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Abstract 
This paper investigates the effects of several different copulas in combination with different 

data frequencies on risk forecasts, such as 1% 10-day Value at Risk, for a stock portfolio. 

The copulas enable a multivariate distribution to be defined as a function of marginals and a 

dependence structure, the copula. The marginals are estimated using the normal 

distribution and for the copulas the Normal, Student-t, Clayton and factor copula are 

chosen. The factor copula is a newly proposed copula by Oh and Patton (2012) based on a 

new estimation method and supposedly incorporates more characteristics than the other 

copulas such as asymmetric dependence and scalability. The 1% 10-day VaR is best 

modeled using the Student Copula as the thick tails capture the extremeties. The most 

accurate 1% VaR forecasts are obtained by using high frequency data in combination with 

the Student-t copula. The best 5% VaR forecasts are also obtained using high frequency 

data with a Student-t copula. The factor copula turns out to be a hard to estimate copula 

that depends on large simulations in order to maintain accuracy, which becomes a 

computational burden. 
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1.    Introduction  

 

 The dent, that the credit crisis has left in the trust and beliefs of investors, caused a complete 

game change in the financial world. Whereas an investor might have been looking for high returns with a 

reasonable risk before the crisis; the investor now aspires to find low risk with a fair return. This change 

was due to the fact that, before the credit crisis, there was less reason to fear the risk of a total collapse. 

It was believed that if one diversified their portfolio enough, risk reduction would be adequate. However, 

a simple diversification is based on the fact that returns of assets are correlated and a portfolio is created 

by the a choice of assets that have both positive correlation and negative correlation (when assets crash, 

negatively correlated assets move in opposite direction). In theory, a portfolio wouldn’t suddenly crash 

completely and you will have reduced your risk. However, among some there was an underestimation of 

the shift that correlations between assets can make (negative correlations turning into positive). Hence, 

the moment assets started crashing simultaneously, people observed that dependences between assets 

shifted severely and are an important aspect in portfolio estimation. Thus, there was a major shift 

towards a more risk aware environment. One of the unexpected phenomena was that assets that had 

been thought to move independently suddenly started moving together. Correlation-based models failed 

to incorporate the possibility of this happening, because there was often an assumption of normality and 

this carries the risk of neglecting tail dependence or in other words neglect the possibility that crashes 

(huge negative returns) are correlated between assets. Thus, in recent years, more and more extensions 

on existing models have been developed in order to capture this tail dependence and other desired 

features, such as symmetric and asymmetric dependence, in a valid model.  

One of the widely discussed and used set of models is the copula, which shows great potential 

for capturing the above mentioned aspects that are desirable in a model for financial assets. A copula is 

simply another way to describe a dependency between two or more variables. A traditional way is to 

have a multivariate distribution with a dependence structure that is implicit, while a copula allows us to 

split a multivariate distribution into marginal distributions and a dependence structure. This relatively 

new way of describing and estimating a set of financial assets opened up a whole new world of 

possibilities for portfolio evaluation. Whilst the existing copulas suffer from either the curse of 

dimensionality (large portfolio’s means an uncontrollable increase of parameters) or are simply too 
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simplistic, Oh and Patton (2012) propose a whole new set of copulas, named the factor copula. These 

copulas offer the possibility of positive and negative dependence, asymmetric dependence and non-zero 

tail dependence. Plus, Oh and Patton (2012) claim that the factor copula can handle a high dimension of 

variables, up to a set of 100 variables. This makes the factor copula a very interesting copula for portfolio 

management as portfolio’s may contain a large set of financial assets. Oh and Patton (2012) also 

introduce a new type of estimation in order to estimate the parameters of the newly proposed factor 

copula, which is similar to the simulation method of moment. The model depends on a new estimation 

method since there isn’t any use of ‘moments’ in the estimation process as the estimation method 

would suggest, but dependence measures are used instead. The accuracy is satisfactory, especially when 

a large number of assets is used. Hence, it will be interesting to see whether this accuracy can be 

maintained throughout different scenario’s and whether this leads to an improved method for 

dependence structures. 

The importance of these models lies in the ability to create risk forecasts for the Value at Risk. 

Thus, a superior model would be of great value in the financial world. In the world of finance, Value at 

Risk (VaR) is a widely used risk measure for a portfolio of financial assets. In words, VaR is the loss we are 

fairly sure that will be not exceeded when holding a portfolio for a certain amount of time. Normally VaR 

is expressed by means of a confidence level (α%), a specified period and an estimated loss in absolute 

terms. Hence, one could read a 1% 2-day VaR as a loss that will not be exceeded with a confidence of 

99% over the next 2 days for a specified portfolio. Hence, in 1% of the cases, it is expected that this 

threshold will be exceeded.  

The Basel Committee incorporated VaR in combination with a capital requirement. The VaR 

partly determines the amount of capital an institution must have to suffice to this requirement. Hence, 

institutions have to comply with a daily report of the biweekly 1% VaR. Since financial institutions could 

therefore benefit from a low reported VaR, these are checked for violations by the committee and fined 

if these indeed are violated. This way, a financial institution is regulated and prevents them from taking 

immense risks. 

This paper makes two primary contributions. Firstly, this paper will examine the out-of-sample 

performance and hence, the usefulness of the proposed factor copulas in terms of risk forecasts (e.g. 

VaR) and compares these to other copulas. In the literature, the evidence is overwhelming that out-of-

sample estimates of supposedly superior models are usually quite disappointing. A simplistic benchmark, 
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such as the Normal Copula, is usually hard to beat. In this out-of-sample study a selection of 10 stocks of 

the S & P 100 are used for the estimation and for the risk forecasts.  

Secondly, the new dependence structure (factor copula) in Oh and Patton (2012) will be 

examined in more depth. This paper will examine whether different data frequencies influence the 

accuracy of the estimation method significantly and hence, examine whether this dependence structure 

is vastly applicable in the finance sector (where an investor might use weekly data). Also, in this out-of-

sample study, different forecast horizons with different data frequencies will be examined in order to 

determine whether the factor copula outperforms in an absolute sense (in every case) and whether it 

could be of use when considering the biweekly 1% VaR described above. This will also include data 

frequencies that are higher than the forecast horizon. This could mean incorporating 

information/characteristics that would otherwise be lost and therefore maybe enhance the forecasts. 

The use of different forecast horizons and different data frequencies could prove to be useful when 

looking at the performance of a copula from an economic standpoint and the implications it could have 

on the biweekly 1% VaR of the portfolio of the 10 stocks of the S & P 100. 

In this paper a selection of copulas will be used: the Normal, T, the Clayton copula and the 

proposed factor copulas. The various copulas are incorporated as they can capture some, but not all, of 

the desired features that are evident in financial time series and might serve as a good benchmark for 

the factor copulas. The factor copulas supposedly capture all desired features and might prove to 

enhance risk forecasts. Hence, if even the Normal Copula outperforms other models, will the factor 

copula prove to be a superior, useful tool? 

The rest of this paper will be divided as follows. In the next section there will be a review of the 

literature. It will serve as a review for what have been the building blocks for this paper. In section 3 the 

methodology with all the used models will be specified. All parameters, estimation, model-specifics and 

forecasting will be further explained. Then, in section 4, an elaborate analysis of the data (daily data of 

the Standard and Poor’s 100 index) will be performed. In section 5 the results that were procured from 

the implementation of the models and forecasts will be discussed. The main focus will be determining 

whether the factor copula presents estimation problems and testing the superiority or usefulness in 

terms of risk forecasts in comparison to other respectable models. The VaR (at a 1% and 5% level) and 

another measure of risk will be compared for every econometric model, data frequency and forecast 

horizon. This will be concluded in section 6. The paper ends with a brief discussion on questions that 

arise from the results and more research that can be done. 
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2. Literature 

Researchers have been exploring the vast amount of possibilities when it comes to the copula 

dependence structure. Their goal has been to construct an ideal copula that will be able to capture the 

empirically found features of financial assets. Patton (2012) summarizes these in the ability to capture 

positive and negative dependence, symmetric and asymmetric dependence and the possibility of non-

zero tail dependence. On top of that a copula could also possess another attribute: scalability. This would 

mean that a copula would be able to incorporate a large set of variables (more than 50 variables). While 

many capture some of these features, this paper will examine whether a copula that possesses all 

features will show a better fit and superior risk forecasts. 

The first development of a copula dependence structure is the well known Normal Copula, which 

has the assumption of Gaussianity. The Normal Copula, see Li (2000) and many others, has been 

empirically proven to be a misspecification for financial assets, because there is an assumption of zero 

tail dependence and symmetric dependence between booms and crashes. The Student-t copula allows 

for non zero tail dependence, but still has symmetric tail dependence. The Clayton copula does account 

for tail dependence, but only captures the lower tail dependence. Plus, this copula is very restrictive for 

higher dimensions as it assumes that the dependence between all assets is equal. This does result in an 

easy computation as it only has one parameter. Genest and Rivest (1989) and other papers discuss the 

advantages and disadvantages in further detail. Demarta and McNeil (2005) discuss the t copula and a 

variety of extensions. Daul et al. (2003) proposes an interesting “grouped t“ copula. It allows for non zero 

tail dependence and high dimensions up to 100 variables, but it has an assumption of equal upper and 

lower tail dependence, which is empirically rejected in Oh and Patton (2012) for equity returns. More 

complicated copulas have also been constructed such as “vine” copulas; see Aas et al. (2009). These are 

high dimensional copulas that are created via sequential application of bivariate copulas. However, vine 

copulas have had quite some critique, due to their complexity; see Acar et al. (2012). Oh and Patton 

(2012) propose a factor copula, which is supposed to captures all features including scalability. This is 

therefore the focus of this paper and will be compared in terms of risk forecasts to much simpler models 

such as the Normal Copula. Oh and Patton (2012) do notice that the factor copulas mainly outperform 

other models with high dimensions. Comparisons for higher dimensions (read: higher than a dimension 

of 10) are quite time-consuming and won’t be part of this paper.  
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In this paper risk forecasts are compared between different models, data frequencies and 

dimensions. Markwat, Kole and Van Dijk (2010) find that, for stock and bond portfolios, higher data 

frequencies result in improvements for the VaR forecasts on a 1% confidence level. Also, they find that a 

bivariate dataset increases the forecast accuracy in terms of VaR compared to a univariate dataset. 

However, they find that lower data frequencies and a univariate dataset contribute to a better 5% VaR 

forecast. Whether this applies to datasets with higher dimensions, like in this paper, is to be seen. With 

higher data frequency, multiple periods ahead have to be forecasted in order to obtain the same 

forecast horizon. Ghysels et al. (2009) and Diebold et al. (1997) have analyzed various methods in order 

to maintain multiple period ahead forecasts for stock market return volatilities. They find that the direct 

approach gives poor results. They also look into the scaling method which also produces inaccurate 

results, due to the fact that scaling blows up the volatility fluctuations whereas they should be 

significantly reduced. However, they find that the iterating gives sufficient results. Also, the mixed data 

sampling method returns good results, but is only useful when looking at forecast horizons larger than 

two weeks. Furthermore, Santos et al (2012) conclude that when considering a VaR forecast for a 

portfolio that consists of a linear combination of stocks (including the S&P 100 for example), it would be 

useful to incorporate a multivariate model that considers the joints dynamics of the assets (e.g. a model 

that takes asset correlations into account). Especially the incorporation of dynamic correlations and 

asymmetric effects would lead to improved VaR forecasts. 

This paper will compare a selection of these advanced dependence structures. The literature 

suggests that there is an ideal dependence structure that can capture all features of financial assets and 

therefore could result in improved accuracy in risk forecasting. The aim of this paper is to see if a highly 

complex dependence structure will actually prove to be useful in terms of measures of risk. 

  

 3.   Methodology 

 

 The objective of this paper is to compare and analyze the differences in dependence structures 

in terms of risk forecasts, with a particular interest in the factor copula. In order to compare these type 

of risk forecasts we shall need to estimate the different dependence structures, which in combination 

with volatility forecasts will form the forecasts for the returns. From these forecasted returns the 

portfolio VaR can be constructed and hence, can be compared. These steps will be explained in the 
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following sections below. To avoid ambiguity, certain terminology will be used, which will be clarified 

below. 

 Let 𝑟𝑝,𝑡,𝑘 𝑎𝑛𝑑 𝑟𝑎,𝑡,𝑘 denote the log return for the portfolio p and for asset a, respectively. The log 

return is defined as following: 

𝑟𝑎,𝑡,𝑘 = ln ( 𝑃𝑎,𝑡
𝑃𝑎,𝑡−𝑘

) (1) 

Where P is the spot price of asset a (or portfolio p), t is the time, k denotes the frequency of the data. 

Here, k=5 would denote weekly data and k=1 would denote daily data. Note that the returns created 

here are non-overlapping, so that there isn’t any structural serial correlation. The portfolio return, h-days 

ahead, is then obtained by: 

𝑟𝑝,𝑡+ℎ = ∑ ∑ 𝑤𝑎𝑟𝑎,𝑡+𝑖∗𝑘,𝑘
𝐴
𝑎=1

ℎ/𝑘
𝑖=1   (2) 

 

𝑤𝑎 is the weight that is assigned to asset a, h is the forecast horizon and A is the total number of assets. 

