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Abstract

Consistent vehicle routing problems (ConVRP) are VRP’s with multiple days, where customers always need to be
visited at roughly the same time of the day. To solve these problems, Groër et al. (2009) developed an algorithm called
ConRTR. In this study, I will show that some of the solutions as provided by Groër et al. (2009) are infeasible and how
ConRTR can be used to get feasible solutions. It is studied how all parameters of ConRTR influence the solution and
computation time. will show what the influence is of all used parameters in ConRTR on the solution and computation
time. I will also provide an algorithm that makes solutions more consistent. With a relative small increase in total travel
time, the ConRTR solutions can become much more consistent.

1. Introduction

Vehicle routing problems (VRP’s) are problems in which
the total costs, total distance or total travel time is min-
imized, while certain constraints need to be met. These
constraints can, among other things, relate to the vehicle
capacity and time. VRP’s can be used in the package de-
livery industry, where multiple customers receive at least
one package on one or more days. The delivery com-
pany plans routes for all days, deciding which vehicles
will visit which customers in which order.

VRP’s are a subject of multiple studies. Groër et
al. (2009) studied a Consistent Vehicle Routing Prob-
lem (ConVRP). This is a VRP in which the total travel
time is minimized, while meeting the capacity and maxi-
mum travel time constraints. Furthermore, additional con-
straints are added to make sure that if customers are vis-
ited on more than one day, they are always visited by the
same driver and at roughly the same time of the day. In
this ConVRP, there are no time window constraints stat-
ing certain customers should be visited within a certain
time window. Besides, there is no constraint on the max-
imum number of vehicles. When a customer is visited on
multiple days, the difference between the latest and ear-
liest arrival time at his address is called the arrival time
differential.

The ConVRP can be modeled as a Mixed Integer Pro-

gram (MIP). In practice, this MIP can only be used to
solve small instances of the ConVRP. For larger prob-
lems, the computation time will be too large to solve the
problem in time. To handle large problems, Groër et al.
(2009) developed an algorithm that uses the record-to-
record (RTR) travel algorithm of Li et al. (2005) and
the modified Clarke and Wright algorithm with parame-
ter λ of Yellow (1970). It is called ConVRP RTR travel
(ConRTR). ConRTR does not contain a hard constraint
on the arrival time differential. It assumes that the algo-
rithm itself provides consistent solutions. ConRTR is built
around the precedence principle; if customer a receives a
package before customer b on a certain day, the algorithm
makes sure that customer b will not receive a package be-
fore customer a on another day.

The ConRTR algorithm splits all customers into two
groups. Customers that are visited on more than one day
are placed in group G1, all other customers are placed
in group G2. Then, template routes for the customers in
group G1 are generated. For every day, this template is ad-
justed for those customers in group G2 who are only vis-
ited on that specific day and for those customers in group
G1 who are not visited on that specific day. When only
a few adjustments are needed every day, the arrival times
will be similar on all days and the algorithm will perform
better.

Because ConRTR minimizes the total travel time and
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does not contain a hard constraint on the arrival time dif-
ferentials, vehicles will never wait between visiting two
customers. If this would be allowed, solutions with a
lower arrival time differential may be possible. However,
this will lead to a larger total travel time.

Groër et al. (2009) tested their algorithm on multiple
problems. For small problems, the solutions of the Con-
RTR algorithm are compared with optimal solutions of
the Mixed Integer Problem. To make a fair comparison,
they distinguished solutions with a maximum time differ-
ential of five and solutions without a maximum time dif-
ferential. For larger problems, including modified bench-
mark problems, the solutions are compared with solutions
of the RTR algorithm. The RTR algorithm generates so-
lutions within 1% to 2% of the best known solutions, as
stated in Li et al. (2005). Finally, the algorithm is ap-
plied to real world data. With this real world dataset, it is
also concluded that it is possible to make well performing
template routes using only historical data.

In this paper, I will try to verify the results of the Con-
RTR as stated in Groër et al. (2009). Furthermore, I will
show how the solutions and computation times depend
on the used parameters. Finally, I will try to decrease
the maximum arrival time differential by allowing wait-
ing times and I will study how much this increases the
total travel time.

2. The ConVRP
The ConVRP is a VRP for D days and N customers. To
solve the ConVRP, the following parameters are intro-
duced.

• Q, the capacity of the vehicles.
• T, the maximum travel time per vehicle per day.
• L, the maximum arrival time differential.
• The demand of all N customers on all D days.
• The service time for all N customers on all D days.
• Travel times between all combinations of locations

(the depot and the N customers).

A solution of the ConVRP is a set of routes. A route
contains information about the trip of one vehicle on one
day. It specifies which customers are visited by a vehicle
on a specific day and on what time the vehicle arrives and
departs at the depot and all visited customers.

A solution is feasible when all of the following con-
straints are met.

• Every day, all customers receive the demanded
amount of packages.
• A customer is only visited once per day.
• A vehicle cannot transfer more packages than its ca-

pacity Q per day.
• The total travel time of a vehicle on one day cannot

exceed the maximum travel time T.
• If a customer is visited on more than one day, it is

always visited by the same vehicle.
• Every route starts and ends at the depot.
• For every customer, the arrival time differential must

be less than L.

