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Abstract 
In this thesis, different approaches to find efficient tours for Unmanned Aerial Vehicles 
(UAVs) are implemented. The heuristic developed by Evers et al. (2014), the Maximum 
Coverage Stochastic Orienteering Problem with Time Windows (MCS-OPTW), is 
implemented and the results are compared on a new dataset. This approach takes 
uncertainty in travel and recording times, time sensitive targets and the appearance of 
new targets into account. The performance of this approach is illustrated with 
computational experiments in terms of two objectives: the average profit gained by 
foreseen targets and the percentage of new targets reached in time. In the end, some 
possible adjustments to the simulation are discussed. All results are compared to a 
deterministic planning approach.  
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1. PROBLEM STATEMENT 
Unmanned Aerial Vehicles (UAVs) are useful in information gathering for military and civilian purposes. 

An UAV can be used to record target locations or any area of interest. An UAV has no human pilot actually 

on board, the aircraft is remotely operated from a control station on the ground. Because of time limitations, 

fuel and the number of available UAVs, not every target can be visited and an effective tour is wished. 

In this thesis I implement the methods described by Evers et al. (2014) to execute the use of UAV missions 

as effectively as possible. Evers et al. (2014) considers three extensions to the standard Orienteering 

Problem (OP) to model characteristics that are of practical relevance in planning missions of UAVs. First, 

travel and recording times are uncertain. Secondly, information about the target can only be obtained in a 

certain time window. Finally, the appearances of new targets during the flight, so-called time-sensitive 

targets which need to be visited immediately, if possible, are considered.  

In the article by Evers et al. (2014), the Maximum Coverage Stochastic Orienteering Problem with Time 

Windows (MCS-OPTW) is introduced. MCS-OPTW aims at finding a tour with maximum expected profit of 

the foreseen targets and it directs the planned tour to predefined areas where time-sensitive targets are 

expected to appear, taking the above stated three extensions into account. Evers et al. (2014) developed a 

fast heuristic that can be used to re-plan the tour, each time before leaving a target.  

The re-planning heuristic is applied on different settings. These settings consider different lengths of the 

time windows and different locations of new targets to appear. For all of these settings, Evers et al. (2014) 

found that the MSC-OPTW planning approach outperforms the deterministic (Team) Orienteering Problem 

with Time Windows ((T)OPTW) approach. The MCS-OPTW approach produces tours that dominate the 

(T)OPTW approach both in terms of average obtained profit from foreseen targets and the average number 

of new targets reached in time.  

In this thesis this heuristic is applied on a different data set. The objective is to investigate how useful this 

heuristic in general is. Evers et al. (2014) has investigated the result of another distribution of the travel 

and recording times than assumed, however this method is not yet applied to completely different data.  

Just like Evers et al. (2014) did, different settings will be considered. The results from the data set in this 

thesis will be compared to the results found by Evers et al. (2014).  The average obtained profit from 

foreseen targets and the average percentage of new targets reached in time will be taken into consideration. 

Besides, the effects of changing weights in the objective function of the MSC-OPTW are compared.  Finally, 

some adjustments to the simulation are introduced and tested. 

2. DATA AND SETTINGS 
In this section I will describe the data used in this research. The time limit 𝑇 of a mission is 150 units. In 

other words, a tour is supposed to take at most 150 time units. The location of the depot is given. From now 

on I refer to the location of the depot as 0.  

2.1. FORESEEN TARGETS 
A dataset is obtained on which I am going to implement the heuristic. The dataset includes the location of 

30 foreseen targets and a depot. This is the set of foreseen targets 𝑁.  

2.1.1. TIME WINDOWS 
Further, the data gives the starting time of the time window, 𝑙𝑖 , of target 𝑖. The ending time of the time 

window of target 𝑖, 𝑢𝑖, is not given. This gives the possibility to investigate the effect of different lengths of 

time windows. In the article by Evers et al.(2014), 𝑇 = 230 time units and Evers et al. (2014) investigates 

a dataset in which all time windows are of length 10 time units and a dataset in which 25% of the targets 
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have a length of 10 time units while the others have a length of 170 time units or more. In our case, 𝑇 =

150. For small time windows I set the length of the time windows at 10 time units. For the large time 

windows I wanted to keep the balances: 170/230 ≈ 0.74, and 0.74 ∗ 150 = 111. Therefore, I set the length 

of the large time windows at 110 time units. In the case of  ‘small time windows’, all time windows are of 

length 10 time units, and in the case of  ‘large time windows’, all time windows are of length 110 time units. 

The starting times of the time windows are categorized in three categories: starting between 0 and 50, 

between 50 and 100 and between 100 and 150. When plotted, it is seen that all categories are spread out. 

It is not the case that a specific area has more locations with the same category of starting time.  

2.1.2. TRAVEL AND RECORDING TIMES 
To calculate the distance between two locations 𝑖, given by (𝑋𝑖 , 𝑌𝑖), and 𝑗 , given by (𝑋𝑗 , 𝑌𝑗), I use the formula 

for the Euclidian distance in two dimensions: 𝑑(𝑖, 𝑗) =  √(𝑋𝑖 − 𝑋𝑗)2 + (𝑌𝑖 − 𝑌𝑗)2 . The average distance 

between two targets is 8.44 units and the maximum distance is 21.65 units. 

The travel times 𝑡𝑖𝑗  between location 𝑖  and 𝑗 are assumed to be gamma distributed with shape parameter 

𝑘𝑖𝑗  equal to the Euclidean distance 𝑑(𝑖, 𝑗) between these two locations and scale parameter  𝜃 = 2. The 

expected travel time 𝑡𝑖𝑗  is equal to the expected value of the gamma distribution: 𝑡𝑖𝑗 = 𝐸(𝑡𝑖𝑗) = 𝑘𝑖𝑗𝜃 =

2𝑑(𝑖, 𝑗). This means that the expected travel time is linear in the distance between the two locations. The 

variance of the travel time is, according to the gamma distribution, 𝑘𝑖𝑗𝜃2 = 4𝑑(𝑖, 𝑗) , also linear in the 

distance.  

The recording times  𝑟𝑖  of location 𝑖 are assumed to be gamma distributed with shape parameter 𝑘𝑖  given 

for all locations and scale parameter 𝜃 =
1

2
.  Just like the travel times, the expected recording time 𝑟𝑖̅ (given 

by 𝑘𝑖𝜃 =
1

2
𝑘𝑖) and the variance (given by 𝑘𝑖𝜃

2 =
1

4
𝑘𝑖) are linear in the shape parameter 𝑘𝑖  . 𝑘𝑖  is equal to 3, 

6 or 9. The average of the shape parameter 𝑘𝑖  is 6.2. The average expected recording time is equal to 3.1 

time units. The recording time for the depot is equal to zero. 

2.1.3. PROFIT 
The targets have a profit of 5, 10 or 15 units. There are 8 foreseen targets with a profit of 5, there are 17 

targets with a profit of 10 and there are 5 targets with a profit of 15.  

For the targets with a profit of 15, the average distance between two targets is 12.46 units and the 

maximum distance is 21.47 units. The average of the shape parameters for the recording time of these 

targets, 𝑘𝑖 , is 7.2.  For the targets with a profit of 10, the average distance between two targets is 8.88 units 

and the maximum distance is 19.18 units. The average of 𝑘𝑖  is 6. For the targets with a profit of 5, the 

average distance between two targets is 4.71 units and the maximum distance is 8.22 units. The average of 

𝑘𝑖  is also 6.   

Therefore, I can conclude that the targets with a higher profit are more spread out than the targets with a 

lower profit. Figure 1 shows that the targets with lowest profit are centered in the middle, and the higher 

profit more on the outside.  Because of the higher shape parameter 𝑘𝑖  for the targets with a higher profit, 

the targets with a profit of 15 units have, on average, a higher expected recording time. 

2.2. NEW TARGETS 
In the dataset, the locations for possible new targets are given. As in the experiments by Evers et al. (2014), 

this gives the possibility to generate new targets at predefined locations. This is the set of locations of new 

targets 𝑁’. Next to that, the arrival rate 𝜆𝑖  of potential location 𝑖 is given, this defines the expected number 

of new targets that appear at this location during the time span 𝑇 − 𝑡𝑛. 𝑡𝑛 is the expected travel time from 

the new target location which is closest to the depot to the depot.  It is not known in between which time 
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limit 𝑈 new targets have to be visited. I decided to set  𝑈 equal to the length of the small time windows, 𝑈 =

10 time units. 

2.2.1. LOCATION NEW TARGETS 
If I look at Figure 1, I see that the locations of possible new targets are in two clusters. Evers et al. (2014) 

considers this setting as well, and gives as example that this situation illustrates important places in two 

towns.  

If I look at the separate clusters, the left cluster seems to be more concentrated than the right. Based on 

Euclidean distances, the average distance within the left cluster is 2.04 units and the maximum distance is 

3.16 units. In the right cluster, the average distance is 4.03 units and the maximum distance is 6.71 units.  

The average arrival rate is more or less the same in both clusters, respectively 0.27 and 0.24.  

Based on the average of the coordinates, I determined the center of the left cluster and the center of the 

right cluster. The Euclidean distance between the two centers of the clusters is 18.39. The closest distance 

between a target from the left cluster and a target from the right cluster is 13.60.   

2.2.2. RECORDING TIMES 
The parameters of the recording times of the new targets are not given. I decided to set the shape parameter 

of the recording times for the potential new targets equal to 6, as this is closest to the average value of the 

known parameters for the recording times of the foreseen targets.  

 

FIGURE 1: FORESEEEN TARGETS, NEW TARGETS AND ARRIVAL RATES 

3. RE-PLANNING MODELS 
I will shortly describe the two different models that the paper uses, the (T)OPTW re-planning model and 

the MCS-OPTW re-planning model. With the latter I will explain the weighted location coverage and how 

the two objectives are balanced in the total objective. The re-planning models are used to re-plan the tour 

for the UAV each time before leaving a target at time 𝑡. 0𝑡  is the location of the UAV at the moment of re-

planning, at time 𝑡. When planning the initial tour, starting and ending at the depot, the time is equal to 

zero, 𝑡 = 0, and the current location of the UAV is equal to the depot, 0𝑡 = 0.  

