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Abstract. In this thesis, two different methods of standard error esti-
mation when using the EM-algorithm will be compared. One of these
methods is a long existing and commonly used method called Louis’
method. The main idea of this method is to use the first and second
derivatives of the complete-data log likelihood to obtain an estimate for
the observed information matrix. The second method estimates the ob-
served information matrix by taking the negative of the second derivative
matrix of the incomplete-data log likelihood and has to my knowledge
not been proposed in earlier research. A simulation experiment shows
that the standard error estimates by the second method are generally
closer to the simulated standard error estimates when the EM-algorithm
is used to estimate parameters of a Gaussian mixture model with two
components.
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1 Introduction

The Expectation-Maximization (EM) algorithm for finding Maximum Likelihood
Estimates (MLE’s) is a commonly used approach in a variety of incomplete-data
problems. In this context, incomplete-data problems can be interpreted in many
ways, such as data with missing values, grouped, censored or truncated data, fi-
nite mixture models, et cetera. Incomplete-data problems arise in many contexts,
like the medical context (when a true disease status is not observed, see Kang
et al. (2013)) or in a marketing context (Market segmentation, see Kim and Lee
(2011)). Although the general formulation of the EM-algorithm was presented
in Dempster et al. (1977), there are still a number of papers published on the
algorithm every year, inter alia Kang et al. (2013), Kim and Lee (2011), Mel-
nykov and Melnykov (2012), Cappé (2011) and Xu et al. (2014), suggesting that
the topic is still very relevant in the recent literature.

The main idea of the EM-algorithm is to associate with the given incomplete-
data problem, a complete-data problem, for which Maximum Likelihood estima-
tion is computationally more tractable, see McLachlan and Krishnan (2008).
The algorithm performs two steps on each iteration. The first step, which is
known as the E-step, is to compute a particular conditional expectation of the
complete-data log likelihood. The second step, known as the M-step, is to maxi-
mize this expectation over the relevant parameters. The EM-algorithm has some
appealing properties relative to other methods for finding MLE’s, such as mono-
tonicity and the fact that it is easy to implement the algorithm, see McLachlan
and Krishnan (2008). However, there is also some criticism associated with the
algorithm. One of the commonly mentioned disadvantages of the algorithm is
that the algorithm does not provide estimates of the covariance matrix of the
parameter estimates. Since in most statistical problems, it is convenient to have
standard errors of parameter estimates, a solution is needed.

There are several methods designed to compute standard errors of parameter
estimates obtained by the EM-algorithm. Some of these methods focus on a spe-
cific incomplete data problem (Baker’s method for categorical data, see Baker
(1992)), and others are more general (Louis’ method, see Louis (1982), Oakes’
method, see Oakes (1999)). Most of the methods focus on computing the in-
verse of the observed information matrix, which is used as an estimate of the
covariance matrix. In some papers, the standard errors are estimated using the
expected information matrix, which is generally easier to compute, see Baker
(1992). However, in Baker (1992) it is also stated that using the empirical in-
formation matrix for standard error estimation is inefficient and ignores the
likelihood principle. An alternative method to approximate standard errors is
the bootstrap approach, which is used in Efron (1994).

Among all existing methods for standard error estimation when using the
EM-algorithm, Louis’ method, as presented in Louis (1982), seems to be the
most popular and can be seen as the Golden Standard in the field of standard
error estimation when using the EM-algorithm. In Louis’ method, the observed
information matrix is computed on the last iteration of the EM procedure using
only the complete-data gradient and second derivative matrix. The observed
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information matrix needs to be inverted in order to obtain estimates of the
covariance matrix. One of the main advantages of Louis’ method is that it is
generally applicable, see McLachlan and Krishnan (2008). In McLachlan and
Krishnan (2008) it is even stated that Louis’ method is the one best suited
for standard error estimation of parameters obtained by using the Monte Carlo
EM (MCEM) algorithm, which is described in Wei and Tanner (1990), although
in Kang et al. (2013) it is stated that the performance of the method for standard
error estimation in MCEM is not yet clear.

Since Louis’ method for estimating standard errors is quite technical (in Kang
et al. (2013) it is said that obtaining the gradient and second derivative matrix is
not always easy), it could be useful to apply an approach that is less technical and
more easy to compute. Such an alternative approach is only useful if it works
fast, but still provides good estimates in the end. In the current research, an
alternative approach for standard error estimation will be discussed. The main
idea of the alternative approach is to use the negative of the second derivative
matrix of the incomplete-data log likelihood as an estimate of the information
matrix, which can be inverted in order to obtain an estimate of the covariance
matrix. In this research, we will compare the performance of standard error
estimates obtained by Louis’ method with the standard error estimates obtained
by the alternative method in the context of Gaussian mixture models.

The methods will be exemplified using a data set that contains the real Gross
Domestic Products (GDP’s) per capita of 143 countries over the period 1970-
2011. The distribution of the GDP’s across countries seems to contain hetero-
geneity, see Paap and van Dijk (2009). Therefore, one can a use a finite mixture
model to divide the countries as if in different groups. In Paap and van Dijk
(2009), it is argued that the GDP across countries can be best modelled by us-
ing a mixture of two distributions. That is, as if there are two groups, one group
of countries with a lower GDP and one group of countries with a higher GDP.
In this research, we will use a Gaussian mixture model (see Hasselblad (1966))
to describe the data.

