrie, toe.
Grafiek 3.2 Ontwikkeling van de gasprijs van 1976 t/m 2010

In de empirie is waarneembaar dat de prijs van aardgas positief correleert met de prijs van ruwe aardolie. In tabel 3.2 zijn de correlatie onderling weergegeven tussen Brent Crude, WTI en de natural gas prijs.

<table>
<thead>
<tr>
<th>Natural Gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brent Crude 0,615824</td>
</tr>
<tr>
<td>WTI 0,628836</td>
</tr>
</tbody>
</table>

Tabel 3.2 Correlaties grondstoffen onderling

De correlatie tussen de Brent Crude prijs en WTI prijs correleert nagenoeg perfect positief met elkaar.
3.3 Derivatengebruik binnen de olie en gas industrie

Ondernemingen worden aan diverse risico’s blootgesteld en dus kan een onderneming het van belang vinden om financiële derivaten te gebruiken om deze risico’s af te dekken. De meest voorkomende risico’s van ondernemingen zijn veranderende wisselkoersen. In vergelijking met een verzekering dekken financiële derivaten ook onvoorziene situaties af waar de onderneming geen invloed op heeft. Vanwege de flexibiliteit van de producten zijn financiële derivaten steeds populairster om de onderneming te behoeden van extreme fluctuaties in de kasstromen.

In dit hoofdstuk zal ik eerst toelichting geven over de twee belangrijkste markten waar derivaten verhandeld worden. Vervolgens zal ik de vier meest gebruikte derivaten toelichten, te weten forward contracts, futures contract, energy options en swaps.

3.4 De markten

De handel in deze futures groeide snel van 323 miljoen barrels in heel het jaar 1983 naar 5 miljoen barrels per dag in 1984 om dan door te stijgen naar 100 miljoen barrels per dag in 1990. De markt participanten zijn voornamelijk olie en gas bedrijven, traders, financiële instellingen zoals banken en verzekeringenbedrijven.

De tweede hoofdmarkt bestaat uit Over The Counter (OTC) contracten, dit zijn privaat onderhandelde contracten welke direct worden aangeboden door de handelaren aan de eindgebruiker. De handel op de OTC markt is een handel in cash in tegenstelling tot derivaten.
waarbij het product ook daadwerkelijk fysiek geleverd wordt. Dit maakt het gebruik van OTC contracten een meer kosten effectieve investering voor het managen van risico’s. In de recente jaren is de markt voor OTC contracten substantieel gegroeid. Dit omdat OTC contracten een bruikbaar instrument zijn om huidig en toekomstig risico te managen. De OTC contracten binnen de olie industrie bestaan uit een grote productvariatie waaronder forwards, swaps en opties. De belangrijkste markt participanten zijn grote crude oil handelaren, banken en verzekeraars.

3.5 Forward contract

Een forward contract is een overeenkomst tussen twee partijen over de levering van een specifieke hoeveelheid en kwaliteit van een bepaald product in de toekomst. Tevens zijn in het contract een vaste prijs, leverdatum en leverlocatie weergegeven. Deze contracten kunnen zeer uitgebreid zijn en worden specifiek opgesteld voor de levering van een bepaald product. Het afsluiten van een forward contract is kosteloos. De partij welke de overeenkomst sluit om de onderliggende grondstof te kopen heeft een long positie en de verkopende partij de short positie. De rendementen van de forward contracten zijn lineair en tegengesteld van de long positie ten opzichte van de short positie. De waarde van het forward contract op de uitoefendatum hangt af van de relatie tussen de afgesproken uitoefenprijs en de waarde van de onderliggende waarde op het moment van de uitoefendatum.

Voor de long positie en de short positie zijn voor de berekening van het rendement de volgende formules van toepassing:

Long positie \(f_T = S_T - K \)

Short positie \(f_T = K - S_T \)

Hierin is \(f_T \) de rendement van het contract op tijd t, \(S_T \) de uitoefenprijs van het afgesloten contract en \(K \) de verandering van de betreffende spotprijs.

In figuur 3.5 is weergegeven hoe de relaties visueel weergegeven kunnen worden.
Figuur 3.5: Koersverloop forward contract

Olie en gas ondernemingen sluiten deze forward contracts af omdat ze over die periode geen exposure willen hebben aan de veranderende olie- en/of gasprijs. In tabel 3.5 is een voorbeeld gegeven van een scenario zoals zich dat kan voordoen bij de uitoefening van een forward contract.

<table>
<thead>
<tr>
<th>Hoeveelheid</th>
<th>Uitoefenprijs</th>
<th>Rendement bij 10% stijging</th>
<th>Rendement bij 10% daling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Koper</td>
<td>1000 barrels</td>
<td>$ 85 / barrel</td>
<td>$ 8,50 / barrel</td>
</tr>
<tr>
<td>Verkoper</td>
<td>1000 barrels</td>
<td>$ 85 / barrel</td>
<td>-$ 8,50 / barrel</td>
</tr>
</tbody>
</table>

Tabel 3.5: Voorbeeld prijsverandering forward contract

Doordat de kopende partij bij een prijsstijging van 10% de olie weer kan verkopen voor een spot prijs van $ 93,50 heeft de koper de mogelijkheid om deze prijsstijging om te zetten in een positief rendement. Indien de koper de olie gebruikt voor raffinage heeft hij simpelweg de olie goedkoper gekregen dan wanneer hij de olie voor de spot prijs had aangekocht op dat moment. De handel in forward contacts vindt niet plaats op een effectenbeurs maar gebeurt rechtstreeks tussen de kopende en de verkopende partij.
3.6 Futures contract

Een futures contract is een gestandaardiseerde overeenkomst tussen een koper en een verkoper voor de aankoop van een bepaalde hoeveelheid van een item tegen een specifieke prijs en toekomst datum. Het item, ofwel onderliggende waarde, kan bijvoorbeeld een grondstof, metaal, mineraal, energie grondstof, een financieel instrument of een buitenlandse valuta zijn. Het belangrijkste verschil met een forward contract is dat de futures contract wordt verhandeld op een effecten beurs. Dagelijks worden de prijzen van de futures contract bijgesteld en verhandeld. Derhalve verloopt de onderhandeling tussen de kopende en de verkopende partij niet rechtstreeks met elkaar maar via de effectenbeurs. Evenals bij het forward contract heeft de partij welke de overeenkomst sluit om de onderliggende grondstof te kopen een long positie en de verkopende partij de short positie. Onder de grondstoffen is Crude Oil de meest actief verhandelde. Voor het raffinage proces prefereren de ondernemingen de light sweet crude oil vanwege het lage zwavelgehalte en de relatief hoge marges op de eindproducten zoals benzines, diesels, heating oil en kerosine. Als voorbeeld illustreer ik de handel tussen een producent van WTI (West Texas Intermediate) welke in december olie wil verkopen aan een raffinaderij. De december prijs en het te verhandelen volume van de future zijn bekend en op de markt vrij te verhandelen. Indien de raffinaderij besluit de olie niet fysiek te kopen kunnen ze het futures contract verhandelen tegen de initiële aankoopprijs.

Als voorbeeld geef ik in tabel 3.6 een raffinaderij welke 10 futures contracts afsluit voor de levering van 10000 barrels olie (een standaard futures contract bestaat uit 1000 barrels).

<table>
<thead>
<tr>
<th>Datum</th>
<th>WTI spot per barrel</th>
<th>December future</th>
<th>Activiteit</th>
<th>Cash In (out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Januari</td>
<td>$22</td>
<td>$26</td>
<td>De raffinaderij koop 10 contracten van 1000 barrels in betaald initiële marge van $2.200 per contract.</td>
<td>($22.000)</td>
</tr>
<tr>
<td>Maart</td>
<td>$20</td>
<td>$24</td>
<td>Mark to market: (24-26) x 10000</td>
<td>($20.000)</td>
</tr>
<tr>
<td>September</td>
<td>$20</td>
<td>$27</td>
<td>Mark to market: (27-24) x 10000</td>
<td>$30.000</td>
</tr>
<tr>
<td>Oktober</td>
<td>$27</td>
<td>$33</td>
<td>Mark to market: (33-27) x 10000</td>
<td>$60.000</td>
</tr>
<tr>
<td>November</td>
<td>$33</td>
<td>$33</td>
<td>De raffinaderij kiest om de olie te koop</td>
<td>Koop Olie: $33 x</td>
</tr>
</tbody>
</table>
De raffinaderij betaalt niets voor de futures contracten maar betaald wel een initiële marge van $ 2.200 per contract aan de broker. Door de handel in crude olie zal door de wisselende vraag en aanbod de olieprijs fluctueren. Stel dat de prijs tot maart gelijk blijft en dan terugvalt naar $ 24 per barrel. Op dat moment betaald de broker aan degene welke het futures contract verkocht heeft en ontvangt de broker van de koper van het futures contract. Dit “marking to market” gebeurt iedere dag en soms wel meerdere keren per dag. Aan het einde van het contract in december kan de raffinaderij besluiten de olie te kopen tegen de huidige WTI prijs van $ 33 of kan hij de contracten verkopen. Gedurende het jaar heeft de raffinaderij al $ 70.000 (-$20.000 + $ 30.000 + $ 60.000) ontvangen van de broker en indien het besluit genomen wordt de olie te kopen betaalt de raffinaderij effectief de $ 26 dollar ($ 330.000 - $ 70.000 / 10000 barrels) zoals vastgelegd aan het begin van het jaar. Indien de raffinaderij besluit de contracten te verkopen houden ze de winst van $ 70.000.

Het handelen in futures contracten heeft voor verschillende partijen voordelen. Zo kan de raffinaderij voor een relatief lage initiële marge de aankoop prijs van de olie vastleggen. Indien de raffinaderij besluit de olie niet te kopen kunnen ze het contract verkopen en ontvangen gegarandeerd de inleg terug. Uit het voorbeeld van tabel 4.3 blijkt dat de handel lucratief kan zijn en derhalve wordt er veel gespeculeerd op de futures markt. Het speculeren wordt gedaan door traders welke niet de interesse hebben in de leverantie van de olie maar winst willen behalen uit de volatiliteit van de olieprijs. Het voorbeeld geeft tevens weer dat er naast een winst ook een groot verlies geleden kan worden bij een dalende olieprijs.

3.7 Swaps

Swaps zijn instrumenten welke sterk gerelateerd zijn aan de forwards en futures contracts. Swaps zijn overeenkomsten tussen twee partijen waarin ze overeenkomen kasstromen uit te wisselen over een bepaalde periode van tijd. De kasstromen worden gegeneereerd door de
bijbehorende onderliggende waarde zoals valuta, rentes en grondstoffen. In een swap
worden er in geen geval fysiek goederen uitgewisseld tussen de koper en de verkoper, dit in
tegenstelling tot de forwards en futures contracts. De swaps contracten worden buiten
iedere officiële beurs verhandeld en worden derhalve geclassificeerd als over the counter
(OTC) contracten.

Doordat de vaste prijs wordt afgesproken kan een koper de prijs van de swap synthetisch
fixeren. Gedurende de looptijd wordt de variabele prijs steeds opnieuw vastgesteld. De
variabele prijs is het berekende gemiddelde van dagelijkse officiële noteringen voor de
betreffende grondstof in vooraf overeengekomen vaste tijdsintervallen. Het positieve of
negatieve verschil tussen de vaste prijs en de gemiddelde variabele prijs wordt aan het einde
van ieder tijdsinterval verrekend.

Als voorbeeld neem ik een oliemaatschappij welke een contract afsluit voor de aankoop van
10.000 barrels WTI olie. De aankopen van de raffinaderij vinden evenredig over het jaar
verdeelt plaats tegen de op dat moment geldende marktprijs voor een barrel WTI olie. In dit
geval is de onderneming blootgesteld aan de fluctuaties van de olieprijs welke, gezien de
koers van de afgelopen jaren, groot kunnen zijn. De onderneming kan in dit geval besluiten
de aankoopprijs van de WTI olie te fixeren door middel van de aankoop van swaps. Deze
overeenkomsten kunnen gesloten worden met een andere partij dan de leverancier van de
olie, bijvoorbeeld een bank welke de instrumenten aanbied.