3.1. (T)OPTW RE-PLANNING MODEL 
The deterministic (T)OPTW uses the following sets, defined at time 𝑡: 
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𝑁(𝑡) = 𝑡ℎ𝑒 𝑠𝑒𝑡 𝑜𝑓 𝑓𝑜𝑟𝑒𝑠𝑒𝑒𝑛 𝑡𝑎𝑟𝑔𝑒𝑡𝑠 𝑛𝑜𝑡 𝑦𝑒𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 

𝑁+(𝑡) = 𝑁(𝑡) ∪ {0} ∪ {0𝑡}, 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 0𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑈𝐴𝑉 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡.  

The (T)OPTW is defined on a complete graph 𝐺 = (𝑁+(𝑡), 𝐴(𝑡)). The parameters for the travel time and the 

recording time are equal to the expected travel and recording time. To each arc (𝑖, 𝑗) ∈ 𝐴(𝑡)  a binary 

variable 𝑥𝑖𝑗  is associated, which has value 1 if arc (𝑖, 𝑗) is used in the tour and 0 otherwise. 𝑠𝑖  denotes when 

the recording of target 𝑖 starts.  

The objective of the (T)OPTW is defined as follows: max ∑ 𝑝𝑖𝑖∈𝑁(𝑡) ∑ 𝑥𝑖𝑗𝑗∈𝑁+(𝑡)\{𝑖} . In words, the objective is 

to maximize the profit obtained from the foreseen targets that are planned to be visited. The formulation 

of the (T)OPTW is the following: 

max ∑ 𝑝𝑖𝑖∈𝑁(𝑡) ∑ 𝑥𝑖𝑗𝑗∈𝑁+(𝑡)\{𝑖} ,  (1) 

subject to ∑ 𝑥0𝑡𝑖𝑖∈𝑁+(𝑡)\{0𝑡} = ∑ 𝑥𝑖0𝑖∈𝑁+(𝑡)\{0} = 1,  (2) 

∑ 𝑥𝑖𝑘𝑖∈𝑁(𝑡)\{𝑘} = ∑ 𝑥𝑘𝑖𝑖∈𝑁(𝑡)\{𝑘} ≤ 1     ∀𝑘 ∈ 𝑁(𝑡),  (3) 

𝑠𝑗 − 𝑡𝑖𝑗 − 𝑟𝑖 − 𝑠𝑖 ≥ (𝑥𝑖𝑗 − 1)𝑀     ∀(𝑖, 𝑗) ∈ 𝐴(𝑡), (4) 

𝑙𝑖 ≤ 𝑠𝑖 ≤ 𝑢𝑖      ∀𝑖 ∈ 𝑁(𝑡) ∪ {0}, (5) 

𝑥𝑖𝑗 ∈ {0,1}    ∀(𝑖, 𝑗) ∈ 𝐴(𝑡) (6) 

 

Constraint (2) in the formulation of the (T)OPTW guarantees that the tour starts at the current location of 

the UAV and ends at the recovery point. Further, constraints (3) guarantee that, if a target is visited, the 

UAV only arrives once at that target and also leaves that target once. In constraints (4) 𝑀 is a large number. 

Constraints (4) ensure the minimum starting time at each location visited and prevent subtours. 

Constraints (5) ensure that the recording of a target starts within its time window. The time window of the 

depot starts at 𝑙0 = 0 and ends at 𝑢0 = 𝑇 (Evers et al., 2014). 

3.2. THE MCS-OPTW RE-PLANNING MODEL 
The MCS-OPTW re-planning model uses the characteristics of the probability distributions of the travel and 

recording times. It also takes into account the arrival rates of the locations of potential new targets.  This 

model balances two objectives: the first objective maximizes expected profit by recording foreseen targets 

and the second objective maximizes the ability of the UAV to be successfully re-tasked to new targets.  

3.2.1. WEIGHTED LOCATION COVERAGE 
Weighted location coverage (WLC) is used by Evers et al. (2014) as a measure for the ability to reach new 

targets. At a given moment, a location of a potential new target is said to be covered if the expected travel 

time from the current location of the UAV to the location of the potential new target is at most 𝑈. Evers et 

al.  (2014) introduces two new parameters: 

𝑏𝑗𝑘 = {
1  𝑖𝑓 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑘 ∈ 𝑁′ 𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑤ℎ𝑒𝑛 𝑈𝐴𝑉 𝑖𝑠 𝑎𝑡 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑗
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑏𝑖𝑗𝑘 = 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑎𝑟𝑐 (𝑖, 𝑗) 𝑖𝑛 𝑤ℎ𝑖𝑐ℎ 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑘 ∈ 𝑁′𝑖𝑠 𝑐𝑜𝑣𝑒𝑟𝑒𝑑 

If the UAV arrives at location 𝑗 before the start of the time window, the UAV has some waiting time 𝑤𝑗 . 

Considering a given travel time 𝑡𝑖𝑗  on arc (𝑖, 𝑗) and a given recording time 𝑟𝑗  and waiting time 𝑤𝑗  at target 𝑗, 

the WLC of arc (𝑖, 𝑗) is defined as follows: 

𝑐𝑖𝑗(𝑡𝑖𝑗 , 𝑤𝑗 , 𝑟𝑗) = ∑ (𝑡𝑖𝑗𝑏𝑖𝑗𝑘 + (𝑤𝑗 + 𝑟𝑗)𝑏𝑗𝑘)𝜆𝑘

𝑘∈𝑁′
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3.2.2. OBJECTIVE 
Aim of the MCS-OPTW re-planning model is to find a tour, or a path at time 𝑡  from 0𝑡  to depot, which 

balances the two objectives. The two objectives are balanced by 𝛼 and 𝛽, with 𝛼 + 𝛽 = 1. This objective can 

be used to evaluate any given tour 𝑥. The objective maximizes expected values: 

𝔼𝑡𝑟(. ) = 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑡 𝑎𝑛𝑑 𝑟 

The expected value is determined by evaluating a found solution for a set of scenarios, each containing one 

realization of the travel time between all combinations of locations and one realization for the recording 

time in each target. For every scenario, the first part of the objective determines the profit, taking into 

account that the UAV can arrive too late to start the recording: 

𝐼𝑖𝑥𝑡𝑟 = {
1  𝑖𝑓 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑔𝑖𝑣𝑒𝑛 𝑡𝑜𝑢𝑟 𝑥, 𝑡𝑎𝑟𝑔𝑒𝑡 𝑖 𝑐𝑎𝑛 𝑏𝑒 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑏𝑒𝑓𝑜𝑟𝑒 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑖𝑡𝑠 𝑡𝑖𝑚𝑒 𝑤𝑖𝑛𝑑𝑜𝑤
0  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

The objective MCS-OPTW is formulated as follows: 

max 𝛼𝔼𝑡𝑟 ( ∑ 𝑝𝑖𝐼𝑖𝑥𝑡𝑟

𝑖∈𝑁(𝑡)

∑ 𝑥𝑖𝑗

𝑗∈𝑁+(𝑡){𝑖}

) +  𝛽𝔼𝑡𝑟 ( ∑ ∑ 𝑐𝑖𝑗(𝑡𝑖𝑗 , 𝑤𝑗 , 𝑟𝑗)𝑥𝑖𝑗

𝑗∈𝑁+(𝑡){𝑖}𝑖∈𝑁+(𝑡)

) 

In which the first part, with weight 𝛼 , describing the expected profit obtained from recording foreseen 

targets and the second part, with weight 𝛽, describing the expected ability to reach new targets. 

4. HEURISTIC 
The route of the UAV should be re-planned each time before leaving a target. For the (T)OPTW, 

Vansteenwegen et al. (2009) developed a fast heuristic. For the MCS-OPTW, Evers et al. (2014) developed 

a fast heuristic that differs from the (T)OPTW heuristic in the fact that it takes uncertainty and possible 

new targets into account. 

The heuristic used for both methods consists of four steps:  

1. Initialization: in this phase the best solution and the current solution contain two locations. First, 

the current location at time 𝑡, and second, the final location, the depot. If 𝑡 = 0 the current location 

is the location of the depot and if the heuristic is used to re-plan the current location is the location 

of the target which the UAV is about to leave. 

2. Insertion: All combinations of targets that could be inserted and placed in the current solution 

where targets could be inserted without breaking any of the time window constraints are found. 

Using a certain measure, the best insertion possible is executed. After that, the required 

characteristics of the targets in the current solution are calculated. 

3. Evaluation: The objective value of the current solution is determined. If this objective is better 

than the objective of the current best solution, the best solution is updated.  

4. Shake: 𝑅  consecutive targets are removed from the current solution, starting at 𝐵 . Again, the 

required characteristics of the targets in the current solution are calculated. 

Steps 2, 3 and 4 are repeated until a determined number of times in a row no improvement is found. These 

steps will be explained further in the following sections. 

4.1. (T)OPTW HEURISTIC  
The (T)OPTW heuristic stores for each location in the current solution some properties of that target. 