The optimal solution is the feasible solution with the
smallest total travel time, including service and waiting
times.

3. The ConRTR algorithm
In this section, I will explain the ConRTR algorithm and
show which parameters can be changed to obtain better
solutions or to decrease the computation time.

The first step of ConRTR is to divide the N customers
into two groups. Group G1 contains the customers that
need to be visited on more than one day, all other cus-
tomers are in group G2. With the customers in group G1,
template routes are generated. For every day, these tem-
plate routes need to be adjusted. There could be customers
in group G1 that don’t need to be visited on a specific day.
These customers will be deleted from the template routes
in a later phase. There could also be customers in group
G2, who are not in the template routes, that need to be vis-
ited on a specific day. These customers will be added to
the template routes in a later phase. Due to this additions
and deletions, the actual routes can become infeasible or
far from optimal. When more customers need to be added
than deleted, the template routes need to have a buffer to
deliver packages to those extra customers. On the other
hand, when more customers are going to be deleted than
added, it is allowed to overload the template routes a lit-
tle bit. To account for this later adjustments, the template
routes are generated with an adjusted capacity and maxi-
mum total travel time constraint.
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Qtemplate = Q ×
(

number of customers in G1

average number of stops per day

)
The amount of packages to deliver depends linearly on
the number of customers. If more customers are added
than deleted, the average number of stops per day will be
larger than the number of customers in G1. Qtemplate

will therefore be lower than Q, which results in template
routes that have a buffer for extra customers.

Ttemplate = T ×

√
number of customers in G1

average number of stops per day

The total travel time will not increase or decrease lin-
early when a customer is added or deleted. For exam-
ple, if two neighbors need to be visited on a day, the total
travel time will be almost equal to the total travel time
of the route where only one of those neighbors needs to
be visited. For this reason, the square root of the frac-
tion number of customers inG1

average number of stops per day is used in the formula above.
Groër et al. (2009) use a slightly different formula, where
T is divided by the square root of this fraction. When
more customers need to be deleted than added, their for-
mula decreases Ttemplate and thereby create a buffer. I
don’t quite follow this reasoning, so I will use the formula
as stated above.

Furthermore, for all customers in the template, the
number of packages to receive and the service times are
set to the mean amount for every of those customers while
template routes are generated.

Initial template routes are created with the modified
Clarke and Wright algorithm and a parameter λ as stated
in Yellow (1970). The modified Clarke and Wright algo-
rithm, also known as the savings algorithm, merges two
routes when this combination yields the largest savings
and all constraints are still met. When a route ending
with customer a and a route starting with customer b are
merged, the savings Sab are defined as

Sab = da0 + d0b − λ · dab

where
dab = distance from customer a to customer b
da0 = distance from customer a to the depot
λ = route shape parameter.

Savings are larger when customers are further away
from the depot or when the distance between the two cus-
tomers is small. A smaller value for λ will increase the
influence of the distance between the customers and the
depot on the savings. It will make it more likely to con-
nect two customers that are far from the depot, even if the
distance between those two customers is not very small.
A larger value for λ will have the opposite effect. It will
make it more likely to connect two customers that are
close together, even if both are close to the depot. This
is illustrated in the example below.

Set da0 = 10, db0 = 10, dab = 5, dc0 = 6, dd0 = 6 and
dcd = 2. With λ = 1, Sab = 15 and Scd = 10. Customer
a and b are connected because they are far away from the
depot, even though the distance between customer c and
d is smaller than the distance between customer a and b.
With λ = 3, Sab = 5 and Scd = 6. Customer c and d are
connected because they are close together, even though
customer a and b are further away from the depot than
customer c and d. In this example, customer a and b will
be connected if λ < 2 2

3 and customer c and d will be con-
nected if λ > 2 2

3 . If λ = 2 2
3 , the savings are equal.

The template routes contain all customers in group G1
and will be used to make the actual routes for all days.
This means that for every day, the template routes are be-
ing adjusted. The customers that are in group G1 but don’t
have to be visited on that day, are deleted from the routes.
For example, I take a template route a-b-c. If customer b
does not need to be visited on a day, the adjusted template
route becomes a-c. If no customers are added later, all
customers that are visited after customer a will have an
earlier arrival time than in the template routes.

The customers that are in group G2 and only need to
be visited on that day, are added to the routes. When cus-
tomer d is added in the previous example, there are three
possible routes: d-a-c, a-d-c and a-c-d. It is not possi-
ble that customer c will be visited before customer a in
the adjusted template route, so the precedence principle
holds.

Groër et al. (2009) don’t state exactly how the cus-
tomers from group G2 are added. In the algorithm that I
used, the savings are calculated for every customer that
needs to be added and for every position in the routes.
These savings are the time differences between the total
travel time of the adjusted route with the extra customer,
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and the sum of the total travel time of a route containing
only the extra customer and the total travel time of the
template route. For example, when customers d and e are
added to template route a-b-c, the savings for customer d
on position one is the travel time of a-b-c plus the travel
time of d minus the travel time of d-a-b-c. The savings
for customer e on position three is the travel time if a-b-c
plus the travel time of e minus the travel time of a-b-e-c.