In figuur 3.7 is schematisch weergegeven hoe een swap werkt. De oliemaatschappij betaalt
een vaste prijs aan de bank voor een barrel olie welke we in dit voorbeeld stellen op $ 75 per
barrel. Over een willekeurig gerekende periode bedraagt de gemiddelde prijs van een barrel WTO olie $ 85 per barrel. Gezien het uitgangspunt dat de oliemaatschappij evenredig zijn olie inkoop betaald de oliemaatschappij deze $ 85 per barrel bij aankoop van de olie bij de olie leverancier. In tabel 3.7 zijn de kasstromen tussen de oliemaatschappij, de bank en de olieleverancier weergegeven.

<table>
<thead>
<tr>
<th>Actie</th>
<th>WTI spot per barrel</th>
<th>Datum</th>
<th>Activiteit</th>
<th>Cash In (out)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aankoop Swap</td>
<td>$ 75</td>
<td>Januari</td>
<td>Aankoop swap bij de bank voor 10.000 barrels.</td>
<td>($ 750.000)</td>
</tr>
<tr>
<td>Aankoop olie</td>
<td>$ 85</td>
<td>doorlopend</td>
<td>Aankoop olie bij olieleverancier.</td>
<td>($ 850.000)</td>
</tr>
<tr>
<td>Vergoeding bank vastgelegd in swaps contract bij fluctuerende olieprijs</td>
<td>($ 85 - $75 x 10.000)</td>
<td></td>
<td>$ 100.000</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 3.7 Voorbeeld swaps contract

Het voordeel van swaps ten opzichte van bijvoorbeeld forwards en futures contracts is dat de instrumenten volledig op maat kunnen worden gemaakt voor de risico management activiteiten van een onderneming.

Een nadeel van swaps is dat de verkopende partij is blootgesteld aan hoge kredietrisico’s omdat er geen beurs garant staat voor de transactie.

3.8 Opties

Een optie is een contract dat de koper van het contract het recht geeft te kopen (call) of te verkopen (put) tegen een vastgestelde specifieke prijs over een specifieke tijdsperiode. Een optie is een afgeleid product, ofwel een derivaat. De waarde van de optie is gebaseerd op de waarde van het onderliggende product, de looptijd, de bewegelijkheid van de prijs van de onderliggende waarde en de rente. Of de optie nu wordt verkocht op de beurs of op de OTC markt, de koper betaalt vooraf een vastgesteld bedrag voor de optie. Als voorbeeld neem ik een call optie voor het kopen van 1000 barrels tegen een prijs van $ 80 in december 2009. De kosten hiervoor zijn bijvoorbeeld $ 1,25 per barrel. Als de prijs in december boven de $ 80 staat kan de koper de optie uitoefenen en de olie kopen voor $ 80 per barrel. Het fysiek
kopen van de olie gebeurt echter niet altijd, in het geval van niet fysieke leverantie betaalt de schrijver van de opties het verschil tussen de marktprijs en de uitoefenprijs aan de koper. Als de olie lager dan de $ 80 staat laat de koper de optie expireren en verliest de koper $ 1,25 per barrel.

Op de oliemarkt zijn OTC opties anders opgezet dan opties welke worden verhandeld op de beurs. De opties welke op de beurs worden verhandeld leiden bijna altijd tot fysieke leverantie van het product. Dit in tegenstelling tot OTC opties welke voornamelijk cash gerelateerd zijn. De waarde van een optie is niet eenvoudig te bepalen zoals bij forward of future contracts. Bij een grote onzekerheid over de koers van de onderliggende waarde is er geen exacte prijs te bepalen. Om met deze onzekerheid om te gaan maakt men een inschatting van de verwachte volatiliteit van de onderliggende waarde, ongeacht de richting van de beweging. Overige variabelen die van belang zijn voor de prijsbepaling van opties zijn concreter en vaak bekend. Met behulp van het Black en Scholes model of een binomaal model kan men de prijs van een optie bepalen. De prijs blijft echter het resultaat van de variabelen die men gebruikt in het model, en de prijs kan derhalve nooit bepaald worden omdat deze variabelen slechts schattingen zijn die bij elke optiehandelaar kunnen verschillen.

Factoren die de optiepremie bepalen:

- **Looptijd** - Hoe langer de looptijd, hoe groter de kans dat een bepaalde onderliggende waarde een grote beweging laat zien en de optie veel geld waard wordt. Daarom zijn opties met een langere looptijd altijd meer waard dan kortlopende opties, behoudens bijzondere situaties bij European Style opties.

- **Uitoefenprijs (ook wel strike)** - Hoe kleiner het verschil tussen uitoefenprijs en koers van de onderliggende effecten, hoe groter het risico, hoe hoger de optiepremie bovenop de intrinsieke waarde.

- **Prijs van de onderliggende waarde** - De afstand van de prijs van de onderliggende waarde tot de uitoefenprijs is waar het uiteindelijk om draait.

- **Rentestand** - Voor de cash flows die samenhangen met de optie positie en het afdekken van de risico's is de rentestand van groot belang. Zeker voor opties met langere looptijden.
- **Verwachte volatiliteit** - De volatiliteit is de beweeglijkheid (omhoog en omlaag) van het aandeel. Hoe volatiler de waarde van de onderliggende effecten, hoe groter de kans dat de optie veel geld waard zal worden. De hoogte van de verwachte toekomstige volatiliteit is een van de belangrijkste variabelen die van invloed is voor professionele optiehandelaren. De verwachte volatiliteit kan sterk fluctueren en verschilt per uitofenprijs en looptijd.

- **Tussentijdse cash flows uit de onderliggende waarde (dividend)** - het uitkeren van dividend heeft betrekking op de prijs van de onderliggende waarde in de toekomst, en heeft een grote impact op de waardering van de opties. Met name bij opties met langere looptijden en meerdere dividenduitkeringen is dit aspect van groot belang. Professionele optiehandelaren maken inschattingen van toekomstige dividendstromen.

Bij handel in aandelen komt het zelden voor dat een aandeel zijn complete waarde verliest. Meestal is het risico beperkt tot enkele procenten of enkele tientallen procenten van het ingelegde vermogen. Bij de handel in opties ligt dat heel anders: door de hefboomwerking van het optiemechanisme komt het heel regelmatig voor dat men bij aankoop en verkoop van opties het gehele ingelegde vermogen kwijtraakt. Bij het verkopen van opties kunnen de verliezen in theorie onbeperkt oplopen.

Om de risico's te beperken eist de beurs dat er voldoende onderpand aanwezig is om eventuele verliezen te kunnen financieren. Dit noemt men de margin die men aan moet houden. Op het moment dat dit bedrag onvoldoende is gaat men over tot een zogenaamde margin call, waarbij men vijf dagen de tijd heeft om tekorten aan te zuiveren voordat de bank gaat liquideren. De term margin call heeft overigens betrekking op het bericht dat men ontvangt, en heeft verder niets te maken met callopties. In de professionele handel wordt vaker de term haircut gebruikt om het bedrag aan te duiden dat men moet aanhouden ter dekking van optieposities.

1 Bron: [http://nl.wikipedia.org/wiki/Optie]
3.9 Concluderend

De gedane uiteenzetting over de historie van de olie en gas prijzen, handelsmarkten en beschikbare handelsinstrumenten geeft goed weer dat de olie en gas industrie een dynamische branche is. De diversiteit aan instrumenten maakt het voor veel partijen interessant om te participeren in deze industrie. Echter maken de vele externe invloeden op de olie en gas prijs het lastig om een adequate keuze te maken voor bepaalde financiële derivaten. De volatiliteit van de prijsveranderingen is relatief groot en heeft de laatste jaren meer invloed gekregen op de exposure van de olie en gas ondernemingen aan deze prijsveranderingen. Voor de olie en gas ondernemingen zijn er vele mogelijkheden om een portfolio van financiële derivaten samen te stellen welke voor een specifieke situatie geschikt is.
4 Onderzoeksaanpak

4.1 Methodologische aanpak

Vanuit het perspectief van het paradigma continuüm bevindt deze studie zich aan de positivistische kant. Hierbij is het uitgangspunt dat kennis is afgeleid van positieve informatie omdat elke rationeel te rechtvaardigen bewering wetenschappelijk kan worden geverifieerd of worden onderbouwd door middel van logisch of wiskundig bewijs. Binnen het positivisme vormen bestaande theorieën de basis van de verklaring. Het verklaren bestaat uit het vormen van causale verbanden tussen variabelen en deze testen op basis van bestaande wetenschappelijke wetten.

Vanuit bovenstaand oogpunt is dit onderzoek gebaseerd op een deductieve aanpak. In een deductief onderzoek wordt er een conceptueel en theoretisch raamwerk ontwikkeld waarna dit raamwerk wordt getest in de empirie. De structuur van een deductief onderzoek bestaat uit een aantal stappen welke in de juiste volgorde genomen moeten worden (Collis en Hussey, 2009).

Vormen van hypothesen vanuit de literatuur

Het operationaliseren van de hypotheses, hierbij vormen van variabelen en verbanden.

Het testen van de verbanden tussen de variabelen.

Analyseren en toetsen van de uitkomsten

Zo nodig op basis van de bevindingen de literatuur modiferen.

Figuur 4.6: Methodologisch stroomschema

In figuur 4.6 is schematisch weergegeven welke stappen onderdeel zijn van het deductieve onderzoek. Het doel van dit onderzoek is om op basis van het testen van veronderstelde causale relaties tussen variabelen bepaalde fenomenen te kunnen verklaren. In deze studie tracht ik derhalve de verbanden te verklaren tussen de mate van hedging binnen een olie en
gas onderneming en bepaalde maatgevende financiële karakteristieken van de onderneming. De uitkomsten van dit onderzoek zouden een waardevolle toevoeging kunnen zijn op de bestaande literatuur.

4.2 Onderzoeksaanpak

Figuur 4.7 Onderzoeksaanpak

Om deze studie uit te voeren zijn de stappen opeenvolgend genomen om uiteindelijk de bevindingen te kunnen evalueren en terugkoppelen op basis van de gekozen literatuur.
4.3 Vraagstelling en deelvragen

Zoals reeds uiteengezet in paragraaf 1.3 ga ik in mijn onderzoek op zoek naar de mogelijke redenen waarom olie en gas ondernemingen hedging toepassen als risico management strategie. Dit wil ik doen aan de hand van de volgende hoofdvraag:

Waarom passen olie en gas ondernemingen hedging activiteiten toe?

Om tot een correcte beantwoording van de hoofdvraag te komen zijn er, op basis van de uiteengezette literatuur in hoofdstuk 2, vier deelvragen opgesteld:

1. _Hedgen ondernemingen, met een hogere mate van financial distress, meer dan ondernemingen met een lagere mate van financial distress?_

2. _Hedgen ondernemingen, welke meer investeren, meer dan ondernemingen welke minder investeren?_

3. _Hebben onderneming die veel gebruik maken van hedging een lager exposure dan ondernemingen die weinig gebruik maken van hedging?_

4. _Hebben ondernemingen welke veel gebruik maken van een hedging een hogere ondernemingswaarde dan ondernemingen welke minder gebruik maken van hedging?_

Deze deelvragen worden in paragraaf 4.3 uitgewerkt tot hypothesen. De testen welke per hypothese worden gedaan, en de antwoorden welke hieruit voortvloeien, zullen moeten leiden tot een correcte beantwoording van de hoofdvraag of hedging activiteiten effect hebben op de waarde van de onderneming.

4.4 Conceptueel model

Om de deelvragen te kunnen beantwoorden dienen de concepten van deelvragen te worden geoperationaliseerd. Dit betekent dat er meetbare variabelen worden gekoppeld aan de concepten welke een hoger abstractie niveau hebben.

Figuur 2.4 Conceptueel model
In figuur 2.4 is het conceptueel model weergegeven, inclusief de veronderstelde relatie met de hedging ratio, van de opgestelde deelvragen. Het conceptueel model is samengesteld op basis van de literatuur over hedging activiteiten welke wordt beschreven in hoofdstuk 2. In paragraaf 4.3 zullen de concepten verder worden uitgewerkt in meetbare variabelen.

4.5 Hypothesen en variabelen

Aan de hand van beschreven literatuur in hoofdstuk 2 heb ik de concepten van hedging en waardecreatie geoperationaliseerd. Voor het meten van veronderstelde relaties tussen de concepten zijn de volgende hypothesen opgesteld:

H1: Ondernemingen welke meer Financial distress hebben hedgen minder dan ondernemingen welke minder Financial distress hebben.

