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Chapter 1

Introduction

The fear of losing assets has caused humans to protect their belongings for a very long time; as

far back as the Chinese and Babylonian traders in 2000 B.C., mankind has used the concept of

insurance in order to protect their goods. Sailing merchants would receive a loan to fund the

ship of travelling sailors. However, a sailor could pay the merchant a premium that would cancel

this loan, in case the shipment would never arrive. In a sense, this is a very simple example of

an insurance product (Vaughan, 1997).

The insurers of today’s world are a corner stone in running the economies and protect

individuals. The concept of insuring is as simple as it is elegant: events which would have a

large (financial) consequence but with a small probability for an individual, are collected by a

large institute and covered. Individuals can protect their assets from a potential loss by paying a

(recurrent) premium beforehand, erasing this large potential impact for them. An insurer would

typically gather a big amount of these premiums, in order to cover the amount of money needed

when this event would happen at one of their policyholders. Insurers therefore play a crucial

role in the economy, protecting individual players from large risks they cannot cover through

paying relatively small premiums.

Insurers generally have two variables that can easily be adjusted by them, both having a

major impact on their business model and strategy. First of all the premiums, especially when

reoccurring, generate a cash flow to cover large claims. The determination of the height of this

premiums, is based on a relative simple concept. For example: when an negative event would

cost $10000 having a 0, 1% probability a year, the insurer should have asked a Ppremium ≥ $10

a year, to cover these claims. Too low premiums could result in not being able to cover these

claims when occurring. However, asking too high premiums would result in clients walking to

other firms, given the very competitive landscape in the insurers world. An equilibrium between

these two contrary interests should be seeked by an insurer.

Another variable that could influence an insurer’s performance, is the amount of capital that

it has reserved for future claims. An insurer typically makes a small margin on the premiums

they receive, due to the competitive industry. However, the way an insurer invests that premium

is potentially more profitable. An insurer typically has a significant amount of long term in-

vestments, yielding an higher profit compared to investments with a short maturity. Too many
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6 CHAPTER 1. INTRODUCTION

long maturing investments in the portfolio will lead to liquidity problems, in case more claims

are received than expected.

An insurer goes into default whenever it cannot meet its obligations (in a very simple world);

in other words, whenever the liabilities side of an insurer (its obligations) has a higher value than

the assets side of this insurer. Moreover, given that the value of the assets and liabilities change

over time, an accurate projection of both sides is essential for a good health of the organisation.

It is therefore of great importance that the insurer can predict its value of the obligations in the

future (on the liability side) and the value of the products in their portfolio and incoming cash

flows (on the asset side) accurately. An accurate valuation could, as explained before, result in

a competitive premium for the policyholders while reserving an optimal amount of money for

future claims.

Not only from a economic point of view, but also from a regulatory point of view it is of

interest for an insurer to predict their obligations and liabilities. As a consequence of the new

Solvency 2 regulations, an insurer has to calculate its Solvency Capital Requirement (SCR). This

term can be explained as a required surplus above the regular liabilities, which is the amount

of capital insurance companies must hold to reduce the risk of insolvency. Solvency 2 has been

developed and adjusted over the last thirteen years. The first steps have already been taken, and

a full implementation of the new regulatory framework will be required by the 1st of January

2016. Not complying to these regulations could eventually lead to the withdrawal of the insurers

licence by regulators.

There are several methods to calculate this SCR. EIOPA, the European regulator, has pro-

posed a standard formula to calculate the SCR. Experts argue however that this standard

formula uses unacceptable assumptions and therefore conclude that the standard SCR does not

estimate the risks accurately (Kousaris, 2011). This, combined with the fact that under some

restrictions an insurer is allowed to calculate its SCR using their own models, results in insurers

looking for alternative ways to accurately predict SCR’s. For more background information on

Solvency 2 regulations, refer to Appendix A.

There are numerous factors that could influence the position or value of an insurer’s portfolio.

Factors like asset location, price changes on the stock exchanges, and the correlation between

different risks can influence the value of the liabilities and assets an insurer possesses. However,

one factor has a structural influence on the insurer’s solvency position: the interest rate. The

effect of a change in interest rate works both on the assets- and liabilities side of an insurer.

Insurers have a significant amount of money invested in long-term maturing (government) bonds.

The value of these obtained bonds are influenced by interest rate movements of today’s market;

both the value of the bonds already possessed are affected as the yield of new bonds. Moreover,

the change of interest also has an impact on the liabilities side of an insurer, since the value of

(future) cash flows is directly influenced by a change in discount rates. As interest rates go up,

discount rates rise as well. A higher discount rate results in a loss of value of future premiums.

Typically, the potential effect interest change has on future liabilities is bigger than the asset

value fluctuations. Insurers are typically exposed to a significant interest (market) risk and

therefore highly interested in the consequences of the value of their assets and liabilities when
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interest rates change.

1.1 Challenges when valuing an insurer’s assets and liabilities

In the previous section we have introduced the basic concept of insuring and showed the rele-

vance of accurate valuations for an insurer. This section will elaborate on this argument when

introducing some of the challenges an insurer would encounter when valuing their asset cash

flows and liabilities (A&L).

The need of an accurate valuation is apparent, however the subject of how to obtain this

accurate valuation has not been touched upon. As already mentioned, interest rate development

is crucial for an accurate valuation of the A&L. Predicting how the interest rate will develop

without any major uncertainty is a tricky and difficult job. The amount of underlying parameters

influencing the interest rate is gigantic, so forecasting an accurate estimation is not feasible.

Also for the optionality in some common (profit-sharing) products, a deterministic model using

only one forecasted curve is not sufficient. Since an insurer’s value of the A&L is significantly

influenced by the interest rate curve, a wrongly predicted curve could have major consequences.

To overcome this problem, insurers would typically predict multiple possible interest rate

developments. These predictions are translated into scenarios, which are sample paths of interest

rate developments of a specified stochastic process. Typically, thousands of scenarios are used,

from which the SCR for each path could be determined. These scenarios, also called Real-World

(RW) scenarios, show potential interest rate curve developments projected in a multi-year time

frame. To calculate the SCR, a pre-determined percentile of sample paths is selected, resulting

in the most negative outcomes for the insurer.

In addition to the Real-World scenarios used to project the interest rate curve in the future,

another stochastic set is used to estimate the real value of the asset or liability. This set consists

of Risk-Neutral (RN) scenarios and is in general market-consistent and risk-free. Typically, a RN

scenario set would contain thousands of those interest rate scenarios. Insurance products with

guarantees, like profit-sharing products, are very difficult to value closed-form due to their non-

linear behaviour. Valuing profit-sharing products with only one deterministic curve could lead

to inaccurate valuations, with disastrous consequences (O’Brien, 2006). There is a substantial

amount of profit-sharing products in insurer’s portfolios; in the U.K. only, the value of the assets

backing up these products is estimated at more than £400 bn. (Harrison, 2007). Using a whole

set of interest rate scenarios enables us to accurately value a complex product with embedded

optionality, at a certain moment in time.

It is very important to understand the different ways RW- and RN scenarios are used in

projecting the correct value of A&L in the future. Although the combination of RW and RN

scenarios will probably result in a very accurate value of the A&L, it requires a lot of compu-

tational power. This is also known as the full stochastic approach. If one would use this full

stochastic approach, only for t=1 one would have 5000 RW-world scenarios and for all these

scenarios 5000 RN scenarios should be used to validate the product in each of the 5000 scenar-

ios. A typical balance sheet calculation is not very simple, let alone this number of calculations
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revolving around it. One might imagine that this approach projected over a number of years

and for multiple products, is not feasible.

Recently, more and more attention is drawn towards reliable multi-year projections. Horig

(2013) gives two general reasons for this increase of interest. First of all, accurate forecasts

gives management an idea of (financial) consequences of strategic choices made. Insurers are

especially interested how capital requirements and capital coverages develop in specified cases.

Having insight in these future states can influence certain (financial) decisions, like portfolio

management and risk appetite. Secondly, from a regulatory point of view it is obliged to calcu-

late the development of the solvabilitity through time. The previous argument is settled within

regulations, in a more abstract way under the so-called “Own Risk and Solvency Assessment”

(ORSA). In the Solvency II directive Article 45-2 (European Parlament, 2009), ORSA is de-

scribed as:

“. . . The Own-Risk and Solvency Assessment shall be an integral part of the business strategy

and shall be taken into account on an ongoing basis in the strategic decisions of the undertaking.”

Hence, the main reason for executing an ORSA, is to get an idea of the implications of a certain

strategic choice and potential economic stress scenarios. A technical interpretation of this state-

ment is given by the European Insurance and Occupational Pensions Authority (EIOPA). In

their final consultation report “on the Proposal for Guidelines on Forward Looking Assessment

of Own Risks (based on the ORSA principles)”(Eiopa (2013), in 5.43) they denote that:

“The undertaking needs to project its capital needs at least over its business planning period,

taking into account medium and long term risk, as appropriate. This projection is to be made

taking into consideration any likely changes to the risk profile and business strategy over the

projection period and the sensitivity of the assumptions used.”

Hence, EIOPA agrees that there should be a mechanism which gives an indication of the con-

sequences of certain decisions. They continue in point 5.44, arguing that if an insurer would

generate a new business plan, their solvency should be tested using a range of possible sce-

narios in order to provide a proper basis for decision-making. Although an exact time-frame

is not given, three to five years is often regarded as appropriate. In practice however, simple

deterministic forecasts for economical capital are used by insurance companies at the moment.

In this thesis an Accelerated Convergence Technique (ACM) in the form of Least Squares

Monte Carlo, will be used to circumvent the usage of full real-world scenarios on risk-neutral

scenarios. Moreover, the use of such an accelerated convergence technique is also supported by

an analytical framework and intuitively explained. A sample product is constructed to illustrate

the techniques, for a one year forecast horizon. In the end, the horizon is enlarged to a multi-year

setting.
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1.2 Objective

The objective of this thesis is:

To implement the Least Squares Monte Carlo approach to predict the value of the

assets and liabilities cash flows of an insurer’s profit sharing sample product, more

accurately than existing approaches, concerning interest rate risk for multiple years.

In this objective we define the word “accurately” rather broadly: possible biases flowing out

of imposed restrictive assumptions could lead to inaccurate forecasts. Hence, bypassing these

restrictions is, in our opinion, also a way of making your predictions more accurate. In order

to achieve this objective, a number of underlying questions should be answered. The research

questions are:

1. What is a suitable performance measure and benchmark to asses the outcome of the LSMC

technique?

2. How can we incorporate real-world scenarios and risk-neutral scenarios for the calculation

of the profit sharing interest rate SCR accurately?

3. How does the ACM perform compared to the benchmark?

4. How can we extend the predictions into a multi-year framework?

1.3 Outline of this report

In this section a short overview of the research structure and outline of the report will be given.

Our research consists of two phases; a simulation phase and a fitting phase. In the simulation

phase we define appropriate interest rate risk-drivers using market data, set up a product with

non-linear cash-flows and show two different ways of valuing this product. This phase leads to

certain values of the product NAV , given a set of risk-drivers. The next phase is the fitting

phase. Upon the resulting valuations, a fit will be constructed for both approaches. Eventually,

we will end up with a fitted NAV, from which a SCR can be derived. This structure of the

report is depicted in Figure 1.1.

Based on this structure, the outline of the report is as follows. In the preceding chapter

a short introduction of the problem is given together with the objective of this thesis and the

relevance of the subject. In Chapter 2 we will introduce the methodology for respectively the

cash-flow calculations (Section 2.1 ), the real-world interest rate scenario generation (Section 2.2

), the risk-neutral interest rate scenario generation (Section 2.3 ). In Section 2.4 the models are

combined into a full nested approach to value the product. The LSMC approach is discussed

in Section 2.5, a non-parametric fitting scheme is presented in Section 2.6 and we finish the

chapter with a multi-year extension (Section 2.7 ). We will continue in Chapter 3 to give a

brief introduction on the data used. Given the LSMC and the full nested approaches, results
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Simulation

• Defining product’s
cashflows, includ-
ing optionality/non-
linearity (Section 2.1
)

• Creating risk-drivers
(Section 2.2 )

• Valueing product using
two approaches:

– FN approach
(Section 2.4 )

– LSMC approach
(Section 2.5 )

• Multi-year extension
(Section 2.7 )

Fitting
Non-parametric fitting
of NAV in regards to

corresponding risk-drivers.

• One dimension
(Section 2.6 )

• Multi-dimension
(Section 2.6.1 )

Value of
product:
NAV

Input:
- Market data
- Set-up prod-
uct (Ch. 3 )

Output:
Fitted
NAV
(→ SCR)

Figure 1.1: The general structure of this report, with corresponding sectioning.

are presented in Chapter 4. For this chapter, the same structure as used in Chapter 2 is kept

to present the results. The report finalizes with concluding remarks denoted in Chapter 5 and

a global discussion of the results presented in Chapter 6.



Chapter 2

Methodology

In this chapter the models used for the analysis, are discussed. In Section 2.1, the general

cash flow calculations involved in an insurance company are stated. We try to answer the

question “How are insurance companies affected by a change in the yield curve?”. In the

following section, we propose a method to generate real-world interest rate scenarios, based on

the Diebold-Li model (Diebold & Li, 2006). The introduction of a model that is able to simulate

risk-neutral valuation interest rate scenarios, is stated in Section 2.3. This is done using a

Hull-White one-factor model (Hull & White, 1990). By using these models, in combination

with the earlier mentioned insurance product calculations, we are able to value a profit-sharing

insurance product. A profit-sharing product allows policy holders to partly benefit from the

surplus an insurer makes on this policies. Using the Full-Nested approach, explained in Section

2.4, the value is calculated. However, since this method is not feasible in practice, an alternative

Accelerated Convergence Method (ACM) is discussed, in the form of the Least Squares Monte

Carlo (LSMC) approach. The LSMC approach is discussed in detail in Section 2.5, including the

corresponding (non-parametric) fitting details stated in Section 2.6. We conclude this chapter

with a proposed multi-year extension.

2.1 General Assets and Liabilities calculations

In this section, a general idea of the balance sheet calculations of an insurance company are briefly

explained. We base our balance sheet on a profit-sharing product and assume a straightforward

asset portfolio. The methodology in this section remains simple, to keep our focus on the LSMC

curve fitting and forecasting. Extensions could be implemented in the future.

An insurer’s assets, At, is defined as all the possessions an insurance company has at time

t. Typically an insurer would have a mix of different types of government and corporate bonds,

equity and cash. The incoming premiums are collected and converted into investments in one

of those categories. Since the majority of an insurer portfolio contains government bonds, and

in order to keep the model simple, we assume that the insurer is all-in on government bonds.

