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Abstract 
This paper uses the nonlinear method kernel ridge regression to forecast volatilities with 38 

macroeconomic and financial variables of four different asset classes, i.e. stocks, bonds, commodities 

and foreign exchanges. Kernels which are used in this paper are the linear, quadratic and the 

Gaussian kernel.  Tuning parameters of this method are estimated in two ways, i.e. with principal 

components and on the full dataset of variables. Furthermore, the Least Angle Regression method is 

used to preselect variables, which are then used by the kernel ridge regression. Next to examining 

this nonlinear method, 3-month, 6-month and 12-month ahead forecasts are made for kernel ridge 

regressions and numerous of other linear models. Main findings are that kernel ridge regression 

performs better than simple linear models, and multi-step ahead forecasts with macroeconomic and 

financial variables are not better than a simple autoregressive model. 

 

Keywords: Volatility, kernel ridge regression, multi-step ahead forecasting, nonlinear forecasting, 

high dimensionality 
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1 Introduction 
 
Volatility has been one of the most successful areas of research in time series econometrics and 

forecasting in recent decades (Andersen, Bollerslev, Christoffersen & Diebold, 2006). Volatility is a 

statistical measure of the dispersion of returns for a given asset. It refers to the amount of 

uncertainty or risk about the size of changes in an underlying asset. Volatility has become an 

indispensable topic in financial markets for risk managers, portfolio managers, investors, 

academicians and all that have something to do with financial markets (Minkah, 2007). It is an 

essential input for risk management, asset pricing and portfolio management (Christiansen et al. 

2012). Due to the increase in stock market uncertainty and the recent financial crises, there has been 

a growing interest in volatility as an input in asset allocation to determine an optimal portfolio. 

Additionally, financial risk management has taken a central role since a specific amendment of the 

Basel Accord was made in 1996 to allow banks to use their model together with the Value-at-Risk 

approach for calculating market risk related risk capital (McNeil & Frey, 2000). This amendment 

effectively makes volatility forecasting a compulsory risk-management exercise for many financial 

institutions around the world (Granger & Poon, 2003).  

Next to the financial applications of volatility, it has wide repercussion on the economy as a whole. 

According to Granger and Poon (2003), there is clear evidence of an important link between financial 

market uncertainty and public confidence. For this reason, policy makers often rely on market 

estimates of volatility as an indicator for the vulnerability of financial markets and the economy.  

During the last two decades, nonlinear relations in macroeconomic and financial time series have 

been getting more attention. However, methods such as regime-switching models and neural 

networks are only appropriate for a small number of predictors and the improvement over linear 

forecasting techniques is limited (Stock and Watson, 1999; Medeiros et al., 2006; Teräsvirta et al., 

2005).  Andersen et al. (2006) give an overview of several time series models for volatility, including 

GARCH models, stochastic volatility models and realized volatility models. Although these models are 

discussed in detail, they merely relate the current level of volatility to its past without including any 

other variables. 

Christiansen, Schmeling and Schrimpf (2012) examined 38 macroeconomic variables with the use of 

forecast combinations and Bayesian Model Averaging. However, Bayesian Model Averaging does not 

take nonlinearity in to account. 

Earlier this year, the macroeconomic and financial variables which mainly affect the volatility of four 

different assets were investigated by Holtrop, Kers, Mourer and Verkuijlen (2014). In their research, 

the Least Angle Regression (LARS) method was used to preselect the variables and then, with the 
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most important variables, forecasts were constructed with forecast combinations and factor-based 

models. However, these forecasting methods are also of a linear type.  

In the research of Exterkate, Groenen, Heij and van Dijk (2013), a technique is found that provides 

better forecasts than the traditional linear and nonlinear method. This technique is called kernel ridge 

regression (KRR) and can deal with the nonlinear relations between the (realized) volatility and a 

large number of macroeconomic and financial variables. The technique has been applied to forecast 

four key measures of real economic activity by Exterkate et al. (2013). Nevertheless, this method has 

not yet been applied to forecast realized volatility and not on (by LARS) preselected variables. 

KRR is partly based on the standard linear ridge regression, which is commonly used in economic 

forecasting (Kim & Swanson, 2013), since it can be a better method than the standard ordinary least 

squares procedure, when the number of predictors is relatively larger than the number of 

observations. However kernel ridge regression uses a trick so that it has less computational 

drawbacks. The central idea is to use a set of nonlinear prediction functions and prevent overfitting 

by penalization. The set of predictors are transformed (or mapped) in to a high-dimensional space of 

nonlinear functions of the predictors. These transformations (or mappings) of the predictors are 

chosen in an efficient way leading to so-called kernel functions. Different kernel functions are known 

and the ones which are used in this research are the polynomial and the Gaussian kernel functions. 

The goal of this research is to examine if this technique significantly produces more accurate forecasts 

than the linear type of predictions made by the linear methods of Holtrop, Kers, Mourer and 

Verkuijlen (2014). For easy comparison, the same dataset from Christiansen et al. (2012) is used 

which contains 38 macroeconomic and financial variables covering the period from January 1983 to 

December 2010. 

The KRR forecast models are constructed with a moving window of 5 and 10 years, starting with 

forecasting in January 1993. KRR are performed on the full set of macroeconomic and financial 

variables and on 18 variables which are preselected by LARS first. In addition, the shrinkage 

parameters are estimated in two ways; first by regressing the volatility on the first four principal 

components of the variables and second by regressing it on the complete dataset of variables. 

 

Furthermore, in this research the volatilities will be forecasted not only 1-month ahead, but also on a 

horizon of 3, 6 and 12 months. Investigations (Chen and Hong (2010)) have shown that on longer 

horizons returns can be better than on short horizons. If this also holds for volatilities will be checked 

in this paper. Forecasting over extended horizons will be done for both the models constructed by 

Holtrop et al. (2014) and the kernel ridge regressions. To avoid having to forecast all macroeconomic 
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and financial variables, so-called ‘direct’ forecasts are constructed. With the iterating forecast method 

we would have to presume that the variables follow a random walk. 

The KRR forecasts will be evaluated statistically and economically. For the multi-step ahead forecasts 

will only a statistical analysis will be given. 

 

In statistical terms can be seen that the kernel ridge regressions beat the linear benchmarks, although 

the ARX-model with 18 by LARS selected variables is still better. The type of kernel or the method of 

estimating the tuning parameters doesn’t show significant differences, but a 10 year moving window 

generally provides better forecasts. This could be, because then more information can be taken in to 

account when estimating the models.  

From the economic interpretation can be concluded that the Gaussian kernel using the principal 

component estimation method for the tuning parameters gives the investor the highest utility, based 

on her risk-averse behavior. 

