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Abstract

This paper provides further evidence for the usefulness of the speculative bubble test pro-

posed by Franses (2014). The test is proven to be effective in predicting bubbles in high-

frequency data. Three real world examples as well as Monte Carlo simulations show that the

test gives signals when a speculative bubble occurs. Furthermore, this paper has adapted

the recursive residuals method for GARCH processes. For stable processes, this method is

even more accurate, but it cannot be used for detecting explosive behavior.
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1 Introduction

People have experienced speculative bubbles and bubble bursts already in the Dutch Golden

Age during the famous Tulip Mania period. Afterwards we have identified many more,

amongst others in real estate and stock markets. The huge impact of sudden price drops af-

ter a period of large price increases has led to many researchers trying to capture the nature

of such speculative bubbles. Recently, time series based econometric techniques are being

increasingly used for determining bubble-like patterns and predicting the crash of explosive

processes.

Despite the large amount of interest in speculative bubbles, high-frequency speculative bub-

bles have been very little exposed in existing literature. The emersion of high frequency

trading makes the subject particularly relevant. This paper builds on a recently proposed

bubble diagnostic by Franses (2014), modified to allow for GARCH like patterns in the data.

Abreu and Brunnermeier (2003) and Guenster et al. (2009) argue that when a speculative

bubble occurs, the price of the asset grows faster than fundamental values, in combination

with a sudden acceleration of real price growth. Franses (2014) finds that speculative bub-

bles in time-series indeed display an unbalance between growth (1 − L) and acceleration

(1−L)2, where L represent the lag operator. Recursive residuals, an econometric technique

for assessing model stability, can be used to detect such speculative bubbles and predict

whether a collapse is near.

Literature on speculative bubbles can roughly be divided into three groups: theoretical

studies, empirical studies and econometric testing. Theoretical papers are Blanchard and

Watson (1983), Tirole (1982), Tirole (1985), Evans (1989) and Schiller (2000) amongst oth-

ers. Empirical studies include Shiller (1980), West (1988), Campbell and Shiller (1988),

Diba and Grossman (1988) and Evans (1991). Finally, some major papers about the econo-

metric testing (of bubbles) are Bhargava (1986), Kim (2000), Busetti and Taylor (2004),

Phillips et al. (2011) and Homm and Breitung (2012).

High-frequency financial data can often not be characterized by ARMA processes, due to

conditional heteroskedasticity. Therefore, the aforementioned test is adjusted in such a way

that the test can be applied to higher-frequency financial data. Afterwards, real world high-
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frequency financial data with bubble-like patterns illustrates the usefulness of the bubble

diagnostic in practice. Finally, Monte Carlo simulations are performed to assess the power

of the proposed test. This paper uses a dataset consisting of numerous intraday stock re-

turns on IPO days, where one observes bubble-like behavior. The data are obtained from

the Wharton Research Data Services.

Section 2 briefly summarizes existing bubble literature. Section 3 outlines the model and

econometric methods used in this paper. Section 4 illustrates the bubble diagnostic with

examples from artificially generated data sets and demonstrates the practical relevance of

the test by applying the test on high-frequency speculative bubbles on IPO days. Section

5 presents Monte Carlo simulations confirming the power of the test. Finally, section 6

summarizes the aforementioned findings and concludes.

2 Model specification

In this section, I will illustrate the idea of the proposed test by showing some of the properties

of explosive processes and derive the test afterwards. The data in this section are artificially

generated. Three different cases are considered in particular: stationary time series (α1 < 1),

random walks (α1 = 1) and non-stationary or explosive time series (α1 > 1). As we will

see with actual stock prices, the random walk representation best describes financial time

series.

Figure 1 shows that for stationary time series and random walks, growth and acceleration

are in balance. Explosive processes however show an imbalance between those two variables.

