
Voorspellen van webwinkel aankopen met een Random

Forest

Dorenda Slof
Erasmus Universiteit Rotterdam

Econometrie en Operationele Research

30 juni 2014

Samenvatting

In dit empirische onderzoek voorspellen we of een bezoek aan een webwinkel
eindigt in een aankoop of niet. We maken gebruik van een beslissingsboom en
een Random Forest om het al dan niet doen van een aankoop van een klant
te voorspellen. Het idee van een Random Forest is dat een groot aantal be-
slissingsbomen samen een aankoop van een klant voorspelt. De voorspellingen
van een Random Forest zijn over het algemeen beter dan de voorspellingen van
een beslissingsboom. De voorspelprestaties van deze modellen vergelijken we
met de voorspelprestaties van een Logit model. De resultaten leren ons dat het
Random Forest model het al dan niet doen van een aankoop van een klant beter
voorspelt, dat het schatten van een Random Forest een kortere rekentijd vergt
en ongevoelig is voor de aanwezigheid van ruis, missende waarden en outliers
in de dataset. Het voordeel van een Logit model is dat we de relevantie van
de variabelen en de invloed van de variabelen op het al dan niet doen van een
aankoop direct kunnen analyseren.

Inhoudsopgave

1 Introductie 2

2 Data en methodologie 2

2.1 Data . 2

2.2 Missende waarden . 4

3 Model 5

3.1 Beslissingsboom . 6

3.2 Random Forest . 10

3.3 Modelkeuze . 12

4 Resultaten 14

5 Conclusie 17

6 Beperkingen 18

Appendix 20

1

1 Introductie

Het correct voorspellen van het al dan niet doen van een aankoop in een webwin-
kel wordt steeds belangrijker voor ondernemers. Als een ondernemer in een vroeg
stadium al kan inschatten of de klant daadwerkelijk een aankoop zal gaan doen,
kan dit erg waardevolle informatie zijn. Webwinkels kunnen invloed uitoefenen op
de klant en ze extra impulsen geven om een product te kopen, meer producten te
kopen, of juist een duurder product te kopen. Ook is het voor de webwinkel lucra-
tief om de relatie met de klant soepel te laten verlopen. Zo zal het een webwinkel
vijf keer meer geld kosten om een nieuwe klant te werven, dan om een bestaande
klant een product te laten kopen [1]. Tot nu toe is er door van den Poel en Buckinx
een uitgebreid onderzoek gedaan naar relevante variabelen die het al dan niet doen
van een aankoop in een webwinkel voorspellen met een Logit model [2]. Daarnaast
bestaat er al een Logit model over de data die we in dit onderzoek zullen gebruiken
en kennen we de relevante variabelen die in dat onderzoek naar voren kwamen [3].
Waar de focus van beide onderzoeken op de interpretatie van de variabelen lag, is
het doel van dit onderzoek juist om een model te creëren dat een zo groot mogelijke
voorspelkracht heeft.

Bij het schatten van een parametrisch model zullen er altijd incorrecte aannames
gemaakt moeten worden. Om deze aannames los te laten zullen we gebruik maken
van een beslissingsboom en een Random Forest om het al dan niet doen van een
aankoop van een klant te voorspellen.

Het vervolg van het verslag ziet er als volgt uit. De data en methodologie worden
besproken in sectie 2, in sectie 3 zullen we de beslissingsboom en het Random Forest
introduceren. In sectie 4 worden de resultaten besproken, in sectie 5 geven we de
conclusie en in sectie 6 bespreken we de beperkingen van dit onderzoek.

2 Data en methodologie

2.1 Data

De data zijn verkregen van een onbekende Duitse webwinkel over een periode
van één of meerdere weekenden van vrijdagavond zes uur tot zondagavond zes
uur. We hebben te maken met 50.000 klanten die in deze periode al dan niet een
aankoop doen. De webwinkel slaat een groot aantal gegevens van elke sessie op,
waar een sessie staat voor een onafgebroken bezoek van een klant aan de webwinkel.
De variabelen die in dit onderzoek gebruikt zullen worden zijn af te lezen in tabel
1. Na het verwijderen van de observaties met een tijdsduur van 0 houden we 48.736
unieke observaties over.

2

Variabele Type Omschrijving

Klikdata

cCount geheel getal Aantal aangeklikte producten

day geheel getal Dag waarop de sessie start

hour geheel getal Uur waarop de sessie start

cMaxPrice* continu Maximumprijs van alle aangeklikte producten

cMinPrice* continu Minimumprijs van alle aangeklikte producten

cSumPrice* continu Som van de prijzen van alle aangeklikte producten

itemsClickedPerMinute continu Gemiddeld aantal aangeklikte producten per minuut

totalDuration continu Totale duur van de sessie

rangeCPrice continu Verschil tussen de maximum- en de minimumprijs van alle aan-
geklikte producten