 

The statistical evaluation of the multi-step ahead forecasts shows that the macroeconomic and 

financial variables the forecasts over longer horizons. Better predictions can be made if all these 

variables are forecasted properly by other models 

 

The research is organized as follows. Chapter 2 describes the data, which are used in this research. In 

Chapter 3, the methodology will be discussed followed by the results in Chapter 4. Finally in Chapter 

5, a conclusion will be given. 

2 Data 
 
The data, which will be used in this research are retrieved from the ‘short’ dataset of Christiansen et 

al (2012) and consists of 336 monthly observations from January 1983 to December 2010. The 

dataset contains the volatility of four asset classes; stocks, commodities, bonds and exchange rates. 

The volatility is defined as the natural log of the square root of the squared daily returns. For the 

volatility of the asset class of stocks are based on the daily returns of the S&P 500. The 10-year 

Treasury note futures contract traded on the Chicago Board of Trade (CBOT) and the Standard & 

Poor’s GSCI commodity index are used for the volatilities of the bonds and the commodities 

respectively. Finally, to determine the volatility of the exchange rates, an equally weighted basket of 

currencies from 49 countries against the US dollar is formed. With the daily spot rate changes of this 

aggregate foreign exchange portfolio, the realized volatility is constructed.  
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Next to these dependent variables, it also contains 38 macroeconomic and financial variables, which 

are classified in five economic categories. The first category contains equity market variables and risk 

factors, like the earnings price ratio and the dividend price ratio. In the second category, interest 

rates, spreads and bond market factors can be found. Examples of variables in this category are the T-

bill rate and the Term Spread. The Dollar Risk Factor and the Carry Trade Factor are examples of 

variables which are included in the third category, foreign exchange variables and risk factors. The 

fourth category contains liquidity and credit risk variables. In this category, the Default Spread, TED 

spread and the Foreign Exchange Bid-Ask Spread can be found. The last category includes a large 

number of macroeconomic variables such as employment growth, industrial production growth and 

interest rates. 

The stationarity of these variables was already investigated by Holtrop et al (2014) and appropriate 

transformations were performed.  Christiansen et al. (2012) already adjusted the relevant variables 

for seasonality.  

3 Methodology 
 
As already stated in the introduction, this research consists of two parts. First, forecasting the 

volatility with use of the kernel ridge regression and second, performing longer step ahead forecasts 

for the models constructed by Holtrop et al. (2014) and also for the kernel ridge regressions. 

3.1 Kernel ridge regression 
This section describes the method of kernel ridge regression, which was proposed by Exterkate et al. 

(2013) as an approach for forecasting with many predictors that are related nonlinearly to the target 

variable.  

Ordinary least squares (OLS) regression and ridge regression form the basis for the method of kernel 

ridge regression (KRR). Moreover, KRR is just an ordinary ridge regression on transformed regressors 

with a kernel trick, which improve computational efficiency. First, an introduction to ridge regression 

is given. Afterwards, the ridge regression will be extended to kernel ridge regression. 

When performing an OLS regression, it is necessary that the number of predictors N is smaller or 

equal to the number of observations T. In general, N is much smaller than T to avoid overfitting. The 

in-sample-fit of overfitted models might be good, but forecasting out-of-sample predictions 

commonly leads to poor results. 

Ridge regression tries to find a balance between the goodness-of-fit and the magnitude of the vector 

with parameters β. 
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The main difference between the OLS regression and the ridge regression is the penalization of the 

regression coefficients. The ridge regression estimate β is defined as the value of β that minimizes the 

ridge criterion 

       
         

 

 

    

 

The penalty term or the shrinkage parameter λ is chosen beforehand. 

The solution of the minimization problem is given by: 

                             

As can be seen, if the shrinkage parameter approaches zero, the ridge parameter estimate equals the 

OLS parameter estimate. 

   
   

                   
   

                                

The forecast of the dependent variable is easily computed by 

           
                     

                                                           

A great advantage of this forecast is that it can be computed when the number of observations T is 

smaller than the number of predictors N. However, when N becomes very large, the inversion of the 

N x N matrix        can lead to computational problems. 

To overcome this problem, kernel ridge regression is introduced, which also allows for nonlinear 

prediction functions. These nonlinear functions are made possible by so-called mappings of the N 

original predictor variables x in M transformed variables z (      ).  All transformed variables are 

collected in a matrix Z with rows   
       

 . In the ridge parameter estimates the X’s are simply 

replaced by Z’s, leading to the following kernel ridge regression estimate          and forecast: 

                
            

                            
            

To allow for flexible forms of nonlinearity, the number of transformed predictor variables needs to be 

larger than the number of original predictor variables. However, calculating the matrix ZTZ can lead to 

computational difficulties, since this matrix has dimensions M x M and M>>N. 

A solution for this problem is the so-called kernel trick. The basic idea is that, since the number of 

observations T is smaller than the number of transformed predictor variables M, working with T-
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dimensional objects reduces the computational difficulties.  This reduction of the dimensions can be 

shown by algebraic manipulations (Exterkate et al. (2013)) 

First, the ridge regression estimator is rewritten                        as 

                                                                             

                     
 

 
           

Pre-multiplying (2) by Z gives                 , or 

                     

The forecast of the dependent variable can now be written as 

           
         

 

 
     
           

 

 
     
                      

 
 

 
     
                                

              

      
                                                                                                                   

where              is a T x 1 vector and       is called a T x T kernel matrix.  

The (p,q)-th element of K equals   
         

 
      and the q-th element of 

            
        . 

It is important that a mapping φ is chosen, so                   can be computed without 

computing      and      separately. κ is the so-called kernel function and various types of these 

functions are known, such as the polynomial and the Gaussian kernel functions. Before computing 

the kernel matrix K, each observation x is divided by a positive scaling factor σ to control for the 

relative importance of the terms in     . For example, the weights of the different polynomial 

degrees are for the linear terms divided by σ and for the second-order terms by σ2. The way of 

selecting the scaling factor will be discussed in Section 3.1.3. Kernel functions which will be used in 

this research are the polynomial and the Gaussian kernel functions and these will be explained in the 

next two subsections. 

3.1.1 Polynomial kernel 
A polynomial function always has a degree, which is the highest degree of its terms. A polynomial 

kernel also has degrees. The first degree is a linear kernel function, hence        and        

              . Then it holds that the transformed matrix Z is the same as the original matrix with 

predictors (Z=X).  Likewise,      
       , which leads to the kernel matrix           and 
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                   . Inserting this in the forecast (3) gives            
               

     
              , which is the same as the linear ridge regression forecast in (1). 

