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Abstract

We discuss three FPTASes for the Multi-Objective Shortest Path problem. Two of which
are known in the literature, the third is a newly proposed FPTAS, aimed at exploiting small
Pareto curves. The FPTASes are analyzed, empirically, based on worst case complexity,
average case complexity and smoothed complexity. We also analyze the size of the Pareto
curve under different conditions.
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1 Introduction

In this thesis we evaluate different FPTASes for the Multi-Objective Shortest Path problem, one
of the well known multi-objective optimization problems. We propose a new FPTAS, aimed to be
fast when the number of efficient paths is small. We evaluate, empirically, this FPTAS and two
other FPTASes from the literature, based on different complexity analyses.

The layout of the thesis is as follows. Because the main topic of the thesis builds on a large body
of theory, the first part will be used to give a (brief) review of the relevant topics. In Section 2 we
discuss approximation algorithms in general and give the definitions relevant for the remainder of
the thesis (e.g., PTAS and FPTAS). We do this using some well known combinatorial problems,
at the end we also discuss (in)approximability results. In Section 3 we consider multi-objective
optimization. We motivate the study of such problems and discuss relevant literature on the sub-
ject. In this section we also formalize the idea of approximate solutions to such problems, i.e.,
approximate Pareto-optimal frontiers. We conclude Section 3 by showing how these approximate
solutions may be used to construct FPTASes for a large class of non-linear single-objective prob-
lems, thereby showing that multi-objective optimization is also highly applicable to other types
of problems.

We then turn to the main part of the thesis, in which we discuss the multi-objective shortest path
problem (MOSP) and FPTASes for this problem. In Section 4 we give the general definition of
MOSP and define most of the notation that will be used throughout the remainder of the thesis.
We give an algorithm that finds the Pareto-optimal frontier for a given MOSP instance, and also
show that the frontier may be exponential in the number of nodes (i.e., the problem becomes
intractable). This, of course, is the motivation for our study of approximation algorithms. In
Section 5 we discuss three FPTASes for the MOSP; we discuss the FPTASes given in Mittal and
Schulz [2008] and Tsaggouris and Zaroliagis [2009], the third FPTAS is a new contribution to the
literature. For all three we prove correctness and derive the running time.

In Section 6 we analyze the algorithm that finds the whole Pareto curve and the FPTASes empiri-
cally, which is to our knowledge the first time this is done. We base our analysis on three different
types of complexity: worst case, average case and smoothed complexity. The former two are well
studied, the latter is relatively new (see, for example, Spielman and Teng [2009]). We discuss the
different types of complexity and analyze how the algorithms perform.

We conclude the thesis by restating the most import results in Section 7, where we also discuss
possible directions for further research.
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2 Approximation Algorithms

In this section we briefly discuss approximation algorithms. We give the general definitions of
approximation algorithms (and related topics) and highlight some of the well known results in
this branch of combinatorial optimization. For detailed descriptions of the problems that are
discussed, see, for example, Papadimitriou and Steiglitz [1982].

2.1 Definition of an Approximation Algorithm

An approximation algorithm, also called approximation scheme, is an algorithm which returns, for
a given instance of the optimization problem, an ‘almost optimal’ solution, i.e, a solution that never
differs more than a certain factor from the optimal solution (in terms of objective value). Such
algorithms may provide alternative approaches to NP-complete problems, which can not be solved
efficiently (modulo P 6= NP). Here efficient means that the algorithm runs in time polynomial
in the size of the instance (i.e., the size of the input to the algorithm). Clearly, one wants to
know how large the difference between the optimal solution and the approximation is, therefore
we classify approximation algorithms based on this difference in a worst case scenario.

Formally, let P be an minimization (maximization) problem. We say algorithm A is an ε-
approximate algorithm for P if, for every instance of P, A returns a solution which objective
value is no more than 1 + ε (no less than 1 − ε) times that of the optimal solution, for some
fixed ε > 0. (The case in which ε is a function of the input is defined analogously.) A well
known example of such an algorithm is the 1/2-approximate algorithm for the metric TSP (that
is, the Traveling Salesman Problem with triangle inequality) given in Christofides [1975]. Ob-
viously, such algorithms are only relevant when they run substantially faster than any (known)
exact algorithm.

2.2 PTAS and FPTAS

When for an optimization problem there exists an efficient ε-approximation algorithm for every
ε > 0, we say the problem has a Polynomial Time Approximation Scheme (PTAS). Formally,
a PTAS for a minimization (maximization) problem P is a family of algorithms such that for
every ε > 0 there is an algorithm Aε which is an ε-approximate algorithm for P, running in time
polynomial in the input size. If the running time is also polynomial in 1/ε we call this family
of algorithms a Fully Polynomial Time Approximation Scheme (FPTAS). FPTASes are of much
practical importance, since they allow substitution between the solution quality and recourses such
as computational power and time. For a lot of well known problems, such as Knapsack, FPTASes
are known. Woeginger [1999] gives a general framework for designing FPTASes based on dynamic
programming techniques. One can see the existence of an FPTAS as the best possible result for
an NP-complete problem (again, of course, assuming P 6= NP).

2.3 Limits on approximability

Unfortunately, not all combinatorial optimization problems can be approximated. The best known
example is probably the inapproximability for the TSP for any ε (it can be shown that this
allows for an efficient algorithm for Hamilitonian Path, which is NP-complete). Of course, this
result only holds when P 6= NP. For the metric TSP, as discussed above, it is shown that no
ε-approximation exists for ε < 1/122, see Karpinski et al. [2013]. Arora [1998] gives an extensive
survey of (in)approximability results. It should be mentioned that a lot of lower bounds are
believed to be much tighter than currently known, though no one has yet succeeded to prove such
results (for example, it is not excluded that the 1/2-approximation of Christofides [1975] is the
best possible).
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3 Multi-Objective Optimization

In this section we discuss multi-objective optimization. First, we give a brief overview of the
literature on this subject. Thereafter, we formally define multi-objective problems and solutions
to such problems (i.e., Pareto-optimal frontiers). These definitions will be used to develop the
FPTASes in the upcoming sections. We conclude this section by showing how the theory of
multi-objective optimization can be applied to non-linear single-objective problems.

3.1 Overview

Multi-objective optimization (also called multi-criteria optimization) problems are a well studied
branch of combinatorial optimization. The goal is to find optimal solutions based on multiple
criteria; one might for example consider designing a communication network between certain
cities in which we not only consider cost but also the failure probability of the network. This
problem could be formulated as an bi-objective Minimum Spanning Tree problem.

Intuitively, it is clear that the presence of multiple objective functions lead to a more complex
problem; it turns out that this is indeed true, for a lot of multi-objective problems it is shown
that they are NP-hard or NP-complete (see, for example, Ehrgott [2000]). It is shown that for
problems such as Shortest Path and Minimum Spanning Tree, problems for which multiple efficient
algorithms are known for the single objective variant, the problem is intractable, even if we consider
only two objective functions (we show this for Shortest Path in Section 4.4).

Due to such intractability results one might consider alternative approaches for solving multi-
objective problems, such as approximation algorithms and evolutionary algorithms. Both these
approaches have different advantages. Approximation algorithms (as already discussed in Section
2) have the advantage that the approximation ratio is guaranteed (i.e., it is proven that a certain
ratio is always achieved). Evolutionary algorithms, on the other hand, are often fast and produce
good solutions. They are, however, much harder (or even impossible) to analyze theoretically, and
thus no approximation ratio can be proven. In this thesis, we consider approximation algorithms
(for evolutionary algorithms, see, for example, Zitzler [1999]).