It is also checked if an adjusted route is still feasible.
If the combination of an extra customer and a position in
the routes gives the largest savings and it will not lead to
infeasible routes, this adjustment is made. After that, sav-
ings are calculated again for the customers that still need
to be added and this process is repeated until all customers
are added.

If it is not possible to add a customer and preserve
feasible routes, new initial template routes are gener-
ated. These are generated with a lower Qtemplate and/or
Ttemplate . These values decrease with mean violat ion

2 un-
til a feasible solution is generated. The template routes,
actual routes for all days and the total travel time of the
actual routes are saved.

When a feasible solution is obtained, a diversification
phase is started. To change the template routes, three op-
erations of Li et al. (2005) can be performed: one-point
move, two-point move and two-opt move. A one-point
move is the move of one customer to another place in the
same route or in another route. With a two-point move,
two customers switch position in the routes. With a two-
opt move, two direct connections between two customers
are removed. If these two connections belong to the same
route, there are two ways to reconnect the customers. One
is to connect them as they were, the other will result in a
different route. When performing a two-opt move within
a route, the reconnection that results in the same route
will not be made. When the two connections belong to
different routes, there are three ways to reconnect the cus-
tomers. Two of those three reconnections will actually
change the routes. From those two reconnections, the one
that results in routes with the lowest travel time is used
when performing a two-opt move between routes. Figure
1 contains examples of two-opt moves.

In the diversification phase, moves on the template
routes are allowed when all constraints are satisfied and
the total travel time does not increase more than a certain
deviation. This deviation is set to the total travel time of

Figure 1 Examples of two-opt moves
(a) Two-opt move within a route

(b) Two-opt moves between two routes

the initial template routes multiplied by (1 + α). ConRTR
from Groër et al. (2009) applies I operations in this phase,
but it is not clear which moves are performed in which or-
der. The algorithm that I use will apply random moves
until I moves are accepted. To select a random move,
first the type of move (one-point, two-point or two-opt)
is chosen randomly with equal probabilities. Afther that,
the specifications (customers, positions and edges) of the
move are chosen randomly with equal probabilities. Be-
cause of this random element in the algorithm, the results
can differ when the algorithm is used multiple times on
the same problem.

After the I random operations, the algorithm will try
to improve the template routes during an improvement
phase. This is done by applying one-point moves, two-
point moves and two-opt moves that result in feasible
routes with a lower total travel time, until there are no
more improving moves possible. In the algorithm that I
use, all improving one-point moves are performed first,
followed by all improving two-point moves and all im-
proving two-opt moves. If there was at least one improv-
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ing two-point or two-opt move, all moves are tried again.
The pseudo code for this phase is stated in Figure 2.

Figure 2 Pseudo code of the improvement phase

When the template routes cannot be improved any
more, they will be used to make the actual routes for all
days. Customers will be deleted from and added to the
template routes as explained before. If this results in in-
feasible routes, Qtemplate and/or Ttemplate are decreased
with mean violat ion

2 and the improvement phase will start
over. If there are no feasible routes after at most K de-
creases, the improvement phase is stopped and the last
known feasible template is used for the next step of the
algorithm. If the actual routes are feasible, Qtemplate

and Ttemplate are being increased with mean slack
2 and

the next phase is started.
After the improvement phase, the total travel time of

the actual routes is calculated. When this is lower than
any previous total travel time, the template routes, actual
routes and total travel time are saved. The diversification

phase and improvement phase are repeated with the ad-
justed Qtemplate and Ttemplate until this results in J con-
secutive actual routes with a total travel time that is not
lower than any previous total travel time.

ConRTR repeats all the previous steps with different
values for λ. After that, the feasible solution with the
lowest total travel time is returned as the ConRTR solu-
tion.

The ConRTR algorithm uses five parameters that can be
changed. A change can result in solutions with a smaller
or larger total travel time and a larger of smaller computa-
tion time. I will state which parameters Groër et al. (2009)
used and what the potential effects of a parameter change
are.

• λ is 0.6, 1.0 or 1.4. When running ConRTR with a
larger vector of lambda’s, it may be possible to ob-
tain solutions with a lower total travel time. The
computation time will increase in that case, as all
steps of ConRTR are repeated a larger number of
times.
• I is set to 30. A larger value can result in more diver-

sification, but it is not clear if that leads to solutions
with a lower total travel time.
• α is set to 0.01. A larger value can result in more

diversification, but it is not clear if that leads to solu-
tions with a lower total travel time.
• K is set to 5. A larger value results in a larger com-

putation time, because the template routes are ad-
justed more often when they result in infeasible ac-
tual routes. However, it may generate solutions with
a lower total travel time. For a lower value, the op-
posite holds.
• J is set to 5. A larger value results in a larger com-

putation time, because the improvement phase is re-
peated more often. However, it may generate solu-
tions with a lower total travel time. For a lower value,
the opposite holds.

