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Abstract

Liquidity management, the management of funds in order to have sufficient short

term assets to pay off short term debts, is an important aspect of risk management.

According to Frauendorfer and Schürle (2007), duration matching is a widely used

technique to manage liquidity risk. However, duration matching is difficult for

savings deposits, because they have no fixed maturity. Hence, the goal of this

research is to determine the maturity of savings deposits, so that duration matching

can be applied. Instead of a single maturity, I divide the total deposit volume into

several parts, or buckets, with their own maturity. This research uses future deposit

volume simulations in combination with Value-at-Risk and the liquidity constraint

of Bardenhewer (2007) to create the buckets. The final model is evaluated by

comparing it with a much simpler model, the random walk. I conclude that the

final model only provides additional value for products with an attractive client

rate. In contrast, for less attractive products both models result in nearly identical

volume simulations and buckets.
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Notation

This section lists the abbreviations and variables used in this research. The abbreviations

are accompanied with their full name and the variables with a short description. Also

the page on which they are mentioned for the first time is displayed.

Abbreviations

Notation Full name Page

AR Auto Regressive 10

CIR Cox Ingersoll Ross 11

DNB De Nederlandsche Bank 6

HJM Heath Jarrow Morton 11

ILAAP Internal Liquidity Adequacy Assessment Process 6

LogL Log Likelihood 26

OLS Ordinary Least Squares 26

SIC Schwarz Information Criterion 14

VAR Vector Auto Regressive 36

VaR Value-at-Risk 7

Variables

Variable Description Page

D Deposits 16

Djan Dummy for January 42

Dmay Dummy for May 42

Dmon Dummy for Mondays 30

Dna Dummy for when deposits/withdrawals not available 26

Dol Dummy for outlier (February 23, 2010) 28

Drel Relative deposits 16

Dtr Transformed deposits 16

∆rnw Log difference of nationwide client rate 40

Rcl Client rate 19

Rnw Nationwide client rate 19

S Spread 19

Srel Relative spread 19

Srel,ba Relative spread before alteration 24
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Variable Description Page

Srel,dr Relative spread drop 24

W Withdrawals 46

Wrel Relative withdrawals 45

Wtr Transformed withdrawals 18

∆vnw Log difference of nationwide deposit volume 26

V Deposit volume 16

∆y3m Log difference of 3-month Euribor rate 40

Y3m 3-month Euribor rate 40
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1 Introduction

Liquidity management, the management of funds in order to have sufficient short term

assets to pay off short term debts, is an important aspect of risk management. Without

proper liquidity management, even successful companies that make profits in the long

run, can go bankrupt due to insufficient liquidity in the short run. This also applies to

banks and other financially orientated companies. To ensure adequate liquidity man-

agement at these companies, De Nederlandsche Bank (DNB (2012)) states rules and

guidelines in their Internal Liquidity Adequacy Assessment Process (ILAAP) manual.

According to Frauendorfer and Schürle (2007), duration matching is a widely used

technique to manage liquidity risk. This technique is also used by Allianz Nederland

Asset Management, which is where this research is conducted. Duration matching aims

to match the magnitude and timing of incoming and outgoing cash flows, for example, by

investing the companies’ assets in funds that have the same maturity as the companies’

liabilities.

However, duration matching is difficult for savings deposits, because they have no

fixed maturity. In the literature and from a bank’s perspective, savings deposits are

therefore also called non-maturing liabilities. It is unclear for the bank when it needs

to repay the clients’ money, because clients have the right to withdraw any amount at

any time. Technically, savings deposits have a zero contractual maturity (DeWachter,

Lyrio, and Maes (2006)), and in theory it is possible that all funds disappear overnight.

Fortunately for the banks, due to the number of clients the vast majority of individ-

ual decisions cancels out each other. Consequently, the overnight disappearance of all

savings deposits is not very likely, but the actual maturity profile is still unclear.

Hence, the goal of this research is to determine the maturity of savings deposits, so

that duration matching can be applied in order to minimize liquidity risk and maximize

profit. However, minimal risk and maximal profit are conflicting and cannot be achieved

at the same time. To prevent any liquidity issues, banks could invest the clients’ savings

in products with a very short maturity. However, these products are typically less

profitable than products with longer maturities and therefore less appealing. Vice versa,

the more profitable products with long maturities entail more liquidity risk. The optimal

solution, a moderate profit against a reasonable risk, can only be achieved by dividing the

total deposit volume into several parts, also called buckets. These buckets are thereafter

invested in products with a corresponding maturity.

The literature contains several options to divide the total volume in buckets, namely

the non-maturation theory, the replicating portfolio approach, and future deposit volume

simulations in combination with statistical measures. The third method is preferred,

because it has a close connection to the volume and the future simulations make the
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method robust and compliant with ILAAP. Furthermore, the magnitude and maturity

of the buckets can easily be determined with several measures, such as Value-at-Risk

(VaR) and the liquidity constraint of Bardenhewer (2007). The other two methods are

not sufficient. The non-maturation theory divides the volume in only a few buckets and

is not able to specify the maturity at the same time. The replicating portfolio approach

fulfils the shortcomings of the former, but it has little connection to the deposit volume.

In order to be able to create buckets with the third method, realistic future scenarios

must be created. In this research, the future volume is created indirectly with separate

models for the deposits and withdrawals. This enables us to observe the effect of impor-

tant variables and events on deposits and withdrawals individually, instead of the net

effect on the volume. The relative spread, which is a measure for the attractiveness of

the deposit product, is one of the important variables. This measure takes into account

the difference in the client rate of banks and also the state of the economy. The client

rate is the interest rate offered to the client by the bank. Other important variables are

related to the nationwide deposit volume and a client rate change.

For each of the important auxiliary variables, realistic simulations must be created as

well. Based on the work of Diebold and Li (2006), the yield curve is simulated in order to

create the nationwide client rate. In turn, that is used to create the nationwide deposit

volume. The Allianz client rate model has a special purpose; it is possible to adjust

several parameters to obtain the desired level of client rate attractiveness. Then, all

the individual models are put together, also referred to as the framework, and they are

used to create the deposit volume simulations. These simulations are used to construct

buckets with VaR and the liquidity constraint of Bardenhewer (2007).

Due to the different construction of the VaR and liquidity constraint buckets, they

have different properties. The liquidity constraint buckets are stricter, because multiple

time periods are evaluated, instead of a single one for the VaR buckets. The cumulative

weight of buckets up to a certain maturity are always lower than those of the VaR

method. Also, due to the observation of multiple periods, the liquidity constraint buckets

are more consistent across different samples. The advantage of the VaR buckets is that

the effect of a specific client rate scenario can be evaluated. This can potentially result

in much more profit, but it is also more labour intensive and risky.

The final model of this research is evaluated by comparing it with an alternative

and much simpler model, the random walk. Given the differences between the final

model and the random walk model for two separate products, I conclude that the addi-

tional value of my model depends on the nature of the product. For products that are

marginally dependent of the relative spread, my model has no clear additional value.

For these products, the simulations and buckets are almost identical to those of the
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random walk. For products that are more attractive and do depend on the relative

spread, my model is advantageous. My model takes into account the attractiveness of

the product, while the random walk does not take into account anything. Despite this

fact, the buckets of my model and the random walk appear similar. However, this is just

due to the lack of a clear client rate scenario. The properties of the client rate model in

the evaluation are set such that they are similar to the historical sample. However, these

are generic and the regime can therefore not be regarded as attractive or unattractive.

The differences are much larger, if the random walk buckets are compared with a clearly

attractive client rate, which confirms the additional value of the model.

2 Literature

This section gives an overview of several methods that are used to divide the total volume

in buckets. Namely, the non-maturation theory, the replicating portfolio approach, and

future deposit volume simulations in combination with statistical measures.

2.1 Non-maturation theory

The non-maturation theory normally divides the total deposit volume into at least two

parts; a stable core part and a more volatile part. The core part is assigned a long

maturity, while the volatile part gets a shorter maturity. The distinction between being

core or volatile can be made in a variety of ways. Oesterreichische Nationalbank (OeNB

(2008)) assigns a volume of two standard deviations below the mean volume to the

core part. What remains is the volatile portion. Optionally, a volume of two standard

deviations above the mean volume can be characterized as extremely volatile, which is

then invested in very short maturities.

This method is easy to apply, but there is a drawback. The core deposits become

negative if the standard deviation is very large relative to the mean. Consequently, this

implies that all funds are volatile, which is equivalent to assuming just a single maturity

and that is insufficient. Furthermore, under normal circumstances, this method divides

the deposit volume into just two parts. Ideally, the volume should be divided into more

parts, so that we can use many maturities. Additionally, the non-maturation theory does

not give insight in the exact maturities that should be used for the buckets. Nevertheless,

according to Kalkbrener and Willing (2004), this approach is used by many banks.

2.2 Replicating portfolio

Another approach is the replicating portfolio, which was first used by Wilson (1994) for

non-maturing products. The idea behind this method is that products with equivalent
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yields should have the same cash flows, or at least approximately. The replicating

portfolio is formed from several interest rate paying instruments, with the purpose to

mimic the client rate as closely as possible, except for a certain margin. This margin

represents the profit of the bank, so ideally it should be positive and not too volatile.

The weight of each interest rate paying instrument is determined with an optimization

criterion. Often, the criterion is either to minimize the standard deviation of the margin

or to maximize the Sharpe ratio of the margin. The Sharpe ratio is defined as the

mean of the margin, divided by the standard deviation of the margin. The sum of the

weights must be equal to one, and often they are also required to be greater than zero

individually. Finally, the total deposit volume is invested in the maturities according to

the weights of the replicating portfolio. Potentially, this method can be combined with

the non-maturation theory. For example, Maes and Timmermans (2005) invest only a

part of the deposits in the replicating portfolio, instead of the total deposit volume.

It should be noted that the replicating portfolio method determines the weights

solely by the client rate and that the deposit volume plays no role. Therefore, this

method seems not too promising, although it is often used by large international banks,

according to Wielhouwer (2003), DeWachter et al. (2006) and Frauendorfer and Schürle

(2007).

Bardenhewer (2007) extends the general replicating portfolio approach with a liq-

uidity constraint and moving averages of the interest rates instead of the rate of a single

point in time. Of these extensions the liquidity constraint is the most promising, because

it provides a connection between the deposit volume and the weights of the replicating

portfolio. It determines the maximum percentage decline of the total deposit volume for

each maturity, which is used as a lower bound for the weight of the corresponding matu-

rity in the replicating portfolio. This makes sure that there is always enough liquidity,

at least, for the examined historical period.

So far, I have only considered the static replicating portfolio. The static replicating

portfolio assumes that the weight vector is constant for a long period of time and it

is determined over a single realisation, namely the history. Frauendorfer and Schürle

(2007) are critical on these assumptions and propose a dynamic replicating portfolio,

which estimates the weight vector more frequently. Furthermore, instead of the weight

vector being estimated over a single historical realisation, it is estimated using multiple

simulated future scenarios. These scenarios usually include simulations for the deposit

volume, the client rate and the yield curve. Because the weights of the dynamic method

are estimated over a range of possible future scenarios it is more robust than the static

approach. Frauendorfer and Schürle (2003) use a multistage stochastic programming

model that determines a dynamic replicating portfolio. They show that this method
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results in a more stable and higher margin than with the static replicating portfolio.

2.3 Framework

The development of non-maturing liabilities is often not considered separately, but

mostly in the context of entire valuation frameworks, for example in Hutchison and

Pennacchi (1996), Jarrow and Van Deventer (1998), and O’Brien (2000). Ellis and Jor-

dan (2001) state that “any method that is adopted for valuing NMDs [Non-Maturity

Deposits] should not be viewed in isolation, but rather in the context of an overall asset

and liability management framework.” These frameworks consist of a valuation method

and models for the yield curve, client rate and the deposit volume. The various different

valuation models will not be explored, as that is not the primary goal of this research.

However, I do need models for the yield curve and the client rate, because they affect the

deposit volume. The concept of a framework is promising, because it provides future

deposit volume simulations, that can be analysed in a variety of ways. For example

with the dynamic replicating portfolio method, but also with the liquidity constraint of

Bardenhewer (2007) or the more traditional VaR. In addition, a framework of simulation

models is in accordance with the ILAAP guidelines of DNB (2012), because it takes into

account future cash flows.

2.3.1 Volume

According to Ellis and Jordan (2001), the volume model should incorporate “the deposit

rate, the Treasury rate and other factors such as lagged deposit balances.” Especially

the autoregressive (AR) term, the lagged deposit balance, is mentioned throughout the

entire literature. This is not surprising since the deposit volume of tomorrow is probably

close to today’s volume. Paraschiv and Schürle (2010) combine an AR(1) model with a

variable that accounts for the spread between the market and client rates. Kalkbrener

and Willing (2004) mention that it might be interesting to include macro economic

variables, but at the same time note that “forecasting macro economic developments

over longer periods is not a trivial task.” The latter clearly limits the number of possible

variables to include. Several studies find a relation between the deposit volume and the

market or client rate. Surprisingly, Kalkbrener and Willing (2004) note that the relation

between the market rates and the deposit volume is not particularly high in the German

market.

2.3.2 Yield curve

The yield curve, frequently referred to as market rate in the literature, includes the

stochastic component in most studies. Kalkbrener and Willing (2004) are the exception
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because they include an additional stochastic component in the volume model. The

frameworks use the yield curve to value the cash flows. Although this research does not

focus on the valuation, the market rate is also the driving factor for the (nationwide)

client rate. For example, when the European Central Bank lowers the market rates,

banks are likely to follow and not vice versa.

The foundations for yield curve models are laid by Vasicek (1977), Cox, Ingersoll,

and Ross (1985) (CIR) and Heath, Jarrow, and Morton (1992) (HJM). There is no clear

favourite in the context of non-maturing deposits. Hutchison and Pennacchi (1996) and

Nyström (2008) use a one-factor Vasicek model; O’Brien (2000) models the market rates

with a CIR model; Jarrow and Van Deventer (1998) incorporate the HJM model; and

Kalkbrener and Willing (2004) implement “two classes of two-factor HJM models: two-

factor Vasicek models and non-parametric HJM models with piecewise constant volatility

functions.”

A different approach to model the yield curve, which is not mentioned in the non-

maturing liabilities literature, is the use of a Nelson-Siegel model after Nelson and Siegel

(1987). The advantage of the Nelson-Siegel model is that it usually has three factors

compared to the one-factor Vasicek and CIR model. The yield curve can be fitted better

with three factors. Additionally, the Nelson-Siegel model incorporates an interpretable

structure on the loadings, which can be identified with the level, slope and curvature of

the yield curve. Diebold and Li (2006) forecast the factors of their three-factor Nelson-

Siegel model with an AR(1) model, so that the future yield curve can be constructed.

They state that the short-term forecasts are not better than several competing models,

but “the 1-year-ahead results are much superior”. Diebold and Li (2006) might be too

optimistic, because they test on a favourable subsample. De Pooter (2007) tests several

variations of the Nelson-Siegel model and he finds that a four-factor Nelson-Siegel model,

estimated with a Kalman filter, outperforms most models across different horizons and

subsamples.

2.3.3 Client rate

The client rate model must at least have a connection to the yield curve model. When

market rates fall, banks quickly adjust the client rate in the same direction in order

to prevent a negative spread and losses. On the other hand, when the market rates

rise, banks are reluctant to change the client rate as a little delay in the adjustment

earns them some extra money. This asymmetric behaviour is called (upward) stickiness

in the literature. Despite this fact, Hutchison and Pennacchi (1996) and Jarrow and

Van Deventer (1998) assume a symmetric relation between market and client rates.

O’Brien (2000) uses an equilibrium model with different adjustment speeds to account
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for the stickiness phenomenon. Paraschiv and Schürle (2010) develop an error correction

model with an AR term, market rates and a variable threshold to allow for asymmetric

behaviour. The methods of O’Brien (2000) and Paraschiv and Schürle (2010) are studied

in Section 4.3.

2.4 Summary

A suitable technique divides the deposit volume in multiple parts and also specifies the

corresponding maturity. Furthermore, it is preferable to use a method that is based on

future simulations instead of one historical realisation. Firstly, this complies better with

the ILAAP guidelines of DNB (2012), because it takes into account future cash flows.

Secondly, the estimation of the magnitude and maturity of the buckets over multiple

scenarios is more robust. A robust approach has less risk and lower transaction fees due

to smaller changes in the investment positions.

The non-maturation theory is the simplest of the methods mentioned in this section

and has the least in common with the ideal method. This approach divides the volume

in just two or three parts, and possibly even only one if the deposit volume is volatile.

Furthermore, it gives no insight in the maturity of the buckets.

The more complex replicating portfolio might improve upon the former approach

as it potentially divides the deposit volume over many maturities. Furthermore, by

construction it gives the magnitude and the maturity of the parts. A large drawback

is the lack of connection to the deposit volume; the method only depends on the client

rate. Although, this can possibly be solved by the liquidity constraint of Bardenhewer

(2007).1 Other deficiencies in the static replicating portfolio, according to Frauendorfer

and Schürle (2007), are the assumption that the weight vector is constant for a long

period of time and that it is being determined over a single historical realisation. Ac-

cording to the same authors, their dynamic replicating portfolio improves upon the basic

method, by estimating the weights more frequently and more robustly over many future

simulations.

Besides the dynamic replicating portfolio, much simpler methods can be used to

analyse the simulations. For example, VaR or the liquidity constraint of Bardenhewer

(2007). A combination of the framework with one of these methods, gives insight in both

the maturity and the magnitude of the buckets. Furthermore, the simulations make the

method robust and compliant with ILAAP. Since this framework is built from scratch,

another convenient feature is that the volume, yield curve, and client rate model can be

easily extended or partly adjusted in the future due to the modular approach. Overall,

1Appendix A discusses the static replicating portfolio and the extensions of Bardenhewer (2007) in

more detail.
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the framework is preferred over the non-maturation theory and the static replicating

portfolio.

