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Abstract

This paper uses the nonlinear method kernel ridge regression to forecast volatilities with 38
macroeconomic and financial variables of four different asset classes, i.e. stocks, bonds, commodities
and foreign exchanges. Kernels which are used in this paper are the linear, quadratic and the
Gaussian kernel. Tuning parameters of this method are estimated in two ways, i.e. with principal
components and on the full dataset of variables. Furthermore, the Least Angle Regression method is
used to preselect variables, which are then used by the kernel ridge regression. Next to examining
this nonlinear method, 3-month, 6-month and 12-month ahead forecasts are made for kernel ridge
regressions and numerous of other linear models. Main findings are that kernel ridge regression
performs better than simple linear models, and multi-step ahead forecasts with macroeconomic and

financial variables are not better than a simple autoregressive model.

Keywords: Volatility, kernel ridge regression, multi-step ahead forecasting, nonlinear forecasting,

high dimensionality
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1 Introduction

Volatility has been one of the most successful areas of research in time series econometrics and
forecasting in recent decades (Andersen, Bollerslev, Christoffersen & Diebold, 2006). Volatility is a
statistical measure of the dispersion of returns for a given asset. It refers to the amount of
uncertainty or risk about the size of changes in an underlying asset. Volatility has become an
indispensable topic in financial markets for risk managers, portfolio managers, investors,
academicians and all that have something to do with financial markets (Minkah, 2007). It is an
essential input for risk management, asset pricing and portfolio management (Christiansen et al.
2012). Due to the increase in stock market uncertainty and the recent financial crises, there has been
a growing interest in volatility as an input in asset allocation to determine an optimal portfolio.
Additionally, financial risk management has taken a central role since a specific amendment of the
Basel Accord was made in 1996 to allow banks to use their model together with the Value-at-Risk
approach for calculating market risk related risk capital (McNeil & Frey, 2000). This amendment
effectively makes volatility forecasting a compulsory risk-management exercise for many financial
institutions around the world (Granger & Poon, 2003).

Next to the financial applications of volatility, it has wide repercussion on the economy as a whole.
According to Granger and Poon (2003), there is clear evidence of an important link between financial
market uncertainty and public confidence. For this reason, policy makers often rely on market
estimates of volatility as an indicator for the vulnerability of financial markets and the economy.
During the last two decades, nonlinear relations in macroeconomic and financial time series have
been getting more attention. However, methods such as regime-switching models and neural
networks are only appropriate for a small number of predictors and the improvement over linear
forecasting techniques is limited (Stock and Watson, 1999; Medeiros et al., 2006; Terasvirta et al.,
2005). Andersen et al. (2006) give an overview of several time series models for volatility, including
GARCH models, stochastic volatility models and realized volatility models. Although these models are
discussed in detail, they merely relate the current level of volatility to its past without including any
other variables.

Christiansen, Schmeling and Schrimpf (2012) examined 38 macroeconomic variables with the use of
forecast combinations and Bayesian Model Averaging. However, Bayesian Model Averaging does not
take nonlinearity in to account.

Earlier this year, the macroeconomic and financial variables which mainly affect the volatility of four
different assets were investigated by Holtrop, Kers, Mourer and Verkuijlen (2014). In their research,

the Least Angle Regression (LARS) method was used to preselect the variables and then, with the
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most important variables, forecasts were constructed with forecast combinations and factor-based
models. However, these forecasting methods are also of a linear type.

In the research of Exterkate, Groenen, Heij and van Dijk (2013), a technique is found that provides
better forecasts than the traditional linear and nonlinear method. This technique is called kernel ridge
regression (KRR) and can deal with the nonlinear relations between the (realized) volatility and a
large number of macroeconomic and financial variables. The technique has been applied to forecast
four key measures of real economic activity by Exterkate et al. (2013). Nevertheless, this method has
not yet been applied to forecast realized volatility and not on (by LARS) preselected variables.

KRR is partly based on the standard linear ridge regression, which is commonly used in economic
forecasting (Kim & Swanson, 2013), since it can be a better method than the standard ordinary least
squares procedure, when the number of predictors is relatively larger than the number of
observations. However kernel ridge regression uses a trick so that it has less computational
drawbacks. The central idea is to use a set of nonlinear prediction functions and prevent overfitting
by penalization. The set of predictors are transformed (or mapped) in to a high-dimensional space of
nonlinear functions of the predictors. These transformations (or mappings) of the predictors are
chosen in an efficient way leading to so-called kernel functions. Different kernel functions are known
and the ones which are used in this research are the polynomial and the Gaussian kernel functions.
The goal of this research is to examine if this technique significantly produces more accurate forecasts
than the linear type of predictions made by the linear methods of Holtrop, Kers, Mourer and
Verkuijlen (2014). For easy comparison, the same dataset from Christiansen et al. (2012) is used
which contains 38 macroeconomic and financial variables covering the period from January 1983 to
December 2010.

The KRR forecast models are constructed with a moving window of 5 and 10 years, starting with
forecasting in January 1993. KRR are performed on the full set of macroeconomic and financial
variables and on 18 variables which are preselected by LARS first. In addition, the shrinkage
parameters are estimated in two ways; first by regressing the volatility on the first four principal

components of the variables and second by regressing it on the complete dataset of variables.

Furthermore, in this research the volatilities will be forecasted not only 1-month ahead, but also on a
horizon of 3, 6 and 12 months. Investigations (Chen and Hong (2010)) have shown that on longer
horizons returns can be better than on short horizons. If this also holds for volatilities will be checked
in this paper. Forecasting over extended horizons will be done for both the models constructed by

Holtrop et al. (2014) and the kernel ridge regressions. To avoid having to forecast all macroeconomic



and financial variables, so-called ‘direct’ forecasts are constructed. With the iterating forecast method
we would have to presume that the variables follow a random walk.
The KRR forecasts will be evaluated statistically and economically. For the multi-step ahead forecasts

will only a statistical analysis will be given.

In statistical terms can be seen that the kernel ridge regressions beat the linear benchmarks, although
the ARX-model with 18 by LARS selected variables is still better. The type of kernel or the method of
estimating the tuning parameters doesn’t show significant differences, but a 10 year moving window
generally provides better forecasts. This could be, because then more information can be taken in to
account when estimating the models.

From the economic interpretation can be concluded that the Gaussian kernel using the principal
component estimation method for the tuning parameters gives the investor the highest utility, based

on her risk-averse behavior.

The statistical evaluation of the multi-step ahead forecasts shows that the macroeconomic and
financial variables the forecasts over longer horizons. Better predictions can be made if all these

variables are forecasted properly by other models

The research is organized as follows. Chapter 2 describes the data, which are used in this research. In
Chapter 3, the methodology will be discussed followed by the results in Chapter 4. Finally in Chapter

5, a conclusion will be given.

2 Data

The data, which will be used in this research are retrieved from the ‘short’ dataset of Christiansen et
al (2012) and consists of 336 monthly observations from January 1983 to December 2010. The
dataset contains the volatility of four asset classes; stocks, commodities, bonds and exchange rates.
The volatility is defined as the natural log of the square root of the squared daily returns. For the
volatility of the asset class of stocks are based on the daily returns of the S&P 500. The 10-year
Treasury note futures contract traded on the Chicago Board of Trade (CBOT) and the Standard &
Poor’s GSCI commodity index are used for the volatilities of the bonds and the commodities
respectively. Finally, to determine the volatility of the exchange rates, an equally weighted basket of
currencies from 49 countries against the US dollar is formed. With the daily spot rate changes of this

aggregate foreign exchange portfolio, the realized volatility is constructed.



Next to these dependent variables, it also contains 38 macroeconomic and financial variables, which
are classified in five economic categories. The first category contains equity market variables and risk
factors, like the earnings price ratio and the dividend price ratio. In the second category, interest
rates, spreads and bond market factors can be found. Examples of variables in this category are the T-
bill rate and the Term Spread. The Dollar Risk Factor and the Carry Trade Factor are examples of
variables which are included in the third category, foreign exchange variables and risk factors. The
fourth category contains liquidity and credit risk variables. In this category, the Default Spread, TED
spread and the Foreign Exchange Bid-Ask Spread can be found. The last category includes a large
number of macroeconomic variables such as employment growth, industrial production growth and

interest rates.

The stationarity of these variables was already investigated by Holtrop et al (2014) and appropriate
transformations were performed. Christiansen et al. (2012) already adjusted the relevant variables

for seasonality.

3 Methodology

As already stated in the introduction, this research consists of two parts. First, forecasting the
volatility with use of the kernel ridge regression and second, performing longer step ahead forecasts

for the models constructed by Holtrop et al. (2014) and also for the kernel ridge regressions.

3.1 Kernel ridge regression
This section describes the method of kernel ridge regression, which was proposed by Exterkate et al.

(2013) as an approach for forecasting with many predictors that are related nonlinearly to the target

variable.

Ordinary least squares (OLS) regression and ridge regression form the basis for the method of kernel
ridge regression (KRR). Moreover, KRR is just an ordinary ridge regression on transformed regressors
with a kernel trick, which improve computational efficiency. First, an introduction to ridge regression

is given. Afterwards, the ridge regression will be extended to kernel ridge regression.

When performing an OLS regression, it is necessary that the number of predictors N is smaller or
equal to the number of observations T. In general, N is much smaller than T to avoid overfitting. The
in-sample-fit of overfitted models might be good, but forecasting out-of-sample predictions

commonly leads to poor results.

Ridge regression tries to find a balance between the goodness-of-fit and the magnitude of the vector

with parameters B.



The main difference between the OLS regression and the ridge regression is the penalization of the
regression coefficients. The ridge regression estimate [ is defined as the value of B that minimizes the

ridge criterion

D G- xip?+ Aiﬁf
7 =1

The penalty term or the shrinkage parameter A is chosen beforehand.
The solution of the minimization problem is given by:
ﬁlinear ridge = (X’X + /U)_lX,y

As can be seen, if the shrinkage parameter approaches zero, the ridge parameter estimate equals the

OLS parameter estimate.
lli_r)r(l) Blinear ridge = }Li_r)%(XlX + /U)_lX,y = (X’X)_lxly = BOLS
The forecast of the dependent variable is easily computed by

Vi1 = 55£+1.8Alinear ridge = X1 X'X + AI)_lxly €Y

A great advantage of this forecast is that it can be computed when the number of observations T is
smaller than the number of predictors N. However, when N becomes very large, the inversion of the

N x N matrix XT X + Al can lead to computational problems.