A quadratic kernel function can be retrieved from a mapping which contains a constant term, 

variables, and their squares and cross products. This leads to the quadratic kernel function 

                           

The derivation of this result is shown in Exterkate et al. (2013).  

A generalization of the polynomial kernel functions is given by 

                            

where d is the maximum degree for which the mapping of a consists all polynomials in the elements 

of a. 

3.1.2 Gaussian kernel 
The Gaussian kernel function is given by 

            
 

 
        

An advantage is that this kernel can be used, even if the number of transformed variables M 

approaches infinity    .  

The elements of the corresponding mapping are the “dampened” polynomials 

 
    
  

  
  

    

 

   

 

A difficulty of performing KRR is how to select the parameters λ and σ, called respectively the 

shrinkage parameter and the scaling parameter. This selection will be examined in the next 

subsection. 

3.1.3 Tuning parameter selection 
For the implementation of KRR, two parameters need to be estimated. These are the shrinkage 

parameter λ and the scaling parameter σ. 

This is done, as stated in Exterkate et al. (2013). They give estimates based on the signal-to-noise 

ratio (for λ) and the smoothness assumption (for σ). These estimates differ between the used kernel 

functions and are stated below 
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where cN is the 95th percentile of the χ2 distribution with N degrees of freedom,     can be computed 

in two ways. Exterkate et al. (2013) calculate the R-squared from the OLS regression of y on the first 

four principal components of X, but earlier Exterkate (2013) also stated that     can be obtained from 

linear OLS regression of y on a constant and X. In both cases the tuning parameters are re-estimated 

for each window.  

The KRR will be applied on the full set of 38 predictors and on the best 18 macroeconomic and 

financial variables preselected by LARS, as was done by Holtrop et al (2014). In addition, the KRR 

models will be estimated on a moving window of 5 and 10 years.  

3.2 Longer step ahead forecasts 
As already stated in the introduction section, longer step ahead forecasts will be made for all models. 

According to Taieb et al. (2012) , there are a number of strategies to forecast h-step ahead. Two of 

these strategies will be discussed below.  The recursive strategy is also the oldest and most intuitive 

forecasting strategy. With this strategy, the parameters of the model are estimated with the data until 

time period T. Then with this model and  the parameters a one-step ahead prediction is made. 

Thereafter this prediction is used as input in the forecasting periods ahead keeping the parameters of 

the model the same. This strategy is sensitive to accumulation of errors. Errors in the intermediate 

forecasts are spread forward in the forecast horizon. Furthermore, for an ARX-model the exogenous 

variables are then presumed to follow a random walk, which is generally not the case. 

Another strategy is the direct strategy, which forecasts each horizon independently from the others. 

An advantage is that does not use any approximated values to compute the forecasts. So there is no 

accumulation of errors. A drawback is that dependencies between the variables       are not taken 

in to account and computational time increases since the model has to be re-estimated for each 

forecast horizon. 

An example of such a ‘direct’ forecast is given for the ARX(1)-model, which is then specified as follows 
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Now a forecast for yT+h can be calculated without having to forecast the x-variables first. However, the 

coefficients α, β and ci have to be estimated for each forecast horizon. 

Multi-step ahead forecasts will be made on a quarterly (3 months, H=3), half-yearly (6 months, H=6) 

and yearly (12 months, H=12) horizon. Furthermore, more interesting is to predict the volatility over 

this period, and not specifically the volatility in month T+h. This is easily done by taking the sum of all 

the forecasted volatilities. (     
 
    . 

3.3 Statistical evaluation 
The statistical evaluation of the kernel ridge regressions and the multi-step ahead forecasting will be 

done by analyzing the three factors accuracy, efficiency and unbiasedness of the forecasts of the 

constructed models. The statistical evaluation of the models of Holtrop et al. (2014) was also based 

on these three factors.  

To evaluate the accuracy, the Mean Squared Prediction Error (MSPE) is used. 

     
 

 
   

 

 

   

 

To compare the MSPEs of the forecast of the models and benchmarks, the out-of-sample R2 is used. 

The out-of-sample R2 is defined by  

  
          

           

             
 

One can see that a negative out-of-sample R2 corresponds with a lower performance in accuracy than 

the benchmark model. So positive values of this R2 correspond with a more accurate forecast than 

the benchmark.  

The MSPE’s aren’t directly comparable, since it is not necessary that a lower MSPE implies a better 

forecast. However, the Diebold Mariano test can be used to determine if the differences in the 

prediction errors are statistically significant. The null hypothesis of this test is that the sample mean 

of the difference in squared prediction errors of two different models i,j is not significantly larger than 

zero. 

   
  

        
 

        

                                                      
 

   
  

 

   

          

Where     is the sample mean of dt+1 and n is the number of forecasts which is equal to 216. With a 

significance level of 5 percent, the critical value of this one-sided test is equal to 1.645. If the DM 
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statistic is positive, this means that    is positive, since the (square root of the) variance in the DM-

statistic is always positive. Then can be concluded that the sample mean of the squared prediction 

errors of model i          
  are larger than the prediction errors of model j and so model i performs 

worse than model j in terms of accuracy.  

To analyze the efficiency of the forecasts, a Mincer-Zarnowitz regression is used 

                       

The null hypothesis is that it should not be possible to forecast the forecast errors, based on the info 

at the time the forecast is made. In the regression above this null hypothesis is tested by a Wald test 

on the joint restrictions,    = 0 and    = 1.  

Finally, the unbiasedness of the forecasts is checked. This unbiasedness means that the expected 

value of the forecast errors should be equal to zero. To evaluate if the sample mean of the forecast 

errors differ significantly from zero, a standard Z-test is performed. 

3.4 Economical evaluation 
Besides the statistical evaluation, a practical evaluation will be performed, known as the economical 

evaluation for the forecasts of the kernel ridge regression. This will be done by creating a fictive 

investor who selects his portfolio based on an investment function. Cakmakli and van Dijk (2013) also 

made use of this method and applied the following investment function of returns and volatility 

forecasts. 

    
    

           
 

 
                                                                       

In this equation,   is the rate of risk aversion. The portfolio return        consists of the return in a 

risk-free investment        and investing in the assets, which are considered in this paper       .      

denotes the part of the portfolio which is invested in these assets. 

                                 

The returns of the risk-free investment are retrieved from the 3-months T-bill rate, since no data is 

available for 1-month T-bill rates before 2001. The returns of the stocks consist of the monthly stock 

return on the S&P 500. For the other two assets, commodities and bonds, the data are derived 

respectively from the S&P GSCI Commodity Index and the monthly return on the 10-year T-bond.  

