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Abstract 

In this paper we develop a simple method which provides a solution for the Uncapacitated Facility 

Location Problem (UFLP). This method is based on two procedures, namely the dual ascent procedure 

and the dual adjustment procedure. The dual ascent procedure is executed first, if this procedure does 

not find an optimal solution, then this solution is improved by the dual adjustment procedure. We test 

this method on three standard problem instances of the UFLP, namely the Bilde-Krarup, the Galvão 

Raggi and the Gap B instances in order to check if this method works for different instances. We also 

check what happens to the number of established facilities and the total costs if the opening costs 

and the transportation costs increase or decrease. 
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1. Introduction 

This paper describes and analyses a dual-based algorithm for the Uncapacitated Facility Location 

Problem (UFLP) based on the paper of Erlenkotter (1978). The UFLP is the decision problem where 

facilities or warehouses should be opened and where customers are assigned to these facilities in 

such a way that the total costs are minimized. In this case, the total costs consist of the costs for the 

transportation of each unit from facility location i to customer j and the fixed costs for opening the 

facilities that are necessary to satisfy the demand of the customers. There are m uncapacitated 

facilities or warehouses available and n customers or demand locations for which the demand should 

be satisfied by the warehouses.  

 

The UFLP is one of the most studied location problems and its applications are used in a wide variety 

of settings. Examples of these settings are, according to Lazic, Frey and Aarabi (2010), a distribution 

system design (Klose and Drexl, 2003), self-configuration in wireless sensor networks (Frank and 

Romer, 2007), computational biology (Dueck et al., 2008) and computer vision (Li, 2007; Lazic et al., 

2009). There are also several different types of the UFLP, depending on, for example, the number of 

facilities and customers, the objective function and the time horizon which is considered. A lot of 

extensions are possible for this problem, for instance the p-median location problem, where the 

number of opened facilities is restricted, and the capacitated facility location problem where the 

facilities can supply a capacitated amount of units.  

 

 A solution to the UFLP can be obtained by solving a mixed integer problem (MIP), from which an 

integer solution is obtained. Another way to solve the UFLP is to solve the dual problem which gives a 

dual solution that corresponds with a lower bound for the solution of the UFLP. From this dual 

solution it is possible to obtain a feasible integer primal solution using complementary slackness 

relationships for the solutions obtained by the linear programming problem, this feasible integer 

primal solution corresponds with an upper bound for the solution of the UFLP. In general, dual 

problems are solved with a so-called simplex method, but because the specific dual problem has a 

very simple structure and has multiple solutions, a simpler method might be possible. 

 

This simpler method is described in the paper of Erlenkotter (1978) and is based on two components. 

The dual ascent procedure is the first component and with this procedure, a lower bound on the  

solution of the UFLP is obtained and from this solution we can obtain an integer primal solution that 

corresponds with an upper bound on the solution of the UFLP. The second component is the dual 

adjustment procedure, which is only used if the solution obtained by the dual ascent procedure 

violate the complementary slackness conditions, hence when this solution is not optimal. With the 
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dual adjustment procedure, the solution obtained by the dual ascent procedure is improved such 

that we can found a higher lower bound on the solution. When we obtain a primal solution from this 

procedure, this gives a lower upper bound, hence the gap between the lower bound and the upper 

bound becomes smaller due to the dual adjustment procedure. If both components of the method 

do not result in an optimal integer solution for the UFLP, then a branch-and-bound procedure is 

executed where the solutions obtained by the two components are used as bounds. 

 

In this paper, the simpler method is performed and the results are observed and analysed. The 

method is tested on three standard instances of the UFLP, namely the Bilde-Krarup, the Galvão Raggi 

and the Gap B instances. It is checked whether the solutions found by the algorithm are the same as 

the benchmark solutions given in the standard problem instances.  

 

It is also checked what happens to the number of established facilities and the total costs if the 

opening costs and transportation costs decrease or increase with a certain percentage. It is 

interesting to observe what happens to the total costs and the number of established facilities if a 

company increases its transportation costs or if it becomes more expensive to open a facility. What 

we expect in this case is that when the opening costs rise, then there should be less facilities 

established and the total costs will increase as well. And when the transportation costs increase, then 

more facilities should be established in order to reduce the distance between the facilities and the 

customers which results in an increase of the total opening costs. When the opening or 

transportation costs decrease, then we expect to obtain the same pattern but in reversed order.  
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2. Problem description 

As described earlier, the UFLP is the decision problem where facilities should be opened and where 

customers are assigned to these facilities in such a way that the total costs are minimized. This 

problem can be described by a mixed integer problem (MIP), which is done in this Section. The m 

possible facilities are described by the set   and the n demand locations or customers are described 

by the set  . We define two variables, namely xij and yi. The variable xij gives the fraction of the 

demand of location j supplied by facility i and the variable yi is equal to one if facility i is opened and 

zero otherwise. The total costs for supplying all demand of location j from facility i are defined by the 

parameter cij, this includes all different costs such as the storage and transportation costs. The 

parameter fi represents the fixed costs for opening facility i. Finally, the model is formulated in the 

following way: 

 

      ∑ ∑         ∑                    (1) 

∑                             (2) 

                            (3) 

                                  (4) 

   {   }                      (5) 

 

The objective function (1) of this problem minimizes the total costs, which are divided into two parts, 

namely the total costs for supplying the demand of location j from facility i and the fixed costs for 

opening facility i. The total costs are given by the primal objective value zp. Constraint (2) ensures 

that all demand of location j is satisfied. It is only possible to supply from facility i if that facility is 

opened, this is ensured by constraint (3). The variable xij is a positive fraction because there cannot 

be a negative demand which is given by (4). Finally, because a facility is opened or not, the variable yi 

is a binary variable which is indicated by constraint (5).  

 

In order to obtain an integer solution, the linear programming relaxation has to be solved. In this LP 

relaxation, constraint (5) is replaced by the weaker constraint: 

 

               (6) 

 

Now, the variable yi can adopt continuous values above zero. With the LP formulation (1)-(4) and (6), 

it is possible to define the dual problem of the UFLP which is described in the following Section. 
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3. Methodology 

In order to obtain a lower bound and an upper bound on the solution of the UFLP, the dual 

formulation of the LP relaxation needs to be defined. The same definition for the parameters cij and 

fi as in the MIP is used also for the dual formulation. Furthermore, we define the dual variables vj and 

wij. The dual variable vj corresponds to constraint (2) and the dual variable wij corresponds to 

constraint (3) in the LP formulation. According to Jain and Vazirani (2001), vj  can be interpreted as 

the total price paid by demand location j in order to get connected to some facilities and wij defines 

the contribution of demand location j for opening facility location i. Thus, the difference between vj 

and wij is that vj represents the total costs for demand location j independent of the facilities to 

which j is connected, and wij represents the price paid by demand location j towards opening a 

specific facility i. Suppose that demand location j is only connected to facility i, then j does not 

contribute in order to open any other facility except i, hence wi’j is equal to zero. Thus, the variable 

wij refers to the edge (i,j) and vj refers to the demand location j. The dual problem is formulated as 

follows: 

 

       ∑           (7) 

∑                        (8) 

                     (9) 

                             (10) 

 

The objective (7) is to maximize vj subject to the constraints (8)-(10). The contribution of all demand 

locations for opening facility location i cannot be larger than the fixed costs for opening that facility, 

this is ensured by (8). The difference between the total price paid by demand location j and the 

contribution of that demand location for opening facility i can never be larger than the total costs for 

supplying all demand of location j from facility i, so for using edge (i,j), which is ensured by constraint 

(9). Because the contribution of demand location j for opening facility location i cannot be negative, 

wij is set as a non-negative value by constraint (10). The variable vj must increase until demand 

location j is connected to an open facility, this can be seen as a shadow price paid by the demand 

location in order to get connected to an open facility location. Because we want vj to be as high as 

possible, the variable wij must be as low as possible according to constraint (9), hence we can 

assume: 

 

        {        }    (11) 
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The proof of (11) is given as follows: 

From constraint (9) we know that:               this is equal to the inequality           . 