On the other side of the balance sheet the liabilities are situated, denoted by Lt. For a life

insurer, typically these would primarily consist of liquidized claims, in case of death, lapse of a

11



12 CHAPTER 2. METHODOLOGY

policyholder or at a specified maturity. The available capital, or own funds, can be seen as a

buffer in times of difficult circumstances. This term is denoted as ACt (or Vt), and is defined as:

ACt = At − Lt. (2.1)

Recently, A&L problems have been subjected to a lot of attention throughout insurer’s land-

scape. The new European regulatory framework for insurers, Solvency II, has been developed

since 2002 and recently the first real implementation steps are taken. Under these new regula-

tions, insurers are obliged to calculate their SCR given their portfolio. Insurers can choose to

use a standard, rather conservative, formula developed by EIOPA, or develop their own method

to do these calculations. When choosing for the lather option, extensive validation and docu-

mentation is required, in order to get regulatory approval. For a more extensive description of

Solvency II, please consider Appendix A.

Under Solvency II, from a regulatory perspective, an insurer should be able to withstand

scenarios occurring once every 200 years. The corresponding probability is based on the predicted

value of the insurer in one year NAV 1, and can be formulated as:

P (NAV 1 ≥ 0|NAV 0 = SCR) ≥ 99.5%, (2.2)

in which SCR denotes the minimum value of NAV 0 for which this constraint is satisfied. There-

fore, one needs to calculate the AC at t = 1; the exact relation between the introduced terms

will we explained later.

An important variable, closely alleviated with the interest rate, is the discount curve (or

zero-coupon curve). The discount curve has an impact on both the assets and liabilities of an

insurance company. When forecasting the value of future liabilities, the time-value of money

can have a serious impact on an insurer’s obligations.

In this paper a profit-sharing product is selected. A profit sharing product is a popular

life insurance product, where clients are also profiting from the return the company makes on

its assets. A guaranteed rate is issued, allowing policyholders to save capital. Whenever the

Forward Rate exceeds this guaranteed rate, the policy holder partly benefits from this surplus.

If the return is below the certain guaranteed level, rG(t), the guaranteed rate is issued. The

simplified pricing of this profit sharing product and determination of the guaranteed rate is done

by comparing a one years Forward Rate, denoted by f(t, 1) with the guaranteed rate. The one

years forward rate is defined by:

f(t, t+ 1) =
d(t)

d(t+ 1)
− 1, (2.3)

in which d(t) denotes the discount factor for a certain time t.

As already explained, clients will receive either rG(t) or a rate where they profit from a

return greater that the guaranteed rate. This relation can be written as:
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rAPS(t) =

rG(t) +G · (f(t, t+ 1)(t)− rG(t)), for f(t, t+ 1) ≥ rG(t)

rG(t), else
(2.4)

in which G denotes the fraction of the return above the guaranteed rate that will be shared

and the rAPS(t) the resulting rate after profit sharing.

Now that we know the surplus of the profit sharing policy, lets define the cash-flows concerned

with it. The accounting reserve, denoted by CFACR(t), values the capital that is reserved in the

future. This accounting reserve is defined as:

CFACR(t) = CFACR(t− 1) · (1−RL −RM ) · (1 + rAPS(t)), (2.5)

in which the variable RL denotes the lapse rate. Lapse risks are the obligations that flow

out of a percentage of the clients choosing to stop the policy (the outflow). Furthermore, the

variable RM denotes the mortality rate; capital that is reserved for policyholder that pass away.

For most life insurance policies, a certain amount of money is paid out whenever the client dies

or after a certain maturity. Again, we only model interest rate risk and assume RL and RM

fixed rates. We assume CFACR(0) is known and equals a positive number. Furthermore both

RL and RM are assumed to be fixed annual percentiles of the total clientèle.

In order to estimate the outgoing cash flows every year, the variable CFL(t) is introduced.

It is defined as:

CFL(t) = CFACR(t− 1) · (RL +RM ). (2.6)

The final estimate of your liabilities (also known as Best Estimate Liabilities) can be regarded

as the sum of all the CFL(t), adjusted for the time value of money with a time varying discount

rate, in other words:

L(T = 0) =
τ∑
t=1

d(t) · CFL(t). (2.7)

The corresponding duration is defined as:

DL(T = 0) =

τ∑
t=1

d(t) · CFL(t) · t. (2.8)

On the assets side, we assume that the portfolio only contains government bonds. In this way

we are able to isolate behaviour of future cash flows adequately. The government bonds are

assumed to have a maturity τ , a certain issued coupon CGB(t) and a notional NGB. A typical

resulting cash flow of such a bond can be observed in Figure 2.1.

The mathematical interpretation is denoted in Equation 2.9. When t is smaller than the

maturity of the bond τ , it would yield the coupon. On its maturity it yields its notional.
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t = 1 t = 2 t = 3 t = ... t = tau

20

40

60

Figure 2.1: Cash flows of a normal government bonds until maturity. The bonds yields an
annual coupon to the bondholder, until it has reached its maturity on t = τ , on which moment
the notional is given out.

CFGB(t) =


NGB · CGB(t), if 0 < t < τ

NGB · (1 + CGB(t)), if t = τ

0, else.

(2.9)

Again, to quantify the magnitude of the assets the cash flows are discounted,like:

A(T = 0) =
τ∑
t=1

d(t) · CFGB(t). (2.10)

Consequently the duration rolls out:

DA(T = 0) =
τ∑
t=1

d(t) · CFGB(t) · t. (2.11)

So far, all calculations lead to the current value of our assets and liabilities at T = 0. However,

since we want to predict the behaviour of those values in the future, we’ll have to cope with

T = 1. This implies that some of our variables are calculated slightly different.

First of all, the new premiums, NP , are defined as NP (T = 1) = L(T = 0) · g(T = 1). In

this equation the growth of the product is assumed to be a known parameter. Knowing the NP ,

you can easily obtain:

INGB(T ) = NP (T )− CFL(1|T − 1) + CFGB(1|T − 1), (2.12)

where INGB(T ) denotes the new inflow into the portfolio. Equation 2.12 is essential, since

it links the asset side of the portfolio with the liabilities side of the portfolio. The forecasted

interest curve, denoted by r(t), can be determined using the discount rate at a certain t:
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r(t) =

(
1

d(t)

)1/t

− 1. (2.13)

In Section 2.2 adjustments on the interest rates are implemented into these interest rates.

Obviously, the new inflow of premiums have an effect on the magnitude of previous calculated

variables. The accounted capital reserve and the guaranteed rate are adjusted as:

CFACR(t = 1|T ) = NP (T ) · (1−RL −RM ) · (1 + rG(T )), (2.14)

rG(T ) = rG(T − 1) · CFACR(1|T − 1) +
r(DL) · CFACR(1|T )

CFACR(1|T − 1) + CFACR(1|T )
. (2.15)

It can be observed that the values of rG(T ) and CFACR(t = 1|T ) should be obtained itera-

tively. Interpretatively, adjustments on the guaranteed rate are made, based on new premiums

on the expected movement on the interest rate. Also the cash flows on the liabilities side are

influenced by the new premiums:

CFL(t|T ) =


CFL(t+ 1|T − 1) +NP (T ) · (RL +RM ), if t = 1

CFL(t+ 1|T − 1) + CFACR(t− 1|T ) · (RL +RM ), if t > 1

0, else.

(2.16)

Moreover, we can calculate that:

CFGB(t|T ) =


NI(T ) · r(T ) + CFGB(t+ 1|T − 1)(RL +RM ), if t < τ

NI(T ) · (1 + r(T )), if t = τ

0, else.

(2.17)

From there on, the L(T ) and A(T ) can be calculated similarly using respectively Equa-

tions 2.7 and Equation 2.10. This summarizes the product’s cash flows calculations for one

year. The chosen product only serves as a example to measure the performance of the different

approaches. One might imagine that in reality both the asset- and liabilities side of an insurer

are much more complex and a great variety of products exist.

2.2 Real-world interest rate scenarios

In this section, the approach used to generate real-world interest rate scenarios is discussed.

The calibration of the model is discussed, and how the model is used for sampling y simulating

selected risk-drivers.
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2.2.1 The model

To generate the forecasts for the interest rates, we simulate different yield curves based on

historical observations. To keep the model agile, the Diebold-Li model (Diebold & Li, 2006)

is used. In order to use the Diebold-Li model, first the Nelson-Siegel model (Nelson & Siegel,

1987) should be considered, which equals:

y = β0 + (β1 + β2)
τ

m
(1− e

−m
τ )− β2e

−m
τ . (2.18)

This model was the start point for Diebold & Li (2006). They have rewritten the above

expression into a model, which is able capture the dynamics of the yield curves. This model,

also known as the Dynamic Nelson Siegel model is suitable when one is interested in forecasting

yield curves (Christensen et al., 2011). The model is defined as:

yt,t+τ = β1t + β2t

(
1− e−λτ

λτ

)
+ β3t

(
1− e−λτ

λτ
− e−λτ

)
, (2.19)

in which τ denotes the maturity of the bond, λ a given constant and {β1,t, β2,t, β3,t} factors

through the different maturities. These factors have also an interpretation: β1t denotes the long

term level of the yield curve, β2t denotes the corresponding slope and β3t the curvature of the

yield curve. A visual representation of these factors can be found in Figure 2.2. The magnitude

of λ is fixed and Diebold et al. (2006) have shown that λ = 0.0609 in their selected time frame,

for monthly observations. We apply this value in our calculations, neglecting the fact that it

might be incorrect given our different range.

Figure 2.2: The effect of changes in the different Diebold-Li factors on a yield curve. The level
factor is denoted by β1, the slope factor by β2 and the curvature factor by β3. Obtained from
Wu (2003).

2.2.2 Forecasts

Furthermore, Diebold & Li (2006) extend the model towards a forecasting methods, by implying

that the corresponding estimators have predictive parameters. They propose both an autoregres-

sive model (AR) and vector-autoregressive (VAR) process to obtain forecasts. We consider the

risk factors simultaneously and select scenarios in which the SCR crosses an certain threshold,
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thus realistic combinations of the factors should be generated. Furthermore, given the chaotic

economic circumstances of the last decade, we cannot ignore possible recent cross-correlation

between the different factors. In addition, the VAR model imposes more flexibility than the

AR model. We therefore use a VAR model in which {β̂1,t, β̂2,t, β̂3,t} follow an VAR(1) process,

defined as:

β̂n,t+h|t = µ̂n + Γ̂nβ̂n,t, (2.20)

where n = {1, 2, 3}, h denotes the forecast horizon, µ̂n are model constants and Γ̂ is a vector

which contains estimators for the (cross) correlations. For the estimation of the parameters

two-step OLS will be used. The significance of the estimated model parameters will be tested.

Once we have estimated our model, we will be able to generate m different real-world interest

rate scenarios, by drawing from a normal distribution of the error term ν̂n,t, which can be added

to the estimated Equation 2.20. Since we can easily determine the discount curves from zero-

coupon bond prices, the interest rate from Equation 2.13 is affected by a different yield curve.

In order to create a yield curve based on the maturities at a certain date, some simple handlings

are performed. Between the maturities, a basic spline interpolation is used, to form a continuous

curve. We assume that interest rates exceeding the last known maturity, equal the last observed

interest rate (in our case observations with a maturity of 30 years). Hence, a flat extrapolation

of the yield curve is performed, a general accepted way to extrapolate the curve. This whole

process will ultimately lead to a changes in the value of the assets and liabilities of the insurance

company.

2.3 Risk-neutral interest rate scenarios

Numerous authors have claimed that, due to the complexity of the profit sharing product, a

closed form valuation of a profit sharing portfolio is not feasible (f.i. Bauer, Bergmann, & Kiesel

(2010) or Corsaro et al. (2008)). Therefore, a numerical approach based on a large number of

(interest) scenarios is a general accepted way to value these products. This section focuses on

sampling scheme of risk-neutral scenarios. A model to generate these scenarios is proposed,

based on the paper of Hull & White (1990). The relation between the real-world scenarios and

the risk-neutral scenarios is discussed in Section 2.4.

2.3.1 The model

In order to generate risk-neutral scenarios, also known as “inner” scenarios in a SCR calculation,

a Hull White 1-factor model is used. The Hull-White 1-factor model (Hull & White, 1990) is

regarded as an extension to the Vasicek model (Vasicek, 1977), introducing an approach to

incorporate the initial term structure as well. The model assumes no-arbitrage (as will be used

in Section 2.4 ) and models the instantaneous short rate r(t), which equals the f(t, t). The

behaviour of this short rate can be captured as a Stochastic Differential Equation(SDE):
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dr(t) = (θ(t) + αr(t))dt+ σdWQ(t), (2.21)

where θ(t) denotes a deterministic function of the time to fit the initial term structure,

dWQ(t) a Brownian motion in a Q-measure (see Section 2.4 ), α a constant denoting the mean-

reverting speed and σ a instantaneous volatility constant. Not making α and σ time-dependent,

prevents over-parametrization and instability of the parameters Carverhill (1995) and this ad-

justment will be adopted in our process as well.

The general relationship between bond prices and forward rates is defined by:

fM (0, T ) = − δ

δT
logPM (0, T ), (2.22)

in which PM (0, T ) denotes the market discount factor for a maturity T and fM (0, T ) the

market instantaneous forward rate at t=0. The SDE of Equation 2.21 can, under some technical

conditions, be integrated into:

r(t) = r(0)e−αt +

∫ t

0
θ(u)e−α(t−u)du+

∫ u

0
e−α(t−u)dW (u). (2.23)

Hull & White (1990) show that this process matches the initial term structure if we define

θ(t) as:

θ(t) =
δf(0, t)

δt
+ αf(0, t) +

σ2

2α
(1− e−2at). (2.24)

A rather more intuitive notation of the process can be seen in the book of Pelsser (2000),

where he rewrites the process into:

r(t) = y(t) + ϕ(t), (2.25)

in which:

ϕ(t) = f(0, t) +
σ2

2α
(1− e−αt)2, (2.26)

and

dy = −αydt+ σdWQ, (2.27)

where y(0) = 0.

It can be shown that the short term model is normally distributed with:

r(t) ∼ N
([
f(u, t) +

σ2

2α2
(1− e−α(t−u))2

]
,
[σ2
2α

(1− e−2α(t−u))
])
. (2.28)

The assumption that the Brownian motion is normally distributed (explained in Section 2.4

), implies that negative interest rates can be sampled, given that the probability that a negative

short rate is sampled equals:
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Pr(r(t) < 0) = Pr
(√

V ar(r(t)) · Z + E[r(t)] ≤ 0
)

= Φ

− ϕ(t)√
σ2

2α(1− e−2−αt)

 .
(2.29)

This probability is larger than zero, hence negative rates do occur. This is generally regarded

as one of the main drawbacks of the one factor model.

Under the so-called “affine assumptions” we are able to construct the bond prices in the

HW-model, again using Pelsser (2000):

P (t, T ) = A(t, T ) · e−B(t,T )·r(t), (2.30)

where

A(t, T ) =
P ∗(0, T )

P ∗(0, t)
exp(B(t, T ) · f∗(0, t))− σ2

4α
(1− e−2αtB2(t, T )), (2.31)

and

B(t, T ) =
1− e−α(T−t)

α
. (2.32)

This is a popular representation of the process, widely used within risk-neutral scenario

generation.

2.3.2 The simulation

Now that we have got a model, sampling is possible. One of the interesting outcomes for our

purposes are priced zero-coupon bonds, given that discount rates can be derived from there on.