H2: Ondernemingen welke meer investeringsmogelijkheden hebben hedgen meer dan ondernemingen met minder investeringsmogelijkheden.

H3: Het toepassen van hedging activiteiten vermindert de mate van grondstoffenexposure.

H4: Ondernemingen welke veel hedgen hebben een grotere waarde dan ondernemingen welke weinig hedgen.

Aan deze hypothesen ligt het onderzoek van Tufano (1996) ten grondslag. In dit onderzoek binnen de Amerikaanse mijnindustrie heeft Tufano getracht de invloed van hedging op diverse financiële parameters te achterhalen. In dit onderzoek ga ik de technieken van Tufano toepassen op de olie en gas industrie met als doelstelling significante bewijzen te vinden welke antwoord geven op de hoofdvraag of hedging activiteiten waarde toevoegen aan de onderneming.

Om een vergelijk te kunnen maken deelt Tufano zijn steekproef op in 3 groepen. De eerste groep bevat de ondernemingen welke niet hedgen, de tweede groep onderneming welke gemiddeld hedgen, en de derde groep bevat de ondernemingen welke op grote schaal hedgen. Binnen mijn steekproef van oliemaatschappijen is de verwachting dat er geen ondernemingen tussen zitten welke geen gebruik maken van hedging. Om toch een vergelijk te kunnen maken zal ik mijn steekproef in twee delen moeten opsplitsen waarin bedrijven komen welke verschillende hoeveelheden hedgen. Voor mijn steekproef is de theorie van

Tabel 4.5.1 geeft een overzicht van de hypothetische relaties tussen de onafhankelijke en afhankelijk variabelen weer.

<table>
<thead>
<tr>
<th>Hypothese</th>
<th>Onafhankelijk variabele</th>
<th>Afhankelijke variabel</th>
<th>Verband</th>
<th>Data omschrijving (bron)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1b</td>
<td>Financial Distress</td>
<td>Leverage</td>
<td>Hedging ratio</td>
<td>+</td>
</tr>
<tr>
<td>H2</td>
<td>Investerings-mogelijkheden</td>
<td>Capital expenditures</td>
<td>Hedging ratio</td>
<td>+</td>
</tr>
<tr>
<td>H3</td>
<td>Exposure</td>
<td>Exposure coëfficiënt</td>
<td>Hedging ratio</td>
<td>-</td>
</tr>
<tr>
<td>H4</td>
<td>Firm value</td>
<td>Tobin’s Q</td>
<td>Hedging ratio</td>
<td>+</td>
</tr>
</tbody>
</table>

Tabel 4.5.1: Overzicht hypothesen en variabelen
4.5.1 De afhankelijke hedging variabele

Een probleem van deze studie is de beschikbare data om de methode van Tufano (1996) en Haushalter (2000) toe te passen. Beide onderzoekers hebben aanvullende data verkregen via een survey dat is uitgestuurd naar de CFO’s van de ondernemingen. Deze data was voor mijn onderzoek niet beschikbaar en om die reden heb ik de methode aangepast op de voor mij beschikbare data. Als voorbeeld van de beschikbare data worden hieronder twee voorbeelden gegeven van verschillende ondernemingen over de wijze waarop het gebruik van hedging activiteiten wordt gerapporteerd. De eerste onderneming is Marathon Oil. Deze onderneming rapporteert zeer uitgebreid over de hoeveelheid en de inhoud van de contracten.

<table>
<thead>
<tr>
<th>Term</th>
<th>Crude Oil</th>
<th>Weighted Average</th>
<th>Benchmark</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January – June 2010</td>
<td>25,000</td>
<td>$ 80.77</td>
</tr>
<tr>
<td>Norway</td>
<td>January – June 2010</td>
<td>30,000</td>
<td>$ 80.42</td>
</tr>
<tr>
<td>Canada</td>
<td>January – December 2010</td>
<td>25,000</td>
<td>$ 82.56</td>
</tr>
</tbody>
</table>

Figuur 4.5.1.1: Rapportage derivaten Marathon Oil

In figuur 4.5.1.1 is te zien dat Marathon Oil de belangrijkste gegevens om een hedging variabele te bepalen volgens het model van Tufano weergeeft. Voor deze berekening zijn de voornamelijk de hoeveelheid ‘Bbls per day’ en de ‘Mmbtu per day’ van belang. Deze informatie is bij slechts enkele ondernemingsjaren uit de steekproef beschikbaar. De tweede onderneming is Total welke alleen de fair values van de contracten rapporteert.
Figuur 4.5.1.2: Rapportage derivaten Total

Total geeft in deze manier van rapporteren niet de details van de contracten weer welke benodigd zijn om de hedging delta te berekenen. Total rapporteert alleen de fair value van de totale portfolio bestaande uit verschillende contracten. Uit analyse van de steekproef, wat later wordt toegelicht in paragraaf 4.5, blijkt dat er in 79 van 100 ondernemingsjaren de fair value wordt gerapporteerd. Om toch een hedging variabele te kunnen bepalen heb ik een formule bepaald voor de berekening van een hedging ratio welke kan worden gebruikt om de ondernemingen te categoriseren en te vergelijken.

Voor het calculeren van de relatieve ratio olieproductie gebruik ik de volgende formules:

\[
\text{Relatieve ratio olieproductie} = \frac{- \text{Fair Value}}{\text{Olie productie van het volgende jaar}}
\]

en,

\[
\text{Relatieve ratio oliereserve} = \frac{- \text{Fair value}}{\text{Bewezen reserves van hetzelfde jaar}}
\]

Voor het berekenen van de hedging variabele zou tevens de methode van Haushalter gebruikt kunnen worden. Hij heeft heel precies de hedging variabele berekend met als basis de studie van Tufano (1996). Omdat Tufano zijn onderzoek in de mijnbouw verricht is het lastig deze berekeningen te dupliceren binnen de olie en gasindustrie. De reden waarom ze moeilijk te dupliceren zijn is de extra informatie welke Tufano heeft verkregen door middel
van het uitsturen van een survey. In dit survey vraagt hij de onderneming expliciet aan te geven in welke mate ze hedging toepassen.

Voor niet lineaire contracten zoals opties en collars gebruikt Tufano (1996) het Black-Scholes option pricing model om de ratio te calculeren. In dit model wordt onderscheid gemaakt tussen call en put opties wat de volgende formules geeft:

$$\Delta(\text{Call}) = e^{-rT} N(d_1)$$
$$\Delta(\text{put}) = -e^{-rT} N(-d_1)$$

Waar $d_1 = \frac{\ln(F_0 / X) + \sigma^2T / 2}{\sigma\sqrt{T}}$

De volgende vrij parameters maken deel uit van de formule:

- F_0 = Huidige prijs van de optie
- X = Uitoefenprijs van de optie
- r = Jaarlijks risicovrije rendement
- σ^2 = Variantie (jaarlijks) van de rendementen van de onderliggende waarde
 (Olie- of gasprijs)
- T = Tijd (in jaren) tot de vervaldatum van de optie

Vervolgens wordt de gecalculeerde waarde van elk contract vermenigvuldigd met de bijbehorende ratio en worden de uitkomende waarden bij elkaar opgeteld. Hiermee wordt
de totale ratio voor crude oil en natural gas verkregen. Deze totale ratio wordt vervolgens afgeschaald tegen de jaarlijkse productie en de reserves.

Voor bijvoorbeeld olie krijg je de volgende formules:

\[
\text{Relatieve delta olieproductie} = \frac{-\text{Totale delta olie}}{\text{Olie productie van het volgende jaar}}
\]

en,

\[
\text{Relatieve delta oliereserve} = \frac{-\text{Totale delta olie}}{\text{Bewezen reserves van hetzelfde jaar}}
\]

In de eerste formule wordt de hoeveelheid productie gecalculeerd welke effectief wordt gehedged. In de tweede formule de hoeveelheid reserves welke effectief worden gehedged. Voor ondernemingen welke hedgen zal de uitkomst positief zijn.

Concluderend kan gesteld worden dat de methode welke gebruikt wordt voor dit onderzoek niet even accuraat is als de methode van Tufano (1996) en Haushalter (2000). Echter blijkt uit de diversiteit van gerapporteerde data dat het onmogelijk is om de delta te berekenen door middel van de methode van haushalter (2000).
4.5.2 De onafhankelijke variabelen

In deze paragraaf zijn de concepten, welke bij de hypothesen horen, verder uitgewerkt. Uit deze operationalisatie van de concepten komen de variabelen welke uiteindelijk gemeten worden. Per hypothese zijn de variabelen door middel van een theoretische onderbouwing toegelicht.

\textit{H1: Ondernemingen welke meer financial distress hebben hedgen minder dan ondernemingen welke minder Financial distress hebben.}

Smith en Stulz (1985) stellen in hun onderzoek dat door het reduceren van mogelijk kostbaar financial distress, hedging activiteiten de waarde van de onderneming kan verhogen. Tufano (1996) beargumenteert in zijn onderzoek dat de mijnindustrie hinder ondervindt van financial distress wanneer de goudprijs beneden de kostprijs voor de productie en de vaste kosten daalt. Omdat de steekproef uit dit onderzoek vergelijkbaar is met de steekproef van Tufano doe ik dezelfde aanname voor de olie en gas industrie. In dit kader kan financial distress worden gemeten aan de hand van de operationele kosten en leverage.

De twee variabelen kunnen als volgt gespecificeerd worden:

- \(\text{Cash kosten} = \text{Operational costs (zonder depreciation Amortization en financiering kosten) / totale productie olie (in barrels)} \)
- \(\text{Leverage} = \text{Boekwaarde van de schuld / totale marktwaarden van de financiële claims (marktwaarde van de equity + boekwaarde van de preferente aandelen en schulden)} \)

\textit{H2: Ondernemingen welke meer investeringsmogelijkheden hebben hedgen meer dan ondernemingen met minder investeringsmogelijkheden.}

Uitgangspunt bij deze hypothese is dat door hedging activiteiten er altijd voldoende interne kasstromen gegenereerd worden om in projecten te investeren met een positieve netto contante waarde. Dus als de olieprijs laag is zullen de eigendommen van de onderneming minder waard zijn, en zal de onderneming minder kasstromen genereren om te kunnen investeren. De veronderstelling is dat de cashflows positief gecorreleerd zijn aan de investering programma’s.
Voor het meten van investeringmogelijkheden gebruik ik, evenals Tufano (1996), de capital expenditures en de acquisitie activiteiten. Deze twee variabelen worden afgeschaald aan de marktwaarde van de onderneming zodat ik een vergelijk kan maken tussen de ondernemingen. Dit doe ik omdat er een groot verschil zit in de marktwaardes van de olie en gasmaatschappijen. Derhalve zou er geen goed vergelijk kunnen worden gemaakt omdat bijvoorbeeld ExxonMobil vanuit werkelijk perspectief bekeken meer investeert dan Marathon Oil. Doch kan relatief gezien Marathon Oil meer investeren als we de uitgaven afschalen ten opzichte van de marktwaarde van de onderneming.

H3: Het toepassen van hedging activiteiten vermindert de mate van grondstofprijzen exposure.

Derhalve wordt de maandelijkse regressie gedaan aan de hand van de volgende formule:

\[R_t = \alpha + \beta R_{mt} + \gamma R_{jt} + e_t \]

In deze formule is \(R_t \) het gewogen gemiddelde rendement van de betreffende oliemaatschappij uit de steekproef in de maand t, \(R_{mt} \) is het gewogen gemiddelde rendement van de markt portfolio, \(R_{jt} \) is het procentuele verschil in de olieprijs, en \(e_t \) is het idiosyncratische fout getal. Voor het gewogen gemiddelde rendement van de markt heb ik de S&P500 gekozen omdat dit wereldwijd een toonaangevende index is. Al deze informatie heb ik verkregen uit Datastream. In deze regressie ben ik op zoek naar de coëfficiënt \(\gamma \) welke de gevoeligheid weergeeft van het aandelenrendement ten opzichte van de veranderingen in de olieprijs. De verwachting is dat de rendementen van de aandelen positief correleren met de olieprijs.

