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Preface 
Airports are subject to increasing, multiple and adaptive threats (Stewart, 2010 ).  

This thesis will focus on a subset of those threats formed by passengers trying to bring weapons 

and/or (part of) an improvised explosive device (IED) aboard a plane with hostile intent. 

Resources  to guard against those threats are limited both by economic reasons as well as by low 

tolerance of passengers for very intrusive security measures. 

 

In current European aviation security policy equal security resources are allocated to each flight. This 

in spite of the fact that it is evident that each flight is not equally likely to be targeted by an attacker. 

The reasons for this are mostly practical: 

 harmonization of European security policies 

 policies are auditable 

 an equal resources policy is politically easier to defend 

There are, however, two problems associated with this equal resources policy. Firstly a lot of 

resources are 'wasted' on low risk flights, which actually decreases the amount of security gained per 

invested resource.  Secondly many passengers on low risk flights are exposed to an unnecessary 

amount of security hassle. 

 

This leads to a need for a risk-based1 policy (i.e. a policy that takes into account the different risks 

associated with different flights in the allocation of security resources). 

A naïve approach to a risk-based security policy would be to deterministically allocate security 

resources to flights proportional to the risk associated with that flight. The problem with that 

approach is that it is predictable and therefore an intelligent attacker could circumvent it. 

The goal of this thesis will be the development of a  risk-based security policy (with respect to the 

settings of three passenger screening devices) that is unpredictable and robust against circumventing 

strategies from an attacker. 

 

The main significance of this thesis lies in that it: 

 takes into account the fact that attackers can observe the security policy employed  by 

airports and intelligently adapt to it 

 presents an integrated and flexible approach to modeling risk and risk-based security 

resources allocation in the face of an adaptive attacker 

 applies the concept of risk-based security resource allocation to the adjustability of screening 

devices in a security architecture 

  

                                                           
1
 See Appendix F for a more in-depth discussion on how the approach in this thesis is risk-based, but also 

threat-based, how both approaches relate to each other and In what form they were implemented  
 



 
7 

Elbert van de Wetering   A Risk-Based Passenger Screening Security Architecture optimized against adaptive threats 

  

Note: 
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confidential.  
In this public version of the thesis confidential 
information was either omitted or made illegible. 
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1 Problem definition 
 

In this thesis a risk-based approach will be applied to an aviation passenger screening security. As a 

case study the architecture of Amsterdam Airport Schiphol (AMS) was chosen, but it could just as 

easily have been applied to any other European airport. 

 In the AMS passenger screening architecture passengers are screened in two ways (see figure 1.1): 

 

 
figure 1.1: detailed layout of the screening system for passenger and hand luggage screening at AMS 

 

Screening is done with three devices. The person scan consists of two devices: a security scanner and 

a explosive trace detection (ETD) device. The hand luggage scan consists of a x-ray scan device . 

Each device has a set of scan options (layers2) that that can be enabled/disabled. If enabled the level 

of effectiveness in terms of detection probability (which is positively related to false alarm 

probability) can be chosen.  

So assigning security measures   to a  screening architecture translates to defining sets       and 

  (   of layers (together with their  level of effectiveness) employed for respectively the person scan 

devices and the hand luggage scan device. 

 

The goal of this thesis will be to develop a mathematical model that calculates the optimal 
settings for each layer (i.e. the defender policy) that minimizes intentional risk (i.e. risk that 
takes into account the possibility of circumventing strategies of an intelligent attacker) 
 

                                                           
2
 The term layers refers to a way of thinking about security and risk that can be described using a metaphor: 

The Swiss Cheese model. More on this in Appendix B. In this project it will be defined as a specific 
independently  adjustable security measure every passenger/piece of hand luggage is subjected to during the 
screening process. The exact nature of the layers for the AMS passenger screening architecture is given in table 
22.1 of appendix H. 
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This model can be divided into three distinctive sub-models: 

 

 Sub-model 1:  

This models how assigning security measures   relate to the probability of success against 

specific threats and how it relates to manpower requirements to support these security 

measures. Sub-model 1 is presented in Chapter 5. 

 Sub-model 2: 

this models how risk can be assigned to different targets based on expert assessment in a 

way that: has a high internal consistency, has a high confidence level and incorporates 

uncertainty in expert assessment beliefs. Sub-model 2 is presented in Chapter 6, the results 

of sub-model 2 are shown in Chapter 7. 

 Sub-model 3: 

this models the best response of AMS (i.e. the defender policy) to an attacker that 

intelligently adapts to the defender policy by choosing its best response to it. Sub-model 3 is 

presented in Chapter 8, the results of sub-model 3 are shown in Chapter 9. 

 

In appendix E an schematic overview is given of this division including the assumptions made by each 

sub-model. In Chapter 10 the results of the entire model are discussed. 

 

The model developed in this thesis can be used to make informed decisions on policies with respect 

to security and robustness against an adaptive attacker. 

Because of the general way security layers are modeled  this model can easily be extended and made  

applicable to architectures of various sizes and compositions. 

 

Before discussing the model however first some preliminary chapters that introduce important 

properties of AMS (Chapter 2), the attacker (Chapter 3) and risk when dealing with an intelligently 

adapting attacker (Chapter 4). These properties will be built upon in the model. 
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2 Defender: Amsterdam Airport Schiphol 
 

This chapter will give a short description of Amsterdam Schiphol Airport (AMS)  

 Section 2.1 describes the importance of AMS: for Dutch economy, as a big 

European transfer airport, as a prestigious airport.  

 Section 2.2. describes which security challenges AMS faces 

 

2.1 Schiphol: facts and figures3 
Amsterdam Airport Schiphol (AMS) is the main international airport in the Netherlands. 

 For a large part AMS is a transfer airport with 41% (2012) of passenger transport consisting of 

passengers  which neither originate from AMS nor have AMS as their destination. 

AMS is the primary hub4 for KLM, Arkefly, Corendon Dutch Airlines, Martinair, Transavia, the 

European hub for Delta Airlines and a base for Vueling.  AMS is part of the network of most of the 

major airlines and as such many connections (i.e. from and to) are possible with every world region 

except Australia as illustrated in figure 2.1: 

 

Region  Number of scheduled connections 

Europe 178 

North America 24 

Middle & South America 28 

Africa 38 

Middle East 18 

Asia 31 
Table 2.1: connections between AMS and world regions 

 

In 2012 AMS transported 51 million passengers making it the 4th busies European airport and the 

16th busiest airport in the world (Tragale, 2012). Atypical for an airport as busy as AMS is that it is a 

single terminal5 airport.  

 

 

 

 

                                                           
3
 all statistics in this section based on based on the 2012 Traffic Review (Anon., 2012) 

4
 The term hub refers to a logistic concept used in aviation: the hub-and-spoke model, where airports in a 

network are connected to each other via centralized airports called hubs. The idea behind this way of 
organizing passenger transportation is that it reduces the number of connections between airports to      
where   is the number of airports in the network. An alternative way of organizing passenger transportation 
would be the point-to-point-model where all airports are directly connected to each other which results in a 
number of connections of      . The lower number of connections in the hub-spoke network generally leads 
to more  efficient use of transportation resources (e.g. flights at full capacity, frequent loaded roundtrips 
because of greater demand on connection) 
5
 An airport terminal is a building at an airport where passengers transfer between ground transportation and 

the facilities that allow them to board and disembark from aircraft. 
Within the terminal, passengers purchase tickets, transfer their luggage, and go through security. The buildings 
that provide access to the airplanes (via gates) are typically called concourses. However, the terms terminal 
and concourse are sometimes used interchangeably, depending on the configuration of the airport. 
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AMS is considered an airport city6 occupying an area of 13 square kilometers and with 43%  of its 

revenue coming from other sources than aviation in 2012.  

AMS is one of Europe's leading airports as illustrated with several awards among which two awards 

considered  the most prestigious in the industry:  ACI Airport Service Quality Award  (2009 and three 

years in a row: 2011, 2012, 2013) and Skytrax World Airport Award  (1999,2004,2013) (Anon., 2013) 

AMS has a big impact on Dutch economy as aviation contributes 26 billion Euros to the GNP and 

supplies 290.000 jobs of which 64.000 are on or around AMS. 

  

                                                           
6
 Airport city refers to the idea of an airport being more than just an airport but also generate revenue from 

other sources  that logically combine and reinforce each other: air cargo, logistics, offices, convention centers, 
retail, hotels, medical facilities, free trade zones, entertainment, etc. 
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2.2 Schiphol: security perspective 
The picture that emerges from facts and figure in the previous section is that AMS7 is an airport that 

is potentially an attractive target for a terrorist from several perspectives: 

 Political 

Because AMS is a hub/ transfer airport at any time many nationalities are represented 

 Symbolic 

AMS is a prestigious target to hit 

 Economic 

Not only is AMS important for Dutch economy, the major airlines that operate there are  

important for the economies of their respective countries 

 Human loss 

51 million passengers/year translates to a lot of potential casualties on any day who are, 

because of the single terminal, concentrated on a relatively small area 

 Logistical 

Being a well connected hub AMS is easily accessible from potential terrorist from all over the 

world, without them standing out 

 

In an environment like this threats are multiple and hard to predict. 

Data is sparse in the security domain as a whole but for AMS in particular (especially on terrorism). 

Over the long history of AMS  there were only two documented cases of  terrorism (see Table 3.2). 

 

Year Terrorism incident 

1970 Leila Khaled, El Al 219, attempted hijacking 

2009 Umar Farouk Abdulmutallab, NW253, attempted suicide bomb attack (underwear) 
Table 3.2: terrorism incidents on AMS 

 

It is very hard to formulate an effective approach against  threats that would have an enormous  

impact but still hardly ever happen, which  are constantly evolving and can come from everywhere. 

The approach that has been adopted so far is that every new terrorist attack measures are being 

taken to prevent that same threat from happening in the future and made into rules. This has led to 

rule-based security:  security architectures that have to be compliant with an ever increasing set of 

rules. Over the years this approach has led to a tremendous increase in security measures as can be 

seen from Appendix A. It is beginning to dawn in the security domain that this approach is untenable. 

A smarter, more flexible and  better leveraged approach is needed to deal with terrorist threats: risk-

based security. 

In the Netherlands this realization is the basis of the SURE! (Smart Unpredictable  Risk-Based Entry) 

concept introduced by the NCTV8. The idea behind SURE! is that smarter unpredictable security 

based on object specific risk assessment rather than one-size-fits all-rules will lead to more efficient 

security and deterrence against terrorist attacks. 

In this thesis operations research (OR) methods are the mathematical basis for the application of the 

SURE! concept on passenger screening. 

                                                           
7
 These perspectives are not exclusive to AMS but also to other big  transfer airports and at least a few of these 

perspectives apply to all airports. 
8
 Nationaal Coördinator Terrorismebestrijding en Veiligheid: governmental organization in the Netherlands 

dedicated to the coordination of the effort against terrorism between police, judiciary and intelligence agencies 
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AMS is one of the few airports in the world that have security checks at the gate (decentralized 

security) as opposed to centralized security9.  The former taking place at piers D (D1-D57),E,F and G 

and the latter taking place at the Schengen10 piers B,C,M (also low cost) and low cost pier H. 

From a security perspective the advantage of security at the gate is that it is easier to keep the area 

between the gate security check and the airplane sterile rather than the entire airside area. From a 

economic, process and quality management (and queuing theory) perspective it is more efficient to 

have centralized security than to split passengers up into individual flights.  

Also approaches that require a more centralized approach such as SURE! are easier implemented in a 

centralized security architecture. In 2015 AMS will switch completely to centralized security11 so 

SURE! will be implemented in a centralized security architecture. 

Often times in this thesis reasoning will be done from an individual flight based perspective which 

might be confusing. However, this is only for conceptual convenience. 

 

 

This chapter has introduced AMS, the next chapter will introduce its opponent. 

 

 

 

  

                                                           
9
 Generally people are screened through airport security into areas where the exit gates to the aircraft are 

located. These areas are often called clean area, secure or sterile. The side before security is called landside and 
the side passed security is called airside. Passengers are discharged from airliners into the sterile area so that 
they usually will not have to be re-screened if disembarking from a domestic flight; however they are still 
subject to search at any time. 
10 Because of Border Control reasons AMS is divided in two parts: Schengen and Non-Schengen. For passengers 

transferring on AMS between two Schengen countries no passport control, immigration control or additional 

security checks are necessary).  
11

 This is called project One-XS 
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3 Attacker: Terrorist 
 

This chapter describes the attacker and its modus operandi and how this should be 

addressed in the model. 

 

 

There are many definitions of terrorism (Schmid, 2004), but most  agree on these properties of 

terrorism: 

 objective: political change 

 method: violence and/or threat of violence with a big impact on society 

 

From the perspective of violence with a big impact on society it is immediately clear that the 

transportation sector, especially aviation, will be an attractive target type for a terrorist attack. 

However, since the objective of the terrorist is political change, terrorists will be very particular with 

respect to the targets they select for attack. 

Understanding the objectives  and capabilities of (specific) terrorists makes it possible to predict 

which targets are more attractive and which targets are less attractive for terrorist attack. 

Stated differently: expertise about the capacity & motivation of a terrorist forms the basis of risk 

assessment with respect to terrorist threats.  In this thesis this will be judged by subject matter 

experts (SMEs). 

From the perspective of the defender targets also have a different attractiveness. Mostly a defender 

would prefer to defend those targets that a terrorist would prefer to attack, but there will be 

differences in preferences. It could be that the consequences of an attack on a certain target are 

viewed differently by the attacker and the defender. For instance: a target could have a high 

symbolic but a low economic value. So suppose an attacker values symbolic consequences higher 

than a defender and the defender economic consequences higher than the attacker this would mean 

that the attacker would prefer to attack the target more than the defender would prefer to defend it. 

These views on attractiveness of a target by both the defender and the attacker will be referred to in 

this thesis as:  risk perception 

 

Being able to judge the risk perception of a terrorist gives only a very crude prediction of a terrorist 

threat. More specific information would be desirable, like: 

 (tactical) goal of the attack 

 method of attack 

 the target selection process of the attacker (i.e. if an attacker prefers high value/hard targets 

or low value/soft targets ) 
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This is all but impossible to predict on an individual attack basis. Instead the likely scenarios are taken 

into account.  

With respect to the (tactical) goal of the attack those scenarios are called attacker types. In this 

project the following three attacker types will be considered: 

1. Used Passenger 

a passenger unaware of carrying an improvised explosive device (IED) planted by a terrorist 

2. Hijacker 

a terrorist intent on taking control of the plane 

3. Suicide Terrorist 

a terrorist, willing to die, intent on killing everyone on the plane  

 

The method of the attack is defined by the threat item that is used and the location the threat item is 

hidden12 Together with the target selected by the attacker those  scenarios are called attacker 

strategies; this opposed to the security policy choices AMS can make: defender strategies, which are 

defined by the security measures taken and the target defended by those security measures.   

 

With respect to the target selection process of the attacker: this will be referred to in this thesis as: 

risk attitude. Note that a defender has a similar target selection process: how allocation of resources 

to targets based on different risk is prioritized (i.e. how much more allocation to high value targets is 

prioritized). Risk attitude refers to this as well. 

 

Note that the security measures modeled in this thesis are only capable of detecting  the means of 

attack. This in contrast to security measures that focus on detecting the actual attacker (e.g. 

predictive profiling, behavioral observing). Therefore defender strategies are defined in terms of the 

settings that detect the means of attack as well as the target those settings are applied. Attacker 

strategies are defined in terms of the means of attack used and the location those means of attack 

are hidden as well as the target that is attacked. 

 

SMEs will specify, for each attacker type, the a priori probability and the set of attacker strategies. 

From the infamous Al-Qaeda training guidebook: Military Studies in the Jihad against the Tyrants and 

online magazines such as Inspire much can be learned from the operational planning cycle of a 

terrorist organization (in this case Al-Qaeda, but it is reasonable to assume that it would apply to 

other terrorist organizations as well).  

  

                                                           
12

 Another way of modeling would be to just have one attacker type who is able to employ the attack methods 
of all the above defined  attacker types (instead of how it is done here: multiple attacker types only able to 
employ attack methods consistent with their goals). This would probably be less complicated. However in this 
project it was believed that this would be less realistic as the attacker type is a fundamental fixed choice an 
attacker rather than an opportunistic option to choose from in a game theoretical framework. It seems more 
realistic to assume that an attacker beforehand determines if he/she is willing to give up his life before deciding 
on a method of attack versus letting it depend on what gives the highest payoff. 
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What becomes clear from these sources is that terrorist groups conduct surveillance and 

reconnaissance to select potential targets and gain strong situational awareness of the target's 

activities, design, vulnerabilities and security operations. This has important consequences with 

respect to model building:  

 

the model  should take this interaction between defender and attacker choices into account. 
 

This could hold to a lesser degree for terrorists operating (more or less) outside terrorist 

organizations: Lone Wolves (Spaaij, 2010). These types of terrorists might have less capabilities for 

(undetected) surveillance (Burton & Stewart, 2008). There is however is no clear evidence that this 

indeed is the case. 

 

The flip side of this preference of terrorists to gather information on their targets is that they will 

tend to avoid attacking targets they cannot gain reliable information on. Stated differently: 

 

unpredictable security measures have a deterring effect 
 

This effect is exploited by SURE! which, apart from being an approach that relies on matching 

security measures allocated to a target with the risks associated with the target, also relies on 

unpredictability by making use of randomized policies13 

 

 

Having described both the defender and the attacker another important ingredient for 

the model has to be defined: intentional risk (i.e. risk that takes into account the 

possibility of circumventing strategies of an intelligent attacker).This will be 

addressed in the next chapter 

  

                                                           
13

 Note that a risk-based approach against an adaptive attacker should always employ unpredictability. Every 
deterministic (thus predictable) risk-based approach will fail against an adaptive attacker who will then actively 
circumvent targets with the highest static risks/strictest security measures. 
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4 Modeling Intentional Risk 
 

This chapter starts by giving a common definition of risk and discusses difficulties  

associated with applying this definition to types of risk caused by an attacker that can 

intelligently adapt (i.e. intentional risk). Consequently an extension of this definition is 

presented that makes it possible to address these difficulties. This extension consists 

of decomposing risk in a part that is only related to how well a target is defended 

(dynamic risk) and an inherent part that is unrelated to how well a target is defended 

(static risk). 

 

In the security domain risk is a measure associated with an adverse event. It expresses both the 

likelihood of that event occurring  and the impact of that event. It is usually defined as some 

variation on: 

 

                                        x                                              

 

A popular approach to modeling risk in the security domain is the TVC (threat vulnerability 

consequences) approach (Willis, et al., 2006).  

In this approach the probability part is decomposed into three parts:  

  

 
                                        
 

 

where:  

      = probability of a threat   happening 

        = probability of success 14   given that threat   happens 

         = probability of consequences 15    given that threat   happened and was successful 

      = weight factor16 of consequences 

 

There are however two main problems associated with this approach: 

 

1) Dependencies arising from adaptive nature of attacker 

Since the threats are intentional (i.e. there is an attacker behind them that is able to adapt 

his strategies to information that can be gathered by surveillance of the security system) 

probabilities are no longer independent. 

e.g.  when a defender chooses  to defend an object heavily against a threat the probability  

         of success of that threat will be drastically reduced. This will most likely deter an  

         intentional attacker from employing that threat 

                                                           
14

 Success as seen from perspective of attacker (i.e. defender was unable to prevent threat from succeeding) 
15

 A successful attack will have consequences (political, economical, human loss, symbolic). Those  
     consequences  will usually be positive for the attacker and negative for the defender  
16

 The weight factor expresses how the consequences are valued. How consequences are valued depends on  
     the perspective (i.e. if it is seen from perspective of defender or from perspective of attacker) 
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2) Lack of historical data 

Ideally  it would be possible to base the needed probabilities In the TVC approach on lots of 

relevant historical data. In the security domain this is typically not the case. Threats are 

diverse, always evolving, have (almost) never happened and are very context dependent 

 

To tackle the first problem in this thesis Risk will be decomposed into two parts: 

 
                                     

 

 

where: 

            = part of risk related to interplay between defender and attacker choices  

           = part of risk independent from defender and attacker choices  

 

The idea of this decomposition is that the static and dynamic part of risk have to be treated 

differently: 

 The static part of risk can simply be obtained from some reliable source. However, because 

of above mentioned second problem obtaining static risk from historical data is not feasible. 

For this reason static risk will be obtained through expert assessment (see Chapter 6) 

 The dynamic part of risk can only be obtained by explicitly modeling the strategic 

interactions between attacker and defender.  This will be done using Game Theory17 in 

Chapter 8. 

 

How do decompositions (4.2) and (4.3) relate to each other? 

Reflecting on this leads to: 

  

 

                         
                     

 

                           
               

 

                                       
 

 

  

                                                           
17

 Game Theory is a mathematical toolkit designed to study strategic interactions in a group of rational players. 
Strategic refers to the fact that the objective of one player depends on choices of the other players. For there 
to be strategic interactions there have to be two players  or more hence group. Rational refers to the 
assumption that all players of the game try to maximize their objective. This objective is expressed in rewards 
(i.e. payoffs)  a player receives as a result of the strategies chosen by all players (i.e. strategy profile). A central 
solution concept in Game Theory is some form of Best Response Equilibrium. This refers to a strategy profile 
where no player can increase its payoff by unilaterally choosing a different strategy. 
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Or in words: 

      consists of a static part            (inherent attractiveness of target) and a dynamic 

part             (attractiveness of target as result of the security measures taken) 

          and      are completely part of static risk, since they don't depend on interplay  

between defender and attacker 

       18 is completely part of dynamic risk, since it is completely determined by the 

interplay between attacker and defender through the security settings the defender chooses 

as a result of this interplay.  

 

As mentioned earlier dynamic risk will be modeled using Game Theory17.  The payoffs required for a 

game theoretical approach will be derived from static risk and       . 

 

In the model it will be assumed that only one threat   will be executed by each attacker type (i.e. for 

that threat:               ). This will be the threat which gives the attacker the highest reward. 

The threat that will be executed will be determined by the Best Response Equilibrium. 

 

A more insightful way to look at the threat part of static risk is to see it as originating from the 

capacity & motivation of the attacker. The entire intentional risk modeling procedure can graphically 

be summarized by figure 5.1: 

 

 
Figure 5.1: Intentional Risk Model 

 

In this thesis static risk both from the perspective of the defender and the attacker will be considered 

when calculating the best response equilibrium game theoretically. Both perspectives will have 

(slightly) different static risks because of the differences in how consequences of an attack are valued 

from both perspectives. 