To overcome this problem, kernel ridge regression is introduced, which also allows for nonlinear
prediction functions. These nonlinear functions are made possible by so-called mappings of the N
original predictor variables x in M transformed variables z (z = ¢@(x)). All transformed variables are
collected in a matrix Z with rows z! = @(x)T. In the ridge parameter estimates the X’s are simply

replaced by Z’s, leading to the following kernel ridge regression estimate 7,44, and forecast:
Vriage = 2e41'(Z'Z + AD™'Z'y
Ve+1 = Ze41 Vridge = 2e41'(Z'Z + M) Z'y
To allow for flexible forms of nonlinearity, the number of transformed predictor variables needs to be

larger than the number of original predictor variables. However, calculating the matrix Z’Z can lead to

computational difficulties, since this matrix has dimensions M x M and M>>N.

A solution for this problem is the so-called kernel trick. The basic idea is that, since the number of

observations T is smaller than the number of transformed predictor variables M, working with T-



dimensional objects reduces the computational difficulties. This reduction of the dimensions can be

shown by algebraic manipulations (Exterkate et al. (2013))
First, the ridge regression estimator is rewritten 9,;440 = (Z2'Z + AD™1Z'y as
Z'Zy+ 27 =Z"y 2
1
or v =520 —Z7).
Pre-multiplying (2) by Z gives ZZ'Zy + AZy = ZZ'y, or

79 = (ZZ' + AD)~1z22'y.

The forecast of the dependent variable can now be written as

1 1
YVe+1 = Z£+1Vridge = IZ£+1Z’(J’ —Z7y) = ZZt+1Z'(y -z + /U)_lZZ’}’)

1
= 222/ (Z2 + A THEZ + A = Z2)y = 2722+ Ay
= ki (K+ D™ty 3)

where k1 = Z2,,1 isa Tx 1vectorand K = ZZ' is called a T x T kernel matrix.

The (p,g)-th element of K equals z;,zq=(p(xp)'g0(xq) and the g-th element of
Et+1 = @(x) @(xe41).

It is important that a mapping ¢ is chosen, so k(a,b) = @(a) @(b) can be computed without
computing @(a) and @(b) separately. k is the so-called kernel function and various types of these
functions are known, such as the polynomial and the Gaussian kernel functions. Before computing
the kernel matrix K, each observation x is divided by a positive scaling factor ¢ to control for the
relative importance of the terms in @(x). For example, the weights of the different polynomial
degrees are for the linear terms divided by o and for the second-order terms by o°. The way of
selecting the scaling factor will be discussed in Section 3.1.3. Kernel functions which will be used in
this research are the polynomial and the Gaussian kernel functions and these will be explained in the

next two subsections.

3.1.1 Polynomial kernel
A polynomial function always has a degree, which is the highest degree of its terms. A polynomial

kernel also has degrees. The first degree is a linear kernel function, hence ¢(a) = a and k(a, b) =
¢@(a)' ¢(b) = a’'b. Then it holds that the transformed matrix Z is the same as the original matrix with

predictors (Z=X). Likewise, Z;{,; = X;,1, Which leads to the kernel matrix K =ZZ' = XX'and



kes1 = Z2,41 = XRpyq. Inserting this in the forecast (3) gives P41 = Xf1 X' (XX' + A1y =

Ri+1(X'X + AI)71X'y, which is the same as the linear ridge regression forecast in (1).

A quadratic kernel function can be retrieved from a mapping which contains a constant term,

variables, and their squares and cross products. This leads to the quadratic kernel function

k(a,b) = p(a)' ¢(b) = (1 + a'b)?
The derivation of this result is shown in Exterkate et al. (2013).

A generalization of the polynomial kernel functions is given by

k(a,b) = ¢(@)'¢(d) = (1+a'b)?,

where d is the maximum degree for which the mapping of a consists all polynomials in the elements

of a.

3.1.2 Gaussian kernel
The Gaussian kernel function is given by

1 2
K(a,b) = exp (=5 lla — bII?)

An advantage is that this kernel can be used, even if the number of transformed variables M

approaches infinity M — oo,

The elements of the corresponding mapping are the “dampened” polynomials

N
_a,al_[ a/ zn
e 2
|
n=1 dy!

A difficulty of performing KRR is how to select the parameters A and o, called respectively the

shrinkage parameter and the scaling parameter. This selection will be examined in the next

subsection.

3.1.3 Tuning parameter selection
For the implementation of KRR, two parameters need to be estimated. These are the shrinkage

parameter A and the scaling parameter o.

This is done, as stated in Exterkate et al. (2013). They give estimates based on the signal-to-noise
ratio (for A) and the smoothness assumption (for o). These estimates differ between the used kernel

functions and are stated below

(1+No=2)(1-R?)
R2

0y = [= and Ay = for the Poly(1) kernel,



N+2 (14 2No™2+ N(N + 2)a™*)(1 - R?)
0y = > and Ay = 72 for the Poly(2) kernel,

N (1-R?) ,
0y = — and Ay = ——= for the Gaussian kernel,
/s R2

where cyis the 95" percentile of the x* distribution with N degrees of freedom, R? can be computed
in two ways. Exterkate et al. (2013) calculate the R-squared from the OLS regression of y on the first
four principal components of X, but earlier Exterkate (2013) also stated that R? can be obtained from

linear OLS regression of y on a constant and X. In both cases the tuning parameters are re-estimated

for each window.

The KRR will be applied on the full set of 38 predictors and on the best 18 macroeconomic and
financial variables preselected by LARS, as was done by Holtrop et al (2014). In addition, the KRR

models will be estimated on a moving window of 5 and 10 years.

3.2 Longer step ahead forecasts
As already stated in the introduction section, longer step ahead forecasts will be made for all models.

According to Taieb et al. (2012) , there are a number of strategies to forecast h-step ahead. Two of
these strategies will be discussed below. The recursive strategy is also the oldest and most intuitive
forecasting strategy. With this strategy, the parameters of the model are estimated with the data until
time period T. Then with this model and the parameters a one-step ahead prediction is made.
Thereafter this prediction is used as input in the forecasting periods ahead keeping the parameters of
the model the same. This strategy is sensitive to accumulation of errors. Errors in the intermediate
forecasts are spread forward in the forecast horizon. Furthermore, for an ARX-model the exogenous

variables are then presumed to follow a random walk, which is generally not the case.

Another strategy is the direct strategy, which forecasts each horizon independently from the others.
An advantage is that does not use any approximated values to compute the forecasts. So there is no
accumulation of errors. A drawback is that dependencies between the variables yr,y are not taken
in to account and computational time increases since the model has to be re-estimated for each

forecast horizon.

An example of such a ‘direct’ forecast is given for the ARX(1)-model, which is then specified as follows

p
Ve=a+Byi_n+ Z CiXit—n t &

=1



Now a forecast for y+,,, can be calculated without having to forecast the x-variables first. However, the

coefficients a, B and c; have to be estimated for each forecast horizon.

Multi-step ahead forecasts will be made on a quarterly (3 months, H=3), half-yearly (6 months, H=6)
and yearly (12 months, H=12) horizon. Furthermore, more interesting is to predict the volatility over
this period, and not specifically the volatility in month T+h. This is easily done by taking the sum of all

the forecasted volatilities. (X7_; yy1p)-

3.3 Statistical evaluation
The statistical evaluation of the kernel ridge regressions and the multi-step ahead forecasting will be

done by analyzing the three factors accuracy, efficiency and unbiasedness of the forecasts of the
constructed models. The statistical evaluation of the models of Holtrop et al. (2014) was also based

on these three factors.

To evaluate the accuracy, the Mean Squared Prediction Error (MSPE) is used.

n

1
MSPE = —Z ef
n

t=1
To compare the MSPEs of the forecast of the models and benchmarks, the out-of-sample R* is used.

The out-of-sample R? is defined by

RZ —1— MSPEmodelX
model x MSPEycnchmark

One can see that a negative out-of-sample R* corresponds with a lower performance in accuracy than
the benchmark model. So positive values of this R* correspond with a more accurate forecast than

the benchmark.

The MSPE’s aren’t directly comparable, since it is not necessary that a lower MSPE implies a better
forecast. However, the Diebold Mariano test can be used to determine if the differences in the
prediction errors are statistically significant. The null hypothesis of this test is that the sample mean
of the difference in squared prediction errors of two different models i j is not significantly larger than

zZero.

DM = ———— =~ N(0,1)
V(desq)

n
1 n
withd; 1 = ezi,t+1|t - ezj,t+1|t and V(deyq) = mZ(dtﬂ —d)?
t=1

Where d is the sample mean of d;,; and n is the number of forecasts which is equal to 216. With a
significance level of 5 percent, the critical value of this one-sided test is equal to 1.645. If the DM

9



statistic is positive, this means that d is positive, since the (square root of the) variance in the DM-
statistic is always positive. Then can be concluded that the sample mean of the squared prediction
errors of model i eme are larger than the prediction errors of model j and so model i performs
worse than model j in terms of accuracy.

To analyze the efficiency of the forecasts, a Mincer-Zarnowitz regression is used

Yer1 = Bo + BiVes1ye + Mew1

The null hypothesis is that it should not be possible to forecast the forecast errors, based on the info
at the time the forecast is made. In the regression above this null hypothesis is tested by a Wald test

on the joint restrictions, f, =0and B; = 1.

Finally, the unbiasedness of the forecasts is checked. This unbiasedness means that the expected
value of the forecast errors should be equal to zero. To evaluate if the sample mean of the forecast

errors differ significantly from zero, a standard Z-test is performed.

3.4 Economical evaluation
Besides the statistical evaluation, a practical evaluation will be performed, known as the economical

evaluation for the forecasts of the kernel ridge regression. This will be done by creating a fictive
investor who selects his portfolio based on an investment function. Cakmakli and van Dijk (2013) also
made use of this method and applied the following investment function of returns and volatility
forecasts.

1
max E(Tp,t+1) - EYVQT(Tp,H.l) (? )

Wet1

In this equation, y is the rate of risk aversion. The portfolio return 7}, ;.4 consists of the return in a
risk-free investment ¢ ;1 and investing in the assets, which are considered in this paper 754 1. Weyq

denotes the part of the portfolio which is invested in these assets.

Tpt+1 = (L= W) T p41 + WegaTs e41

The returns of the risk-free investment are retrieved from the 3-months T-bill rate, since no data is
available for 1-month T-bill rates before 2001. The returns of the stocks consist of the monthly stock
return on the S&P 500. For the other two assets, commodities and bonds, the data are derived

respectively from the S&P GSCI Commodity Index and the monthly return on the 10-year T-bond.

The return forecast will be the average return of the past 5 and 10 years, depending on the window
of the forecast. The volatility forecast will be the forecasts of the KRR models which are constructed

in this paper. To obtain the optimal weights in the portfolio the variance of the portfolio is needed

10



Var(ryes1) = Var ((1 — W) ee1 + Wt+1rs,t+1)
=1- Wt+1)2Va7”(7”f,t+1) + W152+1V‘17”(7”s,t+1) + ZCOU(rf,t+1’rs,t+1)
= Wtz+1va7"(rs,t+1)
since the variance of the risk free return is equal to zero because it is assumed that 75 ;4 is fixed at
the end of month t. The covariance between the return of the risk-free investment and the

investment in the relevant asset is equal to zero.