The return forecast will be the average return of the past 5 and 10 years, depending on the window 

of the forecast. The volatility forecast will be the forecasts of the KRR models which are constructed 

in this paper. To obtain the optimal weights in the portfolio the variance of the portfolio is needed 
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since the variance of the risk free return is equal to zero because it is assumed that        is fixed at 

the end of month t. The covariance between the return of the risk-free investment and the 

investment in the relevant asset is equal to zero. 

 

With the variance of the portfolio, the investment function can be maximized to obtain the optimal 

weights in the portfolio.  

    
    

           
 

 
                 

    

                              
 

 
     

            

     
    

                              
 

 
     

            

                                  

This leads to the optimal weights     
  

    
  

                 

            
 

Two cases are considered; first, the weights are bounded between zero and one (    
        ). 

These weights imply that short selling and lending are not allowed. In the second case, short selling 

and lending are permitted (    
         ). Transaction costs are neglected. To evaluate what an 

investor is willing to pay for using the volatility forecasts of this paper, the maximum performance 

fee is calculated. To be able to do this, a quadratic utility function is assumed (West, Edison & Cho, 

1993). The average utility is given by 

   
 

 
          

 

 

 

     
      
  

   

   

                                            

Here W is defined as the wealth to be invested and n is the number of time periods where the 

investing is analyzed. In order to calculate the maximum performance fee, the utility of a strategy 

arising from the forecast of the constructed models (strategy a) needs to be compared with an 

unsophisticated buy-and-hold strategy (strategy b). The buy-and-hold strategy consists of either only 

investing in the risk-free t-bonds, only investing in the market, or in an equally weighted combination 

of the two. 
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From this equation the delta can be calculated, which is a fraction of the wealth that the investor is 

maximally willing to pay for this information. Hence, the performance of the model gets larger, if the 

delta of the relevant model rises. 

 

Finally, after the forecasts have been evaluated statistically and economically, it can be seen if the 

non-linear forecasts, constructed by KRR, are better than the linear forecasts. Besides this, it can be 

concluded how the longer-step ahead forecasts perform. 

4 Results 
 
First, the results of the kernel ridge regressions will be evaluated. Thereafter, the results of the multi-

step ahead forecasts will be examined. The final section gives the economical evaluation of the 

forecasts of KRR. 

The tables that will be shown in the sections are all about the asset class stocks. The results of the 

other classes are shown in the appendices and are briefly summarized in the text. 

4.1 Kernel ridge regressions 
In this section, the results of the kernel ridge regression are discussed. As already explained in 

Section 3.1, different kernel functions are used. In Section 4.1.1, the linear kernel will be analyzed, 

followed by the quadratic kernel in Section 4.1.2 and finally the Gaussian kernel in Section 4.1.3. At 

the end of this section, the different kernels are compared with each other. The statistical results of 

the other asset classes can be found in Appendix A. 

4.1.1 Linear kernel 
First the linear kernel is statistically evaluated. The models are tested as stated in Section 3.3 for 

unbiasedness, accuracy and efficiency. 

 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC -1.595 0.059 0.105 0.382* 0.372* 0.421* 

10y OLS -2.196* 0.061 0.090 0.369* 0.359* 0.409* 

10y PC 18var -1.843 0.061 0.036* 0.360* -0.090 0.401* 

10y OLS 18var -2.010* 0.060 0.117 0.374* -0.066 0.413* 

5y PC -1.595 0.059 0.292 0.354* 0.842* 0.344* 

5y OLS -2.196* 0.061 0.402 0.349* 0.841* 0.339* 

5y PC 18var -1.843 0.061 0.243 0.345* 0.048 0.334* 
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5y OLS 18var -2.010* 0.060 0.380 0.365* 0.077 0.354* 

Table 4.1 Evaluation of linear kernel for the asset class stocks where the shrinkage parameters are estimated with an OLS 
regression of y on 4 principal components (PC) and a regression of y on the complete set of macroeconomic and financial 
variables (OLS). Furthermore this is done for a moving window of 5 and 10 years. 
Note: In the column of unbiasedness the z-statistics are given, where the null hypothesis is that the forecast is unbiased. 
The column of Mincer-Zarnowitz shows the p-values of the Wald test using the F-test statistic. The null hypothesis is that 
the forecast is efficient. 
The significance of the out-of-sample R

2
 is determined by the Diebold-Mariano statistics. For each model the 

corresponding moving window length and the number of variables is chosen in the benchmark for the out-of-sample R
2
 

(for example the 10y PC 18var model is compared with the ARX(1) 10y 18 var). If there is an *, it means that there is a 
significant difference in accuracy 
* denotes the rejection of the null hypothesis for a significance level of 5 percent 

The table above shows that when the shrinkage parameters are estimated with a regression of the 

volatility on the complete set of macroeconomic and financial variables, biased forecasts are 

produced. In general the forecasts overestimate the true value in a negative way, since values below 

zero are found when analyzing the unbiasedness. 

The mean squared prediction errors (MSPE) of all the forecasts are roughly equal, but not all 

benchmarks are beaten. For the linear kernel where 18 macroeconomic and financial variables are 

preselected by LARS, the ARX-model with 18 preselected variables is not beaten and for the 10-year 

moving window it can be seen that the benchmark even has a smaller MSPE. Fortunately the random 

walk model produces significantly worse forecasts than the linear kernel ridge regressions.  

From the Diebold-Mariano statistics can be concluded that the forecasts constructed with a moving 

window of 10 years are significantly better than those with a moving window of 5 years.  A possible 

explanation might be that the moving window of 10 years contains more information. Preselecting 

the variables with LARS sometimes gives significantly better results, but not always. 

No significant differences in MSPE are found between the tuning parameter estimation method with 

principal components and the method with the complete matrix with independent variables. 

All forecasts are efficient, apart from the model with the 18 preselected variables, the tuning 

parameter estimation by four principal components and a moving window of 10 years. 

 

For commodities similar results are found, but for the asset class of foreign exchanges, the forecasts 

of the linear kernel  almost never significantly beat the benchmark models of AR(1) and ARX(1). 

However, all linear kernel forecasts are unbiased and the random walk model is beaten most of the 

times. The forecasts of the linear kernel for the asset class bonds are even worse in terms of 

accuracy. 