In the remaining of the paper, the characteristics of the data set will first be
discussed and it will be explained why we use a Gaussian mixture model to de-
scribe the data in Section 2. After that, we will shortly explain the EM-algorithm
and Louis’ algorithm in Section 3. In this section, it will also be explained how
the alternative method for standard error estimation works. For all three algo-
rithms, we will explain how it could be used for the data set as well. In Section 4,
the results of the different algorithms on the used data set will be discussed. In
Section 5, the results of a simulation experiment with the parameters set at the
same values as the estimated parameters by the EM-algorithm on the real data
set will be shown. In Section 6, the results of another simulation experiment will
be discussed to obtain even more insights about the differences between Louis’
method and the alternative method. At last, in Section 7, we will discuss the
main findings of this research and give suggestions for further research.
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2 Application: Modelling the distribution of wealth

In this section, the data set that is used to test the different standard error esti-
mation methods is discussed. The idea is to model the distribution and mobility
of wealth of different countries. First, it will be explained what the numbers in
the data set represent. Then, the main characteristics and earlier research on
the topic is shortly discussed.

2.1 The data set

As we want to model the distribution of wealth, an appropriate measure for
wealth is needed. The measure should be chosen in such a way that it is possible
to compare wealth of different countries. The Penn World Table version 8.0,
see Feenstra et al. (2013), provides inter alia, the real Gross Domestic Product
based on national accounts for 167 countries over the time period 1950-2011.
The real GDP is constructed by dividing the GDP of the countries in national
currencies by estimations of Purchasing Power Parities (PPP’s). This is done to
correct for differences in prices across countries. The real GDP that is constructed
this way only needs to be divided by the population size of the country in order
to obtain an estimate of real GDP per capita. When constructing real GDP per
capita like this, it becomes a measure of relative living standards across countries
at different points in time. It can thus be interpreted as a measure of wealth that
allows to compare between countries. For more information about how PPP’s
are estimated and about the data set in general, it is advised to read Feenstra
et al. (2013).

In this research, the data set provided in Feenstra et al. (2013) will be used to
calculate the real GDP per capita for countries for a sequence of years. However,
as not all observations for all 167 countries are known over the entire period,
we do not use the data for the entire time period, but only use the data for the
period 1970-2011. There are 143 countries left with information about real GDP
and population size for this period of time. For all years, the EM-algorithm is
used to find the distribution that best describes the data.

2.2 Theory

In Paap and van Dijk (2009), it is shown that the real GDP per capita, which
can be seen as an approximation of wealth, can be described by a bimodal
distribution. This means that one can use a finite mixture density in order to
obtain an estimate of the distribution. By using finite mixture models, one treats
the sample as if it is a composition of more data sets, each with their own
distribution and density function. In our case, as we assume the data can be
described by a bimodal distribution, we let there be two different groups. One of
the groups will represent the poor countries group and in the other group, there
will be the rich countries. Although in Paap and van Dijk (2009), a mixture of a
Weibull and a truncated normal distribution is used to describe the data, it is also
stated that the data can be fairly well described by a mixture of two truncated
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normal distributions. Because our main focus is on estimating standard errors,
we will use a mixture of two normal density functions, as this is more easy to
implement and can still provide useful insights in standard error estimation.

3 Methodology

In this section, the basics of the EM-algorithm will shortly be discussed in sub-
section 3.1. An example of the algorithm applied to the data set will be given
as well. In subsection 3.2, Louis’ method is explained in more detail. At last,
the alternative method for standard error estimation will be provided in sub-
section 3.3. For both standard error estimation methods, the derivations for the
algorithm applied to the used data set will be given as well. That is, it will
be explained how the methods should be implemented for a Gaussian mixture
model with two components.

3.1 The EM-algorithm

The EM-algorithm is an approach to the iterative computation of Maximum
Likelihood estimates. It can be used in a variety of incomplete-data problems,
such as missing data problems or finite mixture models. The EM-algorithm uses
the complete-data log likelihood to estimate the parameters of the incomplete-
data problem. The algorithm consists of two steps. In the first step, the condi-
tional expectation of the log likelihood of the complete-data problem is calcu-
lated, as the actual log likelihood function is not observable. Since the first step
thus requires the calculation of an expectation, it is called the expectation step
of the algorithm, which is abbreviated to ‘E-step’. The second step of the algo-
rithm is to maximize the expectation with respect to the parameters that are
to be estimated. This step is also called the maximization step of the algorithm,
and is abbreviated to ‘M-step’. The steps are repeated until convergence.