4. Reducing the maximum arrival
time differential

ConRTR makes use of the precedence principle to obtain
consistent solutions, but it does not minimize the arrival
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time differential. Because the total travel time is min-
imized, vehicles will never wait during their routes. If
waiting is allowed, solutions with a lower arrival time dif-
ferential may be possible. The total travel time will of
course increase, but it could be that a relative small in-
crease in total travel time leads to a relative large decrease
of the maximum arrival time differential. This could be
useful when drivers are paid per day instead of per hour.
It makes waiting time relatively cheap, while a smaller
maximum arrival time differential would lead to a larger
customer satisfaction level.

I will describe an algorithm that reduces the maximum
arrival time differential of a ConVRP solution. It can be
applied after the ConRTR algorithm is performed.

For all customers in group G1, the difference between
the earliest and latest arrival time is calculated. The cus-
tomer with the largest arrival time differential is taken
and the record differential is set to this differential. If
the maximum arrival time differential is found at mul-
tiple customers, the customer who is visited first in the
template routes is taken. Equal arrival time differentials
occur when customers are visited directly after each other
on all days that they are visited. For this customer, it is de-
termined on which days it is visited and what the arrival
times on those days are. The day with the earliest arrival
time is taken.

It is tried to let the vehicle wait before it visits the cus-
tomer on this day. The waiting time is set to the differ-
ence between the maximum arrival time differential and
the second to largest arrival time differential + 0.1. If the
maximum arrival time differential is not unique, the sec-
ond to largest arrival time differential is the largest arrival
time differential that is not equal to the maximum arrival
time differential. If the maximum arrival time differential
is smaller than 0.2, the waiting time is set to the maximum
arrival time differential. Setting the waiting time like this
will decrease the maximum arrival time differential with
the smallest possible increase in total travel time.

It is then determined what the longest possible waiting
time is. This is the maximum travel time of a vehicle
minus the travel time of the complete route for the vehicle.
If the longest possible waiting time is smaller than the
waiting time, the waiting time is set to the longest possible
waiting time.

The arrival time of this customer and all customers that
are visited after it are increased by the waiting time. All

steps are repeated with the new time scheme until the
maximum arrival time differential is zero or if it is not
possible to let a vehicle wait before visiting the customer
with the maximum arrival time difference on the day with
the earliest arrival time.

5. Computational results

The results of this study are stated in this section. First, I
try to verify the results stated in Groër et al. (2009). After
that, I study the effect of parameter changes. The results
of the these changes are stated in section 5.3 and further.
In section 5.7, the results with a reduced maximum arrival
time differential are stated.

Because there is a random element in ConRTR, I will
run ConRTR five times for every instance. There are also
five seeds for the random number generator that will be
used in the experiments. This is necessary to get different
results in the five runs, while it is still possible to compare
the results of experiments with different parameters. The
reported computation time is the mean of the five runs.
The minimum, maximum and mean total travel time of
the five runs are also reported, as well as the maximum
arrival time differential belonging to the solution with the
minimum total travel time.

ConRTR is performed in Matlab, while using a 2.4 GHz
Intel i7 processor and 8 GB of RAM.

5.1. Problem instances

When deciding which problem instances will be used, the
following characteristics are important: the number of
customers, the locations of the customers and the location
of the depot.

The location of the customers and the depot can influ-
ence the performance of ConRTR. It can be interesting to
know how ConRTR performs with clustered and unclus-
tered customers. The location of the depot can vary from
the middle of the area with customers to an edge of that
area.

A larger number of customer will be more representa-
tive for real world problems, but it will also result in larger
computation times. Preliminary experiments showed that
the computation time is a few seconds for VRP’s with 10
customers and at most five days. The computation time
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increases to around a minute when the number of cus-
tomers in the VRP increases to 25 customers. An increase
to 50 or 100 customers results in computation times of
several minutes and around 20 minutes respectively.

To study the effects of parameter changes, I use four
different problems. They all contain five days and 25 cus-
tomers, as larger problems result in computation times
that I consider too long to do all the experiments. Problem
1 and problem 3 have clustered customers, while problem
2 and problem 4 have unclustered customers. The loca-
tions of the unclustered customers are randomly and uni-
formly generated in a square area. The locations of the
clustered customers are randomly and uniformly gener-
ated in three smaller square areas. These three areas are
randomly and uniformly placed in the total square area.
Problem 1 and problem 2 have a depot in the middle of
the area, while problem 3 and problem 4 have a depot on
a vertex of the area. The constraints, demands and ser-
vice times are the same for all problems. The problem
instances are stated in Appendix A.

5.2. Results of Groër et al. (2009)

Groër et al. (2009) performed ConRTR on multiple Con-
VRP’s. The number of customers varied between 10 and
1,000. For 22 problems, the problem instances are avail-
able. For 10 of those 22 problems, the optimal solutions
were provided online. These are small problems with 10
or 12 customers and three days.

Some of the optimal solutions are not feasible. For
example, the ConRTR solution with arrival times at all
customers and the depot (0) of the first small problem is
stated in Table 1. If the arrival times of the vehicles at the
depot are added, the total travel time of 142.03 as stated
in Groër et al. (2009) is confirmed. The maximum travel
time T of this VRP is 30. However, it can be seen that ve-
hicle 2 always arrives later at the depot. This makes this
solution infeasible.