In this paper an equally weighted portfolio will be created, because the optimal diversification of 

portfolio weights is not the focus of this paper. The portfolio returns are not completely accurate, 

because we simply take the sum of the weighted returns. However, the short time intervals of the time 

series make the deviations negligible.  

 The aim is to investigate which dependence structure captures the dependency between 

financial assets the best and thus, investigate which structure would lead to the most accurate VaR. The 

question remains whether the factor copula will be the dependence structure that prevails. In the sub 

sections below all the estimations of the models, forecasting methods and risk forecasts will be further 

explained. After an explanation of the copula structure and tail dependence, this paper will first look at 

the traditional copulas and display the features of these models including which features it might lack. 

Finally, the factor copula will be explained. This way the paper builds up to the supposedly ideal copula 

structure. 

 

 3.1 Copula  
 Before diving into the estimation and forecasting of the models, a quick review is given of the 

copula structure so there is a full understanding of the concept. A copula is another way to describe a 

dependency between two or more variables. A traditional way is to have a multivariate distribution with 

a dependence structure that is implicit, while a copula allows us to split a multivariate distribution into 

marginal distributions and a dependence structure. This allows a flexible approach to multivariate 
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dependence modeling as we can now specify different marginal distributions for every asset. The 

multivariate distribution can now be written as a copula with the marginal distributions as input. Let X be 

a vector with M variables with a joint distribution F, marginal distributions 𝐹𝑖, and copula C: 

 

[𝑥1, … , 𝑥𝑚]’=X ~ 𝐹(𝑥1, … , 𝑥𝑚) = 𝐶(𝐹1(𝑥1), … ,𝐹𝑚(𝑥𝑚))   (3) 

 

where 𝐹(𝑥1, … , 𝑥𝑚) is the joint distribution function,  𝐶(𝐹1(𝑥1) …𝐹𝑚(𝑥𝑚)) is the copula density function 

and 𝐹1(𝑥1)is the cdf of a variable 𝑥1 . A m dimensional copula is simply a function that maps m marginals 

to a joint distribution, which is the copula, on the interval [0,1]. This decomposition of the copula and 

marginals instead of one distribution function has two main advantages. Firstly, it generally enables a 

multi-stage estimation, which is useful in cases of high dimensions. Secondly, it enables a researcher to 

specify the marginals and the copula separately. With the wide range of literature available on univariate 

distributions, the remaining challenge is finding a suitable dependence structure. For a further and more 

detailed description of the copula theorem, see Sklar (1959).   

 

3.1.1 Tail Dependence  
A common way for examining the way a copula models the dependence between two variables 

is examining the tail dependence. In general we speak of lower tail dependence and upper tail 

dependence.  We define the lower tail dependence between variable 𝑋𝑖  and 𝑋𝑗 as follows: 

𝜆𝑖𝑗𝑙 = lim𝑞→0 𝑃 �𝑋𝑖 < 𝐹𝑖−1(𝑞)|𝑋𝑗 < 𝐹𝑗−1(𝑞)�        (4) 

Where 𝜆𝑖𝑗𝑙  is the lower tail dependence coefficient, 𝐹𝑖−1(𝑞) is the inverse disitribution function 

and q is the quantile. Lower tail dependence measures the probability that 𝑋𝑖  is below a certain quantile 

given that 𝑋𝑗 is also below that quantile. Hence, a copula is said to have lower tail dependence if 𝜆𝑖𝑗𝑙 > 0 

and the higher the coefficient, the stronger the lower tail dependence is. Also note that: 

𝜆𝑖𝑗𝑙 = lim
𝑞→0

𝐶(𝑞, 𝑞)
𝑞

  

The numerator within the scope of the limit is equal to the copula with q as input parameter.  

Similarly, the upper tail dependence is given by: 

𝜆𝑖𝑗𝑢 = lim𝑞→1 𝑃 �𝑋𝑖 > 𝐹𝑖−1(𝑞)|𝑋𝑗 > 𝐹𝑗−1(𝑞)�          (5) 

𝜆𝑖𝑗𝑢 = lim
𝑞→0

1 − 2𝑞 + 𝐶(𝑞, 𝑞)
1 − 𝑞
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Upper tail dependence measures the probability that 𝑋𝑖  is above a certain quantile given that 𝑋𝑗 

is also above that quantile. It is said that a copula has symmetric dependence when 𝜆𝑖𝑗𝑢 =𝜆𝑖𝑗𝑙 . When the 

upper and lower tail dependence differ, it is said that the copula captures asymmetric tail dependence. 

Information about asymmetric features in time series can prove to be quite important, as some copulas 

impose symmetric tail dependence such as the Normal and Student-t copula.  

 

3.1.2 Normal Copula 
  The first and very frequently used copula is the Normal copula. It is based on the 

multivariate normal distribution as the name suggests. The correlation matrix contains the copulas’  

parameters, which makes it a popular choice in financial analysis due to that fact that correlation plays a 

central role in financial analysis. However, a wide selection of papers shows that this is also due to 

convenience rather than accuracy. The Gaussian distribution function is defined as follows: 

 

𝐶(𝑢1, … ,𝑢𝑚;Σ) = 𝚽(Φ−1(𝑢1), … ,Φ−1(𝑢𝑚))  (6) 

 

Where 𝚽 and Φ are the n-dimensional multivariate and univariate standard normal distribution 

functions, respectively, and Σ is the correlation matrix. U is a vector with uniformly distributed random 

variables, which are obtained by the transformation 𝑢𝑖 = 𝐹𝑖(𝑧𝑖), where 𝑧𝑖  are standardized residuals. 

However, it is impossible to write this copula in closed form and can only be expressed as an 

integral. Unlike the copula distribution, the copula density function can be expressed in closed form and 

is therefore useful when it comes to estimating the parameter of the Gaussian copula. The Gaussian 

copula density is obtained by differentiating equation (6) and gives: 

𝑐(𝑢1, … ,𝑢𝑚;Σ) = |Σ|−
1
2exp (−1

2
𝜉′(Σ−1 − I)ξ)  (7) 

 

Where |Σ| is the determinant of the correlation matrix, ξ is defined as 𝜉 = �Φ−1(𝑢1), … ,Φ−1(𝑢𝑚)�′ and 

I is the identity matrix. 

 Unfortunately, the Gaussian copula is not an appropriate model for modeling dependency 

between financial assets. It is a symmetric copula and has no tail dependence unless the correlation is 1. 

Also, it cannot capture asymmetric tail dependence. Nonetheless, it could serve as a fair benchmark, 

because in practice simplistic models do not prove to perform under par .    
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 To give an idea of what to expect from this copula in terms of VaR forecasts (a better capture of 

dependence is thought to result in better forecasts), a scatter plot of a bivariate simulation is shown 

below. The scatter plot shows simulations from the four copulas, all with N(0,1) marginals and linear 

correlation of 0.5. 

[Insert figure 1 here] 

 The Normal copula shows a symmetric dependence and absolutely no tail dependence, meaning 

that a large negative return for one variable does not necessarily mean a higher probability of a large 

return for the other variable. For financial assets, this typically leads to smaller VaR forecasts compared 

to other dependence structures. 

3.1.3 Student-t Copula. 

 Just like the Gaussian copula, the student-t copula is derived implicitly from a multivariate 

distribution. It is based on the multivariate student-t distribution and is defined as: 

𝐶𝑣(𝑢1, … ,𝑢𝑚;Σ) = 𝐭𝐯(tv−1(𝑢1), … , tv−1(𝑢𝑚))    (8) 

Where 𝐭𝐯 and tv are the multivariate and univariate Student-t distribution functions, respectively, v is 

the degrees of freedom and Σ is again the correlation matrix. 

 Similarly to the normal copula, the Student-t copula cannot be written in closed form and the 

copula density function will be used for estimation. The copula density function of the Student-t copula 

is obtained the same way we obtain the normal copula density function and is defined as follows: 

𝑐𝑣(𝑢1, … ,𝑢𝑚;Σ) = 𝐾|Σ|−
1
2(1 + ν−1𝜉′Σ−1ξ)−(ν+m)/2 ∏ (1 + ν−1ξi2)(ν+1)/2m

i=1   (9) 

𝜉 = �tv−1(𝑢1), … , tv−1(𝑢𝑚)�′   (10) 

𝐾 = Γ �ν
2
�
m−1

Γ �ν+1
2
�
2
Γ �ν+m

2
�     (11) 

 Unlike the Gaussian copula, the Student-t copula does incorporate tail dependence. However, 

the Student-t copula has the assumption of equal upper and lower tail dependence and does not 

incorporate any asymmetric effects. The expression for the upper and lower tail dependence is given as 

follows: 
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𝜆𝑖𝑗 = 2 ∗ 𝑡𝜈+1(−�(𝜈+1)(1−𝜌)
1+𝜌

)     for 𝜌 > −1        (12) 

Here, 𝑡𝜈+1 is the standard univariate t-distribution with v+1 degrees of freedom and 𝜌 is the correlation 

between two variables. It can be seen that when the degrees of freedom becomes large, the coefficient 

goes to zero. The tail dependence becomes zero and the Student’s t copula simply becomes the Normal 

Copula. 

 Lets look at the scatter plot of the Student-t copula in figure 1. Here, the degrees of freedom is 4. 

The Student-t copula shows a symmetric dependence and also shows tail dependence, which can really 

be seen by the concentration in the tails of the scatter plot. This means that the Student-t could 

overestimate the VaR and resulting in less violations. In terms of economic implications, this could lead 

to a high capital requirement for banks and diminish investment opportunities    

3.1.4 Clayton copula 

 The Clayton copula belongs to the Archimedean copulas. The Clayton copula distribution is given 

by: 

𝐶(𝑢1, … ,𝑢𝑚;δ) =  (𝑢1−𝛿+. . . +𝑢𝑚−𝛿 − 𝑚 + 1)−
1
𝛿  (13) 

Where 𝛿 is the parameter to be estimated, with restriction  𝛿 > 0 . The copula density function is given 

by: 

𝑐(𝑢1, … ,𝑢𝑚; δ) = �1 −𝑚 + ∑ 𝑢𝑖−𝛿𝑚
𝑖=1 �

−𝑚−(1𝛿) ∏ �𝑢𝑗−𝛿−1((𝑗 − 1)𝛿 + 1)�𝑚
𝑗=1   (14) 

One of the main features is that is has zero upper tail dependence and a positive lower tail dependence. 

However, it isn’t very flexible, because the Clayton copula assumes equi-dependence.   

 Before looking at the scatter plot of the Clayton copula, it is useful to see how the tail 

dependence of the Clayton copula depends on the parameter 𝛿. See the formula below: 

𝜆𝑙 = 2−1/𝛿   if 𝛿 > 0   (15) 

Where 𝜆𝑙 is the lower tail dependence. It can be seen that for larger values of 𝛿, the lower tail 

dependence goes to 1 and that for low values of 𝛿 there is little dependence between the variables. Now 

let’s look at the scatter plot in figure 1. Here, 𝛿 is set to 1. 
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 We see that for a 𝛿 of 1 the lower tail dependence is 0.5 and gives a fair correlation between 

variables. The Clayton clearly shows lower tail dependence with the high concentration in the negative 

tail. The positive tail is left completely random. This means that the Clayton copula could lead to 

overestimation of the VaR forecasts or simply a bigger VaR than other dependence structures. 

Depending heavily on the parameter 𝛿 we expect the Clayton copula to have a larger or smaller VaR 

forecast. 

3.1.5 Simple Factor Copula   

 The last model of the series of copulas is the factor copula. This model also has the main focus as 

this copula incorporates more desired features than the other copulas. The factor copula is based on 

latent variables, which are simulated and from which the desired copula is created. A simple factor 

structure is composed out of M+1 latent variables and can be defined as: 

[𝑥1, … , 𝑥𝑚]’=X ~ 𝐹(𝑥1, … , 𝑥𝑚) = 𝐶(𝐹1(𝑥1), … ,𝐹𝑚(𝑥𝑚))    (16) 

𝑌𝑖 = 𝑍 + 𝜀𝑖 , 𝑖 = 1,2, … ,𝑀    (17) 

𝑍~ 𝐹𝑧(𝜅), 𝜀𝑖~ 𝑖𝑖𝑑 𝐹𝜀(𝜁) ,   𝑍 ||𝜀𝑖   V 𝑖   (18) 

[𝑌1, … ,𝑌𝑚]’  = 𝒀 ~  𝑭𝒙 = 𝑪(𝐷1(𝜃), … ,𝐷𝑚(𝜃);𝜃)   (19) 

Equation (16) is simply the observed variables with the copula structure as a reminder.  𝜃 is the copula 

parameter vector with 𝜃 = (𝜅, 𝜁) and 𝑌1 is a latent variable with marginal distribution 𝐷1(𝜃). The copula 

of latent variable Y, C(𝜃), is then used as the copula of the observable variables X. Note that the marginal 

distributions of the latent variable, Y, may be different from the observed variable X, so in general  

𝐷𝑖 ≠  𝐹𝑖. Do not confuse the different marginal distributions. It is important to remember that we use 

the structure for the vector Y only for the construction of its copula. The marginal distributions are not of 

any interest and may be discarded after the copula is constructed. We use the obtained copula from 

equation (15) to create a model for the copula of X (hence, the copula in (12). The marginal distributions 

𝐹𝑖 are to be defined and estimated in a later step. The latent variables 𝑌𝑖  are obtained by simulating Z 

and 𝜀𝑖  from their distribution. Z is a simulated variable that represents a characteristic that might be 

present in a certain financial time series (a.k.a. ‘factor’) and 𝜀𝑖  are the residuals. Both these variables are 

to be determined by the researcher and this immediately shows the flexibility of the factor copula. It 

forms according to the times series of your choice.  
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 An important feature of this factor structure is that it is generally not known in closed form. 