The simulation follows a number of steps, denoted in this section. These steps are based on the

original Hull-White paper (Hull & White, 1990) and Pelsser (2000).

The parameters σ and α are linked to market data of either swaptions, caps or floors and can

be calibrated using these instruments. A detailed calibration process can be read in Appendix

C. We, however, fix the mean reversing constant and implied volatility parameter, which will be

explained in Section 2.3.3.

In the previous section, we have explained the continuous Hull-White model. However,

for our simulation purposes, discretization of the model is required, so Equation 2.21 can be

rewritten into:

δr = (θ(t)− ar(t))δt+ σZ
√
δt, (2.33)

in which r(t) is the short rate, Z is a random variable from the standard normal distribution

δt is a small time step and θ(t) is defined in Equation 2.24.

The initial zero-curve can be expressed in the initial forward curve using:
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f(0, t) = R+ t
dR

dt

≈ lim
δt→0

R(t+ δt) + t
R(t+ δt−R(t))

δt
,

(2.34)

in which R(t) denotes the initial zero curve. Hence, from there on, Equation 2.24 can be

rewritten into:

θ(t)δt = F (0, t+ δt)− F (0, t) + aF (0, t)δt+
σ2

2α
(1− e−2αt)δt. (2.35)

This means that the short rate can be modelled as:

r((n+ 1)δt) = r(nδt) + θ(nδt)δt− ar(nδ)δt+ σZn+1

√
δt, (2.36)

with r(0) = R(0) and n the time step in the future. The short rate can be constructed using

small time-steps δt, thus the discrete model is defined.

Now using Equation 2.33 - 2.36, we are able to obtain the deliverable P (t, T ). Obviously, to

change this value into the simulated interest rate, one should calculate:

R(t, T ) =
− lnP (t, T )

T
. (2.37)

2.3.3 Estimation of the model

Before the simulation phase begins, the model should be estimated using market data. However,

two important parameters have not been determined yet; the mean-reversion constant α and

the implied volatility σ. A choice should be made whether the parameters should be calibrated

or fixed.

There are several options to determine the values of the constants when one would choose

a calibration of the risk-neutral scenario set. We could either use (Euro) caps, swaptions or

floors. In the book of Brigo & Mercurio (2006), a simple model is showed calibrated Euro

caps data. This model turns out to be mean-diverging (due to a second mean-reverting factor

incorporated in cap prices), hence not a realistic outcome. A very clear paper regarding the

different calibration methods of a Hull-White one factor model is written by Gurrieri et al.

(2009). In the end, the use of payer swaptions for calibration are preferred.

On the other hand, the created model should stay feasible. A shortcoming of the above

methods is the computational power required. Using a correct calibration of the model’s mean-

reversion and volatility of the Full Nested approach (based on payer swaptions for example),

implies also using it for the Least Squares Monte Carlo model. While keeping the calibration

approaches similar, direct comparison between the methods are allowed. The amount of outer

scenarios for the LSMC approach however, is usually a multitude compared to FN approach.

This implies that calibration should be performed for every outer scenario. This is a costly

exercise computational wise. Furthermore, a correct calibration of the risk-neutral set is a
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rather complex exercise. There are methods to simply fix the parameters for every real-world

scenario, and although these methods are not always recommended, this approach is used in

our model. The values of α and σ are determined, using the paper of Gurrieri et al. (2009).

Although no explicit advise is given, some values are mentioned. The fixation of the parameters

can be considered as a shortcoming of the model, which is further discussed in Chapter 6. A

calibration scheme based on payer swaptions, is suggested in Appendix C.

2.3.4 Validation of the scenario sets

In the previous sections we have described how to form a risk-neutral scenario set for a given

real-world scenario. In our model, we have chosen to fix the values of α and σ. However,

we have not touched the validation of the outcome. In this section we will test an important

assumption of the scenario set, namely the lack of arbitrage in the model (which is necessary

for the proposed method of Section 2.4 ). This assumption will be tested using Martingale’s

Theorem. An application of Martingale’s theorem (Also known as the ”1=1” rule), basically

tests whether the average discounted present values of the cash flows are equal to its current

value. (Wyatt, 2007). A Doob martingale is a stochastic process M(t), which satisfies the

following “fair-game” assumption, (assuming some technical assumptions are satisfied):

E[M(t+ s)|Ft] = M(t), (2.38)

in which Ft is a σ-algebra, discussed in Section 2.4. In an economical framework, the above

assumption implies the absence of arbitrage in the scenario set. In the case of our risk-neutral

scenario set, Martingale’s Theorem states, given the last item in the above list:

EQ [M(t)] = 0, (2.39)

in the case that:

E[M(0)] = 0. (2.40)

So at t = 0 the discount factor is by construction zero, implying that the expected value

of the discount curve over other maturities is zero as well. In order to handle the increasing

volatility in time of the scenarios, a time-dependent confidence level is proposed, based on

(ActuarialModeling, 2013). The confidence bands can be defined as:

CI(t) = ± tn−1,1−α/2 ·
SD(M(t))√

n
, (2.41)

where tn−1,1−α/2 denotes a quantile of a Student-distribution, α is the confidence level,

SD(M(t)) Standard Deviation of the scenario set and n the number of observations.
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2.4 Full Nested approach

Now that we have both real-world scenarios and risk-neutral scenarios, we could combine these

scenarios into a forecast, computing the required available capital in one year (SCR). In this

section, the so-called “Full Nested” approach (FN) is discussed, combining these introduced

scenario sets.

In Section 2.2 a general approach is discussed to simulate real-world interest rate scenarios,

using a Diebold-Li model. These simulations are sometimes called “outer scenarios”. Further-

more, in Section 2.3 we have imposed a method for generating risk-neutral valuation scenarios.

These simulations are sometimes called “inner scenarios”. We will now show why the combina-

tion of outer- and inner scenarios will generate reliable estimates of the capital required given a

set of risk-drivers.

Let us assume a complete filtered probability set, denoted by (Ω,F ,P,F = (Ft)t∈[0,T ]), in

which T denotes the maturity of the liabilities and Ω represents the space with all possible states

of the financial market. The Ft denotes a σ-algebra; a filtered probability space consisting of

the history of the market up until time t. The P denotes an objective market-measure, reflecting

the real-world uncertainty of the market. Some technical conditions are satisfied in F.

Moreover, let us assume a collection of asset price state processes (Yt)t∈[0,T ], a numéraire

N(t) and a risk-neutral probability measure QN , which is “equivalent” to the P-measure. Given

the model is arbitrage-free, the risk-neutral pricing formula states that:

V (t)

N(t)
= EQN

t

[
V (T )

N(T )

∣∣∣∣Ft

]
, (2.42)

in which V (t) denotes the value of a certain defined asset and t < T and V (t)
N(t) a martingale

under QN .

In our case, the numéraire is defined as the money market account B(t) given by B(t) =

e
∫ t
0 r(u)du. This implies that Equation 2.42 can be rewritten into:

V (t) = EQB
[
B(t)

B(T )
V (T )

∣∣∣∣Ft

]
= EQB

[
e−

∫ T
t r(u)duV (T )

∣∣∣Ft

]
,

(2.43)

in which QB is the equivalent martingale measure. Note that the numéraire B(t) is equal to

the discount rate at time t. Equation 2.43 is an important formula, since it states a relationship

between value of a product at a given time and the (discounted) the cash-flows in the future.

From Equation 2.43, we are able to introduce the Full Nested (FN) method. We start by

simulating an outer scenario with discounting factors for different maturities. This will lead to

a forecasted curve and a state at T = 1. A prediction of how the interest rate will move in the

coming years is a result. In order to value our profit sharing product at that instance, we’ll have

to generate interest rate scenarios for a large amount of years in the future, until T = T ∗. For
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every interest rate scenario, the calculation discussed in Section 2.1 is performed. This is done

for a large number of outer scenarios. In this way, for every outer scenario, a corresponding

value or ACt is calculated.

Using Equation 2.43 on our model, this implies that the net asset value at time 1, NAV 1,

can be written as:

NAV i
1 = EQ

[
T=T ∗∑
T=2

ACT · d(T )

∣∣∣∣Xi

]
, (2.44)

in which d(t) denotes a discount scenario based on the interest rate and Xi a (interest) state

vector with certain risk-drivers, (in our case the Diebold-Li factors) under the i-th interest rate.

Since we have simulated our risk-drivers based on historical data, we know that Xi = ft(Ys∈[0,t]).

A similar line of thought can be found in Bauer, Bergmann, & Reuss (2010).

Given our complex relation between the development of the market and both the assets and

liabilities of the insurer, an analytical solution of Equation 2.44 is not feasible. However, an

application of Girvanov’s (Girsanov, 1960) theorem is used to come to a solution.

Suppose that a process Xt is given by:

dXt = µ(t,Xt)dt+ σ(t,Xt)dW
P
t , (2.45)

and that we have constructed a Brownian motion under Q:

dWQ
t = λtdt+ dW P

t , (2.46)

than, using Girsanov’s theorem, under some technical conditions, we are allowed to change

the measure in Equation 2.45 (changing the drift) into:

dXt = (µ(t,Xt)− σ(t,Xt)λt)dt+ σ(t,Xt)dW
Q
t . (2.47)

This implies that, if we generate M risk-neutral scenarios, using ∆dWQ
t ∼ N(0,∆t), we are

allowed to calculate the Xi
T :

EQ[f(Xt)] ≈
1

M

M∑
i=1

f(Xi
t). (2.48)

Given that we use M inner scenarios and using the similarities of Equation 2.47 and the

Hull-White model defined in Equation 2.21, we can use the above expressions to rewrite 2.44

into:

ˆNAV
i
1(M) =

1

M i

M∑
j=1

T=T ∗∑
T=2

[
ACT · d(T )(i,j)

]
− ˆNAV 0. (2.49)

In this equation d(T )(i,m) denotes the discount rate at time T in sample path j given the

risk-drivers i. The ˆNAV 0 denotes the value of the product at T = 0. When forecasting, a risk-
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Figure 2.3: A schematic overview of the relationship between outer- and inner scenarios in the
Full-Nested (FN) approach. On each forecasted real-world scenario for T = 1 (“outer scenario”),
with underlying simulated risk-factors, a tree of risk-neutral scenarios (“inner scenario”) is im-
plemented until T ∗ to value its effect.

neutral tree is used to value the product at the moment, resulting in a constant value throughout

the real-world scenarios. The corresponding sample standard deviation σ̂i1(M) is defined as:

σ̂i1(M) =

√√√√√ 1

M i − 1

M∑
j=1

(
T=T ∗∑
T=2

[
ACT · d(T )(i,j)

]
− ˆNAV

i
1(M)

)2

. (2.50)

In Figure 2.3 the Full Nested approach (FN approach) is illustrated. In this figure, T ∗ denotes

a time in the future (typically 30 years) for which risk-neutral interest scenarios are generated.

Furthermore, for illustrative purposes, only three outer scenarios are depicted in this figure.

However, when the analysis is really performed, typically more than 5000 RW scenarios (and

5000 RN scenarios) are required to obtain robust estimates. The nesting of the inner scenarios

in every outer scenario, is why this approach is referred to as “Full” Nested.

Our definition of ”FN approach” deserves a short further explanation. Due to the small

uncertainty that remains in the valuations (explained later) and due to the continuous nature

of many risk-drivers, a truly “full nested” valuation is not feasible here. However, if we make

sure that the amount of valuations is large (more than 5000), the resulting uncertainty between

data in fits will be neglect-able. Hence, we will regard the resulting fit as the ”FN approach”.

The results of this approach can be regarded as being exact (Vedani & Fabien, 2013). How-

ever, in practice this approach turns out to be non-feasible. The computational power requested

for this set-up, a full real-world scenario set on a full risk-neutral scenario set, for an insurance

portfolio is very high. This means that the time needed to calculate the risk under certain cir-

cumstances, is too high. Zhao (Zhao, 2013) estimated the time needed for the calculation in the

case of 1000 outer scenarios on 1000 inner scenarios and 1000 liability points. Using 100 modern

CPU’s, this calculation would take 58 days. This implies that consequences of the managerial

decisions for these insurance products, are difficult to measure.
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2.5 Least Squares Monte Carlo approach

When considering the previous section, the urgency for an alternative approach is clear. There

exist several accelerated convergence techniques in this context, such as curve fitting and repli-

cating portfolios. However, in this thesis we focus on the use of a popular approach, called the

Least Squares Monte Carlo (LSMC). We will start by explaining the intuition of this approach

in this section, followed by the curve fitting methodology.

2.5.1 The model

The idea of Least Squares Monte Carlo originates from Longstaff & Schwartz (2001). In their

paper ”Valuing American Options by Simulation: A Simple Least-Squares Approach”, they

introduce a new way to value options of the American kind. The investigated American options

are callable; they can be surrendered at any time by the owner of the option. Since the value

of these options do have a accepted closed-form solution introduced by Black & Scholes (1973),

the accuracy of the method can be investigated.

In the paper of Longstaff & Schwartz (2001) they try to minimize the uncertainty of the

prediction of the value of the option, by implying a structured regression across different risk-

neutral paths. They start from the ultimate maturity of the option and work backwards in time

steps. At every step the immediate value of the exercised option is compared with the expected

cash flow of the option when continuing. In the case the immediate value is higher than the

expected value, the option is called. The ultimate deliverable is an optimal time to call the

option.

The general idea of LSMC is as follows. Although the name of the approach is adopted from

Longstaff & Schwartz (2001), the way the approach is implemented in an insurance environment,

is slightly different. Instead of using a large number of inner scenarios for every outer scenario

(the FN approach), we now use only one inner scenario for every outer scenario. Although this

method will result in inaccurate valuations when taking observations separately, a whole set of

these valuations can reveal a certain pattern. When all valuations are collected, we are able to

fit a curve through these valuations. The idea is that this fit results in an comparable valuation

for the selected risk-drivers (in our case fluctuation of the interest rate). From this fit, a certain

lower boundary can be selected to identify the 1-in-200 year scenario.

Another popular ACM available for valuing complex products, is the “replicating portfolio”

technique. This approach is somewhat more practical; one would try to replicate the cash-flows

of the complex product, using instruments which have known closed-form valuations. When suit-

able instruments are found that walk parallel with the portfolio’s cash-flows, these instruments

are valued; the resulting value is assumed to be equal to the value of the underlying product.

One of the main shortcomings of this technique, is finding suitable instruments for exotic prod-

ucts, especially when incorporating non-market risk (Hörig & Leitschkis, 2012). Finding proper

instruments for more complex portfolios with embedded optionality and non-linearity, can be

very challenging. In these cases, the use of a risk-neutral scenario set is more or less inevitable,

making LSMC an attractive alternative.
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LSMC approach is suitable for an illustrative explanation as well. In Figure 2.4 one can

see the limited number of inner scenarios per outer scenarios that are used under LSMC. Every

different interest rate outer scenario i, based on risk-driver Xi, leads to a new situation. Now,

to value the real-world scenario, instead of using a large number of inner scenarios, only one

inner scenario is sampled to simulate interest rates. This implies that the computational power

is much less compared to the FN approach.