With the variance of the portfolio, the investment function can be maximized to obtain the optimal

weights in the portfolio.

5 VWtZ+ 1 Var(rs,t+1)

1
max E(Tp t+1) syVar(rpe+1) =max E ((1 — Wiy t)Tr 1 + Wt+17's,t+1) 3
Wit1

Wti1 2

1
= nm}ta)i (1 =W )Tpp4q + Wt+1E(7"s t+1) VWt+1vaT(rs t+1)
.

= —1p e + E(Toer1) = vVar(roees) = 0
This leads to the optimal weights w;,
E(Ts t+1) —Trt+1
yVar(rsee)

Two cases are considered; first, the weights are bounded between zero and one (w/,; € [0,1]).

Wiy =

These weights imply that short selling and lending are not allowed. In the second case, short selling
and lending are permitted (w;;; € [—1,2]). Transaction costs are neglected. To evaluate what an
investor is willing to pay for using the volatility forecasts of this paper, the maximum performance
fee is calculated. To be able to do this, a quadratic utility function is assumed (West, Edison & Cho,

1993). The average utility is given by

_ W 1 vy ) .
v= ;Z (RP'“'l B Eme.tH) With Rp i1 =1+ 1pr4q
t=0

Here W is defined as the wealth to be invested and n is the number of time periods where the
investing is analyzed. In order to calculate the maximum performance fee, the utility of a strategy
arising from the forecast of the constructed models (strategy a) needs to be compared with an
unsophisticated buy-and-hold strategy (strategy b). The buy-and-hold strategy consists of either only
investing in the risk-free t-bonds, only investing in the market, or in an equally weighted combination

of the two.

n—1

. _
((Rg,ml - A) — E(IYTY)(RS,M - A)2> Z ( pt+1 T 5 (1 n )/) ( pt+1) )

t=0

-+
Il

0
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From this equation the delta can be calculated, which is a fraction of the wealth that the investor is
maximally willing to pay for this information. Hence, the performance of the model gets larger, if the

delta of the relevant model rises.

Finally, after the forecasts have been evaluated statistically and economically, it can be seen if the
non-linear forecasts, constructed by KRR, are better than the linear forecasts. Besides this, it can be

concluded how the longer-step ahead forecasts perform.

4 Results

First, the results of the kernel ridge regressions will be evaluated. Thereafter, the results of the multi-
step ahead forecasts will be examined. The final section gives the economical evaluation of the
forecasts of KRR.

The tables that will be shown in the sections are all about the asset class stocks. The results of the

other classes are shown in the appendices and are briefly summarized in the text.

4.1 Kernel ridge regressions
In this section, the results of the kernel ridge regression are discussed. As already explained in

Section 3.1, different kernel functions are used. In Section 4.1.1, the linear kernel will be analyzed,
followed by the quadratic kernel in Section 4.1.2 and finally the Gaussian kernel in Section 4.1.3. At
the end of this section, the different kernels are compared with each other. The statistical results of

the other asset classes can be found in Appendix A.

4.1.1 Linear Kernel
First the linear kernel is statistically evaluated. The models are tested as stated in Section 3.3 for

unbiasedness, accuracy and efficiency.

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1)  ARX(1) RW

10y PC -1.595 0.059 0.105 0.382*  0.372* 0.421*
10y OLS -2.196* 0.061 0.090 0.369*  0.359*  0.409*
10y PC 18var -1.843 0.061 0.036* 0.360* -0.090 0.401*
10y OLS 18var -2.010* 0.060 0.117 0.374* -0.066 0.413*
Sy PC -1.595 0.059 0.292 0.354*  0.842* 0.344*
S5y OLS -2.196* 0.061 0.402 0.349* 0.841* 0.339*
5y PC 18var -1.843 0.061 0.243 0.345*  0.048  0.334*
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Sy OLS 18var -2.010* 0.060 0.380 0.365* 0.077  0.354*

Table 4.1 Evaluation of linear kernel for the asset class stocks where the shrinkage parameters are estimated with an OLS
regression of y on 4 principal components (PC) and a regression of y on the complete set of macroeconomic and financial
variables (OLS). Furthermore this is done for a moving window of 5 and 10 years.

Note: In the column of unbiasedness the z-statistics are given, where the null hypothesis is that the forecast is unbiased.
The column of Mincer-Zarnowitz shows the p-values of the Wald test using the F-test statistic. The null hypothesis is that
the forecast is efficient.

The significance of the out-of-sample R’ is determined by the Diebold-Mariano statistics. For each model the
corresponding moving window length and the number of variables is chosen in the benchmark for the out-of-sample R®
(for example the 10y PC 18var model is compared with the ARX(1) 10y 18 var). If there is an *, it means that there is a
significant difference in accuracy

* denotes the rejection of the null hypothesis for a significance level of 5 percent

The table above shows that when the shrinkage parameters are estimated with a regression of the
volatility on the complete set of macroeconomic and financial variables, biased forecasts are
produced. In general the forecasts overestimate the true value in a negative way, since values below
zero are found when analyzing the unbiasedness.

The mean squared prediction errors (MSPE) of all the forecasts are roughly equal, but not all
benchmarks are beaten. For the linear kernel where 18 macroeconomic and financial variables are
preselected by LARS, the ARX-model with 18 preselected variables is not beaten and for the 10-year
moving window it can be seen that the benchmark even has a smaller MSPE. Fortunately the random
walk model produces significantly worse forecasts than the linear kernel ridge regressions.

From the Diebold-Mariano statistics can be concluded that the forecasts constructed with a moving
window of 10 years are significantly better than those with a moving window of 5 years. A possible
explanation might be that the moving window of 10 years contains more information. Preselecting
the variables with LARS sometimes gives significantly better results, but not always.

No significant differences in MSPE are found between the tuning parameter estimation method with
principal components and the method with the complete matrix with independent variables.

All forecasts are efficient, apart from the model with the 18 preselected variables, the tuning

parameter estimation by four principal components and a moving window of 10 years.

For commodities similar results are found, but for the asset class of foreign exchanges, the forecasts
of the linear kernel almost never significantly beat the benchmark models of AR(1) and ARX(1).
However, all linear kernel forecasts are unbiased and the random walk model is beaten most of the
times. The forecasts of the linear kernel for the asset class bonds are even worse in terms of

accuracy.

4.1.2 Quadratic kernel
In this section the polynomial kernel with two degrees is evaluated. Table 4.2 shows the results in

terms of unbiasedness, accuracy and efficiency.
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Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1) ARX(1) RW

10y PC -1.275 0.059 0.067 0.384* 0.374* 0.423*
10y OLS -1.844 0.060 0.072 0.375* 0.365* 0.414*
10y PC 18var -1.282 0.060 0.031* 0.373* -0.067 0.413*
10y OLS 18var -1.532 0.061 0.034* 0.361* -0.088 0.401*
Sy PC -0.602 0.068 0.157 0.347* 0.840* 0.336*
5y OLS -1.212 0.070 0.169 0.331* 0.836* 0.320*
Sy PC 18var -0.622 0.067 0.078 0.358*  0.068  0.348*
S5y OLS 18var -1.027 0.068 0.095 0.349*  0.054 0.338*

Table 4.2 Evaluation of quadratic kernel for the asset class stocks where the shrinkage parameters are estimated with an
OLS regression of y on 4 principal components (PC) and a regression of y on the complete set of macroeconomic and
financial variables (OLS). Furthermore this is done for a moving window of 5 and 10 years.

Note: In the column of unbiasedness the z-statistics are given, where the null hypothesis is that the forecast is unbiased.
The column of Mincer-Zarnowitz shows the p-values of the Wald test using the F-test statistic. The null hypothesis is that
the forecast is efficient.

The significance of the out-of-sample R’ is determined by the Diebold-Mariano statistics. For each model the
corresponding moving window length and the number of variables is chosen in the benchmark for the out-of-sample R’
(for example the 10y PC 18var model is compared with the ARX(1) 10y 18 var). If there is an *, it means that there is a
significant difference in accuracy

* denotes the rejection of the null hypothesis for a significance level of 5 percent

Results in Table 4.2 are quite similar to the results of the linear kernel. A main difference is that all
forecasts of the quadratic kernel are unbiased, but the forecasts constructed with 18 preselected
variables and a 10 year moving window are now both inefficient. Again the ARX benchmark is not
beaten by the forecasts with 18 preselected variables and forecasts constructed with a 10 year
moving window perform better than those with a 5 year moving window. There are no significant
differences in the estimation method of the tuning parameters. From the pre-selection of variables
can only be concluded that for a moving window of 5 years and the OLS tuning method, pre-selection
provides better forecasts.

For the asset class of commodities, there is no significant difference in accuracy for the two moving
windows and none of the forecasts with a moving window of 5 year is efficient. Furthermore, almost
all forecast with a moving window of 10 years are not unbiased.

No efficient forecasts are also found for the asset class of foreign exchanges and the same holds for

bonds with a 5 year moving window.

4.1.3 Gaussian kernel
In this section with the results of the different kernels used, the Gaussian kernel is statistically

evaluated. The table below shows the results in terms of unbiasedness, accuracy and efficiency.
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Model Unbiasedness ~ MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1)  ARX(1) RW

10y PC -0.843 0.060 0.124 0.380*  0.370* 0.419*
10y OLS -0.950 0.059 0.075 0.382*  0.371* 0.420*
10y PC 18var -0.077 0.058 0.060 0.3968* -0.028  0.464*
10y OLS 18var 0.000 0.060 0.007* 0.380* -0.056 0.419*
Sy PC 0.199 0.063 0.107 0.393*  0.851* 0.383*
5y OLS -0.02 0.064 0.084 0.388*  0.850* 0.378*
S5y PC 18var 0.913 0.064 0.005* 0.386*  0.108 0.376*
Sy OLS 18var 1.008 0.065 0.002* 0.380*  0.100 0.370*

Table 4.3 Evaluation of Gaussian g kernel for the asset class stocks where the shrinkage parameters are estimated with
an OLS regression of y on 4 principal components (PC) and a regression of y on the complete set of macroeconomic and
financial variables (OLS). Furthermore this is done for a moving window of 5 and 10 years.

Note: In the column of unbiasedness the z-statistics are given, where the null hypothesis is that the forecast is unbiased.
The column of Mincer-Zarnowitz shows the p-values of the Wald test using the F-test statistic. The null hypothesis is that
the forecast is efficient.