According to (10) we know that wij must be positive or zero, hence the inequality            is 

always satisfied when        is also positive or zero. When the difference between vj and cij is 

negative, then wij must be equal to zero. From this we obtain that wij is equal to the maximum of 

zero and       . This equality holds because when wij is lower than     {        }, then it could 

be that, if the maximum of zero and        is equal to zero, wij takes a negative value which is in 

contradiction with (10). And when wij is higher than     {        }, then there is room to decrease 

wij until constraint (9) is not satisfied anymore. In addition, we want that vj is maximized so according 

to constraint (9), wij should be as low as possible. These reasons indicate that the value of wij must 

be exactly equal to the maximum of zero and       . 

 

When (11) is substituted in (8), we get the following simplified dual problem: 

 

       ∑           (12) 

∑     {        }                  (13) 

 

This simplified dual problem is exactly the same problem as the problem described by the 

formulation (7)-(10). The objective function (12) remains the same as (7). Then, a substitution of (11) 

in (8) results in the constraint (13). Constraints (9) and (10) of the original dual problem are also 

represented by constraint (13) through equality (11). This is validated because when (9) is rewritten 

into           , it is clear that this constraint is always satisfied when wij is defined as the 

maximum of zero and       , so constraint (9) disappears. Also constraint (10) is always satisfied 

when wij is defined as in (11), because the maximum of zero and        is always equal to zero or 

larger than zero. ZD is the dual objective value which has to be maximized subject to the constraint 

(13).  

 

This dual problem can be solved by, besides using a simplex method, a simpler method which uses 

the dual ascent procedure and the dual adjustment procedure. With the dual ascent procedure, the 

dual solution gives a lower bound on the solution of the UFLP and the corresponding primal integer 

solution gives an upper bound on the solution, hence a range is obtained in which the optimal 

solution must be located. With the dual adjustment procedure, the solutions obtained by the dual 
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ascent procedure are improved such that a higher, hence better, lower bound and a lower, hence 

better, upper bound on the solution are found. Thus, this procedure aims to close the gap between 

the primal and dual solutions, this gap is called the duality gap. This dual adjustment procedure is 

only used if the dual and primal solutions obtained by the dual ascent procedure violate the 

following complementary slackness conditions: 

 

  
     ∑     {    

     }        (14) 

[  
     

 ]   {    
     }      (15) 

 

Where yi
* and xij

* are feasible primal solutions and vj
* is a feasible dual solution. When the solution 

found by the dual ascent procedure violates the complementary slackness conditions, then the 

solution is not optimal and we are going to improve the solution using the dual adjustment 

procedure. However, if the solution found by the dual ascent procedure satisfies the complementary 

slackness conditions, then this solution is an optimal solution and there is no need to search for 

another solution. In that case, the dual adjustment procedure is not executed.  

 

3.1 The dual ascent procedure 

The dual ascent procedure provides a lower bound and an upper bound on the solution of the UFLP. 

This procedure starts with any feasible dual solution  , for example when all vj are set equal to zero, 

and tries to increase this solution to the next higher value of cij by cycling through the demand 

locations j. In this case, cij are the total costs of supplying all demand of location j from facility i, and 

vj is an element of the solution  . At the beginning of the procedure, we reindex cij in non-decreasing 

order for each j as   
  with k=1,…,m. We reindex cij because then all costs are ordered and it is 

possible to move through the sequence of costs when we go from k to k+1 for example. As initial 

feasible dual solution we use      
 , hence the lowest value of cij for each j. We initialize the subset 

of demand locations   , which we are going to use in the dual adjustment procedure. In this set of 

demand locations, the locations are included for which we want to increase vj. But in this case, we 

initialize    with the set of all demand locations  , hence     .  

 

In the first lines of the procedure, we introduce si and k(j). In this algorithm, the variable si checks if 

there is some slack on constraint (13), hence if it is possible to increase vj. The variable k(j) is used to 

move to the next higher value of the costs   
 

 such that we can increase vj with the difference 

between these costs and vj. We describe the algorithm for the dual ascent procedure as follows:  
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1.      
                

2.       ∑    {        }                   

3.  ( )     {       
 }          

 ( )
       ( )   ( )     

4.     

5. While     

6.      and     

7.  If      

8.           {           } 

9.  If  ( )    

10.   If      
 ( )

    

11.         
 ( )

    

12.        

13.     ( )   ( )    

14.   end 

15.   For each      

16.    If          

17.              

18.    end 

19.   end 

20.            

21.   If     

22.          

23.   end 

24.  end 

25. end 

26. end 

 

The initialization of vj, si, k(j) and δ  occurs in lines 1 to 4. Our objective is to maximize vj, thus we 

have to increase vj until it is no longer possible to increase vj because then constraint (13) is violated. 

Variable si in line 2 checks if it is possible to increase vj without violating constraint (13). As long as δ 

is equal to one, the procedure in lines 6 to 26 is executed.  

 



11 
 

The algorithm starts with a value of k, for each      for which the difference between cij and vj is 

very small because   
  is defined as all cij in non-decreasing order and the value of k is chosen as low 

as possible. This value of k is defined as k(j) in line 3. This k(j) is an indicator for the next higher value 

of   
 

 for which   
 

 is larger or equal to vj. During the procedure, the value of k(j) is updated by one 

several times, such that the algorithm jumps to the next higher value in the sequence of all   
 . When 

the value of vj is in the beginning exactly equal to the value of   
 ( )

 then k(j) is updated by one such 

that there is a difference between vj and   
 ( )

. If the last   
  in the sequence of costs is considered, 

then the procedure proceed to the next value of j, or terminates if the last j is already considered, 

because there is no higher   
  which can be considered. This is stated in line 9. 

 

The algorithm checks for each demand location      if it is possible to increase vj without violating 

constraint (13). First, the value of Δj is determined in line 8, this value is equal to the minimum value 

of si given that vj is larger or equal to cij. If Δj is larger than the difference between   
 ( )

 and vj, then 

Δj is set equal to   
 ( )

    according to lines 10 and 11. Furthermore, when Δj is adopted in this way, 

δ is set equal to one in line 12 and k(j) is updated by one in line 13 such that we are going to consider 

a higher value of the costs for demand location j in the next iteration. The value of δ is set equal to 

one because there is an increase in vj possible, hence the algorithm must continue which is ensured 

by the while statement in line 5. 

 

For each facility location     it is checked in line 16 whether vj is larger or equal to cij. If this is the 

case, then there is room to decrease the value of si. When δ is equal to one, it is already discovered 

that it is possible to increase vj. But when vj  becomes larger, and when vj is larger or equal to cij, then 

si must decrease according to the definition of si in line 2. In line 17, si  is decreased by Δj such that si 

remains always a non-negative value, because the value of Δj never exceeds the value of si which is 

ensured by the definition of Δj. Then after all those moves, vj is increased by Δj in line 20. 

 

This procedure increases the value of vj if it is possible, but if constraint (13) of the dual problem 

blocks the increase of vj, then the maximal level of vj allowed by the constraint is reached and the 

procedure terminates. After performing this procedure, a dual solution    is obtained and an 

associated set of established facility locations    is constructed, where   
  is an element of the 

solution    and i is an element of the set   . The way in which we construct the set    and a 

corresponding primal solution is described in Section 3.2.  
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If the solution obtained by the dual ascent procedure violates the complementary slackness 

condition (15), then the solution is not optimal and we try to improve the solution using the dual 

adjustment procedure. Note that the complementary slackness condition (14) is always satisfied, 

which is explained in Section 3.2. 

 

3.2 Opening facilities and obtaining a primal solution 

After performing the dual ascent procedure, we obtain the dual solution   , which is a sequence of 

values of   
  for each demand location j. Furthermore, we obtain for each facility location the slack 

variable si. Now we want to know which facilities should be opened. Before we determine this, we 

have chosen to set as goal that the complementary slackness conditions (14) and (15) should be 

satisfied as much as possible. We have chosen this aim because when the complementary slackness 

conditions are satisfied, then we obtain an optimal solution, hence when they are satisfied as much 

as possible, we obtain a solution which is as close as possible to the optimal solution. 

 

We have chosen to store the facilities which we might open in the set    and the facilities which we 

open in reality in the set   . By this we mean that in the set   , the facilities are included for which 

the slack variable si is equal to zero, because then fi is exactly equal to the value of ∑     {        

   } for each facility i. This indicates that the complementary slackness condition (14) is always 

satisfied because    ∑     {    
     }     is equal to zero for each     . This method of 

constructing the set    is just a choice, there can be several other reasons to store a facility in this set, 

such as store all facilities in    for which   
  is exactly equal to cij for all demand locations j such that 

complementary slackness condition (15) is always satisfied. 