We let logL(ψ) = log g(y,ψ) be the log likelihood function of the incomplete-
data problem and logLc(ψ) = log gc(x,ψ) the log likelihood function of the
complete-data problem. In the first function, there is the variable y, which rep-
resents the observed data vector. The variable x represents the complete-data
vector and includes the variable y as well as some unknown or missing data vec-
tor z, so that in general it holds that x = (y, z). The idea of the EM-algorithm
is to estimate ψ by using logLc(ψ). Since x is not fully observed, the first step of
the algorithm requires to compute the expectation of this log likelihood function
conditioned on what data is observed, namely y. In the first iteration of the algo-
rithm, the E-step thus requires calculation of Q(ψ;ψ(0)) = Eψ(0){logLc(ψ)|y}.
In the equation, ψ(0) represents the initial value for ψ. The M-step requires the
maximization of Q(ψ;ψ(0)) with respect to ψ. That is, ψ(1) is chosen in such a
way that Q(ψ(1);ψ(0)) > Q(ψ;ψ(0)). In the second iteration, the values of the

current fit ψ(1) are used to calculate Q(ψ;ψ(1)) instead of Q(ψ;ψ(0)) and in the
M-step the values for ψ(2) are chosen such that Q(ψ;ψ(1)) is maximized with
respect to ψ. The E-step and M-step are repeated until the difference between
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subsequent (incomplete-data) likelihood values is sufficiently small (L(ψ(k+1))-
L(ψ(k))6 ε).

The theory applied to the used data set Earlier research has shown that
the data set we use may be described by a bimodal distribution. A finite mixture
model can thus be used to model the data set, where the number of components
is set at two. One of the groups may be interpreted as a group of countries with
low GDP per capita (poor countries) and the other group may be interpreted as
a group with high GDP per capita (rich countries). In a finite mixture model,
the distribution of each group is known, but it is unknown to which group
an observation belongs. In our case, we assume that the countries within the
groups can be described by normal distributions with parameters θ1=(µ1,σ1)
and θ2=(µ2,σ2). We let π1 and π2 be the ex-ante probabilities that a country
belongs to the first or the second group. For identifiability reasons however, one
should impose a constraint stating that the one is less or equal than the other,
thus that π1 ≤ π2. Furthermore, as we assume that there are only two groups,
π1 and π2 should sum up to one. This means that we only need to estimate
one of them, say π1 which will be simply referred to as π. When only using this
variable π, the constraint that needs to be imposed becomes π ≤ 1

2 .
The incomplete-data log likelihood of a finite mixture with two components

is:

logL(θ1,θ2, π) =

n∑
i=1

log{πφ(yi;θ1) + (1− π)φ(yi;θ2)} (1)

where φ(yi; θj) = (2πσ2
j )−1/2exp{− 1

2 (yi − µj)2/σ2
j }, the density function of the

normal distribution with parameters µj and σj . The corresponding complete log
likelihood is

logLc(θ1,θ2, π) =
n∑
i=1

{zi log(π) + (1− zi) log(1− π) + zi log(φ(yi;θ1)) + (1− zi) log(φ(yi;θ2))}

(2)
In the equation, zi equals 0 if observation i belongs to the first group and 1 if

it belongs to the second group. Whether an observation belongs to the one or the
other group is decided by the algorithm as well. The E-step of the algorithm is
now to determine Q(ψ,ψ(k)) = Eψ(k){logLc(ψ)|y}, with ψ = (θ1,θ2, π). In the

M-step, Q(ψ,ψ(k)) is maximized with respect to ψ such that Q(ψ(k+1),ψ(k)) ≥
Q(ψ,ψ(k)). The E-step and M-step are repeated until convergence.

Once the estimates of parameters are obtained, it is easy to determine which
parameters belong to the poor group and which belong to the rich group. One
can simply check whether µ1 is larger or smaller than µ2. When it is larger, the
parameters of the distribution of the rich group are θ1 and the probability that
a country belongs to the rich group is estimated by π. For the poor group, the
distribution has parameters θ2 and the probability that a country belongs to the
group is (1− π). When µ1 is smaller than µ2, it is the other way around.
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3.2 Louis’ method for standard error estimation

In Louis (1982), Louis’ method to extract the observed information matrix of the
incomplete-data problem is described. For his method, one needs to compute only
the gradient vector and second derivative matrix of the complete-data problem.
Furthermore, the method only needs to be executed once, after the last iteration
of the EM-algorithm. When Sc(x;ψ) and S(y;ψ) represent the gradient vector
of the complete- and, respectively incomplete-data log likelihood and Bc(x;ψ)
and B(y;ψ) are the second derivatives matrices of the complete- and incomplete-
data log likelihood, the observed information matrix can be computed as:

I(ψ;y) = Eψ{−Bc(X;ψ)|y} − Eψ{Sc(X;ψ)STc (X;ψ)|y} − S(y;ψ)ST (y;ψ)
(3)

In (3), it can be noticed that the conditional expectations of Sc(X;ψ) and
Bc(X;ψ) are used. This is necessary, since the variable x is not fully observed.
The last term in (3), S(y,ψ), represents the gradient vector of the incomplete-
data log likelihood. However, the incomplete-data log likelihood is what is max-
imized with the EM-algorithm, so the gradient vector, S(y,ψ), will be equal to
the zero vector. For that reason, the term S(y;ψ)ST (y;ψ) can be discarded and
the observed information matrix can be computed as:

I(ψ;y) = Eψ{−Bc(X;ψ)|y} − Eψ{Sc(X;ψ)STc (X;ψ)|y} (4)

I(ψ;y) can be inverted to obtain an estimate of the covariance matrix of the
incomplete-data problem. The square roots of the diagonal elements represent
the estimates of the standard errors of the parameters.