Consider a sequence of targets 𝑖, 𝑗 and 𝑘 which are in this order in the current solution. For the middle 

target, target 𝑗, the arrival time (𝑎𝑗), the time when the UAV can start recording (𝑠𝑗), the possible waiting 
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time (𝑤𝑗) and the maximum time the start of recording can be shifted ahead, max shift (𝑚𝑗) are defined as 

follows: 

𝑎𝑗 = 𝑠𝑖 + 𝑟𝑖 + 𝑡𝑖𝑗  

𝑠𝑗 = max(𝑎𝑗 , 𝑙𝑗) 

𝑤𝑗 = max(𝑙𝑗 − 𝑎𝑗 , 0) 

𝑚𝑗 = min(𝑢𝑗 − 𝑠𝑗 , 𝑤𝑘 + 𝑚𝑘) , 𝑚0 = 𝑇 − 𝑠0 

For 𝑎𝑗 , 𝑠𝑗  and 𝑤𝑗  the properties about previous targets in the solution are needed. The arrival time of the 

first location the UAV flies to in the found solution, 𝑎𝑓𝑖𝑟𝑠𝑡 , is equal to the time of re-planning 𝑡 plus the travel 

time between the position of the UAV at the moment of re-planning and the first location. 𝑎𝑓𝑖𝑟𝑠𝑡 = 𝑡 + 

𝑡0𝑡𝑓𝑖𝑟𝑠𝑡  is used to calculate 𝑠𝑓𝑖𝑟𝑠𝑡 , which is again used to calculate the arrival time for the second location in 

the found solution, etcetera.  𝑚𝑗  uses properties from the targets following up target 𝑗 in the solution. The 

last location in the found solution is the depot, for which the max shift is equal to 𝑚0 = 𝑇 − 𝑠0. 𝑚0 is used 

in calculating the max shift for the second last location in the found solution, etcetera. 

The properties of target 𝑗’ can be calculated as if the sequence of target 𝑗, 𝑗’ and 𝑘 is in this order in the 

current solution. Furthermore, 𝑠ℎ𝑖𝑓𝑡𝑗′  is the total additional time required to insert target 𝑗’ in the current 

tour between targets  𝑗  and 𝑘 . A target 𝑗’  can be inserted between target 𝑗  and target 𝑘  the following 

conditions are met: 

𝑎𝑗′ ≤ 𝑢𝑗′  

𝑠ℎ𝑖𝑓𝑡𝑗′ = 𝑡𝑗𝑗′ + 𝑤𝑗′ + 𝑟𝑗′ + 𝑡𝑗′𝑘 − 𝑡𝑗𝑘 ≤ 𝑤𝑘 + 𝑚𝑘  

The combination of the target and the location in the current solution with the highest ratio 𝑝𝑗′
2 /𝑠ℎ𝑖𝑓𝑡𝑗′  is 

selected for insertion.  

In the ‘shake’ step, 𝑅 consecutive targets are removed from the current solution, starting at 𝐵. 𝐵 cannot be 

the first or last location, as the first target indicates where the UAV is and the last target is the depot to 

which the UAV should return. 𝐵 is a position chosen according the uniform distribution between the first 

and last location in the current solution. 𝑅 cannot be larger than the number of targets that come after 𝐵 in 

the current solution, because the depot cannot be removed, so  𝑅  is chosen according the uniform 

distribution between 1 and the number of targets in the current solution minus 𝐵.  

In the ‘shake’ step, the heuristic used in this thesis differs slightly from the heuristic for the (T)OPTW 

developed by Vansteenwegen et al. (2009). In the latter, there are more bounds on 𝐵 and 𝑅.  

4.2. MCS-OPTW HEURISTIC 
The MCS-OPTW heuristic developed by Evers et al. (2014) takes uncertainty and the appearance of new 

targets into account.  The heuristic takes a set of 100 scenarios for the travel times and the recording times 

as input. These scenarios are randomly drawn from the gamma distribution with the parameters stated as 

in the section ‘Data’. This heuristics works with two kinds of expected values: first, the expected values 

based on the probability distribution and second, the expected values equal to the averages of the 100 

scenarios. When referred to the properties of the targets it is important to distinguish two types of 

notations. A ‘*’ refers to an expected value based on the probability distribution. Consider for example the 

arrival time at target 𝑗′, 𝑎𝑗′is the arrival time based on the expected values based on the average of the 100 

scenarios and 𝑎𝑗′
∗  is the arrival time based on the expected values from the probability distribution. 

In step 2 and 4 of the heuristic, where the current solution is changed, the characteristics of the targets in 

the current solution are calculated as in the (T)OPTW heuristic, with the expected values equal to the 

averages of the 100 scenarios as input.  
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The heuristic uses characteristics of the probability distributions. 𝑡𝑖𝑗̅̅ ̅  with 𝜎𝑖𝑗
𝑡  and 𝑟𝑗̅  with 𝜎𝑗

𝑟  define the 

expected values  with the standard deviation of the gamma distribution for the travel times on arc (𝑖, 𝑗) and 

the recording times at target 𝑗 respectively. The heuristic allows travel and recording time realizations to 

be 𝜌 times the standard deviaton lower than the expected value in the feasibility conditions. Like in the 

article by Evers et al. (2014), 𝜌 = 0.5. This leads to more targets to be allowed for insertion. The earliest 

realized arrival time of target 𝑗’ to insert target 𝑗’ between 𝑗 and 𝑘 and the corresponding largest allowed 

waiting time are now as follows: 

𝑎𝑗′
∗ = 𝑠𝑗 + (𝑟𝑗 − 𝜌𝜎𝑗

𝑟) + (𝑡𝑗𝑗′ − 𝜌𝜎𝑗𝑗′
𝑡 ) 

𝑤𝑗′
∗ = max (𝑙𝑗′ − 𝑎𝑗′

∗ , 0) 

The feasibility conditions are now defined as follows: 

𝑎𝑗′
∗ ≤ 𝑢𝑗′  

𝑠ℎ𝑖𝑓𝑡𝑗′
∗ = (𝑡𝑗𝑗′ − 𝜌𝜎𝑗𝑗′

𝑡 ) + 𝑤𝑗′
∗ + (𝑟𝑗′ − 𝜌𝜎𝑗′

𝑟) + (𝑡𝑗′𝑘 − 𝜌𝜎𝑗′𝑘
𝑡 ) − 𝑡𝑗𝑘 ≤ 𝑤𝑘 + 𝑚𝑘 

To take the uncertainty in travel and recording times into account, the ratio of inserting target 𝑗’ between 

target 𝑗 and 𝑘 is calculated as follows: 

(𝑃(𝑎𝑗′ ≤ 𝑢𝑗′)𝑝𝑗′)2

𝑠ℎ𝑖𝑓𝑡𝑗′
 

𝑃(𝑎𝑗′ ≤ 𝑢𝑗′) is the probability of the UAV arriving in time to start recording. Considering 𝑎𝑗′ = 𝑠𝑗 + 𝑟𝑗 + 𝑡𝑗𝑗′ 

and given that the values 𝑠𝑖  and 𝑟𝑖  are already realized, this probability depends on the distribution of 𝑡𝑗𝑗′ . 

In other words, 𝑃(𝑎𝑗′ ≤ 𝑢𝑗′)  can be written as 𝑃(𝑡𝑗𝑗′ ≤ 𝑢𝑗′ − 𝑠𝑗 − 𝑟𝑗) , which is gamma distributed as 

described in the section ‘Data’.  

The objective value of the MCS-OPTW heuristic is estimated using the given 100 scenarios. With a certain 

solution, the objective value is calculated for every scenario. The expected objective value, which I am 

actually looking for, is now the average of all these scenario-specific values. 

5. SIMULATION 
To test the performance of the heuristic, simulation is used. Each simulation can be regarded as a flight. For 

every flight, a realization of travel and recording times is obtained. Note that this is a different set than used 

to evaluate solutions in the heuristic. Besides the travel and recording times, a scenario of appearances of 

new targets is simulated for every flight. Similar to the article by Evers et al. (2014), the new targets appear 

according to a Poisson process. As stated in section 2.2., the arrival rate 𝜆𝑖  defines the expected number of 

new targets that appear at location 𝑖 during the time span 𝑇 − 𝑡𝑛, therefore the arrival rate per time unit is 

equal to 
𝜆𝑖

𝑇−𝑡𝑛
. The inter arrival times are, according to the Poisson process, determined according the 

exponential distribution with mean 
1

𝜆
 (in which 𝜆 is the mean of the inter arrival times). 

The simulation contains 3 steps, which are repeated until the UAV returns to the depot: 

1. Re-planning heuristic: Each time before leaving a target and the first time before leaving the 

depot, the heuristic is applied to find a planned tour.  The first target is the target which is the first 

to fly to according to the found tour. The arrival time (𝑎), the waiting time (𝑤) and the recording 

time (𝑟) for the first target are determined with travel and recording times of the simulated flight.  

2. Re-tasking: If one or more new targets have appeared before the ending of the recording of the 

first, it is decided if the UAV is going to fly to a new target using the re-tasking criterion described 
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in section 5.1. If more than one target appeared, it is first checked for the target that appeared first. 

Only if the UAV decides not to fly to this target, the second target that appeared is regarded 

etcetera.  

3. Objectives: If the UAV is not sent to a new target, it is checked if the UAV arrived at the first target 

before the ending of the time window of the first target. If so, it is checked if the recording is 

completed before the UAV returns to the depot. If the recording is completed, the profit 

corresponding to the target is gained. If the UAV was sent to a new target, it is checked if the UAV 

arrived in time. If so, the new target is counted as reached in time. Further, it is again checked if 

the recording is completed before the UAV returns to the depot and only if this is the case, the new 

target is counted as recorded.  

The UAV returns to the depot if the expected travel time to the depot, according to the probability 

distribution, equals 𝑇 − 𝑡. If more than one target appeared in step 2, these targets are regarded for re-

tasking after the potential flying to and recording of the new target. The same holds for targets that appear 

while the UAV is already on its way to or recording a new target. In these cases the value for 𝑈 in the re-

tasking criterion (explained in section 5.1.) is smaller because of the time that has already passed between 

the appearance of the new target and the moment that re-tasking is considered.  

5.1. RE-TASKING CRITERION 
The criterion to fly or not to fly to the new target is defined by Evers et al. (2014) as the re-tasking criterion. 