 

The facilities in the set    do not all have to be opened, we can make a selection of the facilities that 

we could open in order to improve the obtained solution. This set of established facilities    is 

constructed in the following way. First we are going to check for each facility i from the set    how 

many demand locations j there are for which   
  is strictly larger than cij. Then we sort the facilities in 

descending order on the number of demand locations for which   
      holds. We want to know 

this because the complementary slackness condition (15) is satisfied when at most one facility has 

      , for some j. The reason for this is that the binary variables    
   and   

 , which correspond to 

the used edges and the opened facilities respectively, are both equal to one with certainty for only 

the lowest value of cij, hence the difference   
     

   is equal to zero in this case, which indicates 

that complementary slackness condition (15) is satisfied. 
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This indicates that when there are for some j two or more facilities from    for which   
  is strictly 

larger than cij, then we have to delete some facilities from the set    in order to form the set   . For 

us it seems the most reasonable choice to delete the facility for which the number of demand 

locations for which   
      is the highest, because then for more j, the number of facilities for 

which   
       decreases. If for some j there was just one facility for which   

     , and we delete 

that facility, then there are for these demand locations j zero facilities for which   
      holds. If 

this is the case, then complementary slackness condition (15) is still satisfied because     {    
  

   } is equal to zero for these j. 

 

When we have constructed this set   , we determine the total costs, hence the opening costs and 

transportation costs together, when we open all facilities which are included in   . If these total costs 

are lower than the total costs determined when all facilities in    are opened, we have obtained a 

new solution which is better than the solution originally found by the dual ascent procedure. But if 

these total costs are not lower than the total costs of the original solution, then we are going to 

adapt the set    in the following way. We take the set    and we delete the facility for which the 

number of demand locations for which   
      is the second-highest. Then, we are going to check if 

this results in a reduction of total costs. If this is the case, a new solution is found, but if this is not 

the case, then the set    is adapted again through deleting the facility for which the number of 

demand locations for which   
      is the third-highest, and so on until a better solution is found or 

all options are considered. If all options of deleting facilities are considered and none of these 

options result in a better solution, then the set    equals the set     Note that in this procedure a 

solution is found that is not necessarily the best solution possible. This is because the procedure 

stops when a better solution is found than the solution with the set    such that for as much as 

possible demand locations j, the number of facilities for which   
      decreases, hence the 

complementary slackness condition (15) is satisfied as much as possible. 

 

 Since we now have a set of opened facilities   , we can derive a integer primal solution from this set. 

The integer primal solution consists of the variables   
  and    

  . The variable   
  is a vector of length 

m containing all facilities. The facilities which belong to the set   , so those which are opened 

according to the rule described before, are indicated with one and the closed facilities are indicated 

with zero. Furthermore, the variable    
   indicates which demand locations are connected with a 

certain facility, hence if the edge (i,j) is used or not. But we do not yet know which demand locations 

are connected to facility i. To determine this, we have to make a choice or a rule which we are going 

to apply. For us, because we want to minimize costs, it seems obvious that for each demand location 
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j, we search for an established facility i from the set    which is the cheapest in supplying the 

demand of location j. In this way, we choose for each demand location the facility with the lowest 

costs cij, hence the transportation costs that are as low as possible. Another way to formulate this is 

that we use the cheapest edge for that demand location. The edges that we want to use are 

indicated with one, and the edges that we do not want to use are indicated with zero. If we 

summarize this, we can obtain an integer primal solution from a dual solution in the following way: 

 

  
   {

        

            (16) 

   
   {

       ( )    
                    

   (17) 

 

Where   ( )     is a minimum-cost source facility, defined for each demand location j. By this, we 

mean that for each demand location j, there is an opened facility i for which the costs of satisfying 

the demand of j are the lowest.  

 

Through our definitions of    and   
 , the complementary slackness condition (14) is always satisfied 

as we have seen earlier. Namely, the facilities in set    are facilities for which the difference between 

fi and ∑     {        }    is exactly equal to zero and for these facilities, the value of   
  is equal to 

one. Thus, for the established facilities, the complementary slackness condition (14) is always 

satisfied. For a closed facility, the value of   
  is equal to zero, hence for the closed facilities condition 

(14) is also satisfied. 

 

Complementary slackness condition (15) is satisfied when at most one facility      has        for 

some j as we have seen earlier. This reasoning does not hold with certainty for all cij except the 

lowest one, thus we choose the number of demand locations for which   
      for      as low as 

possible. It is not guaranteed that complementary slackness condition (15) is always satisfied 

because it is hardly possible to find a feasible solution where there is at most one facility      for 

which        holds for each j, but through our definition of    we try to get as close as possible to 

such a feasible solution. 

 

3.3 The dual adjustment procedure 

The dual adjustment procedure starts with a solution    obtained by the dual ascent procedure for 

which not all complementary slackness conditions are satisfied. We also start with the set    

obtained by the procedure described in Section 3.2. From this solution, there are some j’ selected for 
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which the complementary slackness condition (15) is violated. Only (15) can be violated because 

condition (14) is always satisfied as we have seen earlier. We decrease vj’ which creates slack on the 

constraints (13) corresponding to the      with vj’ > cij’. After the decrease of vj’, other vj, that are 

limited by these constraints (13), are tried to be increased using the dual ascent procedure. If it is 

possible to increase more than one vj as vj’ is decreased, then the dual objective will be increased by 

this change. This process is performed for all j’ and the procedure is repeated as long as the dual 

objective improves. This method makes use of the dual ascent procedure in case where vj is 

attempted to be increased. 

 

We define the following sets which are used in the dual adjustment procedure:   
  {           } 

and   
  {           } for each demand location      The set   

  consists of all facilities in the 

set    for which        holds for each    . This set is used to create the set   
 , which we will 

discuss later. Then we have defined the set   
 , which is in fact a subset of   

 . In the set   
 , for each 

demand location    , we store the established facilities from the set     for which vj is strictly larger 

than cij. This set is used to determine if the solution is already optimal or if it is possible to improve 

the current solution, which we will discuss later. 

 

Furthermore, for each     we define the set   
  {    

  { }}   In this set, for each facility i, the 

demand locations are given for which the value of   
  is equal to facility i which satisfies       . 

Hence, this set gives for each facility the demand locations that can be served by this facility and for 

which        holds. In fact, according to the definition of   
   we do not consider each facility i in this 

case, but each i in the set   , hence each facility for which the slack variable is equal to zero. This set 

  
  is used to check which vj  we can increase. 

 

For each     with |  
 |   , we define a second-best source   ( )     whereby the following 

property holds with regard to the costs:    ( )               ( )   . The second-best source   ( ) for 

a demand location j is not the cheapest possible facility to supply the demand of j from, namely the 

minimum-cost source   ( ), but it is the cheapest one when the minimum-cost source is not taken 

into account. The second-best source is only defined for a facility i with |  
 |   , because when the 

number of elements in   
  is smaller or equal to one, then there is simply no second-best source 

because there is just one facility that can be opened which forms automatically the minimum-cost 

source. For each     we define   
        {           }  The algorithm for the dual adjustment 

procedure is described as follows: 
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1.     

2. If |  
 |    

3. If    ( )
     ( )

  

4.  For each      

5.   If        

6.          (     
 ) 

7.   end 

8.  end 

9.       
  

10.         ( )
     ( )

  , and execute the dual ascent procedure 

11.           and repeat the dual ascent procedure 

12.      , and repeat the dual ascent procedure 

13.   If the value of    has changed in comparison with its original value 

14.   Return to Step 2 

15.  else 

16.   If     

17.          

18.    Return to Step 2 

19.   end 

20.  end 

21.  end 

22. end 

 

For each j we are going to execute this procedure. We have a violation of the complementary 

slackness condition (15) if |  
 | is larger than one for a certain    . If |  

 | is smaller or equal to one, 

then  for this j the solution which corresponds to    is optimal and it is not possible to improve this 

solution by the dual adjustment procedure. Therefore, we execute this procedure only for all j for 

which |  
 | is larger than one, which is ensured by line 2. These j are denoted by j’. Line 3 describes 

that when the demand locations that can be served by the minimum-cost source of demand location 

j are not equal to the demand locations that can be served by the second-best source of demand 

location j, then the procedure in lines 4 to 21 is executed. Hence, first the minimum-cost source and 

the second-best source of demand location j are determined. Then we check which demand 

locations can be served by this minimum-cost source and this second-best source. If these two sets 

of demand locations differ from each other, then the demand locations are not served in the 
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cheapest possible way, hence by executing lines 4 to 21, an improvement can be found, otherwise 

we proceed to the next j’. 