 

This chapter introduced the concepts static risk and dynamic risk to make it possible 

to model risk caused by and intelligently adapting attacker (i.e. intentional risk). Static 

risk will be addressed by sub-model 2, while dynamic risk will be addressed by sub-

model 3. But first sub-model 1 will be discussed in the next chapter 

                                                           
18

 In Chapter 5 will be explained how        depends on the security settings a defender chooses in the 
security architecture:        will be referred to as         . 
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5 Sub-model 1 
 

This chapter will introduce sub-model 1 which relates: 

 security measures   to the probability of success against specific threats 

 security measures   and the specific flight   to the manpower requirements to 

support these security measures. 

Section 5.1 presents a model of the passenger screening security architecture which 

forms the basis for both these relations and also an explicit formula for the first 

relation. Section 5.2 derives an explicit formula for the second relation and section 

5.3 describes how, using this result, restrictions on available manpower can be 

applied in the model 

 

5.1 Modeling the security architecture 
The security architecture which contains the screening system for passenger and hand luggage 

screening mentioned above  is  depicted in figure 5.2: 

 
figure 5.2:  security architecture for passenger and hand luggage screening at AMS 
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Where: 

      = attacker fraction associated with threat   

   
      = probability of no alarm given threat   (i.e. false clear rate) by security layer   

     Note:  when layer   not suited to detect threat τ then:     
       

   
         = probability of an alarm given no threat   (i.e. false alarm rate) by security layer   

      = set of employed layers of person scan given security measures   

      = set of employed layers of hand luggage scan given security measures   

      = cost of manual inspection of person on flight   

      = cost of manual inspection of hand luggage on flight   

 

The values for the parameters used in figure 5.2 are given in appendix H, tables 22.2 and 22.3. 

 

It is assumed that the illegal object is either hidden on the person or in the hand luggage of the 

attacker. The rationale behind this is that every strategy where the illegal object is in both or divided 

over both has a strictly higher probability of detection than a comparable strategy where it was in 

either one exclusively. So a rational attacker would never choose this option. In game theoretical 

parlance this reasoning is equivalent to saying:  

 

a strategy where the illegal object is both on the person and in the hand luggage is a strictly 
dominated strategy and therefore will never be part of a Best Response Equilibrium. 
 

Note that in the security architecture in figure 2 the effectiveness of a layer is modeled in terms of 

both a probability this layer gives no alarm given a threat (i.e. false clear rate)        and the 

probability that it gives an alarm given no threat (i.e. false alarm rate)    . The former depends on 

the threat  . A threat consists of an attack item in combination with the location it is hidden.  

 

There are three reasons for modeling performance of a layer in terms of        and    : 

 

First of all it should be possible to judge how effective the security architecture is in apprehending 

attackers.         will serve for that. 

From the formulas depicted on the target branch the detection probability        can be calculated 

as function of the assigned security measures σ and the threat  : 

 

 

                       
 

       

                  
 

       

           

 
Note: since threat is either on person or in hand luggage: (at least) one of both terms will be zero                   

               (because for that term all     
     will be equal to 1) 

 

 

  



 
26 

 

Elbert van de Wetering   A Risk-Based Passenger Screening Security Architecture optimized against adaptive threats  

Secondly it allows for the modeling of adjustability of the scan devices.         and     actually do 

not have fixed values. The scan devices can be adjusted to other settings with other pairs of         

and      values. The values of         and      are related (if one goes up the other goes down) and 

the possible settings of a scan device can be characterized with a relative operating characteristic 

(ROC) curve which defines the relation between         and      for that device. Modeling of the 

adjustability also means that the optimal settings of the scan devices can be part of the overall 

optimization problem. 

Each layer is always employed at one of two settings: a lower detection/lower false alarm setting and 

a higher detection/higher false alarm setting. See appendix H, table 22.2 for the specific settings. 

The reasons for employing only two settings on the ROC curve as opposed to three or more are 

mostly practical and explained in appendix I. 

 

Thirdly it enables  modeling the way a certain policy drains the limited security resources, because 

the (variable part of this) drain is associated with false alarms. False alarms lead to manual 

inspections which are the most time consuming and variable part of the security process. Of course 

real alarms also lead to manual inspections but this drain of resources can be neglected under the 

assumption that the fraction of attackers is a lot smaller than the fraction of normal passengers (i.e. 

       ).  

 

So in the context of this thesis a more precise definition of security resources would be: 

 

security resources  = the manpower required for the screening of passengers, the variable 
part of which depends on security settings through the false alarm rate associated with 
those settings 
 

Note that in the probabilities on the branches it is implicitly assumed that          values  (as well as 

     values) for different layers are independent. This is justified: 

 for a pair of layers where one layer is a person scan layer and the other layers is a hand 

luggage scan layer because of the assumption that the illegal object is either hidden on 

person or in the hand luggage. 

 for a pair of layers that are both person scan or hand luggage scan layers since they will look 

for very different physical properties 

 

It was also assumed that the probabilities of detecting an attacker given a true alarm in either the 

person scan or the hand luggage scan (i.e.    and   ) were independent from         and      of all 

the layers. This is not strictly true.  

The follow up to an alarm is done by a human security agent and therefore    and    depend on the 

psychological ability of vigilance (Wolfe & Horowitz, 2007). This ability is negatively influenced by 

high false alarm rates resulting in lower detection probabilities. It is a common phenomenon in 

security architectures with low a priori probabilities of attackers (like in this one where     ) that 

humans strategically drop the effort they invest in detection faced with many false alarms. The 

reason independence is still assumed is that in the security architecture considered here the settings 

are continually switched in time. Because of this security agents are never exposed to noticeably 

different false alarm rates, rather they perceive one average false alarm rate. They will of course 

adapt to this false alarm rate but since it is perceived as constant so will be    and   . 
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5.2 Modeling manpower requirements as function of security settings 
Since manpower is limited an expression is needed that links security settings to the manpower 

required to handle the false alarms generated by those settings. The modeling of security settings in 

terms of     makes it possible to predict the number of false alarms associated with specific security 

settings. Given the cost of handling those false alarms in principle it would be possible to predict the 

difference in manpower required at those security settings. 

However, manpower requirements do not only depend on security settings but also on unknown 

flight specific variables. This makes linking security settings to manpower requirements very 

complicated19.Deriving  an accurate quantitative expression for this falls outside of the scope of this 

thesis. But to be able to apply the risk based security model  at least an approximate expression is 

needed. By making some simplifying assumptions and educated parameter guesses an expression 

will be derived in this section that links security settings to manpower requirements. 

First it is assumed that the manpower requirement per passenger        that will depend on the 

specific flight    and security measures   can be decomposed into a fixed manpower requirement 

part      that only depends on the specific flight    and a variable part        that is associated with 

manpower required to handle alarms and therefore depends on the security settings   (as well as on 

the specific flight  ): 

 

                            

 

It is assumed that      can be further decomposed into a part   (value given in appendix H, table 

22.4) that is does not depend on   and a part      that does: 

 

                       

 

       can be further decomposed into a part that is associated with person scan alarms         

and a part that is associated with hand luggage scan alarms        : 

 

                                 

 

Expressions for         and         follow directly from the expressions for false alarms 

probabilities depicted in figure 5.2: 

 

 

                            
 

       

  

               
     

       

 

 

where: 

                                                                                      

                                                           
19

 To give an idea of how complicated it is to predict manpower requirements: AMS has developed a simulation 
model to predict passenger flow at fixed manpower in a new (post One-XS) passenger screening architecture 
for a very specific subset of flights. This required about 54 parameters for accurate predictions. 
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where: 

                                                                                      

                                                            

  (value given in appendix H, table 22.4) 

       
                            
                                            

  

 

 

From observation it seems plausible to assume that: 

 

flight specific differences in        originate mostly from the differences in the amount of 
hand luggage that the passengers carry on different flights 
 

This immediately implies:            (value given in appendix H, table 22.4), but it also suggests a 

way to model the flight specific dependence of      and      : 

Let    be a flight specific parameter that is proportional to the amount of hand luggage. Then it 

seems reasonable to model      and       both as being proportional to   : 

 

                      

 

                        

 

with respectively proportionality constants   and    (values given in appendix H, table 22.4) 

The intuitive interpretation for   is: the average amount of manpower expended during the 

screening of one passenger for the handling of hand luggage (excluding manual inspection after an 

alarm) for a specific reference flight for which     . The intuitive interpretation for    is: the 

average amount of manpower expended during screening for the manual inspection of hand luggage 

after an alarm for  a specific reference flight for which     . 

 

Combining  expressions (5.1)-(5.6): 
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       is only available from data for the current security measures    (note: in current security 

measures no ETD layer is employed and two layers are slightly different ).  Therefore    can be 

calculated for all flights  : 

 

 

            
                   

           
 

 

 

In Table 5.4 for a reference flight educated guesses were made for the parameters in such a way that 

they were consistent with the value for         available from data and expression (5.7). 

 

By combining (5.7) and (5.8) the derivation of an expression that links manpower requirements to 

security measures is complete. 

But, for reasons that will be explained later, it will be more useful to derive instead of         an 

expression for manpower requirements       aggregated over  sets of target (i.e. flight) types   

with identical static risk properties: 

 

                         
    

 

 

where: 
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5.3 Modeling the manpower restriction 
With manpower requirements defined in the previous section, what is left is to determine is the 

restriction on the total available manpower arising from the fact that the budget of AMS for security 

is obviously finite. 

The first problem is that it is not just the sum of security agents available on a day multiplied with the 

length of their shifts (i.e. the gross available manpower       ). The required work is time and 

location dependent, and allocating security agents to specific locations at specific times compliant 

with basic labor union restrictions is a complicated planning problem. The solution of this planning 

problem determines how much of the gross available manpower can be utilized (i.e. the net available 

manpower     ). 

This planning problem has obviously already been solved at AMS. So from this solution we can simply 

estimate what      is. However the second problem is that this planning solution as well as 

parameter    are based on the current situation with decentralized  security while SURE! is to be 

applied in the situation with centralized security (post One-XS) and many innovations to make the 

screening process more efficient. 

Most likely a lot less manpower will be required in the new situation because of these screening 

process innovations and because planning solutions for centralized security are inherently more 

efficient since centralized security has less restrictions compared to decentralized security location 

wise. However  since there are no parameters or planning solutions available for the post One-XS 

situation the parameters for the current pre One-XS situation will be used to do calculations with the 

model that will be developed. 

A third problem with modeling      is that it should probably be dependent on the daily average 

static risk of all flights. As will become clear: the model that will be developed allocates security 

resources based on relative static risks of flight types. Some causal factors increase the static risk of 

all flights on a given day in approximately the same way (e.g. days like Christmas are more attractive 

days for an attack) . This means that all flights on that day are inherently more at risk, while the 

model just looks at relative static risks. What is needed on such days to ensure equal security 

compared with 'normal' days is not so much a different allocation of security resources but more 

security resources (i.e. a higher     ). A logical question would be: how should      increase based 

on the daily average static risk of all flights? One possible rational criterion would be: 

 

From a security perspective      should be chosen in such a way that the defender payoff in 
the best response equilibrium remains constant (at an acceptable level) on each day. 
 

This would mean that more security resources will have to be made available on 'riskier' days. More 

security resources means higher cost. This is a management decision where probably more 

considerations will factor in besides the security perspective.  

Therefore in this thesis this dependence of       on the daily average static risk of all flights will not 

be explored further and will be considered ultimately  a management decision.  

 

In this chapter sub-model 1 was developed, which is basically a cost benefit model 

for security settings (cost = required manpower, benefit = provided security). Using 

sub-model1, the        term in (4.4b) can be calculated under the restriction of 

limited security resources. The next chapter will deal with sub-model 2. 
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6 Sub-model 2: Bayesian Belief Networks 
 

This chapter presents sub-model 2, which purpose to model static risk. This is done 

by modeling causal risk factors as a Bayesian Network. Beliefs about the causal 

relations between those factors are supplied by Subject Matter Experts (SMEs). The 

chapter starts with a short introduction to Bayesian Belief Networks (BBN) in section 

6.1. Section 6.2 discusses how the BBN approach is used to model static risk. 

Section 6.3 presents a method to compute quantitative values for static risk from the 

BBN that takes into account the attitude towards risk of the defender/attacker. 

Section 6.4 documents the procedure used to beliefs from the SMEs. 

 

6.1 Introduction 
Static risk will be obtained from expert assessment. The subjective nature of expert assessment 

makes it a problematic source of information. Ideally an expert assessment should: 

 have a high internal consistency 

 have a high confidence level 

 incorporate uncertainty 

 

A way that expert assessment can be structured to accommodate this as much as possible is by using 

a Bayesian Belief Network (BBN) approach. 

 

BBN (Krieg, 2001) are not very mainstream in predictive modeling and even less so in the context of 

modeling terrorism risk (Hudson, et al., 2005) and this thesis seems to be the first time it is used in an 

integrated risk modeling approach together with game theory. 

 

There are two ways to look at BBN. The first one is just as an application of Bayes' Theorem: 

 

                 
      

    
      

 

 

where: 

         posterior probability hypothesis H is true given evidence E  

      

    
 
                                                               

                            
                     

          prior probability that hypothesis H is true 

 

in the normal (frequentist) interpretation of probability/statistical inference. The second is as an 

approach imbedded in the Bayesian interpretation of probability/statistical inference (Ferson, 2003). 

Since much of the terminology of BBN is derived from the latter interpretation it deserves some extra 

attention. 
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In the Bayesian view probability is an expression of a belief in a certain future outcome as opposed to 

the frequentist view where probability is the relative frequency with which an outcome would be 

observed over an infinite number of repeated experiments. 

Bayes'  theorem is central in the Bayesian view in the sense that it makes it possible to update beliefs 

(i.e. update prior      to posterior       ) in a rational way (i.e. using likelihood factor) when new 

evidence is introduced.  

 

The frequentist view and the Bayesian make mostly similar predictions when there is a lot of data, 

but disagree when data is scarce, which of course is the typical case in the security domain. 

The difference is that the Bayesian approach in the case of scarce data is dominated by the prior and 

the frequentist approach is dominated by the evidence (i.e. the data). 

 

Advantages of that Bayesian approach that make it more suited to the security domain: 

 the view of probability as a belief as opposed to the relative frequency in an infinitely 

repeatable experiment makes a lot more sense in the constantly evolving security domain 

 when there is hardly any data (or none at all) as is typical for the security domain not much 

can be inferred from it. In that case a prior expert belief is probably the most reliable 

estimator 

 

BBN are probability models in which an explicit causal structure is used to model the joint probability 

distribution      of a set of random variables (             . It can be represented by a 

directed acyclic graph consisting of nodes (representing the random variables) and arcs (representing 

the probabilistic conditional dependency relationship between random variables) nodes that satisfy 

the Markov property (i.e. there are no direct dependencies between the random variables that do 

not correspond to an arc). 

The joint probability distribution of a BBN is given by: 

 

 

                             

 

     

 

 

Where: 

                                                 (i.e. the nodes with ingoing arc to node   ) 

 

Using equation 7.2 the marginal distribution of each node    can be calculated by summating the 

joint probability distribution over all possible states of all random variables except    : 

 

                     

      

 

 

This can be simplified by so called variable elimination, which basically consists of two interleaving 

steps. In one step making use of the distributive property of the summation in marginalization some 

factors are multiplied together and in the other step factors are eliminated making use of 

                  and            
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When evidence is introduced in a BBN propagation of this new information through the entire 

network is calculated with variable elimination (propagation in direction of arc) together with Bayes' 

Theorem (propagation opposite to direction of arc). 

This is a NP hard problem, but in practice there are several  (exact and approximate)  algorithms that 

can do this efficiently by exploiting the structure of the network (Frank Kschischang, 2001), this is 

however far from trivial and beyond the scope of this thesis. 

For this thesis the commercial BBN software product AgenaRisk 6.0 was used and for the problem 

instances in this project the time required to calculate propagation was never an issue. 

 

The advantages of BBN are: 

 they break down a large risk assessment problem into (conceptually easier to handle) smaller 

risk assessment problems 

 they provide internal consistency in predictions 

 they explicitly model the causal structure of risk 

 they can combine diverse types of evidence (both subjective beliefs and objective data) 

 it is transparent (not black box method) 

 they can reason from effect to cause and vice versa 

 

The probability distributions                 ) can in general be continuous or discrete. To keep the 

SME eliciting process manageable probability distributions will be kept discrete in this project. 

This enables the representation of the probability distribution as a  node probability table (NPT): 

 

Example 

Suppose random variable A with states              has parents B with states               and C 

with states               than the NPT of          would look like: 

            States of C       …    

States of B       …          …          …          …    

                   

                   

…                 

                   

Table 6.1: NPT of         ; Each entry (          would contain value                    

 

Note from table 6.1 that even with a few states and a few causal relations between random variables 

the NPT can become quite large (i.e. combinatorial explosion problem). This could in extreme cases 

be a problem from a computational point of view (i.e. calculation of propagation slow) but is more so 

a problem from elicitation point of view when all these values have to be elicited from SMEs. 
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There are several practical strategies that will be employed in BBN model building in this thesis to 

counteract and/or manage this combinatorial explosion problem: 

1. Limit the number of states to the minimum number necessary for enough granularity in the 

state space. 

2. Combine a subset of parent nodes of a child node together in one node (= divorcing) when 

their  effects can be considered separately from the remaining parent nodes. 

3. Exploit logical structure of NPT:  sometimes all the values in a NPT can be summarized with a 

few simple comparative statements using logical operators. 

4. Use of ranked nodes (Fenton, 2007): when there is a natural ordering in the states of a node 

it can be useful to represent the states numerically (by evenly dividing the states over an 

interval of say [0,1]) and use the underlying numerical representation of each state to define 

distributions over the states with only a few parameters or to define an expression which 

defines the NPT of a child node in terms of the underlying numerical representation of the 

parent states 
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6.2  BBN Modeling Approach 
The BBN is used to model static risk (i.e. risk perception). It should model: 

 the difference in risk perception between different targets 

 the difference in risk perception between the different attacker types and attack methods 

 the difference in risk perception from different perspectives (i.e. defender or  attacker) 

 

All these requirements are incorporated in the BBN modeling approach that will follow. 

In this approach (for all attacker types as well as defender) the BBN schematically is depicted in 

figure 6.1 

 
Figure 6.1: Schematic Bayesian Belief Network for Static Risk (black part fixed; blue part supplied by SMEs) 

 

It consists of a variable part (blue) that will be constructed with the help of SMEs and a fixed part 

(black) that was decided on beforehand. The variable part consists of causal factors that will be 

supplied by SMEs. These are random variables that interact with each other, with the ones in the 

fixed part and with static risk in a causal structure that is modeled by the BBN. The fixed part consists 

of the causal factors explicitly shown in figure 6.1. All these causal factors (i.e. nodes) in the BBN 

have a limited number of states (i.e. node states). For the variable part this will be decided by the 

SMEs and for the fixed part these node states are summarized in table 6.2: 

 

Node Node States 

Attack Method Suicide Attack, Hijacking 

Perspective AMS, Terrorist 

Political Consequences High, Medium, Low 

Economical Consequences High, Medium, Low 

Symbolic Consequences High, Medium, Low 

Human Loss Consequences High, Medium, Low 

Consequences Level High, Medium, Low 

Threat Level High, Medium, Low 

Static Risk Risk State 4, Risk State 3, Risk State 2, Risk State 1 
Table 6.2: Fixed nodes (causal factors) and their possible states in descending order of contribution to risk 
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The idea of structuring the SME risk assessment using a BBN modeling approach is that it is quite 

natural for SMEs to supply a causal structure of related nodes and the causal relations between these 

nodes (i.e. to think of the joint probability density function in terms of (6.2)).  

The BBN consists of  nodes without parents (i.e. root nodes), nodes with both parents and children 

and the static risk node at the bottom (i.e. leaf node). 

The states of the root nodes are determined by the particulars of the target and the situation.  

Particulars refers to certain indicators that SMEs will identify as leaf nodes that contribute to the 

static risk associated with a target and situation refers to perspective and attack method. 

Through the defined causal relations the particulars and the situation will determine the state of the 

leaf node. In general this will not be a pure state but a probability distribution {  } over states of the 

static risk node where   = 1,2,3 or 4. 

 

So how does this BBN modeling approach exactly fulfill the three requirements with respect to risk 

perception stated at the start of this section? 

 

The difference in risk perception between different target types is modeled by the leaf nodes. For 

different targets types the leaf nodes will be in different (combinations of) states, which will lead to 

differences in {  }: 

 
Figure 6.2: illustration of different risk perception as a result of different target types 

 

The difference in risk perception between the different attacker types and attack methods is 

modeled by the Attack Method node. Depending on its state the consequences in the four 

consequences categories are valued differently which results in a different {  } for different attack 

methods: 
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Figure 6.3: illustration of different risk perception as a result of different attack method 

 

The difference in risk perception from different perspectives is modeled by the Perspective node. 

Depending on its state the way the four consequences nodes affect their child, the Consequences 

Level node, will in general be different. So in general this results in a different {  }: 

 
Figure 6.4: illustration of different risk perception as a result of different perspective 
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6.3 Calculating Static Risk 
In the previous section a BBN constructed from an SME risk assessment was used to model static risk 

in terms of a probability distribution over static risk states {  }. What is needed however is an actual 

static risk value. This section explains how {  } can be translated to a static risk value. 

 

{  } gives the probability distribution for the static risk to be in risk state   where   = 1,2,3 or 4 and 

the risk states signify states of increasing risk. A natural approach therefore would be to define static 

risk as some kind of expectation value. But this would require assigning values (or weights)    to each 

risk state  . Not all choices of weights      make sense: 

 

Risk states represent increasing static risk with increasing   therefore a choice      would only make 
sense if the following feasibility property would hold:            

 

Remember that {  } depends on the target type  , the attack method (Suicide Attack/Hijacking) and 

the perspective (Defender or Attacker).  Each attacker type   uses only one attack method. Therefore 

the attacker type also defines the attack method:  

 

  Attacker Type Attack Method 

  Used Passenger Suicide Attack 

2 Hijacker Hijacking 

3 Suicide Terrorist Suicide Attack 
Figure 6.3: definition relationship   with attacker type/attack method 

 

Having chosen a set of weights     , static risk Is given by: 
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There are of course an infinite number of feasible choices     . 

Note that all choices feasible of      will impose an ordering on the target types based on the static 

risk associated with that target type. Orderings corresponding to different choices of      will in 

general not be the same. Even when the orderings of different choices of      are the same this will 

not necessarily lead to the same predictions by a game theoretical model where payoffs are 

constructed from static risk and therefore depend on the choice of     . The equilibrium in a game 

theoretical model is in general a mixed equilibrium implying that the equilibrium payoff is an 

expectation of payoffs (i.e. a summation over probabilities times payoffs). In this case not only the 

ordering of the payoffs matters but also their relative values. 