The theory applied to the used data set The complete-data log likelihood
for the application is given in (2). In order to obtain standard error estimates
using Louis’ method, one needs to compute the gradient vector Sc(x;ψ) and
negatives of the second derivative matrix −Bc(x;ψ) of this complete-data log
likelihood first. The gradient vector of (2) is:

Sc(x;ψ) =


∂ logLc

∂π
∂ logLc

∂µ1
∂ logLc

∂µ2
∂ logLc

∂σ1
∂ logLc

∂σ2

 =



∑n
i=1{

zi
π −

1−zi
1−π }∑n

i=1{(1− zi)(
xi−µ1

σ2
1

)}∑n
i=1{zi(

xi−µ2

σ2
2

)}∑n
i=1{(1− zi)(−

1
σ1

+ (xi−µ1)
2

σ3
1

)}∑n
i=1{zi(−

1
σ2

+ (xi−µ2)
2

σ3
2

)}

 (5)
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The negative of the second derivative matrix of (2) is:

−Bc(x;ψ) =

n∑
i=1

zi
π2 + 1−zi

(1−π)2 0 0 0 0

0 1−zi
σ2
1

0 2(1−zi)(xi−µ1)
σ3
1

0

0 0 zi
σ2
2

0 2zi(xi−µ2)
σ3
2

0 2(1−zi)(xi−µ1)
σ3
1

0
(1−zi)(−σ2

1+3(xi−µ1)
2)

σ4
1

0

0 0 2zi(xi−µ2)
σ3
2

0
zi(−σ2

2+3(xi−µ2)
2)

σ4
2


(6)

The covariance matrix can be estimated by taking the inverse of I(ψ;y) =

−Bc(x;ψ)+Sc(x;ψ)STc (x;ψ) evaluated at ψ̂ from the last iteration of the EM-
algorithm. The diagonal elements square roots of the covariance matrix can be
used as an estimation or the standard errors of π, µ1, µ2, σ1 and σ2 respectively.
Whether the standard error belongs to the parameter of the poor or rich group
still depends on the relative size of the parameter estimates µ1 and µ2.

3.3 An alternative method for standard error estimation

As an alternative method for standard error estimation of the parameters of
an incomplete-data problem, we will use the second derivative matrix of the
incomplete-data log likelihood. Since we want to compute standard error esti-
mates of the incomplete-data problem, it seems to make sense to focus on this
particular log likelihood function. For normal Maximum Likelihood estimation,
it is usual to use the inverse of the negative of the second derivative matrix of the
log likelihood function evaluated at the parameter estimates as an estimation for
the covariance matrix. We will investigate whether using this inverse of the nega-
tive of the second derivative of the log likelihood of the incomplete-data problem
is a good approximation for the covariance matrix, or more specifically, for the
standard errors of parameter estimates. That is, when logL(ψ) = log g(y;ψ)
represents the log likelihood function of the incomplete-data problem, we take

the second derivative (also called Hessian) ∂2 logL(ψ)

∂ψ∂ψT and the inverse of the neg-

ative expectation of the Hessian evaluated at the parameter estimates is used as

an estimate of the covariance matrix. Thus, Covψ = (−Eψ[∂
2 logL(ψ)

∂ψ∂ψT ]ψ=ψ̂)−1 is

the covariance matrix estimate obtained when using this method.

The theory applied to the used data set For the alternative method for
standard error estimation, one needs to compute the second derivative matrix
of the incomplete-data log likelihood. For a Gaussian mixture model with two
components, which is assumed to be the distribution for the used data set, the
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log likelihood function is given in (1). The second derivative matrix with respect
to π, µ1, µR, σ1 and σ2 is constructed as:

B(y;ψ) =



∂2 logL
∂π2

∂2 logL
∂π∂µ1

∂2 logL
∂π∂µ2

∂2 logL
∂π∂σ1

∂2 logL
∂π∂σ2

∂2 logL
∂µ1∂π

∂2 logL
∂µ2

1

∂2 logL
∂µ1∂µ2

∂2 logL
∂µ1∂σ1

∂2 logL
∂µ1∂σ2

∂2 logL
∂µ2∂π

∂2 logL
∂µ2∂µ1

∂2 logL
∂µ2

2

∂2 logL
∂µ2∂σ1

∂2 logL
∂µ2∂σ2

∂2 logL
∂σ1∂π

∂2 logL
∂σ1∂µ1

∂2 logL
∂σ1∂µ2

∂2 logL
∂σ2

1

∂2 logL
∂σ1∂σ2

∂2 logL
∂σ2∂π

∂2 logL
∂σ2∂µ1

∂2 logL
∂σ2∂µ2

∂2 logL
∂σ2∂σ1

∂2 logL
∂σ2

2


(7)

The actual derivatives for the Gaussian mixture model with two components
can be found in Appendix A. In order to obtain an estimate for the covariance
matrix of the parameter estimates, one first needs to estimate B(y;ψ) by using
the parameter estimates of the final iteration of the EM-algorithm. The inversion
of the negative of B(y;ψ)ψ=ψ̂ gives an estimate of the covariance matrix when
using this alternative method. The square roots of the diagonal elements can be
used as standard error estimates of the parameters.