 

In lines 4 to 8, we are going to look if si can be increased for some i. If vj’ is larger than cij’, then for 

that i, the complementary slackness condition (15) is violated such that there is slack created on 

constraint (13) when vj’ is decreased. This makes it possible that the dual objective can be increased 

when two or more other vj  that are limited by these constraints (13) are increased. When vj’ is 

decreased, then it must be possible to increase si according to the definition of si in line 2 of the dual 

ascent procedure. After the increasing of si in lines 4 to 8, we decrease the vj’ for which the 

complementary slackness condition (15) is violated, to the value of    
  in line 9. 

 

After the decrease of vj’, we increase other vj that are limited by constraint (13). This is done in lines 

10 to 12 by executing the dual ascent procedure. First, the dual ascent procedure is executed when 

   is equal to    ( )
  and     ( )

  together. This means that only for these j, we are going to increase vj if 

that is possible. Then we add j to    and we repeat the dual ascent procedure in line 11. In order to 

obtain a valid solution when the procedure is terminated, we repeat the dual ascent procedure when 

   is set equal to   in line 12. If, after executing the dual ascent procedure three times, the value of vj 

is equal to the original value of vj, then vj cannot be improved further and j is increased by one if 

possible and we return to Step 2, given in lines 16 to 19. Otherwise, we return to Step 2 without 

updating j which is stated by line 14. If all values of j are considered, then the procedure terminates 

and a solution is found. 

 

The dual ascent procedure and the dual adjustment procedure result in a solution for the UFLP. This 

solution is always feasible because the constraints are always satisfied, which is ensured during the 

performance of these methods. The question is, if these methods result in an optimal solution for the 

UFLP. In order to obtain an optimal solution, all complementary slackness conditions should be 

satisfied. According to our definition of   , complementary slackness condition (14) is always 

satisfied, as we have described earlier. However, we cannot guarantee that condition (15) is also 

always satisfied. This is due to the fact that it is hardly possible to find a feasible solution where for 

each     it holds that at most one facility from the set    has       , which is already concluded in 

Section 3.2, but it is not impossible that condition (15) is always satisfied. From this reasoning we can 

conclude that the dual ascent procedure and the dual adjustment procedure do not always result in 

an optimal solution for the UFLP. In order to obtain an optimal solution, a  branch-and-bound phase 

can be used with the lower and upper bound given by the solutions obtained by these procedures.
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4. Results 

The dual ascent procedure is executed for the three standard problem instances, namely the Bilde-

Krarup, the Galvão Raggi and the Gap B instances. The way in which the dual ascent procedure is 

executed is described in Section 3.1. For each problem instance we check if all complementary 

slackness conditions are satisfied by the solutions obtained with the dual ascent procedure. If this is 

not the case, then the dual adjustment procedure described in Section 3.3 is executed, otherwise an 

optimal solution to the LP relaxation of the UFLP is found. In this Section, the results are analysed for 

each standard problem instance. 

 

4.1 Bilde-Krarup (B1.1) 

In the Bilde-Krarup instance number B1.1 there are fifty facility locations and hundred demand 

locations. The transportation costs between these locations differ from zero to 999 with a mean of 

499 and the costs of opening a facility vary between 1,244 and 9,907 with a mean of 5,817. In the 

optimal integer solution of this problem, there are five facility locations established with 

corresponding total costs of 23,468 according to the standard instance. When we execute the dual 

ascent procedure for the Bilde-Krarup instance and we construct the set    as described in Section 

3.2, we obtain total costs of 24,191 corresponding to six established facilities. The results from the 

dual ascent procedure and the optimal solution given by the benchmark are given in table 4.1.1. 

 

 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

5 - - 23,468 - 0% 

Dual 

Ascent 

Procedure 

6 10,388 13,803 24,191 21,494 12.5% 

Table 4.1.1: the results of the dual ascent procedure in comparison with the optimal solution of the Bilde-Krarup instance. 

 

We can see from this table that the total opening costs are lower than the total transportation costs, 

but both of them are about half of the total costs. The transportation costs per unit are relatively low 

in comparison with the costs of opening a facility, hence less facilities are opened and from each 

facility, the demand of relatively many demand locations is supplied. Thus, each facility is connected 

with on average seventeen demand locations. The difference between the integer primal solution 

and the dual solution is more than twelve percent in this case, which is given by the duality gap in the 

table. From the results, we can also observe that the difference between the total costs given by the 
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benchmark and the total costs obtained by the dual ascent procedure is relatively small, so we can 

conclude that we are close to the optimal solution. 

 

After performing the dual ascent procedure, we have checked if all complementary slackness 

conditions are satisfied. We observed that complementary slackness condition (15) is violated for 

some i and some j, which indicates that this is not an optimal solution and the dual adjustment 

procedure must be executed in order to improve the solution obtained by the dual ascent procedure. 

The dual adjustment procedure is initialized with the vj obtained by the dual ascent procedure. After 

performing the dual adjustment procedure, we observe that there are still six facilities opened, but 

these facilities are not the same as the ones found by the dual ascent procedure, hence the opening 

costs are different. At the same time, the total transportation costs decrease because the facilities 

are probably more evenly distributed, which on average results in a shorter distance between 

facilities and demand locations. The results of the dual adjustment procedure together with the 

optimal solution and the results of the dual ascent procedure are given in table 4.1.2. 

 

 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

5 - - 23,468 - 0% 

Dual 

Ascent 

Procedure 

6 10,388 13,803 24,191 21,494 12.5% 

Dual 

Adjustment 

Procedure 

6 11,645 12,252 23,897 21,820 9.5% 

Table 4.1.2: The results of the dual ascent procedure and the dual adjustment procedure compared with the optimal 

solution of the Bilde-Krarup instance. 

 

We observe again that the opening costs and the transportation costs are both about half of the total 

costs. The total costs are decreased after performing the dual adjustment procedure and are very 

close to the optimal solution according to the benchmark. The value of ∑   is increased, which 

indicates that the dual adjustment procedure gives a higher lower bound on the solution for the 

UFLP. For some i and j complementary slackness condition (15) is violated, hence we have not found 

an optimal solution. We can conclude that the dual adjustment procedure improved the solution for 

the Bilde-Krarup instance, because the total costs and the duality gap are decreased. We can also 
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conclude that the solution obtained by this procedure is close to the optimal solution given by the 

benchmark. 

 

4.2 Galvão Raggi (50.1) 

The Galvão Raggi instance number 50.1 consists of fifty demand locations and fifty facility locations. 

The transportation costs for supplying the demand of location j from facility i vary between zero and 

65,534 with a mean of 9,706. The costs of opening a facility differ from a minimum of zero to a 

maximum of 6,719 and the opening costs have a mean of 2,975. 

 

According to the benchmark of the Galvão Raggi instance, twenty out of fifty facilities have to be 

opened corresponding to the optimal integer solution. In this case, the total costs are equal to 

175,802. When we execute the dual ascent procedure and construct    for this standard instance, 

we observe that this procedure founds a solution where twenty-two facilities are opened with total 

costs of 175,802. The results of the dual ascent procedure are given in table 4.2.1, together with the 

optimal solution of the Galvão Raggi instance. 

 

 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

20 - - 175,802 - 0% 

Dual 

Ascent 

Procedure 

22 15,268 160,534 175,802 175,802 0% 

Table 4.2.1: the results of the dual ascent procedure in comparison with the optimal solution of the Galvão Raggi 

instance. 

 

In this case, approximately ninety percent of the total costs consists of the transportation costs and 

the other ten percent consists of the opening costs. The explanation for this is that the costs for the 

transportation of one unit from facility i to demand location j are on average much higher than the 

costs for opening one facility i.  

 

We can confirm this thought when we compare the Galvão Raggi instance with the Bilde-Krarup 

instance. Both instances consist of fifty facility locations. In the Bilde-Krarup instance, there are only 

six facilities opened while in the Galvão Raggi instance, there are twenty-two facilities established. 