There are some cases in which is does have a closed form, but there aren’t. This poses difficulties for the 

estimation of the parameters. The copulas specified in the sections above can be estimated by maximum 

likelihood, because they have a copula density in closed form. The factor copula does not and hence, 

does not qualify for the traditional estimation method.  

3.1.6 Multi-factor Copula Model 

A further extension that is suggested by Oh and Patton (2012), is the “single factor, flexible 

weights” factor copula (a.k.a. multi-factor copula). It allows the weights on the factors to differ across 

variables. This structure can be defined as: 

𝑌𝑖 = 𝛽𝑖𝑍 + 𝜀𝑖  , 𝑖 = 1,2, … ,𝑀    (20) 

𝑍~ 𝐹𝑧(𝜅), 𝜀𝑖~ 𝑖𝑖𝑑 𝐹𝜀(𝜁) ,   𝑍 ||𝜀𝑖   V 𝑖   (21) 

The rest of the structure/model is left unchanged. This model leads to one advantage and one major 

disadvantage. One great advantage is that is increases the flexibility to model heterogeneous pair of 

variables due to M-1 one extra parameters and that a given pair of variables may have a stronger or 

weaker dependence compared to a different set of variables. Hence, this copula is no longer 

equidependent. However, this also results in a more difficult estimation problem, which is a 

disadvantage as factor copulas carry a heavy computational burden already.   

 Figure 1 show the scatter plot of a bivariate simulation for the factor copula. The factor copula 

chosen is a multi-factor copula with common factor distribution skew-t and for the idiosyncratic factor 

the Student-t distribution. This is supported by the fact that Oh and Patton (2012) see the most potential 

in these distribution in relation to stocks. Here, the skewness parameter is set to -0.5, the degrees of 

freedom is set to 4 and the betas are set to 1. We see the skew t-t factor copula showing asymmetric tail 

dependence. The negative tail shows a higher concentration than the positive tail. Note that the positive 

tail isn’t completely random, showing the asymmetric dependence. The difference between the Clayton 

copula and factor copula can be seen in the shape of the scatter plot. Where the Clayton shows a certain 

triangular shape distribution, the factor copula still shows a more elliptical/oval or even egg shape 

distribution. We can expect that with an overestimation of the 𝛽′𝑠 (which implicates a high correlation 

between the variables) that there will be an overestimation of the VaR forecasts and vice versa. The 

flexibility of the factor copula makes it harder to define what to expect. 
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3.1.7 Marginal Distributions  

 With the copulas specified, only the task of modeling the marginal distributions remains. For 

simplification purposes, one model will be considered. This way the paper doesn’t lose its focus, which is 

on the copulas and not the on marginal distributions. This paper deals with the modeling of financial 

asset (stocks). Hence, an assumption is made that the time series follows a GARCH(1,1) process with 

normal errors. This is a reasonable assumption as it is done frequently in the literature and also in Oh 

and Patton (2012). It can be defined as follows: 

𝑋𝑖𝑡 = 𝜇𝑖𝑡 + 𝜎𝑖𝑡𝜂𝑖𝑡      𝑡 = 1, … ,𝑇          (22) 

𝜎𝑖𝑡2 = 𝜔 + 𝛾𝜎𝑖,𝑡−12 + 𝛼𝜎𝑖,𝑡−12 𝜂𝑖,𝑡−12       (23) 

𝜼𝑡 = [𝜂1𝑡, … , 𝜂𝑚𝑡] ~ 𝑖𝑖𝑑   𝐹𝜂 = 𝐶(ϕ,ϕ, … ,ϕ)        (24) 

Where ϕ is the standard normal distribution and C is the copula that we are trying to model with the 

copula models specified above. 𝜔, 𝛾 and 𝛼 are the parameters to be estimated.  𝑋𝑖𝑡  is a vector with 

returns of M different assets,  𝜎𝑖𝑡2  is the variance of the asset i and 𝜂𝑚𝑡 Is the standard residual of asset 

m. This process is estimated by a maximum likelihood and the standard residuals will be used later in the 

estimation of the factor copulas. This GARCH(1,1) process is estimated in similar way to the copulas with 

the maximum likelihood.  

 

3.2 Estimation Methods 

 In this section we elaborate on the estimation of the parameters of the different copula models. 

The estimation of the Normal, Student-t and the Clayton are fairly straightforward, but the factor copula 

introduces a new type of estimation for simulation based copulas (factor copulas in this case). First, this 

paper will start with the explanation of the estimation method of traditional copulas and continue with 

the explanation of the SMM-type estimation for factor copulas.  
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3.2.1 Copulas 

 The copulas are estimated via Maximum Likelihood by which the researcher must make an 

assumption on the underlying multivariate distribution. In this paper, the Normal, Student-t and Clayton 

distribution are chosen. The decomposition plays an important role in the estimation process, as it 

enables estimation in different stages. This estimation in different stages is also known as the inference 

functions for margins (IFM) method.  

 The estimation starts with looking the joint density that can be decomposed into the marginal 

distributions and a copula density, which is obtained when differentiating equation (3): 

𝑓(𝑋1, … ,𝑋𝑚;𝜶,𝜽) = 𝑐(𝐹1(𝑋1;𝛼1), … ,𝐹𝑚(𝑋𝑚;𝛼𝑚);𝜽)∏ 𝒇𝒊(𝑋𝒊;𝛼𝒊)𝒎
𝒊=𝟏        (25) 

Where 𝑓(𝑋1, … ,𝑋𝑚;𝜃,𝛼) is the joint density function,  𝑓(𝑋1;𝛼) is the marginal density function of 

variable 𝑋1 and c is the copula density function. The parameters are the parameters of the copula and 

the marginals, with for example 𝜃 = [Σ, 𝜈] for the Student-t and 𝛼 = [𝜔, 𝛾,𝛼] for the marginals. From 

this, we can obtain the likelihood function. We first take the log of the function, because this simplifies 

the equation when we construct the likelihood function. We obtain: 

ln𝐿(  𝜃,𝛼 ;𝑋1, … ,𝑋𝑚|𝐼𝑡) =

 ∑ �ln 𝑐(𝐹1�𝑋1𝑡𝑖;𝛼1|𝐼𝑡�, … ,𝐹𝑚�𝑋𝑚𝑡𝑖;𝛼𝑚|𝐼𝑡�;𝜃|𝐼𝑡) + ∑ ln𝑓𝑖(𝑋𝑖𝑡𝑖;𝛼𝑖
𝑚
𝑖=1 |𝐼𝑡)�𝑇

𝑖=1     (26) 

Where ln is the natural log and 𝐿( 𝜃,𝛼 ;𝑋1, … ,𝑋𝑚) is the likelihood function, T is the time and the 

information set 𝐼𝑡 is 𝐼𝑡 = {𝑡1, … , 𝑡𝑇}. Due to temporal dependence, the copula becomes conditional on 

the information set as this changes when the rolling window changes. The IFM enables us to split this 

into two separate estimations. We can now first estimate the parameters of the marginal densities 

individually, which translates into finding 𝛼𝚤�  that maximizes the likelihood function for the marginals: 

max𝛼𝑖 ∑ ln𝑓𝑖(𝑋𝑖𝑡𝑖;𝛼𝑖|𝐼𝑡)𝑇
𝑖=1        (27) 

Where 𝑓𝑖(𝑋𝑖𝑡;𝛼𝑖) is the marginal density function to be estimated. With standard normal residuals and 

time depending standard deviation, this can be defined as:  

𝑓𝑖(𝑋𝑖;𝛼𝑖|𝐼𝑡) = 1

�2𝜋𝜎𝑡2
𝑒
−(𝑥𝑖−𝜇𝑖)

2

2𝜎𝑡
2  𝑓𝑜𝑟 𝑖 = 1, … ,𝑚          (28) 
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After the estimation of the marginals, the copula parameters can be estimated. This starts by the 

usage of the standardized residual, where we use the estimated 𝜎𝑡�  and �̂� to construct: 

𝜂𝑖𝑡=
𝑋𝑖𝑡− 𝜇𝚤��

𝜎𝚤𝑡�
                 (29) 

The standardized residuals are then transformed into uniformly distributed variables by inserting the 

residual in the univariate distribution of the marginals: 

𝑢𝑖 = Φ(𝜂𝑖𝑡)              (30) 

Where 𝑢𝑖~𝑈(0,1) for i=1,…,m. The uniformly transformed variables are then inserted into the inverse 

univariate distribution of the desired copula. In the case of the Clayton copula this is not necessary. The 

uniformly transformed variable is directly inserted.  

Φ−1(𝑢𝑖)  𝑎𝑛𝑑  𝑇𝑣−1(𝑢𝑖)          (31) 

Note that for the Normal distribution it just gives back the residual. These are then inserted into the 

copulas. This results in: 

𝐶(𝑢1, … ,𝑢𝑚;θ) = 𝚽(Φ−1(𝑢1), … ,Φ−1(𝑢𝑚))   or   𝐶𝑣(𝑢1, … ,𝑢𝑚;θ) = 𝐓𝐯(Tv−1(𝑢1), … , Tv−1(𝑢𝑚))   (32) 

Next, the parameter 𝜃 can be estimated, using the log likelihood of the copula density function, which is 

given as follows: 

max𝜃 ∑ ln 𝑐(𝑢1𝑡𝑖 , … ,𝑢𝑚𝑡𝑖;𝜃|𝐼𝑡)𝑇
𝑖=1          (33) 

Where the copula density function can be either one of the three copula density functions that have 

been specified (Normal, Student-t or Clayton). From this we procure the desired estimate 𝜃�, which 

differs across the different copulas. 

3.2.2 Factor Copula 

 The factor copula introduces a completely new method of estimation for copulas that aren’t 

defined in a closed-form likelihood. Oh and Patton (2012) base their estimation method on the 

Simulated Method of Moments (SMM). Even though it is strictly not SMM, they still refer to it as SMM, 

because the rank statistics that they use can be seen as “moments”. They extract the parameters from 

the minimization of the difference in dependence measures between the residuals and the copula 
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simulations. Hence, first the used dependence measures will be specified and then the estimation 

process will be explained. 

 Oh and Patton (2012) suggest using pair-wise rank correlation and quantile dependence, which 

they support with their preliminary studies. These measures are “pure” measures of dependence, which 

means that they are only affected by changes in the copula and not by the marginal distributions. The 

first measure of dependence is rank correlation.   

 A common know type of rank correlation is the Spearman’s rank correlation. Using a monotonic 

function, the Spearman’s rank correlation assesses how well the relationship between two variables can 

be described. For a sample of t, the t raw scores 𝑋1𝑖 and  𝑋2𝑖 are converted to ranked vectors 𝑥1𝑖 and 𝑥2𝑖 

from which rho is computed (𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛′𝑠 𝑟ℎ𝑜 𝜚): 

𝜚 = ∑ (𝑥1𝑖−�̅�1)(𝑥2𝑖−�̅�2)𝑖

�∑ (𝑥1𝑖−�̅�1)2 ∑ (𝑥2𝑖−�̅�2)2𝑖𝑖
          (34) 

 The second measure of dependence that Oh and Patton (2012) use is the quantile dependence. 

This measure of dependence measures the probability that an observation of one variable is in the q-tail 

of that variable, given that the same observation is made for another variable. It can be defined as: 

𝜏𝑞 = �

1
𝑞

Pr[𝑈1 ≤ 𝑞,𝑈2 ≤ 𝑞]             𝑞 ∈ (0,0.5]
1

1−𝑞
Pr[𝑈1 > 𝑞,𝑈2 > 𝑞]     𝑞 ∈ (.5,1) 

�         (35) 

Where 𝑈𝑖 = 𝐷𝑖(𝑌𝑖) ∼ 𝑈𝑛𝑖𝑓(0,1) are the transformed variables of the simulated 𝑌𝑖.  The probabilities can 

be obtained by simulating 𝑌𝑖, summing the occurrence of the even happening and dividing by the total 

number of simulated variables. Oh and Patton (2012) show with these measures of dependence that 

different features from financial assets might be better captured by a flexible copula that incorporates 

asymmetric dependence. Note that the quantile dependence converges to the upper and lower tail 

dependence coefficients for q ->1 and q->0, respectively. 

