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1 Introduction

The delay management problem asks how to deal with (small) exogenous delays of a railway system,
while minimizing the total passenger delay. Such source delays usually make the scheduled timetable
infeasible: From the moment the delay occurs, not all operational constraints can be met. Therefore,
the infeasible scheduled timetable has to be updated to a feasible disposition timetable. So far, two
main aspects are treated in the literature. The first involves a wait-depart decision, where the question
arises which trains should wait for delayed feeder trains and which trains better depart on time. This
leads to the uncapacitated delay management problem (UDM) (see Schachtebeck and Schöbel [2]).
The second involves a priority decision regarding the limited capacity of the track system. Each
time two trains compete for the same part of the railway infrastructure, it has to be decided which
train may go first. Headway constraints model this limited capacity (see Schachtebeck and Schöbel
[2]). The delay management problem is further complicated by its online nature. Exogenous delays
in public railway traffic are usually not known in advance and therefore decisions have to be made
without exactly knowing the future. Bauer and Schöbel [1] focused on this online delay management.
They enhanced both offline models proposed in Schachtebeck and Schöbel [2] for the online case.
As a result, they gained a generic model that is able to cover complex realistic memoryless delay
scenarios. Furthermore, they introduced and evaluated online strategies for delay management that
are practical, easily applicable and robust. To do this, they stated three approaches for solving
the problem at hand: An ILP-based approach, a class of simple ’rule of thumb’ strategies and a
learning heuristics that makes use of simulation. They found that the ILP-based and the learning
heuristics perform very well, usually resulting in near-optimal solutions. The goal of my research is
to determine whether these results still hold for Dutch railway data by implementing two of the three
approaches proposed by Bauer and Schöbel [1]. As the ILP-based and the learning heurstics are the
most promosising, we chose to implement these. We will do this for the uncapacitated case which
means that we refrain from headway constraints. We do this because our time is limited during this
project. Hopefully this will lead to interesting results.
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2 Problem Statement

In this section we will introduce notation to define the problem at hand. Furthermore, some definitions
are given to grasp the delay management process with which we can model offline and online delay
management.

2.1 Notation

Before we can model the railway system, we need to introduce some notation. An event-activity
network is a directed graph N = (E ,A). The nodes in E are decomposed into arrival and departure
events, Earr∪Edep, and correspond to trains. The edges in A are called activities and are decomposed
into A = Adrive ∪ Await ∪ Achange, with each activity a ∈ A having a minimal duration La > 0.
Note that this differs with Bauer and Schöbel [1] as we refrain from headway activities. A headway
activity models the limited capacity of the railway system. This can either be two trains driving on
the same track into the same direction or two trains driving into opposite directions on a single-way
track. The meaning of the remaining activities is as follows:

• A driving activity represents a train driving between two consecutive stations.

• A waiting activity corresponds to the time period in which a train is waiting at a station to let
passengers on or off.

• A changing activity corresponds to the transfer of passengers from one train to another.

For each changing activity a decision has to be made whether it stays in the network or it should
be deleted. If the activity (i, j) ∈ Achange stays in the network this means that either the follow-up
train (corresponding to node j) will wait for the passengers that have to be transferred from the
delayed feeder train (corresponding to node i) or the feeder train has no delay and the activity (i, j)
can be maintained anyway. As there is no decision to be made for driving and waiting activities we
abbreviate Await ∪ Adrive by Atrain.

2.2 Modelling Offline Delay Management

A delay state d reflects the current knowledge and expectations on exogenous delays in the underlying
railway system. These delays are called source delays. Such delays are for example technical problems
with the railway infrastructure or the late arrival of a train driver. Offline delay management assumes
that all source delays are known beforehand. In reality this is of course not the case as we do not
know when an exogenous delay will occur. We use di ∈ R+ and d(i,j) ∈ R+, which means there is a
source delay of di minutes at event i and a source delay of d(i,j) minutes at activity (i, j), respectively.
When the source delays alter, the scheduled timetable π has to be updated to a disposition timetable
x. We will now give the definition of a timetable and a disposition timetable.

Timetable. A timetable for N is a vector x ∈ R+
|E| which assigns a time xi ∈ R+ to each event

i ∈ E such that:

xj − xi ≥ L(i,j) ∀(i, j) ∈ Atrain, (1)

with L(i,j) being the minimal duration for activity (i, j). Equation (1) assures that event j cannot
start before activity (i, j) has been finished. If each activity satisfies (1), we call the timetable
feasible.