This difference is relatively large when we take into account that in the Bilde-Krarup instance, there 
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are twice as many demand locations as in the Galvão Raggi instance. This large difference is due to 

the fact that in the Bilde-Krarup instance, the opening costs are relatively high in comparison with 

the transportation costs, and in the Galvão Raggi instance this relationship is reversed. 

 

For the solution obtained by the dual ascent procedure, all complementary slackness conditions are 

satisfied, hence the optimal solution is found by the dual ascent procedure and we do not execute 

the dual adjustment procedure. This can also be confirmed by the fact that the total costs found by 

the dual ascent procedure are exactly the same as the total costs given by the benchmark, hence the 

duality gap is equal to zero percent and the solution cannot be improved. 

 

4.3 Gap B (1031) 

Number 1031 of the Gap B instance consists of hundred possible facility locations and hundred 

demand locations. The costs of transportation between facilities and demand locations are in most 

cases equal to 48,029, which is the maximum of the transportation costs, and in some cases the 

transportation costs are very low, for example one or two. For this reason, the mean of the 

transportation costs is relatively high, namely 43,226. Furthermore, the costs of opening a facility are 

for each facility equal to 3,000. 

 

In the optimal integer solution given in the benchmark, there are fourteen facilities established 

corresponding to the total costs of 42,165. In table 4.3.1 the results are given for the Gap B instance 

after performing the dual ascent procedure and constructing the set    as described in Section 3.2, 

the values for the benchmark are also given in this table. 

 

 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

14 - - 42,165 - 0% 

Dual 

Ascent 

Procedure 

22 66,000 113 66,113 24,191 173.3% 

Table 4.3.1: the results of the dual ascent procedure in comparison with the optimal solution of the Gap B instance. 

 

Executing the dual ascent procedure results in a solution with total costs of 66,113 corresponding to 

twenty-two established facilities. For this standard instance of the UFLP we observe that the 

transportation costs are very low in comparison with the total costs. On the other hand, the 
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contribution of the opening costs to the total costs is very high. The explanation for this is that the 

opening costs are the same for each facility, hence for each demand location, the facility with the 

lowest transportation costs is established. For some facilities, the transportation costs to certain 

demand locations are between zero and five, hence these facilities are established to supply the 

demand of the demand locations with the lowest transportation costs. 

 

The difference between the total costs corresponding to the optimal solution given in the benchmark 

and the total costs observed by the dual ascent procedure is relatively large, namely more than 

twenty thousand. This difference is explained by the fact that in the optimal solution, there are 

fourteen facilities opened while in the solution obtained by the dual ascent procedure, there are 

twenty-two facilities established, so eight facilities more. These eight extra facilities provide 

additional opening costs of twenty-four thousand, which is approximately the difference in total 

costs between the two cases. Furthermore, we obtain that the duality gap is very large, namely more 

than hundred seventy percent. This large difference between the primal integer solution and the 

dual solution also indicates that we are not close to the optimal solution. 

 

We have checked if the complementary slackness conditions are satisfied for the solution obtained 

by the dual ascent procedure. We observed that some complementary slackness conditions (15) are 

violated, hence the solution is not optimal. Thus, for the Gap B instance, we are going to perform the 

dual adjustment procedure described in Section 3.3. 

 

 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

14 - - 42,165 - 0% 

Dual 

Ascent 

Procedure 

22 66,000 113 66,113 24,191 173.3% 

Dual 

Adjustment 

Procedure 

24 72,000 101 72,101 24,210 197.8% 

Table 4.3.2: The results of the dual ascent procedure and the dual adjustment procedure compared with the benchmark 

for the Gap B instance. 
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The results of the dual adjustment procedure for the Gap B instance are given in table 4.3.2, together 

with the optimal solution and the results of the dual ascent procedure. The value of ∑   is increased 

when the dual adjustment procedure is performed, which is expected because the dual adjustment 

procedure gives an improvement for the lower bound, hence a higher lower bound, on the solution 

for the UFLP. Furthermore, the total costs are increased because there are more facilities 

established, namely twenty-four instead of twenty-two. Because of this increasing number of 

established facilities, the transportation costs are decreased a bit. The increase of total costs is not 

expected because when the value of ∑   increases, the total costs must decrease in order to obtain 

a better, hence lower, upper bound. 

 

We observe that the duality gap has increased to almost two hundred percent after performing the 

dual adjustment procedure, this indicates that we have obtained a solution which is far from the 

optimal solution. The dual adjustment procedure results in total costs of 72,101 which also indicates 

that this solution is not close to the optimal solution given by the benchmark and which is not an 

improvement of the solution found by the dual ascent procedure. From this reasoning we can 

conclude that the dual ascent procedure and especially the dual adjustment procedure perform not 

very well for the Gap B instance. 

 

4.3.1 Changes in transportation costs 

We want to explain this bad performance of the dual ascent procedure and the dual adjustment 

procedure for the Gap B instance. It seems as if the algorithm is focused on keeping the total 

transportation costs as low as possible, but then the number of facilities rises as we can see in table 

4.3.2. In order to check the impact of the relatively low transportation costs on the performance of 

the two procedures, we increase the transportation costs with a large amount, and we execute the 

dual ascent procedure. The results are shown in table 4.3.1.1, where we assume that the opening 

costs remain the same in each case. 

 

We have executed the dual ascent procedure when we increase the transportation costs with one 

thousand, two thousand, three thousand, four thousand and five thousand times the original 

transportation costs. We have chosen this scale because then, the transportation costs of the 

cheapest edges, which are generally used and are in most of the cases equal to one, are close to the 

opening costs of three thousand when we multiply the original costs with three thousand. And 

because we want to analyse what happens to the solution if the transportation costs are a bit lower 

and a bit higher than the opening costs, we have also multiplied the transportation costs by one 

thousand, two thousand, four thousand and five thousand.  
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 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

14 - - 42,165 - 0% 

Dual 

Ascent 

Procedure 

22 66,000 113 66,113 24,191 173.3% 

TC*1000 42 126,000 28,000 154,000 116,000 32.8% 

TC*2000 41 123,000 44,000 167,000 145,000 15.2% 

TC*3000 54 162,000 45,000 207,000 171,000 21.1% 

TC*4000 54 162,000 60,000 222,000 186,000 19.4% 

TC*5000 54 162,000 75,000 237,000 201,000 18.0% 

Table 4.3.1.1: The results of the dual ascent procedure executed for the Gap B instance when we increase the 

transportation costs (TC) with a large amount. 

 

From table 4.3.1.1 we observe that for all increases of costs the duality gaps are decreased with a 

large percentage. The solution where the transportation costs are increased with two thousand 

times the original transportation costs, is the solution which is closest to the optimal solution 

according to the duality gap, which is around fifteen percent. The difference between this duality gap 

and the duality gap obtained by the solution with the original costs is very large, which indicates that 

the dual ascent procedure performs better for values of transportation costs that are closer to the 

opening costs.  

 

We also execute the dual adjustment procedure for the different values of transportation costs, 

because for some i and j complementary slackness condition (15) is violated. The results of this 

procedure, together with the optimal solution and the results obtained by the procedures with the 

original costs, are given in table 4.3.1.2. 
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 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

14 - - 42,165 - 0% 

Dual Ascent 

Procedure 

22 66,000 113 66,113 24,191 173.3% 

Dual 

Adjustment 

Procedure 

24 72,000 101 72,101 24,210 197.8% 

TC*1000 48 144,000 22,000 166,000 116,000 43.1% 

TC*2000 43 129,000 40,000 169,000 146,000 15.8% 

TC*3000 55 165,000 45,000 210,000 171,000 22.8% 

TC*4000 55 165,000 60,000 225,000 186,000 21.0% 

TC*5000 55 165,000 75,000 240,000 201,000 19.4% 

Table 4.3.1.2: The results of the dual adjustment procedure executed for the Gap B instance when we 

increase the transportation costs (TC) with a large amount. 

 

From this table we observe that in general, the value of  ∑   is increased or is remained the same in 

comparison with the results from table 4.3.1.1, which we expected because this procedure provides 

an improvement for the lower bound on the solution for the UFLP. We also observe that after 

performing the dual adjustment procedure, there are more facilities established than after 

performing the dual ascent procedure, hence the total opening costs are increased. In all cases of 

different transportation costs, the total costs are increased in comparison with table 4.3.1.1, which is 

quite strange because when the summation of vj is increased or is remained the same, then the total 

costs should decrease or remain the same according to the objective functions (1) and (12) of the 

primal and dual problems. 