 The actual estimation of the parameters is done by using these measures of dependence. They 

basically compare characteristics of the residuals to the characteristics of the simulated copula and try to 

get it as close as possible. The task at hand is to estimate a vector of px1 copula parameters, which is 

based on the standardized residuals  𝜂𝑖𝑡 and the simulation from the copula.  
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 Let 𝑚𝑠(𝜃)�  be the vector with mx1 dependence measures, which is computed by simulating S 

times from the supposed joint distribution 𝐹𝑦(𝜃) (with copula C(𝜃))and let 𝑚𝑡�  be the dependence 

measures that are computed by using the residuals  𝜂𝑖𝑡. The exact method for calculating the 

dependence measures in the following formula is defined in Appendix A. The estimation is defined as 

follows: 

𝜃𝑇,𝑆� = 𝑎𝑟𝑔𝑚𝑖𝑛𝜃∈Θ 𝑄𝑇,𝑆(𝜃)       T=1,…,t       (36) 

𝑄𝑇,𝑆(𝜃) = 𝑔𝑇,𝑆(𝜃)′𝑊𝑇𝑔𝑇,𝑆(𝜃)         (37) 

𝑔𝑇,𝑆(𝜃) =  𝑚𝑡� −𝑚𝑠(𝜃)�         (38) 

Where S is the amount of simulations and W is some positive definite weight matrix, which may or may 

not depend on the data. In this paper it will be set to the identity matrix, which is also done in Oh and 

Patton (2012) on certain occasions, since the use of an efficient weight matrix produces similar results in 

Oh and Patton (2012). Oh and Patton (2012) also show, under regularity conditions, that this estimator is 

consistent and asymptotically normal, which means that as the sample size and the number of 

simulations increase the estimates become more reliable. They find it to be a reliable and sufficient 

method for estimating the parameters of a factor copula. However, this estimation method does come 

at a price, which will be discussed later on. 

3.3 Inference for Copula Models 

 This section covers inference on the parameters of copula-based multivariate models. The main 

focus will be acquiring the variance of the estimated parameters. A short explanation will be provided of 

which methods are used in this paper. The procedure for the estimation of the variance of the 

parameters will differ across the estimation methods that were used for the copulas. In this paper this 

can be identified as the SMM-like estimation (factor copula) and the maximum likelihood (Normal, 

Student-t and Clayton copula).  

 

3.3.1 Multi-stage maximum likelihood estimation  
 In this paper a multi-stage estimation is used. This is useful as the marginal distribution and 

copulas can be estimated separately. As for one-stage MLE, under regularity conditions, the MSMLE is 

asymptotically normal: 
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√𝑇�𝜃�𝑇,𝑀𝑆𝑀𝐿 − 𝜃∗�
𝑑
→ 𝑁(0,𝑉𝑀𝑆𝑀𝐿∗ )  𝑎𝑠  𝑇 →  ∞       (39) 

 Where T is the length of the time series, 𝜃�𝑇,𝑀𝑆𝑀𝐿 is the vector of estimated parameters, 𝜃∗ is the 

true vector of parameters and 𝑉𝑀𝑆𝑀𝐿∗  is the asymptotic variance matrix of the parameters. Acquiring 

𝑉𝑀𝑆𝑀𝐿∗  using a sandwhich approach can be quite tedious (Patton, 2012). However, an alternative, less 

tedious, method is to use a block bootstrap for inference. This can be done as follows: 

1. Use a block bootstrap (stationary bootstrap of Palitis and Romano (1994) for example) to 

generate B bootstrap samples with length T. (e.g., B=1000)  

2. Estimate the copula using the MSMLE for every bootstrap sample. 

3. The result should be 1000 estimations for every parameter. For every parameter, take the 𝛼/2  

and 1- 𝛼/2 of this distribution �𝜃�𝑖�𝑖=1
𝐵

 to obtain the 1-𝛼 confidence interval of the parameters. 

3.3.2 SMM 
 For the factor copula used in this paper a SMM-like estimation is used. Under regularity 

conditions, if S/T → ∞ 𝑎𝑠 𝑇 → ∞, the SMM estimator is consistent and asymptotically normal: 

√𝑇�𝜃�𝑇,𝑆 − 𝜃∗�
𝑑
→ 𝑁(0,Ω∗)  𝑎𝑠  𝑇, 𝑆 →  ∞     (40) 

𝑤ℎ𝑒𝑟𝑒 Ω∗ = (𝐺∗′𝑊∗𝐺∗)−1𝐺∗′𝑊∗Σ∗𝑊∗𝐺∗(𝐺∗′𝑊∗𝐺∗)−1 

Where Σ∗ is the asymptotic variance, 𝐺∗ is the derivative of 𝑔∗(𝜃)  at 𝜃∗, 𝑔∗(𝜃) = 𝑝 − 𝑙𝑖𝑚𝑇,𝑆→∞𝑔𝑇,𝑆(𝜃) 

and 𝑊∗ is the weight matrix (the asterisk indicating the true values). These components require different 

estimation than standard applications (e.g. GMM application). A iid bootstrap can be used to create a 

consistent estimator for Σ∗ and the standard numerical derivative of 𝑔𝑇,𝑆(𝜃) at 𝜃�𝑇,𝑆 can be used as a 

consistent estimator for 𝐺∗, conditional on the fact that the step size of the numerical derivative 

approaches zero slower than 1
min (√𝑆,√𝑇)

. An elaborate explanation of this procedure can be found in the 

paper: “Simulated Method of Moments Estimation for Copula-Based Multivariate Models” (Oh and 

Patton, 2013). 

 

3.4 Forecasting VaR 

After all the parameters of the different copulas are estimated, forecasting the VaR is the only 

task that remains. The Value at Risk will be denoted as 𝑉𝑎𝑅𝛼,𝑡,ℎ, where α is the chance of observing a 
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return lower than the VaR, t is the time and h is the forecast horizon. The measure of this risk all 

depends on the econometric model used and the forecast method (direct or iterated). 

Because copulas don’t allow an analytic approach to the calculation of the h-day ahead value at 

risk, the iterating and direct approach need to make use of simulated data. The process for the direct 

forecast is explained in the following steps: 

1. After the estimation of the parameters, draw a vector of standard uniformly distributed 

random variables, per financial asset, from the copulas with the estimated parameters. 

Matlab supplies an easy to use ‘copularnd’ function. The user simply needs to supply the 

parameters and the type of copula. For the Factor copula, see appendix B.  

2. Use the inverse of the marginal distributions on the standard uniformly distributed variables  

to simulate the standardized returns. In this case the normal distribution. 

𝑒𝑖𝑠 = Φ−1(𝑢𝑖𝑠)   (41) 

Where i is the financial asset and S is an arbitrary amount of simulations.  

3. See formula 22. The returns can now be simulated by: 

 

𝑋𝑖,𝑡+ℎ = 𝜇𝑖𝑡 + 𝜎𝑖𝑡+ℎ𝜂𝑖𝑡+ℎ    (42) 

Where 𝜎𝑖,𝑡+ℎ can now by procured from the univariate GARCH process by forecasting one 

step ahead, 𝜇𝑖𝑡  from the univariate GARCH process and 𝜂𝑖,𝑡+ℎ is simply the simulated 

standardized return in equation 41. 

Once the returns are simulated, the portfolio returns are calculated according to formula 2. Next, the 

returns are sorted according to value and the α% absolute value is identified, which is the 𝑉𝑎𝑅𝛼,𝑡,ℎ. 

The process of the iterated approach is done in a similar manner. The main difference is that the 

process includes multiple step ahead forecasts. Also, for the iterated approach, the dependence 

structure and its parameters are held constant. Even though dependencies are known to change over 

time, this assumption is plausible for a short horizon. The structure above for the direct forecast can be 

modified slightly in step 3 to explain the process for the iterated approach:  

3.    See formula 22. The returns can now be simulated by: 
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𝑋𝑖,𝑡+𝑗∗𝑘 = 𝜇𝑖,𝑡+𝑗∗𝑘 + 𝜎𝑖,𝑡+𝑗∗𝑘𝜂𝑖,𝑡+𝑗∗𝑘   𝑗 = 1, . . , ℎ
𝑘

    (42) 

Where k is the data frequency and j is the iteration (set j=1 at initiation).  𝜎𝑖,𝑡+𝑗∗𝑘 can now be 

procured from the univariate GARCH process by forecasting one step ahead, 𝜇𝑖,𝑡+𝑗∗𝑘 from the 

univariate GARCH process and 𝜂𝑖,𝑡+𝑗∗𝑘  is simply the simulated standardized return in equation 

41. Set j=j+1 and return to step 1 with the newly simulated time series in order to estimate new 

parameters. Continue this process until j=h/k, where h is the forecast horizon and k is the data 

frequency.  

Finally, the value at risk is found in the method described above for the direct forecast. 

3.4 Forecasting kES 

The occurrence of the financial crisis reminded us that there is always risk. This called for the need of 

management and measure of systemic risk. Brownlees and Engle (2011) proposed a new measure of 

systemic risk: Marginal Expected Shortfall (MES). It is defined as the expected return on asset I when the 

market return is below a certain threshold. 

𝑀𝐸𝑆𝑖𝑡 = 𝐸𝑡−1[ 𝑟𝑖𝑡 | 𝑟𝑚𝑡 < 𝐶]       (43) 

Where  𝑟𝑖𝑡 is the return on a financial asset i, 𝑟𝑚𝑡 is the market return, 𝐸𝑡−1 is the expected value with 

information up to t-1 and C is an arbitrary small number. In this paper, the information up until t is used 

and by the use of simulation the MES is calculated for a horizon h. 

Oh and Patton (2012) used this idea to come up with another different measure of systemic risk, the kES. 

This is the expected return of asset i when the return of k different assets fall below a certain threshold. 

𝑘𝐸𝑆𝑖𝑡 = 𝐸𝑡−1[ 𝑟𝑖𝑡  | ∑ 𝟏{𝑟𝑗𝑡 < 𝐶𝑁
𝑗=1 } > 𝑘]      (44) 

This is the measure that will be used. Brown and Engle (2011) found a simple way of ranking these 

estimates in order to compare models. Oh and Patton (2012) adjusted this method accordingly to the 

kES. This will be presented in the next section. 
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3.5 Evaluating VaR and kES forecasts 

In this section the VaR and kES forecasts are evaluated, starting with the VaR forecasts. VaR 

forecasts are evaluated according to their number of violations. A violation occurs when the actual 

portfolio return is below the predicted VaR. For an accurate VaR, it would be expected that the VaR 

would violate  α * F times. As VaR is always expressed in positive values, the amount of violations is 

defined as: 

𝑉𝑡 = ∑ 𝟏{𝑟𝑝,𝑡,ℎ < − 𝑉𝑎𝑅𝛼,𝑡,ℎ
𝑇
𝑡=1 }      (45) 

Where 𝑉𝑡 is the  amount of violations and T is the amount of the out-sample forecasts. These violations 

are then backtested in order to check whether the forecasted VaR’s correspond to the value of α. This is 

done according to an unconditional coverage test and this will test whether the amount of violations 

corresponds to its theoretical value α.  This is done by using the likelihood ratio: 

𝐿𝑅𝑢𝑐 = (1−𝜋𝑒𝑥𝑝)𝑛0𝜋𝑒𝑥𝑝𝑛1

(1−𝜋𝑜𝑏𝑠)𝑛0𝜋𝑜𝑏𝑠
𝑛1                − 2ln (𝐿𝑅𝑢𝑐) ~ Χ𝑣=12       (46) 

Where 𝜋𝑒𝑥𝑝 is the theoretical proportion of violations, 𝜋𝑜𝑏𝑠 the observed proportion of violations, n0 is 

the amount of times that the return does not exceed the VaR (non-violations)  and n1 is  the amount of 

violations. The test statistic, −2 ln(𝐿𝑅𝑢𝑐), is asymptotically chi squared distributed with one degree of 

freedom. As this tests whether the threshold is violated, it doesn’t look at the fact that a model could 

underestimate the VaR, which in turn would create no violations and might come out as the best model. 

However, this is of concern for banks. As the capital requirement for banks is directly related to the 1% 

VaR, this could mean a bank would have to hold too much capital and they would be missing out on a 

vast amount of investment opportunities.  

 The kES is evaluated in a similar manner as the simple Mean Squared Error evaluation: 

𝑀𝑆𝐸𝑖 = 1
𝑇
∑ (𝑟𝑖𝑡 − 𝑘𝐸𝑆𝑖𝑡)2𝑇
𝑡=1  1{∑ 𝟏{𝑟𝑗𝑡<𝐶𝑁

𝑗=1 }>𝑘}     (47) 

𝑟𝑒𝑙𝑀𝑆𝐸𝑖 = 1
𝑇
∑ (𝑟𝑖𝑡−𝑘𝐸𝑆𝑖𝑡

𝑘𝐸𝑆𝑖𝑡
)2𝑇

𝑡=1  1{∑ 𝟏{𝑟𝑗𝑡<𝐶𝑁
𝑗=1 }>𝑘}     (48) 

Where MSE is the mean squared error, relMSE is the relative mean squared error and  𝑟𝑖𝑡 is the actual 

return of the stock. A higher MSE compared to another model means that the model overestimated or 

underestimated the return even more than the other model. A higher RMSE (relMSE) combined with a 
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lower MSE compared to another model means that even though the model might have had a better 

estimation, the model tends to low MSE’s. This can be expected with models that tend to simulate low 

correlation between assets.  In the next section there will first be a look at the data that was used to 

compare the models and risk measures. 