3 Data

The data of Allianz consists of daily transaction details (date, amount and mutation

type) per client and daily client rates of 32 savings products over the period of December

19, 2008 to March 28, 2013 (1115 days). The savings accounts are not only for saving

money, but also for the acquisition of Allianz investment funds. Due to the latter,

besides deposits and withdrawals, also eleven other mutation types are present, such as

the acquisition and disposal of investment funds. To acquire a fund, money must first

be deposited into a savings account, and thereafter it is withdrawn to be invested in

one or several funds. Once a client discontinues his position in a fund, the money is

first transferred to his Allianz savings account. Thereafter he is free to leave it there, or

transfer it to a paying account at another bank. It is infeasible to inspect every single

transaction manually. So, in order to separate money that is meant for saving, from

money that is meant for speculation, I set up some rules. Firstly, I split all transactions

in just three types: deposits, withdrawals, and accrued interest payoffs. Secondly, for

every single client, I adjust deposits for withdrawals and vice versa, if they occur within

five days of each other. For example, a e 100 deposit on day one, followed by a e 60

withdrawal on day three, is treated as a e 40 deposit on day one. Finally, I summarize

the transactions of all clients. The accrued interest, in fact also a deposit, is not adjusted

for withdrawals, so that it can be modelled separately.

In order to make the analysis more feasible, I merge products that offer the exact

same interest rate over the entire observation period. This enables me to include savings

products that have ceased to exist and were merged with others and products that have

a very low volume and a small number of transactions. The focus of this research lies on

two of the resulting aggregate products that represent about 95% of the total deposit

volume on average.

3.1 Volume

Figure 1a shows a time series plot of the savings product that represents about 67%

of the total volume on average. This product will be referred to as product #1. The

volume is normalized to have a starting value of e 1 for confidentiality reasons. The most

striking is the increase of about 380% over a five-month-period during the beginning of

2010. Most likely, the attractive client rate that Allianz offered at that time, lies at the

root of this, see Figure 1b. Section 3.3 discusses the client rate and measures for its
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attractiveness, such as the rank (Section 3.3.1) and the (relative) spread (Section 3.3.2).

Section 4.1.1 goes into more detail about the relation between the deposits and the

spread, which is the difference between the client rate of Allianz and competitors.

Further, today’s volume is very closely related to that of yesterday, because of the

large number of customers and the fact that a lot of their individual transactions cancel

out each other. This results in an AR(1) coefficient that is very close to one, which

corresponds to the findings in the literature, where models often include an AR factor.

An Augmented Dickey Fuller test with optimal lag length based on Schwarz Information

Criterion (SIC), an intercept and without a trend, results in p-value of 0.236, so that

it cannot reject the null hypothesis of a unit root. To get a better view of the data I

take log differences of the volume series. The log volume differences in Figure 1b clearly

show the accrued interest payoffs in the beginning of each year and again the enormous

increase in early 2010. Other large log differences are due to client rate reductions or

wealthy clients who withdraw or deposit a large sum of money. The effect of client

rate reductions, especially the ones from February and December 2010, are studied in

Section 4.1.2. Also note that the mean volume of product #1 is smaller than twice the

standard deviation of the volume, see Table 1. This clearly makes the non-maturation

theory in combination with the approach of OeNB (2008) insufficient.

Product #2, the second largest aggregate savings product, represents on average 27%

of the total balance. The characteristics of product #1 and #2 are much the same, but

the former is an internet account and the latter is not. This means that transactions

must be made via the telephone or by letter. The telephone is 24 hours a day accessible,

so there are no significant time savings or losses. This product charges slightly higher

transaction costs for investment orders, but most importantly, the client rate of product

#2 is always 50 basis points lower than that of product #1. The intention is to stimulate

clients to get an internet account, which is cheaper and more efficient for the bank. A

comparison of product #1 and #2, with Figure 1 and Table 1 reveals several other

differences and similarities.

First of all, the extreme volume increase of product #1 in early 2010, is not present

for product #2. This might be due to the lower client rate, which at the same time,

might be the reason for the obvious downward trend. Further, Figure 1d shows an

extremely large observation on February 23, 2010 which is due to the discontinuation of

an investment fund. The entire balance is deposited to the savings accounts. This is a

rare event and a dummy can be incorporated in the model to account for this outlier.

Lastly, due to the lower deposit volume and thus the increased influence of individual

transactions, the volume time series of product #2 is less gradual.

Similar to product #1, Figure 1d clearly shows the accrued interest payoffs in the
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Figure 1: Panel (a) and (c) show a time series of the deposit volume. Panel (b) and (d) show

the log volume differences (blue), the client rate (red), the nationwide client rate (green) and the

spread (black) between the client rate and the nationwide client rate. Panel (a) and (b) belong

to product #1 and panel (c) and (d) to product #2.

Table 1: Summary statistics for the deposit volume with a starting volume (V ) of e 1 and

the log difference of the deposit volume (∆v), for both product #1 and #2. The first order

autocorrelation is designated with ρ1. The sample period runs from December 19, 2008 to

March 28, 2013 (1115 observations).

V #1 V #2 ∆v #1 ∆v #2

Mean 2.1563 0.8689 0.0002 -0.0003

Median 1.5813 0.8966 -0.0009 -0.0003

Minimum 0.9345 0.7123 -0.0180 -0.0096

Maximum 4.7974 1.0238 0.0491 0.0364

Std. Dev. 1.1764 0.0793 0.0065 0.0022

Skewness 0.7932 -0.5148 3.4840 8.8156

Kurtosis 2.2639 2.0227 19.771 128.41

ρ1 0.9999 0.9997 0.7027 0.0500
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beginning of each year and the presence of a unit root. The Augmented Dickey Fuller

test results in a p-value of 0.978, so that the null hypothesis of a unit root cannot

be rejected. Both log volume difference series have high positive skewness and excess

kurtosis. This points to distributions with long tails, especially the right one, more mass

on the left side of the distribution and high peaks.

3.2 Data transformation

The presence of a unit root in the deposit volume suggests that the deposit volume must

first be differenced, before estimating an AR model as the literature suggests. An entirely

different option is to model the deposits, withdrawals and the accrued interest payoffs

individually, and later combine them to construct the volume increment. Individual

models capture the effects of important variables better. For example, consider the

effect of a client rate reduction (Section 4.1.2). When the effect is estimated on the log

volume differences, only the net effect is visible. When modelled individually, the effect

on both the deposits and the withdrawals is clear. This also gives a more accurate view

on future cash flows and consequently complies better to the ILAAP manual of DNB

(2012). When estimating the models for the deposits and withdrawals, it is advantageous

to work with normally distributed series. This is achieved with the transformation in

(2), which also greatly preserves the shape of the time series. The entire procedure is

described below in more detail.

First, to make the series easier to compare over time, the ordinary deposits (D) are

transformed to relative deposits (Drel) by dividing the deposits with the deposit volume

(V ) of the previous day,2

Drel,t =
Dt

Vt−1
. (1)

Still, even after this transformation, Figure 2a shows that the relative deposits are much

larger in early 2010 than in other periods, similar to the log volume difference. Also,

the time series of the relative deposits in Figure 2a and the corresponding histogram in

Figure 2c show that the series is log-normally distributed, due to the non-negative na-

ture. I apply the following transformation on the relative deposits to obtain transformed

deposits (Dtr),

Dtr,t =
−1

ln (Drel,t)
=

1

ln (Vt−1)− ln (Dt)
. (2)

Use of solely the natural logarithm, on the domain of the relative deposits (0 to 0.05),

results in negative values and an inverted shape in absolute sense. So, I specifically

use −1 as numerator and the natural logarithm as denominator to reverse this. Ap-

pendix B discusses the natural logarithm as alternative transformation in more detail.

2The time subscript t will be left out in future equations, when the time subscripts are the same and

when it does not cause confusion.
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Figure 2: Panel (a) shows a time series of the relative deposits, which are deposits divided by

the volume of the previous day, and panel (b) shows the transformed deposits after applying

(2). Panel (c) and (d) show a histogram of the relative deposits and the transformed deposits,

respectively.

Table 2: Summary statistics for the relative deposits (Drel) and the transformed deposits

(Dtr) by (2). The first order autocorrelation is designated with ρ1. The sample period runs

from December 19, 2008 to March 28, 2013 (1115 observations).

Drel Dtr

Mean 0.0027 0.1498

Median 0.0010 0.1445

Minimum 0.0000 0.0000

Maximum 0.0508 0.3355

Std. Dev. 0.0057 0.0412

Skewness 4.5104 0.4159

Kurtosis 26.989 8.2612

ρ1 0.8081 0.5783
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Both transformations result in more normally distributed series (Figure 2d), but the

transformation in (2) is favourable because it preserves the shape better (Figure 2b)

and it behaves better for days with no transactions. All these facts are convenient for

the estimation of the model. Normality of the distribution in Figure 2d is still con-

vincingly rejected given the p-value of 0.000 for the Jarque-Bera statistic. However,

the skewness and kurtosis of 0.42 and 8.26, respectively, comply better with a normal

distribution compared to the skewness of 4.51 and kurtosis of 26.99 in Figure 2c. Just

like the deposits, withdrawals are always non-negative and they are transformed in the

exact same way, which yields the transformed withdrawals (Wtr).

3.3 Client rate

The main reason for consumers to deposit money is to receive interest. Interest is

directly influenced by the client rate and as such, the client rate is an important variable

when choosing a savings product. Moreover, the client rate is easily observable and

straightforward to compare. This in contrast to other characteristics that might play a

role when choosing a savings product, such as the image, the trustworthiness, and the

service of the issuing bank. Similarly, when making a model for the deposit volume, the

client rate is a logical starting point. Albeit, a single client rate without any reference is

of little value. The client rate of a single bank must be compared with others in order to

characterize it as attractive or not. The next sections discuss the rank of the client rate

of Allianz and the (relative) spread between the client rate of Allianz and competitors

as measures for attractiveness.

3.3.1 Rank

Neglecting all other characteristics of a savings product, a savings product with a higher

client rate is considered to be more attractive than one with a lower client rate. There-

fore, a straightforward way of comparing savings products is to sort them on their client

rate. The product with the highest client rate receives rank #1, the one with the second

highest client rate receives rank #2, etcetera. Ties have the same rank. To account for

the fluctuating number of similar products, and to reflect that rank #1 of 100 is better

than rank #1 of 50, the rank is transformed to a rank score,

rank score = 1− rank Allianz

number of similar products
. (3)

The rank is an ordinal measure, so the magnitude of the difference between client rates

does not matter, only the fact that there is a difference. This is no big deal when all

the differences are more or less equal. However, if this is not the case, it might be

more accurate to use a measure that does account for the magnitude of the difference.
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Additional problems are caused by the construction of the rank, which requires the client

rate of every savings product in the Netherlands, similar to that of Allianz. Currently,

more than 100 exist and new products constantly come and go. Moreover, the historical

values of all these client rates are not available to me.

3.3.2 Spread

Another measure to compare client rates, which will mostly be used in this research, is

the relative spread (Srel). To obtain this measure, firstly, the spread (S) is constructed

as the difference of the client rate (Rcl) and the nationwide client rate (Rnw),

S = Rcl −Rnw. (4)

Here, Rnw is the average client rate of Dutch savings accounts similar to that of Allianz.

DNB provides this on a monthly basis and I transform it into a daily series with cubic

spline interpolation. Secondly, the spread is divided by the level of the nationwide client

rate to obtain the relative spread,

Srel =
S

Rnw
. (5)

The spread itself can also be used as a measure, but it does not discriminate between

periods with different nationwide client rates, while the relative spread does. In periods

with a low nationwide client rate, a spread of a certain magnitude is larger in percentage

terms, and thus more attractive. The advantage of the (relative) spread over the rank

score is that the measure accounts for the magnitude of the difference, and the data is

more easily accessible.

3.3.3 Comparison

Another company, MoneyView, was kind enough to supply me with the weekly rank

(not the client rate) of all Dutch banks. I transformed the rank to the rank score and

used cubic spline interpolation to obtain daily data, so that I was able to compare the

rank score with the (relative) spread. Together with the client rate of product #1 and

the nationwide client rate, they are depicted in Figure 3 and the statistical properties

of the measures are shown in Table 3.

First of all, note that the client rate of a given day is mostly the same as the day

before. Just nine negative changes occur in the entire sample. Hence, the client rate is

not able to explain the volume increase in early 2010.

On the other hand, the three measures, the spread, relative spread, and rank score,

do show an increase in early 2010, which makes them potentially valuable as explanatory
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Figure 3: Time series of the client rate of product #1 (blue, left y-axis), nationwide client rate

(red, left y-axis), spread (green, left y-axis), relative spread (black, right y-axis), and rank score

(cyan, right y-axis). The sample period runs from December 19, 2008 to March 28, 2013 (1115

observations).

Table 3: Summary statistics for the client rate (Rcl), rank score, spread (S) and relative spread

(Srel). The first order autocorrelation is designated with ρ1. The sample period runs from

December 19, 2008 to March 28, 2013 (1115 observations).

Rcl Rank score S Srel

Mean 0.0227 0.4618 0.0002 0.0074

Median 0.0200 0.4070 -0.0002 -0.0085

Minimum 0.0160 0.0958 -0.0047 -0.2155

Maximum 0.0320 0.9928 0.0081 0.3689

Std. Dev. 0.0049 0.2662 0.0035 0.1590

Skewness 0.6663 0.4439 0.5857 0.5978

Kurtosis 2.0235 2.0971 2.3024 2.3080

ρ1 0.9994 0.9997 0.9989 0.9988

20



variable. Just like the client rate, the measures have a very high first order autocorre-

lation. Further, the distributions have a fairly low kurtosis (2.1 to 2.3), which means

that they are relatively flat, compared to a normal distribution. The positive skewness,

indicates a somewhat longer right tail and more mass on the left side of the distribu-

tion. Possibly, the bank attracts consumers with a very attractive client rate for a short

period of time, and thereafter sets a less attractive client rate for a longer time period.

The nine client rate reductions are clearly visible in the three measures. Although,

the third decrease, at February 1, 2010, seems not to be present in the rank score.

Either, this decrease had simply no impact on the rank score, which is not likely, or the

client rate reduction is not observed.

Despite the different construction of the spreads and the rank score, the time series

of the measures are very similar, not taking into account the scaling. The correlation

between the rank score and the spread is 0.95, the correlation between the rank score

and the relative spread is 0.96, and the correlation between the spreads is even 0.99.

Concluding, we can create several logical measures, which increase in the same period

that the volume increases sharply. The rank score only puts the client rates in the

correct order, whereas the (relative) spread does also account for the magnitude of the

difference. The relative spread even considers different nationwide client rate regimes.

Also from a practical point of view, the (relative) spread is more attractive than the rank

score. For the latter, sufficient historical data is not present, which makes it difficult

to formulate adequate models, and the collection and processing of future data is more

labour intensive. However, the similar statistical properties and the high correlations,

show that the three measures are not that different after all. Taking into account all

factors, the relative spread is the best option and it will be used further on in this

research.

4 Methods and results

Section 2 shows that the framework provides the best basis for dividing the deposit

volume in buckets. Its simulations make the method robust and forward looking and in

combination with the liquidity constraint or VaR, the magnitude and maturity of the

buckets can easily be determined.

The framework to create these simulations consists of several modules for important

variables. The modules for the deposit volume, yield curve, nationwide client rate,

nationwide deposit volume and the client rate of Allianz are discussed in Section 4.1 to

4.5 respectively. The Allianz client rate has a special purpose and serves as an input

variable to observe the effect of different client rate regimes on the buckets. The models
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of Section 4.1 to 4.5 are combined in Section 4.6 to create simulations. Also the creation

of buckets with VaR and the liquidity constraint of Bardenhewer (2007) is discussed.

The final model is evaluated in Section 4.7 by comparing the buckets with the buckets

of an alternative and much simpler model, the random walk.

4.1 Deposit volume model

The deposit volume model consists of separate submodels for the deposits, the with-

drawals and the accrued interest payoffs. This section describes the construction of

these submodels and the influence of important variables.

4.1.1 Deposits and spread

The relation between the relative spread (Srel) and the transformed deposits (Dtr) as

discussed in Section 3.3 can be captured with

Dtr = c+ βs · Srel · f (Srel) + ε. (6)

Here, f(Srel) is a function of the relative spread. For example, with f(Srel) = 1, (6)

becomes a simple linear model, but also more advanced models can be implemented.

Inspection of the time series and scatter plot in Figure 4 gives more context to the

relation between the relative spread and the transformed deposits and enables us to

specify a correct form for f(Srel). The figure contains evidence for a positive relation

between both, just as outlined in the previous sections, but only when the relative

spread is higher than about 0.1. For a relative spread below 0.1, no relation is present

at all. Apparently, for some consumers the client rate is more or less irrelevant and they

deposit money no matter what the relative spread is. Other clients are more selective

and they only deposit money when the relative spread is high. Only for the latter clients

a positive relation with the relative spread exists. Also, note that the positive relation

becomes more volatile for an increasing spread.