3.2 Definitions

Before we can discuss multi-objective optimization in detail, we formalize a multi-objective opti-
mization problem, and a solution to such a problem; in the remainder of the thesis, we consider
multi-objective optimization problems defined as follows.

Definition 3.1. An instance π of a multi-objective optimization problem Π is given by d objective
functions, denoted by f1, ..., fd . Every fi maps the set of feasible solutions, denoted as X, to the
positive real numbers, i.e., fi : X → R+, for i = 1, ..., d.

In general, there is no solution that minimizes all objective functions. Therefore, a solution to a
multi-objective function is given by a Pareto-optimal frontier.

Definition 3.2. Let π be an instance of a multi-objective minimization problem. A Pareto-optimal
frontier, denoted by P (π), is a set of solutions such that x ∈ P (π) if and only if there is no x′ ∈ X
for which fi(x

′) ≤ fi(x), for i = 1, ..., d, with strict inequality for at least one i.

Hence P (π) is a set of all undominated solutions (also called ‘trade-offs’ or efficient solutions). (In
the remainder of the thesis, we will use the names Pareto-optimal frontier, Pareto frontier and
Pareto curve interchangeably.) The concept of the Pareto-optimal frontier is visualized in Figure
1. The Figure shows a bi-objective optimization problem, where the points in the plane indicate
objective values corresponding to feasible solutions. The Pareto-optimal frontier consists of all
the undominated solutions, which are the green points.
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Figure 1: Example Pareto-optimal frontier

It is not uncommon that P (π) is exponential in size, and hence the problem becomes intractable
(since any algorithm should examine this set at least once). To circumvent this issue, one might
consider an approximate Pareto-optimal frontier defined as follows.

Definition 3.3. Let π be an instance of a multi-objective minimization problem. For ε > 0, an
ε-approximate Pareto-optimal frontier, denoted by Pε(π), is a set of solutions, such that for all
x ∈ X, there is an x′ ∈ Pε(π) for which fi(x

′) ≤ (1 + ε)fi(x), for all i = 1, ...d.

Loosely speaking, Pε(π) is a set of solutions that almost dominate all solutions. It is shown in
Papadimitriou and Yannakakis [2000] that under general conditions Pε(π) can be constructed in
polynomial time (we discuss this procedure in Section 5.2).

c1

c2

Figure 2: Example approximate Pareto-optimal frontier

Figure 2 gives an example of an approximate Pareto-optimal frontier (the approximation factor
ε is chosen arbitrarily). The green point is the only solution in the approximate Pareto-optimal
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frontier. The gray lines indicate which solutions are ‘covered’ by this solution, i.e., the rectangle
indicated by these lines contains all points (a1, a2) with fi(x) ≤ (1 + ε)ai, for i = 1, 2, with x
the solution in the frontier. We note that the set Pε(π) is not unique; the points in the Pareto-
optimal curve of Figure 1 qualify as well. Furthermore, as Figure 2 illustrates, the approximate
Pareto-optimal frontier can consist entirely of dominated solutions.

3.3 Applications to Single-Objective Optimization

As an extra motivation for our study of approximate Pareto-frontiers we conclude this section
by showing that approximate Pareto frontiers allow for approximate solutions to a large range of
non-linear single-objective optimization problems.

Let π be an instance of a multi-objective optimization problem as in Definition 3.1, i.e., we
optimize d objective functions f1, ..., fd over the feasible set X. Furthermore, consider a function
h : Rd+ → R+, satisfying:

1. h(y) ≤ h(y′) for all y, y′ ∈ Rd+, such that yi ≤ y′i for i = 1, ..., d.

2. h(λy) ≤ λch(y) for all y ∈ Rd+ and λ > 1, for some fixed c > 0.

Note that the above conditions are satisfied for numerous well known functions, such as all lp-norms
and the product of multiple linear functions.

We will consider the general single-objective minimization problem:

min g(x) = h(f(x)), x ∈ X (1)

Here, and elsewhere, f(x) is the vector (f1(x), ..., fd(x)). We will refer to this problem simply as
P. Mittal and Schulz [2008] show that if an approximate Pareto-frontier for π can be constructed
in time polynomial in |π| and 1/ε then we obtain an FPTAS for P.

In order to proof the existence of an FPTAS for P, we first proof the following lemmata. The first
concerns the presence of an optimal solution in the Pareto-optimal frontier.

Lemma 3.1 (Mittal and Schulz [2008]). There is at least one optimal solution x′ to P such that
x′ ∈ P (π).

Proof. let x̂ be an optimal solution of P. Suppose x̂ /∈ P (π), then there exists a solution x′ ∈ P (π)
such that fi(x

′) ≤ fi(x̂) for i = 1, ..., d. This implies, by property 1 of h, that h(f(x′)) ≤ h(f(x̂))
and hence x′ minimizes the function g.

The second lemma shows how an approximate solution can be obtained from an approximate
Pareto-frontier.

Lemma 3.2 (Mittal and Schulz [2008]). Define ε̂ = (1 + ε)1/c − 1. Let x̂ be a solution in Pε̂(π)
that minimizes g(x) over all x ∈ Pε̂(π). Then x̂ is an ε-approximate solution of P.

Proof. Let x′ be an optimal solution of P in P (π). By definition of Pε̂(π) there is a solution
x′′ ∈ Pε̂(π) such that fi(x

′′) ≤ (1 + ε̂)fi(x
′) for i = 1, ..., d. Using properties 1 and 2 of h we have

g(x′′) = h(f1(x′′), ..., fd(x
′′))

≤ h((1 + ε̂)f1(x′), ..., (1 + ε̂)fd(x
′))

≤ (1 + ε̂)ch(f1(x′), ..., fd(x
′)) = (1 + ε)g(x′)

Since x̂ was a minimizer of g(x) over the set Pε̂(π), we have g(x̂) ≤ g(x′′) ≤ (1 + ε)g(x′).

Combining lemmata 3.1 and 3.2 we obtain the following theorem.
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Theorem 3.1. Consider the multi-objective version of problem P (that is, minimizing f1, ..., fd
over X). If, for every ε > 0 , we can construct Pε(π) for this problem in time polynomial in both
|π| and 1/ε, then there is an FPTAS for P, for d fixed.

Thus, finding approximations schemes for problems as P can be reduced to finding approximate
Pareto-curves for multi-objective problems.

Summarizing, we laid the framework for FPTASes for the MOSP in the previous two sections.
We also showed that the study of approximate Pareto curves enables us to find approximation
schemes for other types of problems as well. In the next sections we focus on the Shortest Path
problem, and the existence of FPTASes for multi-objective version of this problem.
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4 Shortest Path

In this section we discuss the Shortest Path problem. We start by giving the general formulation
of the problem, followed by a brief overview of the literature on the subject. Thereafter, we give
an algorithm that finds the Pareto curve for a multi-objective shortest path instance. We conclude
by showing that the size of the curve can be exponential in the number of nodes, hence motivating
our study of approximate algorithms.

4.1 General Formulation

The Shortest Path problem is one of the most well known problems in combinatorial optimization.
Given a graph G = (V,E) the problem is finding a path between two given nodes s and t that
minimizes a given cost function c. We consider the case where the edge costs are non-negative
integers, i.e., the function c maps the set of edges E to the set Z+. This naturally generalizes to
the multi-objective Shortest Path problem (abbreviated as MOSP) by considering a cost function
c : E → Zd+.