What can be concluded from this is, that there are apparently implicit assumptions hidden in the 

choice of     . A natural question therefore is, how a choice      should be interpreted. 

 

The higher the value assigned to    (relative to    with    ) the more weight is assigned to risk 

state   relative to the other risk states. A more intuitive interpretation of this:  

 

the choice of       defines how players fit into the spectrum from risk averse to risk neutral 
to risk seeking or in other words:  the risk attitude 
 

SMEs were instructed to think of the risk states   = 1,2,3 and 4 as being linearly spaced with respect 

to their (subjective) sense of static risk (see section 6.4). A logical consequence of this is that a choice  

                        can be considered a neutral choice with respect to the sense of 

static risk of the SMEs, since it assigns values that exactly correspond with this sense of static risk. 

 

Depending on differences in how defender/attacker prioritize defending/attacking low value versus 

high value targets three broad categories of risk attitude will be distinguished: 

 

 
Figure 6.5:  example of different choices of      i.e. different risk attitudes  
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6.4 Eliciting approach 
To ensure the quality of the results of the SME risk assessment process the way in which it is done 

deserves some attention. The aim of a good elicitation protocol is to provide a roadmap to a credible 

and traceable quantification of expert opinion. The following protocol loosely based on the 

Stanford/SRI elicitation protocol (Carl Spetzler, 1975) was used: 

1. Motivating 

 explain context (i.e. risk-based security robust against adaptive attackers) 

 explain modeling approach (intentional risk model, attacker types)  

 explain what is needed from SME (i.e. input for BBN model of static risk) 

 (this step was usually done in one-on-one introductory talk with SME) 

2. Questionnaire 

Each SME was given an questionnaire  [See Appendix B] in which was asked: 

 to give estimates for the a priori probabilities of each attacker type 

 to give the causal factors and their connections (in the context of figure 7.1) 

3. Workshop 

On the basis of the information received  through questionnaires one or more candidate BBN 

models were constructed. During  the workshop: 

 consensus was reached on the choice of a BBN model 

with respect to: 

 causal factors 

 connections between causal factors 

 possible states of causal factors20 

 quantitative causal relations were elicited (see below for more detailed description) 

  Procedure for eliciting quantitative causal relations: 

a) ask about influence of individual parent nodes on child node (qualitatively) 

b) ask how the influences of parent nodes aggregate (qualitatively) 

 examples: 

 - each parent node independently increases the value of the child node 

 - the maximum of the parent nodes determines the state of the child node 

 - the minimum of the parent nodes determines the state of the child node 

 - … 

c) ask about the ordering of weights of the influences of the parent nodes on 

child node 

d) ask about confidence level in each of the qualitative statements above 

e) quantify relations above by explicitly asking for numbers that express relative  

influence/weight in statements above 

 weights for the static risk states      were elicited (introduced in section 8.3) 

4. Validation 

SMEs were asked if the static risk ordering  BBN predicted agreed with their opinions 

  

                                                           
20

 The number of possible states of the static risk node was fixed on 4 for both workshops to make it easier to 
compare results the results of both workshops. It was postulated that those static risk states were evenly (i.e. 
linearly) spaced with respect to static risk. 
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This chapter presented sub-model 2. Using this model the quantitative values for the 

static risk associated with targets can be calculated in a way that is consistent, 

reliable, has a high confidence value and addresses uncertainty in SME beliefs. The 

next chapter presents the results of this sub-model. 
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7 Sub-model 2: results 
 

This chapter presents the results of sub-model 2, which associates to each target 

type (=set of flights with similar static risk) a distribution {  } over static risk states  . 
From this the static risk for each target type can be calculated using (6.4). 
The sub-model 2 results were  based on two separate risk assessment workshops by 
SMEs. Section 7.1 presents the results of the first workshop and section 7.2 the 
results of the second workshop. Also obtained from the workshops were a priori 
probabilities (beliefs) of encountering different attacker types. 
 
In the BBN constructed by means of SME workshops qualitative statements about the confidence 
level of a belief expressed by a node were given by SMEs. Table 7.1 defines how the elicited 
qualitative statements about confidence level of a node are translated to the variance associated 
with the distribution of that node. 
 

Confidence Lowest Very Low Low Medium High Very High Highest 

Variance 0.5 0.1 0.05 0.01 0.005 0.001 0.0005 
Table 7.1: Definition of confidence levels in the belief expressed by a node in terms of variance values  

                    associated with the distribution of that ranked node 

 
 
 

7.1 Workshop 1 
In Figure 7.1 the BBN that was constructed in the workshop is shown. The node states are shown 

next to the nodes  ordered from high to low with respect to contribution to risk. The numbers are the 

weights of contribution of parent node distributions to child node distributions.  

In blue the confidence level in the belief  expressed in the node are given. 

 

 
 

Figure 7.1: BBN model resulting from first workshop 
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Table 7.2a and 7.2b define the target types in terms of the node states. The ordering of the target 

types was in ascending order of static risk from the perspective of the defender using: 

(                         . Note that the ordering was preserved when using 

                           or                                 . Also note that the ordering 

from the perspective of the attacker was the same except for target types 7 and 8 which switch order 

from the attacker's perspective. 

 

Note that not all combinations of node states were present in the dataset of all non-Schengen flights 

departing from AMS and therefore have no target type definition associated with them.   

In tables 7.4-7.7 only static risk distributions for combinations of node states that were present in the 

dataset will be denoted. 

 

 
 
 
Airline 

      plane size: big21 
destination Israel US Allies22 other 

Israel target 12    

US  target 11 target 10  

Allies22   target 9 target 6 

other target 8 target 5 target 4 target 2 

Table 7.2a: Definition of target types in terms of node states  

 

 
 
 
Airline 

      plane size: small23 
destination Israel US Allies22 other 

Israel     

US     

Allies22   target 7  

other   target 3 target 1 

Table 7.2b: Definition of target types in terms of node states 

       (causal factors not mentioned: settings in  default states
24

) 

 

In Table 7.3 the a priori probability of each attacker type and their strategy space is shown 

 

Attacker type Occurrence (%) Possible AMOs25 

1 2 3 4 5 6 7 8 9 10 11 12 

Used Passenger conf   x   x       

Hijacker conf       x x x x x x 

Suicide Terrorist  conf x x x x x x       
Table 7.3: Attacker types, their estimated probability of occurrence together with  

    square root of sample variance (N=5) and possible AMOs according to Workshop 1 SMEs 

                                                           
21

 big corresponds to airplanes of category 4-9 
22

  Allies refers to the countries: UK, Germany, France, India and Pakistan 
23

 small corresponds to airplanes of category 3 
24

  default states for time-dependent causal factors: general threat level = substantial, specific current 
intelligence = none, special date = no)  
25

 AMOs: 1= l-IED(body: torso), 2=l-IED(body: extremities), 3=l-IED(hand luggage), 4= s-IED(body: torso),  
5=s-IED(body: extremities), 6=s-IED(hand luggage), 7= gun(body: torso), 8=gun(body: extremities),  
9=gun(hand luggage ), 10= knife(body: torso), 1=knife(body: extremities), 12=knife(hand luggage) 
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7.1.1 Normal dates 

 

Defender perspective 
 

Target 
Type 

Attack method 

Suicide Attack Hijacking 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

1 conf conf conf conf conf conf conf conf 

2 conf conf conf conf conf conf conf conf 

3 conf conf conf conf conf conf conf conf 

4 conf conf conf conf conf conf conf conf 

5 conf conf conf conf conf conf conf conf 

6 conf conf conf conf conf conf conf conf 

7 conf conf conf conf conf conf conf conf 

8 conf conf conf conf conf conf conf conf 

9 conf conf conf conf conf conf conf conf 

10 conf conf conf conf conf conf conf conf 

11 conf conf conf conf conf conf conf conf 

12 conf conf conf conf conf conf conf conf 
Table 7.4: Static Risk distributions defender perspective 

 

 

Attacker perspective 
 

Target 
Type 

Attack method 

Suicide Attack Hijacking 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

1 conf conf conf conf conf conf conf conf 

2 conf conf conf conf conf conf conf conf 

3 conf conf conf conf conf conf conf conf 

4 conf conf conf conf conf conf conf conf 

5 conf conf conf conf conf conf conf conf 

6 conf conf conf conf conf conf conf conf 

7 conf conf conf conf conf conf conf conf 

8 conf conf conf conf conf conf conf conf 

9 conf conf conf conf conf conf conf conf 

10 conf conf conf conf conf conf conf conf 

11 conf conf conf conf conf conf conf conf 

12 conf conf conf conf conf conf conf conf 
Table 7.5: Static Risk distributions attacker perspective 
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7.1.2 Special dates 

 

Defender perspective 
 

Target 
Type 

Attack method 

Suicide Attack Hijacking 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

1 conf conf conf conf conf conf conf conf 

2 conf conf conf conf conf conf conf conf 

3 conf conf conf conf conf conf conf conf 

4 conf conf conf conf conf conf conf conf 

5 conf conf conf conf conf conf conf conf 

6 conf conf conf conf conf conf conf conf 

7 conf conf conf conf conf conf conf conf 

8 conf conf conf conf conf conf conf conf 

9 conf conf conf conf conf conf conf conf 

10 conf conf conf conf conf conf conf conf 

11 conf conf conf conf conf conf conf conf 

12 conf conf conf conf conf conf conf conf 
Table 7.6: Static Risk distributions defender perspective (special dates) 

 

 

Attacker perspective 
 

Target 
Type 

Attack method 

Suicide Attack Hijacking 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

1 conf conf conf conf conf conf conf conf 

2 conf conf conf conf conf conf conf conf 

3 conf conf conf conf conf conf conf conf 

4 conf conf conf conf conf conf conf conf 

5 conf conf conf conf conf conf conf conf 

6 conf conf conf conf conf conf conf conf 

7 conf conf conf conf conf conf conf conf 

8 conf conf conf conf conf conf conf conf 

9 conf conf conf conf conf conf conf conf 

10 conf conf conf conf conf conf conf conf 

11 conf conf conf conf conf conf conf conf 

12 conf conf conf conf conf conf conf conf 
Table 7.7: Static Risk distributions attacker perspective (special dates) 
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7.2 Workshop 2 
In Figure 7.2 the BBN that was constructed in the workshop is shown. The node states are shown 

next to the nodes  ordered from high to low with respect to contribution to risk. The numbers are the 

weights of contribution of parent node distributions to child node distributions.  

In blue the confidence level in the belief  expressed in the node are given. 

 

 

 
 Figure 7.2: BBN model resulting from second workshop 

 

 

Table 7.8a and 7.8b define the target types in terms of the node states. The ordering of the target 

types was in ascending order of static risk from the perspective of the defender using: 

(                               . Note that the ordering from the perspective of the attacker 

using (                          was the same except for: target types 3 and 4 which switch 

order from the attacker's perspective and target types 12 and 13 which also which switch order from 

the attacker's perspective. 

 

Note that not all combinations of node states were present in the dataset of all non-Schengen flights 

departing from AMS and therefore have no target type definition associated with them.   

In tables 7.0-7.13 only static risk distributions for combinations of node states that were present in 

the dataset will be denoted. 
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  flights with mostly local passengers 

 
 

 
 
 
low 
cost 

  plane size small26 medium27 large28 

destination Israel/US Other Israel/US Other Israel/US Other 

Israel/US - - - - - - 

NATO (not US) - target 3 target 16 target 8 target 19 - 

Other - - - target 1 - - 

high 
cost 

Israel/US - - target 21 - target 23 - 

NATO (not US) - target 6 - target 9 - target 13 

Other - - - target 2 - target 4 

Table 7.8a: Definition of target types in terms of node states  

 

 

  flights with mostly transfer passengers 

 
 

 
 
 
low 
cost 

  plane size small26 medium27 large28 

destination Israel/US Other Israel/US Other Israel/US Other 

Israel/US - - - - - - 

NATO (not US) - - target 18 target 12 - - 

Other - - - target 5 - - 

high 
cost 

Israel/US - - - - target 24 target 20 

NATO (not US) target 17 target 11 - target 14 target 22 target 15 

Other -  - target 7 - target 10 

Table 7.8b: Definition of target types in terms of node states 

 

In Table 7.9 the a priori probability of each attacker type and their strategy space is shown: 

 

 

Attacker type Occurrence (%) Possible AMOs25 

1 2 3 4 5 6 7 8 9 10 11 12 

Used Passenger conf   x   x       

Hijacker conf x x x x x x x x x x x x 

Suicide Terrorist  conf x x x x x x       
Table 7.9: Attacker types, their estimated probability of occurrence together with  

    square root of sample variance (N=4) and possible AMOs according to Workshop 2 SMEs 

 

 

  

                                                           
26

 Small refers to airplanes of category 3 
27

 Medium refers to airplanes of categories 4 and 5 
28

 Large refers to airplanes of categories 6-9 

A
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e 

A
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7.2.1 Normal dates 

 

Defender perspective 
 

Target 
Type 

Attack method 

Suicide Attack Hijacking 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

1 conf conf conf conf conf conf conf conf 

2 conf conf conf conf conf conf conf conf 

3 conf conf conf conf conf conf conf conf 

4 conf conf conf conf conf conf conf conf 

5 conf conf conf conf conf conf conf conf 

6 conf conf conf conf conf conf conf conf 

7 conf conf conf conf conf conf conf conf 

8 conf conf conf conf conf conf conf conf 

9 conf conf conf conf conf conf conf conf 

10 conf conf conf conf conf conf conf conf 

11 conf conf conf conf conf conf conf conf 

12 conf conf conf conf conf conf conf conf 

13 conf conf conf conf conf conf conf conf 

14 conf conf conf conf conf conf conf conf 

15 conf conf conf conf conf conf conf conf 

16 conf conf conf conf conf conf conf conf 

17 conf conf conf conf conf conf conf conf 

18 conf conf conf conf conf conf conf conf 

19 conf conf conf conf conf conf conf conf 

20 conf conf conf conf conf conf conf conf 

21 conf conf conf conf conf conf conf conf 

22 conf conf conf conf conf conf conf conf 

23 conf conf conf conf conf conf conf conf 

24 conf conf conf conf conf conf conf conf 
Table 7.10: Static Risk distributions: defender perspective 
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Attacker perspective 
 

Target 
Type 

Attack method 

Suicide Attack Hijacking 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

1 conf conf conf conf conf conf conf conf 

2 conf conf conf conf conf conf conf conf 

3 conf conf conf conf conf conf conf conf 

4 conf conf conf conf conf conf conf conf 

5 conf conf conf conf conf conf conf conf 

6 conf conf conf conf conf conf conf conf 

7 conf conf conf conf conf conf conf conf 

8 conf conf conf conf conf conf conf conf 

9 conf conf conf conf conf conf conf conf 

10 conf conf conf conf conf conf conf conf 

11 conf conf conf conf conf conf conf conf 

12 conf conf conf conf conf conf conf conf 

13 conf conf conf conf conf conf conf conf 

14 conf conf conf conf conf conf conf conf 

15 conf conf conf conf conf conf conf conf 

16 conf conf conf conf conf conf conf conf 

17 conf conf conf conf conf conf conf conf 

18 conf conf conf conf conf conf conf conf 

19 conf conf conf conf conf conf conf conf 

20 conf conf conf conf conf conf conf conf 

21 conf conf conf conf conf conf conf conf 

22 conf conf conf conf conf conf conf conf 

23 conf conf conf conf conf conf conf conf 

24 conf conf conf conf conf conf conf conf 
Table 7.11: Static Risk distributions: attacker perspective 
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7.2.2 Special dates 

 

Defender perspective 
 

Target 
Type 

Attack method 

Suicide Attack Hijacking 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

1 40.0 47.7 12.2 0.0 42.7 46.3 11.0 0.0 

2 conf conf conf conf conf conf conf conf 

3 conf conf conf conf conf conf conf conf 

4 conf conf conf conf conf conf conf conf 

5 conf conf conf conf conf conf conf conf 

6 conf conf conf conf conf conf conf conf 

7 conf conf conf conf conf conf conf conf 

8 conf conf conf conf conf conf conf conf 

9 conf conf conf conf conf conf conf conf 

10 conf conf conf conf conf conf conf conf 

11 conf conf conf conf conf conf conf conf 

12 conf conf conf conf conf conf conf conf 

13 conf conf conf conf conf conf conf conf 

14 conf conf conf conf conf conf conf conf 

15 conf conf conf conf conf conf conf conf 

16 conf conf conf conf conf conf conf conf 

17 conf conf conf conf conf conf conf conf 

18 conf conf conf conf conf conf conf conf 

19 conf conf conf conf conf conf conf conf 

20 conf conf conf conf conf conf conf conf 

21 conf conf conf conf conf conf conf conf 

22 conf conf conf conf conf conf conf conf 

23 conf conf conf conf conf conf conf conf 

24 conf conf conf conf conf conf conf conf 
Table 7.12: Static Risk distributions: defender perspective (special dates) 
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Attacker perspective 
 

Target 
Type 

Attack method 

Suicide Attack Hijacking 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

Risk 
State 1 

Risk 
State 2 

Risk 
State 3 

Risk 
State 4 

1 conf conf conf conf conf conf conf conf 

2 conf conf conf conf conf conf conf conf 

3 conf conf conf conf conf conf conf conf 

4 conf conf conf conf conf conf conf conf 

5 conf conf conf conf conf conf conf conf 

6 conf conf conf conf conf conf conf conf 

7 conf conf conf conf conf conf conf conf 

8 conf conf conf conf conf conf conf conf 

9 conf conf conf conf conf conf conf conf 

10 conf conf conf conf conf conf conf conf 

11 conf conf conf conf conf conf conf conf 

12 conf conf conf conf conf conf conf conf 

13 conf conf conf conf conf conf conf conf 

14 conf conf conf conf conf conf conf conf 

15 conf conf conf conf conf conf conf conf 

16 conf conf conf conf conf conf conf conf 

17 conf conf conf conf conf conf conf conf 

18 conf conf conf conf conf conf conf conf 

19 conf conf conf conf conf conf conf conf 

20 conf conf conf conf conf conf conf conf 

21 conf conf conf conf conf conf conf conf 

22 conf conf conf conf conf conf conf conf 

23 conf conf conf conf conf conf conf conf 

24 conf conf conf conf conf conf conf conf 
Table 7.13: Static Risk distributions attacker: perspective (special dates) 

 

 

 

This chapter presented the results of sub-model 2 for two separate SME workshops 

In the previous chapter it was explained how given a choice of weights      for these 

risk states              quantitative values for static risk can be calculated. These 

will be necessary for calculating payoffs in sub-model 3 which will be presented in the 

next chapter. 
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8 Sub-model 3: Game Theory 
 

In this chapter sub-model 3 is presented. The purpose of sub-model 3 is to model the 

interplay between defender and attacker to predict the best response equilibrium. 

This interplay consists of: a defender choosing settings for each layer at each target 

type and an attacker type   (       ) observing these choices and choosing a target 

to attack and a threat to use for this attack. This sub-model builds on sub-model 1 for 

providing cost and benefits of possible choices and on sub-model 2 for providing the 

preferences with respect to choices. 

Game theory is used to model this interplay. The basis for predicting interplay/the 

best response equilibrium in game theory are the Rational Choice Assumptions29. 

Even within those assumptions there are several possible game-theoretical 

approaches. Section 8.1 will justify the approach that was chosen in this thesis. A 

crucial ingredient in game theory are payoffs. Section 8.2 will present how 

meaningful payoffs can be constructed using information from sub-models 1 and 2. 

Finding the best response equilibrium in an efficient way given the many possible 

attacker and defender choices is far from trivial. Section 8.3 presents an efficient 

mixed integer linear programming solution algorithm to calculate the best response 

equilibrium. To make sense of the calculated best response equilibrium in section 8.4 

useful parameters are developed. Section 8.1 introduced some assumptions that 

seem somewhat harsh. Therefore in section 8.5 a modification is presented of the 

solution algorithm in section 8.3 that requires weaker assumptions. 

 

8.1 Deciding on the game-theoretical framework 
This chapter will deal with modeling that part of risk that contrary to the previous two chapters does 

depend on  the interplay between defender and attacker choices (i.e. dynamic risk). 

 

Dynamic risk is determined by a situation that is the result of the decisions made by a defender trying 

to minimize dynamic risk from his perspective and decisions made by an attacker trying to maximize 

it from his perspective. These kinds of decision problems are called games and  fall into the domain 

of game theory17.  

 

Before deciding on a specific game-theoretical approach a few questions have to be answered: 

 is it a game of perfect/imperfect information? 

 is it a dynamic or static game? 

 what is the most appropriate solution concept? 

 is it a game of complete/incomplete information? 

                                                           
29

 The Rational Choice Assumptions: 
     the player fully understands the decision problem by knowing: 

 all possible actions 
 all possible outcomes 
 exactly how each action affects which outcomes will materialize 
 his rational preferences (payoffs) over outcomes 
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Assumptions have to be made with respect to the information position of the attacker (i.e. does 

attacker have knowledge of security measures chosen by defender). As explained in Chapter 3 it is 

reasonable to assume that an attacker does surveillance and is aware of the security measures that 

will be encountered when attacking the target. This implies a game of perfect information. 

 

In this game the defender commits to a strategy first which can be observed by the attacker, so it is a 

dynamic game. 

 

The most appropriate solution concept in a dynamic game is some kind of Subgame Perfect Nash 

Equilibrium (SPNE) concept.  Subgame perfection is a refinement of the Nash Equilibrium30 where  

non-credible threats are removed from the equilibrium strategy profile. 

The Subgame Perfect Nash Equilibrium concept that we will chose is the Strong Stackelberg 

Equilibrium (SSE)31. Defined as follows: 

 

Let   be the defender strategy,      the attacker response function/strategy to C,         
and        respectively the defender and the attacker payoff and       the set of 
attacker best responses to C.  A pair of strategies       forms a SSE if they satisfy the 
following: 

i. the defender plays a best response 
                                  

ii. the attacker plays a best response 
                                           

iii. the attacker breaks ties optimally for the defender 

                               
  

The last condition might seem to make the SSE less realistic as a equilibrium concept. Because why 

would the attacker (even though indifferent regarding to its own payoff) cater to the preferences of 

the defender? 

In response to that note: 

 this definition makes the equilibrium condition well defined 

 an existence theorem applies to the SSE (Başar & Olsder, 1999) 

 the defender can often induce the favorable SSE by selecting a strategy arbitrarily 

close to the equilibrium that causes the attacker to strictly prefer the desired 

strategy (Stengel & Zamir, 2004) 

So using SSE as equilibrium concept is both practical and defendable in general. 