At least two approaches exist to incorporate this ambiguous relation in the model in

(6) for the transformed deposits. Namely, a simple threshold,

f (Srel) = 1[Srel>βth], (7)

and a logit threshold,

f (Srel) =
exp (βm (Srel − βth))

1 + exp (βm (Srel − βth))
. (8)

In (7), 1[A] is the indicator function, which is 1 if A holds, and 0 otherwise. The logit

threshold in (8) is less strict than (7) and can also attain values between 0 and 1. It

can be seen that (7) is actually nested in (8). If βm goes to infinity, (8) converges to the

22



.00

.05

.10

.15

.20

.25

.30

.35

-.3

-.2

-.1

.0

.1

.2

.3

.4

IV I II III IV I II III IV I II III IV I II III IV I

2009 2010 2011 2012 2013

(a) .00

.05

.10

.15

.20

.25

.30

.35

-.3 -.2 -.1 .0 .1 .2 .3 .4

(b)

Figure 4: Panel (a) shows a time series of the transformed deposits (blue, left y-axis) and the

relative spread (red, right y-axis) and panel (b) shows a scatter of the relative spread (x-axis)

and the transformed deposits (y-axis).

simple dummy in (7). So, when βm is large, the difference between both approaches is

marginal, and it might be better to use the simple dummy, because it uses one parameter

less. On the other hand, many regressions are used to estimate the value of βth in (7),

whereas for (8) just a single regression is sufficient, which makes it more practical. In

Section 4.1.4, models are estimated with (7), (8) and f(Srel) = 1.

For the relation with the transformed withdrawals, we can expect a similar but

opposite behaviour. Some clients might not care about what the relative spread is and

withdraw money any time. Other clients withdraw more money when the client rate is

unattractive, and vice versa. For these clients a negative relation can be expected with

the relative spread and possibly even a similar ambiguous relation as for the transformed

withdrawals. In that case, βs should be negative and βm and βth more or less equal to

that of the deposit model.

4.1.2 Client rate adjustment

Besides the differences in the level of the client rate of Allianz and competitive banks,

an extra effect might be present when a bank changes its client rate. In this research

only a client rate adjustment of Allianz is considered, because client rate data of other

individual banks is not available.

Consider the case where Allianz reduces its client rate. This degrades the competi-

tive advantage, and assuming that the other characteristics remain the same, a logical
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consequence would be a drop in the deposit volume, caused by an increase in with-

drawals. However, not all clients might be aware of the reduction or may be in the

position to withdraw money immediately. As a result, money is still withdrawn some

days after the client rate reduction. The above scenario, a shock in the transformed

withdrawals (Wtr) that (slowly) dies off, can be captured by an exponential decline,

Wtr = c+ βed · exp (βj · j) + ε. (9)

Note that a lower client rate is also incorporated in the relative spread, but the latter

variable does not capture the shock of the client rate decline. In this equation, j stands

for the number of days since the last client rate reduction and it is zero on days that

a new client rate is effective for the first time. To comply with the outlined scenario

above, βed must be positive and βj must be negative. Additionally, ln(0.5)βj
indicates after

how many days only 50% of the initial shock in the transformed withdrawals is left. I

will refer to this as the half life time. A reasonable value for the half life time ranges

from a few days to weeks, but not months or even years.

For clarity, I examine the client rate reductions of April and December 2010, which

have a clear impact. Figure 5 shows the exponential decline of (9) fitted on the trans-

formed withdrawals of April 28, 2010 to April 21, 2011 (257 days). The estimated values

for c, βed and βj are respectively 0.164, 0.048 and −0.050, all having a p-value of 0.000.

The estimated coefficients are intuitive in the sense that βed is positive and βj is nega-

tive and corresponds to a half life time of about 14 days, which is quite long but still

acceptable.

The exponential decline model can be complemented with two additional variables.

To start with, the level of the relative spread before alteration (Srel,ba) might be used

as a threshold. For the same reason that the relative spread only affects customers

above some threshold, a decline might only have effect if the previous spread was above

a certain level. Secondly, the difference in the relative spread before and after the

client rate change, the drop of the relative spread (Srel,dr), can be used to modify the

magnitude of the shock. The reasoning behind this variable is that larger declines have

a greater effect. With these additions in their simplest form, (9) becomes

Wtr = c+ βed · 1[Srel,ba>τba] · Srel,dr · exp (βj · j) + ε, (10)

where τba is the threshold. However, since only nine client rate reductions take place in

the entire sample period, also only nine different observations are available for Srel,ba and

Srel,dr. This makes it hard to estimate a relation, as will become clear in Section 4.1.4.

Besides, the clients that leave the bank and withdraw their money, also no longer

deposit their money. The withdrawal of their entire wealth is quite noticeable as can

be seen in Figure 5. However, assuming that the regular deposits only involve a small
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Figure 5: A time series of the transformed withdrawals (red), together with a fitted exponential

decline (green) as in (9). The sample period runs from April 28, 2010 to April 21, 2011 (257

days).

percentage of their wealth, the discontinuation of the regular deposits has a marginal

influence. Therefore, it is not necessary to include a variable that accounts for a client

rate reduction in the model for the transformed deposits. A simplified numerical example

in Appendix C illustrates this.

Besides a client rate reduction, a client rate increase might as well take place. The effect

of a client rate increase might be visible as a positive shock in the deposits, because new

consumers join the bank. However, consumers who are not (yet) a client of the bank, do

not receive a notification of this increase. Furthermore, they need to monitor the client

rate of many banks, and not just a single one. It is therefore likely that the consumers

react slower compared to the decline in client rate. On the other hand, consumers that

want to switch are likely to switch immediately when they note the increase. Concluding,

an exponentially declining positive shock might be present in the deposits. Compared

to the client rate decline shock in the withdrawals, the initial effect might be delayed

and the half life time somewhat longer. Additionally, the relative spread after alteration

and the magnitude of the change might be valuable.

Similar to the fact that a client rate reduction barely influences the deposits, a client

rate increase is not likely to influence the withdrawals much. Customers that were
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already satisfied with the former and lower client rate, are certainly content with the

new one. Unfortunately, I am not able to verify these relations, because there is no

client rate increase present in the sample period.

4.1.3 Nationwide deposit volume

Lastly, I consider the change of the nationwide deposit volume to be an important

variable. Every change in the deposit volume of a nation comes from changes in the

total deposit volume of all individual banks together and vice versa. Assuming that the

percentage change in the nationwide volume can be attributed to each account of every

individual client equally, each individual bank should experience the same percentage

change. This assumption is somewhat simplistic and banks with the best characteristics

will experience a lesser decline or a firmer increase than the nationwide average. Still, the

deposits of every single bank are likely to be positively correlated with the log difference

of the nationwide deposit volume (∆vnw) and the withdrawals negatively.

4.1.4 Estimation

Table 4 shows several models (A to F) for the transformed deposits (Dtr) of savings

product #1. Besides the estimated coefficients, with p-values in parentheses, also the

R2, the SIC and the Log-Likelihood (LogL) are included to compare the models on their

(adjusted) goodness of fit.

Model A is the most basic variant, which includes just a constant (c), a dummy for

national holidays for which deposits are not available (Dna), and the relative spread

(Srel). The coefficients are significant and yield the correct sign. The R2 is relatively

high, given the simplicity, but a comparison with model B shows the shortcomings of

estimation with Ordinary Least Squares (OLS). Model A is identical to B, except for the

fact that the latter accounts for heteroskedasticity with the GARCH variance estimator,

ht = ω + α · ε2t−1 + β · ht−1 + γ · 1[Srel,t>0.170], (11)

without the γ part. The GARCH terms are highly significant and the SIC and LogL

values show that model B is better in terms of adjusted goodness of fit. This leads to

the conclusion that the coefficients and significance of model A might be wrong, which

seems particularly true for the coefficient of the relative spread. The GARCH variance

estimator is also used for the other models, because heteroskedasticity is clearly present.

In addition to the former models, C includes the log differences of the nationwide

deposit volume (∆vnw). The positive sign confirms the hypothesis that it correlates pos-

itively to the transformed deposits. However, the variable is only marginally significant

on the 90% confidence level and not on the 95% level. The evaluation criteria are not
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Table 4: Estimated coefficients with p-values in parentheses for regressions of the transformed

deposits (Dtr) of savings product #1. The explanatory variables from top to bottom are a

constant (c), a dummy for days with no deposits (Dna), the log difference of the nationwide

deposit volume (∆vnw), the relative spread (Srel), and βm and βth belong to the threshold

relation in (7) and (8). Row seven to ten contain the estimates of the GARCH parameters of

(11). The bottom section displays the R2, SIC and LogL value for evaluation. The sample

period runs from December 19, 2008 to March 28, 2013 (1115 days).

A B C D E F

c 0.152
(0.000)

0.146
(0.000)

0.145
(0.000)

0.140
(0.000)

0.140
(0.000)

0.140
(0.000)

Dna −0.149
(0.000)

−0.141
(0.000)

−0.141
(0.000)

−0.145
(0.000)

−0.144
(0.000)

−0.145
(0.000)

∆vnw 0.093
(0.092)

0.137
(0.003)

0.147
(0.001)

0.155
(0.001)

Srel 0.131
(0.000)

0.069
(0.000)

0.064
(0.000)

0.160
(0.000)

0.161
(0.000)

0.171
(0.000)

βm 388.3
(0.487)

388.3
(0.474)

βth 0.128 0.127
(0.000)

0.127
(0.000)

ω
[
×10−5

]
2.891
(0.000)

2.665
(0.000)

2.936
(0.000)

2.814
(0.000)

4.370
(0.000)

α 0.105
(0.000)

0.101
(0.000)

0.105
(0.000)

0.104
(0.000)

0.092
(0.000)

β 0.839
(0.000)

0.847
(0.000)

0.834
(0.000)

0.838
(0.000)

0.791
(0.000)

γ
[
×10−4

]
1.306
(0.013)

R2 0.523 0.442 0.447 0.592 0.593 0.602

SIC −4.266 −4.742 −4.738 −4.810 −4.800 −4.808

LogL 2389 2665 2666 2706 2708 2716
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unanimous on whether or not it improves the model, but model D to F show that the

variable becomes more significant for more advanced models.

Model D and E incorporate the threshold relation with the relative spread that is

discussed in Section 4.1.1. Model D uses the simple dummy in (7), with a threshold value

of 0.128. This threshold is chosen from a range of values (0 to 0.3) with steps of 0.001,

because it results in the highest Log Likelihood value. Due to the fixed value in each of

the 301 regressions, the p-value is not available. The threshold (βth) of model E relates

to (8) and is estimated in a single regression. The p-value of the βm-coefficient indicates

that the estimated value is not significantly different from zero. However, the βm value

of model D is actually ∞ and combined with the almost identical βth-coefficient, the

threshold relation of both models is about the same. This gives confidence that model

E is estimated correctly. Also the other coefficients and the evaluation criteria of both

models are similar. Model E is not significantly better than model D, but from a practical

perspective it is more convenient to use model E. It is more flexible in the estimation

and every coefficient can be estimated in a single regression, whereas 301 regressions are

needed to determine the threshold for model D.

The last model for the deposits includes an extra variance parameter as in (11),

to reflect the extra uncertainty when the relative spread is above 0.170. This extra

uncertainty is already mentioned in Section 4.1.1 and stems from Figure 4b. The value

of 0.170 is chosen, because it results in the highest Log Likelihood value when varying

the threshold between 0 and 0.3 with steps of 0.001. The coefficient is positive and

significant, which confirms the hypothesis of extra uncertainty, and it also improves the

model significantly. Model F will be used in the simulation.

Similarly, the estimation results for the transformed deposits (Dtr) of savings product

#2 are shown in Table 5. As can be seen in Section 3, savings product #2 offers a

far less attractive client rate than savings product #1, and as a consequence, many

variables that are discussed in the previous sections are not valuable for this model.

For example, the threshold relation between deposits and the relative spread. People

that are interested in a high client rate, and thus a high relative spread, will deposit

in savings product #1 and not in #2, because the client rate of the latter is always

50 basis points lower. Additionally, the models for product #2 include a dummy for a

single outlier (Dol) that is caused by the discontinuation of an investment fund.

Model E, F and G, are the models with a threshold and confirm that it is indeed

not valuable. The threshold of model E is determined by testing a range of values,

and thresholds smaller than −0.450 all result in the same maximum likelihood. In

perspective, the minimum value of the relative spread in this sample is −0.446. So, the

dummy is effectively always 1, which is the reason why the coefficients are exactly the
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Table 5: Estimated coefficients with p-values in parentheses for regressions of the transformed

deposits (Dtr) of savings product #2. The explanatory variables from top to bottom are a

constant (c), a dummy for a single outlier (Dol), a dummy for days with no deposits (Dna), the

log difference of the nationwide deposit volume (∆vnw), the relative spread (Srel), and βm and

βth belong to the threshold relation in (7) and (8). Row eight to ten contain the estimates of

the GARCH parameters of (11) without the γ-part. The bottom section displays the R2, SIC

and LogL value for evaluation. The sample period runs from December 19, 2008 to March 28,

2013 (1115 days).

A B C D E F G

c 0.123
(0.000)

0.123
(0.000)

0.123
(0.000)

0.123
(0.000)

0.123
(0.000)

0.117
(0.000)

0.117
(0.000)

Dol 0.181
(0.000)

0.180
(0.705)

0.181
(0.000)

0.181
(1.000)

0.181
(0.000)

0.187
(0.000)

0.187
(0.999)

Dna −0.117
(0.000)

−0.117
(0.000)

−0.117
(0.000)

−0.117
(0.000)

−0.117
(0.000)

−0.117
(0.000)

−0.117
(0.014)

∆vnw 0.015
(0.772)

0.020
(0.700)

Srel 0.025
(0.000)

0.025
(0.000)

0.025
(0.000)

0.025
(0.000)

0.025
(0.000)

0.089
(0.000)

0.093
(0.000)

βm 456.4
(0.899)

456.4
(0.912)

βth −0.450 0.038
(0.044)

0.038
(0.171)

ω
[
×10−4

]
6.695
(0.040)

1.875
(0.606)

1.814
(0.333)

α 0.020
(0.320)

0.013
(0.476)

0.029
(0.207)

β −0.502
(0.474)

0.572
(0.481)

0.576
(0.170)

R2 0.498 0.498 0.498 0.498 0.498 0.488 0.488

SIC −4.835 −4.816 −4.841 −4.822 −4.841 −4.808 −4.790

LogL 2713 2713 2713 2713 2713 2701 2702

29



same as of model C. Model F and G are estimated with the logit threshold variable in

(8) with OLS and GARCH respectively. The LogL values are worse than that of all

other models and it is therefore not valuable to include the threshold relation.

Furthermore, the GARCH parameters in model B, D and G are far from significant

and sometimes even negative. From model A and B it appears that also the log difference

of the nationwide volume cannot contribute to the model. The fact that this variable is

significant for product #1 corresponds with the assumption that more attractive savings

products have a stronger relation with this variable. Model C has the best overall

statistics, the best SIC value and significant coefficients; this model will therefore be

used in the simulation.

Table 6 shows the estimation results for the transformed withdrawals (Wtr) of savings

product #1. Model A and B contain the same variables, but A is estimated with OLS

and B with the GARCH variance estimator. The estimated coefficients of both methods

are very much alike, and the sign of the coefficients corresponds with the expectations.

In addition to the previously explained variables, a dummy for Mondays (Dmon) is

included. On these days, more withdrawals take place, because they are postponed

from the weekend. A similar dummy variable is not included in the deposits model,

because there it yields the wrong sign. Despite the strong similarities between A and B,

the LogL values and the high significance of the GARCH parameters indicate that it is

better to estimate with a GARCH model.

In addition to A and B, model C contains the basic exponential decline as in (9).

The addition of this variable is worthwhile, because the LogL value indicates a large

improvement. Moreover, the coefficients are significant and their sign corresponds with

the expectation. The βj-coefficient corresponds with a half life time of three working

days, which is on the short side but credible.

The threshold relation as discussed in Section 4.1.1, is captured with (7) and (8) in

model D and E respectively. The βth-coefficient of D is chosen from a range of values

(0 to 0.3) with steps of 0.001, because it gives the highest Log Likelihood value. The

estimated coefficients of both models are virtually identical. The reason for this is the

very large value of the βm-coefficient in model E. A βm-coefficient of ∞ corresponds

with the simple dummy of (7) as in model D. The fewer parameters in D result in a

lower SIC value, but the fit is practically identical given the R2 and LogL value. From

a practical point of view, it is easier to use the logit relation of E as in (8), because it

can be estimated with one regression. That is also why it is used to estimate a more

advanced exponential decline.

As described in Section 4.1.2, the exponential decline can be complemented with

the level of the relative spread before alteration (Srel,ba) as a threshold, and the mag-

30



Table 6: Estimated coefficients with p-values in parentheses for regressions of the transformed

withdrawals (Wtr) of savings product #1. The explanatory variables from top to bottom are

a constant (c), a dummy for days with no withdrawals (Dna), a dummy for Mondays (Dmon),

the log difference of the nationwide deposit volume (∆vnw), βed to βj belong to the exponential

decline as in (9) and (10), the relative spread (Srel), and βm and βth belong to the threshold

relation in (7) and (8). Row thirteen to fifteen contain the estimates of the GARCH parameters of

(11) without the γ-part. The bottom section displays the R2, SIC and LogL value for evaluation.

The sample period runs from December 19, 2008 to March 28, 2013 (1115 days).