The UAV is sent directly to a new target in case the probability of reaching it in time is large enough. The 

probability of reaching the target at location 𝑖 in time is defined as follows: 

𝑃(𝑡0𝑡𝑖 ≤ 𝑈) 

𝑡0𝑡𝑖   is the travel time from the current location 0𝑡  to the location of the new target 𝑖 , which is gamma 

distributed as described in the section 2.1.2. To find the shape parameter of this distribution, the Euclidean 

distance, the current location of the UAV needs to be determined. If the new target appeared at time 

𝑡𝑛𝑒𝑤 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒  before the arrival time at the first target (𝑡𝑛𝑒𝑤 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 < 𝑎), the location is determined 

according to the fraction of the travel time towards the first target already flown 𝑓𝑓𝑙𝑜𝑤𝑛  at the moment of 

appearance. If the location of the previous target (the target at which the re-planning heuristic is applied) 

is (𝑋𝑝, 𝑌𝑝)  at time 𝑡  and the location of the first target is (𝑋1, 𝑌1) , the current location (𝑋0, 𝑌0)  at time 

𝑡𝑛𝑒𝑤 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒  is calculated as follows: 

𝑓𝑓𝑙𝑜𝑤𝑛 =
𝑡𝑛𝑒𝑤 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 − 𝑡

𝑎 − 𝑡
 

(𝑋0, 𝑌0) = (𝑋𝑝 + 𝑓𝑓𝑙𝑜𝑤𝑛(𝑋1 − 𝑋𝑝), 𝑌𝑝 + 𝑓𝑓𝑙𝑜𝑤𝑛(𝑌1 − 𝑌𝑝)) 

If the new target appeared after the arrival at the first, while the UAV is waiting to start a recording or is 

recording, the location of the UAV is of course equal to that of the first target. With the location of the UAV 

the probability of reaching the target in time can be determined. This probability is large enough if it is at 

least 𝑃(𝑎𝑛𝑒𝑤 < 0.85𝑎𝑛𝑒𝑤̅̅ ̅̅ ̅̅ ). This gives the re-tasking criterion: 

Re-task if 𝑃(𝑡0𝑡𝑖 ≤ 𝑈) ≥  𝑃(𝑎𝑛𝑒𝑤 < 0.85𝑎𝑛𝑒𝑤̅̅ ̅̅ ̅̅ ) 

 𝑎𝑛𝑒𝑤  is the realized arrival time and 𝑎𝑛𝑒𝑤̅̅ ̅̅ ̅̅  is the expected arrival time at the location of the new target at 

location 𝑖 , 𝑎𝑛𝑒𝑤 = 𝑡 + 𝑡0𝑡𝑖 . This gives 𝑃(𝑎𝑛𝑒𝑤 < 0.85𝑎𝑛𝑒𝑤̅̅ ̅̅ ̅̅ ) = 𝑃(𝑡 + 𝑡0𝑡𝑖 < 0.85(𝑡 + 𝑡0𝑡𝑖)) = 𝑃(𝑡0𝑡𝑖 <

0.85(𝑡 + 𝑡0𝑡𝑖) − 𝑡), which is gamma distributed as described in section 2.1.2.  

5.2. POSSIBLE ADJUSTMENTS 
In this section I introduce three suggestions for adjustments in the simulation. 
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5.2.1. RE-TASKING CRITERION 
In the simulation described by Evers et al. (2014), the UAV is sent directly to a new target if the re-tasking 

criterion is met. It can occur that at the moment of appearance, the UAV is recording a foreseen target. In 

that case, the recording is stopped and the profit is not gained. It might occur that  a nearly finished 

recording is stopped to fly to a new target, while the new target could have also be reached in time after 

finishing the recording and profit is lost unnecessary. The variable 𝑟0𝑡,𝑙𝑒𝑓𝑡  indicates the recording time that 

is left at the current location of the UAV at the moment of appearance of the new target. The probability of 

finishing the recording and reaching the target in time is now defined as follows:  

𝑃(𝑟0𝑡,𝑙𝑒𝑓𝑡 + 𝑡0𝑡𝑖 ≤ 𝑈) 

For simplicity in calculations, I assume that once a recording has started, the total recording time is known. 

The fraction of the recording already completed is given by 𝑓𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 . This gives 𝑟0𝑡,𝑙𝑒𝑓𝑡 : 

𝑓𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑 =
𝑡𝑛𝑒𝑤 𝑎𝑝𝑝𝑒𝑎𝑟𝑎𝑛𝑐𝑒 − 𝑠0𝑡

 𝑟0𝑡

 

 𝑟0𝑡,𝑙𝑒𝑓𝑡 = (1 − 𝑓𝑟𝑒𝑐𝑜𝑟𝑑𝑒𝑑)𝑟0𝑡
 

The probability of finishing the recording and reaching the new target in time can now be described as 

𝑃(𝑡0𝑡𝑖 ≤ 𝑈 − 𝑟0𝑡,𝑙𝑒𝑓𝑡), of which the probability distribution is known. The arrival time can be described as  

𝑎𝑛𝑒𝑤 = 𝑡 + 𝑟0𝑡,𝑙𝑒𝑓𝑡 + 𝑡0𝑡𝑖 . This gives 𝑃(𝑎𝑛𝑒𝑤 < 0.85𝑎𝑛𝑒𝑤̅̅ ̅̅ ̅̅ ) = 𝑃(𝑡 + 𝑟0𝑡,𝑙𝑒𝑓𝑡 + 𝑡0𝑡𝑖 < 0.85(𝑡 + 𝑟0𝑡,𝑙𝑒𝑓𝑡 +

𝑡0𝑡𝑖)) = 𝑃(𝑡0𝑡𝑖 < 0.85(𝑡 + 𝑟0𝑡,𝑙𝑒𝑓𝑡 + 𝑡0𝑡𝑖) − 𝑡 − 𝑟0𝑡,𝑙𝑒𝑓𝑡), which is gamma distributed as described in section 

2.1.2. 

5.2.2. APPEARANCE NEW TARGETS 
The arrival rate 𝜆𝑖  of potential location 𝑖 defines the expected number of new targets that appear at this 

location during the time span 𝑇 − 𝑡𝑛. 𝑡𝑛 is the expected travel time from the new target location which is 

closest to the depot to the depot. Due to the return policy, the UAV will not be sent to targets which appear 

after 𝑇 − 𝑡𝑛(Evers et al., 2014). When a new target appears, the re-tasking criterion is met and the new 

target is reached in time, the recording of the new target starts. However, if a new target appears just before 

𝑇 − 𝑡𝑛, it might occur that the recording of the new target has started but the UAV needs to return to the 

depot before completing the recording. Therefore, the percentage of new targets reached in time and the 

percentage of new targets recorded might differ.  

Possibly, the UAV is re-tasked while recording a foreseen target, stops the recording of the foreseen target 

and gains no profit from the foreseen target. The UAV reaches the new target in time, but cannot complete 

the recording because it has to return to the depot. In this possible scenario, the UAV gains no profit from 

the foreseen target and the new target is not recorded because of the re-tasking. If the UAV was not re-

tasked, it might have completed the recording of the foreseen target and the obtained profit in the flight 

would have been higher while the percentage recorded remained the same.  

Therefore, it is worth investigating the effect of changing the time span in which the UAV can be sent to a 

new target. In this case, the UAV will not be sent to targets which appear after 𝑇 − 𝑡𝑛 − 𝑟𝑛 . 𝑟𝑛 is the expected 

recording time of the new target with the smallest expected recording time (in this thesis all new targets 

have equal values for the parameters for the recording time).  

5.2.3. LESS TIME SENSITIVE NEW TARGETS 
The minimal distance between two new targets in different clusters is 13.60. The time in which the new 

target has to be reached, 𝑈 = 10, is quite small. The probability of reaching a target in time is therefore 

relatively small, let alone the probability of finishing a recording and reaching a target in time (as is 

suggested is in the first adjustment).  
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If the new targets are less time sensitive, 𝑈 > 10, the results of the simulation might change. New targets 

are easier to reach in time which will lead to a larger value for the second objective. Further, the effects of 

the first adjustment could become clearer when the time in which the new target has to be reached is larger 

because it is easier for the UAV to reach a new target in time after finishing a recording.  

6. COMPUTATIONAL EXPERIMENTS 
The (T)OPTW heuristic and the MCS-OPTW heuristic are both implemented in MATLAB. All experiments 

are performed on an Acer Aspire V5 laptop with an Intel Core i7 processor (1.8 gigahertz) and 8.00 GB of 

RAM. The time needed to run the MCS-OPTW heuristic depends mainly on the setting for the number of no 

improvements in a row required to accept a solution. Further, it depends on the length of the time windows, 

larger time windows result in a larger computation time. This can be explained by looking which parts of 

the heuristic take most time. Approximately the half of the duration of the heuristic is caused by the part in 

which the heuristic finds all possible insertions. All possible insertions are all combinations of targets that 

could be inserted and placed in the current solution where targets could be inserted without breaking any 

of the time window constraints are found. Larger time windows will result in more possible insertions 

because of less strict time window constraints. The time needed to run the total simulation depends on the 

number of flights. 

6.1. HEURISTIC 
In this first section, section 6.1, I discuss the results of running the heuristic once for the starting situation: 

that means that the current location of the UAV is at the depot (0𝑡 = 0) and 𝑡 = 0.  

6.1.1. STABILITY 
First, I have checked if the heuristics give stable results. To do so, I performed the heuristic five times, each 

time with the same set of scenarios and settings for the lengths of the time windows. I performed four 

experiments: First, the MCS-OPTW heuristic with small time windows; second, the MCS-OPTW heuristic 

with large time windows; third, the (T)OPTW heuristic with small time windows and fourth, the (T)OPTW 

heuristic with large time windows. For the experiments to check the stability I have set 𝛽 = 0.3. Like in the 

article, the number of no improvements in a row required to accept a solution is set at 1000. The time 

needed to run the heuristic equals 15 to 35 seconds for small time windows. 