This version is also known as the shortest s-t path problem and is one among multiple variations.
One of those variations is the single-source shortest path problem. In this problem a node s is
given, and we are asked to determine all shortest s − v paths, for v ∈ V . Due to the obvious
connection with dynamic programming, this is often the problem that is solved by an algorithm,
instead of the shortest s−t path problem. The labeling algorithms we consider in the remainder of
the thesis, for example, solve the latter problem. Although we can simply take only the s− t paths
from the returned solution to obtain a solution for the shortest s−t path problem, it does influence
the running time of the algorithm. This follows from the simple fact that we not only determine
the efficient s− t paths, but we determine all efficient paths. Therefore, we state explicitly which
of the two variants is considered when determining the running time of the algorithms.

We will use the following notation in the remainder of the thesis. For a general graph G = (V,E),
define n ≡ |V | (i.e., the order of the graph) and m = |E| (i.e., the size of the graph). Furthermore,
let P i(s, v) resp. W i(s, v) denote the set of all s − v paths resp. walks of length at most i. The
set of all s − v paths resp. walks is denoted simply as P (s, v) resp. W (s, v). Finally, we extend
the cost function to map the power set 2E to the positive integers by defining c(p) ≡

∑
e∈p c(e),

where p ∈ 2E . We write ci(p) for the cost of path p in terms of the ith objective function.

4.2 Overview

It is clear that the general Shortest Path problem is highly applicable, with applications ranging
from pure navigational problems to, for example, determining the structure of social networks.
For the single linear objective version of the problem efficient algorithms exist. The most famous
one is probably Dijkstra’s algorithm, see Dijkstra [1959], that solves the shortest path problem
for non-negative weights in O(n2) time.

In practice, one might also consider an objective function which is non-linear. For example, if we
want to find a path that is not only short but that also has a low probability of delay, then we
can consider an objective function of the form c1(P ) · c2(P ), where c1(P ) resp. c2(P ) is the length
resp. delay probability of the path. In Section 3.3 we showed that such problems are tightly linked
to the multi-objective Shortest Path problem.

In the remainder of the thesis we focus on the MOSP, in particular the bi-objective version, which
is well studied. As mentioned in Section 3 the multi-objective version of the shortest path problem
is intractable (see Ehrgott [2000]). We will give the proof at the end of this section. Interesting
results on the MOSP can be found in Müller-Hannemann and Weihe [2006], who derive conditions
under which the Pareto curve is polynomial in size.
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Skriver [2000] gives an overview of different exact algorithms for the multi-objective shortest path
problem. Tarapata [2007] also gives an extensive survey of recent results, including results on
approximating the Pareto curves. Among those are the algorithms discussed in Papadimitriou
and Yannakakis [2000] (which we discuss in Section 5.2) and in Tsaggouris and Zaroliagis [2009]
(which we discuss in Section 5.3). A different kind of approximation algorithm is given in Kern
and Woeginger [2007], which is based on quadratic programming. This method approximates the
problem where the objective is the product of two linear functions, such as the one considered
above, it is, however, not generalizable to instances where d > 2.

4.3 Solving MOSP

MOSP can be solved using a labeling algorithm. The algorithm, given in Ehrgott [2000], is a
labeling algorithm that uses the lexographic ordering of cost vectors to efficiently store all the
labels. Due to the possible exponentially large Pareto frontier, the worst case performance of the
algorithm is exponential. The algorithm finds all efficient s− v paths, for all v ∈ V , we omit the
proof of correctness (see Ehrgott [2000]).

A path p is represented by a label (c(p), pred(p), last(p)), here pred(p) is a pointer to the label
of p− last(p), where last(p) is the last edge added to the path. From here on, we use the names
path and label interchangeably. Furthermore, when we consider dominance, we only consider
labels that end at the same node (one might interpret this as if the lists are kept for every node
separately, we omit this for simplicity).

The algorithm keeps two sets of labels; one set, denoted by LT , contains the temporary labels,
the other set, denoted by LP , contains all permanent label. While the set LT is not empty, the
algorithm takes the lexographically smallest label of the set, say label p. We then remove this
label from the set of temporary labels and add it to the set of permanent labels. Furthermore, for
each edge e incident with the last node of p we add a new label p′ to LT for the path obtained
by extending p with the edge e, unless this label is dominated by one of the labels already made.
Furthermore, if a label is dominated by the newly created label, we delete that label.

Let π be the MOSP instance considered. Note that the algorithm finds all efficient paths, and
hence the relevant problem for the running time is the single-source shortest path problem, i.e.,
the running time depends on the total number of efficient paths. We can express the running time
of the algorithm as follows.

Lemma 4.1. Let K be the total number of efficient paths. The algorithm finds the Pareto-optimal
frontier in O(n2K2) time.

Proof. Since the total number of efficient paths is K, we add K labels to LP . For each added
label we create at most n new labels, hence we create O(nK) labels in total. When creating a
new label we have to check whether it dominates/is dominated by any of the labels in LT and/or
LP . It is clear that the size of LT is O(nK), hence this step takes O(nK + K) = O(nK) time.
(We note that is not hard to construct an instance where the size of LT is Θ(nK) at some point
in the execution.) Note that while checking for dominance, we can simultaneously keep the set
in lexographic order. Since the dominance check is done for all created labels, the total running
time becomes O(n2K2).

Although such an expression for the running time is clearly useless a priori to solving the problem,
we will see in Section 6 that there is empirical evidence for a small number of efficient paths, and
hence a good performance of the algorithm.

4.4 MOSP is intractable

We conclude this section by proving the intractability of MOSP. The proof is from Ehrgott [2000].
We note that this proof can be easily extended to have all edge costs strictly positive.
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Theorem 4.1. MOSP is intractable, even for only two dimensions.

Proof. We consider a directed graph D = (V,A) with n nodes, where n is odd (note that for the
undirected case, the proof is similar). For i = 1, 3, 5, ..., n − 2, we add the arc vivi+2 with cost

(0, 2
i−1
2 ), the arc vivi+1 with cost (2

i−1
2 , 0) and the arc vi+1vi+2 with cost (0, 0), see Figure 3.

From the construction of D it is clear that for each path p ∈ P (v1, vn) we have c1(p) + c2(p) =

2
n−1
2 −1. Furthermore, in each dimension, the full range of costs

{
0, ..., 2

n−1
2 − 1

}
can be achieved.

This implies that there are 2
n−1
2 efficient paths, which shows that the instance is intractable.

v1

v2

v3

v4

v5 vn−2

vn−1

vn

(1,0)

(0,1)

(0,0) (2,0)

(0,2)

(0,0) (2
n−3
2 ,0)

(0,2
n−3
2 )

(0,0)

Figure 3: MOSP instance with exponential number of efficient paths.
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5 Description of the FPTASes

In this section we give three different methods for constructing an approximate Pareto frontier
for the multi-objective shortest path problem. The first one is given in Mittal and Schulz [2008]
and is also applicable to different problems. The second one, given in Tsaggouris and Zaroliagis
[2009], is tailor made for the shortest path problem. The third one we consider is a new FPTAS,
based on the MOSP algorithm described in Section 4.3 and the work of Tsaggouris and Zaroliagis
[2009].

5.1 Preliminaries

We develop the FPTASes for multi-objective optimization instances under the following assump-
tion.

Assumption 5.1. Let π be an instance of a multi-objective optimization problem as in Definition
3.1. It is assumed that every fi, i = 1, .., d, takes value in the interval

[
2−p(|π|), 2p(|π|)

]
for some

polynomial p(·). Here |π| denotes the size of the instance π.