Figure 2.4: A schematic overview of the relationship between outer- and inner scenarios in
the Least Squares Monte Carlo (LSMC) approach. On each forecasted real-world scenario for
T = 1 (“outer scenario”), with underlying simulated risk-factors, a only one risk-neutral scenario
(“inner scenario”) is implemented, until T ∗, to value its effect. A fit upon these inaccurate
valuations will lead to trustworthy results.

2.6 Non-parametric fitting

An important aspect of both the FN process and the LSMC process, is finding an accurate

fit. Although we have only three explanatory variables, the technique introduced in this sec-

tion, could be implemented in circumstances with more risk-drivers (f.i. incorporating spread

risk, lapse risk, longevity risk etc.). The non-parametric fitting scheme enables us to consider

these risk-drivers simultaneously, without assuming constant correlation among them. This is

an advantage compared to generic parametric fittings, where risk-drivers are often considered

independently.

Estimator

We have introduced three interest rate variables, X1, X2 and X3, representing the three factors

of the Diebold-Li model (β1, β2, β3) (see Section 2.2 ). Our expectation is that these factors

explain the volatility of the Net Asset value (NAV ), defined as the dependent parameter Y .

In this multi-dimension context, a non-parametric method is introduced for fitting purposes.

In non-parametric regressions the form of the fit is solely based on the observations, and not
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on a predefined function. Moreover, since our dependant variable roles out of a non-linear

calculation, no assumptions regarding the distribution can be made. Especially in situations

with a large number of risk-drivers as input, restrictions concerning the distribution is not

preferable. Non-parametric approaches do not require a defined distribution and is therefore

more robust compared to its parametric equivalent.

One of the properties of the proposed VAR model, is that correlation may exist between

our sampled risk-drivers. Considering this characteristic, a suitable estimator proposed by Scott

(1992), is the Nadaraya-Watson estimator (Nadaraya (1964) and Watson (1964)). In their

analysis they derive a regression estimator in one dimension m̂h as:

m̂h(X) =

∑n
i=1Kh(X −Xi)Yi∑n
i=1Kh(X −Xi)

, (2.51)

in which n denotes the total number of observations, K denotes the Kernel function and h

denotes the bandwidth of the fit. Nadaraya (1964) has showed that the estimator is asymptotic

normally distributed. Furthermore, consistency of this estimator was proven by Yamato (1973).

Precise conditions for the asymptotic normality of the estimator were provided by Ralescu &

Sun (1993). A more extensive overview of characteristics of the estimator and corresponding

kernels is given in the paper of Cheng & Sun (2006).

Kernel

A logic choice for a kernel function would be the Gaussian function, since our underlying distri-

bution is normal distributed. However, this Gaussian function also puts a relatively high weight

to observations in the tails of the kernel. In our fits, especially the LSMC fit, the NAV -outliers

should not be put a too high weight on, due to their sampled risk-neutral assignation. Therefore

the Epanechnikov kernel is introduced (Epanechnikov, 1969). A big advantage of the Epanaech-

nikov kernel is its limited weight in the far ends; it will only assign a weight to observations in

one bandwidth length, where the standard Guassian kernel includes observations that have a

distance of two times the bandwidth.

The used Epanaechnikov kernel is defined as:

K(u) =
3

4
· (1−

(u
h

)2
)1|u

h
≤1|, (2.52)

in which K denotes the kernel weight function, h denotes the bandwidth of the fit and u is

a bandwidth-dependant distance parameter. This distance u can be rewritten in the Euclidian

space as:

u =

√
X1

h1

2

+
X2

h2

2

+
X3

h3

2

. (2.53)

So, more intuitively, u tries to minimize the distance between the observations and the fit,

with respect to the corresponding bandwidth. To estimate the confidence interval, a simple

bootstrap method is used. In this approach, a large number of re-samples is performed, each



28 CHAPTER 2. METHODOLOGY

with their own fit. Ultimately, the average fit is selected, with their confidence boundaries

plotted around it. The confidence level α is set to 5%.

Figure 2.5: This figure shows a Gaussian kernel, the solid line and a Epanechnikov kernel,
denoted with the dashed line (Obtained from Tsay (2005))

2.6.1 Multi-dimension

In a lot of the literature the effect of a risk-driver is regarded independently of other considered

risk-drivers, especially in LSMC literature. However, it is unlikely that the underlying correlation

between the effects of the risk-drivers is always constant. Hence, a method that would enable us

to consider multiple risk-drivers simultaneously would yield more accurate results. An extension

of our non-parametric model to a multiple dimension analysis (so considering multiple risk-

drivers), can be implemented rather straightforward ((Scott, 1992)). Again a so-called binning

algorithm is engaged, ensuring a fast and robust computation. Bins represent the amount of

segments the range of a risk-driver is divided in. When incorporating all three risk-drivers, the

non-parametric multivariate kernel density estimator becomes:

f̂h1,h2,h3(x1, x2, x3) =
1

n

n∑
i=1

1

h1

1

h2

1

h3
·

3∏
j=1

3

4

{
1−

(
xj −Xi,j

hj

)2
}
1
|
xj−Xi,j

hj
≤1|
. (2.54)

Our corresponding multivariate Nadaraya-Watson estimator becomes:

m̂h(X) =

∑n
i=1Khx(X−Xi) · Yi∑n
i=1Khx(X−Xi)

, (2.55)

where now instead of single numbers, vectors of observations are considered, compared to

Equation 2.51. This approach can be extended to even more dimensions rather straightforward.

Hence, the non-parametric fit can be seen as a fitted hyperplane.

The selection of appropriate bandwidths h is a very delicate matter. The bandwidth can be

thought of as the width of the bars in a histogram, implicitly used for the estimation. Selecting a

too small bandwidth will lead to volatile and noisy fits. Trends and effects are hard to spot, due

to the random noise of the fit. However, a too large bandwidth will lead to an over-smoothed

fit; the information of certain values of the risk-drivers are taken too far. Again trends and
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effects are hard to spot, they are flattened out. The “local” property of the Nadaraya-Watson

estimator is violated and a bias is the result. There are several (automated) methods for selecting

an appropriate bandwidth (f.i. Hyndman et al. (2004)) or rules-of-thumbs (f.i. Scott (1992) and

Silverman (1986)). However, due to the limited amount of considered risk-drivers and the

special origin of the LSMC data, the bandwidths are selected manually. This ensurers that

the bandwidths selected have the right characteristics. The optimal bandwidths are, besides a

function of the dimensionality and the sample size, a function of the standard deviation of the

risk-drivers. The different rules-of-thumbs are used as a starting point. Further research could

lead to appropriate automated algorithms, discussed in Chapter 6.

Another problem that could occur, revolves around the curse of dimensionality. When in-

creasing the amount of dimensions of the non-parametric fit (hence, including more risk-drivers

in our case), more data is necessary to ensure a consistent fit. Given the fact that the values

are simulated, this implies increasing the amount of observations. An increase of simulated

real-world scenarios would therefore be needed, not to lose accuracy. However, this implies

an increase in computation time. Future research could revolve around this shortcoming with

regards to LSMC, as discussed in Chapter 6.

One might notice that the Least Squares character is diminished, given that no explicit root-

squares is taken of the explanatory observations (Equation 2.55 ). However, Scott (1992) shows

that our local constant estimator of the Nadaraya-Watson can be derived from the least-squares

criterion, given some technical conditions. Therefore, we are allowed to use the least squares

terminology, although we do not use least squares directly in our estimation.

It is worth mentioning that the LSMC fits are expected to be more robust towards prob-

lems around dimensionality compared to FN fits. For the LSMC approach, a big number of

observations based on different real-world for fitting purposes are needed anyway; also in lower

dimensions. Furthermore observations are created rather fast compared to the FN method, mak-

ing the method presumably more applicable for the LSMC. However, the exact problem and

consequences of curse of dimensionality in this context will not be considered in this research.

2.6.2 LSMC performance

When both the FN fit and the LSMC fit are constructed, the performance of the LSMC approach

can be evaluated. Since we consider the FN approach as the benchmark value for the set of

risk-drivers, the mismatch of LSMC compared to FN denotes the performance of the LSMC fit.

The comparison is performed in two ways. First of all, a visual comparison is executed.

Within the fits (both the curves and the plains) confidence intervals are plotted using sampling

bootstrapping techniques. The trend, steepness and noise of the fits are considered. This is done

for the one and two dimension fits. Both approaches are plotted on top of each other, visualizing

the mismatches. This will give us a global idea how the fit performs and where possible problems

occur.

For a numerical comparison between the FN fit and the LSMC fit, the bins of the fits are

regarded. As already mentioned in the previous section, the bins represent the Y value of a
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fit/regression. Hence, by selecting a lower quantile of Y values based on its corresponding NAV ,

we are able to see which combination of risk-drivers leads to the most negative results. The

corresponding explanatory values are listed and patterns among the risk-driver are evaluated.

This approach will be used when considering two and three risk-drivers, but can be used in

situations with more risk-drivers.

However, the selected bins do not necessarily correspond to the amount of observations

represented by this bin. Hence, the lowest few bins cannot directly be translated into an absolute

percentage of the observations. To solve this representation problem, we consider the lowest

percentage of observations, from the FN approach. Hence, by linking the bins to this threshold,

we are able to see how many observations the bin-set represents.

However, this approach has some drawbacks as well. Under the opposed threshold, no

restrictions on the risk-drivers are made. Furthermore, if the LSMC approach would be used

stand alone, this approach cannot be used, given the big amount of unreliable valuations. A

possible solution for this problem, can focus on the uncertainty in the bins. Every bin would

get assigned a weight, based on the number of observations it reflects. This might be linked to

the uncertainty around the selected bin. This procedure assumes that the inner scenarios are

assigned randomly and bootstrapped with large amount of iterations. However, for our purposes

this proposed methodology is out of scope and hence we use the earlier mentioned FN threshold.

2.7 Multi-year framework

In the previous sections we have proposed a method that is able to fit valuations of a sample

insurance product in a LSMC non-parametric fashion for one year. In this section we will extend

this model into a multi-year context.

As already mentioned in the introduction, the ignorance towards multi-year setting has

translated into a scarce amount of publications concerning this topic. While there are some

scientific articles published for SCR calculations using LSMC, multi-year extensions are very

rare.

One of the only papers that is focused on LSMC in multi-year setting, was written by Horig

(2013). By extending previous work on SCR for one year (Leitschkis & Horig, 2012), propose

a method that uses LSMC in a multi-year context. The different net assets values are ranked

throughout time and divided in three categories, based on the Solvency II coverage ratio. A

rough indication is given how the solvability moves throughout time. They are able to couple

expected positions of year one to multi-year positions. However, considerations regarding the

uncertainty of their results, are missing. In addition, no clear explanation of the techniques

followed can be found.

Another article worth mentioning was written by Morrison et al. (2013). They demonstrate

how a simple LSMC can be extended to a multi-year environment. Although their results look

promising, some remarks concerning the methodology could be made. For instance, the handling

of the risk-drivers happens individually. Furthermore, they ignore a growing uncertainty within

their calculations. And again, exact methodologies and assumptions of their approach are miss-
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ing. Very recently, more and more commercial proposals are released revolving around this topic.

However, the multi-year analyses are often limited and in addition the exact methodologies are

often missing in these paper. Therefore these articles are not considered here.

2.7.1 Extension of method

One of the biggest changes for the multi-year setting, revolves around the approach of prediction

horizon h. In the one year forecast, we considered the horizon as a fixed parameter, set up at the

beginning of the calculations. Using this parameter, all the calculations are performed. In the

multi-year setting however, the forecast horizon is treated differently. We include the forecast

period as an added risk-driver, which we let vary throughout the outer scenarios, just like the

other risk-drivers. In this manner we are able to see how a bigger forecast horizon influences the

net asset value throughout time. The effect on the solvability is observed and interpreted. In our

case, this implies adding a fourth risk factor besides the existing Diebold-Li factors. However,

since the forecast horizon has only indirect effect on the NAV , we forecast our risk-drivers

conditional on a certain horizon. The asset value is now considered as NAV (β1, β2, β3|h). The

performance of the LSMC fit is again compared using visual techniques, similar as discussed in

Section 2.6.2.

The considered product is not changed, hence the same assumptions are made. We choose

to not to use solvability results from the previous years, to enhance future solvability forecasts.

The forecasts of the risk-drivers is again simulated using a VAR(1) model.
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Chapter 3

Data

In this chapter, the data used in the research is discussed. The sampling of the yield curves is

based on historical data described in the first section and the set-up of the sample insurance

product is described in the second section.

3.1 Yield curves

We have retrieved the data from the website of the Federal Reserve Bank of St. Louis (http://

research.stlouisfed.org/, retrieved December 2013). The data is not seasonally adjusted.

The selected curves are Zero-Coupon Bonds and have a Treasury Constant Maturity Rate.

Observations with a monthly frequency are satisfactory for this application. The original dataset

has a timespan from October 1983 to October 2013. The selected curves have a maturity of 3

months, 6 months, 1 year, 2 years, 3 years, 5 years, 7 years, 10 years, 20 years and 30 years.

The dataset is depicted in Figure 3.1.
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Figure 3.1: The yields for different maturities as retrieved from the FED

The short missing timespan for the thirty year maturity is filled using the volatility of bond

of the twenty year maturity. The whole set is used to calibrate the vector autoregressive model.
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3.2 Set-up sample product

We will show the performance of the LSMC using a sample product described in Section 2.1.

The assigned values of the parameters can be observed in Table 3.1. The values are based on

rough assumptions/expert judgements; it is not relevant to what extend the assigned values are

very realistic, given our purposes. The big number of variables implies that resulting values have

mainly an explanatory function.

Table 3.1: Parameters of the sample with-profit
product

Parameter Value

NGB Gov. bond notional 950000
τGB Gov. bond maturity 10 years
τLia Liability maturity 15 years
CFACR(0) Accounting reserve 650000
rG(0) Guaranteed rate 1.8%
RL Lapse rate 1.5%
RM Mortality rate 1%
G Profit sharing rate 70%
gT=1 Growth of product 3%
αHW Mean-reversion constant 0.005
σHW Implied volatility 0.01

This table shows how the sample product is set-
up. Definitions of the parameters can be found
in Chapter 2.



Chapter 4

Results

In this chapter, an overview will be given of the results obtained, based on the proposed methods.

The majority of the analyses conducted are described in Chapter 2. In Section 4.1 results coming

form the elementary cash flow calculations are listed. Estimators used for simulation of the outer

scenarios coming from the Diebold-Li model, can be observed in Section 4.2. Furthermore, results

from the risk-neutral scenarios, rolling out of the Hull-White model, are denoted in Section 4.3.

Next, this chapter includes resulting LSMC fits and its performance, denoted in Section 4.4

and Section 4.4.1. We conclude this chapter with the multi-year extension, results denoted in

Section 4.5. All of the analyses were performed in MATLAB (2013).