4 Results on the used data set

In this section, the results of the EM-algorithm and the different standard error
estimation methods on the data set that contains the real GDP per capita of 143
countries over the time period 1970-2011 will be discussed. The main focus will
be on the differences between Louis’ method and the alternative method that
are both designed to obtain standard error estimates of parameters estimated
while using the EM-algorithm.

As mentioned before, once the parameters are estimated, it is easy to deter-
mine which parameters belong to the distribution of the poor group and which
belong to the rich group. When µ1 ≤ µ2, the parameters µ1 and σ1 belong to
the poor group and the ex-ante probability that a country belongs to the poor
group is π. In this case, the parameters µ2 and σ2 belong to the distribution of
the rich group and the ex-ante probability that a country belongs to the rich
group is (1 − π). When µ2 ≤ µ1, it is exactly the other way around. In this
section, the parameters that belong to the distribution of the poor countries will
be referred to as µP and σP and parameters of the rich group will be µR and
σR. The variable π represents the ex-ante probability that a country belongs to
the poor group, independent of whether µP ≤ µR or µR ≤ µP .

In Fig. 1, the results of the parameter and standard error estimates are
plotted against time. The EM-algorithm is applied to all years that are in the
data set and it can be seen that the parameter estimates (represented by the blue
lines) are clearly changing over time. There is no clear pattern in the distribution
of countries to either the poor or the rich group. It can be seen that the parameter
π varies between 0.54 and 0.66. In the figures for µP and µR one can see that
the real GDP per capita is growing over time for both groups, although a decline
can be seen for the years 1981-1986, which is probably caused by the economic
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Fig. 1. Plots of the parameter and standard error estimates when using the EM-
algorithm and the two methods for standard error estimation on the data set containing
real Gross Domestic Product per capita of several countries for the sequential years
from 1970 until 2011.

crisis of the eighties. The variance estimates, σP and σR, of the groups are quite
different from each other. Where the variance of the poor group seems to be
growing over time, the variance of the rich groups falls in the period 1970-1990,
but has started growing after 1990 until 2011.

When looking at the standard error estimates of the parameters, it can be
seen that the estimates obtained by the alternative method (represented by the
red lines) are generally higher than the estimates obtained by Louis’ method
(represented by the green lines). The differences are most clear for the parame-
ters µP and σP . The standard error estimates by the different methods for the
parameter σR seem to be most similar to each other. When comparing the re-
sults of the different standard error estimation methods on the parameters π and
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µR, it can be noticed that in the earlier years, the estimates obtained by Louis’
method are higher, but after 1975, it becomes the other way around. What is
perhaps even more interesting is that the standard error estimates obtained with
Louis’ method are zero for a couple of years for the parameters π, µR and σP . In
fact, the obtained variances were negative, but that shouldn’t be possible. When
using the alternative method for standard error estimation, the standard error
estimates are always positive.

What is clear from the results on the real GDP per capita data set, is that
the standard error estimates by both methods are very different from each other.
Since the actual parameter values and the actual standard errors are not known,
it is hard to tell which standard error estimation method performs better. One
way to be able to obtain more information about this, is to make bootstrap
samples (see Tan et al. (2005)) and estimate the means and variances of the
parameter estimates. The square roots of the variances can be used as another
estimate of the standard errors. Furthermore, by applying the standard error
estimation methods on the bootstrap samples, one can obtain variances on the
standard errors. However, as the data set we use is not very large, the sizes of
the bootstrap samples are too small to get good estimates when using the EM-
algorithm. Therefore, instead of using bootstrap sampling with the real data set,
a simulation will be performed, where data will be simulated using the parameter
estimates by the EM-algorithm on the real data set. Apart from the advantage
that the true parameters are known in this case, we also know for sure that the
data can described by a mixture of two normal distributions. This is important,
as the negative values of the variances obtained by Louis’ method may be caused
by the fact that the chosen distribution does not describe the data well enough.
Therefore, the parameter estimates obtained by the EM-algorithm might be
wrong and this might cause Louis’ method to perform poorly.

5 Simulation with real parameter values

In this section, the set-up of the simulation experiment will be discussed in
subsection 5.1, after which the outcomes of the experiment will be discussed in
subsection 5.2.