A B C D E F G H

c 0.162
(0.000)

0.162
(0.000)

0.162
(0.000)

0.164
(0.000)

0.164
(0.000)

0.165
(0.000)

0.157
(0.000)

0.157
(0.000)

Dna −0.164
(0.000)

−0.164
(0.000)

−0.164
(0.000)

−0.165
(0.000)

−0.165
(0.000)

−0.165
(0.000)

−0.164
(0.000)

−0.163
(0.000)

Dmon 0.018
(0.000)

0.019
(0.000)

0.019
(0.000)

0.019
(0.000)

0.019
(0.000)

0.019
(0.000)

0.018
(0.000)

0.018
(0.000)

∆vnw −0.259
(0.000)

−0.271
(0.000)

−0.314
(0.000)

−0.284
(0.000)

−0.284
(0.000)

−0.303
(0.000)

−0.095
(0.045)

−0.086
(0.070)

βed 0.019
(0.000)

0.019
(0.000)

0.019
(0.000)

βed · Srel,dr −0.250
(0.000)

βed · 1[A] 0.016
(0.000)

βed · Srel,dr
· 1[A]

−0.159
(0.000)

βj −0.225
(0.010)

−0.186
(0.008)

−0.186
(0.008)

−0.130
(0.001)

−0.004
(0.001)

−0.004
(0.001)

βs −0.010
(0.013)

−0.011
(0.000)

−0.011
(0.002)

−0.036
(0.000)

−0.036
(0.000)

−0.040
(0.000)

−0.054
(0.000)

−0.049
(0.000)

βm 1125
(0.952)

189.0
(0.782)

800.6
(0.922)

2408
(0.970)

βth 0.103 0.103
(0.000)

0.100
(0.001)

0.090
(0.000)

0.097
(0.001)

ω
[
×10−5

]
2.135
(0.000)

1.633
(0.000)

1.427
(0.000)

1.427
(0.000)

1.196
(0.000)

1.541
(0.000)

1.733
(0.000)

α 0.103
(0.000)

0.106
(0.000)

0.089
(0.000)

0.089
(0.000)

0.082
(0.000)

0.071
(0.000)

0.072
(0.000)

β 0.840
(0.000)

0.852
(0.000)

0.872
(0.000)

0.872
(0.000)

0.886
(0.000)

0.882
(0.000)

0.875
(0.000)

R2 0.585 0.585 0.592 0.606 0.605 0.609 0.636 0.637

SIC −5.076 −5.143 −5.147 −5.173 −5.160 −5.166 −5.214 −5.212

LogL 2848 2895 2905 2919 2919 2919 2946 2945
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nitude of the drop of the relative spread (Srel,dr) as a multiplier. Only nine client rate

reductions are present in the sample, so many thresholds (0.062 to 0.107) result in the

same maximum likelihood. The mean value is used in the estimation so, 1[A] in Ta-

ble 6 corresponds with 1[Srel,ba>0.085]. Model F and G include the additional variables

individually and model H combines them. The sign of the exponential decline in model

F becomes negative, but this is due to the negative values in the drop of the relative

spread. Although, the LogL value of model G and H show a large improvement, the half

life time that corresponds with the βj-coefficient is far from credible, namely about six

months. The half life time of model F corresponds with about five working days, which

is certainly credible. However, there is only a marginal and non-significant improvement

from E to F, so I use model E for the simulation. The statistics of D are actually better

than E, but E is more practical and flexible in the estimation.

Table 7 reports the estimation results for the transformed withdrawals (Wtr) of savings

product #2. Because this product is far less attractive, the threshold relation and the

exponential decline are not included in this model. Clients who are sensitive for changes

in the client rate, do not invest in a product with a client rate that is 50 basis points

lower. The remaining variables are used in every possible combination, estimated with

OLS as well as with the GARCH variance estimator.

To start with, model A, B, E and F include the log difference of the nationwide de-

posit volume. This variable is expected to be negatively correlated with the withdrawals,

but here the estimated coefficients are positive. This is not intuitive and therefore the

variable should be excluded. The effect of the relative spread is very small, and far less

than in the previous withdrawal and deposit models. Moreover, it is far from significant

and thus also this variable should not be included. What remains is a very simple model,

with just two dummies and a constant. The evaluation criteria of the GARCH variant

are better than that of the OLS model, although the estimates of both models are al-

most identical. Additionally, the α and β parameter of the GARCH model are highly

significant and the ω just not on the 95% confidence level, so model H, the GARCH

variant, will be used in the simulation.

Lastly, the accrued interest payoffs should be modelled; these are not included in the

deposits model. I multiply the client rate with the deposit volume of each day, and

because money cannot be transferred in the weekends, each Friday is multiplied with
3

365 and other days with 1
365 . The calculated accrued interest should match the real

accrued interest. Since the data sample runs from December 19, 2008, the accrued

interest over 2008, that is paid out in 2009, cannot be determined. A regression of the

real accrued interest on the calculated accrued interest of the other four years, results in

a coefficient of 0.990. With a standard deviation of 0.001, this is significantly different
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Table 7: Estimated coefficients with p-values in parentheses for regressions of the transformed

withdrawals (Wtr) of savings product #2. The explanatory variables from top to bottom are

a constant (c), a dummy for days with no deposits (Dna), a dummy for Mondays (Dmon), the

log difference of the nationwide deposit volume (∆vnw), and the relative spread (Srel). Row

six to eight contain the estimates of the GARCH parameters of (11) without the γ-part. The

bottom section displays the R2, SIC and LogL value for evaluation. The sample period runs

from December 19, 2008 to March 28, 2013 (1115 days).

A B C D E F G H

c 0.130
(0.000)

0.131
(0.000)

0.134
(0.000)

0.133
(0.000)

0.133
(0.000)

0.133
(0.000)

0.134
(0.000)

0.134
(0.000)

Dna −0.136
(0.000)

−0.135
(0.000)

−0.135
(0.000)

−0.135
(0.001)

−0.136
(0.000)

−0.135
(0.001)

−0.135
(0.000)

−0.135
(0.001)

Dmon 0.004
(0.002)

0.004
(0.003)

0.004
(0.002)

0.004
(0.003)

0.004
(0.002)

0.004
(0.002)

0.004
(0.002)

0.004
(0.003)

∆vnw 0.157
(0.000)

0.106
(0.025)

0.102
(0.007)

0.058
(0.150)

Srel −0.010
(0.021)

−0.007
(0.092)

−0.002
(0.606)

−0.002
(0.553)

ω
[
×10−5

]
2.659
(0.094)

2.768
(0.068)

2.734
(0.078)

2.606
(0.064)

α 0.038
(0.008)

0.043
(0.005)

0.042
(0.005)

0.044
(0.004)

β 0.886
(0.000)

0.879
(0.000)

0.881
(0.000)

0.883
(0.000)

R2 0.456 0.455 0.450 0.449 0.453 0.452 0.449 0.449

SIC −5.075 −5.070 −5.070 −5.072 −5.077 −5.073 −5.076 −5.078

LogL 2847 2854 2841 2852 2844 2853 2841 2852
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from the ideal value 1. The difference between the estimated and real series comes from

clients who terminate their account during the year, and receive their accrued interest

earlier. Despite the difference, the accrued interest that is used for the simulation, is

determined as above.

4.2 Yield curve

This section presents the yield curve module, which is mostly based on the work of

Diebold and Li (2006). I follow the steps of their research to show that my data is

comparable and so that I can use their method. Then the Kalman filter is introduced,

as a more advanced and accurate estimation method, for which Hamilton (1994), Kim

and Nelson (1999) and De Pooter (2007) are used.

As has been stated in the literature section, there are many approaches to model

and simulate the yield curve. An advantage of the Nelson-Siegel model over the others

is that it poses structure on the loadings, which can be identified with the level, slope

and curvature of the yield curve.

4.2.1 Data

The data used to replicate the approach of Diebold and Li (2006) comes from DNB and

Bloomberg. It consists of end-of-month yields of 1, 3 and 6-month Euribor rates and

1, 2, 3, 5, 10 and 30-year Euro Swaps over the period of January 2003 to March 2013

(123 months). The yields of more maturities are available, but there is a discrepancy

between the 12-month Euribor rate and the 1-year Euro Swap. In order to have a yield

curve that can be fitted correctly, I include just these yields. It would be even better to

use either Euribor rates or Euro Swaps, but the former only exist for the short end of

the yield curve and latter only for the long end.

Occasionally, yields become marginally negative, such as the yield of Dutch 3-month

government bonds during the summer of 2013, but generally it can be assumed that

yields are non-negative. The data used for this research, does not violate that assump-

tion. To prevent future yield curve simulations from becoming negative, the initial

yields are transformed with the natural logarithm. These yields will be referred to as

transformed yields. They are transformed back after the simulation, which results in

simulated yields that are non-negative.

Table 8 contains the mean, standard deviation and 1, 12 and 30-month autocorrela-

tion of the transformed yields and it shows that most stylized facts of a yield curve are

present. Namely, the mean shows that the average yield curve is increasing, high au-

tocorrelations show that the yield dynamics are persistent and the standard deviations

show that the long end of the yield curve is less volatile than the short end. However,
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Table 8: The mean, standard deviation and 1, 12 and 30-month autocorrelation of the trans-

formed yields. Maturities are given in months.

Maturity Mean Std. Dev. ρ1 ρ12 ρ30

1 -4.261 1.015 0.964 0.376 0.320

3 -4.075 0.818 0.964 0.376 0.235

6 -3.942 0.663 0.963 0.386 0.152

12 -3.904 0.649 0.962 0.425 0.197

24 -3.814 0.601 0.956 0.459 0.252

36 -3.720 0.546 0.954 0.464 0.265

60 -3.565 0.430 0.950 0.458 0.263

120 -3.361 0.285 0.946 0.468 0.240

360 -3.258 0.246 0.950 0.516 0.259

the table does not confirm that the long end is more persistent than the short end,

because ρ30 does not increase for longer maturities. Though, the last stylized fact does

hold for the untransformed yields.

4.2.2 Diebold and Li

To represent the yield curve, Diebold and Li (2006) use the following three-factor Nelson-

Siegel model,

yt(τi) = β1t + β2t

(
1− e−λtτi
λtτi

)
+ β3t

(
1− e−λtτi
λtτi

− e−λtτi
)

+ εi,t, (12)

where yt is the bond yield with maturity τi in months, and β1t, β2t, β3t, and λt need to

be estimated. Diebold and Li (2006) assume that λt is constant over time, so that only

the beta’s need to be estimated. The fixation of λt greatly simplifies the estimation,

because all loadings become constant, and the factors (β1t, β2t, β3t) can then easily be

estimated with OLS. There is no consensus on the value of λt in the literature. Diebold

and Li (2006) suggest to choose it such that the loading of the factor β2t achieves its

maximum at a maturity of 30 months. In that case, the correct value of λt is 0.0598.3

The time series of the factors (β1t, β2t, β3t) in (12) are estimated by OLS, with

0.0598 for all λt. Diebold and Li (2006) show that the factors are closely related to

the level (lt), slope (st) and curvature (ct). Throughout the literature, the level is

defined as the constant 1, but there is some variation in the definition of the slope and

curvature. My definition of the slope and curvature is equivalent to that of Diebold and

3Diebold and Li (2006) use 0.0609 for λt, but this maximizes the loading for β2t at approximately

29.45 months.
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Li (2006) in the sense that the former is defined as the yield of the longest maturity

minus the shortest maturity in the data set. Similarly, the curvature is constructed as

twice the yield of the median maturity, minus the yield of the longest and the shortest

maturity. The correlation between (β1t, lt), (β2t, st), and (β3t, ct) is 0.98, −0.99, and

0.99 respectively, which is comparable to Diebold and Li (2006) who find 0.97, −0.99,

and 0.99 respectively. For a more detailed elaboration on the factors (β1t, β2t, β3t) and

the level, slope and curvature I refer to their work.

Then, Diebold and Li (2006) use OLS to estimate an AR model for each factor. It

is also possible to use a vector autoregressive (VAR) model, in which case the factors

are also dependent on the lag of the other two factors. This is beneficial if the cross-

correlation between all factors is high. However, that is not the case. Moreover, a

VAR model is more complicated to estimate due to the larger number of parameters.

Additionally, this might result in overfitting and consequently poor forecasts. Table 9

shows the estimated coefficients for the AR(1) model,

βi,t = ci + φi · βi,t−1. (13)

The estimated coefficients and p-values in parentheses provide some important insights.

First of all, the AR-coefficient φ2 is larger than one. This is bad, since it stimulates

future β2’s to become bigger and bigger; it diverges. Secondly, the estimated constants

are insignificant. Instead, the value of φ2 should be smaller than one, such that the

series converges to the unconditional mean, which is ci
1−φi . This is also the reason

why a constant must be incorporated in the model, even if it is not significant. The

incorporation of a constant makes sure that the future beta’s converge to a value different

from zero, provided that φi is smaller than 1.

So, for my data set, it is not sufficient to solely use OLS to estimate the AR model for

the factors. De Pooter (2007) uses the Kalman filter, which is a more general estimation

method. It is able to estimate the fixed value for λt and restrictions can be imposed in

the numerical estimation program, such that the AR-coefficient is smaller than 1. Just

like De Pooter (2007), I use the OLS estimates as starting values for the Kalman filter.

4.2.3 Kalman filter

An alternative way of estimating (12) and (13), is to represent both in a state space

model and solve it with the Kalman filter. The Kalman filter is a recursive method

to obtain an optimal forecast of the state vector Bt, using all information up to time

t − 1. Contrary to OLS, which estimates the equations separately, this method does it

simultaneously.

In order to do this, first (12) and (13) are formulated in a state space model, which
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Table 9: Estimated coefficients with p-values in parentheses for the AR(1) model in (13). The

sample period runs from January 2003 to March 2013 (123 months).

i ci φi

1 −0.091
(0.272)

0.974
(0.000)

2 −0.010
(0.603)

1.008
(0.000)

3 −0.040
(0.222)

0.807
(0.000)

consists of a state and a measurement equation. The latter is

Yt = XBt + εt, (14)

which is the matrix notation of (12). Yt is a [9 × 1] vector with yields, X is a [9 × 3]

matrix with the factor loadings and Bt is a [3×1] vector with the factors, (β1t, β2t, β3t)
′.

The state equation

Bt = µ+ ΦBt−1 + νt (15)

is the matrix notation of the AR(1) model in (13), where µ is a [3×1] vector of constants,

(c1, c2, c3)
′, and Φ is a [3× 3] diagonal matrix, with φ1, φ2, and φ3 on the diagonal. The

residual vectors εt and νt are assumed to be independently normally distributed with

mean 0 and variance R and Q respectively,

εt ∼ N (0, R), (16)

νt ∼ N (0, Q), (17)

where R is a [9× 9] diagonal matrix and Q is a [3× 3] diagonal matrix.

For now we assume that the nineteen parameters in Θ(λ, µ,Φ, R,Q) are known. The

state vector, Bt, can then be estimated by:

Bt|t−1 = µ+ ΦBt−1|t−1; (18)

Pt|t−1 = ΦPt−1|t−1Φ
′ +Q; (19)

ηt|t−1 = Yt − Yt|t−1 = Yt −XBt|t−1; (20)

ft|t−1 = XPt|t−1X
′ +R; (21)

Bt|t = Bt|t−1 + Pt|t−1X
′f−1t|t−1ηt|t−1; (22)

Pt|t = Pt|t−1 − Pt|t−1X ′f−1t|t−1XPt|t−1. (23)

To initialize these equations, I use the unconditional mean,

B0|0 = (I − F )−1 µ, (24)
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and the unconditional covariance matrix of the state vector, which is derived in Kim

and Nelson (1999),

vec
(
P0|0

)
= (I − F ⊗ F )−1 vec (Q) . (25)

With the initial values for B0|0 and P0|0, a prediction for time period 1 can be made,

B1|0 and P1|0, and consequently also a prediction of the yield curve, Y1|0. In time period

1, the prediction of the yield curve can be evaluated with the real value, Y1|1, to create

the prediction error, η1|0. In turn, the prediction error is used to adjust the prediction

of the state vector to get a better estimate of the state vector, B1|1, with a better fit of

the yield curve. This recursive process is repeated until every observation in the sample

is used.

However, the parameter set (Θ) is not known in advance and must be estimated as

well. This is done in an iterative process. It starts with the assumption of an initial

parameter set, Θ(0), which is used to run the Kalman filter. Along the way, the prediction

error (ηt|t−1) and the conditional variance of the prediction error (ft|t−1) are created,

which are used to calculate the Log Likelihood,

L =
T∑
t=1

[
−1

2
ln(2π)− 1

2
ln
(
|ft|t−1|

)
− 1

2
η′t|t−1f

−1
t|t−1ηt|t−1

]
. (26)

Then, a new parameter set, Θ(1), is used to repeat this process, with the goal to obtain a

better Log Likelihood. Eventually, it converges to a point where the Log Likelihood does

not become any better, such that you obtain the maximum Log Likelihood parameter

set, ΘML.

With 19 parameters to estimate, it is not a trivial task to find the optimal parameter

set, and the maximum Log Likelihood value might actually be a local maximum instead

of a global maximum. It is therefore advisable to perform the iterative process with a

range of starting parameter sets. Adequate starting parameters are also important from

a time management perspective. Similar to De Pooter (2007), I use many of the OLS

estimates in Θ(0). Furthermore, the iterative process in Matlab is able set upper and

lower bounds, such that the AR-coefficients can be forced to be between 0 and 1.

The Kalman filter obtains −0.270, −0.015, −0.055, 0.915, 0.993 and 0.953 for the

non-zero coefficients in µ and Φ, respectively. These estimates are quite similar to the

OLS estimates with the difference that all AR(1) parameters are smaller than one in

this case. Also the Kalman estimate for λt (0.0591) is close to the value used in the

OLS approach (0.0598).

4.3 Nationwide Client rate

This section describes the module for the nationwide client rate, which is used to create

the relative spread. Two models from the literature will be considered to simulate this
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variable, namely O’Brien (2000) and Paraschiv and Schürle (2010).