Due to the high-frequency data, this is not as clear as in Franses (2014), but still we see

that with explosive processes, the data points are far less concentrated on one spot. This

becomes even more clear from Figure 2, where the imbalance of acceleration and growth of

the non-stationary process is very much like in Franses (2014), with the data points moving

away from the initial cloud. Figure 2 shows the results from a generated time series with

conditional heteroskedasticity, which can be seen by looking at the volatility clustering, but

also by looking at the few data points relatively far from the cloud of data points in the

stable processes. We see some points in the upper right and lower left corners, whereas this

is far less the case in Figure 1. Since growth and acceleration are only in balance when the
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Figure 1: Properties of Stationary time series, Random walks and Non-stationary time series
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Figure 2: Properties of Stationary time series, Random walks and Non-stationary time series

with GARCH error terms
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time series is stable, we can derive a test for detecting unstable processes by using this fact

(Franses, 2014).

When growth and acceleration are in balance, this implies that the series

(1− L)yt (1)

and

(1− L)2yt (2)

are in balance as well. The regression line connecting growth and acceleration can be seen

as the regression line connecting

εt − εt−1 (3)

and

εt − 2εt−1 + εt−2 (4)

with regression coefficient equal to

σ2
ε,t + 2σ2

ε,t−1

σ2
ε,t + 4σ2

ε,t−1 + σ2
ε,t−2

(5)

In case of homoscedasticity, the regression coefficient is thus equal to 0.5. In case of condi-

tional heteroskedasticity, the regression coefficient does not have to be exactly 0.5. However,

if we take the limit of the steps n → ∞, the consecutive variances will approximately be the

same and therefore we again have a regression coefficient of 0.5. Thus, it follows that

(1− L)yt − 0.5(1− L)2yt = 0.5(1− L2)yt (6)

is stable when growth and acceleration are in balance. We can therefore construct a test

for the presence of a speculative bubble by regressing (1 − L2)yt on a constant and using

recursive residuals to assess model stability.

2.1 Recursive residuals

We recursively estimate the regression coefficient. The estimated coefficient is used to predict

the next value of the dependent variable. The one-step ahead forecast error resulting from

this prediction is the recursive residual, defined as:

wt =
yt − x′

tbt−1

(1 + x′
t(X

′
t−1Xt−1)−1xt)1/2

(7)
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Those recursive residuals are independently and normally distributed with zero mean and

variance σ2, the variance of the regression.

However, since high-frequency financial time series can better be modeled by a GARCH

process, we use the model proposed by Bollerslev (1986) instead of an AR model, namely:

pt = α0 + α1pt−1 + εp,t, εp,t ∼ NID(0, σ2
p,t) (8)

σ2
p,t = γ0 + γ1ε

2
p,t−1 + γ2σ

2
p,t−1 (9)

Now we can also adapt the recursive residuals method, by recursively estimating the GARCH

parameters and instead of using the constant regression variance, we can use the one-step

ahead predicted GARCH variance. In the following section, both versions of the test are

considered.

3 Results

This section presents the results of this paper. First of all, there is a brief part in which

the test will be visualized. Afterwards we examine three real world examples of stocks with

bubble-like patterns within a single day. Finally, the results of Monte Carlo simulations are

presented.

3.1 Artificial data

This section serves as a short illustration of the test applied on artificial data. The data

used are the same as in Figure 1 and Figure 2. Now the recursive residuals following from

the regression of (1 − L2)yt on a constant are visualized together with the corresponding

standard errors and one-step ahead predicted GARCH standard errors. The first three

figures are based on homoskedatic data, whereas the latter three figures contain conditional

heteroskedasticity.

Figure 3, Figure 4 and Figure 5 are very much in line with the results from Franses (2014).

We see that the stable processes (Figure 3 and Figure 4), show stable behavior and stay

within the bounds derived from the regression standard errors. Note that the GARCH

standard errors are in both cases very near the constant standard errors, which is in line
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Figure 3: Recursive estimation of (1− L2)yt on a constant for a stationary time-series (α=

0.9)
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with the expectations, because constant standard errors have been used when generating

the process. Figure 5 is very different from the stable processes. Here we clearly see that the

recursive residuals move upwards and thereby leaving the bounds. However, if we consider

the GARCH standard errors, the recursive residuals remain within the bounds. Apparently

the explosive behavior goes together with an increase in estimated standard error by means

of GARCH estimation. Since the recursive residuals exceed the constant standard error

bounds and remain within the GARCH standard error bound, the first version would predict

the bubble, whereas the latter would not.