Om vervolgens te meten of hedging activiteiten exposure verminderd ga ik een regressie doen tussen de twee groepen van oliemaatschappijen en de exposure coëfficiënt. De
verwachting is dat er een positieve relatie bestaat tussen de mate van hedging en exposure. Oftewel dat bij ondernemingen die boven gemiddeld hedgen de exposure minder is dan bij ondernemingen welke gemiddeld hedgen.

Indien blijkt dat er een aantal ondernemingen geen exposure hebben zullen ze uit de steekproef verwijderd worden. De verwachting is echter dat dit niet aan de orde zal zijn en dat alle gekozen ondernemingen exposure hebben ten opzichte van de olieprijs.

\[H4: \text{Ondernemingen welke veel hedgen hebben een grotere waarde dan ondernemingen welke weinig hedgen.} \]

Om de marktwaarde van een onderneming te kunnen meten, en ondernemingen onderling te kunnen vergelijken, kun je Tobin’s Q gebruiken. Traditieel wordt Tobin’s Q berekend als de ratio van de marktwaarde van de financiële claims en de huidige vervangingswaarde van de assets. Voor de marktwaarde van de onderneming zal een voor de olievoorraden aangepaste Tobin’s Q gebruikt worden (Jin en Jorion, 2006). De rede waarom de Q ratio wordt gecorrigeerd is omdat de voornaamste assets de olie en gas reserves zijn van de onderneming.

De traditionele formule voor de calculatie van Tobin’s Q is als volgt:

\[
\text{Tobin’s } Q = \frac{BV \text{ Total assets} - BV \text{ common equity} + MV \text{ common equity}}{BV \text{ Total assets}}
\]

De aangepaste formule van Jin en Jorion (2006) bevat een gelijke noemer en twee extra items in de teller en is als volgt:

\[
\text{Tobin’s } Q_2 = \frac{BV \text{ Total assets} - BV \text{ common equity} + MV \text{ common equity}}{BV \text{ Total assets} - BV \text{ oil/gas proved reserves} + MV \text{ oil/gas proved reserves}}
\]
4.6 Steekproef omschrijving

Het onderzoek is specifiek gericht op de 10 grootste beursgenoteerde olie en gas bedrijven ter wereld, deze zijn weergegeven in tabel 4.6. De Chinese ondernemingen zijn uit de steekproef geschrapt omdat hierover weinig tot geen informatie te vinden is welke bruikbaar is voor het onderzoek. De ondernemingen zijn gerangschikt op basis van de omzetten van 2009.

<table>
<thead>
<tr>
<th>Onderneming</th>
<th>Land</th>
<th>Omzet (2009, bln $)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royal Dutch Shell</td>
<td>NL</td>
<td>286,141</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>VS</td>
<td>275,564</td>
</tr>
<tr>
<td>BP</td>
<td>GB</td>
<td>247,686</td>
</tr>
<tr>
<td>Total</td>
<td>FR</td>
<td>160,907</td>
</tr>
<tr>
<td>Chevron</td>
<td>VS</td>
<td>159,387</td>
</tr>
<tr>
<td>ENI</td>
<td>IT</td>
<td>119,825</td>
</tr>
<tr>
<td>Statoil</td>
<td>N</td>
<td>80,025</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>VS</td>
<td>68,144</td>
</tr>
<tr>
<td>Repsol</td>
<td>ESP</td>
<td>67,828</td>
</tr>
<tr>
<td>Marathon Oil</td>
<td>VS</td>
<td>48,470</td>
</tr>
</tbody>
</table>

Tabel 4.6 Ranking naar omzet (bron: Annual reports 2009)

Het doel is om data te verzamelen van over een periode van 10 jaar. Allereerst zal ik een proef doen onder de 5 grootste of er daadwerkelijk voldoende informatie te vinden is over de hedging activiteiten. De vraag hierin is, door de wisselende verslaglegging de afgelopen jaren, of er in het verleden publieke informatie werd verschaf over hedging.

Wat opvalt in deze steekproef is dat er een groot verschil is in omzet tussen de grootste en de kleinste ondernemingen. Shell is op basis van een omzet van 286 miljard dollar de grootste onderneming. Marathon Oil is de kleinstste op basis van een omzet van 48 miljard dollar. Dit houdt in dat Shell bijna zes keer zo groot is als Marathon Oil. Op basis van de de opgestelde lijst in tabel 4.1 is er een scheiding te maken tussen een aantal grote ondernemingen welke een omzet hebben die substantieel hoger ligt dan de kleinere ondernemingen.
ondernemingen. De totale omzet van de 10 ondernemingen is in 2009 iets meer dan 1,5 biljoen Dollar. De 5 grootste ondernemingen zijn goed voor 1,1 biljoen dollar wat bijna 75% is van het totaal. Vier van deze vijf ondernemingen zijn voortgekomen uit de zogenaamde ‘Seven Sisters’. De ondernemingen welke hiertoe behoord zijn Shell, Exxon, BP en Chevron. De ‘Seven Sisters’ was een oligopolie van 7 grote internationale olie ondernemingen welke in de periode van 1954 tot 1973 de olieprijs controleerden. Deze ondernemingen zijn verder gegroeid door middel van overname activiteiten en het uitbreiden van de exploratie activiteiten. Zo zijn ook een aantal van de ‘Sisters Sisters’ samen gegaan. Exxon heeft in 2001 Mobil overgenomen en datzelfde jaar heeft Chevron een overname gedaan door Texaco in te lijven. Door deze overnamestroom na de competitiviteit in de markt af en werd het lastiger voor de kleine ondernemingen eenzelfde groei door te maken in de markt.

onderneming over de activiteiten welke ze toepassen en in welke mate ze dit doen. Tevens dienen ze het doel van deze activiteiten te benoemen, zo gebruiken de meeste ondernemingen financiële instrumenten om marktrisico af te dekken en niet om mee te speculeren.

4.7 Data analyse

De rapportage van het gebruik van derivaat instrumenten kan per onderneming substantieel verschillen. Dit heeft te maken met het werkelijke gebruik van de instrumenten per onderneming. Daarnaast bepalen de onderneming, in lijn met de regelgeving, de hoeveelheid details over de instrumenten welke ze vrijgeven. De ondernemingen welke niet genoteerd zijn op een Amerikaanse beurs rapporteren hun resultaten, naast het reguliere publieke jaarverslag, via de 10-k filing. In deze filing wordt volgens de US Generally Accepted Accounting Principles (GAAP) gerapporteerd. De Europese ondernemingen welke rapporteren volgens de regels van de International Financial Reporting Standards (IFRS). Deze ondernemingen zijn niet genoteerd op een Amerikaanse beurs en rapporten niet via het 10-k formulier. Er bestaat echter een equivalent van het 10-k formulier, het 20-f formulier. In tabel 4.7 is weergegeven welke regels de ondernemingen uit de steekproef toepassen.

<table>
<thead>
<tr>
<th>Onderneming</th>
<th>Accounting regels</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exxon</td>
<td>U.S. GAAP</td>
</tr>
<tr>
<td>Shell</td>
<td>IFRS</td>
</tr>
<tr>
<td>BP</td>
<td>IFRS</td>
</tr>
<tr>
<td>Chevron</td>
<td>U.S. GAAP</td>
</tr>
<tr>
<td>Total</td>
<td>IFRS</td>
</tr>
<tr>
<td>ENI</td>
<td>IFRS</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>U.S. GAAP</td>
</tr>
<tr>
<td>Marathon Oil</td>
<td>U.S. GAAP</td>
</tr>
<tr>
<td>Statoil</td>
<td>IFRS</td>
</tr>
<tr>
<td>Repsol</td>
<td>IFRS</td>
</tr>
</tbody>
</table>

Tabel 4.7 Accounting regels
Na het analyseren van de vrijgegeven informatie per onderneming zijn de ondernemingen op basis van de wijze van rapporteren in 5 groepen te categoriseren, te weten:

1. Rapporteert dat ze geen gebruik maken van financiële derivaten.
2. Rapporteert dat ze gebruik maken van financiële derivaten maar geven geen cijfers weer in het verslag over de waarde van de portfolio.
3. Rapporteert dat ze gebruik maken van financiële derivaten en geven de fair values van de portfolio.
4. Rapporteert dat ze gebruik maken van financiële derivaten en geven de notional amounts van de portfolio.
5. Rapporteert dat ze gebruik maken van financiële derivaten en geven zowel de fair values als de gedetailleerde inhoud van de contracten.

De ondernemingsjaren welke in categorie 2 en 4 vallen zijn niet bruikbaar voor dit onderzoek. In totaal betreft dit 21 ondernemingsjaren, derhalve blijven er nog 79 ondernemingsjaren over voor het onderzoek.
4.8 Dataverzameling

De data welke benodigd is voor het uitvoeren van de studie kan worden verkregen via databases, jaar verslagen, 10-k filings en 20-f filings. In onderstaande tabel is per variabele gespecificeerd welke bronnen van toepassing zijn.

<table>
<thead>
<tr>
<th>Hypothese</th>
<th>Variabele</th>
<th>Bron</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1</td>
<td>Aandelenkoers</td>
<td>Datastream (dagelijkse koersen)</td>
</tr>
<tr>
<td></td>
<td>Olieprijs</td>
<td>Datastream (dagelijkse koersen)</td>
</tr>
<tr>
<td></td>
<td>Gas prijs</td>
<td>Datastream (dagelijkse koersen)</td>
</tr>
<tr>
<td>H2</td>
<td>Productiekosten per barrel</td>
<td>10-k / 20-f</td>
</tr>
<tr>
<td></td>
<td>Lange termijn schulden</td>
<td>10-k / 20-f</td>
</tr>
<tr>
<td>H3</td>
<td>Capital expenditures</td>
<td>10-k / 20-f</td>
</tr>
<tr>
<td>H4</td>
<td>Olieproductie / oliereserve</td>
<td>10-k / 20-f</td>
</tr>
<tr>
<td></td>
<td>Gasproductie / gasreserves</td>
<td>10-k / 20-f</td>
</tr>
<tr>
<td></td>
<td>Total assets</td>
<td>10-k / 20-f</td>
</tr>
<tr>
<td></td>
<td>Common equity</td>
<td>10-k / 20-f</td>
</tr>
<tr>
<td></td>
<td>Hedging informatie</td>
<td>10-k / 20-f</td>
</tr>
</tbody>
</table>

Figuur 4.8: Dataverzameling

De meeste data kan verkregen worden uit de zogenaamde SEC-filings 10-k en 20-f. Voor de ondernemingen welke in Amerika genoteerd zijn kunnen 10-k formulieren gebruikt worden. De ondernemingen welke niet in Amerika genoteerd zijn gebruiken een equivalent van het 10-k formulier, het 20-f formulier. In beide formulieren is dezelfde data terug te vinden.
5 Resultaten

In dit hoofdstuk zijn de resultaten van de in hoofdstuk 4 beschreven tests weergegeven. De tests zijn een combinatie van resultaten welk verkregen zijn uit SPSS en Excel. Allereerst worden de descriptieve resultaten van de gehele steekproef besproken. Vervolgens zullen de uitkomsten van de berekende hedging ratio’s en de verdeling van de ondernemingen in pools aan bod komen. Op basis van deze resultaten kunnen de hypothesen getoetst worden. Concluderend aan de resultaten zal er een kort resumé gegeven worden van de belangrijkste bevindingen.

5.1 Descriptieve resultaten

Voor het analyseren van de totale steekproef worden in tabel 5.1.1 de descriptieve statistieken van de totale steekproef weergegeven. In bijlage 1 zijn de descriptieve resultaten per onderneming weergegeven.