3.6 Copula expectations 

 Before looking at the results and picking a winner amongst the competitors, a small simulation 

study is used to see whether the theory matches the results in terms of performance. Thus, first the 

expectations are expressed in this section and in the results these are compared to see if the theory can 

explain the performances of the copulas. In table 1 we can see the simulation results for the VaR of the 

different copulas. The 1-day and 10-day VaR for three assets are estimated by using the parameters 

given in table 1 to simulate a time series (N=5000) and then the VaR is calculated by taking the α% 

absolute value. The time series are generated by using the parameters to draw 5000 simulations of 

standard uniformly distributed variables from each of the copulas, which then are transformed into 

standard normally distributed variables such as in formula 41. Then, by combining the parameter 

estimates of the GARCH(1,1) process and the simulated standard normal variables, the simulated returns 

can be calculated by formula 43.  

For the table on the left the VaR is estimated with linear correlation of 0.5 between the three 

variables and the other parameters are the same as in figure 1. On the right we observe the VaR 

forecasts for a different set of parameters and hence, different linear correlations. These estimations are 

the result of the first in-sample, which is defined in the next section. This can be useful as it illustrates 

the different behavior of the copulas and their influence on the VaR. For example, it illustrates how the 

equidependence of the Clayton copula results in a weak lower tail dependence and thus, might not show 

the characteristics one would expect such as in figure 1. The parameters used are: correlations for the 

Normal and Student t copula are around .26, .28 and .46, degrees of freedom is 4 and for the Clayton 

copula alpha is .28. For the factor copula: degrees of freedom (factor)=4.47, λ=-0.12, degrees of 

freedom(epsilon)=2.96, Beta1=1.88, Beta2=0.85 and Beta3=0.91.  

[Insert table 1 here] 

 Looking at table 1, for the VaR forecasts with a linear correlation of 0.5 we see that the Clayton 

does indeed produce the largest VaR forecasts for most of the different forecast horizons and VaR 



23 
 

parameters. The most interesting thing to see is that the factor copula produces second or third largest 

1%VaR, but produces lowest 5% VaR. This is interesting because this might be an indication of the 

flexible nature of the factor copula. Large negative returns are more correlated than smaller negative 

returns, which might also be the case with other copulas, but this effect might be stronger with the 

factor copula. Now if we look at table 2, the VaR of the copulas gives us a completely different image. 

The parameters for this table are shifted in a different direction in order to show the potential shifts in 

VaR forecasts between models. We see that the Clayton copula is thrown of its throne and the Student-t 

copula clearly leads in largest VaR forecasts. This is where the one-parameter-limitation of the Clayton 

copula shows. It has trouble modeling for higher dimensions than 2 and produces quite low dependence. 

It now produces VaR forecasts around the Normal Copula or lower. This means, while we expect a low 

amount of violations for the Clayton with a large parameter, we now expect a lot more. The other 

remarkable thing is the factor copula, that has quite low 1% VaR and 5% estimates. However, due to the 

variability and computational difficulty of this copula, this can change a lot. Hence, it could lead to a large 

or a low amount of violations. The least number of violations is expected for the Student-t copula as its 

estimates are quite high, resulting in less violations. To see whether this is a good result depends on 

whether the observed amount of violations matches the expected amount of violations. Financial 

institutions might have to hold too much capital as a result of a low amount of violations, which might 

mean losses of potential investments. 

 To give an idea what kind of quantiles the C values in the kES mean, table 2 shows the quantile 

values for different values of sigma.  

[Insert table 2 here] 

      It can be seen that the quantiles depend very much on the volatility of an asset. With a 

volatility of 1% the values C=-2% and C=-3% indicate large negative return, while higher volatilities 

indicate this in a less severe manner. It can be said that the extremity of the quantile depends heavily on 

the volatility of the asset and that the values of C should be chosen accordingly.  

4 Data 

In the empirical analysis, data from Yahoo Finance is used. Yahoo Finance has an enormous 

database for the most common stocks and provides an easy access to historical prices. Plus, Yahoo gives 

the option for downloading stock prices daily, weekly and monthly making it easier for the researcher to 
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create the desired dataset. It does limit itself in sense that data can only be downloaded one at a time. 

Yahoo doesn’t provide the option of downloading historical prices for a certain amount of tickers. Yahoo 

Finance can be found via yahoo.com. In this paper, 10 stocks from the s&p 100 were chosen in order to 

perform the empirical analysis. Oh and Patton (2012) used all 100 stocks of the s&p 100 for their 

analysis, but unfortunately this was impossible in this paper due to computational limitations. However, 

to have similar data, stocks from the s&p 100 were chosen.  

 In appendix C the chosen stocks are listed. The spot prices and weekly spot prices cover the 

sample period 30-5-1986 till 13-5-2013, containing 5796 returns. In the case of weekly returns this 

results into 1159 weekly returns. Furthermore, the rolling window in-sample for the daily and weekly 

returns that was used was 3000 and 600, respectively, which corresponds to around 12 years in-sample. 

The out-sample is roughly eleven years. Also, in this paper a sub period is examined, which covers the 

period between 2-1-2003 and 2-1-2007. This period is chosen due to the fact that it is known as a period 

without turmoil. The behavior/performance of the copulas might differ across different states of the 

economy, which tests the flexibility of a copula. Other sub periods show similarities to the complete out 

of sample period with crises and such.    

The large in-sample is chosen so that the weekly data contains enough data for the factor 

copula. Oh and Patton (2012) stipulate that for the estimation of a factor copula a large data set is 

essential for the accuracy of the parameter estimation. They set their dataset at N=1000, whereas the 

weekly data in this paper has 600 observations, which should be sufficient. However, this is a moment to 

realize that even though the factor copula shows a great deal of flexibility, it also shows a great deal of 

limitations.   

 To get a better understanding of what type of data we’re dealing with, table 3 shows a summary 

of some data statistics for the 10 stocks from the s&p 100. 

[Insert Table 3 here] 

It can be said that for this period average return was close to zero. Certain stocks were certainly also a 

lot more volatile than others as the standard deviation varies from  1.71% to 3.36% approximately. This 

high volatility can be explained by crashes such as the dotcom crash in the early 2000’s or extremely bad 

quarterly results like with Apple in 2001. These events can explain large crashes that are present in the 

data. Note that the returns are calculated by taking the log difference and that this approximation for 

short term returns does not hold for large returns. Thus, for some large returns this approximation does 
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not hold, but only happens on rare occasion. This must prove to be a difficult task for the copulas as it 

would be for any model to model large crashes with a large in-sample (even for a small in-sample). 

However, this insample is needed for the factor copula. Furthermore, we see that stocks either have a 

positive or a negative skewness, which concurs with the literature. We also see high kurtosis, which is to 

be expected as returns usually show fat tails, meaning that extreme returns are to be expected more 

often than under normal assumption. The financial returns stylized facts (skewness and large kurtosis) do 

appear to be present in the weekly returns, even though it might be somewhat weak.  

 The Jarque-Bera values are fairly large, which is a test-statistic for the assumption of normality. 

The Jarque-Bera probability (right below the Jarque-Bera values) rejects the assumption of normality for 

all stocks, meaning that that it might be useful , for further research, to investigate optimal marginal 

distributions.  

 Table 4 shows the correlation between the stocks chosen from the s&p 100.  

[Insert Table 4 here] 

The correlations for the stocks vary from around 0.16 up to around 0.61, which might prove to be a fair 

diversification as most stocks are not so much correlated with each other, but it doesn’t single out the 

possibility of a major crash of such a portfolio. However, the aim of this paper doesn’t lie in optimal 

portfolio choice.  

 As this paper also deals with non-linear forms of dependence, table 5 shows the quantile 

dependences for the entire sample period for values of q=0.05, 0.1, 0.9 and 0.95. From the tables can be 

deduced that the lower quantile dependences are stronger than the upper quantile dependences. This 

would suggest that the incorporation of asymmetric tail dependence would be justified in the factor 

copula and the Clayton copula. However, the table also shows that the upper quantile dependence is 

weaker, but positive, which might indicate that upper tail dependence is non-zero. This is not captured 

by the Clayton copula and therefore weakens the arguments for the use of a Clayton copula. 

[Insert table 5 here] 

 Figures 2 and 3 show the correlations and the quantile dependences over sub periods with 

windows of 200 observations for different stocks for the entire sample period. These graphs show that 

these dependencies can be quite volatile and especially in times of crises. Correlations vary from around 

0 to around 0.7 and quantile dependence from around 0.1 to 0.8. These volatile correlations are 
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observed throughout all stocks and therefore further graphic display is unnecessary. The volatile 

correlations might indicate that the large in-sample requirement of the factor copula poses another 

restriction, as the data might suggest that dependences could vary greatly within sub periods. 

[Insert figure 2&3 here] 

5 Results 

The data described in the previous section is used to estimate the risk forecasts. These are then 

evaluated for daily and weekly data, for all forecasts horizons (1, 5 and 10 days) and for all copulas of 

course.  However, before we compare and analyze the end results of the different types of copulas, this 

paper first takes a look at the estimations of the copulas.  

5.1 Copula Estimations 

 Looking at the copula estimations in more depth can be quite useful, as this can display the reliability 

and the goodness of fit in more detail. A reliable and well fitted copula would then indicate better 

predictive power. 

5.1.1 Tail dependence 

In this section the scatter plots of a bivariate simulation of the copulas are created once again, but now 

with the in-sample estimates of two stocks (American Express Inc. and Baxter International inc., which 

are good representatives of characteristics between the 10 stocks). The parameter estimates can be 

seen in table 7, which will also be discussed later on. This scatter plot will show whether the copula still 

show their characteristic features as they did in the methodology section. In figure 4 the scatter plots are 

shown of the bivariate simulations for the four copulas. This time the parameter estimates of the in-

sample are used and should result in different modeled dependencies. It can be seen that the Normal 

copula behaves fairly the same. However, it seems that the strong characteristics of the other copulas 

seem to have become weaker. The lower tail dependence of the Clayton copula has become weaker, 

which is also the case for the symmetric dependence of the Student-t copula. The factor copula is quite 

vague; not showing asymmetric dependence. Figure 5 shows the same scatter plot for the standardized 

returns of the actual data. A quick glance might make one think to believe it is similar to the normal 
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copula or the factor copula. However, the visualization is not clear enough to draw any conclusions. In 

the next section, a goodness of fit test is done, which will clarify which is the best fit for the data.   

[Insert figure 4 & 5 here] 

5.1.2 Goodness of Fit 

In table 6 the RSME for the goodness of fit test of the copulas are given. A goodness of fit of a statistical 

model measures how well the model fits the data. The goodness of fit test was done by constructing the 

empirical copula and the fitted copulas for 2 variables. The empirical copula is based on sample order 

statistics, which involves ordering the observations of two variables in increasing order of magnitude. 

Then, the empirical copula is defined as follows: 

𝐶 �𝑖
𝑇

, 𝑗
𝑇
� = 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑎𝑖𝑟𝑠 (𝑥,𝑦)𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑥≤𝑥𝑖 𝑎𝑛𝑑 𝑦≤𝑦𝑗

𝑇
 (49) 

where 𝑥𝑖 and 𝑦𝑗 are the ordered variables. For the estimated copulas the same can be done. A time 

series of the same length can be created by the data generating process of section 3.6. Then, in a similar 

matter a fitted copula can be computed, after which the RMSE can be calculated. 

It can be quickly seen that the factor copula provides the best fit.  One might conclude that the 

conclusion is evident; the factor copula is expected to provide the best forecasting power. However, this 

conclusion might be premature. It all depends on the limitations in terms of time, knowledge or facilities 

of a researcher, portfolio manager, student, etc. One might be interested in the estimation for a large set 

of variables or demand that the estimation takes less than 2 minutes. The question remains how 

applicable the copulas are. This will be elaborated in the following section. 

[Insert table 6 here] 

5.1.3 Reliability of Copulas  

In table 7 the parameter estimates for the in-sample are given with the matching variance, standard 

deviation and confidence interval with alpha=0.05. This is done for the stocks of American Express Inc. 

and Baxter International inc. The estimates of these two variables resemble the problems that arise from 

the estimation of 10 variables and hence, provide an adequate view on the accuracy of the parameter 

estimates. A quick glance can tell that the factor copula estimates seem to have higher variances and 
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thus, a larger confidence interval. This seems to make the factor copula a less reliable candidate as its 

parameters vary quite a bit around the true parameter. This might indicate that the amount of 

simulations wasn’t high enough as the accuracy of the parameters rely on a high amount of simulations. 