4.1 Cash flow calculations

As already mentioned, we will first look at some results from the underlying cash flow equations

for the sample insurance with-profit product. These calculations for a profit sharing product

show how the proposed techniques perform in practice.

An interesting relation to take a look at, is how the number of risk-neutral valuations of the

assets and liabilities of the product interacts with its iterated average value. This will give a

rough indication how many inner scenarios are necessary to produce reliable outcomes for the

FN approach. This process is depicted in Figure 4.1 for randomly drawn set of risk-drivers. For

both the calculation of the Best Estimate of the Liabilities (depicted in Figure 4.1a ) and of

the Fair Value of the Assets (depicted in Figure 4.1b ) a large number of risk-neutral scenarios

is needed. We look how the average values develop throughout a total of 10000 risk-neutral

scenarios. Similar analyses show that 5000 inner scenarios will give a fairly reliable valuation,

taking in regard the magnitude of the y-axes. Therefore, in our research 6000 RN scenarios will

be used to value outer scenarios in the FN approach, unless stated different in the individual

analyses.

The other cash-flow calculations are performed in the background as well, however none of

the outcomes are relevant for the following sections.

35
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(a) Best Estimate of the Liabilities (BEL).
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(b) Fair Value of the Assets (FV).

Figure 4.1: Development of the value of the assets (FV) and liabilities (BEL) of our insurance
product for a given set of risk-drivers, put against the amount of (risk-neutral) iterations.

4.2 Real-world scenarios

In this section, the results obtained from the simulation of realistic outer yield curves can be

observed. Results coming from the calibration, estimation and simulation of the model are listed

here.

Using the equation defined in Section 2.2.1, we are able to see how β1 (depicting the level

shift of the yield curve), β2 (known as the slope of the yield curve) and β3 (known as the

curvature of the yield curve) are moving through time. In Figure 4.2 these historical movements

are depicted. Several interesting characteristics can be observed. What immediately strikes

the eye is the correlation between the three factors. In general, the slope and curvature move

simultaneously up, whenever the level goes down. In times of recession the factor representing

the level of the yield curve, tends to move downwards. Investors are generally looking for risk-

free investments and consider the long-end of the yield curve safe, pressing the rate (hence level)

downwards. Furthermore, the volatility of the curvature has a bigger magnitude compared to

the two other factors.

As already mentioned in the methodology section, we have chosen to use a VAR(1) model

to estimate the movement of the factor loadings. The estimators of this analysis are denoted

in Table 4.1. The different levels of significance are denoted with asterisks. All factors use

information from other factors to some extend, given the big number of significant parameters.

Furthermore, for all three factors the most important source of information is the lagged value

of themselves. This is line with our expectations.

Moreover, these resulting values are in line with observations found in literature (f.i. Diebold

et al. (2006)). As expected, the factors are most explained by their own lagged series, given

their large values compared to cross-correlations. The slope- and level factors are also able to

explain each other to some extend. The fact that all the estimators turned out to be significant,

has primarily to do with the range used. Decreasing the sample size leads to a smaller amount

of significant estimated parameters.



4.2. REAL-WORLD SCENARIOS 37

1985 1990 1995 2000 2005 2010

−5

0

5

10

15

Year

Lo
ad

in
g

 

 
Beta 1
Beta 2
Beta 3

Figure 4.2: The development of the loadings of the three Diebold-Li factors, put against cor-
responding year. The blue line denotes the first level factor β1, the second slope factor β2 is
depicted by the green line and red line denotes the third curvature factor β3.

Although one might question the added value of a VAR model when comparing its results

to a simple one-lag autoregressive (AR(1)) model, we will stick to this model. An important

reason is for this ignorance, is related to our appliance. In this study, we simulate thousands of

yield curves that could possibly occur in the (near) future. Each of these thousand simulations

gets assigned an equal probability. Hence, our interest is in the scenario set as a whole, and

therefore a very accurate base forecast yield curve has not our primarily interest.

From the parameters obtained in Table 4.1 and using Equation 2.20 we are able to derive

an one-year forecast from the estimation. The first Diebold-Li factor β1 is expected to increase

to 4.366 in one year, the second factor β2 decreases to −4.379 and β3 increases to −5.601.
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Table 4.1: The parameters of the estimated VAR(1)
model

(1) (2) (3)

β1 β2 β3
β1,t−1 0.994230*** -0.046306*** 0.060441***

(0.00885) (0.01159) (0.02214)
β2,t−1 0.016453* 0.930439*** 0.049496*

(0.01078) (0.01411) (0.02696)
β3,t−1 -0.11409 0.060331*** 0.919719***

(0.00903) (0.01183) (0.02259)
µ 0.037353 0.230502*** -0.440176***

(0.06301) (0.08252) (0.15761)

In this table, the values of the estimators of the
VAR(1) model are denoted. The standard errors,
between the brackets, are calculated using an in-
verse Hessian. The significance is denoted by aster-
isks; * indicates significance under 10% confidence
level, ** indicates significance under 5% confidence
level and *** indicates the parameter being signif-
icant under 1% confidence level

4.3 Risk-neutral scenarios

In this section, the results from sampling of risk-neutral scenarios are presented. A scenario

set for a random outer scenario is depicted in Figure 4.3. Some analyses are performed on this

scenario set.

When taking a closer look at Figure 4.3, the volatility immediately strikes the eye, with

negative interest rates exceeding −15%. This is a consequence (and one of the main drawbacks)

of using a Hull-White one-factor model. However, for valuation purposes these extreme scenarios

are not expected to be harmful, especially when using a set of thousands of curves. Risk-neutral

scenarios do not necessarily have to be realistic, as long as they are arbitrage free and used in

big numbers.

To test whether the scenarios are indeed risk-neutral, the Martingale test, explained in

Section 2.3.4, is performed upon this scenario set. The result of the test is presented in Figure

4.4. The line in the middle represents the E[M(0)] = 0 martingale, as discussed in Section 2.3.4,

while the dotted lines represent the corresponding confidence bands. Note that the confidence

band is diverging for longer maturities. This is logic, since the volatility of the inner scenarios

also increases for longer maturities, denoted in Figure 4.3. Using the corresponding confidence

intervals, we are able to see that the resulting martingale falls into the 95% intervals. Analyses

performed on other scenario sets for different combinations of risk-factors, lead to comparable

results. This gives an indication that the calculated inner scenario set is indeed arbitrage free.
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Figure 4.3: A risk-neutral scenario set, given a set of risk-drivers, for illustrative purposes. The
coloured lines represent different risk-neutral interest rate developments for the coming 50 years,
which are simulated based on the one factor Hull White model.
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Figure 4.4: Martingale test including 95 % confidence bands for a random risk-neutral scenario
set. The solid line denotes the E[M(0)] = 0 martingale, as discussed in Section 2.3.4, while the
dotted lines represent the corresponding confidence bands.
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4.4 Least Squares Monte Carlo

Now that we have the results of the underlying models, the results coming from the LSMC

calculation can be observed in this section. Note that these analyses are a combination of all

previous techniques and lead to the ultimate resulting figures. We present the different fits of the

non-parametric approaches and compare the performance of the LSMC- with the FN approach.

First of all, we will discuss the relevance of the proposed LSMC technique. One of the main

reasons for using LSMC involves its expected reduced calculation time. The limited number

of inner scenarios per outer scenarios in the LSMC approach should result in a decrease of

calculation time compared to an equal number of the outer-scenarios within the FN approach.

This is confirmed when looking at the results in Table 4.2. When using 300 real-world outer

scenarios, the Full Nested approach will take on average 1079 seconds to obtain results. With

the same configuration the approach will take a little more than 12 seconds. When extending the

complexity by increasing the number of outer scenarios to 3000, the FN approach takes 14209

seconds to calculate, while the LSMC approach takes 232 seconds to calculate on average. Hence,

the LSMC approach indeed takes less time to calculate a fit compared to the FN approach. We

should realize that this difference is obtained for a relative simple with-profit sharing product;

complexer products lead to even bigger differences. This is one of the main reasons why insurance

companies are looking for alternative (faster) ways to get an indication of risks exposed.

Table 4.2: Comparison of the calculation time

(1) (2) (3)
Number of RW-scenarios

RW = 300 RW = 3000 RW = 30000

Full Nested approach 1079 s 14209 s -
LSMC approach 12 s 232 s 2412 s

This table denotes the difference in calculation time of the NAV ’s
for both the FN approach and the LSMC approach in seconds. For
every calculation 6000 risk-neutral inner scenarios are used in the FN
approach and 1 inner scenarios in the LSMC approach. Calculation
time corrected for CPU workload.

However, one might question the difference in the quality of the resulting fit and its accuracy

when using the different approaches. Results that could answer this inquiry are presented in the

remainder of this chapter. If not explicitly mentioned otherwise, we use 3000 outer scenarios in

the FN approach compared to 30000 outer scenarios in the LSMC approach. This should be

enough; further research could indicate optimal scenario allocation budgets in this context.

To get an intuition of the influence of the different risk-drivers upon the SCR, the individual

effects of the risk-drivers are considered. We will start by plotting the observations of both

methods against the calculated value of the product, the earlier mentioned NAV . Although

these figures do not necessarily show interaction between certain risk-drivers, the figures do give

an idea of the explanatory capacities of the risk-drivers. In Figure 4.5a the influence of the
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Figure 4.5: Observations of the three Diebold-Li factors plotted against the Net Asset Value
for both the FN- and the LSMC approach. The blue markers denote LSMC observations, using
only one risk-neutral path for every risk-driver. The green markers denote FN valuations, where
a set of 6000 risk-neutral paths are used to value the product, given the risk-drivers.
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β1, the level of the yield curve, on the NAV is depicted. The figure reveals several interesting

characteristics that deserve a further explanation. First of all, there seems to be a non-linear

correlation between the first Diebold-Li term and the net asset value. The level of a yield curve

seems to explain the NAV to some extend. Furthermore, a somewhat triangular shape of the

LSMC observations for all three risk-drivers can be observed. Whenever an risk-driver gets

assigned a HW inner scenario with a very negative interest rate, this results in an extreme low

valuation. In contrary, extreme high interest rates have a decreased mirrored upwards effect on

the valuations; the discounting of the liabilities is balanced by the discounted future incoming

cash-flows. This explains the triangular shape. In the FN approach, extreme low interest rates

are averaged out by other inner scenarios and no triangular shape can be observed. In the

remainder of this chapter we will further research these characteristics.

Moreover, the observations for the other two Diebold-Li factors are depicted in Figure 4.7

and Figure 4.8. At a first glance, there does seem to be a correlation for β2 and for β3 as well. It

looks like an increase in the second Diebold-Li factor has a positive effect on the NAV , while an

increase in the third Diebold-Li factor implies an increase in the net asset value as well. In the

next section we will further exploit these assumptions. Furthermore we will test the performance

of the LSMC approach, when correcting for the mutual dependencies between the risk-drivers.

An overall note when looking at the three figures could be made, concerning the magnitude

of the volatilities for both methods. Due to the random assignment of inner scenarios for every

LSMC outer scenario, the valuations vary to a large extend. Individual valuations of the LSMC

approach lack accuracy, hence a combined set should be considered to obtain accurate valuations.

The triangular shape mentioned earlier can be seen for all three factors. The spread of the FN

method is smaller and it is expected to decrease even further, when considering the combined

effect of the factors on the NAV .

4.4.1 Non-parametric fitting

In this section the results of the non-parametric fitting based on the mentioned observations,

are listed. Referring back to Figure 1.1, the fitting “block” is now entered. We will begin by

showing the fits when using one factor, followed by a two factor analysis. These approaches

leave room for visual interpretation. We will finish this section with a non-visual multi-factor

analysis, in our case considering all three factors.

One factor

We will start by regarding the three risk-drivers independently. Sampling of the different

Diebold-Li factors is based on a vector autoregressive model, so there does exist correlation

among the risk factors.

Firstly, the non-paramatric Nadaray-Watson (NW) fit of β1 on the net value of the assets,

depicted in Figure 4.6, will be discussed. The red curve denotes the FN fit, the blue curve the

LSMC fit and the dotted lines represent the 95% confidence interval of the LSMC fit.

The fits are simulated using sixty bins and the Epanechnikov kernel has a bandwidth of 0.4.
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This is slightly bigger than mentioned rules-of-thumbs would suggest (Scott’s rule suggests a

bandwidth of around 0.3), but in the same order of magnitude. To be able to see a trend, a

smoothed fit has our primarily interest. Too much noise can cause unclear conclusions as of the

effect of risk-drivers in this way is rather indistinct. In addition, a bigger bandwidth also implies

a robuster fit concerning generated outliers. In the appendices, one can find some sensitivity

analyses for the bandwidth selection. For the LSMC approach valuations individually are not

to be trusted, sets of observations should be considered. Hence increasing the bandwidth (or,

in our case, fixing the bandwidth to the FN approach given the bigger amount of observations),

will decrease the noise of this fit (and marginal increase of the bias of the fit).

The figure reveals the expected relation between β1 and the NAV . A shift up of the yield

curve results in a higher value of the assets. This is line with practices from the last decade;

a low interest rate environment has pressing consequences on an insurer. The fact that the

confidence intervals lay close to the LSMC fit, indicate that β1 has a big influence on the asset

value of the insurer. This is confirmed by the steepness of the curves: starting from around

-150000 up to 60000. Apparently, this particular set-up leads to a rather negative outlook for

the insurer. Possibly the issued guaranteed rate is not reached. A more thorough inquiry of this

specific set-up, is out-of-scope.

More interesting is to analyse how the FN fit compares to the LSMC fit. The LSMC fit

tends to follow the FN fit in a proper fashion. Throughout the whole range the FN fit is

situated within the uncertainty of the LSMC fit. The maximum deviation between the two fits

is 6%, with 30000 outer scenarios for the LSMC approach and 3000 for the FN method. Due

to the sampling process, at the far ends of the fits the number of observations is limited, the

deviation increases. In the middle of the fits, where many observations are available, the fits lay

practically on top of each other. The uncertainty increases at the far ends, leading to a bigger

spread in the confidence intervals. A reason why the two fits do not overlap each other perfectly,

lays within the accuracy of the boundary values of the observations. We have engaged the fitting

scheme a small number of times, showing the influence of outliers on the fits. The confidence

boundaries of the FN are left out, since they lay very close to the FN fit. These boundaries give

limited extra information regarding the fitting capabilities of the LSMC curve. Note that, due

to the extra generated outer scenarios for the LSMC approach, this fit is longer at both ends.

However, the number of observations at those ends is very limited; hence, the reliability of the

fit is hard to verify and presumably not accurate.