Winkelmanddata

bCount geheel getal Aantal producten in het winkelmandje

clicksPerBasketedItem continu Gemiddeld aantal aangeklikte producten per product in het win-
kelmandje

bMaxPrice* continu Maximumprijs van alle producten in het winkelmandje

bMinPrice* continu Minimumprijs van alle producten in het winkelmandje

bSumPrice* continu Som van de prijzen van alle producten in het winkelmandje

itemsBasketedPerMinute continu Gemiddeld aantal producten in het winkelmandje per minuut

rangeBPrice continu Verschil tussen de maximum- en de minimumprijs van alle pro-
ducten in het winkelmandje

Aankoopprocesdata

availability* categoriaal Leverbaarheid van het product

maxBStep categoriaal Hoogst geregistreerde stap in het aankoopproces

onlineStatus* categoriaal Het al dan niet online zijn van de klant tijdens het aankooppro-
ces

Klantprofieldata

age* continu Leeftijd van de klant

accountLifetime* continu Aantal maanden dat het profiel van de klant bestaat

customerScore* continu Score die de webwinkel toewijst aan de klant ter evaluatie van
het historisch aankoopgedrag

noOfPayments* geheel getal Aantal betalingen aan de webwinkel sinds het aanmaken van het
klantprofiel

paymentsPerMonth geheel getal Gemiddeld aantal betalingen aan de webwinkel per maand sinds
het bestaan van het profiel

lastOrder* geheel getal Aantal dagen sinds de laatste aankoop

gender* categoriaal Geslacht

maxVal* continu Maximum toegelaten aankoopprijs voor de klant

recurrentCustomer geheel getal Aantal keer dat een klant de webwinkel bezoekt tijdens de meet-
periode

* variabele vertoont niet-structureel missende waarden

Tabel 1: Variabelen

3

2.2 Missende waarden

De variabelen in de dataset vertonen een groot aantal missende waarden. Be-
slissingsbomen en het Random Forest staan erom bekend dat ze niet gevoelig zijn
voor missende waarden in de dataset [4]. Dit betekent dat de modellen vergelijkbare
resultaten produceren als de missende waarden in de dataset worden vervangen door
een nummerieke waarde, of als de missende waarden in de dataset blijven staan. Om
dit te testen zullen we modellen schatten met de ruwe dataset die missende waarden
bevat en modellen met een dataset waarin de missende waarden gëımplementeerd
zijn.

De missende waarden in de dataset zijn onder te verdelen in structureel mis-
sende waarden en niet-structureel missende waarden. Structureel missende waarden
komen voor wanneer de missende waarden door de datastructuur verklaard kunnen
worden. Niet-structureel missende waarden zijn niet te verklaren aan de hand van
de datastructuur. Uit de datastructuur blijkt dat een aantal variabelen tegelijk ge-
meten wordt zodra een klant een bepaalde actie doet. Als de klant deze actie tijdens
een sessie niet doet, wordt een groep variabelen automatisch niet gemeten door de
webwinkel. Op deze manier kunnen we onderscheid maken tussen vier groepen vari-
abelen: klikdata, winkelmanddata, aankoopprocesdata en klantprofieldata. In tabel
1 staat een overzicht van elke groep variabelen.

Om de niet-structureel missende waarden in de dataset te kunnen implemente-
ren, gebruiken we de aanname van de vier groepen variabelen. Zo zal bijvoorbeeld in
de i-de observatie de variabele ‘gender’ een missende waarde vertonen als de klant
niet heeft ingelogd. Ook zal de variabele ‘bCount’ een missende waarde bevatten als
de klant niets in zijn winkelmandje heeft gedaan. Door de data te analyseren en op
te splitsen op de gedane acties van de klant verkrijgen we een boomstructuur, te
zien in figuur 1. Aan de hand van deze boomstructuur kunnen we de data onderver-
delen in acht verschillende subdatasets. De structureel missende waarden zijn door
het opsplitsen van de data verdwenen, terwijl de niet-structureel missende waarden
worden vervangen door het k-nearest neighbour algoritme zoals beschreven in [3].

4

Figuur 1: Boomstructuur

Na het toepassen van het k-nearest neighbour algoritme hebben we acht subda-
tasets waarin de niet-structureel missende waarden gëımplementeerd zijn. Om een
model te schatten voegen we deze acht subdatasets weer samen tot een gehele da-
taset. De structureel missende waarden in de gehele dataset zullen niet vervangen
worden door een nummerieke waarde, omdat deze missende waarden een betekenis
hebben.

3 Model

De afhankelijke variabele y is een binaire variabele die de waarden 1 en 0 kan
aannemen, waar de klasse 1 staat voor een aankoop en de klasse 0 voor geen aankoop.
Xi is de 1×k vector met verklarende variabelen voor observatie i, waarbij k het aantal
verklarende variabelen is. De verklarende variabelen worden ook wel de attributen
genoemd. De matrix X met de data van de Duitse webwinkel is n × k groot, waar
n staat voor het aantal observaties. De data zullen geclassificeerd worden in de
beslissingsboom. Classificatie is het toewijzen van een klasse aan elke observatie i.

De beslissingsboom en het Random Forest zullen geschat worden met data uit
de trainingsdataset en vervolgens getoetst worden op data uit een later verkregen
testdataset. De trainingsdataset bevat 48.736 observaties, waar de testdataset 4.937
observaties bevat.

Ook het Logit model is geschat op de data uit de gehele trainingsdataset en
vervolgens getoetst op de data uit een later verkregen testdataset.