The significance of the out-of-sample R’ is determined by the Diebold-Mariano statistics. For each model the
corresponding moving window length and the number of variables is chosen in the benchmark for the out-of-sample R’
(for example the 10y PC 18var model is compared with the ARX(1) 10y 18 var). If there is an *, it means that there is a
significant difference in accuracy

* denotes the rejection of the null hypothesis for a significance level of 5 percent

Similarly to the quadratic kernel, all forecasts are unbiased. Again the ARX(1) benchmark cannot be
beaten by the models where 18 variables were preselected. Additionally, inefficient predictions are
found for three out of four forecasts which were constructed with pre-selection of variables.

For the Gaussian kernel the difference in forecast accuracy for the moving windows is less convincing
than for the previous two kernels. Only for the kernel ridge regression with a pre-selection of 18
variables and usage of the principal component estimation method, the Diebold-Mariano statistic
concludes that the 10 year moving window is better than the moving window of 5 years. No
statistical evidence is found for the difference in the estimation methods of the shrinkage parameter
and the pre-selection of variables.

A remarkable observation is that no efficient forecasts are constructed for the other asset classes
(commodities, foreign exchanges and bonds). For the two asset classes, foreign exchanges and
bonds, the Gaussian kernel never beats the AR(1) benchmark and sometimes it even performs worse
in terms of accuracy. Besides, not all forecasts constructed with the Gaussian kernel are unbiased for

these two assets.

The kernels are compared while keeping the shrinkage parameter selection method and the number
of macroeconomic and financial predictors the same. There aren’t any significant differences in
accuracy between the different kernels for the asset class stocks, except that the Gaussian kernel
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provides more accurate forecasts than the quadratic kernel when the ridge parameter is estimated
with a regression of y on all macroeconomic and financial variables and with a 5 year moving
window.

For commodities, the linear kernel is the best of all kernels when using the OLS estimation method
and a moving window of 5 years.

From the Diebold-Mariano statistics for the asset class stocks can be concluded that the quadratic
kernel performs significantly worse than the other two kernels if a moving window of 5 years and the
principal components estimation is used.

The Diebold-Mariano statistics of the last asset class bonds show that for a moving window of 5 years
and the OLS estimation method the linear kernel performs best. The same holds for a 10 year moving
window with the OLS estimation method and a pre-selection of the variables.

Holtrop et al. (2014) concluded that forecast combinations of linear models with 18 variables, chosen
with the LARS method, outperform all other models they used in their research. This unfortunately

also holds true for the KRR models.

4.2 Multi-step ahead forecasts
In this section, the results of the multi-step ahead forecasts are discussed. The section is divided in

three sections related to the different forecast horizons; three months, half a year and a full year
ahead. All evaluations are performed on the ‘total’ volatility, which is the sum of the predicted
volatilities over the total forecasting horizon. (¥, y,.1). Besides this, all forecasts are constructed
with a moving window of 10 years. The statistical evaluation of the other asset classes can be found

in Appendix B.

4.2.1 Three months ahead forecasts
First, the forecasts with a horizon of three months are evaluated. These are like the KRR analyzed in

terms of unbiasedness, accuracy and efficiency and the results are given in the table below

Model Unbiasedness MSPE Mincer-Zarnowitz
p-value
AR(1) -0.770 0.838 0.537
FC 6 vars -0.922 0.783 0.625
FC 12 vars -1.239 0.801 0.145
ARX 6 vars -0.915 0.853 0.001*
ARX 12 vars -1.074 0.905 0.000*
PCA -0.514 0.816 0.710
PLS -1.772 0.805 0.095
RW -0.047 0.946 0.000*
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KRR PC Poly1 0.270 0.857 0.000*
KRR PC Poly2 0.831 0.865 0.000*
KRR PC Gauss -3.670%* 1.383 0.000*
KRR OLS Poly1 0.383 0.854 0.000*
KRR OLS Poly2 1.386 1.820 0.000*
KRR OLS Gauss -0.391 4.360 0.000*

Table 4.4 Evaluation of three months ahead forecasts for the asset class stocks. This is done for auto-regressive model
with one lag (AR(1)), forecast combinations (FC) and ARX model with 6 and 12 variables (selected by LARS), Principal
Component Analysis (PCA), Partially Least Squares (PLS), Random Walk (RW) and Kernel Ridge Regressions (KRR) with
two shrinkage parameter estimations (PC, OLS) and three different kernels (Poly1, Poly2, Gauss)

* denotes the rejection of the null hypothesis for a significance level of 5 percent

Most of the 3-month ahead forecasts are unbiased, except for the predictions made with the
Gaussian Kernel and the shrinkage parameter estimation by regressing y on all macroeconomic and
financial variables. Additionally, most of the forecasts are according to the Mincer-Zarnowitz
regression inefficient. From the Diebold-Mariano statistics presented in Appendix C can be
concluded that ‘KRR OLS Gauss’ provides significantly worse forecasts than all other models.

All models give biased (except the Random Walk model) and inefficient forecasts for the asset class
of commodities. Nonetheless, in terms of accuracy the quadratic kernel ridge regression model with
the principal component tuning parameter estimation method is significantly better for most models
except PCA, PLS and some KRR.

For the asset class of foreign exchanges, all forecasts are unbiased except the forecasts of forecast
combinations and the ARX model. According to the Diebold-Mariano statistics the quadratic kernel
with the OLS tuning parameter estimation method provides the most accurate forecast. However, it
is not significantly better than the random walk and the linear kernel with the principal component
tuning parameter estimation method.

In terms of unbiasedness the same holds for bonds, however in terms of accuracy the best forecast is
now given by partial least squares. Nevertheless, it is not significantly better for two KRR with the

OLS tuning parameter estimation method.

4.2.2 Six months ahead forecasts
In this section the forecasts with a horizon of six months are analyzed. These are again evaluated in

terms of unbiasedness, accuracy and efficiency with results in Table 4.5

Model Unbiasedness MSPE Mincer-Zarnowitz
p-value
AR(1) -1.497 3.408 0.329
FC 6 var -1.674 3.390 0.060
FC 12 vars -1.873 3.540 0.007*
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ARX 6 vars -1.549 4.106 0.000*
ARX 12 vars -1.574 4.396 0.000*
PCA -0.931 3.461 0.245

PLS -2.280* 3.938 0.001*

RW -0.553 4.278 0.000*

KRR PC Poly1 0.403 3.709 0.000*
KRR PC Poly2 0.878 3.984 0.000*
KRR PC Gauss 1.647 5.521 0.000*
KRR OLS Poly1 0.953 3.621 0.000*
KRR OLS Poly2 1.874 6.443 0.000*
KRR OLS Gauss 7.668* 33.23 0.000*

Table 4.5 Evaluation of six months ahead forecasts for the asset class stocks. This is done for auto-regressive model with
one lag (AR(1)), forecast combinations (FC) and ARX model with 6 and 12 variables (selected by LARS), Principal
Component Analysis (PCA), Partially Least Squares (PLS), Random Walk (RW) and Kernel Ridge Regressions (KRR) with
two shrinkage parameter estimations (PC, OLS) and three different kernels (Poly1, Poly2, Gauss)

* denotes the rejection of the null hypothesis for a significance level of 5 percent

Almost all 6-month ahead forecasts are inefficient. Mean squared prediction errors are larger than in
the 3-month ahead forecast, because of the accumulation of errors when the model is not correctly
specified and since the sum is taken over all forecast horizons.

In terms of accuracy, the results are the same as for the three month ahead forecast; the KRR OLS
Gauss performs worst.

For the other asset classes, similar results are found. More models provide inefficient forecasts and

MSPE’s rise. In addition, the random walk model gets beaten by more models.

4.2.3 Twelve months ahead forecasts
Finally, the forecasts with a horizon of twelve months are evaluated.

Model Unbiasedness MSPE Mincer-Zarnowitz
p-value
AR(1) -2.232* 14.76 0.015*
FC 6 vars -2.738* 15.33 0.000*
FC 12 vars -2.495* 16.62 0.000*
ARX 6 vars -3.004* 18.95 0.000*
ARX 12 vars -1.998 23.23 0.000*
PCA -1.393 15.97 0.001*
PLS -2.888* 18.68 0.000*
RW -0.793 20.27 0.000*
KRR PC Poly1l 0.260 17.45 0.000*

18




KRR PC Poly2 0.426 18.00 0.000*
KRR PC Gauss 2.568* 20.00 0.000*
KRR OLS Poly1 1.090 19.75 0.000*
KRR OLS Poly2 2.190* 26.86 0.000*
KRR OLS Gauss 5.931* 70.97 0.000*

Table 4.6 Evaluation of twelve months ahead forecasts for the asset class stocks. This is done for auto-regressive model
with one lag (AR(1)), forecast combinations (FC) and ARX model with 6 and 12 variables (selected by LARS), Principal
Component Analysis (PCA), Partially Least Squares (PLS), Random Walk (RW) and Kernel Ridge Regressions (KRR) with
two shrinkage parameter estimations (PC, OLS) and three different kernels (Poly1, Poly2, Gauss)

* denotes the rejection of the null hypothesis for a significance level of 5 percent

It can be seen that almost all forecasts are biased and the Mincer-Zarnowitz shows that all forecast
are inefficient. The simple first-order autoregressive model and the factor-model with principal
components have the lowest MSPE’s and according to the Diebold-Mariano statistic they beat 7 out

of the 14 models.

4.3 Economical evaluation

In this section, the forecasts of the kernel ridge regression will be evaluated economically for the
asset class stocks. The results in the table below are for models constructed with a 10 year moving

window. For the other asset classes and the moving window of 5 years, see Appendix D.

Stocks Mean STD

100% Market 21.94 67.38
50% Market 8.89  29.03
0% Market 3.38 1.95

Weights € [0,1] Weights € [—1,2]
Model Mean  STD A50  A100 AO' | Mean  STD A50  A100 A0
Real 9.36 17.73 2007 6240 152 | 9.74 19.48 1902 6229 1534

KRR PC Poly1 9.26 19.13 1883 6190 44 9.78 20.54 1805 6200 _1672
KRROLSPolyl 9.30 1991 1818 6172 9 9.57 2075 1764 6173 _1937
KRR PC Poly2 9.21 19.40 1855 6177 43 9.74 2086 1770 6186 _1731
KRROLS Poly2 9.31 2046 1766 6155 22 9.68 2150 -2261 6159 _1908
KRR PC Gauss 9.28 1890 1905 6200 52 9.59 1986 1851 6202 _1634

! For Delta 0, the risk aversion rate is set to y=1. For y=8, the utility function of the buy-and-hold
strategy 0% market does not coincide with the utility function of any model.
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KRROLS Gauss 9.51 21.81 -224 6131 34 9.77 2255 1586 6132 _1913

Table 4.7 Economic evaluation of the stock return volatility forecasts of the different kernel ridge regressions where the
shrinkage parameters are estimated with an OLS regression of y on 4 principal components (PC) and a regression of y on
the complete set of macroeconomic and financial variables (OLS) with a moving window of 10 years. Delta50, Deltal00
and Delta0 are the performance fees an investor is willing to pay extra to use the models instead of the standard
strategies, displayed in basis points. Note: Mean and STD are respectively the average and the standard deviation of the
portfolio return. The ‘real’ model is the economic evaluation where the optimal weights were to be constructed with the
real values for the variances. Two weightings schemes are used, where in the second weighting scheme short selling and
lending is allowed.