When looking how the β2 interacts with the NAV a certain correlation is revealed as well,

as depicted in Figure 4.7. The bandwidth for both fits is again set to 0.4. The fit is less steep;

starting at -90000 to -20000. It is important to realize the negative correlation between the

movement of β1 and β2, as can be observed in Figure 4.2. Hence, given our sampling scheme,

the drawn values of β1 are negatively correlated with the drawn values of β2. Assuming that the

level of the yield curve has a strong effect on the value of the product, the influence of β2 on the

net asset value is smaller. Recall that the second Diebold-Li factor represents the shorter end

of the yield curve, often called the “slope” factor. Low values of β2 result in a low value of the

NAV whereas the higher values lead to an increase for the NAV . However, the influence of β1
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Figure 4.6: Nadaraya-Watson fits with an Epanechnikov kernel of the LSMC- and the FN
approach of Beta 1 against NAV . The red line denotes the FN fit, the blue line the LSMC fit
and the dotted black lines the corresponding LSMC 95% confidence bands. (Bandwidth: 0.4;
Bins: 60)

on the long end of the yield curves diminishes this effect and a increasing fit with a smaller slope

is the result. Furthermore, observe the slightly larger confidence intervals around the fits. This

can be interpreted as a smaller explanatory performance by this factor, where other factors have

influence on the exact location of the underlying observations. Similar characteristics could be

found when regarding confidence intervals of the FN fits.

More interesting for us is to see how the LSMC fit behaves when compared to the benchmark.

When comparing both fits, the results are again comparable. The LSMC fits tends to follow

the FN fit throughout the whole curve. Both approaches suffer from slightly bigger uncertainty

compared to β1. The FN fit lays within the uncertainty throughout the whole range. The

fits suffer from the fact that observations with a low β2 depend on the magnitude of the other

risk-drivers. Increasing the amount of outer scenarios reduces this uncertainty.

The relation between the third Diebold-Li factor and the net asset value is depicted in

Figure 4.8. The bandwidth is enlarged to 0.5, given the different volatility of this risk-driver.

There is a rather strong effect of the “curvature” factor on the value of the assets. This is

somewhat unexpected and is probably caused by the correlation between the first and third

Diebold-Li factor, again referring to Figure 4.2. The origin of the upward slope is related to this

correlation. Again the confidence intervals around the fit is slightly bigger than the first risk-

driver. This confirms the assumption that the explanatory capabilities of this factor is rather

limited.

When comparing the two fits, again the LSMC approach seems to follow the FN nicely. The

LSMC fit is unreliable at the far ends, due to extreme valuations from outliers. The FN fit lays

within the uncertainty of the LSMC fit.

Given the fact that β1 and β2 have a correlation with the resulting value (neglecting their

mutual dependencies), those two risk-drivers will be used for the two-factor analyses. However,
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Figure 4.7: Nadaraya-Watson fits with an Epanechnikov kernel of the LSMC- and the FN
approach of Beta 2 against NAV . The red line denotes the FN fit, the blue line the LSMC fit
and the dotted black lines the corresponding LSMC 95% confidence bands. (Bandwidth: 0.4;
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Figure 4.8: Nadaraya-Watson fits with an Epanechnikov kernel of the LSMC- and the FN
approach of Beta 3 against NAV . The red line denotes the FN fit, the blue line the LSMC fit
and the dotted black lines the corresponding LSMC 95% confidence bands. (Bandwidth: 0.5;
Bins: 60)
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we could have used other risk-drivers as well.

For comparison purposes, LSMC bins that are created out of FN range are not considered in

the further analyses. Hence, the observations are still used, also for other bins, but some rows of

bins at the far ends are not depicted. The added value of these bins could be questioned anyway,

since individual LSMC observations as in the far ends of the fit, are not reliable individually.

When using the stand-alone non-parametric LSMC approach, this is a problem that could be

encountered: from which point on do we consider the LSMC fit reliable? Techniques that could

be used in this context deal with the robustness of fits, and the law of large numbers. These

topics are however, out-of-scope for our purposes.

Two factors

Next, two factor fits will be presented for both approaches. We will use the parameters β1 and

β2 to perform a fitting on. The two fits are compared visually and with the use of techniques

introduced in Section 2.6.2.

In Figure 4.9 the Nadaraya-Watson non-parametric fit with an Epanaechnikov kernel is

denoted, for the risk-drivers β1 and β2 regarding the NAV for the FN fit. The bandwidth

is increased compared to the previous analyses; 0.6 for β1 and 0.6 for β2. Hence, the added

dimension implies that observations are considered in a bigger range. The fits are bootstrapped

3000 times. The black vertical lines represent the bootstrapped 95% confidence intervals at the

different bins. This fitting is carried out a number of times, to ensure reliable fits.

The 3D visualization reveals that a combination of the two factor indeed results in the most

negative asset value. Low values of β1 in combination with low values of β2 lead to the lowest

solvability for the insurance company. Furthermore, the effect of a change in β1 has slightly

more effect than a change of β2, although the influence is comparable. This is depicted by the

small variance of bins for values of β1 (Figure 4.9b ) compared to the rather bigger spread of the

bins for values of β2 (Figure 4.9c ). Furthermore, the figure denoted that the small number of

observations leads to bigger uncertainties, as can be observed at the edges of the plain. Increasing

the number of observations will decrease the uncertainty, confirmed by the small uncertainties

in the middle of the plain.

For the LSMC approach, the same methodology is applied. The bandwidth of the fit is

increased to .6 for both factors. In Figure 4.10 the resulting fit, where only one inner scenarios

for every outer scenario is used, can be observed. The resulting fit is comparable to the FN fit.

Again, a combination of β1 and β2 leads to the lowest net value of the assets. And again, the

most uncertainty is caught in the far ends of the fit, due to the limited observations here. When

comparing the uncertainty intervals with the FN two factor fit, LSMC shows more uncertainty

at the borders. This is caused by the low accuracy of individual valuations, which have big

biasing influence in the tails. Increasing the number of observations here, leads to smaller

uncertainties at these locations. Again the β1 has a bigger influence on the NAV than the

β2, in line with findings for the FN- and one dimension fit (Section 4.4.1 ). To put the fit in

perspective, Figure 4.10d includes individual observations to the fit. Hence, the fitted plain of
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Figure 4.9: The value NAV fitted on Beta 1 and Beta 2 for the FN approach, using 6000
risk-neutral scenarios. The vertical lines denote the 95 % confidence intervals at the different
locations. (Bandwidthβ1: 0.6; Bandwidthβ2: 0.6; Bins: 795)
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the risk-drivers takes place on a relative small range of the NAV .
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Figure 4.10: The value NAV fitted on Beta 1 and Beta 2 for the LSMC approach, using one
risk-neutral scenario for every risk-driver set. The vertical lines denote the 95 % confidence
intervals at the different locations. (Bandwidthβ1: 0.6; Bandwidthβ2: 0.6; Bins: 438)

The next step in the two factor analysis, is comparing both fits to each other. Here, we can

see how the multi-factor LSMC fit performs. We will start by comparing them visually. The two

fits are plotted in Figure 4.11, in which the blue plain represents the LSMC fit and the red plain

represents the FN fit. As expected, the two fits do match each other quiet well in general. In

the middle the two plains follow each other nicely; the same curvature can be seen throughout

different places. At the far ends of the distributions, where the number of observations is limited,

the fit is the most volatile. Also, given our sampling scheme, increased variance can be seen in

places where both factors have the same sign/magnitude.

In practice, one would specifically be interested in situations where the net asset value is at

its lowest. As already mentioned, a combination of a low β1 and β2 results in a low NAV for

both approaches. From a regulatory point of view, insurers are especially interested in these

low bins of the fits. In other words: “under what circumstances do I need to reserve more

capital to keep my insurance company solvent and how much capital would than be needed?”

Selecting the lowest part of both fits, will give us an idea of the performance. The 0.5% bins

representing scenarios indicating these negative outcomes are listed in Table 4.3. As explained in

Section 2.6.2, we base this percentile on the FN observations. The threshold equals −170780, so

only bins under that value are regarded. Because we only consider LSMC bins that fall within
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the FN range, the grid of both approach differs. This results in an unequal amount of bins

under the threshold. For the FN approach, a total of 795 bins were created while for the LSMC

approach 438 bins were considered. Given that for the FN approach 23 bins fall below the 0.5%

treshhold and for the 20, this implies that for the FN approach 3.6% of the bins are selected

while for LSMC approach 4.6%. Hence, although the number of selected bins is unequal, it is

representative for a comparable area of the fit.

The resulting values of the bins are in line with our expectations, based on the previous

figures. The lowest values of the FN fits are -200352, -199983 and -199728 while the LSMC

produces -227916 and -194850. These values are close to each other, but not comparable with-

out considering the risk-drivers. When looking at the corresponding values of the risk-drivers,

comparable results are obtained as well. The average values of β1 differs 3.5% while β2 differs

less than 1%. The bigger differences can be explained by looking a the start points of β2 for

both fits; the FN fit’s edge is compiled starting with less extreme values. Hence, the lower NAV

for the bins can be explained when regarding the risk factors. Notice that for both approaches

the value of the bins of β1 is leading throughout the scenarios. This indicates that for both fits

β1 has a bigger influence on the NAV than β2. This is in line with earlier findings. However, it

is again a combination of the two factor that explain low outcomes. When comparing the values

of NAV to the one factor fits, lower values have rolled out in two factor analyses. The average

values illustrated in the plots are in line with the findings of the one factor fits. Here, the power

of multi-factor comparison is already shown to some extend. The multi-factor analyses shows

how combinations of risk-drivers lead to very negative results. In conclusion, very comparable

results.

Off course, these results should be considered with care. While the volatility of the observa-

tions, especially at the borders, also produces LSMC fits that do differ from the FN fit, increasing

the amount of observations/simulations dismisses this effect to a large extend. Furthermore, the

magnitude of the bandwidth can change the value of the assets. However, when comparing the

two fits relatively to each other, this effect is neglect-able.

Although the fits do match in this case, they remain relatively sensitive to fluctuations in

the assigned bandwidths. It is therefore advised when handling new risk-drivers, to first select

an appropriate bandwidth. In our case, we have used the bandwidths found for the one factor

NW fits as a starting point. From there one the bandwidths were increased gradually, since

observations are used in a smaller space due to the extra dimension. Algorithms exist that can

automatically select bandwidths, however these were not specifically tested in our application.
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Figure 4.11: Comparison of the fitted values of NAV fitted on Beta 1 and Beta 2 for both
approaches. The blue plain represents the LSMC approach, while the red plain represents the
FN approach. Confidence intervals are left out, for illustrative purposes.
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Table 4.3: Selected lower risk cases for two DL factors

FN approach LSMC approach
(1) (2) (3) (4) (5) (6) (7) (8)

NAV · 105 β1 β2 NAV · 105 β1 β2

Bin 1 -2.00352 2.96 -6.12 Bin 1 -2.27916 2.49 -5.67
Bin 2 -1.99983 2.65 -5.75 Bin 2 -1.94850 2.49 -5.17
Bin 3 -1.99728 2.50 -5.57 Bin 3 -1.94282 3.11 -6.42
Bin 4 -1.96034 2.81 -5.93 Bin 4 -1.93420 2.70 -5.42
Bin 5 -1.93922 2.50 -5.39 Bin 5 -1.92889 2.70 -5.92
Bin 6 -1.91209 2.81 -5.75 Bin 6 -1.92397 3.32 -6.67
Bin 7 -1.89671 2.65 -5.57 Bin 7 -1.92247 2.90 -6.17
Bin 8 -1.89023 2.34 -5.21 Bin 8 -1.90517 2.70 -5.67
Bin 9 -1.89021 2.96 -5.93 Bin 9 -1.89553 2.49 -5.42
Bin 10 -1.87437 2.34 -5.02 Bin 10 -1.88719 2.28 -5.42
Bin 11 -1.86550 3.12 -6.12 Bin 11 -1.88375 2.90 -5.67
Bin 12 -1.85465 2.19 -4.84 Bin 12 -1.87890 2.90 -5.92
Bin 13 -1.83771 3.74 -6.85 Bin 13 -1.85573 2.28 -4.92
Bin 14 -1.82788 3.58 -6.66 Bin 14 -1.83076 3.73 -6.92
Bin 15 -1.82497 2.50 -5.21 Bin 15 -1.78094 2.70 -5.17
Bin 16 -1.81258 3.58 -6.85 Bin 16 -1.75409 2.90 -5.42
Bin 17 -1.80828 2.96 -5.75 Bin 17 -1.74832 2.28 -5.17
Bin 18 -1.80124 2.65 -5.39 Bin 18 -1.72266 2.49 -4.92
Bin 19 -1.79710 3.12 -5.93 Bin 19 -1.71934 3.32 -6.42
Bin 20 -1.79343 2.81 -5.57
Bin 21 -1.79171 3.43 -6.66
Bin 22 -1.77866 3.74 -6.66
Bin 23 -1.76980 2.34 -4.84
Bin 24 -1.76793 2.19 -4.66
Bin 25 -1.75913 3.27 -6.12
Bin 26 -1.74918 3.43 -6.48
Bin 27 -1.74796 3.89 -6.85
Bin 28 -1.73666 2.50 -5.02
Bin 29 -1.71231 2.34 -4.66

Average -1.84139 2.89 -5.77 Average -1.87115 2.79 -5.73

In this table, the bins representing scenarios triggering the lowest 0.5 per-
cent bins are listed for both approaches. In column (1) the resulting values
of the scenarios are listed and in columns (2) and (3) the corresponding
risk-drivers.
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Three factors

The next logical step is to extend the above method to a multivariate model with three di-

mensions. In our study this implies including the third Diebold-Li factor, but this approach

could also be used with other risk-drivers. The proposed method can be extended to even more

risk-drivers, although this might bring some related problems.

In order to keep the results interpretable and comparable, we will focus on the tabellized

results. Implementing all three risk-drivers, implies that an easy visual comparison is not longer

possible. However, taking into account the ultimate application of this analysis, we can select

certain outcomes. Under Solvency II, insurers are obliged to keep enough capital reserved to

survive a shock that will occur once every 200 years. With this in mind, selecting the combination

of risk-drivers resulting in the lowest net values of the assets, will give us insight in the interaction

between the risk-drivers considering the effect on the value.

However, we are specifically interested in the performance of the FN-approach compared to

the LSMC-approach. When the most negative circumstances are selected for both approaches,

we can compare whether the same scenarios are selected and the whether corresponding mag-

nitude of the underlying values are equal. We fit 12 bins in every dimension, and again only

consider bins lower than −170780, corresponding to the 1-in-200 VaR. To be able to compare

the fits, LSMC bins with no FN observations are again not considered. Again by focusing on the

resulting bins, a comparison can be made. The bandwidth of the fits are slightly increased to .8,

.8 and .9, since an extra dimension implies that data is used for a smaller range of risk-drivers.

By increasing the bandwidth, observations are carried further. This makes the fits, especially

at the tails of the LSMC approach, more stable but possibly more biased.

The results are denoted in Table 4.4. In the left part of the table, bins of the FN fit can

be found while the right part contains bins of the LSMC approach. Let us first consider the

values of the net asset value. The LSMC bins range from -233020 to -176550 with an average

value of -200220. The FN bins vary between -212740 and -177770 with an average value of

-195530. It is remarkable that the values of the β3 of the LSMC are in general higher than

expected. This has to do with the way the extreme bins are fitted in this dimension. The most

extreme line of bins had an high β3 value, but had to be ignored since no FN observation of that

magnitude was available. Hence, the second row as the outside bins for LSMC, having an effect

on the comparison. Extra fittings/observations could diminish this effect. Note that the values

of the three factor fits are lower than the two factor fits. This can be explained by considering

two characteristics. First of all, since we are now using the data in rather small range, the fits

(especially the LSMC approach) is very sensitive to inaccurate outliers. This results in rather

negative values of the bins. Secondly, taking into account the third factor as well, leads to lower

values for the extreme bins. The effect of an extra dimension can be observed.