An important and interesting phenomenon, that both models aim to capture, is

(upward) client rate stickiness. This means that the (nationwide) client rate reacts

stronger to a decline in the market rate, than to an increase in the market rate. From

the perspective of a bank this makes perfect sense. When the market rate goes down,

banks adjust the client rate in a similar way to prevent losses. On the other hand, when

the market rate goes up, banks can make a little bit more profit by delaying the increase

of the client rate. However, both actions can only be done to some extent. Clients might

switch to another bank if the decrease of the client rate is too rapid or they might invest

in other savings products with a more market conform yield if the increase of the client

rate is too slow.

4.3.1 Data

The data used in this section consists of the previously used yield curve data in Sec-

tion 4.2 and additionally it uses the nationwide client rate that also comes from DNB.

The latter is an end-of-month volume weighted average of the client rates of all Dutch

savings products with a maturity shorter than three months. A similar variable for

savings products with no maturity at all is not available. Equivalent to the yield curve

section, the sample period runs from January 2003 to March 2013 (123 observations)

and the market and nationwide client rate are transformed with the natural logarithm

to prevent negative yields.

4.3.2 Paraschiv and Schürle

Paraschiv and Schürle (2010) construct an AR(1) model for the differences of the na-

tionwide client rate,

∆Rt = κ1 + κ2∆Rt−1 + κ3∆r
short
t−1 + κ4∆r

long
t−1 + κ5ECt−1 + κ6ωt−1 + εt. (27)

Besides the AR specification, this model includes the difference of the 3-month Libor

rate (∆rshortt−1 ), the difference of the 5-year Euro Swap rate (∆rlongt−1 ), an error correction

term (ECt−1), and a threshold variable (ωt−1),

ωt−1 = ωt−11[ωt−1≤τ ]. (28)

Paraschiv and Schürle (2010) include an error correction term, because their nationwide

client rate and 5-year Euro swap rate are cointegrated. The threshold variable makes

it possible to estimate a threshold relation for either the short rate, the long rate or

the error correction term; ωt−1 takes the role of the variable of interest. For example,
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Table 10: Estimated coefficients and corresponding p-values in parentheses of (29). The R2,

SIC and LogL are used for evaluation. The sample period runs from January 2003 to March

2013 (123 observations).

κ2 κ3 R2 SIC LogL

0.499
(0.000)

0.041
(0.013)

0.319 −5.267 313

when it is used for the short rate and ωt−1 is below the threshold (τ), the effect becomes

κ3 + κ6 and otherwise it is just κ3.

When this model is estimated with data from this research, many variables become

insignificant. First of all, all yields are integrated of order 1, but there is no cointegration

relation present. Secondly, none of the combinations of a short Euribor rate with a long

Euro Swap rate is significant. Regressions with either Euribor or Euro swap rates,

show that it is better to use the Euribor rates, because those are significant and the

Euro swaps are not. Also intuitively it makes more sense to include a Euribor rate,

because they have a shorter maturity and that matches better with the contractual

zero maturity of deposits. Also the threshold variable is excluded, because it is only

marginally significant on the 95% confidence level and for extreme values only, such that

it affects just about 2% of the observations. It should affect a large share of the negative

values, so a reasonable value would be close to zero.

After all insignificant variables and incorrect relations are removed, an AR(1) model

for the log differences of the nationwide client rate (∆rnw,t), with the log differences of

3-month Euribor rate (∆y3m,t−1) remains,

∆rnw,t = κ2∆rnw,t−1 + κ3∆y3m,t−1 + εt. (29)

The estimated coefficients with p-values and statistical measures are depicted in Ta-

ble 10. This model still consists of the variables that are most often mentioned in the

literature, an AR(1) model with a short rate, but it is not able to explain (upward)

client rate stickiness.

4.3.3 O’Brien

Another option for the nationwide client rate module is the approach of O’Brien (2000),

who specifies an asymmetric partial adjustment model. The model assumes that the

client rate reverts to an equilibrium rate, which is a function of the 3-month market

rate (Y3m), with a speed that depends on whether the client rate is above or below the

equilibrium rate.

Some minor adjustments are made to the model of O’Brien (2000). Firstly, he
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Table 11: Estimated coefficients and corresponding p-values in parentheses of (30). In model

A, λ− and λ+ can be estimated freely, while model B forces them to be equal. The R2, SIC

and LogL are used for evaluation. The sample period runs from July 2003 to March 2013 (117

observations).

model λ+ λ− ζ1 ζ2 R2 SIC LogL

A 0.419
(0.008)

5.887
(0.001)

0.764
(0.000)

−0.014
(0.000)

0.465 −5.426 327

B 2.638
(0.000)

2.638
(0.000)

0.409
(0.000)

−0.014
(0.000)

0.340 −5.257 315

uses the model for the client rate of many individual banks, but it actually suits the

nationwide client rate better. The former has mostly discrete steps and it changes only

occasionally, whereas the latter can have a variety of step magnitudes and it always

changes. Secondly, O’Brien (2000) models the ordinary difference of the client rate,

whereas I model the log difference to prevent a non-negative nationwide client rate.

Table 11 shows the estimated coefficients, with corresponding p-values in parentheses,

for two specifications of the following model,

∆rnw,t =
(
λ+It + λ− (1− It)

)
(ζ1Y3M,t − ζ2 −Rnw,t−1) + εt, (30)

It =

1, if (ζ1Y3m,t − ζ2 −Rnw,t−1) > 0

0, otherwise.
(31)

In model A, both λ− and λ+ are estimated freely, while model B forces both to be

equal. Model A clearly shows that λ− is significantly larger than λ+, which perfectly

corresponds to the assumption that downward adjustments are made a lot quicker than

upward adjustments. Also, the evaluation criteria show that model A is significantly

better than model B. Compared to the model of Section 4.3.2, model A not only has a

more elegant interpretation, but also the statistical properties are better. The model of

O’Brien will be used in the simulation.

4.4 Nationwide Deposit Volume

This section discusses the module for the log differences of the nationwide deposit vol-

ume, which is used as an explanatory variable for the deposits and the withdrawals.

The data used in this module, the nationwide deposit volume and the nationwide client

rate, come from DNB. Monthly values for both are obtained for the sample period of

January 2003 to March 2013 (123 observations).

The relations between the client rate and the deposit volume are quite different

on a national level than for individual banks. For the latter, generally a higher and
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more competitive client rate corresponds with a higher deposit volume. On a national

level however, the financial situation of a country is important. This is influenced by

monetary and interest rate policies, which aim to have a stable economy with moderate

growth. So, when the economy flourishes and people spend a lot of money, the goal is to

dampen this to some extent. This can be done by a high market rate, with consequently

a high client rate. This stimulates people to save part of their wealth for the future,

instead of spending it all now. Some people might be affected by this policy and save

for later, but the majority does not. As a consequence, the nationwide deposit volume

is low when the nationwide client rate is high.

The other side of the spectrum is a recession. In such a period, people are uncertain

about the future and they are reluctant to spend money. In order to stimulate spending,

governments decrease the market rates and again the client rates follow. It depends on

the insecurity of the consumers, which is related to the severity of the recession, whether

the low client rate has effect. In a recession, when the nationwide client rate is low, it

is likely that the nationwide deposit volume is high.

The level of supply and demand of deposit volume strengthens the effect of the

financial situation. When a lot of people want to deposit money, i.e. a large supply,

banks do not need to be very competitive and it is sufficient to offer a relatively low

client rate, which enforces a lower client rate. Alternatively, when the supply of deposit

money is low, banks need to offer competitive client rates in order to convince consumers

to deposit money with them. This enforces a higher client rate.

Figure 6 shows the negative relation between the nationwide deposit volume and

client rate and Table 12 shows several models for the log differences of the nationwide

deposit volume. Next to the log differences of the nationwide client rate, also dummies

for the months January (Djan) and May (Dmay) are included. In January and May,

consumers have extra money due to the end of the year bonus and holiday allowance,

respectively.

Model A is estimated with OLS and includes a constant which is insignificant. With-

out the constant and estimated with OLS (model B), all coefficients are significant.

When the same model is estimated with a GARCH variance estimator (model C), this

results in the best LogL value, but the dummy for May becomes insignificant, just

like the GARCH ω-coefficient. Without the dummy for May and still estimated with

GARCH (model D), all variables are significant, but even more GARCH parameters

become insignificant. In addition, the LogL value of model D drops to about the same

level of B, and the SIC and R2 drop even more. Thus, model B obtains the best values

for the evaluation criteria and is used in the simulation.
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Figure 6: Panel (a) shows a time series of the nationwide deposit volume (blue, left y-axis) and

the nationwide client rate (red, right y-axis). The left y-axis is in trillions (1012) of e . Panel

(b) shows a scatter of the log difference of the nationwide deposit volume (x-axis) and the log

difference of the nationwide client rate (y-axis). The sample period runs from January 2003 to

March 2013 (123 observations).

Table 12: Estimated coefficients and p-values in parentheses for the model of the log difference

of the nationwide deposit volume. The R2, SIC and LogL are used for evaluation. The sample

period runs from July 2003 to March 2013 (117 observations).

A B C D

c −0.001
(0.156)

Djan 0.025
(0.000)

0.024
(0.000)

0.023
(0.000)

0.024
(0.000)

Dmay 0.013
(0.000)

0.012
(0.000)

0.011
(0.143)

∆ ln(rnw,t) −0.200
(0.000)

−0.196
(0.000)

−0.126
(0.002)

−0.147
(0.003)

∆ ln(vnw,t−1) 0.424
(0.000)

0.400
(0.000)

0.341
(0.000)

0.370
(0.000)

ω
[
×10−6

]
2.973
(0.227)

3.821
(0.229)

α 0.159
(0.052)

0.120
(0.120)

β 0.827
(0.000)

0.853
(0.000)

R2 0.596 0.588 0.568 0.529

SIC −6.322 −6.345 −6.410 −6.299

LogL 382 381 392 383
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4.5 Client rate

This section covers the module for the Allianz client rate. Unlike other variables, the

client rate is an internal process, so Allianz has total control over it. Therefore, the

goal of this module is not to estimate a certain relation with external variables, but

to assume a management process that serves as input variable. The real client rate

adjustment process is based on investment valuations, profit perspectives and internal

expert opinion. This research simplifies this process, by assuming that the client rate is

only adjusted to maintain the relative spread in a certain region.

More specifically, the future client rate (Rcl) remains unadjusted, until the relative

spread (Srel) exceeds a lower or upper bound for a given number of days (tn ≥ 1) in

a row. The lower and upper bound are symmetric around a reference point (o) at a

distance of −b and +b respectively. The new value of the client rate is determined

with the simulated nationwide client rate (Rnw) and a rewritten version of (5) and such

that the resulting relative spread is equal to a lower or upper rebound value. Just like

the lower and upper bound, the lower and upper rebound are symmetric around the

reference point (o) at a distance of −br and +br respectively. Here, it must obviously

hold that 0 < br < b. In formula form this yields:

Rcl,T+h =


(1 + o+ br) ·Rnw,T+h if

(∑tn
i=1 1[Srel,T+h−i>o+b]

)
= tn;

(1 + o− br) ·Rnw,T+h if
(∑tn

i=1 1[Srel,T+h−i<o−b]

)
= tn;

Rcl,T+h−1 otherwise;

(32)

where the parameters (o, b, br, tn) are to be determined by the user. Here, 1[A] is the

indicator function, which is 1 if A is true, and 0 otherwise. Further, T is the end of the

sample period, and h > 1 is a number of days in the future.

4.6 Simulation

This section combines the estimated models of Section 4.1 to 4.5 and uses the station-

ary block bootstrap of Politis and Romano (1994) to create 1000 simulations for five

years (1306 days) into the future. The creation of buckets with VaR and the liquidity

constraint of Bardenhewer (2007) is discussed in Section 4.6.1. Section 4.6.2 contains a

simulation example and shows the influence of the client rate model parameters on the

buckets.

The residuals of some models contain autocorrelation, and in order to capture this,

the stationary block bootstrap of Politis and Romano (1994) is used. This procedure

samples blocks of residuals with a varying random length and a random starting value of

the block.4 Additionally, the models based on monthly observations (the yield curve, na-

4Although, the stationary bootstrap only captures the autocorrelation to some extent, it performs
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tionwide client rate and nationwide volume model) use the residuals of identical periods,

in order to account for possible cross-correlation in their residuals.

The simulation starts with the yield curve model, estimated with the Kalman filter

as in Section 4.2.3. Because the Kalman filter uses starting values for B0|0 and P0|0, the

first few estimates might be biased and not close to the real values. For this reason, the

first six observations, which is about 5% of the sample, are not used in the Log Likelihood

computation. This is in accordance with the approach of De Pooter (2007), who also

leaves out 5% of his observations in the determination of the Log Likelihood. The

remaining 117 residual observations in combination with the estimated AR(1) models

are used to simulate future values for the state vector. The simulated state vector in

combination with the Nelson-Siegel model in (12) with τi = 3 months and λt = 0.0591

and the corresponding residuals are used to simulate the 3-month yield. Other yields

can be constructed as well, but only the 3-month yield is used in the nationwide client

rate model.

Thereafter, model A of Table 11 and model B of Table 12 are used to create the na-

tionwide client rate and nationwide log volume difference simulations respectively. Note

that these models are also estimated with 117 observations, while 123 observations are

available, to incorporate the cross and autocorrelation correctly. Lastly, the monthly

simulations are transformed into daily simulations with cubic spline interpolation, sim-

ilar to how they were transformed for the estimation of the models.

Then, the end user specifies the parameters (o, b, br, tn) of the client rate model,

as outlined in Section 4.5. Together with the 3-month market rate simulation, this

results in the relative spread and client rate. The chosen models from Table 4 to 7

use the simulated relative spread and the other explanatory variables to construct the

transformed deposits (Dtr) and withdrawals (Wtr). In turn these are transformed back

to relative deposits (Drel) and withdrawals (Wrel) with

Drel = exp

(
−1

Dtr

)
. (33)

In order to retrieve meaningful relative deposits and withdrawals, the transformed vari-

ables must be greater than zero. Almost all simulations satisfy this restriction, but

generally a small part
(

6
1306000 ≈ 0.0005%

)
does not. For simulations with increasingly

attractive client rate regimes, this part becomes larger
(

298
1306000 ≈ 0.023%

)
, but still re-

mains relatively small.5 To overcome this problem, negatively simulated transformed

much better than the ordinary bootstrap, simple block bootstrap (non-overlapping blocks) and moving

block bootstrap (overlapping blocks with fixed length). For more details about the stationary bootstrap,

see Politis and Romano (1994).
5Here, 6

1306000
corresponds with o = µ− 1.4σ to o = µ and 298

1306000
corresponds with o = µ+ 1.4σ in

Table 13 respectively.
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deposits and withdrawals are set to zero, such that they represent no (relative) deposits

and withdrawals respectively. Then, the deposit volume (V ), normal deposits (D) and

withdrawals (W ) can be calculated recursively with the last volume observation, and

the relative deposits and withdrawals:

Dt = Drel,t · Vt−1; (34)

Vt = Vt−1 +Dt −Wt = Vt−1 · (1 +Drel,t −Wrel,t). (35)

Also, on the first day of each new year, the (sum of the daily) accrued interest of the

previous year is added to the volume. The daily accrued interest is calculated as the

product of the daily deposit volume and client rate multiplied with 3
365 for Fridays and

1
365 for other days, see Section 4.1.4.

4.6.1 Buckets

With the volume simulations at hand, the buckets can be created with various mea-

sures. Two relatively simple measures are described in this section, namely VaR and

the liquidity constraint of Bardenhewer (2007).

The VaR specifies the maximum loss for a certain horizon and with a predetermined

probability. To be clear, the horizon associated with VaR can be interpreted in two

ways, the maximum loss at precisely that horizon, or the maximum loss in the period

up to that horizon. This research uses the latter, because the bank must be able to pay

back money in the intermediate period as well.

To construct the buckets with VaR, for each simulation an auxiliary series is con-

structed as the minimum of the volume up to that time. Thereafter, the 5% quantile

of all auxiliary minimum series is evaluated at the horizons of interest to construct the

VaR values. The bucket with the greatest maturity is constructed as the starting vol-

ume minus the VaR value of the greatest maturity. The other maturity buckets are

constructed as the difference between the VaR value of that maturity and one maturity

level higher.

To illustrate the VaR procedure, assume that the deposit volume today is e 100,

that the buckets with the greatest maturity are 11 and 12 months and that the 95%

12-month VaR is e 80 and the 95% 11-month VaR is e 70. This means that we are 95%

confident that over a 12-month period the volume does not drop below e 20. In order

to prevent liquidity issues, the 12-month bucket must not exceed e 20 and to maximize

profit with an increasing yield curve, the 12-month bucket must be as large as possible.

So, the 12-month bucket must be e 20. Similarly, the 11-month bucket must not exceed

e 30. However, e 20 of the e 30 are already included in the 12-month bucket, such that

the 11-month bucket consists of just e 10. The remaining buckets are constructed in a

similar recursive manner.
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Figure 7: Illustration of how the most negative relative volume change is obtained for various

maturities (green = 1 day, yellow = 2 days, red = 3 days and blue = 4 days).

The other method, the liquidity constraint, is used by Bardenhewer (2007) to restrict

the weights of the replicating portfolio, such that there is always enough liquidity to pay

back clients in the historical estimation period. This method can also be used without

the replicating portfolio approach and for many simulations instead of a single historical

realisation.

The construction of the liquidity constraint buckets consists of the following steps.