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hedging ratio ABS (%)</td>
<td>95</td>
<td>0</td>
<td>0,11657</td>
<td>0,01837</td>
<td>0,0002909</td>
</tr>
<tr>
<td>Hedging ratio NET (%)</td>
<td>95</td>
<td>-0,0085</td>
<td>0,01695</td>
<td>0,00011</td>
<td>0,0000310</td>
</tr>
<tr>
<td>Cash Kosten ($/BBL)</td>
<td>95</td>
<td>2,660</td>
<td>10,490</td>
<td>5,23632</td>
<td>1,982562</td>
</tr>
<tr>
<td>Leverage (%)</td>
<td>95</td>
<td>7,187</td>
<td>144,284</td>
<td>39,53093</td>
<td>25,351128</td>
</tr>
<tr>
<td>Capital Expenditures (%)</td>
<td>95</td>
<td>.050</td>
<td>.168</td>
<td>.08919</td>
<td>.020030</td>
</tr>
<tr>
<td>Firm Value</td>
<td>95</td>
<td>.37</td>
<td>2,10</td>
<td>.9925</td>
<td>.39011</td>
</tr>
</tbody>
</table>

Tabel 5.1.1 steekproef karakteristieken

Uit deze resultaten is duidelijk te zien dat er een groot verschil is tussen de hedging ratio, welke op basis van de absolute waarde is berekend met de hedging ratio op basis van de netto waarde. Op basis van de absolute ratio blijkt dat de maximum waarde slechts 0,12% is. Dit houdt in dat er 0,12% van de totale productie gehegded wordt door de betreffende onderneming. Tevens is de standaard deviatie van de hedging ratio ABS, evenals de hedging ratio NET, vrij groot wat aangeeft dat de spreiding van de ratio’s groot is.
Bij de productiekosten per barrel ruwe olie, cash kosten, is tevens een behoorlijke range waar te nemen tussen de minimum en de maximum waarde. De productiekosten zijn opgebouwd uit de cost of operating, maintaining and managing production en manufacturing assets. Deze range loopt van een minimum van 2,66$/BBL tot 10,49$/BBL.

Figuur 5.1.1: Cash kosten

Om een nadere analyse te doen van deze cash kosten zijn in figuur 5.1.1 de waarden van de ondernemingen per jaar weergegeven. Hieruit blijkt dat de gemiddelde productiekosten per onderneming sinds 2000 fors zijn gestegen. Vrijwel iedere onderneming laat minimaal een verdubbeling van de productiekosten zien vanaf 2000 tot en met 2009. De productiekosten van Shell zijn zelfs 3,07 keer gegroeid. Tot 2008 is er bij vrijwel iedere onderneming een groei te zien in de productiekosten. De groei van de productiekosten wordt mede veroorzaakt doordat het steeds kostbaarder wordt om olie op te sporen en te winnen. De olievoorraad raken op en er dient op steeds lastigere locaties gezocht te worden. Tevens is de locatie waar de olie wordt geproduceerd van belang. Zo zijn de productiekosten in het Midden-Oosten lager dan in Amerika. In 2009 is bij 8 van de 10 ondernemingen een daling te zien in de kosten. Dit heeft te maken mede met de financiële crisis welke in 2008 zijn intrede deed. Door de terugloop in de vraag naar de eindproducten kwamen de winstmarges onder druk te staan. Daarnaast heeft een aantal ondernemingen heeft 2008 direct aangegrepen om kosten te reduceren. Hierdoor is er voornamelijk veel tijdelijk en ingehuurd personeel
vertrokken waardoor de productiekosten omlaag gingen. Er zijn behoorlijke verschillen in productiekosten welke vrij lastig te verklaren zijn op basis van de beschikbare informatie.

De volgende variabele welke is onderzocht is leverage. Hiervan zijn in tabel 5.1.1. de descriptieve resultaten weergegeven. Het percentage leverage is berekend door het eigen vermogen te delen door het vreemd vermogen. Opvallend aan deze cijfers is dat er een significant verschil zit tussen het minimum en het maximum percentage.

![Leverage](image)

Figuur 5.1.2: Leverage

Uit figuur 5.1.2 blijkt dat de grotere ondernemingen onder in de band zitten. De vijf grootste ondernemingen hebben een gemiddeld leverage percentage van 26,8% en de vijf kleinste ondernemingen een leverage percentage van 53,9%. Tevens hebben ExxonMobil, Shell en BP een relatief stabiel leverage percentage en ligt dit lager dan de kleinere ondernemingen zoals Repsol, Marathon Oil en ENI. Een uitbijter in deze reeks is Repsol. Deze onderneming heeft in 2000 en 2001 een gemiddeld leverage percentage van 143%. Dit is hoog percentage daar het gemiddelde leverage percentage in 2000 en 2001 met 54% fors lager is. Ook in 2009 heeft Repsol een significant hoger percentage dan de rest van de steekproef. Het hoge percentage kan betekenen dat Repsol te weinig interne middelen genereert om te kunnen investeren. Hierdoor dient Repsol vreemd vermogen aan te trekken om toch competitief met de
branchegenoten te blijven. Dit blijkt ook uit de jaarverslagen van Repsol dat er externe financiële middelen zijn gebruikt voor overname activiteiten en het investeren in capital projects. ExxonMobil is de onderneming met het laagste percentage leverage. Het gemiddelde percentage over tien jaar van 10,6% betekent dat de onderneming weinig gebruik maakt van vreemd vermogen en een zeer sterke financiële positie heeft.

Het leverage percentage zou dus een voorspellende kracht kunnen hebben voor de capital expenditures van de ondernemingen. In figuur 5.1.3 zijn de capital expenditures weergegeven van de gehele steekproef.

Figuur 5.1.3: Capital expenditures

Het hoge percentage leverage van Repsol is niet direct te verklaren aan de hand van het percentage capital expenditures. Een uitschieter is Marathon Oil welke in 2008 een percentage van bijna 17% haalt. In 2008 heeft Marathon Oil een aantal uitbreidingen gedaan aan raffinaderijen welke gefinancierd zijn uit intern gegenereerde middelen. Over de gehele steekproef bezien is er lastig een trendlijn te herkennen in de gegevens uit figuur 5.1.3. Uit nadere analyse blijkt dat er een verschil is tussen de vijf grootste en de vijf kleinste
ondernemingen. Zo hebben de vijf grootste onderneming een gemiddeld CapEx percentage van 8,29% en de vijf kleinste 10,14%. Hier zou een verband kunnen worden gelegd tussen het hogere leverage percentage van kleinere ondernemingen, daar het mogelijk is dat de ondernemingen een deel van de capital expenditures zouden kunnen financieren met vreemd vermogen. Om deze conclusie te trekken dient er echter aanvullend onderzoek gedaan te worden.

De laatste variabele is Tobin’s Q. Dit is de ratio welke de waarde van de onderneming weergeeft. In figuur 5.1.4 zijn de resultaten weergegeven. Hieruit valt direct waar te nemen dat ExxonMobil een substantieel hogere ondernemingswaarde heeft dan de anderen ondernemingen.

Figuur 5.1.4: Ondernemingswaarde

Uit de hoge ratio’s van ExxonMobil blijkt wederom dat Exxon een sterke onderneming is welke een grote aandeelhouderswaarde heeft. Van 2005 tot en met 2007 bewegen de ondernemingen, ExxonMobil en Repsol uitgezonderd, dicht bij elkaar. In 2008, wanneer de financiële crisis zijn intrede doet kelder de ratio’s collectief. Dit wordt veroorzaakt doordat de beurskoersen op dat moment fors daalden waardoor ook de marktwaarde van de ondernemingen afnam.
De hierboven geanalyseerde descriptieve resultaten dienen te worden getoetst aan de hedging ratio om te onderzoeken of de hedging ratio van invloed is op deze resultaten.

5.2 Hedging ratio

De variabelen van de opgestelde hypothesen hebben allemaal een verondersteld verband met de hedging ratio. Deze hedging ratio heb ik op twee manieren berekend. Zo is er een ratio berekend op basis van de absolute fair values en een ratio op basis van de netto fair values. Dit is gedaan als robuustheids analyse op de hedging ratio. In deze paragraaf worden respectievelijk resultaten van berekende ratio op basis van de absolute fair values en de ratio op basis van de netto fair values weergegeven.

5.2.1 Hedging ratio absolute fair values

Om de hypothesen te kunnen testen, en uiteindelijk een antwoord te vinden op de hoofdvraag, dienen ondernemingen van de steekproef opgedeeld te worden in 2 pools (Tufano, 1996). De onderliggende waarde voor deze selectie is de hedging ratio van de ondernemingen. In pool 1 worden de onderneming ingedeeld welke een lage hedging ratio hebben, ofwel welke weinig of geen gebruik maken van hedging activiteiten. In pool 2 zitten de ondernemingen welke redelijk veel tot veelvuldig gebruik maken van hedging. De twee pools op basis van de olieproductie en de oliereserves zijn in tabel 5.2.1.1 weergegeven.

<table>
<thead>
<tr>
<th>Pool 1 Lage hedge</th>
<th>Pool 2 Hoge hedge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderneming</td>
<td>Gemiddelde hedging ratio (absoluut, olie productie)</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>0</td>
</tr>
<tr>
<td>Chevron</td>
<td>0,00386</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>0,00204</td>
</tr>
<tr>
<td>Repsol</td>
<td>0,00027</td>
</tr>
<tr>
<td>ENI</td>
<td>0,00281</td>
</tr>
<tr>
<td>Total</td>
<td>0,00142</td>
</tr>
</tbody>
</table>

Tabel 5.2.1.1: Opdeling steekproef op basis van olie en gas productie en reserves
Naast de hedging ratio op basis van de olieproductie wordt er een hedging ratio bepaald aan de hand van de olie reserves. Dit is mede om te kijken hoe zich dit verhoudt ten opzichte van de olie productie. Het zou mogelijk kunnen zijn dat de indeling van de pools verschilt tussen beide metingen. De berekening op basis van de olie productie of olie reserves van de ondernemingen geeft echter een eenduidige indeling van de pools. Dit is mede te verklaren doordat de grotere ondernemingen een grotere productie en grotere reserves hebben en vice versa. Deze verhouding tussen de oliereerves en de olieproductie zou berekend kunnen worden als een productie/reserves ratio. Uit deze ratio’s, welke tevens zijn weergegeven in tabel 5.2.1.1, is op te maken dat de spreiding van de ratio’s niet dusdanig groot is dat het van invloed zou kunnen zijn op de berekende hedging ratio’s en inherent daaraan de indeling van de pools.

5.2.2 Hedging ratio netto fair values

Om de robuustheid van de indeling van de pools te verifiëren kunnen de hedging ratios tevens berekend worden aan de hand van de netto fair values van de portfolio’s. De netto fair value is de netto winst of verlies van de totale portfolio.

<table>
<thead>
<tr>
<th>Pool 1 Lage hedge</th>
<th>Pool 2 Hoge hedge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderneming</td>
<td>Gemiddelde hedging ratio (netto, olie productie) (%)</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>0</td>
</tr>
<tr>
<td>Chevron</td>
<td>0,000508</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>-0,000519</td>
</tr>
<tr>
<td>Repsol</td>
<td>0,000123</td>
</tr>
<tr>
<td>ENI</td>
<td>0,000043</td>
</tr>
<tr>
<td>Total</td>
<td>0,000370</td>
</tr>
</tbody>
</table>

Tabel 5.2.2.1 Opdeling steekproef op basis van olie en gas productie

Deze netto fair value is niet wenselijk om te gebruiken als indicator voor de mate van hedging. Dit omdat het niets zegt over de totale waarde van de contracten welke tot de portfolio behoren. Zo is het mogelijk dat de waarde van de totale portfolio van de onderneming zeer groot is maar dat de netto winst of verlies op de portfolio dusdanig
geniveleerd is tussen de verschillende posities, dat de netto fair value zeer klein is. Hierdoor kan je niet bepalen of onderneming veel of weinig hedgen.

Deze analyse is toch gedaan om een beeld te geven van de uitkomsten, en de verschillen ten opzichte van de absolute fair values, van deze test. De indeling van de pools is echter volledig gebaseerd op de hedging ratio’s welke op basis van de absolute fair values zijn berekend.

5.3 Toetsing hypothesen 1 en 2

5.3.1 Toetsing hypothese 1a en 1b

Voor hypothese 1 dienen twee variabelen, behorende bij Financial distress, getoetst te worden aan de hedging ratio. Hierbij gaat het om de kosten voor het produceren van een barrel olie en de mate van leverage van de ondernemingen.