5

3.1 Beslissingsboom

De gegevens die nodig zijn om het classificatieprobleem op te lossen zijn de
matrix met verklarende variabelen X en de vector met afhankelijke variabele y.
De eerste classificatietechniek die we gaan gebruiken is de beslissingsboom. Voor
het beschrijven van de werking van een beslissingsboom introduceren we eerst de
volgende begripsomschrijvingen:

1. De beginknoop, deze heeft geen inkomende pijlen en nul of meer uitgaande
pijlen.

2. De inwendige knopen, deze hebben allen precies één inkomende pijl en twee of
meer uitgaande pijlen.

3. De eindknopen, deze hebben allen precies één inkomende pijl en nul uitgaande
pijlen.

Dit is grafisch weergegeven in figuur 2.

Figuur 2: Toelichting van de knopen in een beslissingsboom

De procedure begint uiteraard bij de beginknoop, hier voeren we alle data in de
beslissingsboom in. Vervolgens bekijken we welke variabele de data het beste op kan
splitsen in twee nieuwe knopen. Dan herhalen we de bovenstaande stap totdat aan
een stopcriterium is voldaan en de eindknoop gerealiseerd is. Na het classificeren van
de trainingsdata heeft elke eindknoop nul of meer observaties die resulteren in een
aankoop en nul of meer observaties die niet resulteren in een aankoop. De vaakst
voorkomende klasse in elke eindknoop kan nu worden vastgesteld. Vervolgens kan de

6

testdataset in de beslissingsboom gëımplementeerd worden. De klasse van observatie
i uit de testdataset wordt achterhaald door de vaakst voorkomende klasse in de
bijbehorende eindknoop als voorspelling te gebruiken.De ideale situatie zou zijn als
de observaties die in dezelfde eindknoop zitten allen in dezelfde klasse zitten. Voor
de implementatie van de bovenstaande procedure gebruiken we een Matlab functie
die gebaseerd is op het CART algoritme van Breiman et al. [6].

Het CART algoritme splitst de data op in twee nieuwe knopen, zodat de twee
nieuwe knopen minder variatie hebben in de afhankelijke variabele y. Bij binaire
attributen, zoals de variabele ‘gender’, is dit vrij eenvoudig. Hier zal het algoritme
in de knoop twee onderliggende knopen genereren: ‘male’ en ‘female’. Bij nominale
attributen zal het algoritme verschillende categorieën in één onderliggende knoop
plaatsen, zoals in het onderstaande voorbeeld wordt uitgewerkt. Het algoritme zal
bij continue attributen de knoop splitsen op een specifieke grenswaarde. Zo zou de
variabele ‘lastOrder’ gesplitst kunnen worden op een waarde groter of gelijk aan 40
en een waarde kleiner dan 40.

Om de beste splitsing te verkrijgen gebruiken we de Gini index die als volgt
gedefinieerd is [4]:

Gini(t) = 1−
c∑

i=1

[p(i|t)]2

waar c het aantal klassen is, i de klasse in knoop t aanduidt en p(i|t) de fractie
observaties uit klasse i die toebehoren aan knoop t. De Gini index meet de onzui-
verheid van een voorgestelde splitsing in de knoop. Hoe kleiner deze waarde van
onzuiverheid is, hoe kleiner de Gini indexwaarde en hoe schever de klassenverdeling
in de onderliggende knopen is. Een kleinere Gini indexwaarde geeft dus een betere
splitsing van de attributen aan. De grootste onzuiverheid van een splitsing doet zich
voor bij een splitsing waar de klassenverdeling (0, 5; 0, 5) is.

Om de bovenstaande uitleg te verduidelijken geven we een voorbeeld van een
optimale splitsing met een fictieve dataset. Stel dat we de volgende dataset hebben,
zoals weergegeven in tabel 2.

7

Observatie Geslacht Dag Aankoop

1 Man Vrijdag Nee
2 Vrouw Zaterdag Nee
3 Vrouw Vrijdag Nee
4 Man Zaterdag Nee
5 Vrouw Zondag Ja
6 Vrouw Zaterdag Nee
7 Man Zondag Ja
8 Vrouw Vrijdag Ja
9 Vrouw Zaterdag Nee
10 Vrouw Vrijdag Ja

Tabel 2: Fictieve dataset

We hebben hier de nominale variabele ‘dag’, die de waarden {vrijdag, zaterdag,
zondag} aan kan nemen. Als we deze nominale variabele op willen splitsen in nieuwe
knopen kan dit op verschillende manieren gedaan worden. Aangezien het CART
algoritme alleen gebruikt maakt van binaire splitsingen hebben we ook alleen binaire
splitsingen in ons voorbeeld gebruikt. Deze splitsingen zijn weergegeven in figuur 3.

(a) Optie A (b) Optie B (c) Optie C

Figuur 3: Opsplitsen van nominale attributen

Om de optimale splitsing te kiezen gebruiken we de Gini index om de onzuiver-
heid van een splitsing te berekenen. Daarbij krijgen we de uitkomsten zoals weerge-
geven in tabel 3.