It can be that ConRTR from Groër et al. (2009) don’t
consider service times when calculating the travel time of
one vehicle, even though this is included in their formula-
tion of the ConVRP and in their calculations for the total
travel time. To check this, I ran my version of ConRTR
two times for the 10 problems. Once with and once with-
out considering service times when checking the feasibil-
ity of the routes. These results are stated in Table 2.

Table 1 Solution of a small ConVRP
Day 1 Day 2 Day 3

Arrival Arrival Arrival
Cust. time Cust. time Cust. time

Vehicle 1

0 0 0 0 0 0
0 0 9 9.45 9 9.45

7 17.68 0 19.90
0 22.06

Vehicle 2

0 0 0 0 0 0
10 2.98 6 11.59 10 2.98
3 5.93 1 14.36 3 5.93
1 15.23 5 20.64 6 13.95
5 21.51 8 24.91 1 16.72
8 25.78 2 28.52 8 25.61
4 30.09 4 30.24 0 32.51
0 33.71 0 33.85

Table 2 ConRTR for small problems
Groër et al. ConRTR service ConRTR no service

Time Max diff. Time Max diff. Time Max diff. Gap
142.03 3.70 142.03 3.70 184.76 7.23 30%
121.07 4.40 127.06 4.57 131.41 1.27 3%
149.41 3.48 149.41 3.48 149.41 3.48 0%
150.89 2.87 144.07 2.87 151.77 2.87 5%
130.77 12.37 130.77 12.38 130.77 12.38 0%
171.05 3.96 171.32 3.72 199.94 5.18 17%
111.54 4.25 116.98 14.54 121.12 19.87 4%
145.67 5.26 142.97 10.44 160.28 3.85 12%
165.23 5.47 165.23 6.49 192.19 6.84 16%
140.29 7.90 140.29 7.90 147.17 7.22 5%

It can be seen that with five of the 10 instances, Con-
RTR without considering service times finds the same so-
lution as ConRTR from Groër et al (2009). The differ-
ences for the other five instances can arise due the diversi-
fication phase or the addition of customers from group G2,
because these where not stated clear in Groër et al (2009).
ConRTR with service times considered finds worse solu-
tions in eight of the 10 instances and equal solutions with
the other two instances. It seems plausible to conclude
that ConRTR from Groër et al (2009) does not consider
service times when checking the feasibility of routes. The
difference between the total travel times of the solutions
found with and without considering service times is stated
as ’Gap’ and varies between 0% and 30%.

I also performed ConRTR for a larger problem. This
contains 100 customers and five days. To see if ConRTR
performs as expected, I showed a plot of the template and
actual routes in Figure 3.
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Figure 3 ConRTR solution for problem with 100 customers and five days

(a) Template (b) Day 1

(c) Day 2 (d) Day 3

(e) Day 4 (f) Day 5
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5.3. The modified Clarke and Wright algorithm

As explained in chapter 3, ConRTR makes use of the
modified Clarke and Wright algorithm with parameter λ.
The ConRTR algorithm from Groër et al. (2009) has a
vector with three values for λ: 0.6, 1 and 1.4. To check if
it is possible to obtain better results with different values
for λ, I expanded the vector. It contains the values 0.3,
0.6, 0.8, 1, 1.2, 1.4, 2 and 4. The results of ConRTR with
this expanded vector are in Table 3.

There is only one problem where the expanded vector
gives a better solution than the original. This is at problem
1, where the solution has a total travel time that is 4.6%
lower than found before. This also increases the compu-
tation time, it gets twice as long. If better solutions are
very important and computation time is not an issue, the
vector with values for λ can be expanded. Based on this
data, it cannot be concluded that deleting the value 1.4
from the vector of values for λ will not lead to worse so-
lutions. With λ set to 1.4, solutions are obtained that are
quite close to the solutions with value 0.6 or 1. It could be
that λ set to 1.4 give better solutions for other problems.

5.4. The diversification phase

There are two parameters that influence the diversifica-
tion phase: I and α. I determines how many moves are
performed in this phase and α determines which moves
are allowed.

Table 4 shows the results of ConRTR when the param-
eter I is varied. All other parameters are constant and
equal to the parameters used in the ConRTR algorithm
from Groër et al. (2009). If I is set to 0, the diversification
phase is skipped. For all problems, better solutions can be
obtained with a diversification phase. In almost all cases,
even the solution with the largest total travel time is better
than or equal to the solution found without a diversifica-
tion phase. This makes this phase highly recommended.
It is not clear what the optimal value for I is. For prob-
lem 4, the best result was obtained with I set to 15, for
problem 1 and 2, it was obtained with I set to 60.

As the moves in this phase are randomly performed,
it could be a matter of luck when it comes to obtaining
better solutions. If the last move is the one that makes a
better solution possible, it does not matter if it was move
15 out of 15 or 60 out of 60. The fact that it is always

better to have a diversification phase, can be explained by
the fact that this phase is performed multiple times in the
ConRTR algorithm. There is a large probability that one
of those times, a random move turns out to be good at the
right moment.

The computation time does not increase much when I
is increased, so that should not be a factor when deciding
which value for I need to be used.