<table>
<thead>
<tr>
<th>Pool 1 Lage hedge</th>
<th>Pool 2 Hoge hedge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderneming</td>
<td>Cash Kosten ($/barrel)</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>5,398</td>
</tr>
<tr>
<td>Chevron</td>
<td>6,548</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>4,007</td>
</tr>
<tr>
<td>Repsol</td>
<td>5,864</td>
</tr>
<tr>
<td>ENI</td>
<td>5,346</td>
</tr>
<tr>
<td>Total</td>
<td>3,883</td>
</tr>
<tr>
<td>MEAN</td>
<td>5,174</td>
</tr>
</tbody>
</table>

Toetsing pools Lage hedge en Hoge hedge

<table>
<thead>
<tr>
<th>Hypothese</th>
<th>N</th>
<th>F</th>
<th>P-waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>H1a Cash kosten</td>
<td>79</td>
<td>0,93</td>
<td>0,40</td>
</tr>
<tr>
<td>H1b Leverage</td>
<td>79</td>
<td>1,76</td>
<td>0,03</td>
</tr>
</tbody>
</table>

Tabel 5.3.1.1: Uitkomsten Financial distress variabelen

Het vergelijk van de twee pools laat zien dat er nauwelijks verschil zit in de gemiddelde waarden van de cash kosten. Tevens geeft de F-waarde van 0,93 en de bijbehorende P-
waarde van 0,40 aan dat er geen significant verschil is tussen de twee pools. Hieruit kan niet de conclusie getrokken worden dat de mate van hedging invloed heeft op de kosten voor het produceren van een vat ruwe olie. De uitkomst van de leverage toetsing geeft wel een significant resultaat. Hieruit blijkt dat de ondernemingen met een lage hedge een significant hoger percentage leverage hebben. Dit is in lijn met het hypothetisch gestelde verband tussen hedging en leverage. De spreiding in beide pools is echter vrij groot waardoor er invloed kan zijn van uitbijters. Zo zitten er in de pool lage hedge twee uitbijters, ExxonMobil met een percentage van 10,6% en Repsol met een percentage van 80,5%. Na het verwijderen van ExxonMobil en Repsol uit de lage hedge pool blijkt dat het resultaat nog significanter wordt met een P-waarde van 0,005.

5.3.2 Toetsing hypothese 2 investments

Voor het toetsen van hypothese 2 is de variabele capital expenditures, behorende bij investments, vergeleken met de hedging ratio van de ondernemingen. In tabel 5.3.2.1 zijn de resultaten van de test weergegeven.

<table>
<thead>
<tr>
<th>Pool 1 Lage hedge</th>
<th>Pool 2 Hoge hedge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderneming</td>
<td>Cap Ex (%)</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>7,22</td>
</tr>
<tr>
<td>Chevron</td>
<td>9,29</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>11,51</td>
</tr>
<tr>
<td>Repsol</td>
<td>8,05</td>
</tr>
<tr>
<td>ENI</td>
<td>9,40</td>
</tr>
<tr>
<td>Total</td>
<td>8,83</td>
</tr>
<tr>
<td>MEAN</td>
<td>9,05</td>
</tr>
</tbody>
</table>

Toetsing pools Lage hedge en Hoge hedge

<table>
<thead>
<tr>
<th>N</th>
<th>F</th>
<th>P-waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cap Ex</td>
<td>79</td>
<td>0,55</td>
</tr>
</tbody>
</table>

Tabel 5.3.2.1: Uitkomsten Investments variabele
De hypothetische stelling was dat als de ondernemingen veel hedgen ze ook een hoger percentage capital expenditures hebben. Volgens de resultaten van de toetsing tussen de twee pools blijkt dat dit verschil statistisch significant is. Op basis van de verkregen resultaten kan de opgestelde hypothese gehandhaafd worden daar er voldoende significant bewijs is dat de ondernemingen welke veelvuldig hedgen ook meer investeren.

5.4 Toetsing hypothese 3 exposure

5.4.1 Exposuremeting gehele sample

Om de mate van exposure te meten heb ik, door middel van een regressie tussen de abnormale rendementen van de ondernemingen en de rendementen van de grondstoffen, de exposurecoëfficiënt γ berekend. In tabel 5.4.1.1 zijn de resultaten van de regressie tussen de ondernemingen en de olieprijs weergegeven voor de gehele periode van 10 jaar van 1 januari 2000 tot en met 31 december 2009.

<table>
<thead>
<tr>
<th>Onderneming</th>
<th>N</th>
<th>γ</th>
<th>R^2</th>
<th>T-Stat</th>
<th>P-waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royal Dutch Shell</td>
<td>2608</td>
<td>0,139</td>
<td>0,045</td>
<td>11,056</td>
<td><0,001</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>2608</td>
<td>-0,031</td>
<td>0,001</td>
<td>-1,726</td>
<td>0,084</td>
</tr>
<tr>
<td>BP</td>
<td>2608</td>
<td>0,157</td>
<td>0,053</td>
<td>12,128</td>
<td><0,001</td>
</tr>
<tr>
<td>Total</td>
<td>2608</td>
<td>0,159</td>
<td>0,054</td>
<td>12,227</td>
<td><0,001</td>
</tr>
<tr>
<td>Chevron</td>
<td>2608</td>
<td>0,244</td>
<td>0,133</td>
<td>20,032</td>
<td><0,001</td>
</tr>
<tr>
<td>ENI</td>
<td>2608</td>
<td>0,145</td>
<td>0,046</td>
<td>11,209</td>
<td><0,001</td>
</tr>
<tr>
<td>Statoil</td>
<td>2228</td>
<td>0,238</td>
<td>0,087</td>
<td>14,541</td>
<td><0,001</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>2608</td>
<td>0,341</td>
<td>0,106</td>
<td>17,655</td>
<td><0,001</td>
</tr>
<tr>
<td>Repsol</td>
<td>2608</td>
<td>0,131</td>
<td>0,035</td>
<td>9,696</td>
<td><0,001</td>
</tr>
<tr>
<td>Marathon Oil</td>
<td>2608</td>
<td>0,345</td>
<td>0,144</td>
<td>20,903</td>
<td><0,001</td>
</tr>
</tbody>
</table>

Tabel 5.4.1.1: Exposure meting

Alle ondernemingen, ExxonMobil uitgezonderd, hebben een positieve exposure coëfficiënt wat wil zeggen dat het rendement op de aandelen een positief verband heeft met het rendement op de olieprijs. Zoals hierboven gesteld is ExxonMobil een uitzondering op de uitkomsten. ExxonMobil heeft een miniem negatief verband met de olieprijs. Dit verband is
bij een 10% level significant maar derhalve minder sterk dan de overige ondernemingen. ExxonMobil geeft aan in het jaarverslag dat de sterke financiële structuur en de gediversifieerde activiteiten de onderneming minder gevoelig maakt voor veranderingen van de olieprijs. Daarnaast geeft ExxonMobil aan vanwege die rede geen gebruik te maken van hedging activiteiten. De uitkomst van de test ondersteund het beleid van ExxonMobil. Daarnaast kan er gesteld worden aan de hand van uitkomsten dat naarmate de omzet van de onderneming afneemt de gevoeligheid voor de olieprijs toeneemt. In tabel 5.4.1.1 zijn de ondernemingen gerangschikt naar omzet en hieruit blijkt dat onder andere Statoil, Valero Energy en Marathon oil een sterker verband hebben met de verandering van de olieprijs dan bijvoorbeeld Shell, BP en Total. Uit onderzoek van de jaarverslagen blijkt dat Shell, BP en Total meer gediversifieerd zijn dan Statoil, Valero Energy en Marathon Oil. Hierdoor genereren ze ook kasstromen uit andere activiteiten dan het winnen en raffineren van ruwe aardolie. Een voorbeeld hiervan is dat Shell, BP en Total ook diverse chemicaliën produceren.
5.4.2 Exposure meting splitsing steekproef periode

Uit de analyse van de grondstoffen prijzen in hoofdstuk 3 is gebleken dat de volatiliteit van de olieprijs vanaf 2005 toeneemt en in 2008 een recordhoogte bereikt van $145 per vat. Daarnaast is vanaf 2008 de financiële crisis welke zijn impact heeft gehad op internationale beurzen. Deze variabelen kunnen tevens zijn invloed hebben op de gevoeligheid van de onderneming voor de olieprijs. In dit kader is een splitsing gemaakt van de steekproefperiode. De uitkomsten zijn in tabel 7.2.2.1 weergegeven.

<table>
<thead>
<tr>
<th>Onderneming</th>
<th>Jan 2000 t/m Dec 2004</th>
<th>Jan 2005 t/m Dec 2009</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>γ</td>
</tr>
<tr>
<td>Royal Dutch Shell</td>
<td>1304</td>
<td>0,024</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>1304</td>
<td>0,022</td>
</tr>
<tr>
<td>BP</td>
<td>1304</td>
<td>0,055</td>
</tr>
<tr>
<td>Total</td>
<td>1304</td>
<td>0,045</td>
</tr>
<tr>
<td>Chevron</td>
<td>1304</td>
<td>0,130</td>
</tr>
<tr>
<td>ENI</td>
<td>1304</td>
<td>0,026</td>
</tr>
<tr>
<td>Statoil</td>
<td>1114</td>
<td>0,051</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>1304</td>
<td>0,224</td>
</tr>
<tr>
<td>Repsol</td>
<td>1304</td>
<td>0,030</td>
</tr>
<tr>
<td>Marathon Oil</td>
<td>1304</td>
<td>0,185</td>
</tr>
</tbody>
</table>

Tabel 5.4.2.1: Exposure coëfficiënt na splitsing steekproef periode

De resultaten in tabel 5.4.2.1 geven weer dat in de tweede helft van de totale periode de coëfficiënten een positiever verband laten zien tussen de aandelenkoersen en de olieprijs. Tevens zijn deze uitkomsten zeer significant in tegenstelling tot de uitkomsten van de eerste helft van de periode. Hieruit zou de conclusie kunnen worden getrokken dat door de toename van de volatiliteit in de olieprijs ook de afhankelijkheid van de ondernemingen ten opzichte van de olieprijs toeneemt. Naast de invloed van de volatiliteit zal waarschijnlijk ook de waarde van de olieprijs zijn invloed hebben op de exposure. Het lijkt erop dat naarmate de olieprijs hoger wordt de koersen van de ondernemingen meer gaan mee bewegen met de
olieprijs. Deze toename van exposure zou ertoe kunnen leiden dat de ondernemingen de hedging activiteiten uitbreiden om deze exposure terug te dringen. In dit geval zal er gekeken moeten worden naar de verschillen in hedging ratio tussen de twee periodes.

5.4.3 Verband hedging ratio en exposure

Het uitgangspunt in dit onderzoek is dat een hogere hedging ratio correspondeert met een lagere exposure coëfficiënt. Om deze test uit te voeren gebruik ik de twee pools zoals ze zijn samengesteld in paragraaf 5.3.1. Alleereerst is het van belang te kijken naar de verschillen in exposure coëfficiënt. Vervolgens wordt deze test herhaald met een splitsing van de steekproef periode zoals is aangegeven in paragraaf 5.4.2.

<table>
<thead>
<tr>
<th>Pool 1 Lage hedge</th>
<th>Pool 2 Hoge hedge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderneming</td>
<td>Exposure coëfficiënt γ totale periode.</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>-0,031</td>
</tr>
<tr>
<td>Chevron</td>
<td>0,244</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>0,341</td>
</tr>
<tr>
<td>Repsol</td>
<td>0,131</td>
</tr>
<tr>
<td>ENI</td>
<td>0,145</td>
</tr>
<tr>
<td>Total</td>
<td>0,159</td>
</tr>
</tbody>
</table>

Toetsing pools Lage hedge en Hoge hedge

<table>
<thead>
<tr>
<th></th>
<th>N</th>
<th>F</th>
<th>P-waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exposure coëfficiënt</td>
<td>10</td>
<td>1,75</td>
<td>0,34</td>
</tr>
</tbody>
</table>

Tabel 5.4.3.1: Exposure coëfficiënt per pool

Uit de resultaten van de test, zoals gepresenteerd in tabel 5.4.3.1, blijkt dat de gemiddelde exposure coëfficiënt γ van de hoge hedge hoger is dan bij de lage hedge. Dit verschil blijkt tevens significant te zijn. Dit is in tegenstelling met het hypothetisch gestelde verband dat de pool met een lage hedge een grotere exposure heeft dan de pool met de hoge hedge. In de lage hedge pool is ExxonMobil een uitbijter met een negatieve coëfficiënt. Als we deze
uitbijter verwijderen uit het sample is de mean voor de lage hedge 0,204 welke dichterbij de mean van de hoge hedge ligt. Echter kan er ook na het verwijderen van ExxonMobil niet geconcludeerd worden dat de ondernemingen uit de lage hedge pool meer exposure hebben dan de ondernemingen uit de hoge hedge pool.