This assumption is used by Mittal and Schulz [2008] to develop the FPTAS for general multi-
objective optimization problems. Note that Assumption 5.1 holds for the MOSP: the cost of each
path is bounded above by n times the maximal edge cost.

Furthermore, the FPTASes we discuss in fact find the approximate Pareto-optimal frontier for
all s − t walks of size at most n − 1, instead of all paths. (Note that not all returned walks are
necessarily paths, due to the fact that we consider an approximate Pareto curve.) The reason
for this simplification differs, but the underlying reason is that walks are ‘easier’ combinatorial
objects, in the sense that they are less restrictive when it comes to extending a walk with an extra
edge. Note that the length restriction is necessary to make the feasible region finite. That this
simplification is allowed follows from the simple observation that P (s, t) is a subset of Wn−1(s, t).
Furthermore, any returned walk can be truncated to obtain a path which cost is never higher (due
to the non-negativity of the edge costs), hence we obtain an approximate Pareto-optimal frontier
for the original problem by truncating all returned walks.

For convenience, we introduce some extra notation in this section. Given an instance of the
MOSP problem as discussed in Section 4.1, let cmini ≡ mine∈E ci(e), c

max
i ≡ maxe∈E ci(e) and

Ci ≡ cmaxi /cmini , for i = 1, ..., d. Furthermore, define Cmax ≡ max1≤i≤d Ci.

We now turn to discussing the three different FPTASes.

5.2 FPTAS Mittal and Schulz [2008]

Mittal and Schulz [2008] construct the approximate Pareto frontier using the method proposed
in Papadimitriou and Yannakakis [2000]. They show that Pε(π) can be constructed in fully
polynomial time under very general conditions. Their approach is roughly as follows. First, they
show that constructing an approximate Pareto curve can be reduced to solving the so called ‘gap
problem’ for a polynomial number (in terms of |π| and 1/ε) of different points. This gap problem
can then be reduced to solving the exact problem corresponding to π a polynomial number of
times. Here the exact problems consists of finding a feasible solution which cost is equal to a given
constant.

We now discuss this method in detail. First, we define the gap problem and proof how this problem
can be used to construct the approximate Pareto curve. We then define the exact problem and show
how this can be used to solve the gap problem. We end by showing how the results are combined
to show the existence of an FPTAS for constructing the approximate Pareto curve.

10



Papadimitriou and Yannakakis [2000] define the gap problem as follows, and proof how the ap-
proximate Pareto frontier can be constructed by solving this problem.

Theorem 5.1 (Papadimitriou and Yannakakis [2000]). Let d be fixed and ε > 0. One can
determine an Pε(π) in time polynomial in |π| and 1/ε if the following gap problem can be solved
in polynomial time: Given an d-vector of values (v1, ..., vd) either

1. return a solution x ∈ X such that fi(x) ≤ vi for i = 1, ..., d; or

2. assert there is no x ∈ X such that fi(x) ≤ (1 − ε′)vi, for i = 1, ...d, where ε′ satisfies
(1− ε′)(1 + ε)1/2 = 1.

Proof. If the above problem can be solved in polynomial time, we construct an approximate
Pareto-optimal frontier as follows.

Consider the box in Rd given by
{

(v1, ..., vd) : 2−p(|π|) ≤ vi ≤ (1 + ε)1/22p(|π|)
}

. We successively

divide this box into smaller boxes such that the ratio of division equals (1 + ε)1/2. It is clear that
this results in O((p(π)/ε)d) boxes. For all corner points of these boxes we solve the gap problem.
Among all obtained solutions, we keep the ones that are not Pareto dominated (with respect to
the found solutions). It is clear that this can be done in polynomial time in both |π| and 1/ε.

We claim that this set of solutions is the desired Pε(π). Suppose not, then there is a solution
x ∈ X for which there is no x′ among the found solutions such that fi(x

′) ≤ (1 + ε)fi(x), for
i = 1, ..., d. Let v′ = (v′1, ..., v

′
d) be the corner point such that (1 + ε)1/2fi(x) ≤ v′i ≤ (1 + ε)fi(x),

for i = 1, ..., d. When the gap problem was called at this corner point it is clear that, due to the
presence of x, a solution must have been returned. This implies that a solution x′ is returned with
fi(x

′) ≤ v′i, and thus fi(x
′) ≤ (1 + ε)fi(x), for i = 1, ..., d, which is a contradiction.

c1

c2

Figure 4: FPTAS Mittal and Schulz [2008]

To illustrate this approach, we consider the set of points in Figure 4, also used in Section 3.
The dashed gray lines indicate the boxes that are constructed. Note that the size increases.
Furthermore, note that the smallest objective function value (in this case the c1 value of the
left most point) determines the region that is divided into smaller boxes. For each box the gap
problem is called for the point in the top right corner. The green points indicate solutions that
are returned, the red points those that are not. Note, for example, that the point in the lower
left corner is not included in the curve, this is valid since the green point to the right of it is close
enough (recall that the ratio of division was (1 + ε)1/2).
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We now turn to solving the gap problem. First, we formalize the exact problem.

Definition 5.1. Consider an instance π as in Definition 3.1, with X ⊆ Zm+ . The exact version
of the problem is as follows. Given K ∈ Z+ and ci ∈ Z+ for i = 1, ...,m, is there a solution x ∈ X
such that

∑m
i=1 cixi = K?

Papadimitriou and Yannakakis [2000] show that if there exists a pseudo polynomial time algorithm
for the exact problem, then the gap problem can be solved in polynomial time.

Theorem 5.2 (Papadimitriou and Yannakakis [2000]). Consider an instance π of a multi-objective
optimization problem. If there is a pseudo polynomial algorithm for the exact problem correspond-
ing to π, then, for every ε > 0, there is an algorithm for constructing Pε(π) in time polynomial in
both |π| and 1/ε.

Proof. We restrict our attention to the case where the value of all variables is bounded by n,
which is polynomial in |π|. Furthermore, we consider linear objective functions fi, i = 1, ..., d.
Suppose we want to solve the gap problem for the vector (v1, ..., vd). Let r = dnm/ε′e, where ε′

satisfies (1− ε′)(1 + ε)1/2 = 1. We first define a ‘truncated’ objective function. For all j = 1, ...,m
if for some i = 1, .., d we have aij > vi we drop the variable xj from all objective functions (and
set xj = 0). Let I be the index set of the remaining variables. Next we define, for each of the
objective functions, a new function f ′i(x) =

∑
j∈I a

′
ijxj , where a′ij = daijr/vie. Note that the

maximal value of a coefficient is now r.

From Lemma A.1 (see Appendix A) it follows that:

1. if f ′i(x) ≤ r, then fi(x) ≤ vi.

2. if fi(x) ≤ (1− ε′)vi, then f ′i(x) ≤ r.

Hence, to solve the gap problem, it suffices to find an x ∈ X such that fi(x) ≤ r for i = 1, ..., d,
or assert that no such x exists. Because all coefficients of fi(x) are nonnegative integers, there
are (r + 1)d ways in which the inequalities fi(x) ≤ r, i = 1, ..., d, can be satisfied. To check if
there is a solution x ∈ X such that f ′i(x) = ci for i = 1, ...d we solve the exact problem given by∑d
i=1M

i−1f ′i(x) =
∑d
i=1M

i−1ci, where M = nmr+ 1 (i.e., M is one greater than the maximum
value of fi(x)). It follows that the coefficients are of order O(((nm)2/ε)d), and hence the pseudo
polynomial time algorithm runs in polynomial time. This implies that the gap problem can be
solved in polynomial time. The Theorem now follows from Theorem 5.1.