However, as will be explained later on, this comes at a price. It isn’t clear however what impact the high 

variance has on the copula fit.  

[Insert table 7 here] 

In table 6 the goodness of fit is tested once more. This time the lower and upper bound of the 

confidence interval of the factor copula parameters are compared to see whether the uncertainty 

impacts the goodness of fit severely. Thus, we investigate how sensitive the factor copula fit is compared 

to its parameters. The RMSE shoots up for the lower and upper bound of the parameters. Clearly, the 

goodness of fit is quite sensitive to variation in parameters. An increase in certainty can be accomplished 

by a higher amount of simulations. However, as shown below, this comes at a cost. 

In table 8 the estimation time of this factor copula is shown for different sizes of a portfolio and different 

size of simulation. Also, as a comparison, the estimation times for a Student-t copula are presented. 

Results show that large simulations for large portfolios become a time consuming operation. This makes 

the factor copula less applicable for certain causes. A portfolio manager interested in the VaR of a large 

portfolio of 50 variables might have to wait a week before the estimation would be done. However, the 

estimation time for the factor copula does increase at a slower pace than the Student-t copula (which 

seems to increase exponentially or in other words, really fast), which might mean that the factor copula 

is a better prospect for future use. Keep in mind, though, that external factors might influence these 

results such as the standard estimation methods in Matlab, which might not be the most efficient way to 

estimate the copulas.         

[Insert table 8] 

5.2 VaR & kES Evaluation 

In this section the evaluations of the different horizon VaR forecasts are presented for the different 

copulas. From the simulation study a few expectations were derived. The Student-t would show the least 

amount of violations, followed by either the Normal or Clayton. The factor copula turned out to be weak 

on the 5% VaR, supposedly performs poorly under low frequency data and is supposed to perform better 

for higher dimensions. The results for a portfolio of 3 assets are presented in table 9 below. It shows the 
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results for weekly and daily data, for the four copulas, the 1, 5 and 10-day VaR at significance levels of 

1% and 5%: 

[Insert table 9 here] 

 With a quick glance, it can be seen that the Student-t mostly dominates on terms of violations as 

expected. The Clayton copula underestimates the VaR as expected due to the low parameter estimation 

and loses to the other copulas in terms of VaR violations. The Normal Copula comes in second or third 

most of the times. The factor copula, being the most interesting copula, actually does not underestimate 

the VaR too much in all cases, which might have been expected after the pre-study. The factor copula 

does perform weakly for the 5% VaR and weekly data, which was to be expected. The surprising aspect 

of the factor copula is that is does outperform the other copulas for the 10-day VaR at 1%, which might 

indicate a stronger estimation for longer forecast horizons. At a 5% level, the factor copula comes in 

second, which isn’t a bad result and again might confirm the performance strength for longer forecast 

horizons. Apart from the copulas, it can also be noted that the direct forecasts of the 5-day VaR slightly 

outperform the iterated forecasts, which is not a huge surprise as iterated forecasts are more prone to 

biase due to possible misspecification. 

 Apart from the VaR forecasts, the kES was also computed for one variable at k=1, C=-2% and C=-

3% for 3 assets and at k=3, C=-2% and C=-3% for 10 assets. First, the results for 3 assets are presented. 

[Insert table 10 here] 

 The MSE is dominated by the Clayton copula as it has the lowest MSE for every type of output. However, 

it performs poorly in terms of relMSE. This could mean that the Clayton copula estimation results in a 

small parameter, meaning a low correlation between assets. This is confirmed throughout this paper and 

is thus a reasonable explanation for its results, since a low correlation could mean conservative 

predictions and on average result in low prediction errors. For the relMSE, the Student-t copula performs 

really well. However, performs poorly in terms of MSE. This is probably explained by the overestimation 

of the kES due to the strong negative tail dependence.  

 When we look at the results for the estimation with 10 assets, we see some changes. In table 11 

the results are presented: 

[Insert table 11] 
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We can see that the Student-t remains the victor and shows the least amount of violations and closest to 

the expected amount of violations. The Clayton copula performs badly as the higher dimension is too 

much to handle for the Clayton copula due to the equi-dependence across all assets. It can be seen that 

for higher frequency data and higher dimensions, the factor copula performs badly compared to the 

other copulas. It underestimates the VaR by far. This might due to the estimation inaccuracy described in 

the section above. For the weekly data, the factor copula performs mediocre, which is somewhat of a 

surprise as the expectation was that weekly data estimation could result in less accuracy. However, this 

also means that when there is a sub-optimal solution and there are less iterations for the forecast, the 

weekly data might end up with less violations because the iteration will add up to less error than with 

daily data.  

On further note, in table 12 it can be seen that the copulas perform similarly in a 10 asset 

scenario  compared to 3 assets for evaluations of the kES. 

[Insert table 12 here] 

Just like the kES in combination with 3 assets, the MSE is dominated by the Clayton copula as it has the 

lowest MSE for every type of output. However, it performs poorly in terms of relMSE. For the relMSE, 

the Student-t copula performs really well again. However, performs poorly in terms of MSE. These 

results of the kES, with two different sets of variables, might suggest that it´s a relatively new method to 

measure risk and a definite way to implement the kES for out-of-sample results is yet to be found.  

 After evaluating the out of sample, another out of sample was introduced in the data section; a 

sub period. This period resembles a period without turmoil (e.g. the credit crisis) and it would be 

interesting to see how the copulas cope with periods of tranquility. It would be interesting as, for 

example, the Student-t might overestimate the VaR by a long shot and have an undesired low amount of 

violations.  As the focus in this paper is mainly the VaR, the kES is not incorporated for the sub period. 

The results for the VaR estimations with 3 assets are presented below: 

[Insert table 13 here] 

 It is important to see that the Student-t still dominates for the 1% VaR on all forecast horizons, 

which is the most important VaR as it is economically applicable. We do see however that other copulas 

dominate the 5% VaR on both daily and weekly data. The Student-t overestimates and gets a low 
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amount of violations. In general, no preference can be seen between low frequency data or higher 

frequency data. 

 Table 14 present the results for 10 assets: 

[Insert table 14 here] 

 The results for the 10 assets are actually comparable to the estimation with 3 assets. The 

Student-t mostly dominates the 1% VaR and on the 5% VaR overestimates. This leaves room for the 

other models to get closer to the expected 5% violations. Again, low frequency or high frequency data 

doesn’t come out as a convincing victor.  

5.3 Factor Copula: Computational Limitations 

 The factor copula shows a lot of potential and leaves room for even more flexibility in the 

dependence structure (see Oh and Patton (2012)). However, the factor copula does come with its 

limitations and cannot be ignored in this paper. The limitations come down to a huge computational 

disadvantage compared to the other copulas, which can be divided in the following sub-problems: 

- The factor copula estimation process relies solely on simulation. Of course, a large enough 

simulation sample would potentially mitigate this fundamental problem. However, the 

advantage of less parameters (and computation time) disappears as the estimation time 

increases quite rapidly when the size of the simulation sample is increased. This increase in 

estimation time can be the difference between hours and days. Especially a study exploring 

forecasts in combination with a large out of sample and long forecast horizons, which is the 

case in this paper.  

-  The objective function of the factor copula tends to have a lot of local minima. Hence, there 

are occasions that a suboptimal solution is reached. This can be reduced by reducing the 

function tolerance (increasing accuracy), but this also is at the cost of computation time and 

introduces the aspect of human judgement in what is a just function tolerance.  

- A higher dimension comes at a cost, which again is the computation time. This makes sense 

as it happens with any model. However, the benefit of the parameter reduction does not 

show in terms of computation time even though Oh and Patton(2012) praise the model for 

its use with high dimensions. Hence, the dimension remains a burden. 
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Due to these problems it is advised to set out a large grid of data points and try to approach the 

global minimum. This way, the first estimation doesn’t get stuck in a local minimum and the next 

estimation will go a lot smoother. 

The model leaves room for two possible solutions. The first is that Oh and Patton (2012) put a 

restriction on the common factor, which causes a reduction in the number of parameters to be 

estimated (see Oh and Patton (2012) for “block equidependence” ). The second option would be 

increasing computational power. This could be in terms of using a high-end computer, but this could also 

mean the use of a supercomputer. An increasing amount of universities house a supercomputer for 

researchers to use, so this could be a more realistic solution for students and professors in the future. An 

out-of-the box solution would be to assemble the parts in order to build a home supercomputer, which is 

becoming increasingly more viable possibility. See Durham and Geweke (2012) for more information 

about the possibilities of enhanced programming. All in all, the vivid development of technology could 

mean a great lot to the field of research, which could mean the rise of the factor copula.  

6 Conclusion 

In this paper a newly proposed copula, the factor copula (introduced by Oh and Patton(2012), 

was compared to other well known copula in terms of out of sample risk forecasts. The factor copula also 

required a new method of estimation, which is comparable to the Simulated Method of Moments. Oh 

and Patton (2012) proved that this method can be a reliable method estimation. However, the 

requirement of immense large simulations and large datasets slows the factor copula estimation down 

and makes an out of sample study a challenging task. Hence, a researcher might choose to use some 

restrictions, which might lead to sub optimal estimations.  

 The copulas were compared in terms of VaR and kES. The Student-t copula proved to be 

superior in most cases for the 1% VaR and for the 5% VaR it differed quite a lot. In terms of high 

frequency versus low frequency, the low frequency data was mostly preferred. The factor copula did 

show a great deal of flexibility, but didn’t manage to keep up accuracy. However, this might be greatly 

influenced by the problems discussed above. 

 This paper leaves a lot to discuss and suggest. To begin with, the factor copula leaves a lot to 

investigate. As the estimation time of the factor copula was quite a burden in this paper, it would be 

interesting to investigate the gain in accuracy when the dimension increases, when size of simulations 
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increase and when the function tolerance1

 In this paper the Normal distribution was chosen for the marginals. This, which could be widely 

discussed, might not be the most suitable distribution for the marginals. It would be intriguing to see 

how different types of marginals compare across these different copulas. A usual suspect would be the 

Student-t distribution, which might be a better suit for financial assets.      

 is changed. This would give more of an idea of how applicable 

this copula is. As far as this paper goes, estimation for more than 50 variables would be very time 

consuming in a large out of sample study. These suggestions above could be possible easier realized in 

the nearby future. Innovation keeps ascending technology to the next level, which means the curse of 

dimensionality could become less of a problem and more a myth from the past.  

 And last, but not least, Oh and Patton (2012) also propose another extension on top of the Skew 

t-t factor copula used in this paper. This would leave room for even more flexibility. However, this does 

mean extra parameters and estimation time. Oh and Patton (2012) also set restriction on the Beta 

parameters in their factor copula in order to reduce this problem and make it a more applicable copula. 

However, technology at the moment makes it inaccessible for the vast majority of people that share 

these interests. Perhaps the fast and vivid changing world of technology might soon make such 

researches more accessible.   

 

 

 

 

 

 

 

 

 

 

                                                           
1 The function tolerance determines when the change in the objective function is small enough to conclude that 
you have found an optimal solution. 
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Tables and Graphs 

Table 1 On the left VaR forecasts for the copulas with linear correlation of 0.5 for a set of 3 variables. Other parameters are the same as in figure 1 discussed previously. The 

1-day and the 10-day VaR are estimated with daily data and thus, the 10-day VaR is estimated with the iterative approach. On the right we observe the VaR forecasts for a 

different set of parameters. The correlations for the Normal and Student t copula are around .26, .28 and .46, degrees of freedom is 4 and for the Clayton copula alpha is .28. 