For the first and second experiment I calculated the MCS-OPTW objective and the first and second objective 

separately. For the third and fourth objective I only compared the OPTW objective, as the other objectives 

are not used in the heuristic. For each objective in each experiment I calculated the mean. Because the 

number of performances per experiment is so little (five), I do not work with standard deviations. Instead, 

I calculated the percentage deviation from the mean per performance.  The results are given in Table 1. The 

number of no improvements is set at 1000. 

In Table 1 it is shown that, with the same set of scenarios, the percentage deviation from the total objective 

is never above 5%. Table 1 shows that for the first or the second objective, the percentage deviation is 

bigger.  

In the heuristic only the total objective is maximized, that the first or second objective fluctuates more 

makes sense. The total objective should be constant. Table 1 shows that the total objective is constant, at 

least within a margin of 5%. Therefore, I conclude that the heuristic is stable. 

As stated at the beginning of this chapter, the time needed to run the heuristic depends mainly on the 

setting of the number of no improvements in a row required to accept a solution. Because in the simulation 

the heuristic is called many times, I investigated if the number of no improvements can be set smaller to 

increase speed while maintaining stability.  



Bachelor thesis Econometrics: QL & OR –Erasmus School of Economics, June 2014 – Wolters, M.A.M. 
 

Page | 11 
 

 

TABLE 1: STABILITY HEURISTIC 

Results of 5 times running the MCS-OPTW and (T)OPTW heuristic for small and large time windows. Each time the same set of 
scenarios to evaluate the solution is used. For the MCS-OPTW the results (mean of percentage deviation from the mean) are given 
in the following form: Total objective/First objective/Second objective. For the (T)OPTW only the total objective is given. If the 
percentage deviation from the mean is larger than 5%, it is underlined. The number of no improvements is set at 1000. 𝛽 = 0.3. 
 MCS-OPTW 

Small time windows 

MCS-OPTW 

Large time windows 

(T)OPTW 

Small time windows 

(T)OPTW 

Large time windows 

 Mean 65.25/69.00/56.48 107.59/137.39/38.07 125.00 166.00 

Percentage 

deviation 

from mean per 

performance of 

heuristic 

1 0%/12%/-33% 1%/1%/-3% 0% 2% 

2 -1%/3%/-14% 1%/1%/-3% 0% -1% 

3 -1%/-2%/5% 2%/2%/-1% 0% -4% 

4 -3%/-10%/17% 1%/1%/-5% 0% -1% 

5 4%/-3%/25% -4%/-6%/13% 0% 2% 

 

If the number of no improvements is set at 100, the heuristic needs 1 to 3 seconds to run in case of small 

time windows, in case of large time windows the heuristic needs 2 to 6 seconds. However, the results are 

less stable. I have investigated the effects of increasing the number of no improvements by running 1000 

times the heuristic for the number of no improvements set at 100, 200 and at 300. With a sample size of 

1000, I can apply the Central Limit Theorem to find the standard deviation and the 95% confidence interval. 

For every heuristic, I calculated the mean, the standard deviation, the confidence interval and the average 

percentage deviation from the mean for the total objective. The same set of scenarios is used in all 

heuristics. The results are shown in Table 2.  

Table 2 shows that an increase of the number of no improvements results in a higher computation time but 

also in more stability, as expected. Further, it is observed that the relative decrease in standard deviation 

or length of the confidence interval becomes smaller when the number of no improvements is increased 

more. 

The percentage with a deviation from mean larger than 5% shows the percentage of observations with a 

relative large deviation from the mean. In the case that the number of no improvements is set at 300, 95% 

of all objective values where within 5% of the mean in case of the small time windows and 97% of all 

objective values where within 5% of the mean in case of the large time windows.  

TABLE 2: STABILITY HEURISTIC 

Results about stability when the number of no improvements is smaller. The number of no improvements is set at different values. 
For each value, the MCS-OPTW, 𝛽 = 0.3, is performed 1000 times.  
 Small time windows Large time windows 

Number of no improvements 100 200 300 100 200 300 

Duration (in seconds) 1 to 4 3 to 6  4 to 7 2 to 6 4 to 9  6 to 16 

Mean total objective 64.06 65.15 63.01 104.31 106.40 106.77 

Standard deviation 2.07 1.59 1.46 3.39 2.81 2.47 

Confidence interval [60.01; 
68.11] 

[62.02; 
68.27] 

[60.15; 
65.87] 

[97.67; 
110.95] 

[100.89; 
111.91 

[102.36; 
112.04] 

Length Confidence interval 8.10 6.25 5.72 13.28 11.03 9.68 

Average percentage deviation from mean 3% 2% 2% 3% 2% 2% 

Percentage with a deviation from mean larger 
than 5% 

11% 6% 5% 9% 9% 3% 

6.1.2. BEHAVIOR HEURISTIC 
Now, I want to compare the (T)OPTW heuristic with the MCS-OPTW heuristic using different values for 𝛽. 

Given a set of scenarios and a length for the time windows (small or large), the (T)OPTW heuristic is 

performed and the MCS-OPTW heuristic is performed for  𝛽 = 0; 0.1; 0.2; 0.3; 0.4; 0.5; 0.6; 0.7; 0.8; 0.9 and 
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1. This gives 12 ‘best’ initial tours. For all the tours the objective value is determined. Note that in the case 

of the (T)OPTW heuristic, the objective value is determined with another formula than in the case of the 

MCS-OPTW heuristic. Also, the first and the second objective value, from the MCS-OPTW heuristic, are 

determined for all the tours. In the case of the (T)OPTW, these objectives are not used to determine the 

best tour. However, for comparison reasons I do determine the first and second objective according the 

MCS-OPTW for the solution given by the (T)OPTW. Doing so, I can see how the solution given by (T)OPTW 

performs in case of uncertainty and the capability of covering new targets. The results are shown in Table 

3. The number of no improvements in a row required to accept a solution is set at 1000. 

TABLE 3: RESULTS HEURISTICS IN INITIAL SITUATION 

Results of the heuristic applied on the initial situation, that means that the current location is the depot and the time 𝑡 = 0. The 
results are given in the following form: Total objective/First objective/Second Objective. Note that for the (T)OPTW approach, the 
total objective is calculated in a different way than for the MCS-OPTW approach. The number of no improvements is set at 1000. 
The results from the MCS-OPTW heuristic that outperform the (T)OPTW heuristic are underlined. 
Heuristic 𝛽 Small time windows Large time windows 

(T)OPTW N.A. 130.00/42.20/41.43 155.00/73.90/42.89 

MCS-OPTW 0 77.10/77.10/29.86 144.05/144.05/22.63 

MCS-OPTW 0.1 74.55/78.65/37.65 128.96/139.35/35.42 

MCS-OPTW 0.2 66.17/74.00/34.83 119.77/144.05/22.63 

MCS-OPTW 0.3 63.23/62.00/66.11 108.95/129.90/60.08 

MCS-OPTW 0.4 63.65/62.00/66.11 102.20/143.85/39.72 

MCS-OPTW 0.5 66.43/49.90/82.96 88.06/127.80/48.31 

MCS-OPTW 0.6 64.47/62.00/66.11 81.35/110.70/61.79 

MCS-OPTW 0.7 68.70/67.70/69.13 75.31/102.90/63.49 

MCS-OPTW 0.8 68.63/55.60/71.89 78.93/109.85/71.20 

MCS-OPTW 0.9 65.70/62.00/66.11 69.25/78.80/68.19 

MCS-OPTW 1 78.22/50.65/78.22 61.11/99.20/61.11 

 

The results in Table 3 are obtained using one set of scenarios for all heuristics and values for 𝛽. Note that 

different sets of scenarios can result in different outcomes. Therefore, I performed the different heuristics 

with the different values for  𝛽 for multiple sets of scenarios, the outcomes stated in this section are an 

example. These outcomes are obtained from one set of scenarios. Further, for the (T)OPTW heuristic the 

first and second objective can differ a lot, even if the same set of scenarios is used, because these are not 

used in the heuristic and there are probably many different solutions giving the same objective value in the 

(T)OPTW heuristic. In the following subsections the main findings about the behavior of the heuristic are 

described. Because, as stated as above, these findings are based on outcomes of one set of scenarios, I have 

checked if these findings also hold for outcomes of other sets of scenarios.  

6.1.2.1. Influence 𝜷 
Table 3 shows that increasing the value of 𝛽 results in a decrease of the first objective and an increase in 

the second objective. As 𝛽 is responsible for the weight of the second objective, this is as expected.  

In case of the small time windows, the value of the first objective changes relatively more between 𝛽 = 0 

and 𝛽 = 0.5 than between 𝛽 = 0.5 and 𝛽 = 1. In the case of the small time windows, there is still a quite 

some fluctuation between 𝛽 = 0.5 and 𝛽 = 1 for the value of the first objective, though it does not decrease 

anymore. For the case of the large time windows, the value of the first objective decreases relatively more 

between 𝛽 = 0.5 and 𝛽 = 1. 

For the second objective most value is gained between 𝛽 = 0 and 𝛽 = 0.5. The value of the second objective 

is more than 2 times bigger at 𝛽 = 0.5 compared to 𝛽 = 0, for the small and the large time windows. Table 
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3 shows that between 𝛽 = 0.5 and 𝛽 = 1 the value decreases for the case of the small time windows but 

increases for the case of the large time windows. 

Evers et al. (2014) states that that in the simulation, the values of the objectives do not change significantly 

anymore between 𝛽 = 0.5 and 𝛽 = 1, and therefore the results of 𝛽 = 0.6; 0.7; 0.8 and 0.9 are left out. With 

the results shown in this section, it is seen that, in the case of the large time windows, there is still a quite 

large change between the value for the first and second objective when 𝛽 = 0.5 and 𝛽 = 1. As stated earlier 

this section, the results in this section are examples and can change a lot when a new set of scenarios is 

created. When looking at outcomes from other sets of scenarios, it is sometimes also observed that the 

value of the second objective changes relatively a lot between 𝛽 = 0.5 and 𝛽 = 1. This means that with the 

data in this thesis, for performing the heuristic on the initial situation to get a planned tour, the results 

could change relatively a lot between 𝛽 = 0.5 and 𝛽 = 1 and are therefore not left out. If the heuristic in 

the initial situation behaves like this, this might also be the case in a simulation. 