We now turn to our main point of exercise, obtaining an FPTAS for the multi-objective shortest
path. Let π be a multi-objective shortest path instance as discussed in Section 4.1. We obtain
the following corollary to Theorem 5.2.

Corollary 5.1. An ε-approximate Pareto-optimal frontier for an instance π of the multi-objective
shortest path, satisfying Assumption 5.1, can be constructed in time polynomial in both |π| and
1/ε.

Proof. From Theorem 5.2 it follows that we can construct the ε-approximate Pareto-optimal
frontier in polynomial time if the exact problem can be solved in pseudo polynomial time. Although
the exact version of Shortest Path is strongly NP-complete (since Hamiltonian Path is a special
case), we can construct the frontier by relaxing the problem to finding a walk of length at most
n − 1, as discussed in Section 5.1.The exact walk problem can be solved in O(nmK) time using
dynamic programming, hence the result follows.

Next, we determine the runtime of the algorithm.

Lemma 5.1. The algorithm given in Mittal and Schulz [2008] constructs an ε-approximate Pareto

frontier for π in O
(
nm

(
n3m3 log(nCmax)/ε3

)d)
time.
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Proof. From the proof of Theorem 5.1 it is clear that we solve the gap problem O((p(π)/ε)d)
times. By the definition of Cmax this is O((log(nCmax)/ε)d). In order to solve the gap problem,
we call the exact problem O(rd) times, which is O((nm/ε)d), with input of order O((nm)2/ε)d).
The exact shortest walk problem can be solved in O(nmK) time. This implies that the total
runtime of the algorithm is

O
(
(log(nCmax)/ε)d · (nm/ε)d · nm((nm)2/ε)d

)
= O

(
nm

(
n3m3 log(nCmax)/ε3

)d)
.

We note that although the theoretical runtime is polynomial, the runtime of the FPTAS can be
tremendous. To illustrate this, we observe that, using the fact that m = O(n2), the dependency
on the number of nodes alone already is O(n21) for the bi-objective shortest path. As a conclusive
remark we note that Theorem 5.2 allows for FPTASes for numerous other well known problems,
such as Minimum Spanning Tree and Knapsack.

5.3 FPTAS Tsaggouris and Zaroliagis [2009]

The second FPTAS we consider is given in Tsaggouris and Zaroliagis [2009]. Their algorithm
resembles the Bellman-Ford labeling algorithm (see Ehrgott [2000]), and is remarkably simple.
The main idea of their algorithm is that they are able to store all labels in arrays of polynomial
size by relaxing the assumption of undominated solutions. That is, by looking at Pε(π) instead of
P (π) they are able to keep the number of labels that need to be stored polynomial. As in Mittal
and Schulz [2008], the algorithm given in Tsaggouris and Zaroliagis [2009] creates the approximate
Pareto-curve for all s− t walks (in fact, for all s− v walks, for all v ∈ V ).

As in Section 4.3, we represent a walk w by a label (c(w), pred(w), last(w)), here pred(w) is a
pointer to the label of w − last(w), where last(w) is the last edge added to the walk.

We consider a multi-objective shortest path instance π as before. To store the labels, we consider
d − 1 dimensional arrays Liv for i = 1, ..., n − 1 and v ∈ V , with length blogr(nCj)c in the jth

dimension, for j = 1, ..., d− 1. Here r determines the approximation factor (see Lemma 5.2). For
a walk w we determine the position as

pos(w) =

[⌊
logr

c1(w)

cmin1

⌋
, ...,

⌊
logr

cd−1(w)

cmind−1

⌋]
.

It is clear that the size of the arrays is sufficient to store any w ∈ Wn−1, where Wn−1 ≡⋃
v∈V W

n−1(s, v).

The algorithm proceeds as follows. Initially, we have L0
v = ∅ for all v ∈ V − {s}, and L0

s contains
only the trivial empty path. In each round 1 ≤ i ≤ n − 1 we compute Liv for all v as follows.
First we set Liv equal to Li−1v . Then, for every uv ∈ E we extend all labels Li−1u with the edge
uv, i.e., for every label w we create a new label w′ = (c(w) + c(uv), w, uv). We then add this
label to Liv at position pos(w′), unless for the current label at that position, say w′′ it holds that
cd(w

′′) ≤ cd(w′). If there is no label at the position, we always add w′.

We proof the correctness of the algorithm for a one parameter approximation, i.e., we consider the
same approximation factor in every dimension. The algorithm, however, also allows for different
factors (see Tsaggouris and Zaroliagis [2009] for details). We should note that the algorithm is
always exact in one dimension (in this case, the dth dimension).

Lemma 5.2 (Tsaggouris and Zaroliagis [2009]). For all i ≤ n− 1 and v ∈ V , after the ith round
Liv is an ri-approximate Pareto frontier for W i(s, v).

Proof. It suffices to proof that for all w ∈W i(s, v) there is w′ ∈ Liv such that cl(w
′) ≤ ricl(w) for

l = 1, ..., d. We prove this by induction.
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For i = 1 consider a walk w ∈ W 1(s, v). At each round all elements are examined, hence there
must be w′ ∈ L1

v such that (i) pos(w′) = pos(w) and (ii) cd(w
′) ≤ cd(w). From (i) it follows that

for all l = 1, ..., d−1 we have
⌊
logr

cl(w
′)

cmin
l

⌋
=
⌊
logr

cl(w)
cmin
l

⌋
, which implies logr

cl(w
′)

cmin
l

−1 ≤ logr
cl(w)
cmin
l

.

Along with (ii) this implies that cl(w
′) ≤ rcl(w) for l = 1, ..., d.

For the induction step we consider a walk w ∈ W i(s, v). Removing the last edge of w, say uv,
results in a new walk w′ ∈ W i−1(s, u). Using the induction hypothesis we get that here is a
w′′ ∈ Li−1u such that cl(w

′′) ≤ ri−1cl(w
′) for l = 1, ..., d. By adding edge uv to w′′, which gives a

walk q, we have

cl(q) ≤ ri−1cl(w) l = 1, ..., d (2)

Clearly, in the ith round of the algorithm q is considered. Therefore, there is a walk q′ ∈ Liv such
that (iii) pos(q′) = pos(q) and (iv) cd(q

′) ≤ cd(q). From (iii) it follows that for all l = 1, ..., d− 1

we have
⌊
logr

cl(q
′)

cmin
l

⌋
=
⌊
logr

cl(q)
cmin
l

⌋
, which implies logr

cl(q
′)

cmin
l

− 1 ≤ logr
cl(q)
cmin
l

. Along with (iv) this

implies that

cl(q
′) ≤ rcl(q) l = 1, ..., d (3)

Combining (2) and (3) we find that cl(q
′) ≤ ricl(w) for l = 1, ..., d.

To illustrate the idea, we consider Figure 5, where the same set of points as in Figure 4 is shown.
The dotted lines indicate the value of the position function. Note that the steps are smaller than
in Figure 4, since we use r = (1 + ε)1/(n−1). Furthermore, note that the algorithm is exact in one
dimension (in this case c1), therefore, for each position value, the leftmost point is added. We
also note that the algorithm does not consider dominance when creating the labels, as we observe
from the selected points in Figure 5.

c1

c2

Figure 5: FPTAS Tsaggouris and Zaroliagis [2009]

We now consider the runtime of this algorithm.