Disposition timetable. Given a delay state d, a disposition timetable x ∈ R|E|
+ for d is a timetable

for N such that:

xi ≥ πi + di ∀i ∈ E (2)

xj ≥ xi + d(i,j) + L(i,j) ∀(i, j) ∈ Atrain (3)

Equations (2) and (3) take source delays into account and assure that the timetable is feasible.
Figure 1 shows two situations in which the timetable is either feasible or infeasible for two events
i, j ∈ E and activity (i, j) ∈ Atrain.
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i j
L(i,j) = 25 min.

xi = 12:00 xj = 12:30

(a) feasible timetable

i j
L(i,j) + d(i,j) = 35 min.

xi = 12:00 xj = 12:30

(b) infeasible timetable

Figure 1: Example of a feasible and an infeasible timetable.

We write zx(i,j) = 0 if and only if the changing activity (i, j) is maintained by the disposition timetable
x, and zx(i,j) = 1 otherwise. We can then calculate the total delay of a disposition timetable x:

f(x) =
∑
i∈Earr

wi(xi − πi) +
∑

(i,j)∈Achange

zx(i,j)w(i,j)T, (4)

where wi ∈ N stands for the number of passengers getting off at event i ∈ Earr and arriving at their
final destination, and where w(i,j) ∈ N stands for the number of passengers who make use of the
transfer. At last, we interpret T ∈ R+ as a penalty for not maintaining the changing activity. If we
express T in hours instead of minutes, then we can see 1

T as the arrival rate per hour of the train.
More intuitively, if you miss your transfer, you should wait at least T minutes before you can take
the next train.

We now have the following problem at hand: we have to find a disposition timetable x for delay state
d where f(x) is minimized.

Note that the graph N = (E ,A) does not contain headway activities in contrast to Bauer and Schöbel
[1], which means that N is acyclic. In order to construct a timetable for the directed graph N , it
needs to be sorted topologically. That means, for every activity (s, t) ∈ A, s comes before t in the
ordering. The topological ordering then gives a valid sequence of the nodes that has to be handled
when constructing the timetable. A topological ordering is only possible if the graph has no directed
cycles and any directed acyclic graph has at least one topological ordering. Therefore, π exists.

2.3 Modelling Online Delay Management

It is of course not realistic to assume that all delays are known beforehand. We would like to model
unexpected delays such as accidents or suicidal people who jump in front of the train. Ergo, source
delays are not completely known in advance. The knowledge and expectation on delays are given by

a finite sequence of pairs σ = (d1, t1), (d2, t2), ..., (dm, tm), where dk ∈ R|Atrain|+|E|
+ is a delay state

and tk ∈ R+ the time at which the delay state starts. Just like in Bauer and Schöbel [1], where they
use a delay generator to generate the delay states, we assume that changing activities can not be
delayed. Between time tk and tk+1 everything happens as expected in delay state dk. The following
definitions are needed in order to grasp the delay management process.

Feasible next delay state. Given delay states d1 and d2, a timetable x1 and a point in time
t2 ∈ R+, we call (d2, t2) feasible for (x1, d1) if d1(i,j) = d2(i,j) for each activity (i, j) with x1j < t2 and

d1i = d2i for each event with x1i < t2.

As stated before, when the delay state alters, the current timetable can be infeasible and needs to be
updated to a (feasible) disposition timetable. An online strategy for delay management computes a
disposition timetable to fit the new delay state. When doing so, the topological ordering needs to be
respected. However, we only want to schedule the events that may be influenced by the given delay
state. Let us assume that the time now is t2 and delay state d2 occurs. Events which took place
before t2 already happened and therefore do not influence the new disposition timetable x2. That is,
for every i ∈ E with x1i < t2 the delay state d1i is the same as d2i . The same holds for every activity
(i, j) ∈ A with xj < t2.

Online strategy for delay management. Given are a timetable x1, a time t2 ∈ R+ and delay
states d1, d2, such that (d2, t2) are feasible for (x1, d1). An online strategy for delay manegement is
an algorithm S that computes a disposition timetable x2 = S(x1, d2, t2) for d2 such that:
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x2i = x1i ∀i ∈ E with x1i < t2 (5)

x1i ≥ t2 implies x2i ≥ t2 (6)

Events that already happened before the current time t2, at which the timetable is being rescheduled,
do not need to be scheduled. (5) assures this. (6) makes sure that events which can be influenced by
the given delay state d2 are being rescheduled. As they did not occur yet, they need to be scheduled
to a time greater than or equal to t2.