6.1.2.2. MCS-OPTW compared to (T)OPTW 
Table 3 shows that the values for the first objective of the solutions of the (T)OPTW are smaller than the 

total (T)OPTW objective. In outcomes from other sets of scenarios, this is also the case. The total objective, 

used to determine the best solution, is calculated with the objective of the (T)OPTW in section 3.1. The 

(T)OPTW objective is simply the sum of the profit of all targets in the found solution. The first objective 

shown in Table 3 is calculated using the first part of the objective of the MCS-OPTW in section 3.2.2. The 

first part of the MCS-OPTW objective is the expected value of the sum of the profits of the targets reached 

before the ending of their time window. If a target is not reached in time, no profit is gained. This results in 

a difference between the value of the total (T)OPTW objective and the value of the first MCS-OPTW 

objective for the found solution from the (T)OPTW heuristic. This difference means that, when the travel 

and recording times are assumed to be known beforehand, as in the (T)OPTW heuristic, the heuristic might 

result in a too tight planning in which less targets are reached in time when evaluating it by multiple 

scenarios. 

Table 3 shows that if the first objective of the solution of the MCS-OPTW heuristic outperforms the first 

objective of the solution of the (T)OPTW heuristic in all cases. Therefore, I conclude that adding uncertainty 

in the objective to determine the best solution is useful.  

For the results in Table 3, if the second objective of the MCS-OPTW is compared with the second objective 

of the value of the solution found by the (T)OPTW heuristic, Table 3 shows that in the case of the small time 

windows, the second objective is better when 𝛽 ≥ 0.3 and in the case of the large time windows, the second 

objective is better when 𝛽 ≥ 0.5. However, as already stated, the second objective of the solution found by 

the (T)OPTW can fluctuate a lot. Therefore, it is not correct to draw conclusions from these results about 

how the (T)OPTW heuristic performs in terms of the second objective compared to the MSC-OPTW 

heuristic.  Though, it is clear that the (T)OPTW heuristic is not useful if a solution with a large coverage is 

wished with any certainty.  

6.1.2.3. Influence length of time windows 
Table 3 shows that in the case of large time windows, the objective value is larger than in case of the small 

time windows, except for the case in which  𝛽 = 1.  This increase is caused by the increase in the first 

objective value, therefore the differences in the total objective value are bigger when 𝛽 is smaller and, in 

this specific example, the difference disappears if 𝛽 = 1. This is caused by the fact that large time windows 

result in more targets to be reached within their time window. This is a similarity with the results of the 

simulation of Evers et al. (2014).  

6.1.3. TOPOLOGY 
Figures A.2-8, found in Appendix A. illustrates 7 examples of solutions obtained by the (T)OPTW heuristic 

or the MCS-OPTW heuristic with different values for 𝛽, for small time windows and large time windows.  
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Altough these tours can be adjusted after the re-planning step in the heuristic, they give a good illustration 

of how the tour is situated.  

If Figure A.2-8, small time windows, is compared with Figure A.6-8, large time windows, differences can be 

observed.  The small time windows result in tours whith relatively more intersecting arcs, where the tours 

in case of the large time windows are more smooth. This is a similarity with the results found by Evers et 

al. (2014). Further, if the same heuristic is applied with the same value for 𝛽, the tours planned in case of 

the large time windows include more targets than the tours planned in case of the small time windows. 

When 𝛽 increases, the number of targets in the tour decreases and the UAV is sent more in the direction of 

location of potential new targets.  

If the tours planned by (T)OPTW are compared with the tours planned by MCS-OPTW with 𝛽 = 0, it is 

observed that the tours planned with (T)OPTW contain more targets. In case of the small time windows, 

the difference is larger than the case of large time windows. This difference can be explained by the fact 

that MCS-OPTW takes uncertainty into account and chooses the solution with the most obtained profit over 

100 scenarios. To illustrate this, I evaluated the first objective from the MCS-OPTW heuristic for the tour 

given by both heuristics, in case of the small time windows. The tour from the (T)OPTW heuristic results in 

a value for the first objective of 53.15, while the tour from the MCS-OPTW heuristic with 𝛽 = 0 results in a 

value for the first objective of 85.35. This confirms the finding in 6.1.2.2.; when the traveltimes are assumed 

to be known beforehand, as in the (T)OPTW heuristic, the heuristic might result in a too tight planning, too 

many targets in one tour, in which less targets are reached in time when evaluated by multiple scenarios.  

6.2. SIMULATION 
As stated in section 6.1.1, the computation time of the heuristic depends on the setting for the number of 

no improvements. Because a limited period of time available for this thesis, I decided to set the number of 

no improvements at 300. As shown in section 6.1.1, this gives relatively stable results.   

Evers et al. (2014) evaluates the (T)OPTW heuristic versus the MCS-OPTW heuristic for the values of 𝛽 =

0, 0.1, 0.2, 0.3, 0.4, 0.5 and 1. In section 6.1, it is shown that the results not only differ between 𝛽 = 0 and 

𝛽 = 0.5 but also differ between 𝛽 = 0.5 and 𝛽 = 1. Therefore, I decided not to leave out the results of the 

values of 𝛽 between 0.5 and 1. However, because of time limits I decided to let out some values of 𝛽, and to 

evaluate the (T)OPTW heuristic and the MCS-OPTW heuristic for the values of 𝛽 = 0, 0.25, 0.5, 0.75 and 1. 

Note that the adjustments described in section 5.2. are not applied in the simulations unless explicitly said 

so.  

6.2.1. STABILITY 
The stability of results depends on the number of flights (in other words: the number of simulations) and 

the number of no improvements setting of the heuristic. Evers et al. (2014) uses 800 simulated flights. If 

one simulation calls the re-planning heuristic at least 5 times, and the heuristic takes approximately 5 

seconds (which it does in case of small time windows and a number of no improvements set at 300), testing 

a specific value for 𝛽 for the MCS-OPTW heuristic takes 800 ∗ 5 ∗ 5 = 2000 seconds, this is more than 5.5 

hours. I want to evaluate multiple heuristics, settings for 𝛽 and settings for the time window. Therefore, it 

is not possible within the time limit of this thesis to use 800 simulated flights. Evers et al. (2014) states that 

a smaller number already produces stable results.  

Testing stability for different numbers of simulated flights is very time expensive. A larger number of 

simulated flights will result in a more reliable result. Therefore, I want to set the number of simulated flights 

as large as possible but I want them to be obtained within 24 hours. 

The time to evaluate the (T)OPTW heuristic and the MCS-OPTW heuristic for five different values for 𝛽, for 

small time windows and large time windows, for 200 flights equals approximately 24 hours. This is doable 
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as it can be done over two nights. Therefore, I have set number of flights equal to 200. For all results 

obtained in this chapter, the same set of 200 flights is used.  

6.2.2. BEHAVIOR SIMULATION 
Table 4 contains the results of the tours found by the (T)OPTW heuristic and found by the different values 

for 𝛽 in the MCS-OPTW heuristic. Note that for all results the same set of scenarios to evaluate solutions in 

the heuristic is used and the same set of simulated flights is used. However, when a new target appears 

while the UAV is flying and the location and distance to travel is therefore not know beforehand, the travel 

time has to be determined at that moment. Therefore, when evaluating heuristics with the same flight and 

if the UAV has by coincidence the same location at moment of appearance of the new target, the travel time 

can differ.  

Evers et al. (2014) shows two different performance measures. First, the average profit obtained by 

foreseen targets is given. As stated before, this profit is only obtained if a recording starts before the ending 

of the time window and is completed. Second, the percentage of new targets reached in time is shown. 

However, it is not clear in the article if the recording of the new target has to be completed to be counted 

as reached in time. It is possible that a UAV has to return to the depot before the recording of the new target 

is completed. Therefore, I compared the percentage of new targets reached in time and the percentage of 

new targets recorded completely. Table 4 shows that there are noticeable differences between the 

percentage reached and the percentage recorded completely.  

I have compared these results with the results obtained by Evers et al. (2014) for the situation in which 

new targets appear in clusters and the travel and recording times are gamma distributed. 

TABLE 4: RESULTS OF THE SIMULATION 

Results of the (T)OPTW and MCS-OPTW planning approach for small and large time windows. The number of no improvements in 
the heuristic is set at 300. The results are based on 200 flights. The results are stated in the following form: Average profit gained 
from foreseen targets/Percentage of new targets reached in time/Percentage of new targets completely recorded. The results from 
the MCS-OPTW approach that outperform the (T)OPTW approach are underlined. 
Approach 𝛽 Small time windows Large time windows 

(T)OPTW N.A. 55.43/14.91%/13.62% 45.40/18.00%/16.25% 

MCS-OPTW 0 66.93/13.92%/12.41% 94.48/14.32%/12.81% 

MCS-OPTW 0.25 68.58/14.94%/13.67% 94.45/13.32%/12.31% 

MCS-OPTW 0.5 66.08/17.30%/15.78% 89.00/15.42%/13.93% 

MCS-OPTW 0.75 63.55/19.29%/17.26% 78.98/19.50%/18.25% 

MCS-OPTW 1 58.35/17.93%/16.16% 72.98/17.75%/15.75% 

 

6.2.2.1. Influence 𝜷 
Looking at the percentage of new targets reached in time or new targets recorded, I see that increasing 𝛽 

results in a higher percentage for the MCS-OPTW approach, as expected. However, it is noticeable that for 

𝛽 = 1 the percentages drop a little.  