Lemma 5.3. The algorithm given in Tsaggouris and Zaroliagis [2009] constructs an ε-approximate

Pareto frontier for π in O
(
nm (n log(nCmax)/ε)

d−1
)

time.
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Proof. From Lemma 5.2 it is clear that, by setting r = (1 + ε)1/n−1, Ln−1t is the desired ε-
approximate Pareto frontier. The algorithms terminates after n − 1 rounds and in each round
it examines all m edges. For each edge, we consider extending all labels. The time this takes is
equal to the size of the arrays used, i.e., is O

(
(logr(nC

max))d−1
)
. Using the fact that logr(x) =

log(x)/ log(r) and log(r) ≈ ε/(n− 1) for ε small gives the result.

5.4 New FPTAS

For the third algorithm, we propose an FPTAS that combines features of both the MOSP algorithm
of Section 4.3 and the algorithm of Tsaggouris and Zaroliagis [2009]. Motivation for this algorithm
is the fact that experiments showed that the set of efficient paths is often very small. The MOSP
algorithm of Section 4.3 is able to be highly efficient in such a situation, because of the lexographic
lists and dominance checks. The algorithm of Tsaggouris and Zaroliagis [2009], on the other hand,
seems to profit very little of this fact (as already mentioned, for example, it does not consider
dominance among the kept solutions).

Therefore, we propose a new algorithm which extends the MOSP algorithm of Section 4.3 with
the position function used in Tsaggouris and Zaroliagis [2009] to construct an FPTAS that is able
to exploit small sets of efficient paths.

The algorithm is as follows. We follow the exact same procedure as the algorithm of Section 4.3,
with one crucial difference. Whenever a label w is to be made permanent, we do not add it to LP
immediately. Instead we check if there is a label w′ ∈ LP , with the same end node, such that
(i) pos(w′) ≤ pos(w) and (ii) cd(w

′) ≤ cd(w). If both hold, we do not add w and continue the
algorithm. If (i) holds exact, i.e., pos(w′) = pos(w), we keep the one with the lowest value cd(·).
Note that the algorithm considers a dominance check when a new label is created (among the la-
bels in LP and LT ). This check is still exact, i.e., we do not consider pos(·) here. The lexographic
ordering of the cost vectors first considers the dth dimension. This small fact is important, as the
following useful Lemma shows.

Lemma 5.4. For every value pos(·) can take and for each v ∈ V , we add at most one label to
LP .

Proof. Suppose we first add a label w and then a label w′ at the same position, both ending at
the same node. Because w′ is added, we have cd(w

′) < cd(w), and thus w′ <lex w (recall that
lexographic order was established starting at dimension d).

Let u be the last node w and w′ have in common, and let wsl denote the subwalk of w from s to l.
It is clear that w′sl <lex w, for all l visited after u. Because w′ is made permanent it follows that
all subwalks are made permanent before. Therefore, after wsu is made permanent, at least one of
the subwalks wsl is contained in LT in each iteration, until w′ is made permanent. Combining this
with the fact that w is made permanent before w′ implies that at least one of the subwalks was
in LT when w was made permanent. This leads to a contradiction, since the lexographic smallest
path is made permanent.

We are now able to proof the correctness of the above algorithm, the proof is closely related to
the proof of Lemma 5.2.

Lemma 5.5. For all i ≤ n− 1 and v ∈ V , the algorithm finds an ri-approximate Pareto frontier
for W i(s, v).

Proof. It suffices to proof that for all w ∈W i(s, v) there is a label w′ ∈W (s, v) made permanent
such that cl(w

′) ≤ ricl(w) for l = 1, ..., d. We prove this by induction.

For i = 1, consider any efficient walk w ∈W 1(s, v), v ∈ V . it is clear that we add w to LT . Since
w is efficient it is never deleted from LT (recall that the dominance check is exact). Therefore at
some point this label is lexographic smallest, and is thus considered to be made permanent. This
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implies that there is a label w′ ∈ W (s, v) made permanent with (i) pos(w′) ≤ pos(w) and (ii)

cd(w
′) ≤ cd(w). From (i) it follows that for all l = 1, ..., d− 1 we have

⌊
logr

cl(w
′)

cmin
l

⌋
≤
⌊
logr

cl(w)
cmin
l

⌋
,

which implies logr
cl(w

′)
cmin
l

− 1 ≤ logr
cl(w)
cmin
l

. Along with (ii) this implies that cl(w
′) ≤ rcl(w) for

l = 1, ..., d. By Lemma 5.4 this label will be in the final set of permanent labels, which gives the
result for i = 1.

For the induction step we consider a walk w ∈ W i(s, v). Removing the last edge of w, say uv,
results in a new walk w′ ∈ W i−1(s, u). By the induction hypothesis we get that there is a label
w′′ ∈ W (s, u) made permanent such that cl(w

′′) ≤ ri−1cl(w
′) for l = 1, ..., d. By adding edge uv

to w′′, which gives a walk q ∈W (s, v), we have

cl(q) ≤ ri−1cl(w) l = 1, ..., d. (4)

Clearly, when w′′ is made permanent walk q is considered. Now either q is considered to be made
permanent or it is deleted from LT . The latter can only occur if we find a label q′ ∈W (s, v) with
cl(q

′) ≤ cl(q), l = 1, ..., d. Repeating this argument, it is clear that we will always consider a label
q′ ∈W (s, v) to be made permanent with

cl(q
′) ≤ cl(q) l = 1, ..., d. (5)

Therefore, there is a walk q′′ ∈W (s, v) made permanent such that (iii) pos(q′′) ≤ pos(q′) and (iv)

cd(q
′′) ≤ cd(q′). From (iii) it follows that for all l = 1, ..., d−1 we have

⌊
logr

cl(q
′′)

cmin
l

⌋
≤
⌊
logr

cl(q
′)

cmin
l

⌋
,

which implies logr
cl(q
′′)

cmin
l

− 1 ≤ logr
cl(q
′)

cmin
l

. Along with (iv) this implies that

cl(q
′′) ≤ rcl(q′) l = 1, ..., d (6)

Combining (4), (5) and (6) we find that cl(q
′′) ≤ ricl(w) for l = 1, ..., d. By Lemma 5.4 this label

will be in the final set of permanent labels, which completes the induction step.

This gives the main result regarding the new FPTAS.

Theorem 5.3. The algorithm constructs an ε-approximate Pareto frontier for π in

O

((
n2 (n log(nCmax)/ε)

d−1
)2)

time.

Proof. It is clear that the returned set of permanent labels is the desired ε-approximate Pareto
frontier. Due to Lemma 5.4 it is clear that the number of permanent labels created is at most

O
(
n (n log(nCmax)/ε)

d−1
)

, i.e., n times the number of different values pos(·) can take. For every

label made permanent we create at most n labels, hence the total number of labels created is

order O
(
n2 (n log(nCmax)/ε)

d−1
)

. For each of the created labels we need to check dominance,

which is proportional to the number of labels, and hence takes O
(
n2 (n log(nCmax)/ε)

d−1
)

time.

Note that the extra check when considering making a label permanent can be seen as an extra
dominance check, hence the run time increases by at most a factor two. The result follows.

Although the asymptotic running time of the algorithm seems substantially higher than the FPTAS
of Tsaggouris and Zaroliagis [2009], we should note that this only occurs in the worst possible
scenarios. To illustrate this: when we have pos(p) 6= pos(p′) for each pair p, p′ of s − v paths,
v ∈ V (i.e., the position function is irrelevant) the new FPTAS is almost as fast as the algorithm
of Section 4.3, while the run time of the FPTAS of Tsaggouris and Zaroliagis [2009] might not
improve much (or might not improve at all).
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6 Performance Analysis

In this section we analyze the performance of the algorithms on different MOSP instances. Doing
this we consider, empirically, three different types of analysis.