5.1 Set-up

As mentioned before, for the simulation experiment, the outcomes of the param-
eters obtained by using the EM-algorithm on the real GDP data set are used.
That is, for each year, we use the parameters estimates of π, µP , µR, σP and σR
as the true parameters of the simulation. With the given parameters, 300 data
sets are simulated, each containing 500 data points. The data sets are thus larger
than the real data set was. By using larger data sets, we are more certain that
the EM-algorithm performs well. The simulation of 300 data sets with size 500 is
repeated with every years’ parameter estimates. For every year and every data
set that is constructed using the parameters for that year, the EM-algorithm is
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applied to estimate the parameters and Louis’ and the alternative method are
used to get standard error estimates. As a final estimate of parameter estimates,
we use the mean of the parameter estimates of all data sets for a given year.
For Louis’ and the alternative method, we work with the mean of the standard
error estimates. Since there are 300 data sets, it is also possible to compute the
empirical variance of the parameter- and standard error estimates. The square
roots of the empirical variances of the parameter estimates can be used as an-
other estimate of standard errors. These standard errors will be referred to as
simulated standard errors or simply simulated errors. Although these simulated
errors are only asymptotically correct, we will treat them as the true standard
errors in the remaining of this section. The standard errors obtained by Louis’
method and the alternative method will be compared with the simulated errors.
The empirical variances of the standard error estimates will be interpreted as
the variances of standard error estimates.

With the information obtained by the simulation, one can check several
things. For example, one can check whether the EM-algorithm performs well
in all cases. That is, it can be checked whether the parameter estimates are
significantly different from the true parameters, but that is not of major impor-
tance in this research. What is more interesting in this context, is whether the
standard error estimates by both methods are similar to the estimates that were
obtained using the real data set. If that is not the case, there might be something
wrong with the assumption that the data can be described by a mixture of two
normal distributions. Another useful insight the simulation can give, is whether
the alternative methods performs better than Louis’ method or not. To check
this, one can compare the standard errors of Louis’ and the alternative method
with the simulated standard errors. Furthermore, it can also be checked whether
the standard errors obtained by Louis’ and the alternative method are signifi-
cantly different from each other. It is also possible to check whether the standard
error estimates obtained by Louis’ and the alternative method are significantly
different from the simulated standard errors.

5.2 Results

The results of the simulation are summarized in Fig. 2. Clearly, the parameter
estimates look very similar to the ones in Fig. 1, which makes sense, since we
used these parameters for simulating the data sets. It indicates that the EM-
algorithm is performing well. However, the standard error estimates look very
different, especially the ones obtained with Louis’ method. These standard errors
are always positive now, so that we have an indication that the mixture of two
normal distributions did not describe the real data set so well, which caused
Louis’ method to perform badly. In Fig. 2, one can also find the simulated
standard errors. In all but for the standard error estimates of π, the estimates
obtained by the alternative method are more similar to the simulated errors
than the estimates obtained by Louis’ method. It can be seen that the line
representing the simulated errors fluctuates over the line that represents the
standard errors by the alternative method for the parameters µP and µR. Louis’
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Fig. 2. Plots of the parameter and standard error estimates when using the EM-
algorithm and the two methods for standard error estimation on the simulated data
sets with parameters for each year (1970-2011) equal to the parameters obtained by
the EM-algorithm on the real GDP data set.

standard errors are somewhat lower. For the parameters σP and σR, one can see
that the simulated errors are generally slightly higher than the standard errors
estimated by the alternative method, while the estimates by Louis’ method are
even lower. For the parameter π, the results are different. In this case, it seems
that Louis’ estimates are closer to the simulated errors. These standard errors
are also more fluctuating over time, while the standard error estimates obtained
by the alternative method are more constant.

With the variances of standard errors, one can easily compute the 95% confi-
dence intervals of the standard error estimates. When these confidence intervals
are computed, one needs to conclude that the simulated errors are outside the
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confidence interval for all parameters and almost for all years. For some years
the simulated errors are within the confidence interval of the standard errors by
the alternative method for the parameters µP , µR, σP and σR, but that situation
is rather exceptional. Since the standard errors estimated with the alternative
method are generally closer to the simulated errors than the standard errors
obtained by Louis’ method for the parameters µP , µR, σP and σR, we can say
that the alternative method performs better than Louis’ method in estimating
standard errors of the parameters of the underlying distributions. The results
are different for the standard errors of the parameter π, as in this case, the esti-
mates obtained by Louis’ method are more similar to the simulated errors. This
observation indicates that there is a trade-off between Louis’ method and the
alternative method. The first performs relatively well in estimating the standard
errors of π, while the second performs better in estimating the standard errors
of the parameters of the underlying distributions.

Although the estimated standard errors obtained by Louis’ method and,
respectively, the alternative method seem very different, it remains to be tested
if they significantly differ from each other. For this matter, we will use the
central limit theorem. Since the variances of the standard errors are already
estimated and the data sets we have are large, we can perform a t-test on the

hypothesis that ŜEL,i,p − ŜEA,i,p = 0, where SEL,i,p is the mean standard
error of Louis method in year i and for parameter p. SEA,i,p represents the
mean standard error of the alternative method in year i for parameter p. A
t-test rejects the hypothesis for all parameters and all years at a significance
level of 0.001, indicating that Louis’ method and the alternative method provide
significantly different estimates of the standard errors.