 

In general, the values of the duality gaps in each case are approximately the same as in table 4.3.1.1, 

except when the transportation costs are multiplied by one thousand times the original costs. In that 

case, the duality gap is increased from around thirty three to forty three percent, which is a relatively 

large difference. An explanation for this is that there are forty eight facilities established after 

performing the dual adjustment procedure instead of forty two after performing the dual ascent 

procedure. This difference is relatively large, hence the total opening costs are increased with a 

relatively large amount. The total transportation costs are decreased in this case, but altogether the 
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total costs are increased with twelve thousand while the value of ∑   is not changed, this indicates 

why the duality gap is increased with such a large difference. 

 

We can conclude that the dual ascent procedure performs better for the Gap B instance when the 

difference between the transportation costs and the opening costs is smaller. But we can also 

conclude that the dual adjustment procedure performs not very well because the total costs increase 

and the duality gap increases, hence this procedure does not provide an improvement of the solution 

found by the dual ascent procedure, which it should actually do. When we compare this with the 

results in Section 4.3, we obtain the same pattern, namely that the dual adjustment procedure does 

not provide an improvement on the solution found by the dual ascent procedure. From this, we 

could conclude that the bad performance of both procedures together is particularly due to the bad 

performance of the dual adjustment procedure. 

 

Now, we want to know what is the cause of the bad performance of the dual adjustment procedure 

in the case in which there is a large difference between the opening costs for one facility and the 

transportation costs for one edge, and when there is a large difference between transportation costs 

themselves, so in case of the Gap B instance. We have to look into the steps of the procedure for 

something that is not going well.  

 

From the dual ascent procedure, we obtain values of vj that are very low, between zero and seven, or 

very high, namely around three thousand. Because most of the transportation costs are equal to 

48,029, there are very few vj that are strictly larger than cij. Hence, when we look at the definition of 

  
 , we observe that the values of cij for which        holds are always between zero and five. This 

indicates that the value of   
  is also always between zero and five. In line 9 of the dual adjustment 

procedure, vj is decreased to   
 , hence to a value between zero and five. Because of this step in the 

procedure, it might be that the value of ∑   does not increase so much, hence the dual objective 

value will not improve much in this case such that the dual adjustment procedure does not provide 

an improvement for the solution found by the dual ascent procedure. For us, through the definition 

of   
   it seems most likely that the dual adjustment procedure cannot handle large differences 

between transportation costs themselves very well.  
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5. Changes in costs 

For each standard problem instance, we have checked what happens to the number of established 

facilities and the total costs when the opening costs per facility and transportation costs per unit 

increase or decrease. The opening costs and transportation costs are decreased or increased by 

twenty-five percent of the original costs and then the dual ascent procedure is executed and the set 

   is determined as described in Section 3.2. We have done this for each type of costs separately 

where we take into account that the other type of costs remains the same, but also when both 

opening costs and transportation costs have increased or decreased at the same time. In this Section 

we analyse the results of these changes in costs. 

 

5.1 Bilde-Krarup (B1.1) 

For the Bilde-Krarup instance, we have executed the dual ascent procedure for different values of 

opening costs and transportation costs. In table 5.1.1 the results are shown, where OC means 

opening costs and TC means transportation costs. 

 

 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs Percentage 

change in 

total costs 

Duality 

Gap 

Original 

costs 

6 10,388 13,803 24,191 0% 12.5% 

OC +25% 6 13,499 14,209 27,708 +14.5% 18.5% 

OC -25% 7 10,012 11,571 21,583 -10.8% 12.0% 

TC +25% 7 13,349 14,464 27,813 +15.0% 13.1% 

TC -25% 6 10,799 10,657 21,456 -11.3% 18.8% 

OC +25% 

TC -25% 

4 7,774 14,027 21,801 -9.9% 9.3% 

OC -25% 

TC +25% 

8 11,888 12,628 24,516 +1.3% 10.7% 

Table 5.1.1: results of the dual ascent procedure for the Bilde-Krarup instance when the costs are changed. OC are the 

opening costs, TC are the transportation costs.  

 

In general, we observe that when the opening costs are decreased, then more facilities are 

established and the total transportation costs decrease. This is quite obvious because opening a 

facility becomes cheaper in comparison with the transportation costs, hence it is cheaper to open 

more facilities in order to reduce the average distance to demand locations, which results in a 
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reduction of total transportation costs. If the opening costs are increased, then it becomes more 

expensive to open a facility, hence less or the same number of facilities are established. 

 

When the transportation costs are increased, then there are in general more facilities opened, such 

that the distance between facilities and the demand locations becomes smaller. Because of this 

reason, the total opening costs increase while the total transportation costs do not differ very much 

from the original total transportation costs. 

 

From this table, we observe that an increase in the transportation costs of twenty-five percent 

results in the largest relative increase in total costs, namely an increase of fifteen percent. 

Furthermore, a decrease of twenty-five percent in the transportation costs results in the largest 

relative reduction in total costs, namely a reduction of more than eleven percent. Both observations 

imply that changes in transportation costs have the greatest impact on the total costs for this 

standard instance. Furthermore, we observe that the duality gap is the smallest when the opening 

costs are increased and the transportation costs are decreased with twenty-five percent. This 

indicates that the dual ascent procedure results in a solution which is the closest to the optimal 

solution when the transportation costs are decreased and the opening costs are increased at the 

same time with twenty-five percent. 

 

5.2 Galvão Raggi (50.1) 

For the Galvão Raggi instance, we have also increased and decreased the opening and transportation 

costs in order to observe what happens to the number of established facilities and the total costs. 

The dual ascent procedure is executed for the Galvão Raggi instance for the different costs given in 

table 5.2.1. The results are also given in this table. 

 

Again, we observe that when the opening costs decrease, then there are more facilities established 

because it becomes cheaper to open a facility. When the opening costs increase, then there are less 

or the same number of facilities established. This is because it becomes more expensive to open a 

facility and it might be more profitable to increase the distance between a facility and a demand 

location while opening less facilities.  
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 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs Percentage 

change in 

total costs 

Duality 

Gap 

Original 

costs 

22 15,268 160,534 175,802 0% 0% 

OC +25% 22 19,085 160,534 179,619 +2.2% 0% 

OC -25% 24 16,313 155,234 171,547 -2.4% 0% 

TC +25% 23 20,205 195,543 215,748 +22.7% 0% 

TC -25% 22 15,268 120,401 135,669 -22.8% 0.04% 

OC +25% 

TC -25% 

21 13,838 124,825 138,663 -21.1% 0.3% 

OC -25% 

TC +25% 

24 16,313 194,042 210,355 +19.7% 0% 

Table 5.2.1: results of the dual ascent procedure for the Galvão Raggi instance when the costs are changed. OC are the 

opening costs, TC are the transportation costs. 

 

When the transportation costs increase, there are more facilities established. This is due to the fact 

that it becomes more expensive to transport goods on a longer distance than to open an additional 

facility, such that the distances becomes smaller. And when the transportation costs decrease, then 

the opposite happens, namely less or the same number of facilities are opened, because it is more 

expensive to open an additional facility than to transport goods on a longer distance. 

 

From table 5.2.1 it is clear that an increase in transportation costs results in the largest relative 

increase in total costs, namely an increase of almost twenty-three percent. The largest relative 

decrease in total costs is observed when the transportation costs are decreased by twenty-five 

percent. The decrease in total costs is almost twenty-three percent in this case. From these 

observations, we can conclude again, that a change in transportation costs has the largest impact on 

the total costs. 

 

If we compare this with the Bilde-Krarup instance, we observe a somewhat contradictory pattern. In 

the Bilde-Krarup instance, the transportation costs are on average lower than the opening costs per 

facility what we have described in Section 4.1. In the Galvão Raggi instance, however, the 

transportation costs are on average higher than the opening costs for each facility, according to 

Section 4.2. The paradox is that for both standard problem instances, a change in transportation 
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costs has the greatest impact on the total costs, while for both problem instances the relation 

between transportation costs and opening costs is different. A possible explanation for this is that in 

the Galvão Raggi instance, ninety percent of the total costs consists of the transportation costs, 

hence a change in transportation costs results in a relatively large change in the total costs in this 

case. 