Let us now look at cases in which we have generated GARCH processes. Unlike in the

previous examples, this time the bounds of constant standard errors and GARCH standard

errors for stable processes are much less alike. We observe that the GARCH standard errors

do take into account when there is a period of more volatility, whereas the constant standard

error bounds are far less able to adapt. Figure 6 and Figure 7 suggest that the GARCH

standard errors are more useful when processes are stable, because we will not be given

signals at times of high volatility. If we look at Figure 8, however, we see that the test

based on GARCH standard errors is unable to correctly predict a speculative bubble. We



3 RESULTS 9

Figure 4: Recursive estimation of (1− L2)yt on a constant for a random walk (α= 1)
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Figure 5: Recursive estimation of (1− L2)yt on a constant for a non-stationary time-series

(α= 1.05)
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Figure 6: Recursive estimation of (1− L2)yt on a constant for a stationary time-series (α=

0.9) with GARCH error terms
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see almost the same pattern as in Figure 5, namely that the recursive residuals go above

the constant standard error bounds, but stay within the bounds based on GARCH standard

errors. Thus, for stable processes, GARCH estimation might lead to more accurate results,

but unlike with constant standard errors, it is unable to predict a speculative bubble.

3.2 Real data

In order to investigate the usefulness of the proposed test, some real-life examples have been

examined. I consider three stocks, listed on either the New York Stock Exchange (NYSE)

or the National Association of Securities Dealers Automated Quotations (NASDAQ), which

have showed a bubble-like pattern on a single trading day. In all of the three cases we

look at the day on which the IPO of the stock took place. The three stocks are LinkedIn

Corporation (Ticker:LNKD) and Youku Inc. (Ticker:YOKU) listed on the NYSE and Baidu

Inc. (Ticker:BIDU) listed on the NASDAQ. LinkedIn is an American business-oriented social

networking service, Youku a Chinese video hosting service and Baidu a Chinese web services

company. Their IPOs were on May 18 in 2011, December 8 in 2010 and the August 5 in

2005 respectively. It is important to note that the choice of stocks is only based on the
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Figure 7: Recursive estimation of (1− L2)yt on a constant for a random walk (α= 1) with

GARCH error terms
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Figure 8: Recursive estimation of (1− L2)yt on a constant for a non-stationary time-series

(α= 1.05) with GARCH error terms
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fact that they have shown explosive behavior on a single day and have no further meaning.

The data are sampled at a 1-second frequency and are obtained from the Wharton Research

Data Services.

As we can see from Figure 9, all of the three stocks show the typical bubble-like pattern.

We see that the bubbles of LinkedIn, Youku and Baidu burst around 11:50, 12:10 and 14:20

respectively. LinkedIns IPO price was $45, it opened at around $80 and the stock closed at

a price of $94,25.At its peak, the stock price was even above $120. The pattern we see with

the share price of Youku is very similar: the stock closed at $33.44, 160 percent above the

offering price of $12,80. The peak of the bubble that we examine was at nearly $36. Baidu

opened at $66, more than double its IPO price of $27. After having reached the peak of

more than $140, Baidu closed at a price of $122,54.

Let us now examine the results of the proposed test. Figure 10 and Figure 11 show in

black the share price of LinkedIn. The grey areas denote the periods in which we receive a

signal that there might be a bubble. Note that due to the high-frequency data, one cannot

exactly see in the figures at which seconds there was a signal. However, in order to illustrate

the usefulness of the test, it is sufficient to show roughly the periods in which signals are

observed. The difference between Figure 10 and Figure 11 is that in Figure 10 the test is

based on constant standard errors whereas in Figure 11 the test is based on the one-step

ahead predicted GARCH standard errors. The obtained results are rather different, as can

be seen in the figures.