In general, the values of the β1 do not vary much in both approaches. This is in line with

our earlier findings, where we saw that β1 has the biggest influence on the NAV . Especially in
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the FN approach, the first 23 bins are fitted on the lowest four bin-values of β1. The influence

of β2 is slightly lower, but still only the lowest rows of bins produce selected scenarios. For the

LSMC approach, the some effect of outliers can be observed (for example Bin 7). However, this

is an exception; moreover, more observations would average out this effect. Also for the third

factor only low bin values are selected.

The 0.5% Value-at-Risk would in our case be equal to the highest value in the list; so for

the FN approach -177770 and for the LSMC approach -17655. This critical scenarios have a

β1 of respectively 3.27 and 2.65, a β2 of -6.85 and -4.98 and a β3 of -6.88 and -7.91. The

difference of NAV can be explained by looking at the β1; given that this value is slightly higher

for the LSMC approach could have a positive effect of its NAV . These VaR scenarios expose

one of the main weaknesses of VaR method; if multiple risk-drivers have significant influence,

the triggering scenario is selected rather randomly. It does not give us information of a possible

trend in risk-drivers.

When we compare the average value of the VaR, the FN approach denotes -195530 and

the LSMC denotes -200220. This value, equivalent to the 99.5% Expected Shortfall, gives an

idea of how severe the damage would be in case the VaR would occur (zooming in on the tails

of the distribution). Expected Shortfall is another well-known risk measure, however not used

in Solvency 2. The results for both approaches are, again, comparable. The higher value can

be explained by the outliers at the borders of the hyperplane. When not considering them,

the values differ 0.84%. Again, this can be explained by looking at the different values of the

risk-drivers.

The values are about 5% lower compared to the two factors fits of Table 4.3. This is mainly

due to the amount of extreme low bins. Within the VaR, we do not give any bin a weight

based on the amount of observations it represents. So, while more extreme bins are created

with specific negative factor combinations, they are treated as important as lower bins when

calculating the average bin value. Hence, the drawback of weightless bins becomes apparent

when considering more dimensions.

In the end, the fits for three factors show somewhat comparable values to the two factor

fits, when considering the different values of the risk-drivers. The proposed bin selection scheme

can be extended to even more simultaneous risk factors consideration. However, the curse of

dimensionality should be avoided; already with three factors, outliers at the edges lead to non-

robust fits. This could be prevented by bigger simulation budgets or more sophisticated math-

ematical approaches. Information of how outer scenarios were simulated could be used in the

non-parametric fitting process. However, this would disable direct market data implementation.

In addition, research focussed on weigh allocation should give a more balanced overview.
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Table 4.4: Selected lower risk cases for three DL factors

FN approach LSMC approach
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

NAV · 105 β1 β2 β3 NAV · 105 β1 β2 β3

Bin 1 -2.1274 2.34 -5.75 -8.64 Bin 1 -2.3302 2.65 -6.23 -8.90
Bin 2 -2.1064 2.81 -6.30 -6.88 Bin 2 -2.2161 2.65 -5.61 -4.95
Bin 3 -2.1023 2.34 -5.21 -8.64 Bin 3 -2.1472 2.65 -6.23 -4.95
Bin 4 -2.1023 2.81 -5.75 -8.64 Bin 4 -2.1345 2.65 -4.35 -6.92
Bin 5 -2.0863 2.34 -4.66 -9.51 Bin 5 -2.1345 2.65 -4.98 -3.96
Bin 6 -2.0863 2.34 -4.66 -8.64 Bin 6 -2.1233 3.16 -6.23 -8.90
Bin 7 -2.0175 3.27 -6.30 -9.51 Bin 7 -2.0940 4.71 -1.85 -8.90
Bin 8 -2.0135 2.81 -5.75 -9.51 Bin 8 -1.9359 2.65 -6.23 -6.92
Bin 9 -2.0135 3.27 -5.75 -9.51 Bin 9 -1.9295 2.65 -5.61 -7.91
Bin 10 -2.0089 3.74 -6.85 -9.51 Bin 10 -1.8382 3.68 -5.61 -4.95
Bin 11 -1.9611 2.34 -5.21 -8.64 Bin 11 -1.8238 3.16 -6.23 -8.90
Bin 12 -1.9526 3.27 -6.30 -8.64 Bin 12 -1.7918 2.65 -6.23 -7.91
Bin 13 -1.9357 3.74 -6.85 -8.64 Bin 13 -1.7667 2.65 -5.61 -8.90
Bin 14 -1.9177 2.81 -5.75 -6.88 Bin 14 -1.7655 2.65 -4.98 -7.91
Bin 15 -1.8795 3.74 -6.30 -9.51
Bin 16 -1.8768 3.74 -6.30 -8.64
Bin 17 -1.8749 2.34 -4.66 -8.64
Bin 18 -1.8740 2.81 -5.21 -8.64
Bin 19 -1.8483 3.74 -6.85 -7.76
Bin 20 -1.8081 3.27 -5.75 -8.64
Bin 21 -1.8047 2.81 -4.66 -9.51
Bin 22 -1.7958 3.27 -6.30 -7.76
Bin 23 -1.7777 3.27 -6.85 -6.88

Average -1.9553 3.01 -5.82 -8.60 Average -2.0022 2.94 -5.43 -7.21

In this table, the bins representing scenarios triggering the lowest 0.5 percent net asset
value bins are listed for both approaches. In column (2) the resulting values of the
scenarios are listed and in columns (3), (4) and (5) the corresponding risk-drivers can be
observed regarding the for the FN approach. Similarly, in column (7) the resulting values
of the scenarios are listed and in columns (8), (9) and (10) the corresponding risk-drivers
can be observed regarding the for the LSMC approach



4.5. MULTI-YEAR FORECAST 55

4.5 Multi-year forecast

Now that we gathered results for a one year horizon, the forecast horizon will be increased

to five years. Both approaches are analysed with a smaller number of simulations: 400 outer

scenarios per year for the FN approach (each using 6000 inner scenarios), and 7000 per year for

the LSMC approach, each using one inner scenario. The parameters of the sample product are

left unchanged. This section denotes the results of this multi-year analysis. The difference in

calculation time between the FN- and the LSMC approach is again striking. The FN approach

takes 1121 seconds cpu time, whereas the LSMC approach consumes 65 seconds. This is line

with the findings denoted in Table 4.2.

As already mentioned in Section 2.7, the horizon is regarded as an additional conditional

risk-driver. Using an one-factor Nadaraya-Watson fit, the uncorrected effect can be observed in

Figure 4.12. Within this figure, Figure 4.12b denotes the FN approach while Figure 4.12c fit

denotes the LSMC approach. The bandwidth is set to 1.4 for the FN fit and 1.4 for the LSMC

fit, creating a smooth fit through time. When comparing the FN fit with the LSMC fit, we see a

comparable trend through time, depicted in Figure 4.12a. Despite the limited amount of outer

scenarios for the LSMC approach, it still follows the FN fit quiet well. Both fits do lie well in

each others uncertainties.

When zooming in on the dynamics of the fits, two things can be observed. First of all, the

value of the product seems to increase throughout time. This can be explained by looking at

the two most important factors: both the β1 and β3 are increasing, leading to a higher NAV .

Secondly, the uncertainty of the forecast barely changes through time. This is an interesting

result, moreover since uncertainty is the primarily source of solvability related calculations.

To explain this small increase in uncertainty, we will have to go back to our other risk-drivers.

The Diebold-Li factors are the underlying risk-drivers, causing the change in net asset value.

When the horizon of the Diebold-Li factors is extended, the same VAR(1) model is used. Results

of these forecasts are denoted in Table 4.5. The results in the table show us that the value of

the first factor increases to a value of 4.434. The β2 evens out to value of -3.767 and the β3

equals -4.602 for a five year forecast. This gradual approximation to the series’ mean is in line

with expectations of a VAR(1) process.

Denote also that for β1 and β2, the variance gradually increases to respectively 1.234 and

1.529. When comparing these values to the variance for a one year forecast, the increase is

relatively small. When regarding the β3, the increase of the standard deviation goes up to

2.001. Apparently the variance around the one year forecast barely increases when extending it

to a multi-year horizon for all three risk-drivers.

This gradual change in the uncertainty, results in the absence of diverging confidence bands.

The confidence bands run almost parallel to the fit, for both approaches. An insurer could

also extend its SCR using a simple deterministic model (using only one expected scenario). We

therefore can conclude that, with these risk-drivers and for this product, given the small increase

of uncertainty, the stochasticity in the multi-year ORSA forecast does not necessarily add value.

We have only performed an one-dimension analyses on the horizon, so the effect between forecast
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Figure 4.12: The different fits for a multi-year forecast. The forecast horizon is considered as
new risk-factor, the underlying DL factors are not depicted. (Bandwidth: 1.4; Bins: 60)

horizon and other risk-drivers is assumed constant.

A strong remark should be made concerning the selected risk-drivers. In our case, the forecast

horizon does not have a direct effect on the uncertainty around the NAV (and hence the SCR).

When one would use risk-drivers with diverging uncertainties, this would most probably lead

to another outcome. This implies that stochasticity and therefore LSMC approaches could be

required for an accurate risk measure. In that case, the proposed method in which the horizon is

treated as an risk-driver gives a fair indication of an insurer’s solvability position in the future.

Even using a VAR(p) model with p > 1 could have a serious effect on the results.
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Table 4.5: The estimated DL estimators

(1) (2) (3) (4) (5) (6)
Forecast horizon in months

h=0 h=12 h=24 h=36 h=48 h=60

β1 4.192 4.366 4.388 4.391 4.401 4.423
St.Devβ1 (0.769) (0.993) (1.112) (1.183) (1.234)
β2 -3.741 -4.379 -4.297 -4.097 -3.914 -3.767
St.Devβ2 (0.929) (1.225) (1.397) (1.486) (1.529)
β3 -6.932 -5.601 -5.135 -4.899 -4.729 -4.602
St.Devβ3 (1.535) (1.782) (1.894) (1.958) (2.001)

In this table, the estimators following from the Diebold-Li VAR(1) model in-
cluding the corresponding standard deviations (between brackets) are listed.
The forecast horizon is extended from 12 months to 60 months, as expected in
ORSA regulations.
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Chapter 5

Conclusion

In this report we have implemented non-parametric fits on data obtained by a Least Squares

Monte Carlo (LSMC) process. To our knowledge, no research is conducted in which the LSMC

approach is combined with non-parametric kernel fitting techniques. Furthermore, we have pro-

posed a LMSC framework to value insurance products with embedded optionality. Closed-form

formulas for those products are not available and replication techniques are not always feasible.

The proposed non-parametric way of fitting has some theoretical advantages compared over

regular parametric LSMC fits and the results look very promising. Especially when incorporat-

ing risk-drivers in which the effect on value depends on other risk-drivers as well, multivariate

analysis is necessary to give a fair representation of risks exposed. Non-parametric estimation

imposes little restrictions on the observations and has, in theory, an infinite dimensional pa-

rameter space. Hence, these aspects make forecasts more accurate and empirical compared to

regular parametric fits.

First of all, when considering some of the advantages, non-parametric fitting makes very

few assumptions upon the fitted data. Furthermore, the non-parametric way of fitting does

not impose a certain distribution on observations. Extensions in which market data is directly

implemented in the model could enrich the model. In addition, this type of fitting is applica-

ble on multiple risk-drivers simultaneously, revealing specific risks of risk-driver combinations.

However, the proposed LSMC fitting scheme has shown some drawbacks as well. Since the

non-parametric technique only uses information gathered by observed data, extrapolation is not

possible. Although extrapolation is normally not required for risk metrics, this characteristic

indirectly leads to more volatility at the ends of the fit. Furthermore, adding extra dimensions

leads to the curse of dimensionality. One can opt to increase the number of samples, specify the

fitting-space or increase bandwidths, using information in a bigger range. Caution is required

when considering the latter option, since observations used too far in the fit lead to biases.

To show how the non-parametric LSMC performs in practice, a sample insurance product was

created. The insurance product has a profit-sharing characteristic, in which holders are rewarded

with at least a guaranteed rate, regardless of the current state of the economy. If the interest

rate was above this guaranteed rate, the surplus was shared with the policyholder. The interest

rates were generated using a three-factor vector autoregressive VAR(1) model, as proposed in
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the paper of Diebold & Li (2006). To calculate a value of the product given a scenario, a risk-

neutral scenario set was generated based on an one-factor Hull & White (1990) model. Two

different approaches were compared with each other; a Full Nested (FN) approach consisting

of a complete risk-neutral scenario set for every risk-driver combination (the benchmark) and

the LSMC approach where only one risk neutral scenario was assigned to a combination of

risk-drivers randomly. The results were considered in the Solvency II regulatory perspective.

The LSMC characteristic of valuing products with embedded optionality, has proven to be

remarkably faster compared to approaches consisting of a whole risk-neutral tree. The non-

parametric LSMC has proven to be a reliable method to fit observations on, compared to the

non-parametric FN fit, as shown in Section 4.4.1. The results have denoted that the LSMC

approach outcomes are comparable to the FN approach outcomes, which are considered as

the benchmark. Although the LSMC fit shows uncertainty on points on which the amount of

observations is limited, on average the results overlap the FN fits. Hence, for the calculation

of the Solvency Capital Requirements (SCR) for one year, the proposed LSMC scheme can

lead to faster valuations for difficult insurance products without losing a lot of accuracy. When

considering the effect of multiple risk-factors simultaneously, the LSMC fit still showed reliable

results.

Under current regulations, a stochastic multi-year forecast is not explicitly required. Never-

theless, the proposed model is extended into a multi-year framework to see some of its specific

implications. Instead of simply extending the forecast horizon, we treat the horizon as an extra

risk-driver. This allows us to explore the effect of increasing horizons on the position of the

insurer, while considering effects of other risk-drivers simultaneously. In our set-up the effect on

the value of the assets is relatively small. However, it is suspected that this outcome is strongly

affected by the limited increase of volatility of the specific risk-drivers. Further research, in-

corporating significant risk-drivers with strongly increasing uncertainty in a multi-year context,

should confirm this suspicion.

Further research concerning bandwidth selection and bin treatment could lead to an imple-

mented standalone non-parametric LSMC model that calculates reliable outcomes, that the FN

approach shows accurate valuations and assuming that our simple product is illustrative. This

implemented LSMC model will have a positive effect on the calculation time needed, compared

to FN methods and will be able to value complex non-linear products, where other approaches

are not effective. This could ultimately lead to risk management information systems, playing

a more prominent role in decision making of organisations.



Chapter 6

Discussion

In this chapter, some of the challenges we encountered during the research are summarized.