The current state of the system is expressed through the triple (x, d, t). Then, the next delay state
and time (d′, t′) are randomly chosen by a delay generator.

Delay generator. Let D be a black-box routine whose input may consist of current disposition
timetable x, delay state d, time t, additional random values and values computed in former executions
of D. We call D a delay generator if (d′, t′) := D(x, d, t) is a feasible next delay state for input (x, d, t)
and any additional input.

Now that we familiarized ourselves with the necessary definitions, we are ready to define the delay
management process.

Delay management process. We are given a delay management strategy S and a delay gen-
erator D. The delay management process M with respect to S and D is the process constructed
as follows: Starting with x0 = π, d0 = 0 and t0, we iteratively obtain (di+1, ti+1) := D(xi, di, ti)
and afterwards compute xi+1 = S(xi, di+1, ti+1). The process ends when tm+1 = ∞. Let σ′ =
(x1, d1, t1), (x2, d2, t2), ..., (xm, dm, tm) be a realization of M. The total delay of σ′ is f(xm)

For online delay management we now have the following problem at hand: we have to find an online
strategy S, such that the expected overall delay of the delay process management process M of S
and D is minimal.

Before we present two delay management strategies, we define the delay generator proposed by Bauer
and Schöbel [1] that we used in our experiments.

Delay Generator: Delays Determined in Advance (DDA). Delays do not depend on the
delay management strategy. Before the actual delay management strategy starts we generate an
instance dfinal of DDA. To do so, we need the number of train activities ntrain ≤ |Atrain| and the
number of events nevents ≤ |E| that are source delayed. We then choose them randomly from the
data and assign a random value u ∼ UNI(a,b) with a, b ∈ N, u ∈ R+ to that event or activity in
dfinal, which denotes a source delay of u minutes. The delay management process starts with state
(x0 = π, d0 = 0, t0 = 0).

Let i ∈ E be such that dki = 0, dfinali > 0 and xki is minimal, and let (j, w) ∈ A be such that dk(j,w) = 0,

dfinal(j,w) > 0 and xkj is minimal. We can then determine tk+1, the time at which the next delay occurs

and thus the time at which the timetable is being rescheduled. More formally, tk+1 = min{xki , xkj }.
Given arbitrary a ∈ E , (v, w) ∈ Atrain, the next delay state dk+1 is then given by:

dk+1
a =

{
dfinala , xka ≤ tk+1 or dka > 0

0 , otherwise
(7)

dk+1
(v,w) =

{
dfinal(v,w) , xkv ≤ tk+1 or dk(v,w) > 0

0 , otherwise
(8)
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3 Delay Management Strategies

In this section we will propose two online strategies: an Online Mixed Integer Program (Online-
MIP) based on a Offline Integer Linear Program (OfflineILP) proposed in Bauer and Schöbel [1] &
Schachtebeck and Schöbel [2], and an Ad-Hoc Re-Scheduling procedure based on heuristic functions
used in Bauer and Schöbel [1].

3.1 OnlineMIP

The OnlineMIP approach makes use of the offline problem. Schachtebeck and Schöbel [2] give an
exact integer programming formulation for the offline problem. Note that in our case the schedule
consists of events planned with time xi ∈ R+, ∀i ∈ E instead of xi ∈ N, ∀i ∈ E in Bauer and Schöbel
[1]. Therefore, we have an OnlineMIP instead of an OnlineILP. Bauer and Schöbel [1] showed that
when working with the delay generator DDA, the optimal solution of the offline problem gives an
a-posteriori bound on the corresponding online problem of that instance (determined by dfinal). We
can use this to evaluate how good our solution is using an online strategy. The OnlineMIP can be
used as an online strategy by iteratively recomputing the exact offline-solution of the past events. We
will now give the MIP in order to solve the offline problem.

minimize
x,z

f(x, z) : =
∑
i∈E

wi(xi − πi) +
∑

a∈Achange

zawaT (9)

s.t. xi ≥ πi + di i ∈ E (10)

xj − xi ≥ L(i,j) + d(i,j) (i, j) ∈ Atrain (11)

Mz(i,j) + xj ≥ L(i,j) + xi (i, j) ∈ Achange (12)

xi ∈ R+ i ∈ E (13)

za ∈ B a ∈ Achange (14)

The constant M has been studied in Schachtebeck and Schöbel [2] and in our case, where we refrain
from headway activities, M = max

i∈E
{di +

∑
a∈Atrain

da} ensures that M is ’big enough’. We already

discussed (9), (10) and (11). (12) is associated with the wait-depart decision. If the decision variable
z(i,j) = 1, this means that the follow-up train will not wait for the delayed feeder train.