The first one we consider is worst case analysis, which is probably the most well known form of
analyzing algorithms; one conisders the performance of algorithms on the worst possible inputs
(e.g., MOSP instances with an exponential number of efficient paths). Secondly, we consider
average case analysis. In this type of analysis a probability distribution over a set of inputs is
considered. The running time of the algorithm is then evaluated based on the average running
time considering this distribution. The third type of analysis we consider is smoothed analysis.
This type of analysis, which is relatively new, can be seen as a hybrid of the above two methods:
one evaluates the performance of the algorithms on worst case instances, where some attributes are
randomly perturbed (e.g., small random cost changes to edge weights). We consider two different
frameworks for such perturbations.

We will analyze the exact algorithm, given in Section 4.3, the FPTAS of Tsaggouris and Zaroliagis
[2009], described in 5.3 and the new FPTAS, given in Section 5.4. We will at times simply refer
to them as exact, first FPTAS and second FPTAS. The FPTAS given in Mittal and Schulz [2008]
will not be analyzed. As already mentioned in Section 5.2, the theoretical running time, although
polynomial, is extremely high. We were unable to solve instances with as little as 5 nodes using
this algorithm. We may conclude that the algorithm is impractical, although its theoretical value
is still important (since it is an FPTAS for a large class of problems).

We observed that for both FPTASes the actual approximation factors were very close to one,
unless the number of efficient paths was exponential (which is obvious). Varying parameters such
as density or the range of edge costs did not change this observation, we therefore omit analysis
on this subject in the thesis.

6.1 Worst Case Analysis

Worst case analysis is the most common way of analyzing the performance of algorithms. It is
the form of analysis on which, for example, the famous P = NP question is based. As mentioned
above, worst case analysis consists on evaluating algorithms on the worst possible input. Arora
and Barak [2009] give a detailed treatise on the subject and related topics.

We evaluate the worst case performance based on the artificial instance used to proof intractabil-
ity in Section 4.4. We solve this problem for n = 15, 17, ..., 35. For the FPTASes we used an
approximation factor ε = 0.1. The results are shown in Figure 6. Since the theoretical worst case
performance of the algorithms is already established in Sections 4 and 5, we will only discuss it
briefly.

Figure 6 uses two different y-axes, the left one for the exact algorithm (ranging from 0 to 4000
seconds) and the right one for the two FPTASes (ranging from 0 to 40 seconds). We observe the
steep curve in the running time of the exact algorithm compared to the two FPTASes. This is of
course to be expected, due to the reasoning in Section 4.4. Furthermore, we see that the FPTAS of
Tsaggouris and Zaroliagis [2009] has far less trouble with the instances than the FPTAS proposed
in Section 5.4. This too is to be expected; the dominance checks are costly, since the set is large,
and lead to no improvement, since all paths are efficient. The first FPTAS omits these steps and
is therefore able to solve the instances more efficiently.

6.2 Average Case Analysis

Average case analysis is another well known form of analysis (see, for example, Arora and Barak
[2009] for a formal treatment). The main idea of this approach is to consider instances that are
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Figure 6: Worst case analysis

‘likely to occur’, instead of the, often artificial, worst case instances. This method thus tries to
analyze an algorithm from a more practical point of view.

The main problem with this type of analysis is deciding which distribution should be used, since
‘average’ cases can differ substantially in practice (as an example, an average MOSP problem
occurring in a pure navigational setting might be very different from one occurring when optimizing
databases). We will consider the probability space G(n, ρ), i.e., the space of graphs of n nodes
and density ρ. We consider graphs of 30 nodes, where the costs of the edges are independent
uniform distributed between 1 and 220. The results for ε = 0.1 are shown in Figure 7, the results
for ε = 0.01 are shown in Figure 10 (see Appendix B). For each of the densities 0.1, 0.2, ..., 1 we
solved 20 instances. The dotted lines indicate 95% confidence intervals. The orange line indicates
the number of found efficient s− t paths. In the remaining figures, the left axis will indicate the
number of paths, while the right axis indicates the running times.
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Figure 7: Average case complexity with ε = 0.1

The results in Figure 7, as well as Figure 10, are clear: both the exact algorithm and the second
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Figure 8: Smoothed analysis based on cost perturbations

FPTAS have no trouble with the instances (their running time seems not distinguishable from
zero in both figures). This is in line with the motivation for the second FPTAS; the algorithm
seems to be highly efficient when the Pareto-curve is small, as was the case for the random graphs.
The exact algorithm is also highly efficient on the random instances, due to the small size of the
Pareto-curve.

We see that the FPTAS of Tsaggouris and Zaroliagis [2009] takes considerably longer time to
solve the instances, especially when ε becomes smaller. Furthermore, the running time steadily
increases. This is due to the fixed size of the arrays that are considered, and the fact that, if the
number of edges increase, the expected maximum cost value will increase as well. As mentioned
before, we also observe that the running time of the first FPTAS increases substantially as ε
decreases (as expected, of course), but that this does not hold for the second FPTAS; it seems
that the runtime of the second FPTAS is independent of the chosen value of ε, when the Pareto
curve is small (note that this is in line with the conclusive remarks of Section 5.4).

6.3 Smoothed Analysis

The third type of analysis we consider is smoothed analysis. As mentioned above, this type of
analysis is relatively new, and is based on small ‘errors’ around worst case instances. Such errors
seem very plausible when one considers, for example, small rounding errors or human mistakes.
The idea behind smoothed analysis is to bridge the gap between average case and worst case
analysis. Spielman and Teng [2009] give an in depth treatise on the subject. Interesting results
are shown in Spielman and Teng [2003]; they show that the smoothed complexity of the well known
Simplex Algorithm (see Papadimitriou and Steiglitz [1982]) is polynomial (under a certain pivot
rule) in the input size and the standard deviation of the perturbations, thereby providing new
insights on the fact that the Simplex Algorithm is fast in practice, although the worst case running
time is exponential. Inspired by this idea, we consider two different frameworks for analyzing the
algorithms.

The first one we consider is based on random perturbations of the costs of the edges. We consider
the worst case scenario used in Section 4.4 and analyze what happens if we add independent
N(0, σ2) distributed errors to the edge costs (rounding to the nearest integer afterwards to keep
costs integer). The results of this method are shown in Figure 8, for the instance with n = 27
nodes and ε = 0.1. The values are based on solving 50 instances, the dotted lines indicate 95%
confidence intervals. As before, the orange line shows the number of efficient s− t paths.
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Figure 9: Transition analysis for ρ = 0.6.

As can be observed in Figure 8, even small perturbations decrease the size of the efficient set
(and hence the run time of the exact algorithm and the second FPTAS) drastically. In fact, for
σ = 10 we see that the running times start to look like the ones observed on random instances,
even though the number of efficient paths is still substantial. We note that the value of σ is
small compared to the costs in the graph: the largest cost is 2(n−3)/2 = 4096. From these results
it seems unlikely that, considering instances with some randomness, we will observe very high
running times.

The second framework we consider is somewhat more involved. Because a MOSP instance has
multiple components (there is the topology of the graph and the cost vectors) we also consider
changes in terms of the graph. The idea of the method is that we simulate the transition of a
random instance to the worst case instance (therefore, we will simply refer to it as transition
analysis). The procedure is as follows.