Figure 10 shows that the signals are highly concentrated around the peak of the bubble.

Note that at a 5% confidence interval, we see a considerable amount of signals already from

11:30. Those signals become less visible when decreasing the confidence interval to 1% and

even less so when decreasing it to 0.1%. The signals just before the bubble burst and right

afterwards are in all three cases clearly visible. This suggests that the bubble could have

been predicted by means of the test. Interesting to mention is that the periods where there

is no bubble are far less highlighted in grey, meaning that in relatively stable periods, the

test does not provide us with false signals. At a 5% confidence interval, we see though some

periods of sudden price changes where we observe signaling, but at a 0.1% level, the size of

those false signals is almost neglectible.
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Figure 9: Share price development
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As can be seen in Figure 11, using predicted GARCH standard errors for obtaining bubble

signals results in a completely different picture. Instead of receiving signals when a bubble

collapse is near, this method provides signals in almost every period, irrespective of a sudden

change or upcoming collapse. We can therefore conclude that the size of the test is very

low. Not predicting a bubble when the test should is in line with the results obtained from

the artificial data. When there are large expected changes in the share price, the GARCH

estimation also predicts large standard errors. Consequently the large recursive residual

does not exceed the confidence bounds due to the large standard errors. It is therefore not

useful to consider this version of the bubble test.

Youku and Baidu show a very similar picture and are therefore shown in the Appendix. The

main difference is that LinkedIn and Youku show a much clearer bubble, resulting in more

concentrated signals. Baidu has more than one bubble-like pattern, which also becomes

clear from the grey areas in more than one period. We can see however that most of the

signals are given during the period of the main bubble around 14:20.

3.3 Power of the test

In this section the power of the proposed test by using Monte Carlo simulations is assessed.

I use a similar data-generating process as Phillips et al. (2011), with the fundamental price

following a random walk with drift and an independent bubble process, which is a linear

explosive process. Unlike Phillips et al. (2011), the bubble process does collapse and instead

of constant standard errors, a GARCH process is used. The sample size is 5000, the start

of the bubble at t = 3000 and the collapse at t = 4000, resulting in the following data

generating process:

pt = pft + bt, p
f
t = α0 + pft−1 + εp,t, εp,t ∼ NID(0, σ2

p,t) (10)

σ2
p,t = γ0 + γ1ε

2
p,t−1 + γ2σ

2
p,t−1 (11)

bt = (1 + g)bt−1 if t ∈ [3000, 4000], 0 otherwise (12)

I used 5000 seconds of the LinkedIn share price around the speculative bubble to estimate

the parameters for the data-generating process by means of a state space approach. The
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Figure 10: Share price of LinkedIn Corp. and signals given by the proposed test
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Figure 11: Share price of LinkedIn Corp. and signals given by the proposed test based on

predicted GARCH standard errors
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estimated parameter values are α0 = 0, γ0 = 0.0001, γ1 = 0.06 and γ2 = 0.93. The starting

value of the bubble is set at b3000 = 0.25 and the growth of the bubble at g = 0.005. Note

that the parameter values are much lower than those used by Phillips et al. (2011), due to

the higher data-frequency.

To assess the effectiveness of the proposed test, the implied power of the test is shown in

Figure 12 and Figure 13. The results are based on 100 Monte Carlo simulations. The power

of the test can be defined as the average number of times that there is a signal given on

time t. The upper part of the figures show the rational bubble component, for a convenient

overview of where the bubble collapse takes place. The lower part of the figures denotes the

power of the test, ranging from 0 to 1, where 0 means that on a certain time t, there was

never a signal given and 1 means that at time t, all the simulations provided a signal. In

Figure 12 I made use of the test with constant standard errors and in Figure 13 GARCH

standard errors were used. Both figures show test results based on a 5% significance level.

The same figures based on 1% and 0.1% significance levels can be found in the Appendix.

The picture of those figures is almost the same, the only difference is that the power is lower

because of the higher confidence intervals.