8

Dag

{Vrijdag} {Zaterdag,
zondag}

y=0 2 4

y=1 2 2

Gini 0.469

(a) Optie A

Dag

{Zaterdag} {Vrijdag,
zondag}

y=0 4 2

y=1 0 4

Gini 0.267

(b) Optie B

Dag

{Zondag} {Vrijdag,
zaterdag}

y=0 0 6

y=1 2 2

Gini 0.300

(c) Optie C

Tabel 3: Gini indexwaarden bij de fictieve dataset

Waar y = 0 de klasse niet-aankoop voorstelt en y = 1 de klasse aankoop weergeeft.
De gewogen Gini index van optie A wordt op de volgende manier berekend:

GiniA = (1− (2/4)2 − (2/4)2)× 4/10 + (1− (4/6)2 − (2/6)2)× 6/10 = 0.469

Intüıtief is optie B de beste optie, aangezien de klassen daar schever verdeeld zijn
dan bij de andere opties. De Gini index geeft bij optie B ook de laagste waarde, wat
betekent dat het opsplitsen in {zaterdag} en {vrijdag, zondag} de optimale splitsing
zou zijn bij de variabele ‘dag’.

De beslissingsboom zal stoppen met groeien als aan een stopcriterium voldaan is.
Zo kan de lengte van de beslissingsboom a priori vastgesteld worden, of kan het aantal
minimale observaties per knoop van te voren bepaald worden. In de uitgangssituatie
zal de boom stoppen met groeien als:

1. Alle observaties in de huidige knoop behoren tot dezelfde klasse.

2. Alle attributen in de huidige knoop dezelfde waarden hebben.

Om de voorspelkracht van een beslissingsboom te kunnen schatten maken we
gebruik van de generalization error. De generalization error is het verwachte aantal
incorrect voorspelde observaties van de testdataset. De generalization error wordt
gebruikt als de testdataset van het model nog niet voorhanden is. Om de generali-
zation error voor de beslissingsboom te kunnen schatten hebben we uit de originele
trainingsdataset een nieuwe trainingsdataset en een testdataset nodig. Deze datasets
creëren we door de originele trainingsdataset in tien subsets op te delen. Vervolgens

9

schatten we een model op de data van negen subdatasets en wordt de overgeble-
ven subdataset als testdataset gebruikt. Deze testdataset implementeren we in het
model, waarna we het aantal incorrect voorspelde observaties berekenen. Deze pro-
cedure herhalen we nog negen keer, waardoor elke subdataset één keer als testdataset
gebruikt wordt. De generalization error wordt dan geschat met de cross-validation
error die gegeven wordt door:

Cross-validation error =

10∑
i=1

aantal incorrect voorspelde observaties uit testdataset i

aantal observaties in de originele trainingsdataset

Het voordeel van een beslissingsboom ten opzichte van een parametrisch model
is dat er geen aannames nodig zijn over de verdeling van de storingstermen of de at-
tributen. Daarnaast is het algoritme erg robuust voor de aanwezigheid van ruis in de
data en verslechtert de voorspelkracht niet als er irrelevante variabelen in het model
worden opgenomen. Een beslissingsboom is een intüıtief model dat gemakkelijk in
gebruik is. Daarnaast vergt het schatten van een beslissingsboom weinig rekentijd.

3.2 Random Forest

Het gebruik van een beslissingsboom heeft ook enkele nadelen. Zo kan een model
dat zeer goed bij de trainingsdataset past een slecht model zijn om mee te voorspel-
len. De bijbehorende beslissingsboom is dan erg groot en kan knopen bevatten die
gecreëerd zijn door specifieke gevallen in de trainingsdataset. De beslissingsboom
laat zich dan slecht generaliseren naar andere data. Ook zullen de observaties uit de
testdataset met deze beslissingsboom slecht voorspeld worden. De generalization er-
ror van dit model is dan erg groot. Dit fenomeen staat ook wel bekend als overfitting
van de data. Om dit probleem te vermijden zal de gegenereerde beslissingsboom een
proces moeten ondergaan dat pruning heet, de boom zal dan ingekort worden.

Een andere manier om overfitting van de data te voorkomen en de generalization
error te verkleinen is het gebruik van een Random Forest. Een Random Forest wordt
gecreëerd door een groot aantal beslissingsbomen te schatten bij de data [5]. Nadat
een groot aantal beslissingsbomen gecreëerd is, kan het Random Forest bij observa-
tie i de klasse yi voorspellen. De individuele beslissingsbomen in het Random Forest
schatten elk de klasse yi bij de attributen Xi, waarna de meest frequent voorspelde
klasse de uiteindelijke voorspelling voor observatie i wordt.

De generalization error van het Random Forest zal kleiner zijn als de correlatie
tussen de individuele beslissingsbomen in het Random Forest klein is [5]. De indivi-
duele beslissingsbomen moeten onderling dus verschillen, terwijl de voorspelkracht
van elke individuele boom wel zo groot mogelijk moet blijven. Om aan deze voor-
waarden te voldoen schatten we het Random Forest model iets anders dan een enkele
beslissingsboom.