1. Given input θ and ρ, both between 0 and 1, and the number of nodes n, generate a random
graph G = (V,E) ∈ G(n, ρ), with integer costs uniformly distributed between 1 to 2n.
Furthermore, construct a worst case instance (as in Section 4.4) on n nodes, say G′ =
(V ′, E′).

2. For each edge e′ ∈ E′, select an edge e ∈ E at random. With probability θ, remove e from
E and add e′ to E.

3. return G.

Note that the procedure is fully specified by a pair (ρ, θ), for fixed n. The two parameter spec-
ification allows us to look at multiple interesting situations. For example, by setting θ = 1, we
consider what happens when we add extra edges to the worst case instance. By varying ρ we are
then able to analyze if it matters how many edges are added. On the other hand, by setting θ < 1
we are able to see the effect of a ‘partial occurrence’ of the worst case instance.

In Figure 9 the results are shown for ρ = 0.6, as a function of θ (for ρ = 0.4 and ρ = 0.8, see
Appendix B), with n = 27. As before we used ε = 0.1 and based our results on 50 instances. We
chose ρ not too small, so that the effect of extra edges could be observed (note that by setting
θ = 1 and ρ sufficiently small we get precisely the worst case instance on 27 nodes).

The results show some striking phenomena. First, there seems to be a sharp transition around
θ = 0.9, when the run times increase substantially. For θ small the results look similar to those on
random instances (which is no surprise), but also for θ as large as 0.8 the number of efficient paths
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is still very small, and both the exact algorithm as the first FPTAS seem to have no problem at all.
This indicates that the number of efficient paths due to the worst case instance depends heavily
on its exact structure: the removal of a small fraction of the edges combined with the addition
of (randomly chosen) new edges greatly decreases the number of efficient paths. Furthermore,
for θ large, the variance increases substantially, indicating that the running time depends heavily
on the generated graph. We also note that the average runtime for θ = 1 is higher than for the
worst case analysis; the addition of extra edges seems to result in higher run times. This can be
explained by the fact that the average degree is higher, and hence the possible number of paths
that need to be explored is larger. This agrees with the fact that although the number of efficient
paths is close to what is observed in Figure 8, the running time is substantially higher.

Another interesting aspect are the differences observed when varying ρ. We see that the number of
efficient s−t paths decreases as ρ increases, due to the fact that the number of edges increases and
hence the probability of short (efficient) paths increases. Note that this is a different phenomena
than in the average case analysis, since we are now adding edges to an instance with an already
large set of efficient paths, instead of considering an entirely random graph. The differences in
terms of running time are harder to interpret. Although the variation is high, the running time
for θ = 1 seems substantially higher for ρ = 0.6 compared to the other two cases. This indicates
that the running time is a trade-off between the number of efficient paths on one hand, and the
number of edges (or the average degree) on the other hand.

Summarizing, we analyzed the algorithms based on different frameworks. We observed small
Pareto curves for the random graphs and the smoothed analysis (excluding the transition analysis
with θ = 1). For such instances the exact algorithm and the second FPTAS easily outperformed
the first FPTAS. Furthermore, increasing the density or approximation ratio increased the running
time of the FPTAS of Tsaggouris and Zaroliagis [2009] substantially, while the other run times
remained almost unchanged. When considering worst case analysis, on the other hand, the FPTAS
of Tsaggouris and Zaroliagis [2009] outperformed the others, especially when the number of nodes
got larger. This was also the case for the transition analysis with θ = 1, although the observed
difference in running time with the second FPTAS was small (this difference will probably grow,
however, when the number of nodes increases).
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7 Conclusion

In this thesis we evaluated three different FPTASes for the multi-objective shortest path problem.
The first two were the FPTASes of Mittal and Schulz [2008] and Tsaggouris and Zaroliagis [2009].
The third FPTAS is a new addition to the literature, intended to benefit from small Pareto-optimal
frontiers. This was achieved by using elements of both the exact algorithm and the FPTAS of
Tsaggouris and Zaroliagis [2009].

In this light the results of Section 6 were promising; we observed a very small number of efficient
paths for random graphs, and also in the more involved smoothed analysis we saw evidence for
small Pareto curves. In the case of random perturbations the number of efficient paths sharply
fell, even for a standard deviation of less than one percent of the maximum cost. In the transition
analysis the observed size of the Pareto curve was small as well, unless we considered the case
θ = 1. In this analysis we also observed that increasing the density resulted in a smaller number
of efficient paths, although this did not directly result in a shorter running time.

When we considered instances with a very large number of efficient paths (e.g., worst case analysis
and transition analysis with θ = 1), the FPTAS of Tsaggouris and Zaroliagis [2009] outperformed
all others. Therefore, the FPTASes seem to complement each other; when one expects a high
number of efficient paths, the FPTAS of Tsaggouris and Zaroliagis [2009] is probably the best
choice, while otherwise the new FPTAS is recommended. Especially when the graph has high
density combined with large costs, but few efficient paths, the use of the second FPTAS greatly
reduces the run time. As a negative result, we observed that the running time of the FPTAS
of Mittal and Schulz [2008] was too high to be included in the analysis; the applicability of this
FPTAS seems to be restricted to theory.

For further research the results on smoothed complexity seem promising. It would be interesting
to derive an expression for the run time, in terms of the standard deviation of the edge costs. The
two parameter analysis seems too complicated for theoretical analysis, although results might be
obtained when considering one parameter fixed. A further empirical study of the performance of
the FPTASes also seems fruitful; the results in Section 6 gave some interesting insights, but it
should be validated if these results also hold in different settings.
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Appendix A

Lemma A.1. Suppose f(x) =
∑m
j=1 ajxj, with 0 ≤ aj ≤ v and xj ∈ {0, ..., n}. Furthermore, let

r = dnm/εe and f ′(x) =
∑m
j=1 a

′
jxj, where a′j = r = daj/ve. Then

1. if f ′(x) ≤ r, then f(x) ≤ v.

2. if f(x) ≤ v(1− ε), then f ′(x) ≤ r.

Proof. 1. Given that f ′(x) ≤ r, we have

f(x) =

m∑
j=1

ajxj =
v

r

m∑
j=1

ajr

v
xj ≤

v

r

m∑
j=1

⌈ajr
v

⌉
xj =

v

r
f ′(x) ≤ v.

2. If f(x) ≤ v(1− ε), we have

m∑
j=1

ajr

v
xj =

r

v
f(x) ≤ r

v
v(1− ε) = r(1− ε).

Rounding up all terms on the left side we obtain

m∑
j=1

⌈ajr
v

⌉
xj = f ′(x) ≤ r(1− ε) + nm,

which implies that

f ′(x) ≤ r(1− ε) + nm = r −
⌈nm
ε

⌉
ε+ nm ≤ r.
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Appendix B

Figure 10 shows the average case analysis (discussed in Section 6.2) for ε = 0.01.
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Figure 10: Average case complexity with ε = 0.01

Figures 11 and 12 show the transition analysis (discussed in Section 6.3) for ρ = 0.4 and ρ =
0.8.
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Figure 11: Transition analysis for ρ = 0.4.

24



0 1 2 3 4 5 6 7 8 9 10
0

1000

2000

nu
m

be
r 

of
 s

−
t p

at
hs

 

 

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

theta

tim
e 

(in
 s

ec
on

ds
)

#PATHS
EXACT
FPTAS1
FPTAS2

Figure 12: Transition analysis for ρ = 0.8.
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