Table 4 Results for ConRTR with different values for I
Minimum total Maximum total Mean total Maximum Computation

Problem I travel time travel time travel time differential time
1 0 1,133.79 1,133.79 1,133.79 28.19 28.74
1 15 1,035.45 1,133.79 1,056.64 10.22 31.30
1 30 1,034.64 1,040.89 1,038.13 8.38 32.04
1 60 1,028.52 1,087.68 1,046.15 13.74 48.04
2 0 1,172.78 1,172.78 1,172.78 22.53 27.70
2 15 1,125.65 1,139.62 1,132.80 17.79 27.99
2 30 1,119.62 1,156.57 1,137.01 17.79 26.61
2 60 1,110.13 1,148.00 1,129.50 9.20 32.76
3 0 919.91 919.91 919.91 10.15 23.14
3 15 919.70 919.91 919.87 12.76 32.89
3 30 919.70 919.91 919.87 12.76 33.80
3 60 919.91 919.91 919.91 10.06 32.08
4 0 1,857.59 1,857.59 1,857.59 20.01 60.82
4 15 1,555.41 1,887.70 1,811.02 16.56 45.41
4 30 1,746.78 1,887.70 1,804.98 31.80 38.87
4 60 1,756.29 1,857.59 1,811.14 27.54 50.04

Table 5 shows the results of ConRTR when the param-
eter α is varied. All other parameters are constant and
equal to the parameters used in the ConRTR algorithm
from Groër et al. (2009). If α is set to 0, deteriorating
moves are not allowed in the diversification phase. It is
not recommended to do this, because the phase lasts until
I moves are accepted. With α set to 0 and I larger than
0, it could be that no move is accepted and ConRTR stays
forever in this phase. To run ConRTR without deterio-
rating moves, the diversification phase can be skipped by
setting I to zero.

There is no clear correlation between the value of α and
the total travel time of the best solution. A small value for
α has the advantage that template routes that are far away
from the optimal routes are not created. However, it could
be possible that the optimal solution of actual routes re-
quires template routes that are not optimal. A small value
for α might prevent the creation of such template routes.
A large value for α has the opposite advantages and dis-
advantages. The computation time tends to increase when
α is large. This is probably because more routes with a
larger total travel time are created and it therefore takes
longer to get to the ConRTR solution.

9



Table 3 Results for ConRTR with expanded vector for λ
Minimum total Maximum total Mean total Maximum Computation

Problem Vector λ travel time travel time travel time differential time
1 original 0.6 1,034.64 1,040.89 1,038.13 8.38 32.04
1 expanded 0.8 986.64 1,036.29 1,025.04 9.90 66.47
2 original 0.6 1,119.62 1,156.57 1,137.01 17.79 26.61
2 expanded 0.6 1,119.62 1,156.57 1,137.01 39.67 39.67
3 original 1 919.70 919.91 919.87 12.76 33.80
3 expanded 1 919.70 919.91 919.87 12.76 56.39
4 original 0.6 1,746.78 1,887.70 1,804.98 31.80 38.87
4 expanded 0.6 1,746.78 1,842.95 1,789.78 31.80 53.33

Table 5 Results for ConRTR with different value for α
Minimum total Maximum total Mean total Maximum Computation

Problem α travel time travel time travel time differential time
1 1% 1,034.64 1,040.89 1,038.13 8.38 32.04
1 10% 1,037.54 1,037.98 1,037.89 11.49 42.07
1 20% 1,033.31 1,037.98 1,037.05 9.90 44.29
2 1% 1,119.62 1,156.57 1,137.01 17.79 26.61
2 10% 1,127.67 1,139.45 1,132.47 17.79 31.60
2 20% 1,148.63 1,174.67 1,162.42 17.13 34.54
3 1% 919.70 919.91 919.87 12.76 33.80
3 10% 913.43 919.91 918.57 37.94 40.47
3 20% 919.91 919.91 919.91 10.06 40.07
4 1% 1,746.78 1,887.70 1,804.98 31.80 38.87
4 10% 1,755.74 1,881.13 1,805.23 33.36 68.04
4 20% 1,713.19 1,857.44 1,804.08 22.82 55.32

5.5. The improvement phase

In the improvement phase, the template routes are ad-
justed. After these adjustments, customers are deleted
and added to make the actual routes. If the actual routes
are infeasible, the capacity and maximum total travel time
constraints are adjusted. Then, the improvement phase is
repeated until feasible routes are created or the constraints
are adjusted K times.