6 Another simulation experiment

The simulation as performed in Section 5 provides useful insights in the perfor-
mance of Louis’ method and the alternative method in the context of Gaussian
mixture models. However, the range of parameter values that are used as input
for the simulation of data sets is limited. When doing a simulation experiment,
one wants to know if the results are stable across different situations. For that
reason, another simulation experiment is performed. 500 data points are drawn
from two different normal distributions. The proportion of data points per distri-
bution and the parameters of the distributions are to be varied. The data points
are combined into one data set, which now has a Gaussian mixture distribution
with known parameters. On the data set, the EM-algorithm can be applied, af-
ter which the two methods to obtain standard error estimates can be used. The
simulation of a data set and the appliance of the EM-algorithm and standard
error algorithms is repeated 200 times with the same parameter settings.

The results of the simulations can be found in Table 1. In Table 1, it can be
seen that when the distinction between the distributions is very clear, the results
of Louis’ method and the alternative method are quite similar. Furthermore, the
standard error estimations by both methods are close to the values of the simu-
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Table 1. The results of the simulations with different parameter settings with 500
data points per data set and 200 sets, with in parenthesis the simulated errors of the
parameter and standard error estimates by the different methods. An asterisk is used
to indicate whether the simulated error is within the 95% confidence interval of the
standard error estimate.

True values EM-
estimates

Louis
method

Alternative
method

1 π 0.5 0.516(0.160) 0.016(0.006) 0.134(0.048)

µ1 0.0 -0.011(0.334) 0.065(0.015) 0.284(0.083)

µ2 2.0 2.080(0.342) 0.057(0.007) 0.288(0.098)

σ1 1.0 0.975(0.147) 0.059(0.019) 0.129(0.026)

σ2 1.0 0.939(0.160) 0.050(0.008) 0.132(0.033)

2 π 0.25 0.252(0.035) 0.003(0.002) 0.039(0.010)

µ1 0.0 0.010(0.220) 0.107(0.019) 0.213(0.053)*

µ2 2.0 1.998(0.038) 0.025(0.001) 0.035(0.003)

σ1 1.0 0.987(0.125) 0.100(0.020) 0.126(0.025)*

σ2 0.5 0.496(0.030) 0.018(0.001) 0.027(0.004)

3 π 0.5 0.501(0.001) 0.022(0.000) 0.022(0.000)

µ1 0.0 0.003(0.060) 0.063(0.003) 0.064(0.003)

µ2 6.0 6.006(0.064) 0.063(0.003) 0.063(0.003)

σ1 1.0 1.000(0.051) 0.046(0.003) 0.047(0.003)

σ2 1.0 0.987(0.042) 0.045(0.002) 0.046(0.003)

4 π 0.5 0.497(0.018) 0.013(0.008) 0.029(0.003)

µ1 0.0 -0.003(0.084) 0.061(0.003) 0.078(0.006)

µ2 6.0 5.988(0.242) 0.146(0.023) 0.231(0.033)

σ1 1.0 0.992(0.059) 0.044(0.003) 0.060(0.006)

σ2 2.5 2.506(0.171) 0.101(0.040) 0.173(0.020)*

5 π 0.75 0.747(0.027) 0.017(0.001) 0.032(0.004)

µ1 0.0 -0.023(0.245) 0.133(0.008) 0.239(0.027)

µ2 6.0 5.996(0.133) 0.081(0.008) 0.132(0.022)*

σ1 3.0 2.971(0.173) 0.092(0.012) 0.167(0.018)

σ2 1.0 0.989(0.120) 0.061(0.006) 0.112(0.021)
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lated standard errors. This observation implies that when the EM-algorithm is
used on a data set where observations clearly come from different distributions,
it does not really matter a lot which method you use for standard error estima-
tion. When it is less clear to which underlying distribution a data point belongs
and it is thus harder to cluster the data to their underlying distribution, the
performances of the methods are very different with respect to each other. In
most cases, it holds that the standard errors obtained by the alternative method
are higher than the standard errors obtained by Louis’ method, as was the case
in Section 5.

When one would focus solely on the observation that the standard errors by
the alternative method have higher values than those by Louis’ method, it is
hard to tell which of the methods performs better, as in which method gives
standard errors that are similar or at least closer to the true standard errors of
parameter estimates. Thus, when determining which standard error estimates
are more convenient, one needs to have the true estimates. Although the sim-
ulated standard errors are only asymptotically correct, I will consider these to
be the true standard error estimates, as was done in Section 5 as well. In Ta-
ble 1, it can be seen that the simulated errors are within the 95% confidence
interval of the standard errors estimated with the alternative method in some
exceptional cases. Furthermore, it can be seen that when the distinction between
the distributions is less clear, the standard errors of the parameters generated
by the alternative method are generally closer to the simulated standard er-
rors. However, the errors obtained by this method are in most cases still lower
than the simulated errors, suggesting that both methods underestimate the true
parameter values when it is harder to determine to which group a data point
belongs. This result is remarkable, since in Kang et al. (2013) it is stated that
Louis method overestimates standard errors. It seems that the distribution, thus
the application of the EM-algorithm, makes a difference when evaluating the
performance of Louis’ method. It remains to be investigated whether this is also
the case with the alternative method.