Figure 12 makes very clear the usefulness of the bubble test. First, until the start of the

bubble, we see the power of the bubble moving around 5%. This was to be expected since

the process is stable in this period and should not show explosive or any other unstable

behavior. At t = 3000, we observe a power of approximately 0.5, which can be explained by

the sudden shift in observed price due to the initial value of the rational bubble component.

Until t = 3500, the power remains around 5%, since the bubble component is not yet very

large, but afterwards the power starts to rise. Ultimately, the power of the test reaches

levels of around 0.7 just before the collapse of the bubble. Note that this may not sound

very large, however, if you take into account that the data are sampled at second-frequency,

this is a lot. Just before the bubble collapse, the test would provide signals hinting towards

a collapse in more than 50% of the cases. After the collapse of the bubble we see that the

power of the test is 0, from t = 4001 onwards. This can be explained by the larger standard

errors and therefore smaller rejection regions, due to the previous uncertainty in the bubble

period. This could cause problems in cases of periodically collapsing bubbles. In order to
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Figure 12: Power of the test based on 100 Monte Carlo simulations (Confidence interval

95%)
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prevent this problem, one should not include data before and during the previous bubble

when predicting a new one.

Figure 13 shows, as expected, completely different results. The first period until the start

of the bubble is similar to the previous figure. The power of the test moves around 5%,

which is correct since the confidence interval was set at 95%. Again we see the high power

at t = 3000 because of the starting bubble value. However the power of the test remains

the same and even decreases during the bubble period. As we have seen in Subsection 3.1,

this can well be explained by the fact that the GARCH standard errors increase even more

than the recursive residuals, resulting in too small rejection regions. Therefore we again

see confirmed that using GARCH standard errors makes the test useless. In the period

after the bubble, the power is close to, but above 0. This is again too low, but due to the

conditional heteroskedasticity, standard errors move to normal level relatively quickly and

do not remain at very high levels caused by the speculative bubble.



4 CONCLUSION 19

Figure 13: Power of the test with GARCH standard errors based on 100 Monte Carlo

simulations
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4 Conclusion

This paper provides further evidence for the usefulness of the speculative bubble test pro-

posed by Franses (2014). Secondly stock price data shows that the test can be used in

practice, even with very high data frequencies. The power of the test is relatively high,

above 0.5 in the period before the speculative bubble collapses. Performing the test is very

easy and can give meaningful insights about a possible bubble.

This paper also proposes a new method of the use of recursive residuals for assessing model

stability. Instead of using constant standard errors from the regression, one can estimate the

time series as a GARCH process and use the one-step ahead forecasted GARCH standard

error. This method happens to be very accurate for stable processes, but is not effective for

predicting speculative bubbles. Using bounds based on GARCH standard errors drastically

decreases the power of the test. Besides, using recursive residuals with GARCH standard

errors increases computational complexity a lot.
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4.1 Limitations and topics for further research

Due to computational complexity, it was not possible to perform more than 100 Monte

Carlo simulations. Although this size is relatively small, I do not expect results to deviate

much when increasing the number of simulations. In order to have a stronger proof for the

power of the test, I would propose repeating the experiment with 1000 simulations or more.

Besides, it would be interesting to vary the parameters used in the Monte Carlo simulations

in order to see how much the bubble has to grow in order to receive signals from the test.

This paper encourages conducting further research on high-frequency speculative bubbles

in general. I propose a comparison of the power of different econometric tests for higher

frequency GARCH processes and stimulate the research on more real-life applications.

This paper has not attempted to use the signals in such a way that they can efficiently

forecast the time of collapse. One can think of using for example a linear combinations of

the last x signals as a proxy for the chance of a bubble collapsing. Further analysis of the

signal patterns is needed in order to make an even more efficient and accurate test.



REFERENCES 21

References

Abreu, D. and Brunnermeier, M. K. (2003). Bubbles and crashes. Econometrica,

71(1):173–204.

Aknouche, A. and Guerbyenne, H. (2006). Recursive estimation of garch models. Commu-

nications in StatisticsSimulation and Computation®, 35(4):925–938.