Firstly, for each simulation the relative volume change from time period to time period

must be determined. Secondly, for each maturity we select the most negative relative

volume change over the horizon corresponding with the maturity. This is the liquidity

constraint for some horizon in a single simulation. Thereafter, we take the 5% quantile of

all the simulations of the liquidity constraint for each maturity, which gives an estimate

of the percentage of deposits that is at risk for that maturity. Finally, the buckets are

created similar as in the VaR approach.

The procedure is illustrated in Figure 7 for a 5-day simulation and with buckets with

maturities of 0 to 4 days. In the figure, Rkl represents the relative change in volume

from day k to day l and the colors represent a maturity. For the 1-day maturity, we
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only consider the green circled values; the most negative one is −2.9%. Similarly, for

the 2, 3 and 4-day maturity we obtain −3.9%,−5.9% and −5.9%. Smaller horizons are

a subset of longer horizons, so the worst relative change becomes more negative with

an increasing horizon. Here, we only observe a single simulation, but in case we would

have more simulations, we could now determine the 5% quantile for each maturity.

Finally, the buckets are created similar to the VaR approach. This results in weights of

2.9%, 1.0%, 2.0% and 0.0% for the 0, 1, 2 and 3-day bucket, respectively. The remaining

94.1% is put in the 4-day bucket, because that is the longest maturity in this example.

The difference between the VaR and liquidity constraint approach is that the former

only evaluates the volume between the start of the simulation and some time into the

future, for example a month. On the other hand, the liquidity constraint evaluates

multiple time periods with a length of a month. So, not only the start of the simulation

until a month in the future, but also the period of two to three months in the future, and

many others. Since the liquidity constraint evaluates more periods, it is stricter than

the VaR approach. For example, the VaR approach would only consider R12, R13, R14

and R15 in Figure 7. This would result in 0.0%, 1.0%, 1.0%, 2.0% and 96.0% for the

0, 1, 2, 3 and 4-day buckets, respectively, which is less strict than the liquidity constraint

buckets. Consequently, the VaR approach always results in an equally high or higher

average duration compared to the liquidity constraint.

4.6.2 Client rate scenario analysis

This section analyses the influence of the parameters in the client rate model and the

difference in effect on product #1 and #2. It also confirms that the liquidity constraint

creates stricter buckets than VaR.

Table 13 and 14 show the estimated VaR and liquidity constraint buckets, for product

#1 and #2 respectively, for five different parameter sets of the client rate model. Three

of four parameters are fixed. The boundary (b = σ) and the rebound (br = 0.7σ)

are both a function of σ, the standard deviation of the relative spread in the historical

sample. The number of days (tn) that the boundary must be exceeded in a row is chosen

to be 10. On the one hand, this value must not be too small, because that might trigger

a client rate change too fast. The relative spread might revert to a ‘normal’ level by

itself and a constantly changing client rate is not customer friendly. On the other hand,

tn must not be too large, because then it changes too slow and perhaps jeopardizes

the strategy of the management. tn = 10 corresponds with two weeks, which seems a

nice compromise. For the reference point (o), I use µ − z · σ, where µ and σ are the

mean and the standard deviation of the relative spread in the historical sample. I vary z

between −1.4 and 1.4 with steps of 0.7, which corresponds to very unattractive and very
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attractive client rate regimes. The reference point can be characterised as the targeted

relative spread and the boundaries as the acceptable bandwidth.

Across methods and tables, the bucket with the shortest maturity generally has

the largest weight and buckets for increasing maturities become smaller. This pattern

is visible for the monthly buckets (0 to 11 months) as well as for the yearly buckets

(≤ 11 and 12 to 48 months). The clear exception is the bucket with a maturity of

48 months. This is the greatest maturity available in this example, and therefore it

also contains money for longer maturities. The fact that buckets become smaller for

an increasing horizon directly corresponds with the decreasing uncertainty increments.

The uncertainty at two time periods into the future, is larger than the uncertainty at

just one time period into the future, but it is less than twice that uncertainty. This is

due to the randomness in the simulation and the imperfect correlation.

Secondly, both tables confirm that the liquidity constraint is stricter than VaR. The

cumulative weight of buckets of the liquidity constraint is at least as high as that of the

VaR buckets. This must be the case, since the VaR observes less time periods than the

liquidity constraint does. Consequently, the resulting average duration of the liquidity

constraint is lower.

Thirdly, the effect of the different client rate regimes is intuitive, for both product #1

and #2. Clients prefer a higher client rate, which corresponds with a higher z, and thus

withdraw money less quickly and deposit more money if the client rate is higher. The

result of an increasingly attractive client rate is an increased volume, with less negative

changes and a higher average duration. The higher average duration means that the

bank can invest in bonds with a greater maturity that yield more profit. However, not

considering the most attractive client rate regime, the differences in average duration

are small. At most one month in difference for product #1 (13.9− 14.9) and less than

two months for product #2 (32.6− 34.5). The bank should evaluate whether the extra

profit of the increased average duration outweighs the increased cost of a higher client

rate.

The tables also show that the very attractive client rate regime, where z = 1.4, has

the most effect on product #1. This is in accordance with the assumption that the

clients of product #2 care less about the level of the client rate. The pronounced effect

on product #1 is due to the incorporation of the threshold relation with the relative

spread. This also explains the large difference in average duration, about six months,

between a moderately attractive client rate (z = 0.7) and a very attractive client rate

(z = 1.4). The former has a relative spread that is mostly below the threshold, while

that of the latter is mostly above. Again, it depends on the costs of the higher client

rate, whether this increased duration is profitable.
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Table 13: The VaR and liquidity constraint bucket weights in percentages for maturities (Mat.)

in months, for savings product #1. The parameters used in the client rate model are: tn = 10,

b = σ, br = 0.7σ and o = µ + z · σ, where z is −1.4,−0.7, 0, 0.7 and 1.4. Here, µ (0.007) and

σ (0.159) are the mean and the standard deviation of the relative spread, respectively, in the

historical sample (December 19, 2008 to March 28, 2013). The penultimate row (≤ 11) shows

the sum of buckets with a maturity equal to or shorter than 11 months. The average duration

(Avg.) is presented in the last row. All buckets are estimated with 1000 simulations, five years

(1306 days) into the future.

VaR Liquidity constraint

Mat. z = −1.4 −0.7 0 0.7 1.4 −1.4 −0.7 0 0.7 1.4

0 8.1 8.0 8.0 7.9 6.5 14.5 14.5 14.0 13.6 11.3

1 6.4 6.2 6.2 6.1 4.7 7.0 6.9 6.9 6.2 5.6

2 4.9 4.9 4.9 5.0 3.4 5.1 5.2 5.0 5.0 4.3

3 4.4 4.0 4.0 4.0 3.4 4.1 3.9 3.9 4.1 3.5

4 3.9 4.0 4.0 4.0 3.5 3.6 3.6 3.6 3.6 3.2

5 3.6 3.5 3.5 3.4 2.6 3.4 3.4 3.4 3.2 2.7

6 3.6 3.7 3.7 3.8 3.2 3.2 3.4 2.9 3.0 2.9

7 2.9 3.1 3.1 3.1 2.2 3.3 3.2 3.2 3.4 2.7

8 3.0 2.9 2.9 2.7 2.7 2.4 2.2 2.6 2.3 2.2

9 1.5 1.3 1.2 1.3 1.1 2.3 2.5 2.2 2.3 2.1

10 2.8 2.8 2.8 2.6 1.8 2.6 2.6 2.3 2.4 1.9

11 2.6 2.6 2.6 2.7 1.9 2.4 2.1 2.6 1.9 2.2

12 21.6 21.8 21.5 20.5 15.7 19.0 19.0 19.1 19.3 15.2

24 12.1 12.3 12.2 12.3 8.2 10.8 10.8 10.8 11.2 8.8

36 7.7 7.8 7.5 7.6 6.5 6.4 6.5 6.5 6.3 2.3

48 10.9 11.1 11.9 13.0 32.8 9.9 10.2 10.9 12.2 29.3

≤ 11 47.8 47.0 47.0 46.6 36.8 53.9 53.5 52.7 51.1 44.5

Avg. 15.5 15.7 15.9 16.3 23.5 13.9 14.0 14.4 14.9 20.5
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Table 14: The VaR and liquidity constraint bucket weights in percentages for maturities (Mat.)

in months, for savings product #2. The parameters used in the client rate model are: tn = 10,

b = σ, br = 0.7σ and o = µ + z · σ, where z is −1.4,−0.7, 0, 0.7 and 1.4. Here, µ (−0.219) and

σ (0.162) are the mean and the standard deviation of the relative spread, respectively, in the

historical sample (December 19, 2008 to March 28, 2013). The penultimate row (≤ 11) shows

the sum of buckets with a maturity equal to or shorter than 11 months. The average duration

(Avg.) is presented in the last row. All buckets are estimated with 1000 simulations, five years

(1306 days) into the future.

VaR Liquidity constraint

Mat. z = −1.4 −0.7 0 0.7 1.4 −1.4 −0.7 0 0.7 1.4

0 2.1 2.1 2.1 2.0 1.9 5.0 5.0 5.0 4.9 4.8

1 2.1 2.1 2.1 2.0 1.8 2.3 2.3 2.3 2.1 2.0

2 1.6 1.6 1.6 1.5 1.5 1.9 1.9 1.8 1.7 1.6

3 1.5 1.5 1.5 1.4 1.2 1.7 1.6 1.5 1.4 1.1

4 1.3 1.3 1.3 1.2 1.1 1.4 1.5 1.5 1.4 1.3

5 1.4 1.4 1.4 1.3 1.3 1.3 1.2 1.3 1.1 0.9

6 1.3 1.3 1.2 1.2 0.9 1.2 1.1 1.2 1.1 0.9

7 1.1 1.1 1.1 0.9 0.9 1.1 1.2 1.1 0.9 0.9

8 1.1 1.1 1.0 1.0 0.9 1.1 1.1 1.0 1.0 0.9

9 0.6 0.6 0.6 0.5 0.4 1.3 1.1 1.1 1.0 0.8

10 0.7 0.7 0.7 0.5 0.4 1.0 1.1 1.0 1.1 0.9

11 1.2 1.2 1.1 0.9 0.7 1.0 1.0 1.0 0.7 0.6

12 10.7 10.5 10.5 9.2 7.9 10.3 10.1 9.6 8.5 7.5

24 8.8 8.5 7.9 7.1 6.1 8.1 7.9 7.7 6.8 5.3

36 7.8 7.6 7.6 6.8 5.7 6.8 6.6 6.8 5.7 4.7

48 56.7 57.2 58.1 62.5 67.3 54.6 55.3 56.1 60.6 65.6

≤ 11 16.0 16.0 15.9 14.4 13.0 20.3 20.1 19.7 18.3 16.8

Avg. 34.1 34.3 34.5 35.9 37.3 32.6 32.8 33.2 34.5 36.0
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Lastly, observe that the duration of product #2 is more than twice as long as that

of product #1, except for the very attractive client rate scenario. This is due to greater

longer maturity buckets and smaller shorter maturity buckets. As has been stated

before, the clients of product #2 care less about the client rate. As a consequence,

many variables are not included in the models, which makes the simulations less volatile.

Even with the continuing historical downward trend in the simulations for the volume of

product #2, the smaller uncertainty translates to greater buckets for longer maturities

and a larger average duration.

4.7 Evaluation

In this section I evaluate the final model of this research. Firstly, I compare the buckets

that would be obtained on the historical sample with buckets from a variant of the model

which uses the historical values of explanatory variables. This shows that both gener-

ally result in similar buckets, except for one period where the client rate is extremely

attractive. Secondly, I compare the model with an alternative and much simpler model,

the random walk. This shows that the model does not provide much value for prod-

ucts with an unattractive client rate, because my model and the random walk result

in nearly identical simulations and buckets. However, the model is advantageous for

products with a more attractive client rate, because it takes into the effects of the client

rate, while the random walk does not account for anything.

4.7.1 Historical sample

In this section, I create buckets for two periods in the historical sample with the VaR

and the liquidity constraint. This shows that the former is dependent on the sample

period, while the latter is not. I also create buckets with a variant of the model of this

research and compare these with the historical buckets.

The historical buckets, further referred to as the buckets of model H, are obtained

from the actual historical realisation of the deposit volume in the sample period of

December 19, 2008 to March 28, 2013 (1115 days). The buckets of H are the optimal

buckets for this sample, since they are determined from the actual historical volume.

They result in the maximum profit, while always meeting the liquidity demand precisely.

Instead of simulations of the explanatory variables, the variant of the model of

this research uses their historical realisation to simulate the transformed deposits and

withdrawals. The 1000 simulations of the deposit volume that are created in this way,

can be regarded as the optimal performance of the model of this research, since the

volume is simulated with the use of the actual historical explanatory variables. The

buckets of this model are further referred to as the buckets of model MH.
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Table 15 and 16 show the buckets of H and MH for product #1 and #2, respectively.

The buckets are estimated with the liquidity constraint and VaR over two samples. The

number after the model abbreviation indicates the sample. The first sample runs from

December 19, 2008 to November 22, 2011 (763 days) and the second sample runs from

April 27, 2010 to March 28, 2013 (763 days). April 27, 2010 is the day on which product

#1 reaches its maximum volume. Because both samples are about one month shorter

than three years, the greatest available maturity is not 48 months, but only 36 months.

Figure 13a and 13b in Appendix D show the 5%, 10%, 50%, 90%, and 95% quantiles of

the simulations of MH together with the historical volume of product #1 and #2.

Firstly, the maturity profile of the historical VaR buckets of product #1 is greatly

dependent on the estimation sample. Observe the odd maturity profile of the VaR H.1

buckets for product #1 in Table 15. Buckets with a short maturity have a small weight;

several buckets with a medium maturity have no weight at all; and the bucket with

the longest maturity has an extremely large weight. This extreme maturity profile is

caused by the historical deposit volume as can be seen in Figure 1a. The volume declines

marginally in the beginning of the sample, then it rises quickly and it does not become

lower than the starting volume thereafter. Such an extreme maturity profile can be seen

as a strength or weakness of the VaR bucket estimation. A strength, because if the

bank foresees such a volume increase, perhaps due to a planned client rate increase, it

can maximally profit by investing in bonds with long maturities. A weakness, because

this specific maturity profile only holds for the savings that enter the bank at a specific

point in time. Deposits that are attracted at another time, have an entirely different

maturity profile. For example, observe the VaR H.2 buckets, which are based on the

second sample that starts 352 days later. The short and medium maturity buckets have

increased; there are no maturities with a zero weight; and the weight of the greatest

maturity bucket is a lot smaller. The average duration is also significantly shorter

compared to the VaR H.1 buckets, which is due to the great weight shift to maturities

shorter than one year. Clearly, the start date of the sample makes a big difference for

the historical VaR buckets of product #1. So, the maturity profile must constantly be

observed carefully and new savings deposits must be invested accordingly. This makes

the management of the VaR buckets labour intensive.

Secondly, Table 15 shows that the liquidity constraint buckets are a lot more con-

sistent than VaR buckets across different samples. The liquidity constraint buckets are

more consistent, because the relative volume changes are determined over multiple pe-

riods with equally many starting volumes. This is in great contrast to the VaR buckets,

which are evaluated against a single starting volume and this makes them greatly de-

pendent on (the starting point of) the sample period. Still, also the liquidity constraint
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Table 15: The VaR and liquidity constraint bucket weights in percentages for maturities (Mat.)

in months for savings product #1 for model H and MH. The H buckets are estimated from the

single actual historical volume. MH represents the model of this research, but with the actual

historical explanatory variables, instead of simulations, as input for the deposits and withdrawals

model. The penultimate row (≤ 11) shows the sum of buckets with a maturity equal to or shorter

than 11 months. The average duration (Avg.) is presented in the last row. The number suffix

indicates the sample on which the buckets are estimated; sample 1 runs from March 28, 2008 to

November 22, 2011 (763 days) and sample 2 runs from April 27, 2010 to March 28, 2013 (763

days). The buckets of MH are estimated from 1000 simulations.

VaR Liquidity constraint

Mat. H.1 H.2 MH.1 MH.2 H.1 H.2 MH.1 MH.2

0 0.7 8.0 4.4 8.2 10.4 10.4 12.9 13.9

1 1.3 3.4 5.8 5.0 4.9 4.9 5.7 6.4

2 0.6 1.2 5.7 3.8 3.7 4.1 4.4 4.6

3 2.0 2.6 5.0 4.1 3.7 5.0 4.1 4.3

4 1.0 2.2 4.0 3.1 3.3 4.0 3.9 3.9

5 0.9 2.7 3.3 2.8 2.7 2.8 2.6 3.5

6 0.1 2.8 2.1 3.1 2.9 3.3 2.4 2.9

7 0.0 6.0 0.3 3.5 2.7 2.5 2.6 3.0

8 0.0 4.5 0.0 1.6 3.1 2.5 2.4 2.4

9 0.0 3.3 0.0 1.3 2.1 2.5 2.3 2.1

10 0.0 2.9 0.0 2.6 3.7 2.0 1.9 2.2

11 0.0 2.8 0.0 2.6 3.1 3.1 1.3 2.2

12 0.0 26.3 0.0 22.4 13.0 21.8 12.5 18.5

24 0.0 5.4 5.3 14.9 0.0 5.4 0.0 8.9

36 93.4 25.8 64.3 21.2 40.9 25.8 40.9 21.2

≤ 11 6.6 42.5 30.4 41.5 46.1 47.0 46.6 51.4

Avg. 33.8 16.0 25.2 15.6 18.3 15.1 17.8 13.8
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Table 16: The VaR and liquidity constraint bucket weights in percentages for maturities (Mat.)

in months for savings product #2 for model H and MH. The H buckets are estimated from the

single actual historical volume. MH represents the model of this research, but with the actual

historical explanatory variables, instead of simulations, as input for the deposits and withdrawals

model. The penultimate row (≤ 11) shows the sum of buckets with a maturity equal to or shorter

than 11 months. The average duration (Avg.) is presented in the last row. The number suffix

indicates the sample on which the buckets are estimated; sample 1 runs from March 28, 2008 to

November 22, 2011 (763 days) and sample 2 runs from April 27, 2010 to March 28, 2013 (763

days). The buckets of MH are estimated from 1000 simulations.