Table 6 shows the results of ConRTR when the param-
eter K is varied. All other parameters are constant and
equal to the parameters used in the ConRTR algorithm
from Groër et al. (2009). It was expected that a larger
value for K would lead to better solutions, but even though
the seed of the random number generator is set the same
for every instance, this is not always the case. This can
be explained by the fact that a different value for K will
change the number of feasible routes found. When more
feasible routes are found, the diversification phase is re-
peated more often. If this happens before the best solu-
tion is generated, the random number generator is in a
different state and the diversification phase might not ad-

Table 6 Results for ConRTR with different values for K
Minimum total Maximum total Mean total Maximum Computation

Problem K travel time travel time travel time differential time
1 0 1,034.64 1,038.58 1,037.67 8.38 17.19
1 3 1,017.91 1,038.58 1,034.33 40.76 31.01
1 5 1,034.64 1,040.89 1,038.13 8.38 32.04
1 10 1,030.55 1,040.89 1,037.32 9.90 61.12
2 0 1,119.62 1,154.33 1,136.57 17.79 15.64
2 3 1,119.62 1,154.33 1,136.57 17.79 22.08
2 5 1,119.62 1,156.57 1,137.01 17.79 26.61
2 10 1,119.62 1,156.37 1,137.01 17.79 42.38
3 0 919.91 919.91 919.91 10.06 17.25
3 3 919.70 919.91 919.87 12.76 28.87
3 5 919.70 919.91 919.87 12.76 33.80
3 10 911.79 919.91 918.29 25.20 43.69
4 0 1,836.56 1,887.70 1,871.45 16.19 24.66
4 3 1,775.36 1,887.70 1,865.23 15.93 40.50
4 5 1,746.78 1,887.70 1,804.98 31.80 38.87
4 10 1,822.44 1,887.70 1,853.41 19.79 66.25

just template routes as needed for the best solution.
With K larger than zero, the solutions are at least as

good as with K set to zero. It is therefore recommended
to set K larger than zero, even though this increases the
computation time. With K set to 10, the computation time
is 60% longer than with K set to 5. The computation times
with K set to 3 or 5 are quite similar. Because it cannot
be concluded that better solutions are obtained with K set
to 10, it is recommended to set K to 3 or 5. It is not clear
which one of those two gives better solutions.

5.6. Repetition of diversification and improvement

The diversification and improvement phase are repeated
until J consecutive repetitions do not lead to a better solu-
tion.

Table 7 shows the results of ConRTR when the param-
eter J is varied. All other parameters are constant and
equal to the parameters used in the ConRTR algorithm
from Groër et al. (2009). It was expected that a larger
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Table 7 Results for ConRTR with different values for J
Minimum total Maximum total Mean total Maximum Computation

Problem J travel time travel time travel time differential time
1 0 1,034.64 1,133.79 1,057.06 8.38 13.45
1 3 1,034.64 1,038.58 1,037.34 8.38 27.69
1 5 1,034.64 1,040.89 1,038.13 8.38 32.04
1 10 1,034.64 1,038.58 1,037.46 8.38 71.42
2 0 1,119.62 1,156.57 1,137.01 17.79 8.90
2 3 1,119.62 1,154.33 1,136.57 17.79 19.94
2 5 1,119.62 1,156.57 1,137.01 17.79 26.61
2 10 1,119.62 1,156.57 1,137.01 17.79 52.95
3 0 919.50 919.91 919.79 10.15 8.09
3 3 913.43 919.91 918.62 5.26 24.46
3 5 919.70 919.91 919.87 12.76 33.80
3 10 919.91 919.91 919.91 10.15 66.59
4 0 1,858.43 2,122.82 1,936.51 18.35 9.99
4 3 1,756.29 1,921.72 1,842.85 27.54 27.34
4 5 1,746.78 1,887.70 1,804.98 31.80 38.87
4 10 1,745.67 1,887.70 1,782.59 31.80 61.70

value for J would lead to better solutions, but even though
the seed of the random number generator is set the same
for every instance, this is not always the case. This can
be explained by the fact that a different value for J will
change the number of times the diversification phase is
repeated. If this happens with the first value for λ, the
random number generator is in a different state when the
first diversification phase with the second value for λ is
started. This can lead to different solutions.

In general, the mean total travel time of the solutions
decrease when J is increased. It makes a solution with a
large total travel time less likely and it is therefore recom-
mended to set J to a value larger than zero. A large value
gives a better solution, but it also increases the computa-
tion times. Because the computation times with J set to
5 are quite similar to the compuation times with J set to
3 and about half as long as with J set to 10, it is recom-
mended to set J to 3 or 5. It is not clear which one of those
two gives better solutions.

5.7. Decreasing the arrival time differential

In section 4, I described an algorithm to decrease the ar-
rival time differential. This algorithm is applied to five
problems. The four problems as used in the previous ex-
periments and a larger problem with 100 customers.

The results of this algorithm are stated in Table 8. For
the small problems, it was possible to visit all customers
at the exact same time on all days. This will increase the
total travel time with at most 10%. For the large problem
with 100 customers, it was not possible to get a maximum
arrival time differential of zero. However, the maximum

arrival time differential could still be decreased with more
than 90%, while increasing the total travel time with less
than 10%. If the increase of total travel time would be
limited to 5%, the maximum arrival time differential could
still improve with 80%.

For the first four problems, the computation time is less
than a second. For the large problem with 100 customers,
the computation time is 10 seconds. The computation
time can be decreased if the maximum arrival time differ-
ential is being decreased in larger steps. I used a waiting
time that was 0.1 larger than the difference between the
two largest arrival time differentials. If instead of 0.1, 0.5
would be used, the computation time for the large prob-
lem becomes less than two seconds. However, this leads
to less consistent results, as the maximum arrival time dif-
ferential would decrease to 3.57 instead of to 2.52.