Table 4.7 shows that the 100% market strategy does have a high mean, but it also has a high
standard deviation, which is not optimal for the considered investor. The risk-free strategy has a low
standard deviation, but consequently a relatively low return. So one can argue that the 50% market
strategy would be an optimal balance between risk and return for an investor with a quadratic utility
function. For an investor with these preferences, the table shows that using the KRR models
provide a larger mean and a lower standard deviation than the buy-and-hold strategies.

In the table can be seen that for Delta 50, the performance fee that the investor is willing to pay is
the largest for the Gaussian kernel ridge regression using principal components as tuning parameter
estimation method. The other estimation method however shows negative values, which means that
the investor is not willing to use the volatility forecasts of this model. In fact the investor would have
to be paid to use these volatility forecasts. This could be because the standard deviation of the
returns for this model is considerably higher than the rest.

When allowing short selling and lending the best model in terms of economic evaluation stays the
same, but now the quadratic kernel with the OLS estimation method performs worst. In general for
all kernels, the OLS estimation method is worse for all kernels and market strategies. The second
weighting scheme has slightly higher average returns, but this automatically leads to higher standard

deviations

5 Conclusion
This paper researched whether the nonlinear method of kernel ridge regressions (KRR) provides

better forecasts than linear models and the models from Holtrop et al. (2014) constructed with the
Least Angle Regression (LARS) method. Besides this it was examined which models would perform
best when forecasting over a longer horizon, using the direct forecasting approach.

These two research topics were investigated with data of the volatilities of four different asset
classes, i.e. stocks, bonds, commodities and foreign exchanges.

The kernel ridge regressions were performed with three different kernels, namely the linear kernel,
the quadratic kernel and the Gaussian kernel. Furthermore, estimating the necessary tuning

parameters was done in two ways. First, by regressing the relevant volatility on the first four principal
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components of the data with 38 macroeconomic and financial variables. Second, by regressing it on
the complete dataset of macroeconomic and financial variables. Moreover, KRR were done with the
complete set of variables and with 18 variables preselected by LARS.

The statistical evaluation showed that the linear benchmarks were often beaten by the KRR.
However, no clear statistical evidence was found which type of kernel would give the best results. In
general, the 10 year moving window includes more information and provides better outcomes.
Sometimes the pre-selection of variables gave better result, but this difference was not always
significant. Finally, for the methods of selecting the tuning parameters, no explicit conclusion can be
given for the performance when this is statistically evaluated.

Unfortunately, the KRR does not give better results than the model with forecast combinations made
by Holtrop et al. (2014). However, forecast combinations become computationally far more
problematic than KRR, when the number of predictors rises.

When economically evaluating the KRR, it is noticed that the Gaussian kernel using the principal
component estimation method for the tuning parameters gives the investor the highest utility, based
on her risk-averse behavior.

The analysis of the multi-step ahead forecasts shows that the Gaussian kernel ridge regression
performs worse than the other models and that the prediction errors of the simple AR(1) model get
relatively smaller compared to the other models, when the forecast horizon gets larger. The
macroeconomic and financial variables influence the forecasts badly, since there is insufficient
information how these variables develop over time. Better predictions can be made if all these
variables are forecasted properly by other models.

KRR can be examined further in future research by looking at higher order kernels or estimating the
tuning parameters with a different number of principal components. Additional research can also be

done for the multi-step ahead predictions by examining different moving windows.
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Appendices

Appendix A Statistical evaluation KRR

Evaluation of the kernels for the asset classes commodities, foreign exchanges and bonds. The
shrinkage parameters are estimated with an OLS regression of y on 4 principal components (PC) and
a regression of y on the complete set of macroeconomic and financial variables (OLS). Furthermore
this is done for a moving window of 5 and 10 years.

Note: In the column of unbiasedness the z-statistics are given, where the null hypothesis is that the
forecast is unbiased. The column of Mincer-Zarnowitz shows the p-values of the Wald test using the
F-test statistic. The null hypothesis is that the forecast is efficient.

The significance of the out-of-sample R* is determined by the Diebold-Mariano statistics. For each
model the corresponding moving window length and the number of variables is chosen in the
benchmark for the out-of-sample R? (for example the 10y PC 18var model is compared with the
ARX(1) 10y 18 var). If there is an *, it means that there is a significant difference in accuracy

* denotes the rejection of the null hypothesis for a significance level of 5 percent

COMMODITIES
Linear Kernel
Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1)  ARX(1) RW

10y PC -1.922 0.069 0.014* 0.087  0.420* 0.207*

10y OLS -2.969* 0.066 0.009* 0.128*  0.446* 0.242*

10y PC 18var -1.921 0.071 0.005* 0.067 0.058 0.189*

10y OLS 18var -2.458* 0.066 0.017* 0.127* 0.119 0.241*

5y PC -0.010 0.074 0.001* 0.000 0.824* 0.154*

5y OLS -1.717 0.062 0.015* 0.165* 0.853*  0.294*

5y PC 18var -0.062 0.073 0.001* 0.009 -0.097 0.162*

S5y OLS 18var -1.225 0.063 0.004* 0.149* 0.058* 0.280*

Quadratic Kernel

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1)  ARX(1) RW

10y PC -2.049* 0.069 0.013* 0.094* 0.425* 0.212*
10y OLS -2.475* 0.066 0.017* 0.126*  0.445*  0.240*
10y PC 18var -1.730 0.072 0.003* 0.053  0.044 0.177*
10y OLS 18var -2.037* 0.066 0.014* 0.117* 0.109  0.233*
Sy PC 0.133 0.076 0.000* -0.030 0.818* 0.129*
5y OLS -1.610 0.065 0.000* 0.144  0.844* 0.251*
5y PC 18var -0.061 0.075 0.000* -0.011  -0.119  0.145*
5y OLS 18var -0.753 0.069 0.000* 0.059  -0.042 0.204*
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Gaussian Kernel

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1) ARX(1) RW
10y PC -1.358 0.065 0.004* 0.140* 0.454* 0.253*
10y OLS -0.884 0.067 0.001* 0.110  0.435* 0.227*
10y PC 18var -0.260 0.073 0.000* 0.033  0.024 0.160*
10y OLS 18var -0.360 0.075 0.000* 0.014  0.005 0.143*
Sy PC 0.734 0.070 0.000* 0.047 0.832* 0.194*
Sy OLS 0.853 0.072 0.000* 0.018 0.827* 0.170*
Sy PC 18var 1.531 0.075 0.000* -0.017 -0.126 0.140*
5y OLS 18var 1.999* 0.081 0.000* -0.102 -0.220* 0.068
FOREIGN EXCHANGES
Linear Kernel
Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1) ARX(1) RW
10y PC 0.461 0.084 0.001* 0.057 0.777* 0.110*
10y OLS 0.128 0.082 0.356 0.083* 0.783* 0.134*
10y PC 18var 0.416 0.084 0.002* 0.057 -0.079 0.110*
10y OLS 18var 0.009 0.082 0.106 0.082  -0.051 0.133*
Sy PC 0.133 0.087 0.000* -0.039 0.788* 0.078*
Sy OLS 0.146 0.081 0.031* 0.035 0.803* 0.143*
5y PC 18var 0.095 0.087 0.000* -0.043  0.043 0.074*
5y OLS 18var 0.174 0.085 0.002* -0.009 0.075 0.104
Quadratic Kernel
Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1)  ARX(1) RW
10y PC 0.385 0.084 0.001* 0.057 0.777* 0.110*
10y OLS 0.023 0.083 0.107 0.065 0.778* 0.117*
10y PC 18var 0.287 0.084 0.001* 0.056  -0.080 0.109*
10y OLS 18var -0.232 0.084 0.021* 0.057 -0.079 0.110*
Sy PC 0.236 0.093 0.000* -01.09 0.773*  0.016
Sy OLS 0.126 0.084 0.002* -0.002 0.795* 0.110*
5y PC 18var 0.274 0.094 0.000* -0.121  -0.028  0.005

25




S5y OLS 18var 0.250 0.088 0.000* -0.051 0.036 0.067
Gaussian Kernel
Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1) ARX(1) RW
10y PC 1.021 0.081 0.001* 0.087  0.784* 0.138*
10y OLS 0.903 0.082 0.002* 0.082 0.782* 0.133*
10y PC 18var 1.396 0.086 0.000* 0.031 -0.109 0.086*
10y OLS 18var 1.557 0.088 0.000* 0.016 -0.126 0.071*
Sy PC 1.178 0.086 0.000* -0.030  0.790* 0.086*
Sy OLS 1.678 0.089 0.000* -0.062 0.783*  0.057
5y PC 18var 1.555 0.094 0.000* -0.124 -0.031  0.002
5y OLS 18var 2.342% 0.100 0.000* ) -0.095  -0.060
0.194*
BONDS
Linear Kernel
Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1)  ARX(1) RW
10y PC 0.388 0.084 0.003* -0.005 0.237* 0.188*
10y OLS 0.506 0.074 0.737 0.113* 0.327* 0.284*
10y PC 18var 0.458 0.084 0.001* -0.005 -0.228* 0.188*
10y OLS 18var 0.373 0.075 0.375 0.105* -0.093 0.277*
Sy PC 0.459 0.094 0.000* -0.035 0.868*  0.090*
Sy OLsS 0.301 0.081 0.025* 0.113* 0.886* 0.220*
5y PC 18var 0.448 0.093 0.000* -0.014  -0.007 0.108*
S5y OLS 18var 0.496 0.083 0.001* 0.086  0.093  0.196*
Quadratic Kernel
Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1)  ARX(1) RW
10y PC 0.442 0.085 0.001* -0.014 0.230* 0.181*
10y OLS 0.318 0.075 0.516 0.107* 0.322* 0.278*
10y PC 18var 0.425 0.084 0.001* 0.000 -0.222* 0.192*
10y OLS 18var 0.200 0.077 0.134 0.084 -0.119 0.260*
Sy PC 0.241 0.092 0.000* -0.014  0.870* 0.108*
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Sy OLS 0.450 0.083 0.002* 0.087 0.883* 0.197*

Sy PC 18var 0.384 0.092 0.000* -0.012  -0.005 0.110*

5y OLS 18var 0.390 0.087 0.000* 0.042  0.048 0.157*

Gaussian Kernel
Model Unbiasedness =~ MSPE Mincer-Zarnowitz Out-of-sample R?
p-value AR(1)  ARX(1) RW

10y PC 1.537 0.081 0.000* -0.038  0.270* 0.223*

10y OLS 1.633 0.079 0.001* 0.056  0.283* 0.237*

10y PC 18var 1.921 0.087 0.000* -0.036  -0.266* 0.163*

10y OLS 18var 2.265* 0.087 0.000* -0.038  -0.268* 0.162*

Sy PC 1.337 0.091 0.000* -0.001  0.872* 0.119*

Sy OLS 2.120* 0.094 0.000* -0.0296  0.869*  0.097

5y PC 18var 1.517 0.100 0.000* -0.096  -0.088 0.036

5y OLS 18var 2.295% 0.101 0.000* -0.103  -0.095 0.030
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Appendix B Statistical evaluation multi-step ahead forecasts
Evaluation of (direct) multi step ahead forecasts for the asset classes commodities, foreign exchanges

and bonds. This is done for auto-regressive model with one lag (AR(1)), forecast combinations (FC)
and ARX model with 6 and 12 variables (selected by LARS), Principal Component Analysis (PCA),

Partially Least Squares (PLS), Random Walk (RW) and Kernel Ridge Regressions (KRR) with two
shrinkage parameter estimations (PC, OLS) and three different kernels (Polyl, Poly2, Gauss)
* denotes the rejection of the null hypothesis for a significance level of 5 percent.