The little drop for 𝛽 = 1 in the second objective can be explained intuitively. The potential locations of new 

targets divided over two clusters. The total arrival rate is the sum of all arrival rates. The total arrival rate 

of the left cluster is approximately equal to the total arrival rate of the right cluster. In section 2.2.1, I 

calculated the distances between the two clusters. It turns out that the clusters are too far away from each 

other for the UAV to cover them both at the same time. The minimal distance between the two targets is 

13.60. If the UAV would be in the exact middle of the clusters, the minimal distance to a cluster is 6.80. 

According to the gamma distribution, this gives an expected travel time of 13.60 time units. The probability 

that the UAV reaches the closest possible target in the cluster on time, within 𝑈 = 10, is equal to 26.39%.  

The UAV cannot cover the two clusters at the same time. With 𝛽 = 1 the focus is completely on covering 
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possible new targets. The maximum coverage is obtained in one cluster. However, if the focus is for example 

completely on the left cluster, an appearance in the right cluster is not covered. 

Further it is shown that an increase in 𝛽  results in a decrease of average profit from foreseen targets. The 

more new targets are visited, the less profit is gained from the foreseen targets.  

6.2.2.2. MCS-OPTW compared to (T)OPTW 
For the first objective, the gained profit from foreseen targets, the stochastic MCS-OPTW approach 

outperforms the deterministic (T)OPTW approach. I conclude that taking uncertainty into account is useful 

in planning a tour. Further, the Table 4 shows MCS-OPTW solutions that are dominant to the (T)OPTW 

solutions. Dominant solutions are solutions that have resulted in a higher average profit and a higher 

percentage of new targets reached or recorded. For 𝛽 = 0.75 , the solution found by the MCS-OPTW 

approach is dominant to the (T)OPTW solution in case of the small time windows and in case of the large 

time windows.  

It is noticeable that in case of the large time windows, only for one tested value of 𝛽 the percentage of new 

targets reached in time or recorded completely found by the MCS-OPTW approach is higher than the results 

found by the (T)OPTW approach. This might be explained by the fact that a too large value for 𝛽 does not 

always result in more new targets reached for the cluster situation of the locations of potential new targets 

as described in section 6.2.2.1. With large time windows the first objective becomes larger, and therefore 

the weight of the first objective becomes more important.  

6.2.2.3. Influence length of time windows 
The large time windows result in better solutions for the first objective. This is in line with my expectations, 

as in case of large time windows more targets can be planned in a tour and it is easier to meet the time 

window in the simulation. 

6.2.2.4. Topology 
The MCS-OPTW planning approach is illustrated by Figure B.9-14, found in Appendix B. These figures show 

the realized tour (by the black line) and the planned tour (by the dashed line) during several moments in 

the flight. For these results, the MCS-OPTW heuristic is applied in the case of small time windows with 𝛽 =

0.3. Figure B.10 and B.12 show how realized travel and recording times result in a different planned tour. 

Further, two new targets appeared during this flight. The location of the first new target is too far from the 

location of the UAV at the moment of appearance, the UAV is not re-tasked. The location of the second new 

target meets the re-tasking criterion, the UAV is re-tasked to fly directly to the new target. At the moment 

of appearance of the second target, the UAV was recording a foreseen target. Because of the re-tasking, the 

recording is not completed and the profit of the foreseen target is not gained.  

6.2.3. ROBUSTNESS 
Obtaining the results in Table 4, it is assumed that the distribution of travel and recording times is known 

beforehand. In this thesis, the travel times are assumed to be gamma distributed. However, it is possible 

that in reality the probability distribution is different than expected. To check the robustness of the 

heuristic and the simulation, I have generated a new set of scenarios with travel and recording times 

according to the normal distribution. This normally distributed set is used to evaluate solutions in the 

heuristic, while the simulation still uses a set with travel and recording times following the gamma 

distribution. This way, it is tested how the heuristic performs if the actual probability distribution differs 

from the assumed one (Evers et al., 2014). For the normal distribution, I used the mean (𝑘𝜃) and the 

standard deviation (√𝑘𝜃2) found by the gamma distribution. Table 5 shows the results for the MCS-OPTW 

planning approach for which 𝛽 = 0.75 . I choose 𝛽 = 0.75  because the MCS-OTPW planning approach 

outperforms the OPTW planning approach on both objectives for the small time windows and the large 

time windows. For comparison reasons, I included the results of the OPTW and the MCS-OPTW approach 
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in which the heuristics use a set of scenarios for the travel and recording times which are gamma 

distributed. These values are the values from section 6.2.2.  

The MCS-OPTW approach with the travel and recording times assumed to be normally distributed is 

compared to the MCS-OPTW approach in which the travel and recording times are assumed to be equally 

distributed to the realized travel and recording times. In case of the small time windows, the profit gained 

from the foreseen target is larger and the percentage of new targets reached or recorded is smaller when 

the travel and recording times are assumed to be normally distributed. In case of the large time windows, 

the values of both objectives are even larger when the travel and recording times are assumed to be 

normally distributed.  

TABLE 5: ROBUSTNESS 

Results of the (T)OPTW and MCS-OPTW planning approach for 𝛽 = 0.75. The travel and recording times are assumed to be gamma 
or normal distributed. The realized travel and recording times are gamma distributed. The number of no improvements is set at 
300. The results are based on 200 flights. The results are stated in the following form: Average profit gained from foreseen 
targets/Percentage of new targets reached in time/Percentage of new targets completely recorded. The results from the MCS-
OPTW approach that outperform the (T)OPTW approach are underlined.  
Approach Distribution set of scenarios used in heuristic/ 

Distribution realized travel and recording 
times 

Small time windows Large time windows 

(T)OPTW Gamma/ Gamma 55,43/14,91%/13,62% 45,40/18,00%/16,25% 

MCS-OPTW Gamma/ Gamma 63.55/19.29%/17.26% 78.98/19.50%/18.25% 

MCS-OPTW Normal/ Gamma 64.10/15.44%/14.43% 80.63/21.30%/19.30% 

 

Table 5 shows that the MCS-OPTW approach in which the travel and recording times are gamma distributed 

outperform the (T)OPTW approach on all objectives.  

These results illustrate that when the assumed distribution differs from the realized one, the MCS-OPTW 

approach still outperforms the (T)OPTW approach. Therefore, the MCS-OPTW approach seems to be 

robust. However, in these experiments the distribution differs, but the mean and standard deviation are 

equal. Evers et al. (2014) has tested the MCS-OPTW approach for robustness by changing the assumed 

distribution, but also with a smaller expected standard deviation. Evers et al. (2014) shows also with those 

results that the MCS-OPTW approach is quite robust. 

It is noticeable that the results in this thesis show higher values for the first objective in the ‘normal’ MCS-

OPTW approach, the results found by Evers et al. (2014) show the same. A difference between the normal 

and the gamma distribution is the fact that the gamma distribution is asymmetric. If the heuristic uses the 

normal distributed set of scenarios, the planned tours contain more targets compared to the heuristic using 

the gamma distributed set of scenarios. This might be explained by the fact that the gamma distribution 

has relatively more often higher deviations (because of the asymmetric tail) resulting in relatively more 

travel and recording times larger than the mean in the scenarios. The fact that the planned tours containing 

more targets, from the ‘normal’ MCS-OPTW approach, also result in a realized higher profit, might mean 

that the planning is too strict when the heuristic uses the gamma distribution, even though the flights are 

simulated using the gamma distribution. However, further research is needed to investigate this 

presumption.   

6.2.4. ADJUSTMENTS 
In section 5.2., three possible adjustments are introduced for the simulation. The results of the first and 

second adjustment are stated in Table 6. Table 6 shows the results of the (T)OPTW and the MCS-OPTW 

planning approach for 𝛽 = 0.75  without any adjustments and the results of the MCS-OPTW planning 

approach,  for 𝛽 = 0.75, with the first or the second adjustment applied. Note that the first two adjustments 

are not applied at the same time. The results of the third adjustment are shown in Table 7. Table 7 also 

shows the results when the first and third adjustment are applied at the same time.  
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6.2.4.1. Re-tasking criterion 
The first adjustment considers the re-tasking criterion if the UAV is recording a foreseen target when a new 

target appears. In current simulation, the UAV stops recording if the probability of reaching the new target 

is high enough. In the adjusted simulation, if the probability of reaching the new target in time is high 

enough, the UAV finishes its recording if the probability of reaching the new target in time after finishing 

of the recording is high enough. Table 6 shows that the adjusted MCS-OPTW still outperforms the (T)OPTW 

planning approach. Compared to the MCS-OPTW approach without adjustments, hardly any differences are 

observed. Therefore, given the settings I used, the fact that the UAV is allowed to finish a recording has no 

effect. However, the time in which the new target has to be reached, 𝑈 = 10, is quite small. The probability 

of reaching a target in time is therefore quite small, let alone the probability of finishing a recording and 

reaching a target in time. The effects of the first adjustment could become clearer when the time in which 

the new target has to be reached is larger. This is considered in the third adjustment, of which the results 

are described in section 6.2.4.3. 

6.2.4.2. Appearance new targets 
The second adjustment considers the recording time in deciding the last moment to send a UAV to a new 

target. In the current simulation, the UAV is not sent to targets which appear after 𝑇 − 𝑡𝑛, in the adjusted 

simulation, the UAV is not sent to targets which appear after 𝑇 − 𝑡𝑛 − 𝑟𝑛 . Note that targets which appeared 

after 𝑇 − 𝑡𝑛 − 𝑟𝑛 are also not accounted in the total number of new targets that appeared. In the simulated 

set of 200 scenarios for the new targets to appear, only eight new targets appear between 𝑇 − 𝑡𝑛 − 𝑟𝑛 and 

𝑇 − 𝑡𝑛, a very small difference. Table 6 shows that the adjusted MCS-OPTW approach still outperforms the 

(T)OPTW approach.  Compared to the MCS-OPTW approach without any adjustments, there are hardly any 

differences. Instead of the profit gained from foreseen targets to be higher, it is even a little smaller. The 

percentage of new targets recorded relative to the percentage of new targets reached is more or less the 

same. Therefore I conclude that, given the settings I used, the smaller time span in which new targets are 

considered to be visited has no effect.  