For this specific case there is also another reason why assuming that the attacker breaks ties 

optimally for the defender is not likely to make the equilibrium less realistic, but since that reason 

depends on the specific payoff structure of this problem explaining this reason will have to wait until 

the next section where the payoffs structure will be introduced. 

                                                           
30

 Nash Equilibrium means that attacker and defender both play best responses to each other strategies and 
cannot unilaterally deviate in a profitable way. 
31 The name refers to a so called Stackelberg game in economics. In a Stackelberg game there is a leader who 

commits to a (randomized) strategy first and one or more followers who can observe the (randomized) strategy 

chosen by the leader before choosing their strategy or strategies. Here the terms defender and attacker(s) will 

be used instead of leader and follower(s). 
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Because of uncertainty in what kind of attacker (with respect to goals/methods) a defender will face 

a game model with incomplete information will be used. This means that we will consider different 

(independent) attacker types (varying in goals/methods)  together with the a priori probabilities of 

encountering them, making this a Bayesian game. We will only consider one defender type. 

The independence of the attacker types makes it possible to evaluate the payoff matrices of the 

attacker against each of the payoff matrices for the individual attacker types and to solve in each 

case for the SSE, making this a Bayesian Stackelberg game. This property is exploited in the solution 

algorithm presented in section 8.3. 

 

Even though it is likely that an attacker first will invest in surveillance before choosing his/her 

strategy a very legitimate concern is if this assumption will be appropriate in all cases. In some 

situations attackers may choose to attack without gathering information on the policy of the 

defender. For example when security measures are difficult to observe or surveillance entails the risk 

of discovery. 

This situation can best be modeled as an incomplete static game of imperfect information. The 

appropriate solution concept in that case would be a Bayesian Nash Equilibrium (BNE), which is 

simply the Nash Equilibrium30 concept applied to an incomplete games where different attacker 

types and together with the a priori probabilities of encountering them are considered (i.e. a 

Bayesian game). 

 

It is not necessarily true that an SSE is also a BNE as illustrated in the following example (with for 

convenience only one follower type making a BNE a NE).  

Table 8.1 shows the payoff table of an example game: 

 

 

 

 

Table 8.1:  Example game were SSE   NE  

 

If the row player has the ability to commit (like in the Stackelberg model), the SSE strategy is a mixed 

strategy where 50% of the time the row player chooses strategy A and 50% of the time he chooses B, 

so that the best response of the column player is to choose pure strategy D. 

If on the other hand the game was a simultaneous-move game the only NE of this game is for the 

row player to choose pure strategy A and the column player to choose pure strategy C. 

So the SSE and the NE are obviously not the same in this example.  

 

In Figure 8.1a and 8.1b extensive game diagrams are drawn that represent the two possible 

situations described above for the problem in this thesis. 

 

The uncertainty in the surveillance capability of an attacker is a problem because it makes it unclear 

which solution concept  is appropriate to find the best defender policy. 

There are several ways to approach to this dilemma: 

column player C D 

 
row player 

A 2,1 4,0 

B 1,0 3,1 
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The first is to consider the fact that in game theory more information never hurts a player. So the SSE 

can be considered a worst-case-scenario for the defender and therefore the payoff  of its best policy 

a lower bound to the actual payoff. 

Another approach is to check for every calculated SSE if it is also a BNE (Korzhyk, et al., 2011). In this 

case there would be no dilemma. Irrespective of the information position of the attacker the 

calculated SSE would be the best defender policy. Of course it is also possible to try to prove for the 

specific payoff structure of the problem if in general It holds that SSE ⊆ BNE. For simple payoffs 

structures this in fact has been done (Korzhyk, et al., 2011) , but the payoff structure in this problem 

is more complicated so here this will not be attempted. 

 

A final possibility is to explicitly model the insecurity in the information position of the attacker by 

introducing the player Nature who randomizes over the 2 possible information positions (See Figure 

8.1c). The problem with this approach that it will be a lot harder to efficiently calculate a SPNE for 

this complicated game. 

 

In this thesis we will use the first approach and just consider the calculated SSE as the worst case 

limit of a more realistic problem. 
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Figure 8.1:  extensive form game diagrams
32

 for: 

       a) situation where attacker does surveillance 

       b) situation where attacker does no surveillance 

       c) situation where it is uncertain if attacker does surveillance 

                                                           
32

 Nodes connected with a dotted line are in the same information set (i.e. the player associated with that node 
cannot tell which of the nodes in the information set he/she is in).  
A dotted line between the second and the third arc connected to a node represents that there are many 
possible strategies (more than would be have been convenient to draw). 
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8.2 Calculating Payoffs 
After deciding on the game-theoretical framework in the previous paragraph the only thing left to do 

is to determine appropriate payoffs to realistically model the problem of allocating security resources 

while minimizing intentional risk 

To accomplish this the payoffs have to model       for the defender and       for the attacker in 

terms of the possible strategies of defender and attacker. In that way the defender will minimize risk 

and the attacker will maximize risk by optimizing their payoff. 

 

As explained in Chapter 4  risk consists of a static part that does not depend on choices made by 

attacker and defender and a dynamic part that does. 

The static part is simply static risk as defined in Chapter 6.  

The dynamic part is given by (4.4b) where               for the target selected by the attacker 

type   and        can be modeled by           . Dynamic means that it depends on the choices 

(i.e. strategies) of defender and attacker. As mentioned in Chapter 3 a defender strategy consists of 

an target type   and the security measures   to defend that target whereas an attacker strategy 

consists of a target  type   and the threat employed to attack it. 

 

This leads in a straightforward way to the following payoff definitions: 

 

 

                                            
              

 

                                            
                

 

 

Note that defender and attacker strategies are defined in terms of the variables           whereas 

the payoffs are defined only in terms of variables        . The reason for this is that payoffs are 

meaningless when     (i.e. the defender/attacker rewards are only defined by the security 

measures in place at the target that is actually attacked). Stated differently: 

 

                                  

 

                                    

 

Note that the BBN leading to the distributions      consist of ranked nodes. This means that node 

states can be ordered in states of increasing contribution to static risk. Therefore when one node 

changes its state to a higher risk state concurrently           will decrease and           will 

increase.  
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For           to be the same for different strategy profiles (i.e. attacker indifferent) and           

to be different for different strategy profiles (i.e. defender not indifferent)  the strategy profiles have 

to differ with respect to more than one node state with both positive and negative effects on the 

static risk distribution      that offset each other exactly in the case of the attacker, but not in the 

case of the defender. This is not very likely to happen. 

Therefore the situation that the SSE definition forces the attacker to somewhat unrealistically break 

indifference ties by choosing the best strategy profile for the attacker is unlikely to occur for this 

payoff structure. 

 

Note that payoffs are defined with respect to flight types   versus with respect to actual  flights. 

The intuition behind this is that all flights with the same static risk distribution (i.e. the set   ) can for 

all intents and purposes be considered one big flight.  Payoffs for both attacker and defender will be 

identical so all flights in set    are equally attractive to attack/defend. 

Stated differently: a representation with respect to   is identical but more compact. 

This more compact representation has an important computational advantage: 

There are about 300 different flights in the dataset corresponding to all non-Schengen flights 

departing from AMS on a daily basis. There are a lot less flight types in that same dataset as can be 

seen from the previous chapter. Given 7 layers with each 2 possible settings there are for each flight 

128 possible settings. So in an individual flight representation there are         possible security 

settings for the complete problem whereas in an flight type representation there are only       (for 

workshop 1) and       (for workshop 2) possible security settings for the complete problem. This is 

a difference of around 600 orders of magnitude which the compact representation exploits. 

 

In literature it is argued that games between a defender and an attacker are more likely to be non-

zero-sum games than zero-sum games (Powell, 2007). In the way payoffs modeled here the deviation 

from zero-sum can be related to two conceptually conveniently separable contributions: 

1. difference in risk-perception between defender and attacker 

(i.e. differences in how defender/attacker value inherent value of targets) 

2. differences in risk-attitude between defender and attacker 

(i.e. differences in how defender/attacker prioritize defending/attacking low value versus 

high value targets 

 

 

 

  

It has to be stressed that payoffs are the heart of this algorithm. Any beliefs about the 
method of operation of the attacker are expressed through the payoffs.  Since threats are 
evolving  or can even be dramatically different from one day to the next as a result of 
current events, so should beliefs with respect to the method of operation of the attacker 
and so should the payoffs. 
Without continuously  reviewed  and updated payoffs the calculated risk-based  allocation 
of security resources will not be consistent with the actual risks and therefore vulnerable. 
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8.3 Strategies and solution algorithm 
To find the optimal defender policy the decision problem is modeled as a Bayesian Stackelberg game, 

between the defender and attacker types  . 

The optimal strategy of the attacker is a mixed strategy of the security measures   chosen for each 

flight   that has the highest payoff when the attacker types play a reward maximizing strategy by 

attacking target type   with threat   . 

Note that only a pure strategy needs to be considered for the attacker types, since for a give strategy 

of the defender each attacker type faces a problem with fixed linear rewards. If a mixed strategy is 

optimal  for the follower, then so are all the pure strategies in the mix. 

 

The game is formulated as a programming problem, with decision variables: 

 

 
                  fraction of time target    is defended with security measures   
 

              
    

                                                    
                                                                                   

  

 

 

Given the independence of the attacker types the Bayesian Stackelberg game can be formulated as 

the following mixed integer quadratic programming (MIQP) problem (Paruchuri, et al., 2009): 

 

                            

              

   
            

 

                                  
   

   

                                     
 

    

  

    

 

                                             
   

                  
     

                                        
         

      

 

                                             

                                     
         

                                         

 

where: 

   = a priori probability of attacker type   

  = set targets types (flight types) 

  = set of security measures   

   = set of threats   of attacker type   

   = upper bound on attacker type l's reward for any action 

  = large positive quantity 

 



 
64 

 

Elbert van de Wetering   A Risk-Based Passenger Screening Security Architecture optimized against adaptive threats  

The objective function is the expectation value of the defender payoff against attacks the targets and 

threats selected by each attacker type   (i.e. the targets and threats for which    
  = 1) weighted by 

the a priori probability of each attacker type  

Note that the payoffs of the defender against the attacker and vice versa only depend on the security 

measures in place on the target type selected by the attacker (i.e. terms    .   
  with     don't 

have to be taken into account) 

 

Constraint (a) and (e) enforce a mixed strategy for the defender, where at any time for each flight a 

security measure is chosen. 

 

Constraint (b) and (f) enforce a pure strategy for each attacker   . 

 

Constraint (c) enforces that the attacker chooses the best response to the policy chosen by the 

defender.                   is the payoff of the attacker against policy    . The left inequality of 

(c) guarantees that    is greater than all possible payoffs against this policy. The right inequality is 

inactive when    
 =0 (i.e. when target type   is not attacked), because the    is chosen big enough 

that it will always be greater than the largest difference between the upper bound    and the lowest 

payoff of the attacker against a policy    33. When    
 =1 (i.e. target type   is attacked with threat  ) 

both inequalities forces the payoff of the attacker to be equal to the upper bound   . 

Together with the left inequality this implies optimality of the attacker strategy defined by         . 

Another way to look at constraint (c) is:  

 left inequality: enforces dual feasibility of attacker's   decision problem 

 right inequality: complementary slackness constraint for an optimal pure strategy of 

attacker   

 

Constraint (d) ensures that the security resources needed for the defender strategy do not exceed 

available manpower capacity. Like explained in section 6.4 the capacity ideally depends on the 

average static risk level from the perspective of the defender. The exact way it depends on the 

average static risk level is mostly a management choice. It is assumed this choice is made and the 

exact  dependence is known. 

  

                                                           
33

 In the implementation of the MILP in AIMMS the value for   was chosen as tight as possible in each of the 
constraints corresponding to a different combination of        : 
 

                            
               

  

 
where: 
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The problem with the MIQP formulation is that it is non-linear. Linear formulations can be solved 

more efficiently.  However through the change of variables given by (8.5) the MIQP formulation can 

be transformed to the mixed integer linear programming (MILP) formulation given by (8.6) 

 

             
          

  

 

Note: 

i.      
          

   

ii.        
           

           
                              

iii.       
 

             
 

        
             

  

 

Model 1 
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The equivalence of both formulations will be proven by showing that a feasible solution of 

formulation (8.4) is also a feasible solution of (8.6) with the same objective  function value and vice 

versa. 

 

Proof 

 Consider a feasible solution of (8.4): {       
    }  

To prove: {     
          

     
    } is a feasible solution of (8.6)  

                   with same objective function value 

Constraints (b), (i), (j) in (8.6) are present in both formulations. 

Constraints (a), (d), (e), (f), (g),(h) in (8.6) follow from construction using note ii. 

Constraint (c) in (8.6) follows from construction using note iii. 

Therefore solution  {       
    } is also feasible solution of (8.4) 

The equivalence of the objection function follows from  note i. 

 Consider a feasible solution of (8.6): {     
     

    } 

To prove: {           
 

           
    } is a feasible solution of (8.4) 

                   with same objective function value 

Constraints (b),(f), (g) in (8.4) are present in both formulations. 

Constraints (a), (c),(d),(e) in (8.4) follow from construction using note ii. 

Therefore solution {     
     

    } is also feasible solution of (8.4) 

Let    and    be the target and threat selected by attacker   for attack. Then: 

   
   

                       
                      

  

Combined with constraint (c) in (8.6) this implies: 

                      
 

   

    

Constraint (a) in (8.6) can be rewritten: 

                       
 

       

 

   

         
 

          

          
 

   

 

        

         
 

   

   

Together with the previous equation this implies: 

     
                           

Therefore: 

           
 

       

         
   

Insert this result in the objective function of (8.4) 

           

              

   
                           

  

              

   
           

               
           

        

              
  

              

          

Q.E.D.  
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8.4 How to interpret the results 
 

8.4.1 Comparing defender reward and manpower requirement to upper/lower bounds 

To better interpret the value of the objective function (which will be called 'defender reward' ) it will 

be useful to compare it to the lower and upper bound given the payoffs. 

The lower bound value is reached when all layers are set at their lowest setting for all flight types. 

Let      correspond with setting all layers at their lowest setting, then for the lower bound holds: 

 

                         

 

So the lower bound to the defender reward      becomes: 

 

                       
  

   

             
  

 

where: 

                                                                                     

                                                                                 

(both    and    can be easily determined by inspection of            
 ) 

 

The minimal required manpower to support the settings in (8.7) is a lower bound to the required 

manpower      and is given by: 

 

                       

   

 

 

Since       depends on    as can be seen in (5.9) the minimal required manpower will depend on 

the number of passengers per flight. This effects of this dependence will be simulated using different 

scenarios for the occupation levels of flights. 

 

Finding upper bounds for defender reward and required manpower is a bit more involved. It is hard 

to predict     } that guarantees a maximal defender reward, let alone to predict     } that does so 

at minimal required manpower34 

 

                                                           
34

 For example: setting all layers at the highest setting for all flight types does not guarantee a maximal 
defender reward. It could be that defending a specific target less makes it more profitable for an attacker to 
deviate to attacking that target and that the defender  is also better off in this deviation. 
Even if setting all layers at the highest setting led to a maximal defender reward. Calculating the manpower 
required to support this is not necessarily the minimal required manpower to support this defender reward. 
There could be an equilibrium that requires less manpower to support the same defender reward. Additional 
security measures in this equilibrium would not necessarily add to the defender reward. The defender reward 
is also determined by the most profitable target selected for attack by the attacker. So additional security 
measures at other targets don’t increase the defender reward. It can also be that additional security measures 
taken at the target selected for attack by the attacker don't increase        at that target, because they don't 
add significantly to security measures already in place against threat  . This would also mean: no increase in 
the defender reward even though more manpower was expended. 
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Therefore the upper bound      has to be found by solving the MILP in (8.6) without constraint (g). 

 

Note that since      and      were calculated without any reference to capacity constraint (g) they 

do not depend on available manpower or flight distribution: 

 

     and      do not depend on available manpower or flight distribution, but are solely 
determined by defender and attacker payoffs           and           for         
 

      ,the minimal required manpower to support this     , can then be calculated by solving the 

MILP in (8.6)  with objective function: 

 

                       
 

       

       

      

 

 

and constraint (g) substituted with: 

 

                      
  

              

                 

 

The calculated value for (8.12) will correspond to     . 

Given upper and lower bounds to the defender reward   and the required manpower    it is more 

meaningful to state calculated values as percentages relative to those upper and lower bounds (i.e. 

the relative defender reward) as opposed to stating calculated results as absolute values: 
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8.4.2 Cumulative layers settings per target type 

Solving the MILP given in (8.6) results in the defender policy     }. However, it is hard to interpret 

the defender policy in this representation     }.  A more meaningful representation of the solution 

would be to instead express it  in terms of the individual layers and what percentage of time those 

are switched to their highest setting (for each target type  ). This would give a direct recipe for 

implementing the defender policy: 

 

Let       be the cumulative percentage layer   is to be switched to the high setting for 
target type   . For each passenger subjected to layer   a number is drawn from uniform 
distribution         .The setting       for that passenger subjected to layer   at  a flight 
of target type   is given by: 
 

                   
                           
                                            

  

 

      can be calculated from     } using: 

 

                    
   

        

 

where: 

        
                                                       
                                                                                           

  

 

 

Interpretation       for the ETD layer is not as straightforward as the recipe above (8.17) suggests 

when the more efficient ETD screening procedure described in Appendix D is used. 

This procedure is especially developed to scan large number of passengers (entire flights) and does 

not work when used to randomly scan one passenger as per recipe. 

For the ETD screening layer a more convenient recipe is to use criterion (8.17) to decide once if all 

the passengers of the flight should be screened using ETD as opposed to deciding for each passenger 

individually if he should be screened using ETD. 

 

Both {     } and {   } are representations of the defender policy. {     } is a representation that 

can readily be translated to settings of the security architecture and {   } is an convenient 

representation to formulate the model in. 

Note that the mapping of {   }⟶{     } is surjective but not injective: there are different defender 

policies {   } that lead to the same {     }.  
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8.4.3 Policy's weakest link per target type 

One possible way to analyze how effective a calculated defender policy     } is, is to look at all 

possible threats of each attacker type   and determine for each target type for which of these threats 

that target has the lowest detection probability and note that lowest detection probability      (i.e. 

the weakest link). Note that this way of analyzing does not take into account an attacker's preference 

for a target just its capabilities. For a given target type  , attacker type   and a relative defender 

reward of      associated with the defender policy,     
     is given by: 

 

              
             

    
            
 

  

 

For determining if a policy guarantees an acceptable minimal security level for each target type 

calculating     
     can be helpful. 

Using     
     it is also possible to define restrictions in terms of a minimal level of security if AMS/NCTV 

so choose35 

In this thesis     
     will only be used to refer to defender policies with a relative defender reward of 

100%, so for convenience the superscript will be dropped: 

                         
          

 

For the current  rule-based policy each target is defended equally well (i.e.           =        ) 

In appendix H, table 22.5 these values         for the current  rule-based policy are given. 

 

  

                                                           
35

 When it is felt that such restrictions are needed because the weakest links are unacceptably low it is 
probably useful to reflect on the possibility that the reason behind it might be more fundamental: maybe the 
way the defender risk attitude is modeled does not match reality and the low weakest links are just the 
symptom. 
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8.5 Modified model: bounded rationality 
There are two assumptions in the model so far that, though certainly defendable, seem too harsh: 

1. The Rational Choice Assumptions29 

2. The assumption that the attacker breaks indifference ties in favor  of the defender  (implied 

in the choice of SSE as equilibrium concept) 

In this section a modified version of Model  1 will be presented that requires weaker assumptions 

(Pita, et al., 2009):  

 

                        

   

 

                                   
   

   

                                      
 

    

  

    

 

                                       
 

    

  

    

 

                                             
   

                  
     

                                            
            

   

                     
     

                                            
                  

 

      

      

                                        
         

      

 

                                     
       

  

                                            

                                      
     

         

                                          

where: 

    = minimum defender reward against attacker type   

   
  =    -optimal attacker response (i.e. attacker   reward within    from optimal) 

   
  = optimal attacker response 

   = large positive quantity36 

Note that there are two attacker response variables    
  and    

 . 

   
  keeps track of the optimal attacker response and is identical to    

  in Model 1 and therefore so 

are constraints (c), (d) and (i). 

   
  keeps track of the   -optimal attacker responses, and since these are in general not unique 

constraint (b) allows for more than one     -optimal attacker response. 

                                                           
36

 In the implementation of the MILP in AIMMS the value for   was chosen as tight as possible in each of the 
constraints corresponding to a different combination of        :                      
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Constraint (e) ensures that    
    if the attacker reward                   is less than    smaller 

than maximum attacker reward   . 

Constraint (f) selects the smallest defender reward against the set of    -optimal attacker responses 

(i.e. a worst case scenario defender reward as opposed to SSE equilibrium concept which selects the 

best defender reward against a set of optimal attacker responses). 

This smallest defender reward is maximized in the objective function. 

 

The modifications in Model 2 give the best response equilibrium a less artificial character: 

 the attacker has some flexibility (bounded by the    parameter) to deviate from 
behaving strictly rational (i.e. bounded rationality) 

 the attacker does not necessarily have to be exactly aware of how his actions affect 
outcomes (for example because of limitations in his surveillance capabilities) 

 by choosing the worst case scenario defender reward against an extended  
(i.e.    -optimal) set of possible attacker responses, the defender policy is more robust 

 

This leaves the problem of deciding on a value for parameter   . There are several equivalent ways 

this parameter can be interpreted: 

 

The value of     expresses: 
1. how accurate an attacker   is able to discern between the outcomes of his actions 
2. to which degree an attacker is expected to act rationally according to the defined 

payoffs 
3. to which degree the model of the attacker's preferences in terms of payoffs is 

expected to be accurate 
 

Using the first interpretation: to  model that an attacker has a rough idea of  which actions are 

optimal or close to optimal a natural approach is to relate     to the maximal attacker reward    by 

modeling    as a fixed fraction   of   . 

 

                  

 

Directly substituting (8.16)  into (8.15) would make the left inequality of constraint (e) non-linear. 

Therefore to accommodate (8.16) and keep the formulation linear, constraint (e) is rewritten to: 

 

            
                    

   

                  
     

 

where: 

    = large positive quantity37 

 

                                                           
37

In the implementation of the MILP in AIMMS the value for     was chosen as tight as possible in each of the 
constraints corresponding to a different combination of        :                          
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The right constraint is simply the right constraint of (8.15e) rewritten by substituting (8.16). 

The left constraint can be rewritten to: 

 

            
                 

   

            

 

Which is identical to (8.15e)  when    
    and also when    

    provided      . 