COMMODITIES
3-months ahead

Model Unbiasedness MSPE Mincer-Zarnowitz

p-value

AR(1) -6.029* 0.508 0.000*

FC 6 vars -10.49* 0.977 0.000*

FC 12 vars -9.043* 0.830 0.000*

ARX 6 vars -8.417* 0.901 0.000*

ARX 12 vars -4.042* 0.730 0.000*

PCA -6.157* 0.474 0.000*

PLS -6.667* 0.472 0.000*

RW -0.486 0.605 0.000*

KRR PC Polyl -2.503* 0.446 0.000*

KRR PC Poly2 -2.838* 0.444 0.000*

KRR PC Gauss -5.109* 0.484 0.000*

KRR OLS Polyl -4.205* 0.472 0.000*

KRR OLS Poly2 -3.708* 0.497 0.000*

KRR OLS Gauss -6.450* 0.965 0.000*

6-months ahead

Model Unbiasedness MSPE Mincer-Zarnowitz

p-value

AR(1) -8.053* 2.136 0.000*

FC 6 vars 12.65* 3.492 0.000*

FC 12 vars 11.28* 2.855 0.000*

ARX 6 vars -9.623* 3.609 0.000*

ARX 12 vars -4.868* 2.940 0.000*

PCA -7.665* 2.125 0.000*

PLS -8.154* 2.044 0.000*

RW -0.579 2.614 0.000*
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KRR PC Poly1 -3.020* 1.821 0.000*
KRR PC Poly2 -3.370* 1.826 0.000*
KRR PC Gauss -6.032* 2.069 0.000*
KRR OLS Poly1 -5.138* 1.964 0.000*
KRR OLS Poly2 -4.723% 2.106 0.000*
KRR OLS Gauss -8.110* 4.904 0.000*
12-months ahead
Model Unbiasedness MSPE Mincer-Zarnowitz
p-value
AR(1) -10.38* 3.482 0.000*
FC 6 vars -15.78* 14.81 0.000*
FC 12 vars -15.10* 12.54 0.000*
ARX 6 vars -12.46* 18.04 0.000*
ARX 12 vars -8.598* 12.14 0.000*
PCA -8.883* 10.27 0.000*
PLS -3.449* 3.625 0.000*
RW -0.744 11.89 0.000*
KRR PC Polyl -3.154* 8.463 0.000*
KRR PC Poly2 -3.496* 8.449 0.000*
KRR PC Gauss -2.321* 8.426 0.000*
KRR OLS Polyl -5.770* 8.366 0.000*
KRR OLS Poly2 -5.502* 8.831 0.000*
KRR OLS Gauss -4.652% 18.80 0.000*
FOREIGN EXCHANGES
3-months ahead
Model Unbiasedness MSPE Mincer-Zarnowitz
p-value
AR(1) 1.629 0.730 0.106
FC 6 vars 21.35% 2.980 0.000*
FC 12 vars 18.34* 2.292 0.000*
ARX 6 vars 15.03* 1.818 0.000*
ARX 12 vars 7.883* 1.113 0.000*
PCA 1.715 0.733 0.045*
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PLS 1.118 0.728 0.023*

RW 0.041 0.684 0.000*

KRR PC Poly1 1.085 0.593 0.000*

KRR PC Poly2 0.837 0.566 0.000*

KRR PC Gauss -0.123 0.821 0.000*

KRR OLS Poly1 0.928 0.573 0.001*

KRR OLS Poly2 1.098 0.641 0.000*

KRR OLS Gauss -3.502* 1.921 0.000*

6-months ahead

Model Unbiasedness MSPE Mincer-Zarnowitz

p-value

AR(1) 1.690 3.182 0.002*

FC 6 vars 18.58* 10.76 0.000*

FC 12 vars 16.55* 8.833 0.000*

ARX 6 vars 11.76* 8.005 0.000*

ARX 12 vars 8.013* 6.011 0.000*

PCA 1.731 3.346 0.000*

PLS 0.646 3.288 0.000*

RW 0.074 2.71 0.000*

KRR PC Polyl 1.430 2.564 0.000*

KRR PC Poly2 1.052 2.502 0.000*

KRR PC Gauss 0.539 3.740 0.000*

KRR OLS Polyl 1.078 2.705 0.000*

KRR OLS Poly2 0.955 3.176 0.000*

KRR OLS Gauss -5.285% 14.117 0.000*

12-months ahead

Model Unbiasedness MSPE Mincer-Zarnowitz

p-value

AR(1) 0.454 13.26 0.000*

FC 6 vars 12.29* 30.66 0.000*

FC 12 vars 10.61* 26.66 0.000*

ARX 6 vars 6.724* 29.84 0.000*

ARX 12 vars 4.701* 29.61 0.000*
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PCA

0.657 13.91 0.000*
PLS -0.683 13.87 0.000*
RW -0.713 14.89 0.000*
KRR PC Poly1 1.374 15.15 0.000*
KRR PC Poly2 0.723 13.18 0.000*
KRR PC Gauss 0.666 19.31 0.000*
KRR OLS Poly1 0.906 15.38 0.000*
KRR OLS Poly2 0.818 20.33 0.000*
KRR OLS Gauss -6.028* 66.27 0.000*
BONDS
3-months ahead
Model Unbiasedness MSPE Mincer-Zarnowitz
p-value
AR(1) 0.858 0.532 0.425
FC 6 vars 17.16* 1.364 0.000*
FC 12 vars 13.87* 1.116 0.000*
ARX 6 vars 13.36* 1.129 0.000*
ARX 12 vars 7.253% 0.930 0.000*
PCA 1.271 0.502 0.430
PLS 0.448 0.452 0.903
RW -0.062 0.764 0.000*
KRR PC Polyl 0.149 0.579 0.000*
KRR PC Poly2 0.453 0.579 0.000*
KRR PC Gauss 1.559 0.678 0.000*
KRR OLS Polyl 0.445 0.476 0.023*
KRR OLS Poly2 -0.049 0.529 0.000*
KRR OLS Gauss -0.740 1.948 0.000*
6-months ahead
Model Unbiasedness MSPE Mincer-Zarnowitz
p-value
AR(1) 0.539 1.937 0.708
FC 6 vars 12.37* 3.445 0.000*
FC 12 vars 9.023* 2.983 0.000*
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ARX 6 vars

7.726* 2.953 0.000*
ARX 12 vars 3.014* 2.934 0.000*
PCA 1.266 1.834 0.265
PLS 0.588 1.711 0.191
RW -0.228 3.228 0.000*
KRR PC Polyl -0.035 2.406 0.000*
KRR PC Poly2 0.214 2.466 0.000*
KRR PC Gauss 4.876* 3.834 0.000*
KRR OLS Poly1 0.108 2.059 0.000*
KRR OLS Poly2 -0.392 2.448 0.000*
KRR OLS Gauss 1.669 12.23 0.000*
12-months ahead
Model Unbiasedness MSPE Mincer-Zarnowitz
p-value
AR(1) 0.639 8.206 0.224
FC 6 vars 8.271 11.20 0.000*
FC 12 vars 6.475 11.80 0.000*
ARX 6 vars 4.335 10.93 0.000*
ARX 12 vars 3.446 12.63 0.000*
PCA 1.498 8.190 0.000*
PLS 1.091 8.137 0.000*
RW 0.186 14.49 0.000*
KRR PC Polyl 0.208 11.01 0.000*
KRR PC Poly2 0.455 11.39 0.000*
KRR PC Gauss 3.845 18.03 0.000*
KRR OLS Poly1 0.307 10.25 0.000*
KRR OLS Poly2 -0.117 12.63 0.000*
KRR OLS Gauss 0.059 44.25 0.000*

32




Appendix C Diebold-Mariano statistics for multi-step ahead forecasts
Results for the DM test where the model on the left is the first model, and the model on the top axis