TABLE 6: ADJUSTMENT 1 AND 2 

Results of the (T)OPTW and MCS-OPTW planning approach for 𝛽 = 0.75. The number of no improvements is set at 300. The results 
are based on 200 flights. The results are stated in the following form: Average profit gained from foreseen targets/Percentage of 
new targets reached in time/Percentage of new targets completely recorded. 

- Adjustment 1: Re-tasking criterion takes possibility of finishing a recording and reaching new target in time into account. 
- Adjustment 2: UAV will not be sent to targets which appear after 𝑇 − 𝑡𝑛 − 𝑟𝑛. 

Note that when adjustment 2 is applied, adjustment 1 is not applied. The results from the MCS-OPTW approach that outperform 
the (T)OPTW approach are underlined. 
Approach Adjustment Small time windows Large time windows 

(T)OPTW No adjustment 55.43/14.91%/13.62% 45.40/18.00%/16.25% 

MCS-OPTW No adjustment 63.55/19.29%/17.26% 78.98/19.50%/18.25% 

MCS-OPTW Adjustment 1 64.93/19.64%/17.35% 78.05/18.30%/15.54% 

MCS-OPTW Adjustment 2 62.5/16.24%/14.72% 76.6/22.59%/21.07% 

 

6.2.4.3. Less time sensitive new targets 
In section 6.2.2.2 I showed that the UAV can never cover targets from both clusters at the same time. 

Further, in section 6.2.4.1 it is shown that the first adjustment, the UAV is allowed to finish a recording, has 

no effect. However, the time in which the new target has to be reached, 𝑈 = 10, is quite small. As explained 

in section 6.2.4.1., the effects of the first adjustment could become clearer when the time in which the new 

target has to be reached is larger. Therefore I increased the value of 𝑈.  

The results of increasing 𝑈 are shown in Table 7. Table 7 shows that the value for the percentages of new 

targets reached in time or recorded completely increases with the increase of 𝑈. As percentage of new 

targets reached in time increases, the average profit obtained from the foreseen targets decreases. In 

section 6.2.2.2. it is explained that, when the UAV is in the exact middle of the clusters, the expected travel 
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time to the closest target in one of the clusters is equal to 13.60 time units. When 𝑈 is increased to 𝑈 = 15, 

there are positions in which the UAV can cover two targets from different clusters at the same moment. For 

a larger value of  𝑈 , the MCS-OPTW approach still outperforms the (T)OPTW approach in most cases.  

Further, Table 7 shows that with a larger value for 𝑈, the first adjustment leads to a larger increase in the 

value for the average profit obtained from foreseen targets. Table 7 shows that the adjustment leads to an 

increase of 4.02% if 𝑈 = 15. If 𝑈 = 30, the adjustment results in an increase of 11.08%. Because of the 

larger value for 𝑈, it is easier to finish a recording at a foreseen target and to still reach the new target in 

time. Therefore, I conclude that the first adjustment is useful when the time within a new target should be 

reached, 𝑈, is large enough.  

TABLE 7: LESS TIME SENSITIVE NEW TARGETS 

Results of the (T)OPTW and MCS-OPTW planning approach for 𝛽 = 0.75 when 𝑈 is increased. The number of no improvements is 
set at 300. The results are based on 200 flights. The results are stated in the following form: Average profit gained from foreseen 
targets/Percentage of new targets reached in time/Percentage of new targets completely recorded. 

- Adjustment 1: Re-tasking criterion takes possibility of finishing a recording and reaching new target in time into account. 
Note that adjustment 2 is not applied. The results from the MCS-OPTW approach that outperform the (T)OPTW approach with the 
same value for 𝑈 are underlined. 
Approach 𝑈 Adjustment Small time windows Large time windows 

(T)OPTW 10 No adjustment 55.43/14.91%/13.62% 45.40/18.00%/16.25% 

MCS-OPTW 10 No adjustment 63.55/19.29%/17.26% 78.98/19.50%/18.25% 

MCS-OPTW 10 Adjustment 1 64.93/19.64%/17.35% 78.05/18.30%/15.54% 

     

(T)OPTW 15 No adjustment 51.53/26.97%/23.16% 47.35/35.00%/32.00% 

MCS-OPTW 15 No adjustment 58.50/30.20%/27.41% 75.53/34.18%/30.38% 

MCS-OPTW 15 Adjustment 1 60.85/34.61%/32.57% 74.35/36.43%/33.17% 

     

(T)OPTW 20 No adjustment 47.83/45.88%/42.27% 50.68/48.23%/43.97% 

MCS-OPTW 20 No adjustment 54.08/47.72%/43.15% 70.95/47.46%/44.16% 

MCS-OPTW 20 Adjustment 1 54.65/43.12%/38.44% 74.28/46.33%/41.77% 

     

(T)OPTW 25 No adjustment 44.68/59.79%/53.35% 46.60/59.75%/53.16% 

MCS-OPTW 25 No adjustment 50.90/60.61%/54.22% 68.33/61.13%/53.96% 

MCS-OPTW 25 Adjustment 1 54.43/61.30%/54.81% 70.85/60.41%/52.79% 

     

(T)OPTW 30 No adjustment 44.35/65.36%/59.38% 48.90/64.89%/57.25% 

MCS-OPTW 30 No adjustment 48.93/69.35%/61.56% 66.35/72.94%/63.66% 

MCS-OPTW 30 Adjustment 1 54.35/72.87%/63.57% 70.75/69.77%/59.69% 

7. CONCLUSION 
In this thesis, the methods described by Evers et al. (2014) to plan the use of UAV (Unmanned Aerial 

Vehicle) missions as effectively as possible are implemented. Evers et al. (2014) compares the Maximum 

Coverage Stochastic Orienteering Problem with Time Windows (MCS-OPTW) with the deterministic 

(Team) Orienteering Problem with Time Windows ((T)OPTW). The MCS-OPTW deals with uncertain travel 

and recording times, time windows for the targets and the appearance of new targets. I have applied the 

methods by Evers et al. (2014) on a different data set to test how useful the  method is in general and if the 

results found by Evers et al. (2014) hold in different situations. The MCS-OPTW heuristic takes two 

objectives into account: the planned average profit obtained by the foreseen targets and the ability to cover 

possible new targets. The ability to cover new targets is expressed by the Weighted Location Coverage 
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(WLC). The simulation calculates the average profit obtained by the foreseen targets and the percentage of 

new targets reached in time. 

In this thesis, the heuristic and simulation is programmed in MATLAB. This resulted in longer computation 

times than the implementation by Evers et al. (2014) in Java. I needed to decrease the number of no 

improvements before accepting a solution in the heuristic and the number of flights in the simulation to 

obtain results in the time limit of this thesis. Though the results are quite stable, they should have been 

better and more reliable if I did not have to decrease these numbers. Therefore, it is better to program the 

heuristic in Java.  

For the initial planning, the weights between the two objectives in the MCS-OPTW heuristic has influence 

on the values of the objectives. The (T)OPTW is not reliable when the ability to cover possible new targets 

is wished to be maximized, this value can fluctuate a lot because the ability to cover new targets is not taken 

into account in evaluating solutions in the heuristic. The large time windows result in a higher value for the 

first objective compared to the tours found in case of the small time windows, as it is easier to reach targets 

in time with larger time windows. Finally, the tours found by the (T)OPTW heuristic contain more targets 

than the tours found by the MCS-OPTW heuristic, because the (T)OPTW heuristic does not take uncertainty 

into account and is therefore less ‘careful’ in planning.  

In the simulation experiments, I have found that the value for the weight for the second objective should 

not be too small, but also not too big, because of the cluster situation of the locations for the potential new 

targets. However, I have found a weight in which in both settings for the time windows, small and large, the 

MCS-OPTW approach outperforms the (T)OPTW approach on all objectives. Further, the MCS-OPTW 

approach turned out to be robust. If the assumed distribution of the travel and recording times differs from 

the actual one, the MCS-OPTW approach still outperforms the (T)OPTW approach.  

With the results of the simulation I conclude that the methods of Evers et al. (2014) are applicable to the 

dataset used in this thesis. The MCS-OPTW approach has found solutions that dominate the solutions found 

by the (T)OPTW approach. 

In this thesis, a few adjustments to the simulation are discussed. I have tested the effects of decreasing the 

timespan in which new targets are considered to be visited. However, this turned out to have no effect. 

Further, the re-tasking criterion is adjusted. In the simulation of Evers et al. (2014), the UAV always 

immediately flies to a new target if the probability of reaching it in time is large enough. If the UAV was 

recording a foreseen target at that moment, the recording is stopped and no profit is gained. In the 

adjustment in this thesis, the probability of finishing the recording and still reaching the new target in time 

is determined. In the adjusted re-tasking criterion, the UAV finishes the recording if this probability is large 

enough. This turned out to have no effect in our settings because of the time sensitivity from the new 

targets. However, when the new targets where assumed to be less time sensitive, the adjusted re-tasking 

criterion resulted in a higher profit from foreseen targets.  

Future research could focus on adjusting the objective function to make it more specialized for the situation 

in which the locations of potential new targets are clustered. Further, it can be investigated how strict the 

planning should be to obtain the best results in realized flights.    
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8. APPENDIX  

8.1. APPENDIX A: INITIAL TOURS 

  
 

 
  

 

FIGURE A.1 FIGURE A.2 

FIGURE A.3 FIGURE A.4 

FIGURE A.5 FIGURE A.6 

FIGURE A. 1 FIGURE A.2 FIGURE A.3 

FIGURE A.4 FIGURE A.5 

FIGURE A.6 FIGURE A.7 
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8.2. APPENDIX B: ILLUSTRATION MCS-OPTW PLANNING APPROACH 
  

  

FIGURE A.7 FIGURE A.8 
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