Ten eerste zal elke individuele beslissingsboom in het Random Forest gecreëerd
worden met andere data uit de gehele trainingsdataset. Om voor elke boom an-
dere trainingsdata te genereren maken we gebruik van bootstrapping. Een boots-

10

trap steekproef wordt gecreëerd door herhaaldelijk, met terugleggen, volgens een
uniforme verdeling, observaties uit de originele trainingsdataset te trekken en in de
subtrainingsdataset te plaatsen. Elke trainingsdataset is zo groot als de gehele data-
set en heeft dus observaties die meer dan één keer voorkomen. Ook zijn er observaties
in de dataset die juist niet gebruikt zijn in de trainingsdataset. Deze observaties vor-
men de testdataset voor de beslissingsboom en gebruiken we om de generalization
error te kunnen schatten. Een bootstrap steekproef bevat gemiddeld 63% van de
originele trainingsdataset, omdat elke observatie een kans van 1− (1− 1/N)N heeft
om geselecteerd te worden in de nieuwe trainingsdataset, waar N gelijk is aan het
aantal observaties in de originele trainingsdataset. Als de trainingsdataset veel ruis
en specifieke gevallen kent, reduceert het trekken van een bootstrap steekproef de
generalization error van het Random Forest [4].

Ten tweede zullen de beslissingsbomen in het Random Forest anders gevormd
worden dan een individuele beslissingsboom. Zo zal er bij een individuele beslis-
singsboom in een knoop altijd gesplitst worden op de variabele die de kleinste Gini
indexwaarde geeft. Bij een beslissingsboom in het Random Forest gaat dit iets an-
ders. Bij de keuze voor een splitsing in een knoop creëren we eerst een vector Q
met daarin m willekeurig geselecteerde variabelen. De knoop zal voor elke variabele
in Q een splitsing genereren en de bijbehorende Gini indexwaarde berekenen. De
variabele die de kleinste Gini indexwaarde geeft zal de variabele zijn die de knoop in
twee nieuwe knopen opsplitst. De boom zal doorgroeien tot maximale grootte zonder
gebruik te maken van een pruning methode [5]. Door het gebruik van de vector Q
met willekeurig geselecteerde variabelen zal de correlatie tussen de beslissingsbomen
in het Random Forest kleiner worden. Immers, als we elke knoop verplicht op één
willekeurig geselecteerde variabele opsplitsen zullen de bomen in het Random Forest
sterk verschillen. Terwijl de bomen in het Random Forest nagenoeg gelijk zijn als
we elke knoop mogen opsplitsen op een variabele die komt uit een grote subset van
willekeurig geselecteerde variabelen. Als we een kleine waarde van m kiezen worden
de bomen in het Random Forest gedwongen om de knopen op te splitsen op een vari-
abele die niet de beste splitsing zal genereren, enkel de beste splitsing van de vector
met m willekeurige variabelen. Dit geeft een grotere variatie in de beslissingsbomen,
zodat de correlatie tussen de beslissingsbomen in het Random Forest verminderd
wordt.

De belangrijkste reden om bootstrapping te gebruiken is omdat het de accuracy
van het model blijkt te vergroten als we gebruik maken van willekeurig geselecteerde
variabelen in de vector Q [5], waar accuracy wordt gegeven door:

Accuracy =
p00 + p11

p00 + p11 + p01 + p10

waar p00 staat voor het aantal correct voorspelde niet-aankopen, p11 voor het aantal
correct voorspelde aankopen, p01 voor het aantal onterecht voorspelde aankopen en
p10 voor het aantal onterecht voorspelde niet-aankopen. Deze waarden worden ge-
schat door de testdataset in het Random Forest model te implementeren.

Ook geeft het gebruik van bootstrapping ons een schatter voor de generaliza-

11

tion error van het Random Forest. De generalization error is het verwachte aantal
incorrect voorspelde observaties van het model en wordt geschat met de out-of-bag
schatter [5]. Deze schatter wordt berekend door de met bootstrapping gecreëerde
testdataset in de beslissingsboom te implementeren en de voorspelde klassen te
vergelijken met de daadwerkelijke waarde van y. De out-of-bag schatter voor de
generalization error wordt gegeven door [7]:

Out-of-bag schatter =
p̂01 + p̂10

p̂00 + p̂11 + p̂01 + p̂10

waar p̂00 staat voor het aantal correct voorspelde niet-aankopen, p̂11 voor het aan-
tal correct voorspelde aankopen, p̂01 voor het aantal onterecht voorspelde aankopen
en p̂10 voor het aantal onterecht voorspelde niet-aankopen. Deze waarden worden
verkregen door de voorspelde aankopen in de met bootstrapping gegenereerde test-
dataset te vergelijken met de gerealiseerde aankopen.