6. Conclusions
In this paper the ConRTR algorithm of Groër et al. (2009)
is studied. It is showed that some ConRTR solutions that
were provided by Groër et al. (2009) are infeasible, be-
cause service times are not considered in the travel time
of vehicles. I could not conclude that the algorithm can
return better solutions by using different parameters than
stated in Groër et al. (2009). The random element in the
diversification phase has a very large influence on the per-
formance of ConRTR. It is therefore recommended to per-
form ConRTR multiple times for the same instance.

I have developed an algorithm that decreases the max-
imum arrival time differential of a ConRTR solution. I
showed that the total travel time would increase with 10%
when the maximum arrival time differential decreases
with 90% to 100%. If the total travel time may not in-
crease more than 5%, the maximum arrival time differen-
tial could still decrease with 80% to 90%.
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Table 8 Results decreasing differential
Original max. New max. Improvement Original total New total Increase total
differential differential max. differential travel time travel time travel time

problem1 8.38 0 100% 1,034.64 1,106.10 7%
problem2 17.79 0 100% 1,119.62 1,227.82 10%
problem3 12.76 0 100% 919.70 993.33 8%
problem4 31.8 0 100% 1,746.78 1,899.09 9%
large problem 31.07 2.34 92% 3,693.14 4,020.87 9%
problem1 8.38 1.01 88% 1,034.64 1,086.76 5%
problem2 17.79 3.67 79% 1,119.62 1,175.95 5%
problem3 12.76 1.51 88% 919.70 965.91 5%
problem4 31.8 4.76 85% 1,746.78 1,835.32 5%
large problem 31.07 5.79 81% 3,693.14 3,877.80 5%
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Appendix A
The instances that are used for the experiments with changing parameters are specified in this appendix.

The location and demands for all customers on all days are in the table on the next page.
Location depots for all problems is (0,0).
Service times for all customers, all days and all problems is 2.
Travel times are the Euclidean distances.
The capacity of vehicles is 80.
The maximum travel times of vehicles is 100.

13



problem 1 problem 2 problem 3 problem 4 demand demand demand demand demand
customer x y x y x y x y day 1 day 2 day 3 day 4 day 5
1 -13.62 11.07 -7.42 -4.34 10.00 15.16 25.68 28.74 7 7 7 0 7
2 -11.99 13.84 -2.68 1.74 9.36 14.22 21.81 22.53 30 30 30 30 0
3 -12.02 13.66 13.73 -9.39 7.91 14.39 21.11 24.33 0 16 16 16 16
4 -14.05 14.21 3.14 10.14 6.36 14.85 16.35 23.32 9 9 9 0 9
5 -14.69 12.43 0.83 -2.28 9.82 11.95 25.85 10.28 0 21 21 0 21
6 -14.41 13.19 7.56 -0.16 7.75 15.60 3.48 12.49 15 15 15 0 15
7 -13.32 14.23 -9.37 11.98 5.66 11.68 21.15 29.59 0 19 19 19 19
8 -11.86 12.67 -3.11 -7.82 9.75 11.34 12.03 29.31 23 23 23 0 0
9 -13.11 -12.87 -8.55 9.69 5.74 3.40 22.65 3.91 11 0 11 11 11
10 -13.21 -13.59 12.12 -6.98 4.24 3.50 25.68 5.32 5 5 0 5 0
11 -12.33 -11.09 -10.9 13.50 5.07 2.65 15.26 8.61 19 0 19 19 0
12 -11.78 -11.54 -1.33 -11.7 5.49 0.87 1.06 2.29 29 0 0 0 29
13 -14.13 -11.86 13.96 9.43 5.84 3.42 13.19 15.86 0 23 23 23 0
14 -14.97 -9.59 10.69 14.87 3.81 2.57 2.91 18.63 0 21 21 0 21
15 -13.02 -14.33 -2.25 -13.45 2.86 3.22 2.15 11.32 10 0 10 0 10
16 -13.16 -13.21 -9.79 -14.79 3.83 1.04 14.61 19.75 0 0 15 15 15
17 -4.26 1.85 -1.31 8.35 15.89 2.56 7.56 3.66 3 3 3 3 0
18 -4.96 1.82 -8.15 6.68 13.77 2.20 21.72 2.21 41 41 41 0 0
19 -1.09 -1.49 -5.87 -0.95 13.00 3.60 10.31 23.41 9 9 0 9 9
20 -2.54 1.43 6.11 12.99 14.23 1.48 5.95 28.74 28 0 28 28 0
21 -4.94 -0.16 4.32 7.01 15.62 2.06 15.00 3.54 8 0 8 8 8
22 -3.19 1.82 6.31 0.91 14.37 2.44 26.41 15.22 8 8 8 8 0
23 -3.81 1.61 -2.92 -12.24 14.44 3.68 18.96 16.92 0 16 16 0 16
24 -2.24 1.08 -12.89 -12.34 15.38 3.69 27.64 4.78 10 10 10 10 10
25 -3.50 -2.00 2.88 -3.10 16.55 0.89 26.27 22.39 28 28 28 0 28
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