Uit de resultaten van tabel 5.4.3.1, waarin de steekproef periode is gesplitst, blijkt dat de exposures van alle ondernemingen toeneemt vanaf 2005. In tabel 5.4.3.2 zijn de hedging ratio’s met elkaar vergeleken per periode.

<table>
<thead>
<tr>
<th>Onderneming</th>
<th>Hedging ratio jan 2000 t/m dec 2004 (%)</th>
<th>Hedging ratio jan 2005 t/m dec 2009 (%)</th>
<th>Percentage toename (afname)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Royal Dutch Shell</td>
<td>0,0766</td>
<td>0,0699</td>
<td>9%</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BP</td>
<td>0,0864</td>
<td>0,0271</td>
<td>218%</td>
</tr>
<tr>
<td>Total</td>
<td>0,0021</td>
<td>0,0011</td>
<td>92%</td>
</tr>
<tr>
<td>Chevron</td>
<td>0</td>
<td>0,0019</td>
<td>Nvt</td>
</tr>
<tr>
<td>ENI</td>
<td>0</td>
<td>0,0014</td>
<td>Nvt</td>
</tr>
<tr>
<td>Statoil</td>
<td>0,0112</td>
<td>0,0093</td>
<td>20%</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>0,0023</td>
<td>0,0019</td>
<td>23%</td>
</tr>
<tr>
<td>Repsol</td>
<td>0,0008</td>
<td>0,0002</td>
<td>362%</td>
</tr>
<tr>
<td>Marathon Oil</td>
<td>0,0084</td>
<td>0,0147</td>
<td>(43%)</td>
</tr>
</tbody>
</table>

Tabel 5.4.3.2: Hedging ratio’s per periode

De ondernemingen zijn structureel meer gaan hedgen in de tweede periode van de steekproef. De ratio’s zijn van 7 ondernemingen toegenomen, dit betekent dat de hoeveelheid hedging activiteiten afnemen. Chevron en ENI gaven in de eerste periode aan dat de activiteiten nihil waren, en derhalve niet waren opgenomen in het financiële jaarverslag. Chevron en ENI rapporteren in de tweede helft van de steekproef wel hun activiteiten omdat deze zijn toegenomen.
5.5 Toetsing hypothese 4 ondernemingswaarde

Bij de laatste hypothese is de variabele Tobin’s Q, behorende bij de waarde van de onderneming, vergeleken met de hedging ratio. De resultaten van deze test zijn weergegeven in tabel 5.5.1.

<table>
<thead>
<tr>
<th>Pool 1 Lage hedge</th>
<th>Pool 2 Hoge hedge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onderneming</td>
<td>Tobin’s Q</td>
</tr>
<tr>
<td>ExxonMobil</td>
<td>1,759</td>
</tr>
<tr>
<td>Chevron</td>
<td>1,124</td>
</tr>
<tr>
<td>Valero Energy</td>
<td>0,988</td>
</tr>
<tr>
<td>Repsol</td>
<td>0,517</td>
</tr>
<tr>
<td>ENI</td>
<td>0,877</td>
</tr>
<tr>
<td>Total</td>
<td>1,095</td>
</tr>
<tr>
<td>MEAN</td>
<td>1,06</td>
</tr>
</tbody>
</table>

Toetsing pools Lage hedge en Hoge hedge

<table>
<thead>
<tr>
<th>N</th>
<th>F</th>
<th>P-waarde</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tobin’s Q</td>
<td>79</td>
<td>1,86</td>
</tr>
</tbody>
</table>

Tabel 5.5.1: Uitkomsten ondernemingswaarde variabele

Ook uit deze laatste test kan de veronderstelde relatie tussen de waarde onderneming en de mate van hedging niet bevestigd worden. De gemiddelde waarde van de ondernemingen met een hoge hedge is significant hoger dan de ondernemingen met een lage hedge. De waarde van de ondernemingen met een hoge hedge zouden echter significant hoger moeten zijn om de veronderstelde relatie te kunnen bevestigen. In pool 1 is ExxonMobil een uitbijter met een gemiddelde waarde van 1,759. Als ik deze uit het sample haal dan komt de gemiddelde waarde van de onderneming in de lage hedge op 0,920. Deze waarde is bijna gelijk met de gemiddelde waarde van de onderneming met een hoge hedge. Uit deze uitkomsten valt niet te concluderen dat de waarde van de onderneming een verklarende factor is waarom de ondernemingen gebruik maken van hedging activiteiten.
5.6 Concluderend

Uit de tests van de hypothesen blijkt dat er twee hypothesen bevestigd en drie verworpen kunnen worden. De hypothesen welke bevestigd worden zijn H1b leverage en H2 capital expenditures. Uit deze resultaten blijkt dat de ondernemingen met een hoge hedge ratio een lager percentage leverage hebben dan ondernemingen welke een lage hedge ratio hebben. Tevens investeren de ondernemingen met een hoge hedge ratio meer dan de ondernemingen met een lage hedge ratio. Deze twee variabelen hebben direct te maken met het intern genereren van interne kasmiddelen en deze voorhanden hebben voor investeringen. Op basis van deze resultaten kan gesteld worden dat de ondernemingen hedging activiteiten toepassen om de interne kasstromen te borgen.

Er zijn twee hypothesen waarbij de H0 van de gestelde hypothese bevestigd wordt. Dit wil zeggen dat er een tegengesteld verband wordt gevonden tussen de variabelen dan op voorhand hypothetisch verondersteld is. Het betreft de hypothesen H3 exposure en H4 ondernemingswaarde. Hieruit kan gesteld worden dat de ondernemingen welke veelvuldig hedgen een lagere exposure hebben dan ondernemingen welke minder hedgen. Financiële hedging activiteiten lijken derhalve geen adequaat instrument om exposure ten opzichte van grondstoffen prijzen te verminderen. Tevens lijkt op basis van de resultaten dat het toepassen van financiële hedging activiteiten niet leidt tot een hogere ondernemingswaarde. Als laatste geeft hypothese H1a Cash kosten geen significant resultaat. Aan de resultaten van deze hypothese kunnen lastig conclusies verbonden worden of er invloed is van financiële hedging activiteiten.
6 Conclusie

Het doel van dit onderzoek is om een antwoord te vinden op de hoofdvraag waarom ondernemingen gebruik maken van financiële hedging activiteiten. Deze vraag wordt ondersteund door een aantal deelvragen welke uiteindelijk onderdeel vormen van de beantwoording van de hoofdvraag. De antwoorden op de deelvragen geven de lezer inzicht over het gebruik van de financiële hedging activiteiten en ze geven inzicht over de olie en gas industrie. Beide doelstelling zijn gedeeltelijk of geheel behaald. Zo is de eerste doelstelling om de lezer inzicht te geven over waarom de ondernemingen gebruik maken van financiële hedging activiteiten gedeeltelijk behaald. Door een gebrek aan gedetailleerde data over de hedging activiteiten konden de hypothesen lastig getoetst worden. Echter is als alternatief de data op een descriptieve wijze geanalyseerd. De tweede doelstelling is mijns inziens geheel behaald. De lezer heeft een fundament meegekregen over de historie van de olie en gas prijzen, de markten en heeft inzicht gedeeltelijk gekregen in de financiële performance van de olie en gas ondernemingen uit de steekproef. In deze conclusie zal ik eerst de wetenschappelijke en praktische implicaties toelichten. Vervolgens worden de uitkomsten en de beperkingen van het onderzoek toegelicht.

In de introductie is gesproken over wetenschappelijke en praktische implicaties welke deze studie kan hebben. De studie heeft op een aantal punten een goede bijdrage geleverd aan de wetenschappelijke literatuur. Zo heeft de studie gebruik gemaakt van een wereldwijde steekproef wat de horizon heeft verbreedt van de huidige onderzoeken. De wereldwijde steekproef geeft tevens aan dat de olie en gas industrie een wereldwijde markt is waar iedereen toegang heeft tot dezelfde markten. Het gebruik van financiële hedging activiteiten is tevens een wereldwijd gebruikte manier voor het managen van bepaalde risico’s waar de olie en gas industrie aan blootgesteld is. Een andere implicatie is de bijdrage aan de huidige discussie in de literatuur over financiële risico management activiteiten.

Er zijn ook praktische implicaties van deze studie. De ondernemingen verrichten de financiële hedging activiteiten met als doelstelling risico’s te verminderen. Ik vind in deze studie aanvullend wetenschappelijk bewijs dat er een positieve relatie bestaat tussen een deel van de gekozen variabelen en het gebruik van financiële derivaten. De overwegingen welke de ondernemingen hebben genomen om de portfolio van financiële derivaten samen te stellen zijn derhalve niet wetenschappelijk te onderbouwen. Door deze bevinding kan er lastig
geconcludeerd worden dat de ondernemingen de portfolio’s samenstellen om risico’s te managen.

Om de tweede determinant financial distress te meten is hij opgesplitst in twee variabelen. Deze twee variabelen zijn de productiekosten per barrel ruwe olie en het percentage leverage van de onderneming. Deze metingen geven ten dele empirische ondersteuning van de veronderstelde relatie tussen hedging en de mate van financial distress omdat alleen leverage significant positief is getest. Dit zou kunnen betekenen dat ondernemingen hedging gebruiken om ervoor te zorgen dat ze voldoende interne kasstromen genereren en daardoor minder gebruik maken van vreemd vermogen. Dit ondersteunt de theorie van Froot, Scharfstein en Stein (1994) welke aangeven dat ondernemingen hedgen om vraag naar vreemd vermogen te beperken. De uitkomsten van de productiekosten per vat ruwe olie waren positief noch negatief. Hedging heeft in dat kader geen invloed op de hoogte van de productiekosten van de onderneming.

De derde determinant betreft de variabele capital expenditures. Volgens Tufano (1996) dient een onderneming financiële hedging activiteiten toepassen om ervoor te zorgen dat er voldoende interne kasstromen zijn om te investeren in de juiste projecten. In mijn onderzoek vind ik positieve empirische ondersteuning voor deze stelling. De ondernemingen welke veelvuldig gebruik maken van financiële hedging activiteiten hadden een hoger percentage

Naast de bovenstaande drie determinanten heb ik onderzoek gedaan naar de invloed van hedging op de waarde van de onderneming. Hieruit blijkt dat de ondernemingen met een lage hedge ratio een hogere ondernemingswaarde hebben dan de ondernemingen met een hoge hedge ratio. De theorieën van Tufano (1996) en Froot, Scharfstein en Stein (1994) geven aan dat de drie determinanten onderdeel zijn van het verhogen van de waarde van de onderneming. Bij een perfecte opvolging van deze theorie dienen alle determinanten bij dit onderzoek positief significant te zijn om waarde te creëren voor de onderneming. Echter blijkt uit dit onderzoek dat er slechts twee van de vier hypothesen positief significant zijn waardoor de waardecreatie volgens de genoemde theorieën niet gegarandeerd is.

Op basis van dit onderzoek is het lastig te verklaren waarom olie en gas ondernemingen gebruik maken van financiële hedging activiteiten. Een alternatief antwoord op de vraag zou kunnen zijn dat op basis van een aantal wetenschappelijke theorieën dat er een perceptie heerst dat financiële hedging activiteiten een positieve invloed hebben op de performance van de onderneming. Een andere rede voor het gebruik zou kunnen zijn dat de ondernemingen een overschot aan kasstromen hebben en deze gaan gebruiken om te speculeren. In dat geval gebruik de ondernemingen de financiële derivaten om te speculeren en niet om bepaalde risico’s mee te hedgen. De omvang van de onderneming blijkt uit dit onderzoek een belangrijke invloed te hebben op de performance van de onderneming. Bij vrijwel alle variabelen blijkt de omvang van de onderneming van invloed te zijn op de uitkomsten. In de steekproef zijn er 5 dominante grote ondernemingen welke een groot verschil maken qua performance met de 5 kleinere ondernemingen. De grotere ondernemingen hebben een sterkere financiële structuur en hebben een stabiel verloop van de onderzochte variabelen.