The final version of Model 2 therefore becomes: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This chapter presented sub-model 3 which purpose is to model dynamic risk. Sub-

model 3 build on the results of sub-models 1 and 2 presented in the previous 

chapters. Explained was how a game-theoretical framework is a natural choice for 

modeling dynamic risk and how the properties of the problem (i.e. a defender who 

commits to a strategy first and uncertainty in attacker objectives) determined the type 

of game-theoretical framework used in sub-model 3. In the next chapter the results 

obtained from sub-model 3 (i.e. the optimal defender policy) will be presented for 

various choices of model-parameters. 

Model 2 
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9 Sub-model 3: results 
 

This chapter will present the sub-model 3 calculation38 results. Those results consist 

of the settings the defender should select for each layer and each target type to 

optimally defend against an intelligently adapting attacker using the least amount of 

security resources. An intelligently adapting attacker will choose the target and the 

threat in such a way as to maximize its probability of success. These optimal settings 

the defender should select will be referred to as the defender policy. Investigated will 

be how the defender policy depend on: 

 the solution algorithm used (section 9.1) 

 the date (section 9.2) 

 the degree of rationality (explained in section 8.5) of the attacker (section 9.3) 

 the risk attitude of the defender (section 9.4) 

 the SME workshop the assessment of static risk was based (section 9.5) 

 the risk attitude of the attacker (sections 9.1-9.4) 

 

 

Note:  
all graphs in this chapter are confidential information 
and thus omitted in the public version of this thesis 

 

9.1 Comparing Models 
In this section Model 1 and Model 2 (with     ) were compared. This was done both as a sanity 

check (do the results of both models more or less agree) and to investigate the effect of the 

differences in the models (i.e. in Model 1 the attacker breaks ties in the best possible way for 

defender and in Model 2 the attacker breaks ties in the worst possible way for the defender). 

  

                                                           
38

 All calculations were done by solving model (8.6) until optimality using the CPLEX 12.5 solver of AIMMS 
3.14x64 on an Intel(R) Core(TM) i7-2670QM 2.20GHz CPU with 8GB RAM.  For Model  1 the optimal solution 
was usually found within a few minutes, but proving optimality took until up to 2 hours. For Model  2 the 
optimal solution was usually found within a few seconds, but proving optimality took until up to 3 minutes 
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9.1.1 Model 1 using results workshop 1 

All calculations in section 9.1.1 were done using the distribution      over static risk states from 

Workshop 1 (see section 7.1) using Model 1. 

In Figure 9.1a the minimal required manpower is plotted against the defender reward it can support. 

for the three different attacker risk attitudes scenarios of sections 9.1.1.1-9.1.1.3. 

In Figure 9.1b the cumulative settings for each layer at a defender reward of 100% is plotted against 

each target type present in dataset for the three different attacker risk attitudes scenarios of sections 

9.1.1.1-9.1.1.3. 

 

 

Figure 9.1a: minimal required manpower versus relative defender reward for parameters in tables 9.1a-9.3a 

 

 

Figure 9.1b: cumulative layer settings for 100% defender reward versus target type  

         for parameters in tables 9.1a-9.3a 
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9.1.1.1 Attacker with low value/soft target preference (summer) 

The parameters for the calculations in this section are summarized in Table 9.1a 

 

Based on non-Schengen flight distribution of august 5th 2012 

          
          

 1 2 4 6 

          
           1 1.7 2.2 2.5 

upper bounds      = conf      = conf man*minutes/day 

lower bounds      = conf      = conf man*minutes/day 

      conf man*minutes/day 

Flight occupation 100% of available seats 

Table 9.1a:  parameters of calculations in section 9.1.1.1 

 

Lowest detection probability (%) at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 
Table 9.1b:       per target type and attacker type for parameters in table 9.1a (np = layer is not present) 

 

In figures 9.2a-9.2j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.2a:  % of time each layer is in high setting for a given defender reward and target type 12 
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Figure 9.2b:  % of time each layer is in high setting for a given defender reward and target type 11 

 

 

Figure 9.2c:  % of time each layer is in high setting for a given defender reward and target type 10 

 

 

Figure 9.2d:  % of time each layer is in high setting for a given defender reward and target type 9  
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Figure 9.2e:  % of time each layer is in high setting for a given defender reward and target type 8 

  

Figure 9.2f:  % of time each layer is in high setting for a given defender reward and target type 7 

 

 

Figure 9.2g:  % of time each layer is in high setting for a given defender reward and target type 5 
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Figure 9.2h:  % of time each layer is in high setting for a given defender reward and target type 4 

 

Figure 9.2i:  % of time each layer is in high setting for a given defender reward and target type 3 

 

 

Figure 9.2j:  % of time each layer is in high setting for a given defender reward and target type 2 
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9.1.1.2 Attacker with neutral target preference (summer) 

The parameters for the calculations in this paragraph are summarized in Table 9.2 

 

Based on non-Schengen flight distribution of august 5th 2012 

          
          

 1 2 4 6 

          
           1 2 3 4 

upper bounds      = conf      = conf man*minutes/day 

lower bounds      = conf      = conf man*minutes/day 

      conf man*minutes/day 

Flight occupation 100% of available seats 

Table 9.2a:  parameters of calculations in section 9.1.1.2 

 

 

Lowest detection probability (%) at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 
Table 9.2b:       per target type and attacker type for parameters in table 9.2a  (np = layer is not present) 

 

In figures 9.3a-9.3j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.3a:  % of time each layer is in high setting for a given defender reward and target type 12 
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Figure 9.3b:  % of time each layer is in high setting for a given defender reward and target type 11 

 

 

Figure 9.3c:  % of time each layer is in high setting for a given defender reward and target type 10 

 

 

Figure 9.3d:  % of time each layer is in high setting for a given defender reward and target type 9  
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Figure 9.3e:  % of time each layer is in high setting for a given defender reward and target type 8 

  

 

Figure 9.3f:  % of time each layer is in high setting for a given defender reward and target type 7 

 

 

Figure 9.3g:  % of time each layer is in high setting for a given defender reward and target type 5 
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Figure 9.3h:  % of time each layer is in high setting for a given defender reward and target type 4 

 

 

Figure 9.3i:  % of time each layer is in high setting for a given defender reward and target type 3 

 

 

Figure 9.3j:  % of time each layer is in high setting for a given defender reward and target type 2 

  



 
86 

 

Elbert van de Wetering   A Risk-Based Passenger Screening Security Architecture optimized against adaptive threats  

9.1.1.3 Attacker with high value/hard target preference (summer) 

The parameters for the calculations in this paragraph are summarized in Table 9.3 

 

Based on non-Schengen flight distribution of august 5th 2012 

          
          

 1 2 4 6 

          
           1 2 4 6 

upper bounds      = conf      = conf man*minutes/day 

lower bounds      = conf      = conf man*minutes/day 

      101,025 man*minutes/day 

Flight occupation 100% of available seats 

Table 9.3a:  parameters of calculations in section 9.1.1.3 

 

 

Lowest detection probability (%) at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 
Table 9.3b:       per target type and attacker type for parameters in table 9.3a (np = layer is not present) 

 

 

In figures 9.4a-9.4j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.4a:  % of time each layer is in high setting for a given defender reward and target type 12 
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Figure 9.4b:  % of time each layer is in high setting for a given defender reward and target type 11 

 

 

Figure 9.4c:  % of time each layer is in high setting for a given defender reward and target type 10 

 

 

Figure 9.4d:  % of time each layer is in high setting for a given defender reward and target type 9 
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Figure 9.4e:  % of time each layer is in high setting for a given defender reward and target type 8 

 

  

Figure 9.4f:  % of time each layer is in high setting for a given defender reward and target type 7 

 

 

Figure 9.4g:  % of time each layer is in high setting for a given defender reward and target type 5 
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Figure 9.4h:  % of time each layer is in high setting for a given defender reward and target type 4 

 

 

Figure 9.4i:  % of time each layer is in high setting for a given defender reward and target type 3 

 

 

Figure 9.4j:  % of time each layer is in high setting for a given defender reward and target type 2 
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9.1.2 Model  2 using results of workshop 1 

All calculations in section 9.1 were done using the distribution      over static risk states from 

Workshop 1 (see section 7.1) using Model 2. 

In Figure 9.5 the minimal required manpower is plotted against the defender reward it can support 

for the three different attacker risk attitudes scenarios of sections 9.1.2.1-9.1.2.3. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.5: minimal required manpower versus relative defender reward for parameters in Tables 9.4a-9.6a 
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9.1.2.1 Attacker with low value/soft target preference (summer) 

The parameters for the calculations in this section are summarized in Table 9.4 

 

Based on non-Schengen flight distribution of august 5th 2012 

          
          

 1 2 4 6 

          
           1 1.7 2.2 2.5 

upper bounds      = conf      = conf man*minutes/day 

lower bounds      = conf      = conf man*minutes/day 

     conf man*minutes/day 

Flight occupation 100% of available seats 

  0% 

Table 9.4a:  parameters of calculations in section 9.1.2.1 

 

 

Lowest detection probability at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 
Table 9.4b:       per target type and attacker type for parameters in table 9.4a (np = layer is not present) 

 

In figures 9.6a-9.6j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.6a:  % of time each layer is in high setting for a given defender reward and target type 12 
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Figure 9.6b:  % of time each layer is in high setting for a given defender reward and target type 11 

 

 

Figure 9.6c:  % of time each layer is in high setting for a given defender reward and target type 10 

 

 

Figure 9.6d:  % of time each layer is in high setting for a given defender reward and target type 9 

  



 
93 

Elbert van de Wetering   A Risk-Based Passenger Screening Security Architecture optimized against adaptive threats 

 

  

Figure 9.6e:  % of time each layer is in high setting for a given defender reward and target type 8 

 

   

Figure 9.6f:  % of time each layer is in high setting for a given defender reward and target type 7 

 

 

Figure 9.6g:  % of time each layer is in high setting for a given defender reward and target type 5 
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Figure 9.6h:  % of time each layer is in high setting for a given defender reward and target type 4 

 

 

Figure 9.6i:  % of time each layer is in high setting for a given defender reward and target type 3 

 

 

Figure 9.6j:  % of time each layer is in high setting for a given defender reward and target type 2 
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9.1.2.2 Attacker with neutral target preference (summer) 

The parameters for the calculations in this paragraph are summarized in Table 9.5 

 

Based on non-Schengen flight distribution of august 5th 2012 

          
          

 1 2 4 6 

          
           1 2 3 4 

upper bounds      = conf      = conf man*minutes/day 

lower bounds      = conf      = conf man*minutes/day 

      conf man*minutes/day 

Flight occupation 100% of available seats 

  0% 

Table 9.5a:  parameters of calculations in section 9.1.2.2 

 

 

Lowest detection probability at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 

Table 9.5b:       per target type and attacker type for parameters in table 9.5a (np = layer is not present) 

 

 

In figures 9.3a-9.3j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.7a:  % of time each layer is in high setting for a given defender reward and target type 12 
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Figure 9.7b:  % of time each layer is in high setting for a given defender reward and target type 11 

 

 

Figure 9.7c:  % of time each layer is in high setting for a given defender reward and target type 10 

 

 

Figure 9.7d:  % of time each layer is in high setting for a given defender reward and target type 9 
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Figure 9.7e:  % of time each layer is in high setting for a given defender reward and target type 8 

  

 

Figure 9.7f:  % of time each layer is in high setting for a given defender reward and target type 7 

 

 

Figure 9.7g:  % of time each layer is in high setting for a given defender reward and target type 5 
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Figure 9.7h:  % of time each layer is in high setting for a given defender reward and target type 4 

 

 

Figure 9.7i:  % of time each layer is in high setting for a given defender reward and target type 3 

 

 

Figure 9.7j:  % of time each layer is in high setting for a given defender reward and target type 2 
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9.1.2.3 Attacker with high value/hard target preference (summer) 

The parameters for the calculations in this paragraph are summarized in Table 9.6 

 

Based on non-Schengen flight distribution of august 5th 2012 

          
          

 1 2 4 6 

          
           1 2 4 6 

upper bounds      = conf      = conf man*minutes/day 

lower bounds      = conf      = conf man*minutes/day 

     conf man*minutes/day 

Flight occupation 100% of available seats 

  0% 

Table 9.6a:  parameters of calculations in section 9.1.2 

 

 

Lowest detection probability(%) at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 

    conf conf conf conf conf conf conf conf conf conf conf conf 

Table 9.6b:       per target type and attacker type for parameters in table 9.6a (np = layer is not present) 

 

 

In figures 9.8a-9.8j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.8a:  % of time each layer is in high setting for a given defender reward and target type 12 
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Figure 9.8b:  % of time each layer is in high setting for a given defender reward and target type 11 

 

 

Figure 9.8c:  % of time each layer is in high setting for a given defender reward and target type 10 

 

 

Figure 9.8d:  % of time each layer is in high setting for a given defender reward and target type 9 
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Figure 9.8e:  % of time each layer is in high setting for a given defender reward and target type 8 

 

  

Figure 9.8f:  % of time each layer is in high setting for a given defender reward and target type 7 

 

 

Figure 9.8g:  % of time each layer is in high setting for a given defender reward and target type 5 
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Figure 9.8h:  % of time each layer is in high setting for a given defender reward and target type 4 

 

 

Figure 9.8i:  % of time each layer is in high setting for a given defender reward and target type 3 

 

 

Figure 9.8j:  % of time each layer is in high setting for a given defender reward and target type 2 
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9.2 Comparing dates 
All calculations in this section were done using the distribution      over static risk states from 

Workshop 1 (see section 7.1)  using Model 2. 

Bounded rationality parameter   was chosen to be 0% for all calculations. 

Flight occupation level was chosen at 100% of available seats. 

The flights distribution was based on that of three dates: August 5th 2013 (summer, normal date), 

December 24th (winter, normal date) and December 26th (winter, special date). See figure 9.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.9:  flight distributions for the three compared dates 

 

In figure 9.10 the minimal required manpower to support a 100% defender reward is plotted against 

date.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.10:  minimal required manpower to support 100% defender reward versus date  

                        for parameters  in Tables 9.7a-9.9a 
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9.2.1 Attacker with low value/soft target preference  

The parameters for the calculations in this section are summarized in Table 9.7a 

 

Based on non-Schengen flight distribution and results workshop 1 

          
          

 1 2 4 6 

          
           1 1.7 2.2 2.5 

Dates August 5th, 2013 December 24th, 2012 December 26th, 2012 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf conf conf 

  0% 

Table 9.7a:  parameters of calculations in section 9.2.1 

cfd 

 

 Lowest detection probability(%) at 100% defender reward 
 attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

August  
5th, 2013 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

December 
24th, 2012 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

December 
26th, 2012 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.7b:       per target type and attacker type for parameters in table 9.7a (np = layer is not present) 

 

In figures 9.11a-9.11k the cumulative layer settings to support a defender reward of 100%  are shown 

for each target type present in dataset and given each date. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.11a:  % of time each layer is in high setting for each date and target type 12 
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Figure 9.11b:  % of time each layer is in high setting for each date and target type 11 

 

 

Figure 9.11c:  % of time each layer is in high setting for a each date and target type 10 

 

 

Figure 9.11d:  % of time each layer is in high setting for each date and target type 9 
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Figure 9.11e:  % of time each layer is in high setting for each date and target type 8 

 

  

Figure 9.11f:  % of time each layer is in high setting for each date and target type 7 

 

Figure 9.11g:  % of time each layer is in high setting for each date and target type 6 
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Figure 9.11h:  % of time each layer is in high setting for each date and target type 5 

 

 

Figure 9.11i:  % of time each layer is in high setting for each date and target type 4 

 

 

Figure 9.18j:  % of time each layer is in high setting for each date and target type 3 
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Figure 9.11k:  % of time each layer is in high setting for each date and target type 2 
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9.2.2 Attacker with neutral target preference  

The parameters for the calculations in this section are summarized in Table 9.8a 

 

Based on non-Schengen flight distribution and results workshop 1 

          
          

 1 2 4 6 

          
           1 2 3 4 

Dates August 5th, 2013 December 24th, 2012 December 26th, 2012 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf conf conf 

  0% 

Table 9.8a:  parameters of calculations in section 9.2.2 

 

 

 Lowest detection probability at 100% defender reward 
 attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

August  
5th, 2013 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

December 
24th, 2012 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

December 
26th, 2012 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.8b:       per target type and attacker type for parameters in table 9.8a (np = layer is not present) 

 

 

In figures 9.12a-9.12k the cumulative layer settings to support a defender reward of 100%  are shown 

for each target type present in dataset and given each date. 

 

 

 

 

 

 

 

Figure 9.12a:  % of time each layer is in high setting for each date and target type 12 
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Figure 9.12b:  % of time each layer is in high setting for each date and target type 11 

 

 

Figure 9.12c:  % of time each layer is in high setting for a each date and target type 10 

 

Figure 9.12d:  % of time each layer is in high setting for each date and target type 9 
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Figure 9.12e:  % of time each layer is in high setting for each date and target type 8 

  

 

Figure 9.12f:  % of time each layer is in high setting for each date and target type 7 

 

Figure 9.12g:  % of time each layer is in high setting for each date and target type 6 
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Figure 9.12h:  % of time each layer is in high setting for each date and target type 5 

 

 

Figure 9.12i:  % of time each layer is in high setting for each date and target type 4 

 

Figure 9.12j:  % of time each layer is in high setting for each date and target type 3 
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Figure 9.12k:  % of time each layer is in high setting for each date and target type 2 
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9.2.3 Attacker with high value/hard target preference  

The parameters for the calculations in this section are summarized in Table 9.9a 

 

Based on non-Schengen flight distribution and results workshop 1 

          
          

 1 2 4 6 

          
           1 2 4 6 

Dates August 5th, 2013 December 24th, 2012 December 26th, 2012 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf conf conf 

  0% 

Table 9.9a:  parameters of calculations in section 9.2.3 

 

cfd 

 Lowest detection probability at 100% defender reward 
 attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

August  
5th, 2013 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

December 
24th, 2012 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

December 
26th, 2012 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.9b:       per target type and attacker type for parameters in table 9.9a (np = layer is not present) 

 

In figures 9.13a-9.13k the cumulative layer settings to support a defender reward of 100%  are shown 

for each target type present in dataset and given each date. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.13a:  % of time each layer is in high setting for each date and target type 12 
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Figure 9 13b:  % of time each layer is in high setting for each date and target type 11 

 

 

Figure 9.13c:  % of time each layer is in high setting for a each date and target type 10 

 

Figure 9.13d:  % of time each layer is in high setting for each date and target type 9 
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Figure 9.13e:  % of time each layer is in high setting for each date and target type 8 

  

 

Figure 9.13f:  % of time each layer is in high setting for each date and target type 7 

 

Figure 9.13g:  % of time each layer is in high setting for each date and target type 6 
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Figure 9.13h:  % of time each layer is in high setting for each date and target type 5 

 

 

Figure 9.13i:  % of time each layer is in high setting for each date and target type 4 

 

Figure 9.13j:  % of time each layer is in high setting for each date and target type 3 
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Figure 9.13k:  % of time each layer is in high setting for each date and target type 2 
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9.3 Comparing degrees of rationality 
All calculations in this section were done using the distribution      over static risk states from 

Workshop 1 (see section 7.1)  using Model 2. 

Flight occupation level was chosen at 100% of available seats. 

Three different values for the bounded rationality parameter   were compared: 0%,20% and 40%. 

In figure 9.14 the minimal required manpower to support a 100% defender reward is plotted against 

bounded rationality parameter   . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.14:  minimal required manpower to support 100% defender reward versus degree of rationality 

                        for parameters  in Tables 9.10-9.12 
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9.3.1 Attacker with low value/soft target preference  

The parameters for the calculations in this section are summarized in Table 9.10a 

 

Based on non-Schengen flight distribution of August 5th 2013 and results workshop 1 

          
          

 1 2 4 6 

          
           1 1.7 2.2 2.5 

  0% 20% 40% 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf 

Table 9.10a parameters of calculations in section 9.3.1 

 

 Lowest detection probability(%) at 100% defender reward 
 attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

         cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

          cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

          cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.10b      per target type and attacker type for parameters in table 9.10a (np = layer is not present) 

In figures 9.15a-9.15k the cumulative layer settings to support a defender reward of 100%  are shown 

for each target type present in dataset and given each date. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.15a:  % of time each layer is in high setting for each degree of rationality target type 12 
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Figure 9.15b:  % of time each layer is in high setting for each degree of rationality target type 11 

 

 

Figure 9.15c:  % of time each layer is in high setting for each degree of rationality target type 10 

 

 

Figure 9.15d:  % of time each layer is in high setting for each degree of rationality target type 9 
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Figure 9.15e:  % of time each layer is in high setting for each degree of rationality target type 8 

 

 

Figure 9.15f:  % of time each layer is in high setting for each degree of rationality target type 7 

 

 

Figure 9.15g:  % of time each layer is in high setting for each degree of rationality target type 5 
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Figure 9.15h:  % of time each layer is in high setting for each degree of rationality target type 4 

 

 

Figure 9.15i:  % of time each layer is in high setting for each degree of rationality target type 3 

 

 

Figure 9.15j:  % of time each layer is in high setting for each degree of rationality target type 2 
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9.3.2 Attacker with neutral target preference  

The parameters for the calculations in this section are summarized in Table 9.11a 

 

Based on non-Schengen flight distribution of August 5th 2013 and results workshop 1 

          
          

 1 2 4 6 

          
           1 2 3 4 

  0% 20% 40% 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf 

Table 9.11a parameters of calculations in section 9.3.2 

 

 Lowest detection probability(%) at 100% defender reward 
 attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

         cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

          cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

          cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.11b      per target type and attacker type for parameters in table 9.11a (np = layer is not present) 

In figures 9.16a-9.16k the cumulative layer settings to support a defender reward of 100%  are shown 

for each target type present in dataset and given each date.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.16a:  % of time each layer is in high setting for each degree of rationality target type 12 
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Figure 9.16b:  % of time each layer is in high setting for each degree of rationality target type 11 

 

Figure 9.16c:  % of time each layer is in high setting for each degree of rationality target type 10 

 

 

Figure 9.16d:  % of time each layer is in high setting for each degree of rationality target type 9 
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Figure 9.16e:  % of time each layer is in high setting for each degree of rationality target type 8 

 

 

Figure 9.16f:  % of time each layer is in high setting for each degree of rationality target type 7 

 

 

Figure 9.16g:  % of time each layer is in high setting for each degree of rationality target type 5 
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Figure 9.16h:  % of time each layer is in high setting for each degree of rationality target type 4 

 

 

Figure 9.16i:  % of time each layer is in high setting for each degree of rationality target type 3 

 

 

Figure 9.16j:  % of time each layer is in high setting for each degree of rationality target type 2 
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9.3.3 Attacker with high value/hard target preference 

The parameters for the calculations in this section are summarized in Table 9.12a 

 

Based on non-Schengen flight distribution of August 5th 2013 and results workshop 1 

          
          

 1 2 4 6 

          
           1 2 4 6 

  0% 20% 40% 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf 

Table 9.12a parameters of calculations in section 9.3.3 

 

 Lowest detection probability(%) at 100% defender reward 
Defender risk attitude attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

         cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

          cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

          cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.12b      per target type and attacker type for parameters in table 9.12a (np = layer is not present) 

In figures 9.17a-9.17k the cumulative layer settings to support a defender reward of 100%  are shown 

for each target type present in dataset and given each date.  