For the factor copula: degrees of freedom (factor)=4.47, λ=-0.12, degrees of freedom(epsilon)=2.96, Beta1=1.88, Beta2=0.85 and Beta3=0.91. This turns out to be the 

estimation result of the first in-sample, which is defined in the next section. 

  
correlation=0.5 

     
Various  estimation 

 
Normal Student-t Clayton Factor 

  
Normal Student-t Clayton Factor 

  
1-day 

     
1-day 

  1% 0.0335 0.0341 0.0386 0.0342 
 

1% 0.0296 0.0320 0.0302 0.0256 
5% 0.0234 0.0232 0.0252 0.0220 

 
5% 0.0206 0.0209 0.0205 0.0175 

           
  

10-day 
     

10-day 
  1% 0.0986 0.0943 0.0999 0.0952 

 
1% 0.0915 0.0962 0.0811 0.0568 

5% 0.0660 0.0638 0.0642 0.0615 
 

5% 0.0641 0.0649 0.0554 0.0386 

 

Table 2 This table shows the kES quantiles for different values of sigma and C in  equation . The quantiles are based on a large simulation and N(0,1) marginals, from which 

returns are simulated for a given sigma.  

  kES quantiles for different values of sigma 

 
σ= 

    Threshold 
 

1.00% 1.50% 2.00% 2.50% 
C= 

     -2% 
 

0.0225 0.0919 0.1585 0.208 
-3% 

 
0.0014 0.0225 0.0684 0.1154 
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Table 3 Summary statistics for the 10 s&p 100 stocks 

  AXP BA BAC Abbott AIG AME AMGN APACHE Apple BAX 

   
Daily returns since May 2008 

      Mean 0.04% 0.03% 0.02% 0.04% -0.01% 0.03% 0.07% 0.04% 0.06% 0.04% 
 Median 0 0 0 0 0 0 0 0 0 0 
 Maximum 18.78% 14.37% 30.20% 11.73% 50.68% 18.04% 14.06% 19.32% 28.77% 10.38% 
 Minimum -31.20% -31.20% -34.22% -31.20% -60.40% -31.20% -31.20% -31.20% -73.17% -31.20% 
 Std. Dev. 2.38% 2.01% 2.86% 1.71% 3.36% 1.52% 2.37% 2.43% 3.13% 1.85% 
 Skewness -0.35 -0.95 -0.44 -1.27 -0.53 -1.92 -0.33 -0.33 -2.28 -2.31 
 Kurtosis 14.65 18.89 29.11 27.49 63.07 57.91 12.79 11.70 60.95 37.66 

            Jarque-Bera 32875.51 61808.32 164736.9 146420.3 871400.9 731507.5 23237.43 18388.4 815856.6 295282.6 
 Probability 0 0 0 0 0 0 0 0 0 0 

            
Observations 5795 5795 5795 5795 5795 5795 5795 5795 5795 5795 

           
   

Weekly returns since May 2008 
      Mean 0.20% 0.11% 0.11% 0.18% 0.05% 0.11% 0.33% 0.18% 0.30% 0.16% 

 Median 0.24% 0.23% 0.23% 0.23% 0.08% 0.28% 0.33% 0.13% 0.49% 0.32% 
 Maximum 27.51% 18.57% 55.75% 26.43% 121.40% 35.00% 24.52% 18.74% 41.56% 18.19% 
 Minimum -60.52% -60.52% -60.52% -60.52% -60.52% -60.52% -60.52% -60.52% -70.69% -60.52% 
 Std. Dev. 5.08% 4.77% 6.43% 3.86% 7.88% 4.09% 5.16% 5.41% 6.96% 4.20% 
 Skewness -1.76 -2.59 -0.38 -3.24 3.33 -4.62 -1.39 -1.32 -1.39 -3.20 
 Kurtosis 24.73 31.54 25.30 57.71 67.69 74.94 21.08 16.87 19.50 44.05 

            Jarque-Bera 23403.21 40645.79 24044 146555.5 204233.3 254027.1 16165.5 9627.435 13524.68 83377.05 
 Probability 0 0 0 0 0 0 0 0 0 0 

            
Observations 1159 1159 1159 1159 1159 1159 1159 1159 1159 1159 
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Table 4 Correlation values for the selected stocks for the entire sample period. 

 
AXP BA BAC Abbott AIG AME AMGN APACHE Apple BAX 

AXP 1.00 0.43 0.61 0.32 0.45 0.35 0.31 0.29 0.28 0.31 
BA 0.43 1.00 0.36 0.30 0.31 0.33 0.27 0.30 0.23 0.31 
BAC 0.61 0.36 1.00 0.27 0.50 0.30 0.24 0.28 0.25 0.27 
Abbott 0.32 0.30 0.27 1.00 0.25 0.32 0.33 0.18 0.16 0.44 
AIG 0.45 0.31 0.50 0.25 1.00 0.29 0.18 0.23 0.18 0.24 
AME 0.35 0.33 0.30 0.32 0.29 1.00 0.23 0.28 0.17 0.31 
AMGN 0.31 0.27 0.24 0.33 0.18 0.23 1.00 0.18 0.24 0.31 
APACHE 0.29 0.30 0.28 0.18 0.23 0.28 0.18 1.00 0.17 0.20 
Apple 0.28 0.23 0.25 0.16 0.18 0.17 0.24 0.17 1.00 0.16 
BAX 0.31 0.31 0.27 0.44 0.24 0.31 0.31 0.20 0.16 1.00 
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Table 5 This table extends over the next two pages. From top to bottom, relatively, the quantile dependence of the sample period at q°0.05, 0.1, 0.90 and 0.95. 

 
AXP BA BAC Abbott AIG AME AMGN APACHE Apple BAX 

AXP 1 0.362 0.425 0.214 0.404 0.304 0.228 0.214 0.193 0.217 
BA 

 
1 0.297 0.238 0.311 0.262 0.197 0.238 0.173 0.235 

BAC 
  

1 0.169 0.473 0.255 0.190 0.224 0.166 0.197 
Abbott 

   
1 0.197 0.214 0.252 0.138 0.138 0.300 

AIG 
    

1 0.283 0.169 0.211 0.142 0.193 
AME 

     
1 0.183 0.224 0.138 0.214 

AMGN 
      

1 0.162 0.186 0.224 
APACHE 

       
1 0.121 0.190 

Apple 
        

1 0.128 
BAX 

         
1 

 

 

 
AXP BA BAC Abbott AIG AME AMGN APACHE Apple BAX 

AXP 1 0.378 0.471 0.283 0.435 0.305 0.302 0.252 0.257 0.293 
BA 

 
1 0.335 0.283 0.342 0.290 0.255 0.280 0.224 0.286 

BAC 
  

1 0.257 0.481 0.290 0.224 0.255 0.235 0.261 
Abbott 

   
1 0.266 0.262 0.309 0.188 0.198 0.364 

AIG 
    

1 0.318 0.248 0.266 0.221 0.280 
AME 

     
1 0.235 0.288 0.202 0.254 

AMGN 
      

1 0.224 0.248 0.286 
APACHE 

       
1 0.198 0.226 

Apple 
        

1 0.193 
BAX 

         
1 
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AXP BA BAC Abbott AIG AME AMGN APACHE Apple BAX 

AXP 1 0.305 0.449 0.267 0.419 0.276 0.247 0.240 0.247 0.245 
BA 

 
1 0.254 0.216 0.290 0.242 0.211 0.254 0.192 0.235 

BAC 
  

1 0.233 0.426 0.243 0.202 0.250 0.212 0.207 
Abbott 

   
1 0.255 0.242 0.254 0.173 0.167 0.305 

AIG 
    

1 0.252 0.195 0.233 0.192 0.231 
AME 

     
1 0.178 0.200 0.185 0.204 

AMGN 
      

1 0.164 0.228 0.221 
APACHE 

       
1 0.200 0.160 

Apple 
        

1 0.190 
BAX 

         
1 

 

 
AXP BA BAC Abbott AIG AME AMGN APACHE Apple BAX 

AXP 1 0.240 0.409 0.209 0.368 0.233 0.195 0.202 0.178 0.198 
BA 

 
1 0.209 0.171 0.226 0.192 0.160 0.167 0.143 0.171 

BAC 
  

1 0.164 0.392 0.202 0.150 0.205 0.136 0.157 
Abbott 

   
1 0.157 0.160 0.216 0.129 0.091 0.254 

AIG 
    

1 0.202 0.102 0.174 0.123 0.164 
AME 

     
1 0.154 0.150 0.119 0.174 

AMGN 
      

1 0.140 0.164 0.174 
APACHE 

       
1 0.143 0.116 

Apple 
        

1 0.133 
BAX 

         
1 
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Table 6 RMSE’s between empiral copula and copula fit. Also for the factor copula, RSME for the estimated parameters, for the upper bound of the parameters and the lower 

bound of the parameters. 

 
    RSME     

 
Estimation 

 
Upper 

 
Lower 

Normal 0.19 
 

- 
 

- 
Student-t 0.1863 

 
- 

 
- 

Clayton 0.7028 
 

- 
 

- 
Factor (Skewt-t) 0.1804 

 
0.9299 

 
1.3438 

 

 

 

Table 7 Parameter estimates for the in-sample of two stocks (American Express Inc. and Baxter International inc.). 

 
Normal  

 
Student-t 

  
Clayton  

 
Factor  

    
 

Ρ 
 

Ρ v 
 

α 
 

ν1 λ ν2 β1 β2 
Estimation 0.4966 

 
0.5106 13.1748 

 
0.5749 

 
4.0461 -0.0326 2.3775 1.6312 1.5359 

Variance 0.0003 
 

0.0003 8.1351 
 

0.0023 
 

0.0318 0.0746 0.2126 0.1408 0.0684 
Std. 0.0185 

 
0.0168 2.8522 

 
0.0482 

 
0.1783 0.2731 0.4611 0.3752 0.2615 

Conf. int. [ 0.4586; 
 

[0.4779; [ 9.4670; 
 

[ 0.4764; 
 

[4.4027; [0.5136; [3.2996; [2.3816; [2.0589; 

 
 0.5308] 

 
0.5422] 20.3602] 

 
0.6711] 

 
3.6894] -0.5788 1.4552] 0.8807] 1.0128] 
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Table 8 Estimation times for the in-sample with the Student-t copula and Factor copula for different portfolio sizes and different simulation sizes. 

 
 

Factor         
 

Student-t 

 
S=15000 

 
S=45000 

 
S=75000 

 
MLE 

N=2 63.734 
 

158.019 
 

117.825 
 

0.963 
N=3 82.035 

 
393.275 

 
398.833 

 
2.203 

N=10 550.644 
 

2483.582 
 

3154.218 
 

1859.557 
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Table 9  In the table below we see the proportion of violations for the  1, 5 and 10-day VaR at a 1% and 5% level for 3 assets 

(Bank of America Corp., Boeing Co. and American Express Inc.) estimated with the 4 copulas. The tables are further 

subdivided into daily and weekly data, meaning that if the data frequency matches the VaR horizon it’s a direct forecast and 

an iterative forecast if it doesn’t, which is only the case in table 5 and 6 (the data frequency matches the forecast horizon). If a 

proportion is highlighted in bold it means that copula performs the best. Note that almost all violation proportions are 

rejected on a 1,5 and 10% level, but isn’t the most relevant thing in terms of copula comparison.  

 
Daily Data 1-day VaR 3 assets   

  
         
  

1% 
 

5% 
    

         Normal  
 

0.020394 
 

0.064401 
    Student-t 

 
0.018247 

 
0.060823 

    Clayton 
 

0.019678 
 

0.067621 
    Factor  

 
0.022182 

 
0.06619 

    
         
         
         
         
   

5-day VaR 3 assets 
   

  
Daily Data   

 
Weekly Data   

  
1% 

 
5% 

 
1% 

 
5% 

         Normal  
 

0.022931 
 

0.065926 
 

0.023256 
 

0.057245 
Student-t 

 
0.022214 

 
0.063418 

 
0.021467 

 
0.059034 

Clayton 
 

0.024722 
 

0.076317 
 

0.025045 
 

0.06619 
Factor  

 
0.024006 

 
0.065926 

 
0.0322 

 
0.060823 

         
         
         
         
   

10-day VaR 3 assets 
   

  
Daily Data   

 
Weekly Data   

  
1% 

 
5% 

 
1%   5% 

         Normal  
 

0.024408 
 

0.063891 
 

0.019713 
 

0.055556 
Student-t 

 
0.024049 

 
0.059225 

 
0.017921 

 
0.050179 

Clayton 
 

0.03051 
 

0.072864 
 

0.021505 
 

0.069892 
Factor  

 
0.022972 

 
0.063532 

 
0.023297 

 
0.060932 
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Table 10 Evaluations of the MSE and relMSE for the four copulas at k=1, C=2% and C=3%. This is done for a set of 3 assets at forecast horizons of 1 day, 5 days and 10 days and 

also for weekly data and daily data. The tables are further subdivided into daily and weekly data, meaning that if the data frequency matches the VaR horizon it’s a direct 

forecast and an iterative forecast if it doesn’t, which is only the case in table 8 and 9 (the data frequency matches the forecast horizon). 

 
Daily Data 1-day 3 assets     

      
  

2% 
  

3% 
       

             
  

MSE relMSE 
 

MSE relMSE 
      Normal  

 
3.407898 5264.273 

 
3.80952 3796.541 

      Student-t 
 

3.557859 4842.8 
 

4.030222 3341.057 
      Clayton 

 
2.677525 7164.455 

 
3.021236 4659.288 

      Factor  
 

3.642793 5162.564 
 

4.273537 4030.475 
      

             
     

5-day 3 assets 
      

  
Daily Data       

 
Weekly Data       

  
2% 

  
3% 

  
2% 

  
3% 

 
             
  

MSE relMSE 
 

MSE relMSE 
 

MSE relMSE 
 

MSE relMSE 
Normal  

 
13.11284 7383.619 

 
14.16692 6219.431 

 
2.754404 1323.853 

 
3.019819 1115.717 

Student-t 
 

13.5137 6992.852 
 

14.65297 5920.129 
 

2.821868 1280.562 
 

3.103167 1098.519 
Clayton 

 
10.05721 17887.79 

 
10.56609 12853.26 

 
1.965069 3453.48 

 
2.096726 2440.087 

Factor  
 

12.98357 7450.839 
 

14.01059 6248.234 
 

2.602277 1441.143 
 

2.851329 1603.006 

             
             
     

10-day 3 assets 
      

  
Daily Data       

 
Weekly Data       

  
2% 

  
3% 

  
2% 

  
3% 

 
             
  

MSE relMSE 
 

MSE relMSE 
 

MSE relMSE 
 

MSE relMSE 
Normal  

 
24.60727 8667.169 

 
25.83546 8667.169 

 
5.182429 1443.479 

 
5.489443 1261.111 

Student-t 
 

25.30892 8340.578 
 

26.63484 8340.578 
 

5.303215 1421.819 
 

5.63855 1241.237 
Clayton 

 
19.21215 403618.4 

 
19.68197 403618.4 

 
3.719341 4744.936 

 
3.836381 3373.299 

Factor  
 

25.05776 9902.309 
 

26.27326 9902.309 
 

4.925675 1683.426 
 

5.184519 1445.443 
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Table 11 In the table below we see the proportion of violations for the  1, 5 and 10-day VaR at a 1% and 5% level for 10 assets 

estimated with the 4 copulas. The tables are further subdivided into daily and weekly data, meaning that if the data 

frequency matches the VaR horizon it’s a direct forecast and an iterative forecast if it doesn’t, which is only the case in table 5 

and 6 (the data frequency matches the forecast horizon). If a proportion is highlighted in bold it means that copula performs 

the best. Note that almost all violation proportions are rejected on a 1,5 and 10% level, but isn’t the most relevant thing in 

terms of copula comparison.  