is the second model

Stocks

3_step 1 2 3 4 H ) T
1 Mall MNal MNal MNal MNal Mal MNal
2 MNal
3 Pakl
4 MNal
H MNal
) MNal
T -0,267]
& 15721 1,655 1623 15461 14614 16073 1,622
A 02861 1,145 05155 00501 -0454 07617 0,5427
10 03554 11307 08535 01541 -0403 07346 05727
N 36373 41655 41256 35027 32425 41564 4,0703
12 0,246 1,131 07364 00132 -0522 0717 05238
13 53943 35335 35377 32736 30265 35514 35555
14 55431 55301 53204 5744 55414 53276 57814
B_step 1 2 3 4 H ) T
1 _Mall MNal MNal MNal MNal Mal MNal
2 MNal MNal MNal Mal MNal
3 1,007 3| MNal MNal Mal MNal
4 13352 20605 13025 Mal MNal
b 15817 20356 22682 Mal Mal
6 05265 04553 -035%3  -1.378 -1,639 MNal
T 2743 32058 20517 -04  -0,E32  2,5374
& 24654 24731 24306 22646 21735 24545
A 05337 1,065 05373 -0,855 -1,354 0,537
10 1,3354 15653 12373 -0243 -0,554 14223 0,175
N 53283 35475 30613 18307 15062 3435 24633
12 05225 06063 02236 -0365 -1541  0,4435 =0,53
13 29446 30037 23036 22027 19357 29253 24343
14 B045 3T 31355 55232 57545 32002 30457
12_step 1 2 3 4 H ) T
1 Mall MNal MNal MNal MNal Mal MNal
2 MNal MNal MNal Mal MNal
314001 16773 Mah Mah Mal Mal
4 13635 25655 1,5536| MNal Mal MNal
5 24123 2,731 23424 20355 Mal MNal
6 27736 11043 -0,613 -163 -2,2635
T 55855 46124 24242 0457 1613
& 35613 35353 34773 33613 31576
A 15232 13215 06106 -0,635 -2,1a7
0 15TTE 14413 032 -04s 2108
N 25214 22021 17523 04035 -1,113
12 21508 20533 16533 03213 -1,273 17601 00,4734
13 3,346 33355 0515 21523 03727 31232 2328
14 60354 6031 53433 55328 L0835 60200 567D
Commodities
3_step 1 2 3 4 H ) T
1 Mall MNal Mal
2 MNal Mal
3 MNal Mal
4 X 2,4352] MNal Mal
5 37934 =31 -1,93 Mal
) =215 6317 5337 Mal
T -1l422 -6574 -6,05 -0,035]
& 16113 05355 0,9103 16557 1,6307)
3 1554 6165 5367 -0,545 -0,76
10 -1643 -B,15 -53T1 -0,30%  -0,505
1 -0464 -R24 -4.34 02012 02363
12 -1554  -6,254 5565 -0,052  -0,005
13 -0463 5835 4525 <5145 -3,835 05544 07533
14 40456 -0,054 03323 04361 1,7905 430355 42613
B_step 1 2 3 4 H ) T
1 _Mah Mah Mah Mah Mal Mah Mal
2 MNal MNal MNal MNal Mal
3 -6, 645 MNal MNal MNal Mal
4 5TE56 03461 55236
5 28301 -1,74  0,5446
6 0204 5742 =352
T -097 5376 4,005
& 23817 13573 21565 2,411
3 -1,634 5255 5317 5643 4005 1686 -1,253
10 -1E02 5205 -3857 -5581  -3,925 -1635 -1,23
M -0263  -357 2467 4101 2584 -0213 00364
12 -1453 5473 3776 5837 -5502 -1,515 -0,531
13 -0,233  -4.7a37 =302 SR15 2302 -0,141  0,53335
14 51353 22405 35636 20242 30352 43355 49971
12_step 1 2 3 4 H ) T
1
2
3
4
H
)
T
& | X
3 1,234 4335 3655 5027 35T -2,225 -1,472
10 -1273 5055 -ET06 5061 -3546 22852 1435
1 SL1ET 4508 5574 4580 S5E 203 -1,277
12 2111 -6,033 4456 -5274  -4,035 =357 -2,167
13 -1,135 5482 -3,0T1 -4.352 -3,33 24681 1,225
14 57674 2056 32867 03127 3,3137 51506 52224

-1,545]
1,553
073
1,547
-0,076
31377

&

-2,383)|
-2312
1,878

2,408
-1,533

39568

-013

&

&

-3.543)
-3.544
-3545
-3.546
=352
-2,381

10,1301
3,933
-0
3445
53523

a

1,3545)
37637
-0,553
30878
32025

a

52323

0,301
12518
11235
19184
45182

:J

:J

-0,21]
0,066
-0,131
06377
57566

10

10

2,0266|
2,2618
36762

B,1761

13821
1282
2,0836
4,5816

10

15643
12821
2,0352
57851

10

-0,042]

-0,167
06755
58548

1 12 13
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mahl Mahd Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah

Mahd Mah
Mal Mah
Mal Mah

3,4505)

87363 53163 55105
1 12 13
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah MNal Mahl Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mal Mal Mah
Mal Mal Mah
-3,G24| Mahd Mah

10332 53423
32657 3,264
1 12 13

Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mahd Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah MNal Mahl Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mah Mal Mal Mah
Mal Mal Mah

-0,232|
27632
B34T4

1 12 13
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal

03462 36708 Mal
54035 4TE56 45514
1 12 13
Mah MaM Mah MNal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mahd Mah Mahl
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mah Mal Mah Mal
Mafl Mah Mal
-0,577) Mah Mal

01523 57685 Mal
67217 55435 50007
1l 12 15
MaM MM BN MM
MaM MM BN MaM
MaM MM BN MaM
MaM MM BN MaM
MaM MM BN MaM
MaM MM BN MaM
MaM MM BN MaM
MaM MM BN MaM
MaM MM BN MaM
MaM MM BN MaM
MaM MM MM
0,086l MaN Nal
0543 56365 Nal___MaN
65631 64631 6,255 Nal
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O zd
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AR] direct
Forccast combi 6 var
Forecast combi 12 var
AR 6 var

AR A2 var

FCA

LS

R

KF_4f_palyl
KF_4f_polyz
KF_4f_Gauzz
KF_OLE_polyl
KR_OLE_paly2
KR_OLS_Gauzz

AR] direct
Forccast combi 6 var
Forccast combi 12 var
AR 6 var

AR A2 var

FCA

LS

R

KF_4f_palyl
KFR_4f_polyz
KF_4f_Gauzz
KR_OLE_polyl
KR_OLE_paly2
KR_OLE_Gauzz

AR] direct
Forccast combi 6 var
Forccast combi 12 var
AR 6 var

AR A2 var

FCA

LS

R

KF_4f_palyl
KR_4f_poly2
KF_4f_Gauzz
KF_OLE_polyl
KR_OLE_paly2
KR_OLS_Gauzz

AR() dircet
Forccast combi 6 var
Forccast combi 12 var
AR 6 var

AR 12 var

FCA

LS

R

KF_4f_palyl
KF_4f_polyz
KF_4f_Gauss
KF_OLS_palyl
KR_OLS_paly2
KFR_OLS_Gauzz

AR() dircct
Forccast combi 6 var
Forccast combi 12 var
AR 6 var

AR 12 var

FCA

LS

R

KF_4f_palyl
KF_4f_polyz
KF_4f_Gauss
KF_OLS_palyl
KR_OLS_paly2
KFR_OLS_Gauzz

AR) dircet
Forccast combi 6 var
Forccast combi 12 var
AR 6 var

AR 12 var

FCA

LS

R

KF_4f_palyl
KF_4f_polyz
KF_4f_Gauss
KF_OLS_palyl
KR_OLS_paly2
KFR_OLS_Gauzz
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Foreign exchanges
3

Bonds

3step 1 2 4 5 4 7 ] E] ] 1l 12 13 14
1Maf Ml MaM MaM  MaM MaM MaM MaM MaM MaM MaM MaM MaN MaNl 1 AR direct
2 MM MM MaM M:M MM MaM MaM MM 2 Forecast combi & var
3 MM MaM MaM MM MM MaM MaM MM 3 Forecast combi 12 var
4 MM MaM MaM o MM MM MaM MaM MM 4 ARXEwar
5 MM MaM MaM MM MM MaM MaM MM 5 AR 12 var
3 Ml MaM  MaM MM MaM MaM MaM MM 6 FCA
7 -0,254] MaM  MaM MaM BN BN Mol T RLE
& 1560 051 034 D642 03334 13573 13639 Mol MaM  MaM MaN BaN  Mal & R
9 2223 8334 OB -4,533 2201 -2 1519 MM MaM MaM MaM MM 3 KR_4i_polyl
0 EsEE M1 -R08 T2 4557 25T 2562 1548 -5,214 Mabl  MaMl MaM Mahl 10 KF_8f_polyi
f M3 -BT4E TS4 BT 2,235 0854 11326 1262 43403 4507H Ml MM 1 KF_4F_Guuss
2 2363 -182 9264 -3 -ATI5 -2857 -2314  -1539 -0,888 02873 -4,81 Ml MaM 12 KR_OLS_pelyt
15 255 0EE -ETES  -BTE3 -R35Z @77 1212 1463 13031 13ETT 5025 2445 15 KR_OLE_poly2
4 B3T3 -3608 -1384) 04052 35912 63815 BSIE  -0055 TEH9 79832 75604  B,1351 85,3008 14 KR_OLE_Gause
E_step 1 2 3 4 5 [3 7 8 E] 0 1l 12 13 14
1 MaM_ MiM MM MaM MaM MM MM MaM MaM MM MM MaM MaM MM 1 AR[T) direct
2 MaN MaM o MaM o MaN RMaN WaN MaM MM RN RN Mal 2 Farceast combi & var
3 MaM  MaM MaM MaM BN WaN MaM MM RGN RN Mal 3 Forecast combi 12 var
4 1 -1, MaM  MaM MaM MaN MaN MaM MaM MaN RN Nal 4 ARX 6w
5 43555 -804 6583 -352 MaM  MaM MaM BN BN Mol 5 AR A2 var
6 2562 0536 -T445 5559 Mol MaM  MaM MaN BaN  Mal 6 FlA
7 08884 -9518 -152E 503 MaM  MaM MaM BN BN Mol T PLE
§ 22155 05906 12365 14259 Mafl  MaM  MaM MaN BaN Mal & R
3 216 045 576 5742 -2,513) MM MaM o MaM MaM MM 3 KR_4i_palyl
M0 2424 043 -BTET -6TET 5952 2§16 -2,84 -2,329 -1,674 MM MaM MaM MM 10 KR_8f_pely2
fOLE0T 30T T8 5233 -GTS6 12444 14715 2126 BIdd D472 Ml MaM MaM 1 KF_df_tGauss
2 FH -0 5959 -5T48 5312 -2287 2305 -2235 10548 14114 5521 Ml MaM 12 KR_OLS_pelyl
15 006 -BE05 5078 6057 4345 0461 -0F27 22T 2825 28655 -2653 5,175 Hahl 15 KR_OLE_poly2
4 55055 20569 33913 35507 55055 51435 82035 0458 3424 H1TH 84154 32785 35154 14 KR_OLE_Gause
12_step 1 2 3 4 5 [3 7 5 E] ] 1l 12 13 14
1 MaM_ MiM MM MM MaM MM MM MaM MaM MM MM MaM MaM MM 1 AR direct
2 Ml MaM  MaM MM MaM MaM MaM MM 2 Forecast combi & var
3 MM MaM MaM MM MM MaM MaM MM 3 Forecast combi 12 var
4 Ml MaMl  MaM  MaM MaM el MaM MaN 4 AR B var
5 MM MM MaM M:M MM MaM MaM MM 5 AR A2 var
[ Ml MaMl  MaM MaM MaM MaMl MaW MaNl 6 FA
7 -(1,0E5, MaM  MaM MaM BN BN Mol T PLE
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1 MM MaM MaM MM RN MaM MaM o MaM MM MM RN MaM MaM o MM 1 AR(T) direct
2 2 Farceast combi 6 var
3 3 Farecast combi 12 var
4 4 AR 6 var
5 5 ARX 12 var
3 & PCA
7 T PLE
& & Rw
3 3 KF_4i_polyl
10 10 KF_di_poly2
11 11 KR_$f_Gauzs
iz 12 KR_OLS_polyl
15 13 KR_OLS_paly2
N 14 KR_DLS_Gauzs
1 AR(T) dircet
2 Forecast combi 6 var
3 Forecast combi 12 var
4 AR var
5 ARX 12 var
& FCa
T PLE
8 RW
3 KF_4f_pelyl
10 KF_af_poly2
11 KF_4i_Gauzs
12 KR_OLS_pelyl
13 KR_OLS_pely2
14 KR_OLS_Gauzs
1 AR(T) direet
2 Farecast combi 6 var
3 Farecast combi 12 var
4 AR var
1,361 5 ARX 12 var
004 2367 4353 AT -2,053 MaM MM RN MaM MM NaM Mam & PCA
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1 G406 ETO0S5  ZTH61 A6 ZE6ET 61253 612N -5253 47183 4,545 Mab  MaM 11 KF_4i_Gauss
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Appendix D Economic evaluation