4.1.2 Quadratic kernel 
In this section the polynomial kernel with two degrees is evaluated. Table 4.2 shows the results in 

terms of unbiasedness, accuracy and efficiency.  
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Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC -1.275 0.059 0.067 0.384* 0.374* 0.423* 

10y OLS -1.844 0.060 0.072 0.375* 0.365* 0.414* 

10y PC 18var -1.282 0.060 0.031* 0.373* -0.067 0.413* 

10y OLS 18var -1.532 0.061 0.034* 0.361* -0.088 0.401* 

5y PC -0.602 0.068 0.157 0.347* 0.840* 0.336* 

5y OLS -1.212 0.070 0.169 0.331* 0.836* 0.320* 

5y PC 18var -0.622 0.067 0.078 0.358* 0.068 0.348* 

5y OLS 18var -1.027 0.068 0.095 0.349* 0.054 0.338* 

Table 4.2 Evaluation of quadratic kernel for the asset class stocks where the shrinkage parameters are estimated with an 
OLS regression of y on 4 principal components (PC) and a regression of y on the complete set of macroeconomic and 
financial variables (OLS). Furthermore this is done for a moving window of 5 and 10 years. 
Note: In the column of unbiasedness the z-statistics are given, where the null hypothesis is that the forecast is unbiased. 
The column of Mincer-Zarnowitz shows the p-values of the Wald test using the F-test statistic. The null hypothesis is that 
the forecast is efficient. 
The significance of the out-of-sample R

2
 is determined by the Diebold-Mariano statistics. For each model the 

corresponding moving window length and the number of variables is chosen in the benchmark for the out-of-sample R
2
 

(for example the 10y PC 18var model is compared with the ARX(1) 10y 18 var). If there is an *, it means that there is a 
significant difference in accuracy 
* denotes the rejection of the null hypothesis for a significance level of 5 percent 

Results in Table 4.2 are quite similar to the results of the linear kernel. A main difference is that all 

forecasts of the quadratic kernel are unbiased, but the forecasts constructed with 18 preselected 

variables and a 10 year moving window are now both inefficient. Again the ARX benchmark is not 

beaten by the forecasts with 18 preselected variables and forecasts constructed with a 10 year 

moving window perform better than those with a 5 year moving window. There are no significant 

differences in the estimation method of the tuning parameters. From the pre-selection of variables 

can only be concluded that for a moving window of 5 years and the OLS tuning method, pre-selection 

provides better forecasts. 

For the asset class of commodities, there is no significant difference in accuracy for the two moving 

windows and none of the forecasts with a moving window of 5 year is efficient. Furthermore, almost 

all forecast with a moving window of 10 years are not unbiased. 

No efficient forecasts are also found for the asset class of foreign exchanges and the same holds for 

bonds with a 5 year moving window. 

4.1.3 Gaussian kernel 
In this section with the results of the different kernels used, the Gaussian kernel is statistically 

evaluated. The table below shows the results in terms of unbiasedness, accuracy and efficiency.  
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Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC -0.843 0.060 0.124 0.380* 0.370* 0.419* 

10y OLS -0.950 0.059 0.075 0.382* 0.371* 0.420* 

10y PC 18var -0.077 0.058 0.060 0.3968* -0.028 0.464* 

10y OLS 18var 0.000 0.060 0.007* 0.380* -0.056 0.419* 

5y PC 0.199 0.063 0.107 0.393* 0.851* 0.383* 

5y OLS -0.02 0.064 0.084 0.388* 0.850* 0.378* 

5y PC 18var 0.913 0.064 0.005* 0.386* 0.108 0.376* 

5y OLS 18var 1.008 0.065 0.002* 0.380* 0.100 0.370* 

Table 4.3 Evaluation of Gaussian q kernel for the asset class stocks where the shrinkage parameters are estimated with 
an OLS regression of y on 4 principal components (PC) and a regression of y on the complete set of macroeconomic and 
financial variables (OLS). Furthermore this is done for a moving window of 5 and 10 years. 
Note: In the column of unbiasedness the z-statistics are given, where the null hypothesis is that the forecast is unbiased. 
The column of Mincer-Zarnowitz shows the p-values of the Wald test using the F-test statistic. The null hypothesis is that 
the forecast is efficient. 
The significance of the out-of-sample R

2
 is determined by the Diebold-Mariano statistics. For each model the 

corresponding moving window length and the number of variables is chosen in the benchmark for the out-of-sample R
2
 

(for example the 10y PC 18var model is compared with the ARX(1) 10y 18 var). If there is an *, it means that there is a 
significant difference in accuracy 
* denotes the rejection of the null hypothesis for a significance level of 5 percent 

Similarly to the quadratic kernel, all forecasts are unbiased. Again the ARX(1) benchmark cannot be 

beaten by the models where 18 variables were preselected. Additionally, inefficient predictions are 

found for three out of four forecasts which were constructed with pre-selection of variables. 

For the Gaussian kernel the difference in forecast accuracy for the moving windows is less convincing 

than for the previous two kernels. Only for the kernel ridge regression with a pre-selection of 18 

variables and usage of the principal component estimation method, the Diebold-Mariano statistic 

concludes that the 10 year moving window is better than the moving window of 5 years. No 

statistical evidence is found for the difference in the estimation methods of the shrinkage parameter 

and the pre-selection of variables. 

A remarkable observation is that no efficient forecasts are constructed for the other asset classes 

(commodities, foreign exchanges and bonds). For the two asset classes, foreign exchanges and 

bonds, the Gaussian kernel never beats the AR(1) benchmark and sometimes it even performs worse 

in terms of accuracy. Besides, not all forecasts constructed with the Gaussian kernel are unbiased for 

these two assets. 

 

The kernels are compared while keeping the shrinkage parameter selection method and the number 

of macroeconomic and financial predictors the same. There aren’t any significant differences in 

accuracy between the different kernels for the asset class stocks, except that the Gaussian kernel 
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provides more accurate forecasts than the quadratic kernel when the ridge parameter is estimated 

with a regression of y on all macroeconomic and financial variables and with a 5 year moving 

window. 

For commodities, the linear kernel is the best of all kernels when using the OLS estimation method 

and a moving window of 5 years.  

From the Diebold-Mariano statistics for the asset class stocks can be concluded that the quadratic 

kernel performs significantly worse than the other two kernels if a moving window of 5 years and the 

principal components estimation is used. 

The Diebold-Mariano statistics of the last asset class bonds show that for a moving window of 5 years 

and the OLS estimation method the linear kernel performs best. The same holds for a 10 year moving 

window with the OLS estimation method and a pre-selection of the variables.  

Holtrop et al. (2014) concluded that forecast combinations of linear models with 18 variables, chosen 

with the LARS method, outperform all other models they used in their research. This unfortunately 

also holds true for the KRR models.  