 

 
Daily Data 1-day VaR 10 assets   

  
         
  

1% 
 

5% 
    

         Normal  
 

0.021825 
 

0.063327 
    Student-t 

 
0.016458 

 
0.056172 

    Clayton 
 

0.030769 
 

0.073345 
    Factor  

 
0.026476 

 
0.101968 

    
         
         
         
   

5-day VaR 10 assets 
   

  
Daily Data   

 
Weekly Data   

  
1% 

 
5% 

 
1% 

 
5% 

         Normal  
 

0.020781 
 

0.062702 
 

0.021467 
 

0.08229 
Student-t 

 
0.013615 

 
0.055894 

 
0.017889 

 
0.078712 

Clayton 
 

0.034755 
 

0.075242 
 

0.055456 
 

0.139535 
Factor  

 
0.055177 

 
0.133644 

 
0.019678 

 
0.094812 

         
         
         
   

10-day VaR 10 assets 
   

  
Daily Data   

 
Weekly Data   

  
1% 

 
5% 

 
1%   5% 

         Normal  
 

0.017229 
 

0.056712 
 

0.023297 
 

0.057348 
Student-t 

 
0.015793 

 
0.049892 

 
0.017921 

 
0.055556 

Clayton 
 

0.027997 
 

0.075377 
 

0.050179 
 

0.137993 
Factor  

 
0.091888 

 
0.178033 

 
0.019713 

 
0.086022 
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Table 12   Evaluations of the MSE and relMSE for the four copulas at k=1, C=2% and C=3%. This is done for a set of 10 assets at forecast horizons of 1 day, 5 days and 10 days 

and also for weekly data and daily data. The tables are further subdivided into daily and weekly data, meaning that if the data frequency matches the VaR horizon it’s a direct 

forecast and an iterative forecast if it doesn’t, which is only the case in table 8 and 9 (the data frequency matches the forecast horizon). 

 
Daily Data 1-day VaR 

10 
assets     

      
  

2% 
  

3% 
       

             
  

MSE relMSE 
 

MSE relMSE 
      Normal  

 
1.7582 3363.5837 

 
1.8281 2432.3192 

      Student-t 
 

1.7863 3231.2469 
 

1.8919 1733.5763 
      Clayton 

 
1.1672 151348.1798 

 
1.1632 32437.7612 

      Factor  
 

2.2015 2896.4436 
 

2.5765 1503.2677 
      

             

     

5-day 
VaR 10 assets 

      
  

Daily Data         
 

Weekly Data       

  
2% 

  
3% 

  
2% 

  
3% 

 
             
  

MSE relMSE 
 

MSE relMSE 
 

MSE relMSE 
 

MSE relMSE 
Normal  

 
7.196 7448.342 

 
7.924 5271.238 

 
2.118 2144.943 

 
2.373 1547.844 

Student-t 
 

7.302 7090.596 
 

8.092 4989.648 
 

2.176 2066.336 
 

2.445 1524.343 
Clayton 

 
5.628 111757733.805 

 
5.779 10262889.316 

 
1.651 9426769.834 

 
1.676 596981.756 

Factor  
 

8.160 5245.061 
 

9.658 7172.159 
 

1.975 3368.806 
 

2.292 2183.096 

             
             

     

10-day 
VaR 10 assets 

      
  

Daily Data         
 

Weekly Data       

  
2% 

  
3% 

  
2% 

  
3% 

 
             
  

MSE relMSE 
 

MSE relMSE 
 

MSE relMSE 
 

MSE relMSE 
Normal  

 
13.978 168698.083 

 
14.780 11634.234 

 
3.963 2828.852 

 
4.247 2040.199 

Student-t 
 

14.023 13464.946 
 

14.858 8006.324 
 

4.081 2632.823 
 

4.393 1923.117 
Clayton 

 
11.447 48096487.818 

 
11.512 2888778.095 

 
3.224 16091079.368 

 
3.233 15779378.291 

Factor  
 

16.390 15597.028 
 

18.398 12071.243 
 

3.647 5060.749 
 

3.866 3150.009 
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Table 13 In the table below we see the proportion of violations for the  1, 5 and 10-day VaR at a 1% and 5% level for 3 assets 

(Bank of America Corp., Boeing Co. and American Express Inc.) estimated with the 4 copulas for the subperiod from 2-1-2003 

until 2-1-2007. The tables are further subdivided into daily and weekly data, meaning that if the data frequency matches the 

VaR horizon it’s a direct forecast and an iterative forecast if it doesn’t, which is only the case in table 5 and 6 (the data 

frequency matches the forecast horizon). If a proportion is highlighted in bold it means that copula performs the best. Note 

that almost all violation proportions are rejected on a 1,5 and 10% level, but isn’t the most relevant thing in terms of copula 

comparison.  

 

 
Daily Data 1-day VaR 3 assets   

  
         
  

1% 
 

5% 
    

         Normal  
 

0.012346 
 

0.029721 
    Student-t 

 
0.009602 

 
0.028349 

    Clayton 
 

0.009602 
 

0.033379 
    Factor  

 
0.017833 

 
0.045267 

    
         
         
         
         
   

5-day VaR 3 assets 
   

  
Daily Data   

 
Weekly Data   

  
1% 

 
5% 

 
1% 

 
5% 

         Normal  
 

0.015117 
 

0.037563 
 

0.018265 
 

0.03653 
Student-t 

 
0.013284 

 
0.036647 

 
0.009132 

 
0.038813 

Clayton 
 

0.015117 
 

0.040311 
 

0.013699 
 

0.043379 
Factor  

 
0.038937 

 
0.077874 

 
0.02968 

 
0.061644 

         
         
         
         
   

10-day VaR 3 assets 
   

  
Daily Data   

 
Weekly Data   

  
1% 

 
5% 

 
1%   5% 

         Normal  
 

0.01056 
 

0.038567 
 

0.016018 
 

0.034325 
Student-t 

 
0.01056 

 
0.029385 

 
0.01373 

 
0.029748 

Clayton 
 

0.01607 
 

0.039486 
 

0.016018 
 

0.048055 
Factor  

 
0.066116 

 
0.121212 

 
0.025172 

 
0.066362 
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Table 14 In the table below we see the proportion of violations for the  1, 5 and 10-day VaR at a 1% and 5% level for 10 assets 

estimated with the 4 copulas for the sub period from 2-1-2003 until 2-1-2007. The tables are further subdivided into daily and 

weekly data, meaning that if the data frequency matches the VaR horizon it’s a direct forecast and an iterative forecast if it 

doesn’t, which is only the case in table 5 and 6 (the data frequency matches the forecast horizon). If a proportion is 

highlighted in bold it means that copula performs the best. Note that almost all violation proportions are rejected on a 1,5 

and 10% level, but isn’t the most relevant thing in terms of copula comparison.  

 

 
Daily Data 1-day VaR 10 assets   

  
         
  

1% 
 

5% 
    

         Normal  
 

0.01326 
 

0.029721 
    Student-t 

 
0.010059 

 
0.02652 

    Clayton 
 

0.01326 
 

0.029264 
    Factor  

 
0.017375 

 
0.047554 

    
         
         
         
   

5-day VaR 10 assets 
   

  
Daily Data   

 
Weekly Data   

  
1% 

 
5% 

 
1% 

 
5% 

         Normal  
 

0.012368 
 

0.033898 
 

0.011416 
 

0.045662 
Student-t 

 
0.007787 

 
0.027027 

 
0.009132 

 
0.041096 

Clayton 
 

0.014659 
 

0.032066 
 

0.031963 
 

0.079909 
Factor  

 
0.034814 

 
0.081081 

 
0.018265 

 
0.06621 

         
         
         
   

10-day VaR 10 assets 
   

  
Daily Data   

 
Weekly Data   

  
1% 

 
5% 

 
1%   5% 

         Normal  
 

0.01056 
 

0.038567 
 

0.011442 
 

0.032037 
Student-t 

 
0.01056 

 
0.029385 

 
0.011442 

 
0.022883 

Clayton 
 

0.01607 
 

0.039486 
 

0.022883 
 

0.077803 
Factor  

 
0.066116 

 
0.121212 

 
0.016018 

 
0.06865 
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 Figure 1 Scatter plots from the four bivariate distributions, all with N(0,1) marginals and linear correlation of 0.5, constructed using the four different copulas. The skew t-t factor copula has a skewness 

parameter of -0.5 and degrees of freedom of 4. The Student-t also has 4 degrees of freedom. For the Clayton copula this means an alpha of 1. Standard normal returns/variables are constructed as in the 

beginning of section 3.6.  

  



51 
 

  

Figure 2 Correlations of subperiods of entire sample period with non overlapping windows of 200 days. In the graphs AXP vs. ABT and AXP vs. AMZN, respectively.  

             AXP vs ABT       AXP vs. AMZN 

Figure 3 Quantile dependences at q=0.05 of subperiods of entire sample period with non overlapping windows of 200 days. 

                                   AXP vs. ABT  
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 Figure 4 Scatter plots from the four bivariate distributions, with N(0,1) marginals, are constructed using the four different copulas with the in-sample parameter estimates of two stocks (American 

Express Inc. and Baxter International inc.). These can be seen in table 7. Standard normal returns/variables are constructed as in the beginning of section 3.6.  
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Figure 5 Scatter plot of the standardized returns (American express inc. and Baxter international inc.) modelled with a 

GARCH(1,1) process and standard normal returns. This is done for the in-sample. 
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Appendix A 

 The implementation of the SMM estimator of Oh and Patton (2012) requires measures of 

dependence. Oh and Patton (2012) choose those measures of dependence that are solely affected by the 

copula and not the marginal distributions, which make it ‘pure’ measures of dependence. Out of their 

preliminary studies they conclude that the pair-wire rank correlation and quantile dependence with 

q=[0.05 0.1 0.9 0.95] are best suited for the job, which gives 5 measures of dependence.  

 Let 𝜅𝑖𝑗 denote a measure of dependence between variable I and j and let the following matrix be 

the ‘pair-wise dependence matrix’:  

𝐷 = �
1  𝜅12      ⋯  𝜅1𝑀
⋮ ⋱ ⋮

 𝜅1𝑀  𝜅2𝑀       ⋯ 1
� 

For the model that is used in this paper, the final measure that is used is the vector [𝜅1���, … , 𝜅𝑚���� ]. This 

vector consists out of the averages of every row: 

𝜅𝚤� =
1
𝑁
�𝜅𝚤𝚥�
𝑁

𝑗=1

 

Hence, for every dependence measure, we get a vector of these measures. This totals to 5 dependence 

measures times the amount of measures in the vector (in other words the amount of variables), which 

leaves 5*M measures in total. 

Appendix B 

 As the factor copula does not have a closed form so that random draws can be taken from it, the 

factor copula must be simulated. These simulations are just the simulations of Y like in expression 13. 

With enough simulations you create the copula density.  Once simulated, a random simulated sample 

can be created by first drawing a large number of Y again, see expression 13. Then, these draws can be 

converted into standardized uniformly distributed variables by transforming the random draws in 

combination with the simulated copula density. Let C denote the simulations for the copula and 𝑌𝑆 

denote the random draws. 
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𝑢𝑆 =
1
𝑁
�𝟏{𝒀𝒔<𝑪𝒊}

𝑁

𝑖=1

 

Where 𝑢𝑆 stands for a uniform distributed random draw, N is the number simulated values for the 

density, 1 is an indicator function and equals 1 when the statement between the brackets is true.  

Appendix C 

Company Ticker 
American Express Inc. AXP 
Abbott Laboratories ABT 
Amazon.com AMZN 
American International Group Inc. AIG 
Amgen Inc. AMGN 
Apache Corp. APA 
Apple AAPL 
Bank of America Corp. BAC 
Baxter International Inc. BAX 
Boeing Co. BA 

 

 