 

 

 

Figure 9.17a:  % of time each layer is in high setting for each degree of rationality target type 12 
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Figure 9.17b:  % of time each layer is in high setting for each degree of rationality target type 11 

 

 

Figure 9.17c:  % of time each layer is in high setting for each degree of rationality target type 10 

 

 

Figure 9.17d:  % of time each layer is in high setting for each degree of rationality target type 9 
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Figure 9.17e:  % of time each layer is in high setting for each degree of rationality target type 8 

 

 

Figure 9.17f:  % of time each layer is in high setting for each degree of rationality target type 7 

 

 

Figure 9.17g:  % of time each layer is in high setting for each degree of rationality target type 5 
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Figure 9.17h:  % of time each layer is in high setting for each degree of rationality target type 4 

 

 

Figure 9.17i:  % of time each layer is in high setting for each degree of rationality target type 3 

 

 

Figure 9.17j:  % of time each layer is in high setting for each degree of rationality target type 2 
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9.4 Comparing risk attitudes defender 
All calculations in this section were done using the distribution      over static risk states from 

Workshop 1 (see section 7.1)  using Model 2. 

Flight occupation level was chosen at 100% of available seats. 

The bounded rationality parameter   was chosen at 20%. 

Three different defender risk attitudes were compared: risk averse, risk neutral, risk seeking 

corresponding with the values for    
          

  given in respectively tables 9.13a-9.15a 

In figure 9.18 the minimal required manpower to support a 100% defender reward is plotted against 

defender risk attitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.18:  minimal required manpower to support 100% defender reward versus risk attitude defender  

                        for parameters  in Tables 9.13a-9.15a 
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9.4.1 Attacker with low value/soft target preference (summer) 

The parameters for the calculations in this section are summarized in Table 9.13a 

 

Based on non-Schengen flight distribution of August 5th 2013 and results workshop 1 

          
           1 1.7 2.2 2.5 

Defender risk attitude risk averse risk neutral risk seeking 

          
          

 1 1.7 2.2 2.5 1 2 3 4 1 2 4 6 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf 

  20% 

Table 9.13a:  parameters of calculations in section 9.4.1 

 

 Lowest detection probability(%) at 100% defender reward 
Defender risk attitude attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

risk averse     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

risk neutral     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

risk seeking     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.13b:       per target type and attacker type for parameters in table 9.13a (np = layer is not present) 

 

In figures 9.19a-9.19j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.19a:  % of time each layer is in high setting for each defender risk attitude target type 12 
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Figure 9.19b:  % of time each layer is in high setting for each defender risk attitude target type 11 

 

 

Figure 9.19c:  % of time each layer is in high setting for each defender risk attitude target type 10 

 

 

Figure 9.19d:  % of time each layer is in high setting for each defender risk attitude target type 9 
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Figure 9.19e:  % of time each layer is in high setting for each defender risk attitude target type 8 

 

 

Figure 9.19f:  % of time each layer is in high setting for each defender risk attitude target type 7 

 

 

Figure 9.19g:  % of time each layer is in high setting for each defender risk attitude target type 5 
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Figure 9.19h:  % of time each layer is in high setting for each defender risk attitude target type 4 

 

 

Figure 9.19i:  % of time each layer is in high setting for each defender risk attitude target type 3 

 

 

Figure 9.19j:  % of time each layer is in high setting for each defender risk attitude target type 2 
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9.4.2 Attacker with neutral target preference (summer) 

The parameters for the calculations in this section are summarized in Table 9.14a 

 

Based on non-Schengen flight distribution of August 5th 2013 and results workshop 1 

          
           1 2 3 4 

Defender risk attitude risk averse risk neutral risk seeking 

          
          

 1 1.7 2.2 2.5 1 2 3 4 1 2 4 6 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf 

  20% 

Table 9.14a:  parameters of calculations in section 9.4.2 

 

 Lowest detection probability(%) at 100% defender reward 
Defender risk attitude attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

risk averse     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

risk neutral     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

risk seeking     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.14b:       per target type and attacker type for parameters in table 9.14a (np = layer is not present) 

 

In figures 9.20a-9.20j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. 20a:  % of time each layer is in high setting for each defender risk attitude target type 12 
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Figure 9.20b:  % of time each layer is in high setting for each defender risk attitude target type 11 

 

 

Figure 9.20c:  % of time each layer is in high setting for each defender risk attitude target type 10 

 

 

Figure 9.20d:  % of time each layer is in high setting for each defender risk attitude target type 9 
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Figure 9.20e:  % of time each layer is in high setting for each defender risk attitude target type 8 

 

 

Figure 9.20f:  % of time each layer is in high setting for each defender risk attitude target type 7 

 

 

Figure 9.20g:  % of time each layer is in high setting for each defender risk attitude target type 5 
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Figure 9.20h:  % of time each layer is in high setting for each defender risk attitude target type 4 

 

 

Figure 9.20i:  % of time each layer is in high setting for each defender risk attitude target type 3 

 

 

Figure 9.20j:  % of time each layer is in high setting for each defender risk attitude target type 2 
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9.4.3 Attacker with high value/hard target preference (summer) 

The parameters for the calculations in this section are summarized in Table 9.15a 

 

Based on non-Schengen flight distribution of August 5th 2013 and results workshop 1 

          
           1 2 4 6 

Defender risk attitude risk averse risk neutral risk seeking 

          
          

 1 1.7 2.2 2.5 1 2 3 4 1 2 4 6 

     conf conf conf 

      (man*minutes/day) conf conf conf 

     (man*minutes/day) conf 

  20% 

Table 9.15a:  parameters of calculations in section 9.4.3 

 

 Lowest detection probability(%) at 100% defender reward 
Defender risk attitude attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

risk averse     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

risk neutral     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

risk seeking     cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.15b:       per target type and attacker type for parameters in table 9.15a (np = layer is not present) 

 

In figures 9.21a-9.21j the cumulative layer settings for each target type present in dataset given a 

defender reward are shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. 21a:  % of time each layer is in high setting for each defender risk attitude target type 12 
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Figure 9.21b:  % of time each layer is in high setting for each defender risk attitude target type 11 

 

 

Figure 9.21c:  % of time each layer is in high setting for each defender risk attitude target type 10 

 

 

Figure 9.21d:  % of time each layer is in high setting for each defender risk attitude target type 9 
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Figure 9.21e:  % of time each layer is in high setting for each defender risk attitude target type 8 

 

 

Figure 9.21f:  % of time each layer is in high setting for each defender risk attitude target type 7 

 

 

Figure 9.21g:  % of time each layer is in high setting for each defender risk attitude target type 5 
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Figure 9.21h:  % of time each layer is in high setting for each defender risk attitude target type 4 

 

 

Figure 9.21i:  % of time each layer is in high setting for each defender risk attitude target type 3 

 

 

Figure 9.21j:  % of time each layer is in high setting for each defender risk attitude target type 2 
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9.5 Comparing Workshops 
All calculations in this section were done using the distribution      over static risk states from 

Workshop 1 (see section 7.1) and Workshop 2 (see section 7.2) using Model 2. 

The two Workshops where compared for the flights distributions of two dates: August 5th 2013 

(summer, normal date) and December 25th 2012 (winter, special date). 

Flight occupation level was chosen at 100% of available seats. 

The bounded rationality parameter   was chosen at 20%. 

The defender risk attitude was chosen as risk averse and de attacker risk attitude as neutral with 

corresponding values for    
          

  and    
            given by tables 9.16a and 9.17a 

 

The flights distribution was based on that of three dates: August 5th 2013 (summer, normal date), 

December 25th (winter, special date).  

In figure 9.22 the target distribution for the two dates is shown 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.22:  target type distributions for the two compared dates 
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9.5.1 Normal days 

The parameters for the calculations in this section are summarized in Table 9.16a 

 

Based on non-Schengen flight distribution of August  5th 2013 

          
          

 1 1.7 2.2 2.5 

          
           1 2 3 4 

Workshop 1 2 

     conf conf 

      
(man*minutes/day) 

conf conf 

Target type of KL 1025 conf conf 

Target type of DL 251 conf conf 

     
(man*minutes/day) 

101,025 

  20% 

Table 9.16a:  parameters of calculations in section 9.5.1 

 

Lowest detection probability(%) at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.16b:       per target type and attacker type for parameters in table 9.16a: workshop 1  

         (np = layer is not present) 

 

Lowest detection probability(%) at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

attacker 
type 

target type 

13 14 15 16 17 18 19 20 21 22 23 24 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.16c:       per target type and attacker type for parameters in table 9.16a: workshop 2  

         (np = layer is not present) 

 

In figures 9.23a-9.23b the cumulative layer settings to support a defender reward of 100%  are 

shown for a two typical flights and given workshop. 
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Figure 9.23a:  % of time each layer is in high setting for each workshop  and flight KL 1025 

 

 

Figure 9.23b:  % of time each layer is in high setting for each workshop and flight DL 251 
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9.5.2 Special days 

The parameters for the calculations in this section are summarized in Table 9.17a 

 

Based on non-Schengen flight distribution of December 25th 2012 

          
          

 1 1.7 2.2 2.5 

          
           1 2 3 4 

Workshop 1 2 

     conf conf 

      
(man*minutes/day) 

conf conf 

Target type of KL 1025 conf conf 

Target type of DL 251 conf conf 

      
(man*minutes/day) 

55,200 

  20% 

Table 9.17a:  parameters of calculations in section 9.3.2 

 

 

 

Lowest detection probability(%) at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.17b:       per target type and attacker type for parameters in table 9.17a: workshop 1  

         (np = layer is not present) 

 

Lowest detection probability(%) at 100% defender reward 
attacker 

type 
target type 

1 2 3 4 5 6 7 8 9 10 11 12 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

attacker 
type 

target type 

13 14 15 16 17 18 19 20 21 22 23 24 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 

    cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd cfd 
Table 9.17c:       per target type and attacker type for parameters in table 9.17a: workshop 2  

         (np = layer is not present) 

 

 

In figures 9.24a-9.24b the cumulative layer settings to support a defender reward of 100%  are 

shown for a two typical flights and given workshop. 
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Figure 9.24a:  % of time each layer is in high setting for each workshop and flight KL 1025 

 

 

 

Figure 9.24b:  % of time each layer is in high setting for each workshop and flight DL 251 

 

 

This chapter illustrated how the results depended on various model choices. The 

next chapter will discuss these results.  
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10 Discussion 
 

This chapter will discuss the model. Section 10.1 will discuss the model from a meta 

level and place the approach in the context of an overall approach to aviation 

security. Section 10.2 will discuss the results of the model and draw general 

conclusions on the effect of various model choices. The idea is that these 

conclusions will help in guiding model choices when implementing the model at AMS. 

Section 10.3 sketches how the model could be implemented at AMS. 

 

10.1 The Model in the context of an overall approach  
The problem of defending against intentional threats is highly complicated. The complication arises 

from many unknown variables, such as: 

 the type of attacker that will be encountered 

 the adaptive behavior of the attacker 

 information about intentions, capabilities, strategies of attackers 

 …. 

 

A good instrument to structure how unknown variables should be addressed for a complete and 

robust approach is the Rumsfeld Matrix39.   

It will be used here to evaluate what the current approach to aviation security at AMS, which 

unknown variables are adequately addressed, which are not or inadequately addressed and how the 

model presented in this thesis fits in. 

 

Known unknowns 
 BBN sub-model (abductive) 
 Stackelberg sub-model (deductive) 
 HRF Profiling (abductive)40 

 
 

Known knowns 
 Critical evaluation by EC41 (abductive) 
 Critical evaluation by NCTV (abductive) 

 

Unknown unknowns 
 Auditing (inductive) 

 
 
 
 
 

Unknown knowns 
 Secure Flight(abductive)42 

 
 
 

Table 10.1 Rumsfeld matrix for AMS 

                                                           
39

 See Appendix G 
40

 High Risk Flight Profiling: a form of predictive profiling performed on flights by US carriers on AMS 
41

 European Commision 
42

 Secure Flight is an airline passenger pre-screening program for US carriers only  that serves two functions: 
i. deny access to passengers on the No Fly List 

ii. subject  Secondary Security Screening Selectee (SSSS) passengers to enhanced security 
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From Table 10.1 it can be seen that: 

 The added value of the model is that it adds both an abductive and a deductive approaches 

to the known unknowns as well as a quantitative technique. Also note that the approaches 

added apply to all flights whereas the only approach that currently addresses the known 

unknowns (i.e. HRF Profiling) only applies to flights on US carriers.   

 There currently no approaches that address the known-knowns category specific for AMS. 

However AMS is compliant with EU regulations and the ECAC43 is responsible for developing 

those regulations and challenging the known-knowns through their Task Forces. 

 Auditing is the only approach currently used to address the unknown-unknowns. Auditing is 

done by several parties: AMS, The Royal Netherlands Marechaussee, ECAC, individual 

security companies. However audits are subject to strict regulations and mostly geared to 

quality control, which limits the potential for finding creative new AMOs and attacker could 

come up with.  

 The only approach that addresses the unknown-knowns is the Secure Flight program, which 

is limited in application to US carriers. The application of individual passenger related 

information is politically a sensitive issue in the Netherlands. And not without reason, since 

there are some valid objections against programs like Secure Flight, such as: insufficient 

redress mechanisms, limited accountability and  privacy issues. 

 

Using the Rumsfeld Matrix it becomes apparent that the model developed in this thesis fills 

important gaps in the unknown-knowns category of an overall approach. But also in other categories 

there is room for improvement. Less regulated auditing (e.g. red teaming) would have a better 

chance of revealing new unknown-unknowns and a (politically feasible) approach for obtaining 

unknown-knowns is currently almost completely lacking. 

 

Those last two Rumsfeld categories can also be addressed with the choice of and coordination 

between the security layers. 

There is a way of guarding against unknown-unknowns without actually obtaining them through red 

teaming and that is by taking a cue from nature. Biological systems also deal with uncertain evolving 

threats and therefore unknown-unknowns. Their strategy to deal with this is: redundancy and 

variation (Sagarin, 2012). This principle could be applied to this problem as well by providing for 

redundancy and variation in terms of security layers. Circumventing layers will  be exceedingly 

difficult for an attacker when there are more layers associated with a certain broad type of attack 

(redundancy) that each are triggered by slightly different properties (variation). 

Another advantage of redundancy is that it increases the number of possible equivalent solutions to 

deal with known threats thus increasing unpredictability. 

Combining information gathered from different security layers in a smart way is a way exploiting the 

redundancy and variation and of addressing the unknown-knowns. Examples of this could be: 

combining the information of ETD layer and Security Scan layer, combining the information of a 

metal detector layer and a Security Scan layer, combining the information of behavioral observation 

layer with hand luggage screening layers or with canine unit layers, etc. 

  

                                                           
43

 European Civil Aviation Conference: intergovernmental organization with among others tasks related to 
aviation security such as: the development of recommendations and good practices and auditing. 
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10.2 How does the model perform? 
 

10.2.1 Static Risk: Bayesian Belief Network 

In terms of the node states defined by the SMEs there were 12 target types present in the non-

Schengen data set for Workshop 1 and 24 targets in Workshop 2. The ordering, the BBN model 

predicted in terms of static risk for Workshop 1 and 2, is depicted in respectively  Tables 7.2 and 7.8. 

This ordering was in good agreement with SME opinion. 

In Table 10.2 a comparison is made between the risk categories already present at AMS44, predicted 

by Workshop 2 and predicted by Workshop 2: 

 

AMS  BBN Model Workshop 1 BBN Model Workshop 2 

risk category 4 target type: 12 target types:  21,23 

risk category 3 target types: 11,10 target types:  20,21,23,24 

risk category 2 target type: 8 target types:  16,17,18 

risk category 1 target types:  
9,7,6,5,4,3,2,1 

target types:  
1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,19,22 

Table 10.2 Correspondence of risk categories as employed on AMS with those predicted by the BBN models 

The ordering of Workshop 1 was in good agreement with the difference in security measures already 

present at AMS (albeit not in terms of the security layers as defined in this thesis). 

It is also in good agreement with the difference in security measures already present at AMS (albeit 

not in terms of the security layers as defined in this thesis: 

 

The only inconsistency is for the BBN model of Workshop 1: target types 8 and 9. The BBN predicts 

the static risk of target type 9 to be higher than that of target type 8 whereas AMS employs stricter 

security measures on target type 8 compared to those on target type 9 (i.e. a limited form of 

predictive profiling). 

There are several possible explanations for this inconsistency. 

The most obvious explanation is that AMS and SMEs are in slight disagreement in their evaluation of 

static risk. Note that static risk of target types 8 and 9 is very close to begin with as can be verified by 

using the data in tables 7.4 and 7.6 together with a choice for                  so the difference in 

ordering could easily be an artifact of the BBN model, for example as a result of the simplification of 

using ranked nodes as an estimate for the full NPT.  

This raises the more general question: until which precision are difference in static risk as calculated 

using the BBN model meaningful? In this case the number of target types is manageable, but in the 

case of more target types (or even in this case) it would probably make more sense to reduce the 

number of target types by using a technique like cluster analysis and decide beforehand how many 

target types are needed.  

 

                                                           
44

 Based on security measures 4 risk categories can be distinguished on AMS: 
1. other 
2. flights to Israel operated by KLM 
3. flights to US/India operated by US carrier 
4. flights to Israel operated by El Al 
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The ordering of Workshop 2  was in reasonable agreement the difference in security measures 

already present at AMS. Differences mostly arise from SMEs in Workshop 2 not distinguishing 

between US and Israeli airlines and destinations with respect to static. AMS the SMEs of Workshop 1 

do make a distinction: static risk associated with Israeli flights and airlines is viewed greater than 

static risk associated with US flights and airlines. 

 

Note that there is some overlap between categories compared to the categories of AMS and 

Workshop 1 (i.e. some of the risk categories of Workshop 2 fall into more than one of the category of 

AMS and Workshop 1). This makes comparing the sub model 3 results of Workshop 1 and 2 difficult 

at the risk category level. Therefore a comparison was made at the flight level in section 9.5. For this 

comparison flights were chosen that belong to risk categories with many passengers associated with 

it in the dataset (see figures 9.9 and 9.22). 
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10.2.2 Dynamic Risk: comparing Model 1 and 2 

The first thing that can be concluded from the results of Model 1 and Model 2 is that risk-based 

security is a lot more efficient with resources than the current rule based security. The optimal risk-

based policy (i.e. the one at 100% defender reward) stays well below      despite the higher costs in 

terms of false alarms of the condidential-confidential- layer in the new situation. This in spite of: 

assuming an flight occupation level (in terms of the available seats for passengers on a flight) of 100% 

and not taking into account the post One-XS central security situation which will require most likely 

significantly less manpower.  

 

The results also show that all layer settings are increasingly set high with increasing target type 

number with the exception of target type numbers 7 and 8, where the order switches. This makes 

sense, since in section 7.1 it was explained that this is exactly the order of static risk from the 

perspective of the attacker. Stated differently: target types that are increasingly more attractive to 

the attacker are increasingly better defended. 

From figures 9.1b and 9.5b it looks like this increase is more prominent for the SS(torso), 

SS(extremities) and s-EDS layer, because of their higher slopes. In reality the increase is equally 

prominent for all layers: the higher slope is just an artifact of the higher LOW setting (i.e. better 

detection than         ) of those layers compared to the other layers where the LOW setting 

corresponds to the OFF setting (i.e.         ). 

 

The optimal defender reward depending on the attacker risk attitude showed the following trend: 

 

              
                         

                           
                     

 

 

And the minimal manpower to support the defender policy showed the following trend: 

 

              
                         

                            
                     

 

 

The trends in (10.1) and (10.2) will hold for all the calculations presented in this thesis. So it is 

important to explain them. 

A risk seeking attacker is more likely to attack high value targets than a risk neutral attacker which in 

turn is more likely to attack high value targets than a risk averse attacker. Defender payoffs for high 

value targets are limited by the maximum security        possible, which depends on the equipment 

and the alarm follow up,  but will in practice always be less than 100%. This leads to limitations on 

the possible maximum defender rewards      and explains trend (10.1). 

 

A risk averse risk attitude tends to value targets more evenly compared to a neutral risk attitude 

which in turn tends to value targets more evenly than a risk seeking  risk attitude. 

Note that this gives a defender less information about which target an attacker is more likely to 

attack. With less information on attacker preferred targets a defender has to defend more targets 

well enough. To accomplish this more security resources have to be invested thereby increasing 

     and explaining trend (10.2). 
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The same line of reasoning explains why      follows the same trend as     . A more risk averse 

attacker gives a defender less information so he will be defending multiple target types more evenly  

which tends to leads to an increased      of the weakest link: 

 

               
                               

                               
                      

               

 

Looking in which order chosen to be set to high progressing from lower to higher defender rewards 

indicates something about the relative importance of the layers against the possible threats or stated 

differently: which threats are more dangerous. 

 

condidential-confidential- condidential-confidential- condidential-confidential- condidential-

confidential- condidential-confidential- condidential-confidential- condidential-confidential- 

condidential-confidential- condidential-confidential- condidential-confidential- condidential-

confidential- condidential-confidential- condidential-confidential- condidential-confidential- 

condidential-confidential- condidential-confidential- condidential-confidential- condidential-

confidential- condidential-confidential- condidential-confidential- condidential-confidential- 

condidential-confidential- condidential-confidential- condidential-confidential- condidential-

confidential- condidential-confidential- condidential-confidential- condidential-confidential- 

condidential-confidential- condidential-confidential- condidential-confidential- condidential-

confidential- condidential-confidential- condidential-confidential- condidential-confidential- 

condidential-confidential- condidential-confidential- condidential-confidential- condidential-

confidential- condidential-confidential- condidential-confidential- condidential-confidential- 

condidential-confidential- condidential-confidential- condidential-confidential- condidential-

confidential- condidential-confidential- condidential-confidential- condidential-confidential- 

condidential-confidential- condidential-confidential- condidential-confidential- 

 

Comparing Model 1 and Model 2 (    ) it was found that the results were identical. At the very 

least this serves as an internal consistency test for both models, but a more important conclusion 

that can be drawn from this is that SSE (in spite of the seemingly unrealistic property that the 

attacker breaks ties optimally for the defender) is a valid equilibrium concept for this payoff structure 

as argued in sections 8.1 and 8.2. Still Model 2 is the preferred model since it was substantially faster 

than Model 1 and had the added benefit of modeling a more realistic equilibrium by choosing    

appropriately as explained in section 8.5. Therefore in all calculations beyond these Model 2 was 

used. 