4.2 Multi-step ahead forecasts 
In this section, the results of the multi-step ahead forecasts are discussed. The section is divided in 

three sections related to the different forecast horizons; three months, half a year and a full year 

ahead. All evaluations are performed on the ‘total’ volatility, which is the sum of the predicted 

volatilities over the total forecasting horizon. (     
 
    . Besides this, all forecasts are constructed 

with a moving window of 10 years. The statistical evaluation of the other asset classes can be found 

in Appendix B. 

4.2.1 Three months ahead forecasts 
First, the forecasts with a horizon of three months are evaluated. These are like the KRR analyzed in 

terms of unbiasedness, accuracy and efficiency and the results are given in the table below 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) -0.770 0.838 0.537 

FC 6 vars -0.922 0.783 0.625 

FC 12 vars -1.239 0.801 0.145 

ARX 6 vars -0.915 0.853 0.001* 

ARX 12 vars -1.074 0.905 0.000* 

PCA -0.514 0.816 0.710 

PLS -1.772 0.805 0.095 

RW -0.047 0.946 0.000* 
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KRR PC Poly1 0.270 0.857 0.000* 

KRR PC Poly2 0.831 0.865 0.000* 

KRR PC Gauss -3.670* 1.383 0.000* 

KRR OLS Poly1 0.383 0.854 0.000* 

KRR OLS Poly2 1.386 1.820 0.000* 

KRR OLS Gauss -0.391 4.360 0.000* 

Table 4.4 Evaluation of three months ahead forecasts for the asset class stocks. This is done for auto-regressive model 
with one lag (AR(1)), forecast combinations (FC) and ARX model  with 6 and 12 variables (selected by LARS), Principal 
Component Analysis (PCA), Partially Least Squares (PLS), Random Walk (RW) and Kernel Ridge Regressions (KRR) with 
two shrinkage parameter estimations (PC, OLS) and three different kernels (Poly1, Poly2, Gauss) 
* denotes the rejection of the null hypothesis for a significance level of 5 percent 

Most of the 3-month ahead forecasts are unbiased, except for the predictions made with the 

Gaussian Kernel and the shrinkage parameter estimation by regressing y on all macroeconomic and 

financial variables. Additionally, most of the forecasts are according to the Mincer-Zarnowitz 

regression inefficient. From the Diebold-Mariano statistics presented in Appendix C  can be 

concluded that ‘KRR OLS Gauss’ provides significantly worse forecasts than all other models.  

All models give biased (except the Random Walk model) and inefficient forecasts for the asset class 

of commodities. Nonetheless, in terms of accuracy the quadratic kernel ridge regression model with 

the principal component tuning parameter estimation  method is significantly better for most models 

except PCA, PLS and some KRR. 

For the asset class of foreign exchanges, all forecasts are unbiased except the forecasts of forecast 

combinations and the ARX model. According to the Diebold-Mariano statistics the quadratic kernel 

with the OLS tuning parameter estimation method provides the most accurate forecast. However, it 

is not significantly better than the random walk and the linear kernel with the principal component 

tuning parameter estimation method. 

In terms of unbiasedness the same holds for bonds, however in terms of accuracy the best forecast is 

now given by partial least squares. Nevertheless, it is not significantly better for two KRR with the 

OLS tuning parameter estimation method.  

4.2.2 Six months ahead forecasts 
In this section the forecasts with a horizon of six months are analyzed. These are again evaluated in 

terms of unbiasedness, accuracy and efficiency with results in Table 4.5 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) -1.497 3.408 0.329 

FC 6 var -1.674 3.390 0.060 

FC 12 vars -1.873 3.540 0.007* 
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ARX 6 vars -1.549 4.106 0.000* 

ARX 12 vars -1.574 4.396 0.000* 

PCA -0.931 3.461 0.245 

PLS -2.280* 3.938 0.001* 

RW -0.553 4.278 0.000* 

KRR PC Poly1 0.403 3.709 0.000* 

KRR PC Poly2 0.878 3.984 0.000* 

KRR PC Gauss 1.647 5.521 0.000* 

KRR OLS Poly1 0.953 3.621 0.000* 

KRR OLS Poly2 1.874 6.443 0.000* 

KRR OLS Gauss 7.668* 33.23 0.000* 

Table 4.5 Evaluation of six months ahead forecasts for the asset class stocks. This is done for auto-regressive model with 
one lag (AR(1)), forecast combinations (FC) and ARX model  with 6 and 12 variables (selected by LARS), Principal 
Component Analysis (PCA), Partially Least Squares (PLS), Random Walk (RW) and Kernel Ridge Regressions (KRR) with 
two shrinkage parameter estimations (PC, OLS) and three different kernels (Poly1, Poly2, Gauss) 
* denotes the rejection of the null hypothesis for a significance level of 5 percent 

Almost all 6-month ahead forecasts are inefficient. Mean squared prediction errors are larger than in 

the 3-month ahead forecast, because of the accumulation of errors when the model is not correctly 

specified and since the sum is taken over all forecast horizons. 

 In terms of accuracy, the results are the same as for the three month ahead forecast; the KRR OLS 

Gauss performs worst. 

For the other asset classes, similar results are found. More models provide inefficient forecasts and 

MSPE’s rise. In addition, the random walk model gets beaten by more models. 

4.2.3 Twelve months ahead forecasts 
Finally, the forecasts with a horizon of twelve months are evaluated.  

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) -2.232* 14.76 0.015* 

FC 6 vars -2.738* 15.33 0.000* 

FC 12 vars -2.495* 16.62 0.000* 

ARX 6 vars -3.004* 18.95 0.000* 

ARX 12 vars -1.998 23.23 0.000* 

PCA -1.393 15.97 0.001* 

PLS -2.888* 18.68 0.000* 

RW -0.793 20.27 0.000* 

KRR PC Poly1 0.260 17.45 0.000* 
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KRR PC Poly2 0.426 18.00 0.000* 

KRR PC Gauss 2.568* 20.00 0.000* 

KRR OLS Poly1 1.090 19.75 0.000* 

KRR OLS Poly2 2.190* 26.86 0.000* 

KRR OLS Gauss 5.931* 70.97 0.000* 

Table 4.6 Evaluation of twelve months ahead forecasts for the asset class stocks. This is done for auto-regressive model 
with one lag (AR(1)), forecast combinations (FC) and ARX model  with 6 and 12 variables (selected by LARS), Principal 
Component Analysis (PCA), Partially Least Squares (PLS), Random Walk (RW) and Kernel Ridge Regressions (KRR) with 
two shrinkage parameter estimations (PC, OLS) and three different kernels (Poly1, Poly2, Gauss) 
* denotes the rejection of the null hypothesis for a significance level of 5 percent 

It can be seen that almost all forecasts are biased and the Mincer-Zarnowitz shows that all forecast 

are inefficient. The simple first-order autoregressive model and the factor-model with principal 

components have the lowest MSPE’s and according to the Diebold-Mariano statistic they beat 7 out 

of the 14 models. 