 

Another possible explanation for this paradox is the difference in number of demand locations for 

each standard instance. In the Bilde-Krarup instance, there are hundred demand locations, so 

hundred edges used. In the Galvão Raggi instance, there are fifty demand locations, thus there are 

fifty edges used in this case. 

 

Thus, when the transportation costs increase with twenty-five percent, then in the Bilde-Krarup 

instance, this has a large effect on the total transportation costs because there are relatively many 

edges to which the costs are related, but the opening costs are on average higher than the 

transportation costs in this case. When the transportation costs increase with the same percentage 

in the Galvão Raggi instance, this has a large effect on the total transportation costs, because the 

transportation costs are on average higher than the opening costs and also because the 

transportation costs contribute for approximately ninety percent to the total costs for this standard 

problem instance.  

 

In addition, in the Galvão Raggi instance, there are on average two demand locations connected with 

one facility. Hence, it is hardly possible to decrease the average distance between a facility and a 

corresponding demand location further, without increasing the opening costs too much. So, when 

the transportation costs increase, the average distance between facilities and demand locations 

cannot be reduced so much, hence the total transportation costs increase with almost twenty-two 

percent, which is relatively much in comparison with the relative increase of total transportation 

costs of fifteen percent in the Bilde-Krarup instance. 

 

The original solution found by the dual ascent procedure for this instance is already an optimal 

solution, hence with a duality gap of zero percent. When we change some costs, the dual ascent 

procedure still finds solutions that are optimal or very close to an optimal solution, which we can 

conclude from the duality gaps. Thus, also when the costs change, the dual ascent procedure 

performs well for the Galvão Raggi instance. 
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5.3 Gap B (1031)  

The dual ascent procedure is executed for the Gap B instance for different levels of costs. The results 

are given in table 5.3.1. 

 

 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs Percentage 

change in 

total costs 

Duality 

Gap 

Original 

costs 

22 66,000 113 66,113 0% 173.3% 

OC +25% 22 82,500 113 82,613 +25.0% 173.6% 

OC -25% 22 49,500 113 49,613 -25.0% 172.8% 

TC +25% 22 66,000 141 66,141 +0.04% 172.9% 

TC -25% 22 66,000 85 66,085 -0.04% 173.7% 

OC +25% 

TC -25% 

22 82,500 85 82,585 +24.9% 174.0% 

OC -25% 

TC +25% 

22 49,500 141 49,641 -24.9% 172.2% 

Table 5.3.1: results of the dual ascent procedure for the Gap B  instance when the costs are changed. OC are the opening 

costs, TC are the transportation costs. 

 

One thing that is immediately clear when we look at table 5.3.1, is that the number of established 

facilities is not changed when the opening costs and transportation costs are changed. In each case 

there are twenty-two facilities established. An explanation for this is that the opening costs are equal 

for each facility and are on average much higher than the transportation costs for the edges that are 

used. The costs for using these edges are namely between zero and five, which is relatively low in 

comparison with 3,000 which are the costs of opening one facility, hence it is not very cheap to open 

an additional facility also when the transportation costs increase with twenty-five percent. 

 

If the opening costs for each facility are increased with twenty-five percent, then the number of 

opened facilities does not change, hence the total transportation costs remain the same. The total 

opening costs increase also with twenty-five percent in this case, thus the total costs increase also 

with the same percentage which is due to the fact that the total costs consist of almost hundred 

percent of the total opening costs. When the opening costs are decreased, then the total 

transportation costs remain the same again, and the total costs decrease also with twenty-five 

percent. 
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An increase in transportation costs of twenty-five percent causes an increase in total costs of almost 

a half percent. The total opening costs remain the same in this case, but the total transportation 

costs rise with twenty-five percent. Because the total transportation costs are less than one percent 

of the total costs, the total costs rise with much less than twenty-five percent, namely a half percent. 

A decrease in transportation costs with twenty-five percent causes a decrease in total costs of almost 

a half percent, this is due to the same reason as described above. 

 

The combination of an increase in opening costs and a decrease in transportation costs of twenty-

five percent causes an increase in total opening costs of twenty-five percent and a decrease in 

transportation costs which is almost negligible when we compare it with the total costs, hence the 

total costs increase with almost twenty-five percent. When the opening costs are decreased and the 

transportation costs are increased with twenty-five percent, the total opening costs decrease also 

with twenty-five percent and the total transportation costs increase with almost twenty-five percent 

of the original transportation costs. But because the transportation costs are just a very small 

percentage of the total costs, the total costs decrease with almost twenty-five percent. 

 

We observed that the opening costs have the greatest impact on the total costs for this problem 

instance. The explanation for this observation is that the total costs consist for almost hundred 

percent of the opening costs, hence a change in transportation costs matters relatively little for the 

change in total costs.  
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6. Another structure of    

We think it is possible to improve the solutions of the Bilde-Krarup and the Gap B instance in Section 

4 by constructing the set    in another way. We construct the set    in the same way as before, 

namely we include in    all facilities for which the slack variable si is equal to zero. From that set, we 

construct    in the following way. First, we delete the first facility from the set   , and the remaining 

facilities are stored in the set   . Then, we determine the total costs when we open the facilities in 

set    and we store these total costs. After that, we take the original set    and we delete the second 

facility. The remaining facilities are stored in the set   . Again, we determine the total costs and we 

store them. Due to this procedure, it is always the case that in the set   , there is one facility less 

than in the set     

 

Thus, each time we remove one facility from    and we store the remaining facilities in the set     We 

determine each time the total costs for different sets    and when all facilities from the set    are 

removed once, we choose the set    with the lowest total costs. If none of the sets    results in 

lower total costs, then set    is equal to the set     The difference with this approach and the 

approach in Section 3.2 is that in this approach we do not sort the facilities in descending order on 

the number of demand locations for which   
      holds, but we remove all facilities once where 

the sequence of removing does not make sense in this case. The approach in Section 3.2 is focused 

on satisfying complementary slackness condition (15), while the approach in this Section is focused 

on selecting the set    for which the total costs are the lowest. We have executed the dual ascent 

procedure and the dual adjustment procedure for the Bilde-Krarup and the Gap B instance, because 

for these instances we have not yet found an optimal solution in contrast to the Galvão Raggi 

instance from which we cannot improve the solution further. 

 

6.1 Bilde-Krarup (B1.1) 

In table 6.1.1 the results of the dual ascent procedure and the dual adjustment procedure are given 

together with the values of the optimal solution. In order to obtain these results, the set    is 

constructed as described above. From Section 4.1 we observe a solution with total costs of 24,191 

and a duality gap of more than twelve percent after performing the dual ascent procedure. When the 

dual adjustment procedure is executed, we observe a solution with total costs of 23,897 and a 

duality gap of nine and a half percent. 
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 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

5 - - 23,468 - 0% 

Dual 

Ascent 

Procedure 

6 11,645 12,252 23,897 21,494 11.2% 

Dual 

Adjustment 

Procedure 

6 11,645 12,252 23,897 21,885 9.2% 

Table 6.1.1: Results of the dual ascent and the dual adjustment procedure for the Bilde-Krarup instance when 

   is constructed as described above. 

 

When the set    is constructed in another way, we observe for both procedures the same solutions, 

but with another dual objective value. In comparison with Section 4.1, the total costs and the duality 

gap are decreased when the dual ascent procedure is performed, hence this indicates that the 

solution is improved. But after performing the dual adjustment procedure, the total costs remain the 

same and the duality gap decreases a bit which indicates that the gap between the dual solution and 

the primal solution became smaller. 

 

This other way of constructing    results in lower total costs after performing the dual ascent 

procedure in comparison with the total costs obtained in Section 4.1. For both procedures a solution 

is obtained which is closer to the optimal solution than the solution found in Section 4.1 according to 

the values of the duality gap. Thus, we can conclude that this way of constructing    works quite well 

for the Bilde-Krarup instance. 

 

6.2 Gap B (1031) 

In Section 4.3 we saw that the dual ascent procedure and the dual adjustment procedure fail to find 

a solution for the Gap B instance which is close to the optimal solution. We found for the dual ascent 

procedure a solution with total costs of 66,113 and a duality gap of more than one hundred seventy 

percent. After the execution of the dual adjustment procedure, a solution with total costs of 72,101 

and a duality gap of almost two hundred percent was found. In table 6.2.1 we can find the results of 

these two procedures when the set    is constructed in another way, namely the way which we 

described above. 
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 Established 

facilities 

Opening 

costs 

Transportation 

costs 

Total costs ∑   
Duality gap 

Optimal 

solution 

14 - - 42,165 - 0% 

Dual 

Ascent 

Procedure 

22 66,000 109 66,109 24,191 173.3% 

Dual 

Adjustment 

Procedure 

26 78,000 95 78,095 24,214 222.5% 

Table 6.2.1: Results of the dual ascent and the dual adjustment procedure for the Gap B instance when    is 

constructed as described above. 