Het voordeel van een Random Forest ten opzichte van een beslissingsboom is dat
het Random Forest over het algemeen betere resultaten oplevert dan een beslissings-
boom [4]. Stel dat we 25 beslissingsbomen schatten die allemaal een foutpercentage
van ε = 0.35 kennen. Het Random Forest schat de klasse y van observatie i door
de vaakst voorspelde klasse van de 25 individuele beslissingsbomen te gebruiken als
uiteindelijke voorspelling. Als deze beslissingsbomen nagenoeg hetzelfde zijn, dan
zal het Random Forest evenveel observaties verkeerd schatten als de individuele be-
slissingsbomen. Het foutpercentage blijft dan ε = 0.35. Als de beslissingsbomen in
het Random Forest een kleine correlatie kennen, dan zal het Random Forest alleen
een foute schatting van de klasse geven als meer dan de helft van de individuele be-
slissingsbomen een foute schatting geeft. Het foutpercentage van het Random Forest
wordt in dit geval:

eRandomForest =
25∑

i=13

(
25

i

)
εi(1− ε)25−i = 0.06

welke lager is dan het foutpercentage van een individuele beslissingsboom.

3.3 Modelkeuze

Voor het voorspellen van de klassen van de observaties in de testdataset zullen
we verschillende modellen schatten. Ten eerste het Logit model waarin de missende
waarden gëımplementeerd zijn dat al geschat is in [3]. Het Logit model waar nog
niet-structureel missende waarden in voorkomen doet het zodanig slechter, dat we
deze niet hebben meegenomen in dit onderzoek.

Ook schatten we een Random Forest met daarin ntree beslissingsbomen. Een
Random Forest zou ongevoelig moeten zijn voor het bestaan van missende waarden
in de dataset. Om dit te testen zullen we twee keer een Random Forest schatten:
één met missende waarden in de dataset en één waar de niet-structureel missende

12

waarden in de dataset gëımplementeerd zijn.
Tot slot zullen we ook de voorspelkracht van een individuele beslissingsboom

evalueren, om te analyseren of dit simpelere model eventueel een vergelijkbare voor-
spelkracht heeft met het Random Forest. Om een beslissingsboom te schatten ge-
bruiken we alle trainingsdata. Om overfitting van het model te voorkomen prunen we
de beslissingsboom door de generalization error te berekenen voor een voorgestelde
verwijdering van een knoop. De beslissingsboom met de kleinste generalization er-
ror zal het uiteindelijke model worden. Ook hier zullen we twee beslissingsbomen
schatten: één met missende waarden in de dataset en één waar de niet-structureel
missende waarden in de dataset gëımplementeerd zijn.

Het aantal beslissingsbomen in het Random Forest moet groot genoeg zijn om
de out-of-bag error te laten convergeren. In figuur 4 zien we dat de out-of-bag error
vanaf 50 beslissingsboom convergeert naar een waarde van ongeveer 0.21. Om er
zeker van te zijn dat de out-of-bag error convergeert, zullen we in dit onderzoek
gebruik maken van 150 beslissingsbomen in het Random Forest. De rekentijd is nog
steeds erg snel.

Figuur 4: Convergentie van de out-of-bag error

Om de out-of-bag error in het Random Forest zo klein mogelijk te houden is het
belangrijk om de correlatie tussen de beslissingsbomen in het Random Forest klein
te houden en de kracht van de individuele beslissingsbomen groot te houden. Om de
correlatie tussen de beslissingsbomen klein te houden moet het aantal variabelen m
in de vector Q klein blijven. Zo zouden we kunnen kiezen voor m gelijk aan 1 voor

13

een zo klein mogelijke correlatie. De keerzijde is dat de individuele beslissingsbomen
dan slecht zullen voorspellen, aangezien ze niet op de beste variabelen opsplitsen,
maar op een willekeurig geselecteerde variabele. Over het algemeen wordt een waarde
aangeraden van m = log2(k)+1, waar k het aantal verklarende variabelen is [5]. Om
te onderzoeken of deze waarde daadwerkelijk de beste voorspelprestatie geeft zullen
we voor verschillende waarden van m de out-of-bag error berekenen.

(a) Random Forest met missende waarden
in de dataset

(b) Random Forest waar de missende waarden
in de dataset gëımplementeerd zijn

Figuur 5: Out-of-bag error bij verschillende waarden van m

In figuur 5 zien we dat het Random Forest met missende waarden in de da-
taset bij m = 22 de kleinste out-of-bag error geeft. Hier zien we ook dat een te
kleine waarde van m een verslechterde kracht van het model veroorzaakt. Daarnaast
zien we dat het Random Forest waarin de missende waarden in de trainingsdataset
gëımplementeerd zijn de kleinste out-of-bag error heeft als m = 24. Deze waarden
van m zijn flink hoger dan de aanbevolen waarde m = log2(k)+1 = log2(30)+1 ≈ 6.
In de volgende sectie zullen we de resultaten van verschillende waarden van m ver-
gelijken.

4 Resultaten

De voorspelprestatie van het model zijn op een aantal manieren getoetst. Alle
resultaten zijn verkregen door de testdataset te implementeren in de geschatte mo-
dellen. Allereerst zijn de voorspelling-realisatietabellen in tabel 4 weergegeven.