We are now ready to define the OnlineMIP strategy.

OnlineMIP. Given (xk, dk+1, tk+1), compute xk+1 = S(xk, dk+1, tk+1) by setting xk = x for a
feasible solution of the ILP with additional constraints:

xi = xki , i ∈ E , xki < tk+1

xi ≥ tk+1, i ∈ E , xki ≥ tk+1

3.2 Ad-Hoc Re-Scheduling (AHRS)

Ad-Hoc Re-Scheduling is an online strategy which updates the timetable event-by-event. This strat-
egy makes use of three functions. In order to update the timetable, the events need to be sorted
topologically. The function timetop makes sure this ordering is respected. Heuristic functions are
used to decide the time and choice of the next event to schedule. In the function timedm the heuristic
function can be specified which is associated with the decision whether the follow-up train should wait
for the delayed feeder train. Bauer and Schöbel [1] uses a class of simple ’rule of thumb’ strategies and
a learning heuristics. Examples of such ’rule of thumb’ strategies are for example to always wait for
the delayed feeder train or to never wait. The learning heuristics is based on a simulation where the
time how long a follow-up train should wait for a feeder train is ’learned’ for each changing activity.
We will describe this heuristic later in more detail. At last, the function timeearliest assures that all
technical restrictions are respected and makes sure we find a feasible timetale. Let us now describe
the Ad-Hoc Re-Scheduling strategy in more detail.
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Initialization. Let time tk+1 be the time at which the timetable needs to be updated. We then
need to determine which events already happened (and thus need no re-scheduling) and which events
can be influenced by the given delay state. Therefore, the scheduled times of events that already
happened will remain the same, whereas events that need to be re-scheduled will get the value ∞
which indicates that those events still need to be planned.

timetop(i, x) =

{
∞ , there is an (j, i) ∈ Achange with xj =∞
0 , otherwise

(15)

Time top. The definition of the function timetop is given in equation (15). If we are planning event
i, we need to determine if there are changing activities to node i. If so, we need to check whether
this event is already planned. If this event is not planned yet, this means that scheduling event i
does not respect the sorted topology and the function returns the value ∞. In any other case, the
function returns the value zero which indicates that event i can be scheduled. It is clear now that
this function ensures the topological ordering of the changing activities.

timeearliest(i, x, d, t) = max({t, πi + di} ∪ {xj + L(j,i) + d(j,i)|(j, i) ∈ Atrain}) (16)

Time earliest. For a definition of the function timeearliest see equation (16). This function deter-
mines the earliest point in time at which event i can take place, taking into account the original
timetable π, the predecessing event on the same line and the current time.

timedm(i, x, d) = max
(j,i)∈Achange

{1[0,πi+l(j,i)](xj + L(j,i))} (17)

Time dm. The function timedm presented in equation (17) determines if a follow-up train should
wait for a (delayed) feeder train. This function depends on the value l(j,i) ∈ N, meaning that event
j should wait at most l(j,i) minutes starting from the scheduled timetable in order to maintain (i, j).
To learn the values of l(j,i) we make use of the learning heuristics presented in Bauer and Schöbel
[1].

Learning heuristics. The idea is as follows. First, a number of random delay states has to be
generated. Afterwards, we solve the OfflineMIP on these instances. We obtain a sequence σ′′ =
(x1, d1), ..., (xn, dn) where disposition timetable xi is an optimal solution of the random delay state
di. We are interested in how long event j should wait starting from the scheduled timetable in order
to maintain changing activity (i, j). We denote this by l(i,j). We then calculate the multisets Y ES(i,j)

and NO(i,j). These sets contain, for each instance, how long event j would have had to wait in order
to maintain changing activity (i, j). The set Y ES consists of instances where the activity (i, j) is
maintained. The set NO contains the remaining instances. At last, we let l(i,j) be an arbitrary value
that seperates Y ES(i,j) and NO(i,j) optimally, i.e. the value l(i,j) for which (18) is minimal.

p(l(i,j)) := |{v ∈ Y ES(i,j)|v > l(i,j)}|+ |{v ∈ NO(i,j)|v < l(i,j)} (18)