Uncertainties are listed and directions for further research are given.

There are some remarks that could be made regarding the risk-drivers selected, simulating

the real-world scenarios. We have chosen to use three Diebold-Li factors as our risk-drivers,

limiting ourselves to interest rate risk. However, in the Solvency II framework (and also in

reality), there are numerous risks that should be taken into account as well. The framework

created allows us to change the type of risk-driver rather easy. For life- and non-life insurers other

types of market- and credit risks are interesting to take into consideration. In our context spread

risk could have an enormous effect on the net value of the assets. All of these risks could easily

be implemented in the proposed framework. We have taken lapse risk and mortality/longevity

risks as a fixed rates, but in reality extensive models could be implemented here as well. More

generally, our proposed model could function as a basis in which simplifications could be replaced

by sophisticated models rather easy. This would give us more insight in the effect that risks has

on aspects of the SCR.

Some remarks could be made more specifically on the simulation of the yield curves. We

have used an vector autoregressive process to forecast the Diebold-Li factors for the simulation

of outer scenarios. Although this method gives reliable combinations of factors, the absolute

effect of the risk-driver on the net asset value cannot be observed without the correlation. One

could argue that other models could outperform the proposed model.

The 1-factor Hull-White model used in our research, is a relative limited model to generate

valuation interest rates. By not calibrating the mean-reversing parameter and the implied

volatility parameter, we have not used the model to its full potential. Calibration would generate

more reliable values, given a certain real-world scenario. However, the 1f-HW model has some

structural limitations as well. It is known that the model produces a significant amount of

negative interest rate scenarios, curves that in reality almost never occur. In order to decrease

the amount of those scenarios, a more sophisticated model could be used (f.i. a 2-factor Hull-

White model (G2++)). Under all circumstances, an increase of calculation time should be put

against the win in accuracy/robustness of the model.

One of the problems we have encountered in the non-parametric fitting, is the selection
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of bandwidths. For our risk-drivers, automated algorithms (like the different rules-of-thumbs)

did not give satisfactory outcomes. Therefore, given the limited amount of risk-drivers we

have incorporated, the bandwidths were selected manually. However, when extending this into

a multi-dimension model, automated bandwidth selection is more feasible. Furthermore, the

manual action makes an implementation not possible without “experts judgement”. How the

bandwidths should be determined, both theoretically and in practice, is unclear.

As already mentioned, we have chosen to use non-parametric fitting once the observations

of the LSMC and the FN approach were generated. Although the non-parametric approach has

advantages compared to parametric fits, one of the main drawbacks revolves around fitting loca-

tions with a small amount of observations. We have avoided this situation by simply generating

sufficient data points, but in practice only a limited scenario budget is available. Literature

exists on dynamic bandwidths, however to our knowledge not subjected to this topic. Also the

sensitivity of LSMC subjected to the curse of dimensionality, could be an interesting topic for

further research. Although the proposed method should be able to cope more risk-drivers, its

approach has not been tested using more than three risk-drivers. It could be interesting to re-

search how our approach would withstand this, especially when dealing with multiple influential

risk-drivers.

All of the mentioned improvements could lead to a reliable stand-alone non-parametric LSMC

valuation model, not only for interest rate risk but all kind of other risks as well. In the end,

insurers would have better insights in their exposed portfolio’s risks. With risk management in-

formation systems giving accurate forecasts, their role within financial institutions could reshape

the way managerial decisions are made.
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Appendix A

Solvency II

In this appendix, a small description concerning Solvency 2 is given. We focus on the general

structure of the regulations and characteristics that are relevant for our purposes. For an exact

description of the framework, please consider reading the original directive (European Parlament,

2009). In the European Union a new solvency regime will be required for all insurers. Solvency

II, as the new regime is called, requires adjustments in the way insurers calculate and report

the risks they take. After a process of decades, a full implementation will required on the 1st of

January 2016. For the regulators the new regime gives insights in how risks are calculated and

allows comparison between insurers situated in the European Union. For insurers on the other

hand, the new regulations could give incentives for reduced capital requirements in addition to

a better insight in exposed risks. Solvency II is constructed from a risk’s perspective; to ensure

the future payments to policyholders. Both life and non-life insurance companies are regulated

by means of Solvency II.(European Parlament, 2009). The basis of Solvency II was modelled

upon the Basel II structure which was used within the banking world; a similar 3 pillar set-up

was created to create a level playing field for market participants (Gründl & Gal (2013)).

Pillar 1

Pillar 1 focusses on the Quantitative requirements imposed by the regulator. It consists of a stan-

dard from which the valuation of the liabilities to policyholders can be calculated. Furthermore,

it gives an idea of the capital required to reserve.

Pillar 1 Pillar 2 Pillar 3

Figure A.1: A representation of the structure of the Solvency II framework.
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It is important to understand the difference between the Minimum Capital Requirements

(MCR) and the Solvency Capital Requirements (SCR). The MCR gives a value for the capital

form which short-term liabilities given the current portfolio of the insurer, the contracts and

customers at this time and the state of the economy at this time. However, the MCR gives

no guarantees when on the factors just mentioned change in a disadvantageous manner. The

MCR capital has to be covered using only basic own funds. The MCR can be seen as the lowest

amount of capital an insurer should hold in all cases; otherwise the supervisor will revoke the

firms license.

The SCR on the other hand, gives a value of the “target amount of capital. It indicates the

amount of capital a firm should hold in order to survive very harsh economic conditions in a 1

year horizon. There are two ways and insurer can calculate the SCR. An insurer could chose

to calculate this SCR based on the QIS5 standard formula, or by means of an own developed

model. When an insurer would chose for the latter, this implies that the used model is also

proposed and accepted by the supervisor.

The European Insurance and Occupational Pensions Authority (EIOPA) is an official inde-

pendent advisory institute, which delivers to bodies like the European Parliament, the Council

of the European Union and the European commission. One of EIPOAs main deliverables is the

Quantitative Impact Study; in 2011 the 5th and probably the last (QIS5) was performed. The

goal of QIS5 is to give a global impression of the potential impact that Solvency II will have on

insurers en to test the feasibility of certain modules within Solvency II.

Pillar 2

Pillar 2 concentrates on the more qualitative features of the risk module, as well as the approach

to supervisory review. Pillar 2 requirements make sure that the insurer meets the proposed

risk management standards and that the insurer is adequately capitalised. Another important

feature of Solvency II is Pillar’s 2 so called: Own Risk and Solvency Assessment (ORSA). This

ORSA has to be performed by the insurer, regardless of the choice of method for calculating

SCR under Pillar 1 (standard formula or own calculation). An short description of ORSA with

its implications for our research, can be found in Section 2.7.

Pillar 3

Pillar 3 primarily concerns the method of reporting the risks and other disclosure requirements.

The main goal of Pillar 3 is to create market transparency. Insurers should collect relevant

information, that will be distributed to regulators, shareholders and analysts.

Value-at-Risk

In Solvency II, Value-at-Risk (VaR) is used to as benchmark method. This is well known risk-

measure, also used in other regulations. Basically, given a large number of possible scenarios,

the VaR considers the α-percentile lowest resulting values. The value at risk equals the resulting

value of the insurer for this percentile. Often, a financial institution should be able to withstand
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α µ
f(x)

Figure A.2: The Value-at-Risk methodology illustrated. Given a return distribution f(x), only
the lowest results are considered. The Value-at-Risk is equivalent to the return corresponding
to the α-percentile. When a loss distribution is considered, the methodology is mirrored.

the circumstances happening under α and keep at least enough capital corresponding to this

VaR. So in Figure A.2 values are assumed to be normally distributed by f(x) and mean µ.

The corresponding VaR would be equal to resulting SCR, hence in this figure the value of the

normal distribution at α. One of the main drawback of VaR is its limited information; it does

not consider the magnitude of the loss, given the scenario under α is happening. The amount

of capital required to absorb shocks within assets and liabilities for Solvency 2, is set up to

withstand circumstances occurring only once every 200 years. In other words, with a 99.5%

confidence level, the capital should be able to survive a 1-years forecast. This forecast includes

all kinds of risks an insurer company is exposed to.

Methods for executing the ORSA

As already mentioned, as a part of Pillar 2, an ORSA should be executed. Generally speaking,

two alternive methods exist for this assessment: a deterministic approach and a stochastic

approach.

In the deterministic method an insurer’s portfolio is projected using predefined deterministic

paths. After a (in general) simple simulation, the effects on this portfolio in the selected time

frame are considered. Other names for this method are Covariance Matrix Method or Determin-

istic Balance Sheet Projection. In essence, one would try to point out all the risk-drivers (the

indicators driving the insurance company’s risks) and use them to project SCR and Economic

Capital within the selected time frame. Possible variations of this approach would try to capture

a Best Estimate in given (macro) economic circumstances.

A possible deterministic approach is to shock every single risk indicator on an event hap-

pening once every 200 years (a 99.5% shock). To be able to calculate the resulting loss in the

first place, two assumptions are made.

1. Assumption 1 : The economic risks follow a multivariate normal distribution

2. Assumption 2 : The losses are a linear function of our risks

Using these assumptions, one would could come up with both a correlation and covariance matrix

which could lead to the required capital. This approach is incorporated into the standard QIS5
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SCR formula, proposed by the regulator as a possible method for calculating the Solvency

Capital Reserve.

The main advantages focus on the relative simplicity of this approach. The method can be

easily implemented and due to it’s clarity, communication towards non-experts is also a strong

point. The method is proven to be robust and has been implemented in the standard regulatory

formula. Furthermore, the sector is familiar with this approach and it is widely used.

However, also some disadvantages are attached to this projection method. The weaknesses

focus on the assumptions made regarding the correlation matrix. In the paper by (Kousaris,

2011) these drawbacks are clearly presented. The “linearity” assumed in the covariance matrix

approach, can be interpreted on two pillars.

First of all, the correlation between economic risks are summarized as a linear Pearson

correlation coefficient. The multivariate character imply limitations regarding the distributions

used. The risks, hidden in the fat tails of the return distribution, when not corrected of tail

dependency could imply an underestimation of number of extreme cases.

Secondly, it is assumed that the liabilities react linear to changes in risk-drivers. In reality

however, non-linearity can be observed in this dependency. Kousaris, illustrates this by means

of a plain vanilla put option. He shows that the value of a put option increases more than the

linear model suggests, when both the equity and interest rate fall. This non-linearity in the

liabilities side has been researched as well by (Cardi & Rusnak, 2007). They find that especially

for life insurers this assumption implies as structural underestimation of the capital requirement.

In the end, Kousaris conclude that the standard formula in the Solvency II framework contain

“glaring and substantial flaws that lead to a high level of inaccuracy”. Measures to compensate

for this inaccuracy imposed by some firms, like a ”big bang” or ”medium bang”, are rather

redundant.

Hence, the demand for more sophisticated methods is clear. A more accurate method revolves

around the use of stochastic real-world senario’s and valuations. These techniques are used to

calculate SCR for one year, but can be extended to multi year scenarios. An example of such

an technique can be found in Chapter 2.7.



Appendix B

Sensitivity Analyses

In this appendix some sensitivity analyses will be performed, substantiating statements made in

the report. Furthermore, this will lead to a better understanding in effect of some parameters

upon the resulting outcomes.

Effect of increasing the guaranteed rate
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Figure B.1: Observations of the three Diebold-Li factors plotted against the Net Asset Value
for both the FN- and the LSMC approach (respectively the red and the blue fit). Compared
to the original set-up, the guaranteed rate is increased from 1.8% to 2.8%, ceteris paribus. As
expected, this leads to a more negative value of the profit-sharing product, compared to the
original set-up.
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Effect of decreasing the profit sharing rate
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Figure B.2: Observations of the three Diebold-Li factors plotted against the Net Asset Value
for both the FN- and the LSMC approach (respectively the red and the blue fit). Compared
to the original set-up, the profit sharing rate is decreased from 70% to 30%, ceteris paribus.
As expected, this leads to a more positive forecast of the value of the profit-sharing product,
compared to the original set-up. A reducting of the profit-sharing rate, results in a decreased
influence of β2 and β3.

Effect of increasing the maturity of the liabilities
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Figure B.3: Observations of the three Diebold-Li factors plotted against the Net Asset Value for
both the FN- and the LSMC approach (respectively the red and the blue fit). Compared to the
original set-up, the liability maturity is increased from 15 years to 25 years, ceteris paribus. As
expected, this leads to a less positive forecast of the value of the profit-sharing product, compared
to the original set-up. Furthermore, the influence of the β1 increases while the influence of β2
decreases, as expected.



Appendix C

Calibration of Hull-White model

In Section 2.3.3 we have showed an argumentation to use fixed parameters for σ and α. The

quality of risk-neutral set would however benefit from calibrated values of α and σ. In this

appendix, one can find a proposed calibration scheme for the parameters using payer swaptions.

A swaption is a dealing between two parties, trading a fixed interest rate for a floating interest

rate (or vice versa). The holder of the payer swaption recieves a floating interest rate based on

forward rates traded for a fixed (strike) rate K for a swap time T and corresponding cash-flows

at Tpay . The value of such a payer swaption can be modelled as put options on zero-coupon

bonds using the Hull-White:

Vpay(T, Tpay,K) =
n−1∑
t=1

K · τt · P ∗k (T, T + t) + P ∗k (T, T + n)(1 +K · τn) (C.1)

in which τt denotes the year fraction between the observations, P ∗k denotes the price of an

put option maturing at T and written on a zero-coupon (pure discount) bond at (T + t) and k

the strike rate. Furthermore, we know that:

K =
P (0, T )− P (0, T + n)

n∑
t=1

τt · P (0, T + t)

(C.2)

The strike rate can be calculated using:

k(t) = A(T, T + t) · e−B(T,T+t)rX , (C.3)

in which rX equals a spot rate for which:

n−1∑
t=1

K · τt ·A(T, T + t) · e−B(T,T+t)rX + (1 +K · τn) ·A(T, T + t) · e−B(T,T+t)rX = 1. (C.4)

Intuitively, this imposes that all the discounted cash flows of the bond at time T are equal

to one.
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P ∗k(t) = k(t) · P (0, T ) · Φ(−h+ σp)− P (0, T + t) · Φ(−h), (C.5)

in which σp and h are constants for a given t, equal to:

σp = σ

√
1− e−2αT

2α
·B(T, T + t), (C.6)

and

h =
1

σp
· ln
(
P (T, T + t)

k(t) · P (0, T )

)
+
σp
2
. (C.7)

Given the analytical price of the swaption in Equation C.5, we can compare the analytical

outcomes to the modelled outcomes. The α and σ we are after, are equal to the minumum of

the MSE:

{α, σ} = min
α,σ

∑
T

∑
n

(
Vpay(T, Tpay,K)− V ∗pay(T, Tpay,K)

)2
(C.8)

where V ∗pay(T, Tpay,K) denotes the observed payment swaptions with maturities T and that

pay cash-flows at Tpay until T + n. Hence, using these constants, we are finally able to obtain

our simulated interest rates. These can be used to value the profit sharing product.
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