 

An important question is: what defender reward should be aimed for? Ultimately this decision lies 

with AMS and NCTV and will depend on what are perceived to be acceptable values of           . 

From an economic perspective there is no good reason to stay below a defender reward of 80% since 

the marginal manpower requirements (i.e. cost)  for extra defender reward are low up to a defender 

reward of 80%.  
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From a payoff modeling  perspective it probably makes more sense to keep the defender as close to 

100% as possible because of the way payoffs are defined in (8.1). The lower the defender reward the 

lower        will be allowed to be. It is questionable if linearity of the payoffs in         and Static 

Risk is still reasonable for low values of       . Stated differently: a very low        means certain 

success for the attacker using threat   which should probably be reflected by a much lower payoff for 

the defender and higher payoff for the attacker than given by definition (8.1). Higher defender 

rewards make this inaccurate limit behavior of payoffs less likely to occur. 

 

From a security perspective the defender reward should of course be 100% as this minimizes the 

probability of success for an attacker. 

Because of these reasons the remainder of the calculations only defender policies for defender 

rewards of 100% (i.e.     ) were calculated.  
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10.2.3 Dynamic Risk: Comparing dates 

Trends (10.1), (10.2)(10.3) are also present in the calculations of section 9.3 

condidential-confidential- condidential-confidential- condidential-confidential- condidential-

confidential- condidential-confidential- condidential-confidential- condidential-confidential- 

condidential-confidential- condidential-confidential- condidential-confidential- condidential- 

 

Note that the defender policies for August 5th and December 24th are identical. 

More flights are departing on August 5th compared to December 24th so the manpower 

requirements are higher, but the solutions in terms of layer settings are the same.  

This is no coincidence. As was already noted in section 8.4.1:      and the associated defender 

policy solution          only depend on the attacker and defender payoffs and those are the same 

for August 5th and December 24th since identical risk-attitudes were used for attacker and defender 

and the same static risk distributions (both are normal days). 

 

The only real difference is between the normal days (August 5th and December 24th) and the special 

days (December 26th) and most likely not because of the flight distribution, which is similar, but 

because of the different static risk distribution associated with special days (i.e. special days have 

higher static risk). 

The results are predictable: special days have higher or equal layer settings (i.e. for each target type 

each layer is set high a higher or equal percentage of time): 

 

            
                  

                            

  



 
160 

 

Elbert van de Wetering   A Risk-Based Passenger Screening Security Architecture optimized against adaptive threats  

10.2.4 Dynamic Risk: Comparing degrees of rationality 

Again before mentioned trends (10.1), (10.2)(10.3) are still present in the calculations of section 9.4 

only increasingly less pronounces with increasing bounded rationality parameter   (i.e. with 

decreasing rationality of the attacker). 

Apparently decreased rationality has a 'dampening effect' on the differences between      ,     ,  

     and even sometimes the defender policy itself (i.e. there are identical defender policy solutions) 

between different attacker types.  

 

This dampening effect is good news in the sense that the solutions of Model 2 become increasingly 

more robust against errors in estimation the risk attitude of the attacker with increasing  . So   can 

be considered a parameter to deal with uncertainty in the model of attacker. This interpretation of   

was already predicted in section 8.5. 

 

Other trends in terms of the degree of rationality that can be seen are: 

 

              
         

           
      

 

              
         

            
      

 

               
               

               
                    

 

The higher the bounded rationality parameter   becomes the more attacker actions become possible 

and the more likely it is that one of those possible actions will be more unfavorable for the defender. 

This explains observed trend (10.5). It also explains trends (10.6) and (10.7) because a lower 

defender rewards tend to require less minimal manpower to support and will tend to have worse 

weakest links. 

There is one exception to (10.5) and that is for the case of the risk seeking attacker where:  

    
          

     . But because of the small differences (i.e. < 1%) it seems more likely that these 

arise from rounding errors and that actually:      
          

           
      

 

Note that for  =40% the dampening effect is so great that there is no difference anymore between 

defender policies against different attacker risk attitudes.  
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10.2.5 Dynamic Risk: Comparing risk attitudes defender 

Trends (10.1), (10.2)(10.3), dampened by parameter  , are again present in the calculations of 

section 9.5. 

 

The effects of the risk attitude of the defender is basically the same as the effects of the risk attitude 

of the attacker. Defenders that value targets more evenly (i.e. more risk averse) defend target types 

more evenly which increases     ,      and      : 
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10.2.6 Dynamic Risk: Comparing Workshops 

 There were quite a few differences between workshop 1 and 2: 

 differences in the causal structure constructed by the SMEs 

 differences in how SMEs valued the causal relations 

 differences in which possible strategies SMEs assigned to the attacker types 

 differences in (number of) risk categories 

 

In spite of these differences the end result, i.e. predicting the layer settings, seems to be fairly robust 

against these differences as figures 9.23 and 9.24 are in reasonable agreement. 

Of course it is hard to compare workshops 1 and 2 because of the different (partially overlapping) 

risk categories. Therefore the choice was made to make the comparison at the flight level (as 

opposed to the risk categories level) and to select flights from risk categories with a high relative 

frequency. 

 

Since care was taken to make the comparison as honest and representative as possible, it seems 

reasonable to view the agreement of results between different workshops as validation of using BBN 

as a means of structuring risk assessment by SMEs (at least in this context). 
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10.3 How to operationalize the model 
In the post One-XS situation passengers (associated with different flights  ) will arrive at a security 

filter (which can be described by the security architecture depicted in figure 5.1) to be screened. 

After (successful) screening they will enter the clean area where the exit gates to their departing 

flights are located.  

 

What is needed from the model is: 

1) the defender policy {     } for that security filter45 

2) the manpower needed to support that defender policy at that security filter 

3) the allocation of manpower over time 

 

The first requirement can certainly be calculated using the model. 

The second requirement was calculated using the sub model presented in section 5.4, but this was an 

estimate and also based on data from the pre One-XS situation. 

To be able to operationalize the model also the third requirement, not discussed until now, has to be 

met. 

 

The problem is that a lot of the data to meet specifically requirements 2) and 3) is not yet present. So 

the purpose of this section is to sketch which data is needed, how to obtain this data and how given 

this data the model can effectively be applied. 

 

First, to be able to calculate the allocation of manpower over time, it will be convenient to divide 

each day in suitable (determine what works best) time intervals  . 

The number of passengers associated with flight   arriving in time interval   which will be denoted by 

     . The data that has to be gathered (or estimated) on this stochastical variable are the average 

         and the variance           .  

  

Secondly a more sophisticated model relevant to the post One-XS situation is preferable to calculate 

the manpower requirements associated with number of passengers and security settings than the 

one presented in section 5.4. The most accurate approach would be to take into account queuing 

effects in the prediction of manpower requirements by developing a queuing simulation model 

where          and            can be used to construct passenger arrival distributions from. 

What is also needed for this simulation models is flight specific parameters for the screening process. 

A simulation model for the screening process has already been developed by AMS, but it did not take 

into account flight specific differences in screening parameters. Averages and variances on screening 

parameters have to be gathered or estimated to construct screening process distributions. 

 

Using Model 2 it was possible to calculate defender policy {     } for a defender reward of      

that required the least amount of manpower (i.e.     ) by changing it to Model 3 (see below). 

Stated differently: it was possible to solve for the {     } and minimize the manpower requirements 

at the same time. 

  

                                                           
45

 it is assumed in this section that the aim will be a defender reward of      
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However this was only possible because of the simple linear form of the manpower requirements  

(i.e.        
           ). In the case of a simulation model to predict manpower requirements 

this will not work as this is much too complicated (and non-linear) to use as an objective function. 

 

What would be really convenient is if {     } for a defender reward of      that required the least 

amount of manpower could be calculated without actually having to minimize the required amount 

of manpower at the same time. Stated differently: it would be convenient if calculating {     } and 

calculating      could be done separately. 

Actually this can be done if the following condition is satisfied: 

 

 If satisfied {     } for a defender reward of      that requires the least amount of manpower can 

be calculated using Model 4 below. 

  

Model 3 

  

                          
    

      

 

                                     
   

   

                                        
 

    

  

    

 

                                         
 

    

  

    

 

                                               
   

                  
     

                                
                    

   

                  
     

                                             
                  

 

      

      

                                         

   

        

                                       
       

  

                                              
                                        

     
         

                                            

 

 

every threat   can be detected by one layer   only  
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where: 

  = set of layers 

 

The idea is that minimizing the layer settings {     } within the set of all feasible defender policies 

with a maximum defender reward      (guaranteed by the restrictions) leads to the layer settings 

which require the least amount of manpower. At one hand: the restrictions make sure each layer 

does at least what it is minimally required to do to defend against the worst threats of an attacker 

that responds   -optimally. At the other hand: minimizing the layer settings {     } forces the layers 

to these, for feasibility minimally required, settings. This minimizes the settings of each layer thereby 

minimizing the manpower required to support each feasible layer setting. 

This goes wrong when one threat can be detected by more than one layer. In that case there are 

several options to minimize layer settings while maintaining feasibility and the objective function in 

Model 4 does not necessarily choose the option that reduces required manpower the most. 

 

All of this does not actually require knowing how what the least amount of manpower to support 

     is. The least amount of manpower required can afterward relatively easy be calculated using 

the queuing simulation model given layer settings {     }.  

 

Model 4 
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The problem of course is that unfortunately in the security architecture in this thesis there are layers 

that can detect the same threat the confidential-confidential- confidential-confidential- confidential-

confidential- confidential-confidential- 

 

However the confidential layer does not add much security to the already high detection levels of the 

confidential layers, which are also considerably less expensive in terms of manpower requirements. 

So it can easily be omitted after which the security architecture does satisfy the condition that each 

threat can only be detected by one layer. 

 

There are advantages to having redundancy in the security architecture as was argued in section 

10.1. So to accommodate this another approach could be to keep a redundant layers and just fix its 

layer setting to a certain reasonable value (in the sense that it leads to acceptable manpower 

requirements) by adding an extra restriction in Model 4. To add extra unpredictability the value of 

the redundant layer can be varied from day to day. This approach does in general not lead to the 

absolute lowest manpower requirements. 

 

If the approach of fixing redundant layers to a specific setting leads to manpower requirements that 

are not acceptable it might be better to model manpower requirements by approximating them with 

a linear function like in Model 3. A Queuing simulation model could still be used to support 

reasonable estimates for the manpower associated per passenger on a specific flight. 

 

To summarize: 

 

A plan to operationalize the model in this thesis could be: 
  

 omit the confidential layer or set it at a fixed (low value) 
 solve Model 2 without restriction (g) to obtain      
 solve Model 4 using      to obtain {     } 
 divide the day in suitable time intervals   
 determine/estimate averages and variances of passenger arrival distributions for each time 

interval   
 determine/estimate averages, variances of screening parameters 
 develop a queuing simulation model and determine manpower requirements given settings 

{     } 
 translate the manpower requirements for each time interval to a demand schedule to be 

fulfilled by the security companies on AMS 

 

 

 

This chapter discussed the model from various perspectives (place in an overall 

aviation security context, effect of model choices, how it could be implemented). 

This thesis will close with two chapters: one chapter that presents general 

conclusions on the risk-based security approach and one chapter that gives 

recommendations to AMS on the application of the risk-based security approach.   
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11 Conclusions 
The main goal of this project was to develop a model that could allocate security resources in a 

passenger screening architecture optimally against an adaptive attacker. 

The model developed has succeeded in doing that. 

Furthermore the model developed is:  

 efficient   

the model can calculate optimal solution for realistic problem instance fast (in particular 

when using (sub)Model 2) 

 flexible  

broadly varying situations can be modeled by choosing appropriate parameters (see table 

11.1) 

 robust  

Using (sub)Model 2 it is possible to calculate solutions that are not sensitive to inaccuracies 

in the estimation of  attacker preferences 

 consistent  

modeling static risk using BBN guarantees consistency in static risk ordering 

 generalizable 

It could easily be applied to other problems where security resources  have to be allocated 

optimally  against an adaptive attacker whose preferences can be estimated by SMEs 

 

The model shows that by exploiting the known preferences of the attacker (i.e. risk-based security) it 

is possible to use a lot less resources than rule based security for attaining the optimal security that 

the equipment and the security agents can support. Basically risk-based security is a smart way of 

stripping away security resources from defending targets based on prior knowledge of the attacker. 

This comes  however at a price. Using risk as predictor of where security resources can be stripped 

makes security a lot less straightforward than rule based security. It requires: 

 regular evaluation procedures to guarantee this prior knowledge of the attacker is still 

accurate as was stressed in the last paragraph of section 8.2 

 explicit decisions to be made beforehand on how risk is to be dealt with exactly (i.e. how to 

value targets as defender? how much trust to put in risk as the predictor of attacker actions? 

what are the lowest acceptable detection probabilities for targets?) 

  

The model suggests the confidential layer to be redundant as it is hardly ever selected. The reason 

being that the threats it can detect can also be detected in a more cost effective way with the 

confidential layers. 

However there can be good reasons for deliberately building in redundancy in a security system as 

was argued in the last paragraph of section 10.1 

 

parameter effect 

   
          

  Sets relative value defender assigns to different target types against attacker   

   
            Sets relative value attacker   assigns to different target types 

   Sets level of robustness against uncertainty in preferences of attacker   

     Sets lower bound to detection probability of target   against attacker   

     Sets the maximum allowed net manpower requirement 
Table 11.1 parameters that can be tuned depending on modeling requirements 
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12 Recommendations 
 

1. Implement a risk-based security policy as a more cost effective approach to aviation security. 

 

2. Explicitly decide on management level: 

i. risk attitude of AMS (relates to    
        

  ) 

ii. lower bounds on detection probabilities (relates to     ) 

iii. level of trust in attacker model as predictive for actions attacker   (relates to   ) 

 

3. Develop processes for continuous review and updating of beliefs with respect to risk 

perception, risk attitude, possible threats  to be able to adapt risk-based security to evolving 

threats. 

 

4. Improve the gathering of quantitative data on the AMS security processes to have the 

quantitative data available for well informed security policy decisions. Specifically with 

respect to: 

i. flight specific average screening time per passenger depending on security settings 

ii. passenger arrival distributions per flight and security filter in post One-XS situation 

 

5. Use intelligence to extend the attacker types modeling by formulating reasonable beliefs on 

types, their surveillance capability, their risk attitude and their a priori probabilities (i.e. 

attacker profiles) and solve Model 2 with type dependent parameters    and {  }. 

 

6. Operationalize the model as described in section 10.3 

 

7. The modeling of static risk using Bayesian Belief Networks (i.e. sub-model 2) was limited in 

detail/complexity by the causal factors that could be obtained using CISS46. Using more 

sources of data a more accurate estimate of the static risk associated with a target type 

could be made 

 

                                                           
46

 CISS is a flight information system used at AMS 
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13 Summary 
Defending against all the threats terrorist have come up with to attack passenger flights has become 

very costly. Resources are limited and an approach like rule-based security prescribing compliancy 

with a fixed set of security measures regardless of the target is becoming untenable. 

Not every target is equally likely to be attacked and by defending them equally resources are being 

wasted at some targets while other targets are being inadequately defended. 

Risk-based security is an approach that does take into account the different risks associated with 

different targets and allocates resources accordingly. Applying risk-based security however is not so 

straightforward as it perhaps sounds. 

The first problem is that it is difficult to determine the risk associated with a target in a consistent 

and reliable way. In the security domain there is hardly any relevant historic data to base risk on and 

in the context of constantly evolving threats it is questionable if historic data has great predictive 

value for the future. 

The second problem is that  terrorists intelligently adapt to security measures by trying to circumvent 

them. So risk does not only depend on the inherent (or static) risk associated with a target but also 

on how well the target is defended. 

The first problem was addressed by basing static risk on risk assessment by groups of subject matter 

experts. This risk assessment was structured with a mathematical procedure (Bayesian Belief 

Networks) to ensure consistency. 

The second problem was addressed using a mathematical formalism (Game Theory) designed to 

study strategic interactions between intelligent actors (AMS, terrorist attacker). It used the results of 

the risk assessments as input. 

Two crucial ingredients for successfully applying risk-based security is both  knowledge about oneself 

(Risk perception? Risk attitude? What risk levels are acceptable?) and knowledge about the attacker 

(Capabilities? Preferences? Risk attitude? Degree of rationality47?). 

In the developed model  broadly varying situations could be modeled by choosing appropriate 

parameters. Optimal defender policies could be calculated in a reasonable time (usually only taking a 

few minutes) for reasonable problem instances (passenger screening for 200-300 non-Schengen 

flights).  

Calculated defender policies required considerably less manpower than the current manpower levels 

even when assuming that all flights were 100% full and without taking into account manpower 

reductions in the post One-XS situation. 

The model adds important qualities to an overall approach to security on AMS when viewed from the 

perspective of the Rumsfeld Matrix methodology. 

When extra data is gathered or estimated the model can relatively easily by applied on AMS.  

Because of its generality the model could (with minor adjustments) also be applied to other 

problems where limited security resources have to be allocated to defend against and adaptive 

opponent. 

  

                                                           
47

 rationally is meant here in sense of: being consistent in pursuing one's own goals, with no reference to the 
sanity of those goals 
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15 Appendix A:  Aviation security developments 
 

Source: TSA.gov 
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 Source: TSA.gov 
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16 Appendix B:  Swiss cheese model 
 

The Swiss Cheese model of accident causation was given its name by James Reason (1997). It can be 

represented by a metaphor depicted in figure 17.1: 

 

 

 

Figure 17.1: The Swiss Cheese model 

        a) catastrophic event successfully prevented  

        b) catastrophic event occurs 

 

The idea is that a complex system is defended by a number of layers, which can be thought of as 

slices of Swiss cheese. The role of each layer is to prevent, control, inhibit or mitigate a threat. The 

holes represent weaknesses in the defense. A catastrophic event can only occur when the holes line 

up and a path is possible for a threat to traverse through the weaknesses in all layers.  

 

What the Swiss Cheese model illustrates that is especially relevant for this thesis is: 

 

security against threats is a property that arises not so much from the security of individual 
layers of security measures but more so  from the coordination between those layers  
 

In terms of the Swiss Cheese model the approach used in this thesis can be seen as coordinating the 

size and relative position of the holes in a randomized manner to prevent an opponent who actively 

seeks to find a path to traverse through all layers from being successful. 
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17 Appendix C: Pre-SME workshop questionnaire 
 

 
 
 
Pre-SME Workshop Questionnaire:  
Attacker Types & Causal Factors Static Risk 

A Risk-Based Passenger Screening Architecture optimized against adaptive threats 
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Introduction to the questionnaire 
This questionnaire is part of a research project in which a mathematical model is developed to  

calculate the optimal policy to assign security measures to targets against adaptive attackers. 

In the context of this project: 

 security measures refers to the settings of two passenger screening devices  

(i.e. security scan, x-ray hand luggage scan) 

 targets refers to flights 

 the attacker is a person, posing as a passenger to try to gain access to the flight, that 

smuggles (on person, in hand luggage)  items (weapon, IED) to carry out an attack 

 optimal refers to optimal in the sense of minimizing risk also taking into account 

circumventing strategies of an attacker (i.e. the attacker is adaptive) 

 

Attackers will differ in their capabilities and goals. Not all of these differences  will be relevant from 

the perspective of an attack-item-oriented security architecture  but insofar as they are: a distinction 

will have to be made between different attacker types. 

Because the strategy choices of an attacker (i.e. choice of attack item and choice how to smuggle it 

through security) will be an integral part of the model the possible strategies and their likelihood will 

also have to be specified.  

Question 1 will ask you as subject matter expert (SME) to say something about attacker types and 

their strategy choices. 

 

Intuitively it is clear that not all targets should receive the same allocation of security resources. 

Some will inherently be more attractive as targets than others. Stated differently: some flights will 

have a higher inherent risk associated with them than others. 

Question 2 will ask you to say something about the causal factors of the inherent risk associated with 

a flight. But first the important distinction has to be made between dynamic risk and static risk (or 

inherent risk). Risk will be decomposed into a dynamic part and a static part.  

The dynamic part refers to that part of risk that is related to the interplay between defender and 

attacker choices. 

e.g.  the risk of an attack (=choice of attacker) will depend on how heavily it is defended (=choice  

        attacker), since heavily defended targets become less attractive to an attacker 

The static part refers to that part of risk that is not related to the interplay between defender and 

attacker choices (i.e. that part of the risk that is inherent). 

e.g. when equally defended the risk of an attack on a flight operated by Delta Airlines will be 

different (probably higher) than the risk of an attack on a flight operated by Singapore Airlines 

Question 2 will only be about static risk. So when thinking about static risk for conceptual 

convenience assume that targets are defended equally. 

(FYI: the dynamic part of risk will be modeled separately using a game-theoretical framework) 

 

 

Instructions: 
Read following questions carefully, answer them and sent answers to me by email. 

The answers to these question will form the starting point for the SME workshop.  

So  please send them well in advance. 
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Question 1 

 
Consider the following division (based on capabilities and goals relevant for an attack-item-oriented 
security architecture ) in attacker types: 
 
 Used Passenger 

passenger unaware of carrying IED in carry-on luggage 
 Hijacker 

attacker  trying to get weapons aboard the plane with the intent to hijack it 
 Suicide Terrorist  

attacker trying to get homemade explosives aboard the plane with the intent to blow it up 
 
a) For each individual attacker type what percentage would you estimate this type will make up of  

     the entire attackers mix? 

     (Note: all percentages should add up to 100%) 

 

b) A systematic way to enumerate all possible strategies is to simply make all possible combinations  

    of classes of attack items and  classes of smuggling. 

    Not all possible combinations necessarily make sense (in general or for a specific attacker type). 

    e.g.  In general it probably does not make sense  to hide explosive material on both person and in  

            luggage. 