4.3 Economical evaluation 
 
In this section, the forecasts of the kernel ridge regression will be evaluated economically for the 

asset class stocks. The results in the table below are for models constructed with a 10 year moving 

window. For the other asset classes and the moving window of 5 years, see Appendix D. 

Stocks Mean STD 
      

 

100% Market 21.94 67.38 
      

 

50% Market 8.89 29.03 
      

 

0% Market 3.38 1.95 
      

 

 
Weights        Weights         

Model Mean STD Δ50 Δ100 Δ01 Mean STD Δ50 Δ100 Δ01 

Real 9.36 17.73 2007 6240 152 9.74 19.48 1902 6229 -1534 

KRR PC Poly1 9.26 19.13 1883 6190 44 9.78 20.54 1805 6200 -1672 

KRR OLS Poly1 9.30 19.91 1818 6172 9 9.57 20.75 1764 6173 -1932 

KRR PC Poly2 9.21 19.40 1855 6177 43 9.74 20.86 1770 6186 -1731 

KRR OLS Poly2 9.31 20.46 1766 6155 22 9.68 21.50 -2261 6159 -1908 

KRR PC Gauss 9.28 18.90 1905 6200 52 9.59 19.86 1851 6202 -1634 

                                                           
 
1 For Delta 0, the risk aversion rate is set to γ=1. For γ=8, the utility function of the buy-and-hold 
strategy 0% market does not coincide with the utility function of any model.  
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KRR OLS Gauss 9.51 21.81 -224 6131 34 9.77 22.55 1586 6132 -1913 

Table 4.7 Economic evaluation of the stock return volatility forecasts of the different kernel ridge regressions where the 
shrinkage parameters are estimated with an OLS regression of y on 4 principal components (PC) and a regression of y on 
the complete set of macroeconomic and financial variables (OLS) with a moving window of 10 years. Delta50, Delta100 
and Delta0 are the performance fees an investor is willing to pay extra to use the models instead of the standard 
strategies, displayed in basis points. Note: Mean and STD are respectively the average and the standard deviation of the 
portfolio return. The ‘real’ model is the economic evaluation where the optimal weights were to be constructed with the 
real values for the variances. Two weightings schemes are used, where in the second weighting scheme short selling and 
lending is allowed. 

Table 4.7 shows that the 100% market strategy does have a high mean, but it also has a high 

standard deviation, which is not optimal for the considered investor.  The risk-free strategy has a low 

standard deviation, but consequently a relatively low return. So one can argue that the 50% market 

strategy would be an optimal balance between risk and return for an investor with a quadratic utility 

function.  For an investor with these preferences, the table shows that using the KRR models 

provide a larger mean and a lower standard deviation than the buy-and-hold strategies.   

In the table can be seen that for Delta 50, the performance fee that the investor is willing to pay is 

the largest for the Gaussian kernel ridge regression using principal components as tuning parameter 

estimation method. The other estimation method however shows negative values, which means that 

the investor is not willing to use the volatility forecasts of this model. In fact the investor would have 

to be paid to use these volatility forecasts. This could be because the standard deviation of the 

returns for this model is considerably higher than the rest. 

When allowing short selling and lending the best model in terms of economic evaluation stays the 

same, but now the quadratic kernel with the OLS estimation method performs worst. In general for 

all kernels, the OLS estimation method is worse for all kernels and market strategies. The second 

weighting scheme has slightly higher average returns, but this automatically leads to higher standard 

deviations 

5 Conclusion 
This paper researched whether the nonlinear method of kernel ridge regressions (KRR) provides 

better forecasts than linear models and the models from Holtrop et al. (2014) constructed with the 

Least Angle Regression (LARS) method. Besides this it was examined which models would perform 

best when forecasting over a longer horizon, using the direct forecasting approach. 

These two research topics were investigated with data of the volatilities of four different asset 

classes, i.e. stocks, bonds, commodities and foreign exchanges.  

The kernel ridge regressions were performed with three different kernels, namely the linear kernel, 

the quadratic kernel and the Gaussian kernel. Furthermore, estimating the necessary tuning 

parameters was done in two ways. First, by regressing the relevant volatility on the first four principal 
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components of the data with 38 macroeconomic and financial variables. Second, by regressing it on 

the complete dataset of macroeconomic and financial variables. Moreover, KRR were done with the 

complete set of variables and with 18 variables preselected by LARS. 

The statistical evaluation showed that the linear benchmarks were often beaten by the KRR. 

However, no clear statistical evidence was found which type of kernel would give the best results. In 

general, the 10 year moving window includes more information and provides better outcomes. 

Sometimes the pre-selection of variables gave better result, but this difference was not always 

significant. Finally, for the methods of selecting the tuning parameters, no explicit conclusion can be 

given for the performance when this is statistically evaluated. 

Unfortunately, the KRR does not give better results than the model with forecast combinations made 

by Holtrop et al. (2014). However, forecast combinations become computationally far more 

problematic than KRR, when the number of predictors rises. 

When economically evaluating the KRR, it is noticed that the Gaussian kernel using the principal 

component estimation method for the tuning parameters gives the investor the highest utility, based 

on her risk-averse behavior. 

The analysis of the multi-step ahead forecasts shows that the Gaussian kernel ridge regression 

performs worse than the other models and that the prediction errors of the simple AR(1) model get 

relatively smaller compared to the other models, when the forecast horizon gets larger. The 

macroeconomic and financial variables influence the forecasts badly, since there is insufficient 

information how these variables develop over time. Better predictions can be made if all these 

variables are forecasted properly by other models. 