Bhargava, A. (1986). On the theory of testing for unit roots in observed time series. The

Review of Economic Studies, 53(3):369–384.

Blanchard, O. J. and Watson, M. W. (1983). Bubbles, rational expectations and financial

markets.

Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of

econometrics, 31(3):307–327.

Bose, A. and Mukherjee, K. (2003). Estimating the arch parameters by solving linear

equations. Journal of Time Series Analysis, 24(2):127–136.

Busetti, F. and Taylor, A. (2004). Tests of stationarity against a change in persistence.

Journal of Econometrics, 123(1):33–66.

Campbell, J. Y. and Shiller, R. J. (1988). The dividend-price ratio and expectations of

future dividends and discount factors. Review of financial studies, 1(3):195–228.

Diba, B. T. and Grossman, H. I. (1988). Explosive rational bubbles in stock prices? The

American Economic Review, pages 520–530.

Evans, G. W. (1989). The fragility of sunspots and bubbles. Journal of Monetary Economics,

23(2):297–317.

Evans, G. W. (1991). Pitfalls in testing for explosive bubbles in asset prices. The American

Economic Review, pages 922–930.

Franses, P. H. (2013). Are we in a bubble? a simple time-series-based diagnostic. Technical

Report 12, Econometric Institute.

Franses, P. H. (2014). A simple test for a bubble based on growth and acceleration. Com-

putational Statistics & Data Analysis.



REFERENCES 22

Gerencsér, L., Orlovits, Z., and Torma, B. (2010). Recursive estimation of garch pro-

cesses. In The 19th International Symposium on Mathematical Theory of Networks and

Systems,(MTNS 2010), Budapest, Hungary, forthcoming.

Guenster, N. K., Kole, H., and Jacobsen, B. (2009). Riding bubbles. Technical report,

Erasmus Research Institute of Management (ERIM).

Homm, U. and Breitung, J. (2012). Testing for speculative bubbles in stock markets: a

comparison of alternative methods. Journal of Financial Econometrics, 10(1):198–231.

Kierkegaard, J. L., Nielsen, J. N., Jensen, L., and Madsen, H. (2000). Estimating garch

models using recursive methods.

Kim, J.-Y. (2000). Detection of change in persistence of a linear time series. Journal of

Econometrics, 95(1):97–116.

Phillips, P. C., Wu, Y., and Yu, J. (2011). Explosive behavior in the 1990s nasdaq: When

did exuberance escalate asset values?*. International economic review, 52(1):201–226.

Schiller, R. J. (2000). The irrational exuberance.

Shiller, R. J. (1980). Do stock prices move too much to be justified by subsequent changes

in dividends?

Tirole, J. (1982). On the possibility of speculation under rational expectations. Economet-

rica: Journal of the Econometric Society, pages 1163–1181.

Tirole, J. (1985). Asset bubbles and overlapping generations. Econometrica: Journal of the

Econometric Society, pages 1071–1100.

West, K. D. (1988). Bubbles, fads and stock price volatility tests: a partial evaluation. The

Journal of Finance, 43(3):639–656.



5 APPENDIX 23

5 Appendix



5 APPENDIX 24

Figure 14: Share price of Youku Inc. and signals given by the proposed test
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Figure 15: Share price of Youku Inc. and signals given by the proposed test based on

predicted GARCH standard errors
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Figure 16: Share price of Baidu Inc. and signals given by the proposed test
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Figure 17: Share price of Baidu Inc. and signals given by the proposed test based on

predicted GARCH standard errors
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Figure 18: Power of the test based on 100 Monte Carlo simulations (Confidence interval

99%)
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Figure 19: Power of the test with GARCH standard errors based on 100 Monte Carlo

simulations (Confidence interval 99%)
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Figure 20: Power of the test based on 100 Monte Carlo simulations (Confidence interval

99.9%)
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Figure 21: Power of the test with GARCH standard errors based on 100 Monte Carlo

simulations (Confidence interval 99.9%)
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