Stocks mean 5TD Bonds mean 5TO Commod  mean 5TD
1002 markel 021944 067382 1003 market Q025ES  0.23471 100 market 037162 11063
G0 market 0.08892 0.29027 G0 market  0.11BES 0.02353 A0 market 012147 042815
0 market | 00333 0.01955 02 mark.et 0.03381  0.01955 0% mark.et 0.033%1  0.01955
mean  STO Dlelka 50 Deltalln Deltal Mmean 570 Delta 50 Deltalld Deltad mean  STO Dlelta 50 Deltalln Deltad
weights[0,1] gamma =1 weight=[0,1] weights[0,1) gammas=1
1 0033 [N nisg 0613 0.004 1 0036 0033 0.053 0160 -0.002 1 0053 1N |74 0330 -1126 -0.264
2 0.034 0137 0124 012 0.004 2 0036 0033 0.053 0160 -0.002 2 0.061 016G 0330 -1124 -0.433
3 0033 0133 gz 017 .o 3 0036 0033 0.058 0153 -0.002 3 0058 1N 143 0326 -1126 -0.26E
4 0.094 0.208 A O.E1E o.ooz 4 0.036 0.033 0.058 0153 -0z 4 052 [TA - 0.328 B AT (e
i} 0.0z 0134 0.136 0.618 0.004 i} 0.036 0.033 0.053 0160 -0.00z i} 0.060 0164 0.323 -1185 0 0443
[ 0.0595 0.20% 0iws 0617 0.003 [ 0.036 0.033 0.053 0160 -0.00z [ 0.061 0166 0.330 -l183 0395
T 0.0593 0.20% [IAFES 0.E1E 0.o0z T 0.036 0.033 0.05% 0159 -0.00z T 0.057 0165 0.326 1187 0315
i 0.094 0218 0168 0613 0.o0z i 0.036 0.033 0.058 0159 -0.002 i 0.0s7 0168 0.326 1187 0.1
k] 0.093 0133 013 0620 0.005 k] 0.036 0032 0.053 0160 -0.00 k] 0081 0163 0.329 -ig3 0348
10 0033 0187 018z 0.EZ0 0.o0g 10 0036 0032 0.053 0160 -0.002 10 0064 01v: 0452 -1173 -0.336
1 0.035 0z1e -0zz4 012 000z 1 0036 0033 0.058 0153 -0.002 1 0060 0163 0327 -1124 -0.326
1z 0033 0206 0ive 0.E15 0.ong 12 0036 003z 0.053 016D -0.001 1z 0062 0163 0323 -8z -0.302
12 0.0a3 0193 A 0.eo7 -0.00% 12 0037 0.034 0.080 01E1 -0.0m 12 0.0ES 0158 0337 RA A
" 0.0 0134 0174 0.607 -0.006 14 0.037 0.035 0.053 0161 -0.0m " 0.064 0158 0.337 AL 0174
15 0.083 n.204 ALY 0.EOE -0.00% 15 0.037 0.033 0.053 0160 -0.0m 15 0.0e2 0160 0.333 1183 -0.154
1 0.083 n2m 0170 0505 -0.007 16 0.037 0.033 0.059 0160 -0.0m 1 0.081 0155 0.334 1185 -0.180
17 n.0gz2 0194 0178 0.608 -0.005 17 0037 0.0734 0.059 0161 -0.0m 17 0.064 0152 0.337 AL RIAR
18 0.082 0137 0173 0.607 -0.005 18 0.037 0.0%34 0.053 0161 -0.00 18 0054 0.155 0.337 -lig2 -0.470
13 0.083 0.z202 0163 0.E0E -0.006 13 0037 0033 0.053 0160 -0.001 13 0.061 0156 0333 -1185 0131
20 008z 0138 vz 0.E0E -0.00& 20 0037 0033 0.053 016D -0.001 20 0053 015z 0334 -1187 -0.175
i 0083 0138 [IA ] 0602 -0.004 21 0037 0033 0.053 016D -0.001 i 0062 0143 0337 -1185 062
22 0.0gz 0133 [IAFE 0.605 -0.003 22 0.037 0.033 0.053 0160 -0.0m 22 0.061 0144 0.338 1187 -0LIE1
23 n.0gz 0137 073 0.607 -0.004 23 0.037 0.032 0.053 0160 -0.0m 23 0.057 0144 0.334 R 0147
24 0.0sz 0193 0178 0.60% 0.0 24 0.037 0o 0.053 0160 -0.0m 24 0.057 0133 0.336 A BT
real 0.094 017 n.2m 0.624 0.ms real 0.036 0.039 0.057 0158 -0.005 real 0.045 0134 0.325 -l.z0z RIAED
mean STD DOelta 50 Deltal00 Oelkal mean 5TO Dela 50 Deltal0] Oelkad mean 5TD DOelta 50 Delta100 Oelkad
weight=[-1.2) gamma = 05 weights[-1.2] gammas=1 weight=(-12) gamma = 0,25
1 0038 0.205 o1 0.EZ0 06T 1 0063 0233 Mak 0037 0.0 1 0058 1N 113 0327 -1126 Rakl
2 0.09% 0.2z 017s 0613 RATNS 2 0.083 0233 MaM 0037 0010 2 0053 0163 o.zzy 1125 Mah
3 0.096 n.2o07 0176 0617 0133 3 00w 0.236 Mahl ooz 0.010 3 0.057 017 0.323 -1187 Mahl
4 0.057 0216 -0225 0616 RINERS 4 n.ovo 0.236 Mahl o3z 0.010 4 0.056 01w 0.323 1188 Mahl
5 0.097 n.20a [IAFES 0619 RN 5 0.089 0.233 Mah 0037 0.010 5 0.058 0162 0.326 -1186 Mahl
B 0100 02y 0220 0618 -018g B 0.089 0.234 Mahl 0037 0.010 B 0.059 017 0.326 -1184 hahl
7 0.087 025 0228 0618 -0 7 007 0.236 Mahl 0.0 .01 7 0056 0163 0.323 -1188 Mahl
g 0.033 0227 0158 0614 -0.133 g 0070 0.236 Makl 003z 0.010 g 0.055 v 032z -1128 RMakl
q 0.036 0133 0185 0.EZ0 RUAL: q 0.o7n 0233 Mak 0037 0.003 q 0060 1A b 0325 -1124 Rakl
10 0.036 0137 [INE-F 0E21 -0175 10 0.o7n 0234 Makl 0037 0.003 10 0062 oire -0.451 -1120 Rak)
1 0.09% 0.2z% 0153 0612 -0 1 norz 0.237 MaM 0.0H 0.009 1 052 0174 023 1125 Mah
12 0.057 0216 -0225 0.615 RN 12 norz 0.235 Mahl 0034 0.003 12 0.060 0175 0.325 <1183 Mahl
13 0.054 0.2z 0160 0.604 -0.22% 13 0.075s 0.236 Mahl 0.035 n.nzz 13 0.064 017s 045 -1178 -0EED
1 0.0gz2 n.207 0163 0.604 -0.229 14 0.076 0.236 Mah 0035 n.nzz 1 0.064 0172 -0452 -178 049
15 0.083 0212 0158 0.e0z2 0.2 15 0077 0.240 Mahl nnzy n.nzz 15 0.081 017e 0.326 -8z 049
16 0.083 0213 0153 0.E0: -0.230 16 0077 0.239 Mak 0030 0023 16 0060 (1A b 0.326 -1.124 -0E43
17 0.083 0.206 016G 0.E0G -0.227 17 0076 0.237 Mak 0035 0.0zz 17 0064 ore 0452 -1173 -0.EG0
18 0.024 021z 0160 0604 -0.227 18 0076 0237 Makl 0035 0023 18 0062 o 0323 -1 -0E4E
1 0.084 0214 [Tl 0.0z -0.2zs 12 0.o7r 0239 MaM onzg o.0z3 1 0.080 0174 0.328 -8z D4R
20 0.054 0214 0158 0.603 -0.228 20 0.ovr 0.239 Mahl 0030 0.023 20 0.053 01w 0.326 -1185 0644
il 0.054 0.z 0161 0.605 0225 21 0.076 0.236 Mahl 0037 0.023 il 0.061 0166 0.330 -l1g4 -0E42
22 0.054 n.z0a 0163 0.605 -0.224 22 0.07e 0.236 Mahl 0037 0.023 22 0.059 0161 0.330 -l136 -0E37
23 0.083 0210 0161 0.604 -0.228 23 0077 0.237 Mahl 0034 nox 23 0.055 0.1e2 0.326 -1189 0B
24 0.083 0.203 1AL 0.604 0222 24 0.076 0.236 Mahl 0037 n.ox 24 0.055 0156 0.328 -lia0 0634
real 0.037 0135 0180 0E23 -0153 real 0073 0234 Makl 0.040 Rak) real 0047 0147 0273 -1.200 Mak)
The models corresponding to the numbers are found below:
Model Type of Tuning parameter estimation Number of Moving
# kernel method variables window
1 Linear Principal components 38 10 years
2 Linear Principal components 18 10 years
3 Linear OLS all variables 38 10 years
4 Linear OLS all variables 18 10 years
5 Quadratic Principal components 38 10 years
6 Quadratic Principal components 18 10 years
7 Quadratic OLS all variables 38 10 years
8 Quadratic OLS all variables 18 10 years
9 Gaussian Principal components 38 10 years
10 Gaussian Principal components 18 10 years
11 Gaussian OLS all variables 38 10 years
12 Gaussian OLS all variables 18 10 years
13 Linear Principal components 38 5 years
14 Linear Principal components 18 5 years
15 Linear OLS all variables 38 5 years
16 Linear OLS all variables 18 5 years
17 Quadratic Principal components 38 5 years
18 Quadratic Principal components 18 5 years
19 Quadratic OLS all variables 38 5 years
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20 Quadratic OLS all variables 18 5 years
21 Gaussian Principal components 38 5 years
22 Gaussian Principal components 18 5 years
23 Gaussian OLS all variables 38 5 years
24 Gaussian OLS all variables 18 5 years
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