7 Conclusion

In this research, we investigated the performance of two methods that are to ob-
tain standard error estimates when using the EM-algorithm. One of the methods
is Louis’ method, which is currently the most popular method in the field. For
this method, only the gradient and second derivative matrix of the complete-data
log likelihood are needed. As an alternative method, we used the negative of the
second derivative matrix of the incomplete-data problem as an approximation
of the information matrix. To test the performance of the two methods, a data
set containing real GDP per capita was used. Earlier research has shown that
the data set can be described by a bimodal distribution and in this research, a
mixture of two normal distributions was used.

The results on the real GDP data set show that the standard error estimates
obtained by the alternative method are generally higher than the estimates ob-
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tained by Louis’ method. The estimates obtained by Louis’ method are some-
times invalid, as the variance estimates are below zero in some cases. With a
long existing and commonly used method such as Louis’ method, this shouldn’t
be possible. An explanation could be that the data cannot be described well
enough by a mixture of two normal distributions. That is one of the reasons why
a simulation with the parameters that were estimated by the EM-algorithm on
the real data set was performed. Findings of the simulation are that the stan-
dard errors obtained by both method are significantly different from each other
and from the simulated errors, but the estimates by the alternative method are
closer to the simulated standard error estimates for all parameters but for π.

To obtain even more insights in the performance of Louis’ method and the
alternative method in the context of Gaussian mixture models, a second sim-
ulation experiment was performed. The experiment shows us that when it is
relatively easy to determine to which group a data point belongs, the results
of both methods are quite similar and are close to the simulated errors as well.
When it is harder to determine to which group an observation belongs, the stan-
dard errors by Louis’ method are generally below those obtained the alternative
method. However, both methods tend to underestimate the standard errors of
parameters when the clustering of data points is more difficult.

A limitation of this research is that the performance of the two methods is
only tested on Gaussian mixture models with two components. It remains to be
investigated whether the alternative method performs better than Louis’ method
when other distributions are used as well. Furthermore, it might in some cases not
be easy to obtain derivatives of the incomplete-data log likelihood. However, it is
not always easy to obtain the derivatives of the complete-data problem as well.
Further research needs to be done to investigate whether obtaining derivatives
of the incomplete-data problem is harder than getting the derivatives of the
complete-data problem.
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A The second derivatives of the incomplete data problem

The second derivative matrix of the incomplete data problem is symmetric and
has the following form:

B(y;ψ) =


B(1, 1) B(1, 2) B(1, 3) B(1, 4) B(1, 5)
B(1, 2) B(2, 2) B(2, 3) B(2, 4) B(2, 5)
B(1, 3) B(2, 3) B(3, 3) B(3, 4) B(3, 5)
B(1, 4) B(2, 4) B(1, 3) B(4, 4) B(4, 5)
B(1, 5) B(2, 5) B(3, 5) B(4, 5) B(5, 5)

 (8)

All the elements in B(y;ψ) are of the form
∑n
i=1

g′h−gh′

h2 , where h is always
the same, namely h = πφ1+(1−π)φ2. Herein, φ1 represents the density function
of the normal distribution with parameters θ1 and φ2 represents the density
function of the normal distribution with parameters θ2. The derivatives for g, g’
and h’ are different for the different elements of B(y;ψ) and are now specified,
starting with the diagonal elements.

B(1, 1) :
g = (φ1 − φ2)
g′ = 0
h′ = (φ1 − φ2)

B(2, 2) :
g = πφ1(yi−µ1

σ2
1

)

g′ = π
σ2
1
φ1(−1 + (yi−µ1

σ1
)2)

h′ = g

B(3, 3) :
g = (1− π)φ2(yi−µ2

σ2
2

)

g′ = 1−π
σ2
2
φ2(−1 + (yi−µ2

σ2
)2)

h′ = g

B(4, 4) :
g = π

σ1
φ1(−1 + (yi−µ1

σ1
)2)

g′ = π
σ2
1
(2− 5(yi−µ1

σ1
)2 + (yi−µ1

σ1
)4)

h′ = g

B(5, 5) :
g = 1−π

σ2
φ2(−1 + (yi−µ2

σ2
)2)

g′ = 1−π
σ2
2

(2− 5(yi−µ2

σ2
)2 + (yi−µ2

σ2
)4)

h′ = g

B(1, 2) :
g = (φ1 − φ2)
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1

)
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σ2
1

)
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σ2
2

)
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2

)
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g′ = ( 1

σ1
φ1(−1 + (yi−µ1

σ1
)2))

h′ = π
σ1
φ1(−1 + (yi−µ1
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)2)
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σ2
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σ2
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σ2
)2)
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B(2, 3) :
g = πφ1(yi−µ1

σ2
1

)

g′ = 0
h′ = (1− π)φ2(yi−µ2
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)
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