14

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 1669 645 2314
yi = 0 356 2155 2511

2025 2800 4825

(a) Logit model waar de missende waarden
in de dataset gëımplementeerd zijn

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 2109 216 2325
yi = 0 589 2023 2612

2698 2239 4937

(b) Beslissingsboom met missende waarden
in de dataset

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 2175 150 2325
yi = 0 790 1822 2612

2965 1972 4937

(c) Random Forest met missende waarden
in de dataset, m=6

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 2117 208 2325
yi = 0 553 2059 2612

2670 2267 4937

(d) Random Forest met missende waarden
in de dataset, m=22

Tabel 4: Voorspelling-realisatie tabellen

Zoals we in tabel 4 kunnen zien voorspellen de Random Forest modellen met mis-
sende waarden in de dataset beter dan het Logit model. Het Logit model voorspelt te
vaak geen aankoop, terwijl er wel een aankoop gerealiseerd wordt. Het aantal correct
voorspelde klassen is lager dan bij de beslissingsboom en bij beide Random Forest
modellen. Het Logit model voorspelt daarentegen minder onterecht voorspelde aan-
kopen dan de beslissingsboom en beide Random Forest modellen.

Ook zien we in tabel 4(c) en tabel 4(d) dat bij een grotere waarde van m het
aantal voorspelde aankopen sterk daalt. Het aantal correct voorspelde aankopen
daalt echter minimaal. Het Random Forest met een grotere waarde van m genereert
betere voorspellingen dan het Random Forest met een kleinere waarde van m.

Als we tabel 4(b) vergelijken met tabel 4(d) zien we dat een beslissingsboom
wel degelijk slechter presteert dan een Random Forest. Het aantal onterecht voor-
spelde aankopen en het aantal onterecht voorspelde niet-aankopen is kleiner bij het
Random Forest dan bij de beslissingsboom. Het gebruik van een Random Forest in
plaats van een beslissingsboom geeft bij deze dataset een betere voorspelprestatie.

Om de voorspelkracht van de modellen verder te evalueren maken we gebruik
van de accuracy, precision, recall en de F1-waarde van de modellen. De accuracy
is het relatieve aantal correct voorspelde klassen bij de ingevoerde waarden van X
uit de testdataset en is al eerder gedefinieerd. De precision is het relatieve aantal
correct voorspelde aankopen ten opzichte van het aantal voorspelde aankopen en
wordt gegeven door:

Precision =
p11

p11 + p01

De recall is het aantal correct voorspelde aankopen ten opzichte van het aantal

15

waargenomen aankopen en wordt gegeven door:

Recall =
p11

p11 + p10

De F1-waarde is het harmonisch gemiddelde van precision en recall en wordt gegeven
door:

F1 =
2× p11

recall + precision

De voorspelprestaties van de modellen zijn in tabel 5 en tabel 6 te vinden.

Boom Random Forest

m=6 m=22

Accuracy 0.837 0.810 0.846

Precision 0.782 0.734 0.793

Recall 0.907 0.935 0.911

F1 0.840 0.822 0.848

Tabel 5: Modellen met missende waarden in de trainingsdataset en testdataset

Logit Boom Random Forest

m=6 m=24

Accuracy 0.793 0.834 0.823 0.837

Precision 0.824 0.833 0.765 0.843

Recall 0.721 0.812 0.901 0.805

F1 0.769 0.822 0.827 0.824

Tabel 6: Modellen waar de missende waarden in de trainingsdataset en testdataset
gëımplementeerd zijn

Zoals te zien is in tabel 5 en tabel 6 is de accuracy van elk Random Forest
groter dan de accuracy van het Logit model. Ook de recall en F1-waarde van de
Random Forest modellen zijn hoger dan deze zelfde waarden van het Logit model.
Het gebruik van een Random Forest om de data te voorspellen is dus een goed idee
gebleken.

De accuracy van het Random Forest met m = 22 en met missende waarden
in de trainingsdata en testdata is het hoogste van alle geschatte Random Forest
modellen. De precision is hier kleiner dan de precision van het Logit model. Dit
betekent dat het aantal ten onrechte voorspelde aankopen bij het Random Forest
model groter is dan bij het Logit model. De recall is juist hoger, wat aangeeft dat
het aantal correct voorspelde aankopen ten opzichte van het aantal waargenomen
aankopen hoger is bij het Random Forest model dan bij het Logit model.

16

Als we de geschatte modellen met missende waarden in de dataset bekijken,
zien we dat het Random Forest met m = 22 een hogere accuracy heeft dan de
beslissingsboom. Ook de precision, recall en F1-waarde van het Random Forest zijn
groter dan deze waarden van de beslissingsboom. Dit duidt aan dat een Random
Forest betere voorspellingen geeft dan één enkele beslissingsboom.

Als we de Random Forest modellen vergelijken op het al dan niet voorkomen van
missende waarden in de dataset zien we dat de aanwezigheid van missende waarden
in de dataset geen problemen geeft bij het voorspellen van het al dan niet doen van
een aankoop. De accuracy van het Random Forest met m = 22 geeft een hogere
waarde als er missende waarden in de dataset zitten, dan als de missende waarden
in de dataset gëımplementeerd zijn. Hieruit blijkt dus dat het implementeren van
missende waarden een model oplevert dat slechtere voorspellingen geeft. Voorhet
schatten van een Random Forest model is het dus onnodig om de missende waarden
eerst in de dataset te implementeren.