            For the attacker type used passenger it probably does not make sense that it was hidden on    

            person explosive material  (since  this attacker type is by definition unaware) 

    Consider the following possible classes of attack items and smuggling: 

 

 

 

 

  

 

 

 

For all attacker types specify which combinations make sense and which do not 

  

classes of 
attack items 

classes of 
smuggling 

liquid IED on person (torso) 

solid IED  on person (extremities) 

Firearm in hand luggage 

Knife 
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Question 2 
 
In the next question you will be asked about static risk associated with different targets (i.e. 
flights) posed by the attacker types mentioned above. 
To structure thinking about static risk the following framework will be used: 
 

 
 
Static risk is seen in this framework as originating from both the threats (of an attack) and 
consequences (of an attack). For example: the threat level could be low but if the 
consequences level is very high there will still be a appreciable risk and vice versa. 
The consequences depend on the attack method (e.g. knife versus IED). It also depends on the 
perspective (i.e. viewed from attacker/defender) since an attacker will value consequences 
(political, economical, human loss, symbolic) in general not always exactly the same as the 
defender. 
Threats and consequences are seen as originating from causal factors. 
e.g. the plane size could be a causal factor for the consequences level (more human loss) 
        the airline could be a causal factor for the threat level (US/Israeli carrier probably more  
        attractive target for an attack) but might at the same time also be a causal factor for the  
        political consequences level (attacking US/Israeli carrier will probably have more political  
        consequences than attacking for example a Peruvian carrier) 
 

a) Which  (practically obtainable) causal factors determine the static risk associated with different  

    flights? Also specify if they determine static risk through the threat level or the consequence     

    level or both. 

 

example:  risk of being late at work for person using train 

causal factors: oversleeping,  signal failure, train delay 

 

b) Briefly describe how these factors are related (qualitatively)  

 

example (continued from a)):   

 relations: oversleeping and train delay directly cause being late at work, signal failure causes train  

                       delay (but  does not cause oversleeping or directly cause being late at work)   
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18 Appendix D: More efficient ETD Screening procedure 
 

18.1 The Procedure 
One of the procedures to check passengers for explosives is ETD screening using an IONSCAN 500DT 

(IS500DT). The current ETD screening procedure  is done by two security agents and consists of two 

steps: 

1. Take a swab sample of passenger (~cfd seconds) 

2. Analysis by Ionscan 500DT  (~cfd seconds) 

 

Using this procedure the manpower requirements of  the screening process are too high to make 

screening of large numbers of passengers feasible. Under these conditions the security resources 

allocation model in this thesis would rarely select allocating resources to this layer. 

This appendix explores an alternative ETD screening procedure that exploits the low false alarm rate 

associated with ETD screening to lower these manpower requirements and make this screening layer 

more viable. Simulation is used to determine if this procedure will be feasible. The flowchart of this 

procedure is given in Figure 18.1: 

 

 
Figure 18.1: A potentially more efficient ETD screening procedure 

 

The idea is that every time the group sample gives no alarm       times cfd seconds of time is 

saved compared to the procedure that screens one passenger at a time. Of course it will take more 

time when the group sample does give an alarm (two times in a row), but the intuition is that this 

extra amount of time will be small compared to the time saved because of the low false alarm rate 

leading to a net gain in efficiency. 

The group sample is checked twice to make it very unlikely that the costly (with respect to manpower 

requirements) step of checking passengers on at a time is done because of a false alarm. 
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18.2 The Model 
An individual screening of a passenger can be modeled as depicted in Figure 18.2: 

 

 
Figure 18.2 screening  model individual passenger using IS500DT 

 

Therefore the procedure is a function of parameters:          and    . 

All of these are fixed except N (i.e. the number of passengers in the sample) which will be chosen 

such that the average screening time per passenger is minimized. 

    and     will be based on NCTV estimates: 

     < cfd 

     < cfd 

 

For parameter   a reasonable upper bound estimate will be made. 

 

Simulation experiments were performed with the values given in Table 18.2 a(b 

 

Parameter  values chosen 

   2-20 (larger groups impractical) 

   0.01, 0.005, 0.001 

     0.1, 0.05, 0.01 

     0.05, 0.001, 0.005 
Table 18.2: values chosen for simulation experiments 
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18.3 Performance statistics and criteria 
Simulation will be used to calculate the following statistics together with their 95% confidence 

interval: 

 the average screening time per passenger 

 the percentage of people with traces of explosives who will pass the screening undetected 

 

It will be assumed that an average screening time per passenger of cfd seconds would make 

screening large numbers of passengers feasible (=flow criterion). Furthermore a percentage of people 

with traces of explosives that will pass the screening undetected higher that cfd will be considered 

unacceptable (=detection criterion). 

 

It seems reasonable to assume that a great majority of passengers will not have traces of explosives, 

therefore:       .  Under this assumption from Figure 18.2 can be deduced that the exact value of   

will have limited influence on the screening time since it depends on the alarm probability: 

 

                                      

 

As long as      the alarm probability is dominated by the false alarm contribution. 

Note that the choice of   does not influence the average percentage of people with traces of 

explosives who will pass the screening undetected since that only depends on    . 

In Table 18.2 the statistics, their parameter dependence and criteria are summarized. 

 

Statistic dependence: criterion 

the average screening time per passenger          
            

Cfd 
cfd 

the percentage of people with traces of explosives  
who will pass the screening undetected 

             cfd 

Table 18.2: statistics - parameter dependence and criteria  
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18.4 Results, discussion and conclusion 
 

The value of     is a bottleneck for the detection criterion. For values higher than cfd it turns out to 

be impossible to satisfy the detection criterion. The intuition behind this is that it takes a minimum of 

two IS500DT ETD checks to detect traces of explosives on a passenger. This will only happen if no 

false clear happens in both of these checks. The probability that this happens will approximately be 

        
  . So to satisfy the detection criterion     has to be smaller than cfd. 

 

The value of      is a bottleneck for the flow criterion. For values higher than cfd it turns out to be 

impossible to satisfy the flow criterion. The intuition behind this is that if the number of false alarms 

is to high the follow up to those alarms will take too much time to be efficient. 

 

With these restrictions with respect to the parameters known the question becomes which value of 

N minimizes the average screening time per passenger and how this depends on the values of the 

other parameters (see Figures 18.3 and 18.4; the error bars denote the 95% confidence interval) 

    does not influence the average screening time per passenger, but it does influence the 

percentage of people with traces of explosives  who will pass the screening  undetected (see Figure 

18.5; the error bars denote the 95% confidence interval) 

Another idea that was explored using simulation was to reduce the number of total checks by 

dividing the group of passengers in two groups of half the size after a double alarm for the group 

sample and check both those group again using group. This would be repeated until  the 

(presumably) individual passenger with traces of explosives was found. 

Even though overall less checks were needed (which saves time) the disadvantage of this procedure 

is that the passenger with traces of explosives will have to be checked in multiple rounds. Each round 

has the risk that the unsafe passenger could  remain undetected because of a false clear. This results 

in a higher probability of not detecting the unsafe passenger. Furthermore the saving of time to find 

the unsafe passenger turns out not to be very significant because the fraction of unsafe passengers is 

small  to begin with (    ) and analyzing the group sample twice all but ensures that this 

procedure will only happen when there is an unsafe passenger. 

 

 

Conclusions:  
1. within restrictions:      < cfd en     < cfd the new procedure is cfd % faster and safe 
2. when     and   are lower the average screening time per passenger decreases and the 

optimal group size   increases 
3. when     is lower the percentage of people with traces of explosives who will pass the 

screening undetected decreases 
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Figure 18.3 simulations that illustrate the     dependence of the average screening time per passenger 



 
190 

 

Elbert van de Wetering   A Risk-Based Passenger Screening Security Architecture optimized against adaptive threats  

 

 

 

Figure 18.4 simulations that illustrate the   dependence of the average screening time per passenger 
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Figure 18.5 simulations that illustrate the     dependence of the average screening time per passenger 
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19 Appendix E: Model Assumptions 
 

 Figure 19.1 schematic overview of all assumptions made in the models presented in this thesis 
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20 Appendix F: Risk-based security versus threat-based security 
 

This appendix addresses two important approaches to security:  how they relate to each other and 

how they are implemented in the model presented in this thesis.  

 

Security is the condition of being protected against danger or loss through the prevention of adverse 

consequences by the intentional and unwarranted actions of others [i.e. threats] (Talbot & Jakeman, 

2009). There are two main approaches to security: 

1. risk-based security 

2. threat-based security 

 

Risk-based security is about assessing the quantity risk, which is usually defined as some  variation on 

probability of a threat times its impact (in this thesis:  TVC approach, see Chapter 4) and choosing 

security measures based on this quantity aimed at mitigation and control of the threat. 

Threat-based security is about establishing which threats are possible and unacceptable and 

choosing security measures aimed at  eliminating those threats.  

 

Obviously both approaches  try to increase security. The focus of risk-based security is on correctly 

identifying the threats whereas the focus of threat-based security is on not overlooking threats. 

Stated more formally: risk-based security focuses on minimizing the type 1 error (denoted with:  ) 

while threat-based security focuses on minimizing the type 2 error (denoted with:  ) given the zero 

hypothesis:                    .  

 

Both approaches have their merits and faults and are not equally suited to each specific situation.  

 The formal characterization in terms of focus on   and   makes this more transparent: 

Minimizing   can be associated with higher efficiency with respect to allocation of security resources. 

Minimizing   can be associated with not overlooking threats. 

Therefore risk-based security  is more suited to situations where resources (i.e. costs) are a more 

important consideration  than not overlooking threats. Threat-based security is more suited to 

situations where not missing threats is most important (even at great cost). 

 

The requirements of the problem in this thesis made it more natural to combine both approaches 

(albeit at different organizational levels)  rather than only choose one approach. The reason being, 

that protecting aircraft from terrorist attack is a problem with both limited resources (screening  

large numbers of passengers against multiple threats is very expensive) and unacceptable threats 

(i.e. hijacking/blowing up plane).  

At the resource allocation level: allocation was prioritized in a risk-based manner.  

At the security policy level:  given the prioritization at the resource allocation level the focus was on a 

threat based approach. The security policy minimized false negatives, taking into account all possible 

attacker circumventing strategies. 
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This was mirrored in the model by how the payoffs in the game-theoretical framework48 were 

modeled: as the product of a risk-based parameter (static risk) and a threat-based parameter (i.e. 

           which is basically   given security measures   and threat  ).  

 

Table 20.1 summarizes this: 

 

Approach Dominant 
parameter 

Advantage Disadvantage Implemented in 
model through 

Risk-based   Efficient allocation 
of resources 

Overlooking threats 
more likely 

Static risk 

Threat-based   Not overlooking 
threats 

Less efficient  in 
allocation of resources 

 game-theoretical 
framework 

            
Figure 20.1 risk-based security versus threat-based security 

  

                                                           
48

 The game-theoretical framework was needed to model that the defender tries to minimize   through its 
security policy while the attacker employs adaptive behavior to this security policy by choosing its method of 
operation to maximize    
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21 Appendix G: Rumsfeld Matrix 
 

The Rumsfeld matrix is a useful  tool to look at situations where decision have to be made in the face 

of uncertainty or missing information. It not only considers knowledge, but also considers meta 

knowledge (i.e. knowledge about knowledge).  It owes its name to an infamous speech made by 

United States Secretary of Defense Donald Rumsfeld at a press briefing (The Federal News Service 

Inc., 2002): 

  

... There are known knowns; there are things we know we know. We also know there are known 

unknowns; that is to say we know there are some things we do not know. But there are also unknown 

unknowns – there are things we do not know we don't know. And if one looks throughout the history 

of our country and other free countries, it is the latter category that tend to be the difficult ones.…. 

 

Even though this statement seems somewhat puzzling at first sight, it is actually a quite insightful 

way of approaching situations with limitations on our knowledge to prevent overlooking threats.49 

It can be expressed in a matrix: 

 

  
Figure 21.1 Rumsfeld matrix describing categories of knowledge and the appropriate action to be taken in each state 

  

                                                           
49

 This use of the Rumsfeld matrix is pioneered by Dr. G.G de Valk and Cpt. O. Goldbach MSc. This appendix is 
based on Chapter 6 of a draft version of the Intelligence paradigm project working paper 6 authored by them. 
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 The known-knowns category describes knowledge that we know and that we are aware of 

that we know.  Knowledge in this category should be challenged to be sure that these 

assumptions are really correct. Typically this requires an abductive type of reasoning. 

 The known-unknowns category describes that part of knowledge that we do not know, but 

we are aware that we do not know this. Knowledge in this category requires further 

exploration. There are basically two approaches for exploration, the first one dominated by 

abductive reasoning and the latter by deductive reasoning. In the first approach exploration 

of the unknowns is done by identifying conditions and factors that can contribute to or result 

in the threat. This obviously requires some rough knowledge about an attacker's modus 

operandi (AMO). From these indicators can be established associated which point to which 

situations are more likely to be on the path of an attacker (i.e. predictive profiling). In the 

second approach starting with a set of assumptions deductions are made what would be 

logical/possible adversary's courses of action (ACOAs). 

 The unknown-unknowns category describes knowledge that we do not know and that we 

are not aware of that we do not know this. This is obviously a very difficult category to deal 

with. The only approach developed to deal with this class is experimenting to discover new 

AMOs (i.e. Red Teaming50). Inductive type reasoning is used to make inferences from these 

experiments. 

 The unknown-knowns category describes knowledge that we know, but we are unaware of 

for example because we do not realize its significance. This category requires exposing of the 

significance of the knowledge that is already there usually in large databases. Exposing can 

take the form of statistical syllogisms (inductive reasoning) or inferring a most likely 

explanation based on observed data patterns (abductive reasoning). 

 

This categorization can easily be turned into a powerful robust (i.e. against missing threats) 

instrument for approaching situations with unknown information by: 

1. addressing each quadrant of the Rumsfeld matrix  

2. combining multiple types of reasoning (deductive, inductive, abductive)51 

3. combining both qualitative and quantitative types of methods51 

                                                           
50

 Red teaming is the practice of tasking a group of people to model the attacker, the opponent or an opposing 
point of view. The goal is to explore new ideas and challenge assumptions enabling better decision making. This 
can for example take the form of  testing security architectures by attacking them using creative new methods. 
 
51

 Each type has its biases and limitations therefore combining types leads to more robust results 
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22 Appendix H: Specific details of the security architecture 
 

In table 22.1 a description is given of what security measure is associated with each layer. 

 

Layer# Device Security Measure 

1 confidential confidential confidential confidential confidential confidential 

2 confidential confidential confidential confidential confidential confidential 

3 confidential confidential confidential confidential confidential confidential 

4 confidential confidential confidential confidential confidential confidential 

5 confidential confidential confidential confidential confidential confidential 

6 confidential confidential confidential confidential confidential confidential 

7 confidential confidential confidential confidential confidential confidential 
Table 22.1: description of layers 

 

confidential- confidential- confidential- confidential-confidential- confidential- confidential- 

confidential- confidential-confidential-confidential- confidential- confidential- confidential-

confidential- confidential- confidential- confidential- confidential-confidential- confidential- 

confidential- confidential- confidential-confidential-confidential- confidential- confidential- 

confidential- confidential- confidential- confidential- confidential- confidential-confidential- 

confidential- confidential- confidential- confidential-confidential-confidential- confidential- 

confidential- confidential-confidential- confidential- confidential- confidential- confidential-

confidential- confidential- confidential- confidential- confidential-confidential-confidential- 

confidential- confidential- confidential-confidential- confidential- confidential- confidential- 

confidential- confidential- confidential- confidential- confidential- confidential-confidential-

confidential-    confidential- confidential- confidential-confidential- confidential- confidential- 

confidential- confidential-confidential- confidential- confidential- confidential- confidential-

confidential-confidential- confidential- confidential- confidential-confidential- confidential- 

confidential-confidential- confidential- confidential- confidential- confidential-confidential- 

 

 Not all of above mentioned layers (post One-XS new situation) are present in the current situation. 

Some are present in both situations, some only in the current and some only in the new situation. 

Detection parameters for both the current as the new situation are needed. In table 22.2 these 

detection parameters are summarized together with their sources and to which situation they apply.  

 

In table 22.3 the detection parameters for alarm follow up are given for all possible threats together 

with their sources. 

 

In section 8.4.3 the parameter          was introduced. From tables 22.2 and 22.3 it is possible to 

infer         for the current policy. This is given in table 22.5 

 

In section 5.2 parameters were introduced to link security settings to manpower requirements. In 

table 22.4 these parameters  are given together with their sources. 
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 Layer     Attack item       

 
 
 
Layers that 
are present 
in both the 
current as 
the new 
situation 

confidential ??%52/??%52  confidential ??%52/??%53 

confidential ??%52/??%54 

confidential ??%52/??%55 

confidential ??%52/??%56 

confidential ??%52/??%52 confidential ??%52/??%57 

confidential ??%52/??%58 

confidential ??%52/??%59 

confidential ??%52/??%60 

confidential ??%61/??%57 confidential ??%61/??% 

confidential ??%61/??%57 confidential ??%61/??%62 

Layers that 
are only 
present in 
the current 
situation 

confidential ??%57 confidential ??%63 

confidential ??%57 confidential ??%64 

 
Layers that 
are only 
present in 
the new 
situation 

confidential ?? confidential ??%61/??%65 

confidential ??%61/??%52 confidential ??%61/??%52 

confidential ??%52/??%52 confidential ??%52/??%52 

Table 22.2:     and           for layers in the old and the new situation. For the new situation two values  

                   apply: the first is the low detection/low false alarm setting and the second is the high  

                   detection/high false alarm setting. For the current situation only one value applies, which is the  

                   second one when two values are given. 

  

                                                           
52

 based on NCTV estimate 
53

 based on internal AMS audits (2 data points) 
54

 based on internal AMS audits (43 data points)  
55

 based on internal AMS audits (87 data points) 
56

 based on internal AMS audits (104 data points) 
57

 guesstimate (no data available) 
58

 based on internal AMS audits (122 data points) 
59

 based on internal AMS audits (42 data points) 
60

 based on internal AMS audits (283 data points) 
61

 corresponds to setting where layer is not used 
62

 based on AMS TIP (threat image projection) x-ray operator test data (163 data points) 
63

 based on AMS TIP (threat image projection) x-ray operator test data (2346 data points) 
64

 based on internal AMS audits (384 data points) 
65

 based on simulation of a procedure where screening is done in batches for extra efficiency (See Appendix D) 
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Attack Item Confidential Confidential Confidential 

Liquid explosives ??%66 ??%67 ??%67 

Solid explosives ??%68 ??%69 ??%70 

Knife ??%71 ??%72 ??%73 

Firearm ??%74 ??%75 ??%67 
Table 22.3:        and       

 

 

 

Parameter Value 

    confidential 

   confidential 

      confidential 

f confidential 

c confidential 

Reference flight  
(for which γ≈1) 

confidential 

Table 22.4: Remaining security architecture parameters 

 

 

 
Attacker type 

     (l)  
current rule based policy 

    (Used Passenger) confidential 

    (Hijacker) confidential 

    (Suicide Terrorist) confidential 
Table 22.5:  lowest detection probability current policy  

 

 

 

  

                                                           
66

 based on internal AMS audits (2 data points) 
67

 guesstimate (no data available) 
68

 based on internal AMS audits (30 data points) 
69

 based on internal AMS audits (83 data points) 
70

 based on internal AMS audits (92 data points) 
71

 based on internal AMS audits (82 data points) 
72

 based on internal AMS audits (238 data points) 
73

 based on internal AMS audits (293 data points) 
74

 based on internal AMS audits (82 data points) 
75

 based on internal AMS audits (42 data points) 
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23 Appendix I: Number of settings on the ROC curve 
 

As explained in section 5.1 the adjustability of the screening devices consists of choosing between 

only two settings. As can be seen from Appendix H for most of the layers one of these settings is 

simply the OFF setting (i.e.          and         ). 

 

This section will explain why adjustability is only allowed by choosing from two settings on the ROC 

curve (as opposed to three or more) and why this is still a reasonably flexible way to adjust screening 

device settings. 

 

First a distinction has to be made between two types of screening devices. On one hand there are 

screening devices where the decision to generate an alarm is made by the device itself (algorithm 

screening) and there are others where a human generates the alarm based on information supplied 

by the screening device (human screening). 

In the case of human screening there is no practical way to adjust screening parameters     and    .  

This implies that only two settings are possible: the     and     settings a human screener operates 

at and the OFF setting. 

In the case of algorithm screening by modifying the algorithm in principle more settings on the ROC 

curve should be possible. In practice however the adjustability of commercially available screening 

devices is limited. 

Commercially available screening devices have to comply with strict EU regulations with respect to 

   . At the same time to be commercially attractive to airports the same screening devices have to 

minimize    . So the market tends to select for one specific setting on the ROC curve (i.e. there are 

no incentives yet for screening device manufacturers to develop algorithms that operate on a 

different part of the ROC curve). 

 

Using only two settings on the ROC curve (far enough apart) the screening device can be adjusted to 

a wide range of settings. This is done in this thesis by mixing. With mixing is meant that a certain 

(uniformly distributed) fraction   of the time the high detection setting (                   is chosen 

and the rest of the time       the low detection setting (                  is chosen. In this way 

any detection level between the low and the high detection setting can be chosen as can be seen 

from figure 23.1:  

 

 
Figure 23.1: mixing of two settings on ROC curve  
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In figure 23.1 the straight red line between the two settings on the ROC curve corresponds to all 

possible the settings that can be generated by mixing of settings low and high by choosing parameter 

  appropriately. 

Note that for the same detection level         the settings on the red line have a higher false 

alarm rate     than the settings on the ROC curve. So while mixing makes a detection levels range 

between             and              possible it leads to higher false alarm rates compared to 

the ROC curve. 

The effect of adding settings on the ROC curve for mixing is a slight decrease in this higher false alarm 

rate as illustrated in figure 23.2, where a third setting  (                       is added: 

 

 

 Figure 23.2: mixing of two settings on ROC curve compared with mixing with three settings on ROC curve 

 

From figure 23.2 it becomes clear that even though adding more points on the ROC curve for mixing 

decreases the false alarm rate, this decrease in lower false alarm rate is small.  

It seems reasonable to conclude that for a typical required detection level range and a reasonable 

choice of low and high settings on the ROC curve: mixing with only two settings leads to a reasonable 

approximation of the ROC curve in the sense that adding more settings for mixing does not decrease 

false alarm rate very much. 
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(Cleary, 2005): 

 

 

 

 

 

 “If you know the enemy and know yourself, you need not fear the 

result of a hundred battles. If you know yourself but not the enemy, for 

every victory gained you will also suffer a defeat. If you know neither 

the enemy nor yourself, you will succumb in every battle” 
76

 

Sun Tzu 

                                                           
76

 Sun Tzu on the requirements for the successful application of game-theoretical models  
    [author's interpretation ] 
 