 

From this table we observe that the total costs are decreased from 66,113 to 66,109 after performing 

the dual ascent procedure. But after executing the dual adjustment procedure, the total costs are 

increased with a large amount, namely from 72,101 to 78,095 and because of this, the duality gap is 

increased to more than two hundred twenty percent. Notable in this case is that the transportation 

costs are decreased for both procedures in comparison with Section 4.3. This is again an indication 

that the dual ascent procedure and the dual adjustment procedure are focused on decreasing the 

total transportation costs which comes at the expense of decreasing the number of established 

facilities, hence a reduction of the total opening costs. 

 

We can conclude from the results in table 6.2.1 that the other way of constructing    results in lower 

transportation costs but it does not result in a solution which is closer to the optimal solution. This is 

probably caused by the bad performance of both procedures for the Gap B instance in general, as we 

have analysed earlier.  
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7. Conclusion 

The Uncapacitated Facility Location Problem consists of m uncapacitated facility locations and n 

customers or demand locations. The costs of opening a certain facility i and the costs of supplying all 

demand of demand location j from facility i are known and the total of these costs have to be 

minimized. In this paper we described that this problem can be formulated as a mixed integer linear 

programming problem from which we can derive a linear programming relaxation in order to obtain 

an integer solution. We want to find a lower bound and an upper bound on the solution for the UFLP, 

hence we have defined a dual formulation of this problem using the LP relaxation. This dual 

formulation provides a dual solution for the UFLP where the dual objective value corresponds with a 

lower bound and the corresponding primal objective value corresponds with an upper bound for the 

solution for the UFLP. 

 

In general, a dual problem can be solved by using a simplex method, but we have performed a 

simpler method that contains two methods. The first method we used is called the dual ascent 

procedure. This method is based on increasing the initial feasible solution   to the next higher value 

of the transportation costs by cycling through all demand locations in the set   until constraint (13) is 

violated. After this procedure, a lower bound and an upper bound on the solution for the UFLP and 

the corresponding set of established facilities are obtained. When all complementary slackness 

conditions are satisfied, then the solution is optimal. If this is not the case, we try to improve the 

obtained solution by executing the dual adjustment procedure. 

 

The dual adjustment procedure starts with the solution obtained by the dual ascent procedure if the 

complementary slackness conditions are not satisfied. For some j’ for which the complementary 

slackness conditions are not satisfied, we try to decrease vj’ and increase two or more other vj at the 

same time such that the dual objective increases. In order to increase vj, the dual ascent procedure, 

which is described earlier, is used. This procedure is repeated for all j’ for which the complementary 

slackness conditions are violated, as long as the dual objective continues to increase. 

 

We have performed the dual ascent procedure and the dual adjustment procedure for three 

standard instances of the UFLP, namely the Bilde-Krarup, the Galvão Raggi and the Gap B instances. 

After performing the dual ascent procedure for the Bilde-Krarup instance, we observe that we are 

almost close to the optimal solution given by the benchmark. It appeared that not all complementary 

slackness conditions are satisfied, hence we executed the dual adjustment procedure. This procedure 

provides a solution which is very close to the optimal solution, which indicates that this method 
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based on the dual ascent procedure and the dual adjustment procedure works quite well for the 

Bilde-Krarup instance. 

 

After performing the dual ascent procedure for the Galvão Raggi instance, we observe that all 

complementary slackness conditions are satisfied, hence an optimal solution is found. The total costs 

corresponding with our solution are exactly the same as the total costs given by the benchmark, 

namely 175,802, hence the dual ascent procedure works very well for the Galvão Raggi instance and 

the dual adjustment procedure do not have to be executed. 

 

For the Gap B instance, the story is a bit different from the other instances. When we perform the 

dual ascent procedure for the Gap B instance, some complementary slackness conditions are violated 

and the obtained solution is not very close to the optimal solution given by the benchmark. We 

found a solution where twenty-two facilities are established with total costs of 66,113 while the 

optimal solution given by the benchmark is based on fourteen established facilities with total costs of 

42,165. Because there are some complementary slackness conditions violated, we have executed the 

dual adjustment procedure in order to improve the solution. The dual adjustment procedure gives a 

solution where twenty-four facilities are opened with total costs of 72,101, which is larger than the 

total costs found by the dual ascent procedure. We can conclude that the dual ascent procedure and 

especially the dual adjustment procedure do not work very well for the Gap B instance. We have 

confirmed this thought by increasing the transportation costs with a large amount. After that we 

obtain that the dual adjustment procedure provides an improvement of the solution obtained by the 

dual ascent procedure. We think that this bad performance of the dual adjustment procedure is 

caused by the fact that the value of   
  remains always a low value between zero and five.  

 

For all standard instances, we have checked what would happen if the opening costs and the 

transportation costs are increased or decreased. We have increased or decreased one of the two 

types of costs with twenty-five percent and we have increased the opening costs with that 

percentage while decreasing the transportation costs and vice versa. After executing the dual ascent 

procedure for the different values of costs and for the three instances, we observed that changes in 

transportation costs have the largest impact on the total costs in the Bilde-Krarup and the Galvão 

Raggi instance. For the Gap B instance, changes in opening costs have the largest impact for the total 

costs, namely, when the opening costs increase with twenty-five percent, then the total costs also 

increase with twenty-five percent. The reason for this is that in the Gap B instance, the total costs 

consist for almost hundred percent of the opening costs. 
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We tried another definition of the set    in order to improve the solutions found by the dual ascent 

procedure and the dual adjustment procedure. This other formulation of     results in an 

improvement of the solution for the Bilde-Krarup instance. For the Gap B instance it only results  in 

an improvement of the total transportation costs but not in an improvement of the total costs. This is 

also caused by the bad performance of the both procedures for the Gap B instance. From this we can 

conclude that another definition of    works very well for the Bilde-Krarup instance but not for the 

Gap B instance. 

  

From this research we can conclude that the dual ascent procedure and the dual adjustment 

procedure work quite well for some of the standard instances, namely the Bilde-Krarup and the 

Galvão Raggi instance. The combination of the dual ascent procedure and the dual adjustment 

procedure is a fast method to find a feasible solution for these instances. But for the other instance, 

namely the Gap B instance, we observed that the combination of the dual ascent procedure and the 

dual adjustment procedure has a bad performance in obtaining an optimal solution. 

 

  



39 
 

8. Discussion and further research 

This research is done in a relatively short time period, hence there are some topics that we do not 

have considered yet or not completely. In this Section we mention some things in this research that 

we could have done differently, and some things for further research. 

 

First, our research is based on the three standard instances of the UFLP. Our choice was to analyse 

the Bilde-Krarup, the Galvão Raggi and the Gap B instance, but we could choose several other 

standard instances of this problem in order to obtain other results. Next, another choice we made is 

the way in which we construct the sets    and   . In our case, we have defined the set    and after 

that we have removed one facility each time, according to a specific rule, in order to obtain the set 

  . But maybe it was better to remove two or three facilities instead of one in order to obtain a 

solution with lower total costs. It is just a choice and the construction of    and    can be done in 

several other ways. For further research, it might be interesting to define some other ways in which 

we construct    and    in order to check if it is possible to improve the solutions that we have found 

so far. 

 

For the Bilde-Krarup and the Gap B instances, we have not found an optimal solution after executing 

the dual ascent procedure and the dual adjustment procedure. As mentioned earlier, when we do 

not find an optimal solution using this procedures, we can perform a branch-and-bound procedure 

with the bounds given by the solutions that we have found. Because of the time limits, we do not 

have executed a branch-and-bound procedure, but this might be an interesting topic for further 

research. 

 

We have also looked at what happens to the number of established facilities and the total costs if the 

transportation costs or the opening costs change with a certain percentage. We have chosen a 

percentage of twenty-five percent because we thought that this would make a significant difference. 

It might be interesting for further research to observe what happens with the number of established 

facilities and the total costs when the costs are changed with other percentages than twenty-five. 
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