Als we de Random Forest modellen vergelijken op de waarde van m zien we
dat bij de modellen met missende waarden in de dataset de accuracy en F1-waarde
stijgen. Ook de accuracy en de precision stijgen bij de modellen waar de missende
waarden in de datasets gëımplementeerd zijn. In dit geval voorspelt het model dus
beter als we een hoge waarde van m gebruiken.

5 Conclusie

Uit de resultaten kunnen we concluderen dat het Random Forest betere voor-
spelprestaties geeft dan het Logit model bij deze dataset. Het aantal correct voor-
spelde klassen is bij het Random Forest met missende waarden in de dataset en de
vector Q met lengte 22 flink hoger dan bij het Logit model. Eén van de voordelen
van een Random Forest is dat het weinig aannames over de data doet en weinig
rekentijd vergt. Daarnaast is het een intüıtief model dat gemakkelijk te gebruiken
is. Een voordeel van het Logit model is juist dat we direct uitspraken kunnen doen
over de relevantie van de variabelen en de invloed van een variabele op het al dan
niet doen van een aankoop.

De aanwezigheid van missende waarden in de dataset heeft geen invloed op de
voorspelkracht van het model. De geschatte modellen met een dataset waar de mis-
sende waarden in gëımplementeerd zijn, doen het zelfs iets slechter. Hieruit kunnen
we concluderen dat de aannames die we moeten maken voor het invullen van de
missende waarden de voorspelkracht van de modellen verslechteren. Bij het gebruik
van een Random Forest is het dus onnodig om de missende waarden in de dataset
te implementeren.

Ook kunnen we uit de resultaten concluderen dat een Random Forest daadwer-
kelijk betere voorspellingen geeft dan een beslissingsboom.

Tot slot is bij deze dataset de voorspelkracht van een Random Forest met een
groot aantal willekeurig geselecteerde variabelen in de vector Q groter, dan de voor-

17

spelkracht met een klein aantal willekeurig geselecteerde variabelen in de vector Q.
Waar de lengte van de vector Q vaak klein wordt gehouden om de correlatie tus-
sen de beslissingsbomen in het Random Forest klein te houden, levert dat bij deze
dataset geen betere voorspellingen op.

6 Beperkingen

Een beperking van het onderzoek is dat onze resultaten moeilijk te generaliseren
zijn voor de webwinkel. Alle data zijn afkomstig van één of meerdere weekenden,
waardoor het lastig is om voorspellingen te doen over klanten die doordeweeks een
aankoop doen. Het is waarschijnlijk dat het aankoopgedrag doordeweeks anders is
dan in het weekend. Ook is de meetperiode van de data onbekend. Zo zou het zo
kunnen zijn dat de data gemeten zijn in één weekend, terwijl we pas echt goede
voorspellingen kunnen doen als we data hebben van meerdere weekenden. Voor een
optimaal geschat model is het dus van belang om data te hebben van een geheel
jaar.

Een andere beperking is dat we een aanname hebben gedaan over de data-
structuur om de niet-structureel missende waarden in te kunnen vullen. Om deze
aanname te controleren zouden we meer informatie moeten hebben over de data
van de webwinkel.

18

Referenties

[1] Slater, S. F., & Narver, J. C. (2000). Intelligence generation and superior
customer value. Journal of the Academy of Marketing Science, 28(1), 120127.

[2] Buckinx, W., & den Poel, D. v. Predicting online-purchasing behaviour.
European Journal of Operational Research, 557-575.

[3] Eulderink, S., Plaatsman, T., Slof, D. (2014). Voorspellen van webwinkel
aankopen.

[4] Tan, P., Steinbach, M., & Kumar, V. (2005). Introduction to data mining.
Boston: Pearson Addison Wesley.

[5] Breiman, L. Random Forests. Machine Learning, 45, 5-32.

[6] Breiman, L. (1984). Classification and regression trees. Belmont, Calif.:
Wadsworth International Group.

[7] Breiman, L. (1996). Bagging Predictors, Machine Learning, 24, 123-140.

19

Appendix

Overige resultaten

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 1669 645 2314
yi = 0 356 2155 2511

2025 2800 4825

(a) Logit model waar de missende waarden
in de datasets gëımplementeerd zijn

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 2109 216 2325
yi = 0 589 2023 2612

2698 2239 4937

(b) Beslissingsboom met missende waarden
in de dataset

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 1875 435 2310
yi = 0 377 2204 2581

2252 2639 4891

(c) Beslissingsboom waar de missende waarden
in de datasets gëımplementeerd zijn

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 2175 150 2325
yi = 0 790 1822 2612

2965 1972 4937

(d) Random Forest met missende waarden
in de dataset, m=6

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 2117 208 2325
yi = 0 553 2059 2612

2670 2267 4937

(e) Random Forest met missende waarden
in de dataset, m=22

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 2081 229 2310
yi = 0 639 1942 2581

2720 2171 4891

(f) Random Forest waar de missende waarden
in de datasets gëımplementeerd zijn, m=6

Voorspeld
Waargenomen ŷi = 1 ŷi = 0

yi = 1 1859 451 2310
yi = 0 345 2236 2581

2204 2687 4891

(g) Random Forest waar de missende waarden
in de datasets gëımplementeerd zijn, m=24

Tabel 7: Voorspelling-realisatie tabellen

20