We can solve this for every changing activity by solving the following problem.

minimize
y,n

f(y, n) : =

|y|∑
v=1

yv +

|n|∑
v′=1

nv′ (19)

s.t. l(i,j) + yvM1 ≥ v ∀v ∈ Y ES(i,j) (20)

l(i,j) + nv′M2 ≤ v′ ∀v′ ∈ NO(i,j) (21)

yv ∈ B ∀v ∈ Y ES(i,j) (22)

nv′ ∈ B ∀v′ ∈ NO(i,j) (23)

l(i,j) ∈ R+
0 (24)

Where M1 and M2 are constants who are ’big enough’ and equations (25) & (26) assure that.
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M1 : = −1×min
v
{Y ES(i,j)} (25)

M2 : = −1×max
v′
{NO(i,j)} (26)

By combining the three functions we can now construct a wish time for the event to happen. The
function time then looks as follows.

time(i, xk+1, dk+1, tk+1) : = max{timetop(i, xk+1),

timeearliest(i, x
k+1, dk+1, tk+1),

timedm(i, xk+1, dk+1)}
(27)

To summarize, we will give the full pseudo code in Pseudo-code 1.

Pseudo-code 1.

Input: time tk+1 ∈ N, old disposition timetable xk, a new delay state dk+1, function time(., ., ., .)
Output: new disposition timetable xk+1

1: for i ∈ E do
2: xk+1

i ←∞;
3: if xki < tk+1 then
4: xk+1

i ← xki
5: end if
6: end for
7: while there is an event i with xk+1

i =∞ do
8: i← choose an arbitrary element in {i ∈ E|xk+1

i =∞} with minimal time(i, xk+1, dk+1, tk+1);
9: xk+1

i ← time(i, xk+1, dk+1, tk+1)
10: end while
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4 Results

In this section we evaluate the online-strategies presented in section 3. In order to compare the
results from us with Bauer and Schöbel [1] properly, we need to use the same methodology for the
experiments.

Data. We were given a dataset that represents a subset of the network of the Dutch railway system.
The roll-out time of this dataset is 8 hours. The roll-out time gives the length of the considered
time horizon. The dataset does not contain headways as we refrain from headway activities. We use
the delay generator DDA in order to simulate delays. To generate an instance dfinal of DDA, we
first need to know how many activities we want to be delayed. Just like in Bauer and Schöbel [1],
we distinguish 3 cases: 10, 20 & 60 delayed (waiting and driving) activities. We then choose these
activities randomly from the dataset and assign a random value u to each of these activities. The
value u depends on the given delay scenario:

• Scenario WEAK: u ∼ UNI[1 min,3 min]

• Scenario MEDIUM: u ∼ UNI[3min, 15min]

• Scenario STRONG: u ∼ UNI[15min, 18min]

For the preprocessing phase of the AHRS strategy we always use 1000 simulation runs. In order
to evaluate which strategy performs better, we generate 1000 instances of dfinal and apply both
strategies on the same instances.

Visualisation. All experiments are visualized as box-and-whiskers plots. The applied online strate-
gies can be found on the x-axis. The y-axis gives the relative quality of the solutions by comparing it
with the tight lower bound described in section 3.1. The value y = 1 means that the applied online
strategy performed optimally as it is equal to solution of the corresponding offline problem. The
value y = 1.25 means that the objective value of the online strategy is 25% larger than the objective
of the offline solution. The bottom and top of the box give the 25th and the 75th percentiles. The
central mark on the box is the median and the whiskers give the smallest and highest observations
without outliers. An outlier is an observation outside 1.5 interquartile range of the upper quartile or
lower quartile. We depict outliers as (red) plus signs.

Runtime. We implemented the experiments in JAVA using CPLEX as MIP-solver. They were
executed on a Pentium Dual-Core CPU E5500 running Windows 7. It is clocked at 2.8 GHz and
has 3GB of RAM. We did not measure the runtimes in great detail because of our different focus.
Therefore, no runtimes are reported.

Results. The box-and-whiskers plots of our experiments are presented in Figure 2, where the titles
refer to the format: delay scenario/number of arcs delayed. We conducted the same exper-
iments as in Bauer and Schöbel [1] to see if the results obtained by Bauer and Schöbel [1] still hold
for our Dutch railway data.