Het onderzoek kent op een aantal punten zijn beperkingen. Een belangrijke beperking is de berekening van de hedging ratio door de fair value van de portfolio’s te gebruiken. De fair
value van een portfolio is het verschil tussen de afgesloten waarde van het contract en de marktwaarde van het contract. De fair value zegt derhalve niets over de totale waarde van de portfolio. Om de hedging ratio te berekenen zoals Haushalter (2000) dit doet is het van belang dat de totale omvang van de contracten bekend is. Van de contracten dient de totale contractwaarde en de hoeveelheid olie dat wordt gehedged bekend te zijn. Vanwege het gebrek aan informatie in de 10-k formulieren heb ik gekozen voor de fair values om het onderzoek toch uit te kunnen voeren. In dit kader is het echter zeer lastig om conclusies te verbinden aan de statistische analyses. Om deze studie op een betrouwbareder manier uit te voeren zou er meer informatie verkregen moeten worden van de ondernemingen. Hierbij kan je denken aan interviews en/of surveys. Deze interviews en/of surveys kunnen gehouden worden met de hogere financiële staf van de ondernemingen om uiteindelijk de juiste kwantitatieve informatie te verkrijgen. Voor dit onderzoek was het tijdsbestek te kort om deze methoden te toe te passen.

Daarnaast is het lastig om met louter hedging als afhankelijke variabele de performance van de onderneming te verklaren. Er zijn talloze andere variabelen welke van invloed zijn op de onderneming en welke niet worden meegenomen in dit onderzoek. Het begrijpen van de performance van de onderneming gaat mijns inziens veel verder dan het verzamelen van data en deze door middel van statistische analyses proberen te begrijpen. Ondernemingen zijn dynamische entiteiten welke voortdurend in beweging zijn en door vele factoren worden beïnvloed. Een klein facet daarvan zijn de exposures van de ondernemingen ten opzichte van wisselkoersen. Dit kleine facet staat in schril contrast met de invloeden van het management, een bewegende wereld economie, politieke invloeden, diversificatie van ondernemingen, etc.

bronnen te vinden en dit brengt vrijwel automatisch met zich mee dat de ondernemingen zich zijn gaan vestigen in landen dicht bij de bronnen om de ruwe olie te raffineren.

Een andere uitbreiding op dit onderzoek zou kunnen zijn dat de variabele operationeel hedgen toegevoegd wordt. Deze manier van hedgen is vrij recent onderzocht en derhalve meer actueel dan financieel hedgen. Tevens zouden er meer onafhankelijke variabelen toegevoegd kunnen worden aan het model om te trachten te verklaren wat werkelijk van invloed is op de performance van de onderneming.

Als eindconclusie wil ik stellen dat deze studie, ondanks de beperkingen van de data, een bijdrage heeft geleverd aan de discussie over het gebruik van financiële hedging activiteiten. Toekomstig werk zal belangrijke aanvullingen kunnen opleveren om de literatuur te verrijken en de discussie verder voort te zetten.
Literatuurlijst

Dan, C., H. Gu and K. Xu, 2005, The Impact of Hedging on Stock Return and Firm Value: New
evidence from Canadian Oil and Gas Companies, Working Paper.

DeMarzo, P.M. and D. Duffie, 1995, Corporate Incentives for Hedging and Hedge Accounting,
The Review of Financial Studies 8, 743-771.

Corporate Finance 11, 628-644.

Flannery, M. and C. James, 1984, The Effect of Interest Rate Changes on the Common Stock

Gay, G.D. and J. Nam, 1998, The Underinvestment Problem and Corporate Derivatives Use,

Finance 52, 1323-1354.

Graham, J.R. and D.A. Rogers, 2002, Do Firms Hedge in Response to Tax Incentives? Journal
of Finance 57, 815-839.

Paper.

Derivatives Users, Journal of Accounting and Economics 26, 319-351.

Financial Economics 70, 423-461.

Haushalter, G.D., 2000, Financing policy, basis risk, and corporate hedging: Evidence from oil

of Corporate Finance 8, 271-286.

Bijlage 1 Descriptieve resultaten per onderneming

<table>
<thead>
<tr>
<th>Firm</th>
<th>Hedging ratio ABS</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>ExxonMobil</td>
<td></td>
<td>10</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000000</td>
<td>0.000000000</td>
</tr>
<tr>
<td></td>
<td>Hedging ratio NET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.000000000</td>
<td>0.000000000</td>
</tr>
<tr>
<td>Cash Kosten</td>
<td></td>
<td>10</td>
<td>7.187</td>
<td>18.996</td>
<td>10.63400</td>
<td>4.040677</td>
</tr>
<tr>
<td>Leverage</td>
<td></td>
<td>10</td>
<td>2.10</td>
<td>1.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td></td>
<td>10</td>
<td>3.390</td>
<td>8.360</td>
<td>5.39800</td>
<td>1.878556</td>
</tr>
<tr>
<td>Firm Value</td>
<td></td>
<td>10</td>
<td>2.00</td>
<td>1.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm</td>
<td></td>
<td>10</td>
<td>3.00</td>
<td>3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shell</th>
<th>Hedging ratio ABS</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.00744244</td>
<td>0.001200184</td>
</tr>
<tr>
<td></td>
<td>Hedging ratio NET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-.0000255</td>
<td>.000108</td>
<td>-.000001463</td>
<td>.0000135002</td>
</tr>
<tr>
<td>Cash Kosten</td>
<td></td>
<td>10</td>
<td>3.190</td>
<td>9.880</td>
<td>5.67100</td>
<td>2.543538</td>
</tr>
<tr>
<td>Leverage</td>
<td></td>
<td>10</td>
<td>10.363</td>
<td>32.783</td>
<td>18.85220</td>
<td>7.322611</td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td></td>
<td>10</td>
<td>.050</td>
<td>.119</td>
<td>.08560</td>
<td>.019529</td>
</tr>
<tr>
<td>Firm Value</td>
<td></td>
<td>10</td>
<td>.57</td>
<td>1.79</td>
<td>1.0562</td>
<td>.37607</td>
</tr>
<tr>
<td>Firm</td>
<td></td>
<td>10</td>
<td>2.00</td>
<td>2.00</td>
<td>2.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BP</th>
<th>Hedging ratio ABS</th>
<th>N</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Mean</th>
<th>Std. Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>0.000000</td>
<td>0.000000</td>
<td>0.00602978</td>
<td>0.003566769</td>
</tr>
<tr>
<td></td>
<td>Hedging ratio NET</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>-.0000855</td>
<td>.0000271</td>
<td>-.000027243</td>
<td>.0000316539</td>
</tr>
<tr>
<td>Cash Kosten</td>
<td></td>
<td>10</td>
<td>3.190</td>
<td>7.240</td>
<td>5.03000</td>
<td>1.694370</td>
</tr>
<tr>
<td>Leverage</td>
<td></td>
<td>10</td>
<td>23.966</td>
<td>36.375</td>
<td>30.52370</td>
<td>3.482967</td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td></td>
<td>10</td>
<td>.056</td>
<td>.090</td>
<td>.07570</td>
<td>.009627</td>
</tr>
<tr>
<td>Firm Value</td>
<td></td>
<td>10</td>
<td>.63</td>
<td>1.26</td>
<td>.9945</td>
<td>.19011</td>
</tr>
<tr>
<td>Firm</td>
<td></td>
<td>10</td>
<td>3.00</td>
<td>3.00</td>
<td>3.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hedging ratio ABS</td>
<td>Hedging ratio NET</td>
<td>Cash Kosten</td>
<td>Leverage</td>
<td>Capital Expenditures</td>
<td>Firm Value</td>
</tr>
<tr>
<td>----</td>
<td>-------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>Chevron</td>
<td>10</td>
<td>.00000000</td>
<td>.0000177</td>
<td>.000002266</td>
<td>.0000056511</td>
<td>10</td>
</tr>
<tr>
<td>Hedging ratio ABS</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000059</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Cash Kosten</td>
<td>10</td>
<td>.00000000</td>
<td>.0000053</td>
<td>.000000589</td>
<td>.0000012987</td>
<td>10</td>
</tr>
<tr>
<td>Leverage</td>
<td>10</td>
<td>.00000000</td>
<td>.000000177</td>
<td>.0000002266</td>
<td>.00000056511</td>
<td>10</td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Firm Value</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Firm</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>total</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Hedging ratio ABS</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>ENI</td>
<td>5</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>5</td>
</tr>
<tr>
<td>Hedging ratio NET</td>
<td>5</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>5</td>
</tr>
<tr>
<td>Cash Kosten</td>
<td>5</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>5</td>
</tr>
<tr>
<td>Leverage</td>
<td>5</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>5</td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td>5</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>5</td>
</tr>
<tr>
<td>Firm Value</td>
<td>5</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>5</td>
</tr>
<tr>
<td>Firm</td>
<td>5</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>5</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>5</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>5</td>
</tr>
<tr>
<td>Valero</td>
<td>10</td>
<td>.00000000</td>
<td>.00001410</td>
<td>.000004035</td>
<td>.00000414092</td>
<td>10</td>
</tr>
<tr>
<td>Hedging ratio ABS</td>
<td>10</td>
<td>.00000000</td>
<td>.00000045</td>
<td>.00000065</td>
<td>.0000003152</td>
<td>10</td>
</tr>
<tr>
<td>Cash Kosten</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Leverage</td>
<td>10</td>
<td>.00000000</td>
<td>.000000177</td>
<td>.0000002266</td>
<td>.00000056511</td>
<td>10</td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Firm Value</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Firm</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>10</td>
<td>.00000000</td>
<td>.00000053</td>
<td>.000000589</td>
<td>.0000016752</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Hedging ratio ABS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>-------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Marathon</td>
<td>0.0000279</td>
<td>0.003774</td>
<td>0.00179177</td>
<td>0.0001098900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedging ratio NET</td>
<td>-0.000827</td>
<td>0.000353</td>
<td>-0.00013958</td>
<td>0.0000339528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash Kosten</td>
<td>3,430</td>
<td>8,610</td>
<td>5,86700</td>
<td>1,838345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage</td>
<td>24,180</td>
<td>89,945</td>
<td>50,48630</td>
<td>22,218227</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td>0.089</td>
<td>0.168</td>
<td>0.10970</td>
<td>0.023726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Value</td>
<td>0.37</td>
<td>1.05</td>
<td>0.6372</td>
<td>0.23375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm</td>
<td>8.00</td>
<td>8.00</td>
<td>8.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statoil</td>
<td>0.0000556</td>
<td>0.002413</td>
<td>0.00137577</td>
<td>0.0000762559</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedging ratio NET</td>
<td>-0.000514</td>
<td>0.001695</td>
<td>0.00048775</td>
<td>0.0000625628</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash Kosten</td>
<td>2,660</td>
<td>6,860</td>
<td>4,12300</td>
<td>1,626421</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage</td>
<td>28,509</td>
<td>92,654</td>
<td>50,69610</td>
<td>21,644712</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td>0.084</td>
<td>0.132</td>
<td>0.10760</td>
<td>0.017834</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Value</td>
<td>0.62</td>
<td>1.16</td>
<td>0.8394</td>
<td>0.21581</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm</td>
<td>9.00</td>
<td>9.00</td>
<td>9.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repsol</td>
<td>0.0000008</td>
<td>0.000137</td>
<td>0.00006114</td>
<td>0.0000045548</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hedging ratio NET</td>
<td>-0.000015</td>
<td>0.000033</td>
<td>0.00000939</td>
<td>0.0000014252</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cash Kosten</td>
<td>3,450</td>
<td>9,570</td>
<td>5,86400</td>
<td>2,218038</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverage</td>
<td>44,338</td>
<td>144,284</td>
<td>80,52800</td>
<td>36,729086</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capital Expenditures</td>
<td>0.059</td>
<td>0.122</td>
<td>0.08030</td>
<td>0.020407</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm Value</td>
<td>0.38</td>
<td>0.72</td>
<td>0.5168</td>
<td>0.13457</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Firm</td>
<td>10.00</td>
<td>10.00</td>
<td>10.0000</td>
<td>0.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Valid N (listwise)</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>