VaR Liquidity constraint

Mat. H.1 H.2 MH.1 MH.2 H.1 H.2 MH.1 MH.2

0 0.5 0.2 1.9 1.9 4.5 3.9 4.7 4.8

1 2.7 0.2 1.8 1.8 1.9 1.7 2.1 2.1

2 1.6 0.2 1.6 1.5 1.3 1.1 1.5 1.7

3 1.1 0.5 1.3 1.5 1.1 0.8 1.3 1.5

4 1.2 0.4 1.1 1.2 0.5 0.6 1.2 1.3

5 0.3 0.5 1.3 1.2 0.9 0.5 1.0 1.3

6 1.2 0.5 1.1 1.0 0.8 1.3 1.1 1.1

7 1.0 0.3 0.7 1.2 1.2 0.3 0.9 1.1

8 0.7 0.2 0.8 0.4 0.2 0.8 0.9 1.1

9 0.0 0.1 0.7 0.3 0.0 0.7 0.6 1.0

10 0.1 1.6 0.6 0.8 0.2 0.6 0.8 1.0

11 0.0 1.0 0.6 0.8 0.4 0.7 0.5 1.2

12 0.4 11.3 3.9 10.2 0.4 8.2 6.0 8.8

24 5.4 7.5 8.9 9.7 4.9 4.0 3.9 5.8

36 83.6 75.5 73.6 66.4 81.7 74.8 73.5 66.1

≤ 11 10.6 5.7 13.6 13.7 13.0 13.0 16.6 19.2

Avg. 31.8 30.7 29.7 28.0 31.0 29.3 28.7 27.0
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buckets are affected by the extreme volume increase in early 2010. The 24-month bucket

of H.1 is zero, while it is not for the second sample. The most negative relative volume

change in the first sample occurs between the maximum volume at April 27, 2010 and

the end of the first sample at November 22, 2011. Since this period is shorter than two

years, the 2-year and 3-year liquidity constraint are identical and this gives the 2-year

bucket a zero weight. In the second sample, the liquidity constraint for the 3-year period

is larger than for the 2-year period, because the period from the top to the bottom at the

end of the sample is longer than two years. Hence, the 2-year bucket is non-zero for H.2.

The more consistent weights of the liquidity constraint can be used across several time

periods, which makes the method more reliable and less labour intensive to manage,

compared with the VaR buckets. However, the increased certainty comes at a cost. The

average duration of the VaR buckets can occasionally be more than a year longer. The

bank should evaluate this risk reward trade-off.

In the historical sample, product #1 experiences an extreme volume increase, but

the development of product #2 is more like a gradual decline, see Figure 1c. Therefore,

the starting point of the sample has less influence on the VaR buckets and also the

liquidity constraint buckets are more consistent than the equivalent buckets of product

#1.

Lastly, the MH buckets are created with the use of historical values of the relative

spread and other explanatory variables as input for the deposits and withdrawals model.

The resulting volume simulations largely show the correct pattern, because the true

historical values are used, but due to uncertainty in the deposits and withdrawals model,

there is also a certain dispersion around the actual historical value. The quantiles of

the volume simulations of product #2 (Figure 13b) contain the historical value nicely,

but those of product #1 (Figure 13a) show a less pronounced increase and decrease

compared with the real volume. Generally, the buckets of H and MH are close, especially

the liquidity constraint buckets and all buckets of product #2. However, the VaR H.1

and MH.1 buckets of product #1 show that even with the actual value of explanatory

variables, it can be difficult to obtain the actual buckets. The pattern of buckets with a

zero weight is intact, but the average duration differs by more than eight months. These

buckets differ the most, because the relation between the volume and relative spread is

unable to capture the increase in early 2010 exactly. Also note that most MH buckets

are more conservative than the H buckets, but this is not surprising, since the historical

buckets are based on one single historical volume. The MH buckets, on the other hand,

are based on the 5% quantiles of the VaR and liquidity constraint estimates. While the

buckets of H are optimal, the MH buckets could be seen as the optimally achievable

buckets from this model, because the correct historical values are used. With that in
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mind, the extra profit advantage of the VaR buckets in comparison with the liquidity

constraint diminishes. The average duration difference between the VaR and liquidity

constraint H.1 buckets is about 15.5 months, while the difference between the MH.1

buckets of both methods is ‘just’ 7.4 months.

Concluding, this section shows that the VaR buckets can be greatly dependent on the

estimation sample; deposits that are attracted at another time might have an entirely

different maturity profile. The liquidity constraint weights are much less dependent on

the sample, because they are determined over multiple periods. On the one hand, the

VaR buckets are valuable, because they allow the bank to foresee the effect of a client

rate increase on the maturity profile. On the other hand, the always changing maturity

profile must constantly be observed carefully and that is labour intensive. Furthermore,

the optimally achievable MH buckets show that the VaR buckets are more profitable than

the liquidity constraint buckets, but not as much as the H buckets indicate. Although

generally the quantiles and buckets of the MH model are close to the historical values,

even with the correct historical explanatory variables, it is not always possible to retrieve

the exact buckets. This indicates that there is some room for improvement of the model.

4.7.2 Alternative model

In this section I evaluate the buckets of the model of this research, with the buckets that

are created with an alternative and much simpler model, the random walk.

The to be evaluated model of this research uses the following parameters for the

client rate model: tn = 10, b = 2σ, br = 1.4σ and o = µ. Here, µ and σ are the mean

and the standard deviation of the relative spread in the historical sample, respectively.

The value for b is chosen such that the boundaries of the simulated relative spread are

similar to that of the historical relative spread. The buckets of this model will be referred

to as the buckets of model M.

An alternative and very simple, but often difficult model to beat, is the random walk

model. Such a model for the deposit volume is actually not that bad. The literature

mentions to use an AR model and analysis of the historical data shows that the volume of

tomorrow is strongly correlated to that of today, resulting in an AR-coefficient extremely

close to 1, see Table 1. To prevent negative values in the simulation, the volume is first

transformed with the natural logarithm. For product #1, the AR(1) model is estimated

with GARCH and for product #2 OLS is used. The model for product #2 additionally

includes the dummy for the outlier and models for both product #1 and #2 account

for accrued interest. The buckets of the random walk model will be referred to as the

buckets of model RW.

Table 17 and 18 contain the buckets of model M and RW for product #1 and
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#2, respectively. The buckets are estimated with the 5% quantile of the VaR and the

liquidity constraint estimates of 1000 simulations. Each simulation runs five years (1306

days) into the future, and from this 5-year period, two partly overlapping subsamples of

about three years are created. The first subsample runs from March 28, 2013 to March

30, 2016 (785 days) and the second runs from March 30, 2015 to March 30, 2018 (785

days). Because both subsamples have a length of approximately three years, the greatest

available maturity is 36 months instead of 48 months. Figure 13c to 13f in Appendix D

depict the 5%, 10%, 50%, 90% and 95% quantiles of the simulations of model M and

RW for product #1 and #2.

Figure 13c and 13d show that the quantiles of the product #1 volume simulations of

model M and RW are quite different. The quantiles of model M show little dispersion

and a declining volume for the first 2 to 2.5 years. After that period, there is a greater

dispersion for increasing volume simulations. This can be explained by the relative

spread, which is an important variable for model M for product #1. The relative spread

is positively related to the deposits and the threshold ensures an even greater effect for

a large positive relative spread. The relative spread is low at the start of all simulations,

which causes a declining volume. Due to the passive nature of the client rate model,

it takes about 2.5 years before the relative spread is high in several simulations. This

can be seen from the increasing 90% and 95% quantiles. Since the relative spread is

incorporated in the GARCH model with a threshold, a high relative spread also causes

a greater dispersion. The quantiles of model RW show a slowly declining volume with

a greater dispersion compared with model M. Especially the rough and serrated 95%

quantile shows that several simulations predict extremely large deposit volumes. Due

to the small number of parameters that model RW incorporates, its residuals are larger

than those of model M, which causes a greater dispersion. The slowly declining volume

can be explained by the slightly negative residuals. Although model M has a better

foundation with logical variables, I find the quantiles of model RW more plausible. The

great certainty with which the declining volume of product #1 is predicted by model M

is questionable. In reality the bank does not only adjust the client rate if the relative

spread is outside the boundaries. With one or several quick client rate increases, we can

expect a much higher volume than is predicted by the 90% and 95% quantiles. So, the

90% and 95% quantile should be higher. This can be accomplished by extending the

client rate model with random client rate changes.

Unlike the different upper quantiles, the lower quantiles differ not that much and

this can also be seen in the similar VaR buckets. Further comparison of the M and RW

buckets, reveals that the liquidity constraint buckets of product #1 differ the most. The

overnight bucket (0 months) of the random walk model is about 8 to 10 percent points
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Table 17: The VaR and liquidity constraint bucket weights in percentages for maturities (Mat.)

in months for savings product #1 for model M and RW. M represents the model created in this

research with tn = 10, b = 2σ, br = 1.4σ and o = µ as parameters for the client rate model.

Here, µ (0.007) and σ (0.159) are the mean and the standard deviation of the relative spread,

respectively, in the historical sample (December 19, 2008 to March 28, 2013). RW represents

the random walk model. The penultimate row (≤ 11) shows the sum of buckets with a maturity

equal to or shorter than 11 months. The average duration (Avg.) is presented in the last row.

The number suffix indicates the sample on which the buckets are estimated; sample 1 runs from

March 28, 2013 to March 30, 2016 (785 days) and sample 2 runs from March 30, 2015 to March

30, 2018 (785 days). All buckets are estimated with 1000 simulations.

VaR Liquidity constraint

Mat. M.1 M.2 RW.1 RW.2 M.1 M.2 RW.1 RW.2

0 8.0 7.4 6.2 8.0 13.2 13.2 21.4 23.0

1 6.2 5.5 6.1 6.4 6.4 6.6 7.2 7.8

2 4.9 4.7 5.9 5.2 4.9 4.6 4.6 4.1

3 4.0 4.2 4.2 4.0 3.9 4.2 3.1 2.6

4 4.0 3.5 4.2 3.0 3.8 3.7 2.8 2.5

5 3.5 3.4 3.6 2.5 3.3 2.9 2.4 2.5

6 3.7 3.3 3.2 3.6 3.3 3.2 2.7 2.4

7 3.1 3.5 2.8 2.6 3.0 2.7 2.3 1.8

8 2.9 3.1 2.4 3.2 2.6 2.7 2.0 2.3

9 1.2 1.5 2.0 1.7 2.6 2.4 2.2 2.0

10 2.8 2.3 2.1 2.8 2.0 2.4 1.9 2.3

11 2.6 2.3 2.5 1.7 2.3 2.4 1.2 2.1

12 21.5 22.6 18.8 19.0 18.9 19.5 15.9 14.5

24 12.2 13.0 11.6 10.4 10.8 10.2 7.0 6.4

36 19.3 19.7 24.5 25.9 19.0 19.3 23.2 23.8

≤ 11 47.0 44.8 45.1 44.7 51.2 50.9 53.9 55.4

Avg. 14.4 14.8 15.8 15.9 13.6 13.7 13.4 13.4
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Table 18: The VaR and liquidity constraint bucket weights in percentages for maturities (Mat.)

in months for savings product #2 for model M and RW. M represents the model created in this

research with tn = 10, b = 2σ, br = 1.4σ and o = µ as parameters for the client rate model.

Here, µ (−0.219) and σ (0.162) are the mean and the standard deviation of the relative spread,

respectively, in the historical sample (December 19, 2008 to March 28, 2013). RW represents

the random walk model. The penultimate row (≤ 11) shows the sum of buckets with a maturity

equal to or shorter than 11 months. The average duration (Avg.) is presented in the last row.

The number suffix indicates the sample on which the buckets are estimated; sample 1 runs from

March 28, 2013 to March 30, 2016 (785 days) and sample 2 runs from March 30, 2015 to March

30, 2018 (785 days). All buckets are estimated with 1000 simulations.

VaR Liquidity constraint

Mat. M.1 M.2 RW.1 RW.2 M.1 M.2 RW.1 RW.2

0 2.1 1.9 2.4 2.1 4.8 4.9 4.7 4.7

1 2.1 1.9 2.2 2.0 2.1 2.1 2.0 2.1

2 1.6 1.7 1.8 1.8 1.7 1.6 1.8 1.7

3 1.5 1.7 1.4 1.6 1.6 1.6 1.8 1.7

4 1.3 1.4 1.0 1.4 1.4 1.5 1.4 1.5

5 1.4 1.3 1.3 1.3 1.1 1.4 1.3 1.4

6 1.3 1.4 1.0 1.2 1.1 1.2 1.0 1.2

7 1.1 1.1 1.1 1.1 1.2 1.1 1.1 1.1

8 1.1 0.9 1.3 1.0 1.0 1.1 1.0 1.0

9 0.6 0.5 0.5 0.6 1.0 1.1 1.0 0.9

10 0.7 0.6 0.7 0.5 0.9 0.8 0.9 0.9

11 1.2 0.9 1.0 1.0 0.9 1.0 1.2 1.0

12 10.5 10.5 10.5 10.3 9.5 9.7 9.5 9.4

24 8.5 9.7 8.4 8.8 7.1 7.0 6.6 6.4

36 64.9 64.5 65.4 65.4 64.5 64.1 64.8 64.9

≤ 11 16.0 15.3 15.7 15.5 18.9 19.2 19.1 19.2

Avg. 27.4 27.5 27.5 27.5 26.8 26.7 26.8 26.8
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larger than the respective bucket of model M. Due to the small number of regressors,

the residuals in the random walk model are larger. This causes greater fluctuations in

the volume simulations, and subsequently a large overnight bucket. The extra weight

for the overnight bucket is compensated by the buckets with a longer maturity and the

average durations differ not much.

The buckets of model M and RW for product #2 differ marginally and also the

average duration is almost identical. This can be declared by the fact that both models

are much alike. Contradictory to product #1, product #2 is not very dependent of the

relative spread and its model does not contain thresholds. The model largely consists of

a constant and dummies. Also Figure 13e and 13f show that the simulations of model

M and RW are very much alike.

In Section 4.7.1 we have seen that the VaR buckets can be strongly dependent of the

sample on which they are estimated. This particularly holds for product #1. However,

the buckets in Table 17 and 18 do not differ much across the samples. That is because

these simulations share no specific client rate scenario; each simulation is independent.

Consequently, the simulations have no simultaneous volume increase and all maturities

have a non-zero weight. This shows that also the VaR buckets can be more or less

consistent, if the simulations share no specific scenario.

Given the differences between model M and RW for product #1 and #2, I conclude that

the additional value of my model depends on the nature of the product. For products

that are marginally dependent of the relative spread, like product #2, the model has

no clear additional value. For these products, the simulations and buckets of my model

and the random walk are almost identical. For products that are more attractive and do

depend on the relative spread, my model is advantageous. My model takes into account

this attractiveness, while the random walk does not account for anything. Despite this

fact, the buckets of my model and the random walk in Table 17 generally differ little.

However, this is just due to the lack of a clear client rate scenario. The boundaries

in this client rate model are set such that they are similar to the historical sample.

However, these boundaries are very wide and the regime can therefore not be regarded

as attractive or unattractive. When we compare the random walk buckets with a clearly

attractive client rate, z = 1.4 in Table 13 in Section 4.6.2, the differences are much

larger.

5 Conclusion

Liquidity management is an important aspect of the risk management at many compa-

nies. Even successful companies can experience the drastic consequences of inadequate
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liquidity management in the short run. A frequently used technique to cope with liquid-

ity management is duration matching, which aims to offset the magnitude and timing of

incoming and outgoing cash flows. However, duration matching is not straightforward

for savings deposits, because these have no fixed maturity. The goal of this research

is therefore to find a way in which the maturity of savings deposits can be correctly

determined.

This research aims to answer that question by specifying models for the deposits and

withdrawals in order to create realistic simulations for the deposit volume. The models

include logical and important variables, such as the relative spread and the nationwide

deposit volume, and important events, such as client rate changes. Furthermore, a

simplified version of the client rate adjustment process is incorporated to observe and

regulate the effect of different client rate regimes. Afterwards, VaR and the liquidity

constraint of Bardenhewer (2007) are used to determine the maturity from the deposit

volume simulations.

Comparison of the VaR and liquidity constraint buckets reveals several differences.

Firstly, the liquidity constraint buckets are stricter, because multiple time periods are

evaluated, instead of a single one for the VaR buckets. This means that the cumulative

weight of liquidity constraint buckets up to a certain maturity is at least as high as that

of the VaR buckets. Consequently, the average duration of the VaR buckets is higher,

and so is the profit, but also the risk. Secondly, the liquidity constraint buckets are more

consistent across samples. The VaR buckets are only consistent across samples if the

simulations are independent and share no specific scenario. If they do share a scenario,

the VaR buckets are not very consistent across samples. However, this property can be

valuable. The VaR buckets allow the bank to foresee the effect of a client rate scenario

on the maturity profile, which can be a lot more profitable than the average liquidity

constraint profile. On the other hand, due to the changing maturity profiles, VaR is more

labour intensive. Concluding, the liquidity constraint is stricter and more consistent and

yields less profit and risk. The bank should evaluate whether the extra profit of the VaR

buckets, is worth the extra time and risk.