Delay scenario WEAK. By looking at the top row of Figure 2 we observe the following. It is
clear that in each WEAK scenario the OnlineMIP is being outperformed by the AHRS strategy. We
observe fewer outliers for the AHRS. Also, for each WEAK scenario, the median lies significantly
below the median of the OnlineMIP strategy. At last, the upper and lower quartile of the boxes
obtained by AHRS are closer to each other. This implies less volatility for AHRS in contrast to
the OnlineMIP, which means that AHRS is more stable and thus more reliable than the OnlineMIP.
We conclude that for each WEAK scenario the OnlineMIP is being outperformed by the AHRS
strategy.

Comparison. We first note that the figure presented in Bauer and Schöbel [1] where they present
their results are very small. Therefore we cannot say much about outliers as these are hardly no-
ticeable. Compared with Bauer and Schöbel [1] the results for the WEAK scenarios seem to match
our results. In [1] the OnlineMIP strategy is more volatile and is being outperformed by the AHRS
strategy, except for the WEAK/60 scenario where both strategies perform equally well.

Delay scenario MEDIUM. By looking at the second row of Figure 2 we observe the following.
In case of 10 delayed activities the AHRS strategy gives better results. We see lesser volatility and
the median of the AHRS strategy lies below the median of the OnlineMIP strategy. However, as the
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amount of delayed activities increase we see that the OnlineMIP strategy is starting to give better
results than the AHRS strategy, which is becoming more volatile. With 60 delayed activities the
OnlineMIP strategy became less volatile in contrast to the case where only 10 activities were delayed
and outperforms the AHRS strategy. The AHRS strategy with 60 delayed activities performs poorly as
it is very volatile and produces a median higher than the median of the OnlineMIP strategy. With 20
delayed activities the AHRS strategy performs better in the sense that the median is lower. However,
the amount of outliers is much higher compared to the OnlineMIP strategy. We suspect that there is
a transition point between 20 arcs delayed and 60 arcs delayed from where the OnlineMIP strategy
starts giving better results than the AHRS strategy. We conclude that for 10 and 20 delayed activities
the AHRS strategy gives better results than the OnlineMIP. However, the OnlineMIP strategy gives
better results with many (60) delayed activities.

Comparison. In contrast to our results, in Bauer and Schöbel [1] the AHRS strategy is being
outperfomed in each MEDIUM delay scenario. In our case the AHRS gives worse results when
increasing the number of delayed activities. In [1] both strategies perfom better when we increase the
amount of delayed arcs, with the OnlineMIP constantly outperforming the AHRS strategy.

Delay scenario STRONG. By looking at the bottom row of Figure 2 we observe the following.
We can see the same pattern as in the MEDIUM delay scenario. The AHRS performs better with
10 and 20 delayed arcs. However, the amount of outliers is much larger for the AHRS in these
scenarios. While the amount of delayed activities increases, the OnlineMIP strategy is starting to
give better results with a decrease in volatility and the median. The OnlineMIP seems very stable
in the STRONG/60 scenario. The AHRS strategy however, seems to be more volatile when the
number of delayed arcs increases. We conclude that the AHRS performs good with 10 and 20 delayed
activities, however it is being outperformed by the OnlineMIP strategy when increasing the amount
of delayed activities (60).

Comparison. The results do not match our findings completely. We see again that in Bauer and
Schöbel [1] both strategies perform better when the amount of delayed arcs increases. However,
in our case the volatility of the AHRS strategy increases when we increase the amount of delayed
activities.
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Figure 2: Results of our experiments with 1000 simulations.
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5 Conclusion

Our goal of this report was to check whether the results obtained in [1] still hold for our Dutch railway
data. To do this, we have introduced the delay management problem. Two strategies were given in
order to solve the online version of the problem, namely the Ad-Hoc Re-Scheduling strategy which
uses heuristic functions, and the OnlineMIP strategy which make use of the OfflineILP proposed in
[1]. We evaluated both strategies by comparing the results obtained with Dutch railway data and
the data used in Bauer and Schöbel [1]. We did not see entirely the same results as in [1]. For
the WEAK delay scenarios we see many similarities. For the MEDIUM and STRONG scenarios
however, we see slightly different patterns. The AHRS strategy seems to perform better than the
OnlineMIP in case when not many activities are delayed (10, 20). However, when we increase the
amount of delayed activities the AHRS strategy becomes more volatile. In case of 60 delayed arcs
the OnlineMIP performs better just like in [1]. We have not looked at the data used in [1] due to
time limitations. The differences might be due to different characteristics of the data. It would be of
great interest to know if this is the case. For this, further research is required.
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