The final model of this research is evaluated by comparing it with an alternative and

much simpler model, the random walk. Given the differences between the final model

and the random walk model for product #1 and #2, I conclude that the additional value

of my model depends on the nature of the product. For products that are marginally

dependent of the relative spread, like product #2, my model has no clear additional

value. For these products, the simulations and buckets are almost identical to those of

the random walk. For products that are more attractive and do depend on the relative

spread, my model is advantageous. My model takes into account the attractiveness of
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the product, while the random walk does not account for anything. Despite this fact,

the buckets of my model and the random walk appear similar. However, this is just due

to the lack of a clear client rate scenario. The boundaries in the client rate model are

set such that they are similar to the historical sample. However, these boundaries are

very wide and the regime can therefore not be regarded as attractive or unattractive.

The differences are much larger, if the random walk buckets are compared with a clearly

attractive client rate, which confirms the additional value of the model.

However, the model is not perfect and there is certainly room for improvement. Firstly,

a comparison of the historical buckets and the buckets of the model with historical

explanatory variables shows that the buckets are generally similar, but not always.

Especially the increase in early 2010 was not captured completely. A closer examination

of the relation between the deposits and relative spread might solve this. Secondly, only

nine interest rate decreases are present in the data set and not a single interest rate

increase. More data should be examined to get a clear view of the effect of client rate

changes. That might also reveal whether the magnitude of the change and the level of

the relative spread at the time of change are important. Additionally, this model makes

no assumptions on the reaction of other banks to a client rate change. It could be argued

that a change of one bank triggers changes at other banks. Lastly, the quantiles of the

volume simulations are questionable. The incorporation of random client rate changes

can make the client rate model less passive and they might make the simulations more

realistic.

Further research might differentiate between several client groups. In this research,

every client is treated equally. However, it could be that wealthy and less wealthy

persons act differently. In addition to that, wealthy clients have a much greater effect

on the deposit volume due to their larger balance. In fact, data analysis shows that

some large deposit volume changes are due to single wealthy clients. Wealthy clients are

therefore more risky.

Lastly, the bank should evaluate the profitability of a few decisions. The model of

this research predicts that the average duration of a very attractive client rate regime is

significantly longer. The bank should evaluate whether the increased profit of a higher

average duration outweighs the increased cost of a higher client rate. Similarly, the bank

should evaluate whether it should use VaR or liquidity constraint buckets. The former

method results in a larger average duration, while the latter entails less risk.
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A Replicating portfolio

In this section I use the replicating portfolio to mimic the client rate offered by Allianz

with the 1, 2, 3, 6 and 9-month Euribor rates and the 1, 2, 3, 4 and 5-year Euro

Swap rate. The observation sample of the client rates runs from December 19, 2008 to

March 28, 2013 (1115 observations). The observation sample of the replicating yields

runs from January 1, 2002 to March 28, 2013 (2933 observations). The latter sample is

much larger, which is necessary to construct long term moving averages as suggested in

Bardenhewer (2007). First I apply the general static replicating portfolio and thereafter

the extensions of Bardenhewer (2007).

A.1 Introduction

The replicating portfolio is constructed from several interest paying instruments in such

a way that its yield mimics the client rate, except for a certain margin,

mt =
∑
i

ri,t · wi − rcl,t. (36)

Here, the yield of the portfolio is calculated as the weighted average of the interest paying

instruments. The weights for the individual interest paying instruments are determined

with an optimisation criterion subject to one or more constraints. Possible objectives

are the minimisation of the standard deviation of the margin,

min
w

√
Var[mt], (37)

or maximisation of the Sharpe ratio of the margin,

max
w

E[mt]√
Var[mt]

. (38)

The Sharpe ratio is defined as the mean of the margin divided by the standard deviation

of the margin. The sum of the weights must be equal to one,∑
i

wi = 1, (39)

and often the weights are also required to be greater than zero individually,

wi ≥ 0 ∀i. (40)

This also implies that weights are equal to or smaller than one. The strategy is executed

by investing the entire deposit volume in the bonds of the replicating portfolio according

the weights.

With the static replicating portfolio approach, the weights are determined once over

a historical period. The weights are not updated and remain the same for a long period
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Table 19: Matlab code for static replicating portfolio

1 % rb bond rate [T x N] matrix

2 % ra allianz client rate [T x 1] vector

3 % w weight [N x 1] vector

4 [T,N] = size(rb);

5 eq = @(w) −mean(rb*w−ra) / std(rb*w−ra);
6 w = fmincon(eq,ones(N,1)/N,[],[],ones(1,N),1,zeros(N,1),ones(N,1));

of time. Over time, the value of the replicating bonds and the deposit volume do change.

However, neither of them has an effect on the weights of the replicating portfolio. The

first is being accounted for by trading in the respective instruments such that the weights

remain constant. The second is being accounted for by investing the additional funds or

by selling the bonds according to the weights. When a bond expires, the released funds

are reinvested at the maturity of the expiring bond.

To illustrate the basic static replicating approach, I construct a replicating portfolio

from the 1, 2, 3, 6 and 9-month Euribor rates and the 1, 2, 3, 4 and 5-year Euro Swap

rate. Although OeNB (2008) states that “this method can be easily implemented, without

any special software requirements”, I find that when the number of bonds increases, Excel

has a hard time in finding a solution. I use the Matlab code in Table 19, because it does

not give any problems and it converges quickly.

The optimisation of the static replicating portfolio results in a portfolio that is solely

constructed of the longest maturity, the five-year bond. The yield of the replicating

portfolio and the client rate are depicted in Figure 8. The Figure shows that the margin is

far from stable, which is due to the fact that the portfolio is constructed of just one bond.

A volatile margin is not attractive for the bank, as this reflects more risk. Additionally,

the mean margin is −13 basis points, which makes it even more unattractive for the

bank, because on average this yields a loss. Furthermore, this portfolio implies that

cash flows of the deposits are best mimicked with the cash flows of a five-year bond and

that is not realistic. All in all, the results of the static replicating portfolio are far from

satisfactory.

A.2 Bardenhewer

So far, the static replicating portfolio approach is not quite appealing. Bardenhewer

(2007) offers some extensions that might improve the model. He suggests to use a

trend, moving averages, and a liquidity constraint.
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Figure 8: Time series of client rate and static replicating portfolio yield

A.2.1 Trend

Bardenhewer (2007) finds that the volume should be decomposed in a trend and an

unexpected part that is not explained by the trend. Only the trend component should

be replicated with the portfolio and the unexpected part should be fully invested in the

shortest maturity bond available. The shortest maturity bond functions as a buffer.

For example, if the trend explains 90%, the remaining 10% is invested in the shortest

maturity and the other weights are multiplied by 0.9. However, my volume data does

not show a clear trend, nor is it about constant or stationary over time. Therefore, I

decide to not incorporate the trend suggestion.

A.2.2 Moving average

Another addition of Bardenhewer (2007) is to implement moving averages of the repli-

cating yields instead of the yields at a certain point in time. The moving average should

be taken over the same period as the maturity of that bond, e.g. the one-month moving

average of a bond with a maturity of one month, and a two-month moving average of a

bond with a maturity of two months.

So why does it help to take moving averages? Figure 9a shows that in the ‘normal’

case, the slope of the yield curve does not fluctuate much. Consider an even less fluc-
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Figure 9: Time series of ‘normal’ yields in (a) and time series of moving average yields in (b).

tuating yield curve over time, e.g. a yield curve with always the same upward slope.

The yields can still change over time, but only a parallel shift of the entire yield curve

can occur. If we try to make a replicating portfolio with these yields, the highest yield

will always get a weight of one. For, a combination of yields always results in a lower

margin, with exactly the same volatility of the margin. Something similar happens with

the real ‘normal’ yield curve. Alternatively, if we use moving averages, the slope of the

yield curve is not constant any more, see Figure 9b. So, a portfolio of bonds might result

in a better Sharpe ratio of the margin. In reality this approach can be implemented

by renewing all bonds of every maturity at the same time. Every day bonds of each

maturity should expire and be renewed. This implies that one should have at least 21

one-month bonds, 42 two-month bonds and so on, assuming that a month consists of

21 business days. In the literature, mostly monthly data is used. In that case only one

one-month bond is needed, two two-month bonds and so on.

With the implementation of moving averages 27% is invested in two-year bonds and

73% is invested in five-year bonds. The yield of the replicating portfolio and the client

rate is depicted in Figure 10. The margin is a lot more stable and moreover, it is clearly

positive. On average the margin is plus 80 basis points. However, only a few bonds get

a non-zero weight and the maturities of the bonds are still very high. Too high actually,

because it is unlikely that savings stick with the bank for at least two years.

A.2.3 Liquidity constraint and market mix

Bardenhewer (2007) also finds that a lot of weight is assigned to long maturities and

that might cause insufficient liquidity. He suggests to use a liquidity constraint that

makes sure that there is always enough money to satisfy the demands of the customers.

At least in the historical estimation period. To determine the weights with the liquidity

constraint, first calculate the maximum relative historical decrease of the volume over
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Figure 10: Time series of client rate and static replicating portfolio yield with moving average

rates

each available maturity period. Note that the relative historical decrease over a long

period is always greater than or equal to that of a shorter subsample period. Then, to

determine the individual weights, take the increments of the decreases. For example,

assume that the maximum historical relative decrease is 10% and 30% over a period of

one month and two months respectively. The weights for the one-month and two-month

bond are then 10% and 20%. Lastly, set the weight of the longest maturity such that

all weights sum to 100%. The liquidity constraint weights are thus only influenced by

the volume and not by the rate. This in contrast to the replicating portfolio approach,

where the weights are solely determined by the rate.

To combine the weights determined by the volume and by the rate, Bardenhewer

(2007) determines the ‘market mix’ and states: “The market mix weight is chosen for

each bucket such that the maximum cumulated weights are met.” In this case the market

mix weights are entirely determined by the liquidity constraint. The weights are depicted

in panel A of Table 20 and it clearly shows the extreme differences between the rate and

volume driven weights. The liquidity constraint weights are more equal and make a lot

more sense, because also short maturities get a non-zero weight. Moreover, note that

the market mix weights are entirely determined by the liquidity constrained. Should a

bank trust the replicating portfolio approach blindly, it would experience severe liquidity
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problems.

A.3 Subsamples

Lastly, I examine the assumption of constant weights for the static replicating portfolio

approach. The original observation sample is divided into two samples of respectively

557 and 558 observations. I use the moving average approach with the maximum Sharpe

ratio as objective, together with the liquidity constraint to determine the market mix

weights. This results in the weights depicted in panel B and C of Table 20. Observe

that the weights of the replicating portfolio approach driven solely by the rates are not

constant at all. The first subsample gives large weights to the three-year and four-year

bonds, whereas on the whole sample it gives large weights to the one-year and five-year

bonds. In the second subsample, the five-year bond even gets a weight of 100%. As

stated earlier, this is not realistic. On the other hand, the liquidity constraint gives

quite similar weights in both subsamples and the total sample.

A.4 Conclusion

The static replicating portfolio method puts a too large weight on long maturities and

too few maturities get a non-zero weight. The implementation of moving averages might

improve the method a little, but it does not solve all problems. The calculated weights

result in a volatile and occasionally negative margin. Furthermore, the static replicating

portfolio assumes that the weights are the same over the whole estimation period, but

this is clearly not the case, see panel B and C of Table 20.

Personally I think that the replicating portfolio lacks a connection with the volume

of the savings accounts and that it focuses too much on the deposit rate. Bardenhewer

(2007) tries to account for the volume with the incorporation of a trend, but that is not

suitable for my data set. Even with the trend addition, the connection with the volume

remains weak.

The addition of the liquidity constraint seems to work very well, as the weights are

more realistic and also more or less constant over time. The market mix weights in

Table 20 are almost entirely determined by the constraint. This puts extra doubt in the

value of the replicating portfolio and more confidence in the liquidity constraint. The

liquidity constraint might as well be used on its own, without the replicating portfolio

technique.

As a final remark, I should note that the current economical situation is quite dif-

ferent from the past. The current yield curve is extremely low, very close to zero. The

literature assumes that the margin is positive, but currently that is not the case.
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Table 20: Portfolio weights determined with moving average rates (1) and the liquidity con-

straint (2). Line (3) and (4) show the cumulated weights of both techniques. Line (5) and (6)

show the (cumulated) weights of the market mix. All weights are rounded to integer percentage

values. Panel A is estimated over the entire sample, panel B and C on the first and second half

respectively.

Panel A: December 19, 2008 - March 28, 2013 (1115 obs.)

1m 2m 3m 6m 9m 1y 2y 3y 4y 5y

(1) MA 27 73

(2) Constraint 10 4 4 11 8 7 22 5 28

(3) MA cum. 27 27 27 100

(4) Constraint cum. 10 14 18 30 38 45 67 72 72 100

(5) Market mix cum. 10 14 18 30 38 45 67 72 72 100

(6) Market mix 10 4 4 11 8 7 22 5 28

Panel B: December 19, 2008 - February 7, 2011 (557 obs.)

1m 2m 3m 6m 9m 1y 2y 3y 4y 5y

(1) MA 72 28

(2) Constraint 10 4 4 9 9 9 22 5 28

(3) MA cum. 72 100 100

(4) Constraint cum. 10 14 18 27 36 45 67 72 72 100

(5) Market mix cum. 10 14 18 27 36 45 67 72 100 100

(6) Market mix 10 4 4 9 9 9 22 5 28

Panel C: February 8, 2011 - March 28, 2013 (558 obs.)

1m 2m 3m 6m 9m 1y 2y 3y 4y 5y

(1) MA 100

(2) Constraint 9 5 4 11 8 7 12 1 43

(3) MA cum. 100

(4) Constraint cum. 9 14 18 30 38 45 56 57 57 100

(5) Market mix cum. 9 14 18 30 38 45 56 57 57 100

(6) Market mix 9 5 4 11 8 7 12 1 43
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Figure 11: A time series of the relative deposits after being transformed with the natural

logarithm. The −24 values are truncated −∞ values.

B Alternative transformation for relative deposits

Section 3.2 uses (2) to transform the log-normally distributed relative deposits to a more

normally distributed series, see Figure 2b. At first glance a more obvious approach might

be to transform with the natural logarithm instead, so Dtr = ln (Drel). However, the

natural logarithm yields a less intuitive result for the domain (0 to 0.05) of the relative

deposits, see Figure 11. Large positive deposits would become small and negative, and

small positive deposits would become large and negative. Hence, it does not conserve the

shape as well as (2). Moreover, due to national holidays such as Christmas and Easter,

some days have no deposits, for which Drel = 0. As the relative deposits converge to

zero, the natural log converges to the impractical −∞, whereas (2) converges to zero,

which can more easily be captured with a dummy variable.

C Effect of client rate adjustment

This section illustrates the effect of a client rate decline and a client rate increase with

a simplified numerical example.

For this illustration I assume that a bank has 5000 accounts. These accounts have a
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balance of e 100 and every day e 0.25 is deposited on and withdrawn from each account.6

A normal individual is not likely to deposit and withdraw the same amount on a given

day, but each account might as well consist of multiple accounts and be used by many

people, in which case it is valid. In this example, consumers are supposed to be either

satisfied with the client rate or not. So, they cannot be extremely satisfied or only

marginally. As a consequence, satisfied clients make daily deposits and withdrawals,

and unsatisfied people are no client at all.

Now, we inspect a time period of 30 days, in which a client rate decrease occurs on

day 10 and an increase on day 20. Due to the decrease on day 10, the entire balance of

48 accounts is withdrawn on the same day and these accounts also do not make their

daily e 0.25 deposits and withdrawals any more. From day 11 to day 17, respectively

29, 17, 10, 6, 3, 2 and 1 accounts follow suit. They empty their accounts and cease their

daily deposits and withdrawals. The effect of the client rate decrease on the transformed

deposits and withdrawals is illustrated in Figure 12. This shows the large spike in trans-

formed withdrawals on day 10, caused by the discontinuation of the accounts. However,

the effect of the ceased daily deposits on the transformed deposits is so marginal that

it is not visible in the figure.

Suppose that the bank changes its mind and increases the client rate to the former

higher level on day 20; this has the opposite effect. From day 20 to day 27, respectively

48, 29, 17, 10, 6, 3, 2 and 1 accounts redeposit their balance and from the following day

they also make the daily transactions again. This has a clear effect on the deposits, but

not on the withdrawals.

Concluding, with the assumptions from above, a client rate decrease has a significant

effect on the withdrawals, but not on the deposits. Vice versa, a client rate increase

has a significant effect on the deposits, but not on the withdrawals. Following this

reasoning, the exponential decline variable should only be included for a decrease in the

withdrawals model and for an increase in the deposits model.

6The values in this example, 5000 accounts, a balance of e 100, and daily transactions of e 0.25, are

chosen such that the transformed deposits and withdrawals more or less correspond with the estimated

values in Figure 5. The accounts that leave after a client rate change, respectively 48, 29, 17, 10, 6, 3, 2

and 1, follow an exponential decline pattern. Only the half life time of the exponential decline is much

faster than estimated from the real data.
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Figure 12: The transformed deposits (blue) and the transformed withdrawals (red) when a

client rate decrease occurs on day 10 and a client rate increase on day 20.
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D Quantiles of volume simulation
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Figure 13: Figure (a) and (b) show the quantiles of the volume simulations of MH together

with the actual historical volume in black, for product #1 and #2 respectively. Figure (c) and

(d) show the quantiles of the volume simulations of M, for product #1 and #2 respectively, and

figure (e) and (f) depict the quantiles of model RW. The printed quantiles are the 5%, 10%,

50%, 90% and 95% quantiles.
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