KRR can be examined further in future research by looking at higher order kernels or estimating the 

tuning parameters with a different number of principal components. Additional research can also be 

done for the multi-step ahead predictions by examining different moving windows. 
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Appendices 

Appendix A Statistical evaluation KRR 
Evaluation of the kernels for the asset classes commodities, foreign exchanges and bonds. The 
shrinkage parameters are estimated with an OLS regression of y on 4 principal components (PC) and 
a regression of y on the complete set of macroeconomic and financial variables (OLS). Furthermore 
this is done for a moving window of 5 and 10 years. 
Note: In the column of unbiasedness the z-statistics are given, where the null hypothesis is that the 
forecast is unbiased. The column of Mincer-Zarnowitz shows the p-values of the Wald test using the 
F-test statistic. The null hypothesis is that the forecast is efficient. 
The significance of the out-of-sample R2 is determined by the Diebold-Mariano statistics. For each 
model the corresponding moving window length and the number of variables is chosen in the 
benchmark for the out-of-sample R2 (for example the 10y PC 18var model is compared with the 
ARX(1) 10y 18 var). If there is an *, it means that there is a significant difference in accuracy 
* denotes the rejection of the null hypothesis for a significance level of 5 percent 
 
COMMODITIES 
Linear Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC -1.922 0.069 0.014* 0.087 0.420* 0.207* 

10y OLS -2.969* 0.066 0.009* 0.128* 0.446* 0.242* 

10y PC 18var -1.921 0.071 0.005* 0.067 0.058 0.189* 

10y OLS 18var -2.458* 0.066 0.017* 0.127* 0.119 0.241* 

5y PC -0.010 0.074 0.001* 0.000 0.824* 0.154* 

5y OLS -1.717 0.062 0.015* 0.165* 0.853* 0.294* 

5y PC 18var -0.062 0.073 0.001* 0.009 -0.097 0.162* 

5y OLS 18var -1.225 0.063 0.004* 0.149* 0.058* 0.280* 

 
Quadratic Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC -2.049* 0.069 0.013* 0.094* 0.425* 0.212* 

10y OLS -2.475* 0.066 0.017* 0.126* 0.445* 0.240* 

10y PC 18var -1.730 0.072 0.003* 0.053 0.044 0.177* 

10y OLS 18var -2.037* 0.066 0.014* 0.117* 0.109 0.233* 

5y PC 0.133 0.076 0.000* -0.030 0.818* 0.129* 

5y OLS -1.610 0.065 0.000* 0.144 0.844* 0.251* 

5y PC 18var -0.061 0.075 0.000* -0.011 -0.119 0.145* 

5y OLS 18var -0.753 0.069 0.000* 0.059 -0.042 0.204* 
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Gaussian Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC -1.358 0.065 0.004* 0.140* 0.454* 0.253* 

10y OLS -0.884 0.067 0.001* 0.110 0.435* 0.227* 

10y PC 18var -0.260 0.073 0.000* 0.033 0.024 0.160* 

10y OLS 18var -0.360 0.075 0.000* 0.014 0.005 0.143* 

5y PC 0.734 0.070 0.000* 0.047 0.832* 0.194* 

5y OLS 0.853 0.072 0.000* 0.018 0.827* 0.170* 

5y PC 18var 1.531 0.075 0.000* -0.017 -0.126 0.140* 

5y OLS 18var 1.999* 0.081 0.000* -0.102 -0.220* 0.068 

 
FOREIGN EXCHANGES 
Linear Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC 0.461 0.084 0.001* 0.057 0.777* 0.110* 

10y OLS 0.128 0.082 0.356 0.083* 0.783* 0.134* 

10y PC 18var 0.416 0.084 0.002* 0.057 -0.079 0.110* 

10y OLS 18var 0.009 0.082 0.106 0.082 -0.051 0.133* 

5y PC 0.133 0.087 0.000* -0.039 0.788* 0.078* 

5y OLS 0.146 0.081 0.031* 0.035 0.803* 0.143* 

5y PC 18var 0.095 0.087 0.000* -0.043 0.043 0.074* 

5y OLS 18var 0.174 0.085 0.002* -0.009 0.075 0.104 

 
Quadratic Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC 0.385 0.084 0.001* 0.057 0.777* 0.110* 

10y OLS 0.023 0.083 0.107 0.065 0.778* 0.117* 

10y PC 18var 0.287 0.084 0.001* 0.056 -0.080 0.109* 

10y OLS 18var -0.232 0.084 0.021* 0.057 -0.079 0.110* 

5y PC 0.236 0.093 0.000* -01.09 0.773* 0.016 

5y OLS 0.126 0.084 0.002* -0.002 0.795* 0.110* 

5y PC 18var 0.274 0.094 0.000* -0.121 -0.028 0.005 
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5y OLS 18var 0.250 0.088 0.000* -0.051 0.036 0.067 

 
 
Gaussian Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC 1.021 0.081 0.001* 0.087 0.784* 0.138* 

10y OLS 0.903 0.082 0.002* 0.082 0.782* 0.133* 

10y PC 18var 1.396 0.086 0.000* 0.031 -0.109 0.086* 

10y OLS 18var 1.557 0.088 0.000* 0.016 -0.126 0.071* 

5y PC 1.178 0.086 0.000* -0.030 0.790* 0.086* 

5y OLS 1.678 0.089 0.000* -0.062 0.783* 0.057 

5y PC 18var 1.555 0.094 0.000* -0.124 -0.031 0.002 

5y OLS 18var 2.342* 0.100 0.000* 
-

0.194* 
-0.095 -0.060 

 
BONDS 
Linear Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC 0.388 0.084 0.003* -0.005 0.237* 0.188* 

10y OLS 0.506 0.074 0.737 0.113* 0.327* 0.284* 

10y PC 18var 0.458 0.084 0.001* -0.005 -0.228* 0.188* 

10y OLS 18var 0.373 0.075 0.375 0.105* -0.093 0.277* 

5y PC 0.459 0.094 0.000* -0.035 0.868* 0.090* 

5y OLS 0.301 0.081 0.025* 0.113* 0.886* 0.220* 

5y PC 18var 0.448 0.093 0.000* -0.014 -0.007 0.108* 

5y OLS 18var 0.496 0.083 0.001* 0.086 0.093 0.196* 

 
Quadratic Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC 0.442 0.085 0.001* -0.014 0.230* 0.181* 

10y OLS 0.318 0.075 0.516 0.107* 0.322* 0.278* 

10y PC 18var 0.425 0.084 0.001* 0.000 -0.222* 0.192* 

10y OLS 18var 0.200 0.077 0.134 0.084 -0.119 0.260* 

5y PC 0.241 0.092 0.000* -0.014 0.870* 0.108* 
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5y OLS 0.450 0.083 0.002* 0.087 0.883* 0.197* 

5y PC 18var 0.384 0.092 0.000* -0.012 -0.005 0.110* 

5y OLS 18var 0.390 0.087 0.000* 0.042 0.048 0.157* 

 
Gaussian Kernel 

Model Unbiasedness MSPE Mincer-Zarnowitz Out-of-sample R2 

  p-value AR(1) ARX(1) RW 
10y PC 1.537 0.081 0.000* -0.038 0.270* 0.223* 

10y OLS 1.633 0.079 0.001* 0.056 0.283* 0.237* 

10y PC 18var 1.921 0.087 0.000* -0.036 -0.266* 0.163* 

10y OLS 18var 2.265* 0.087 0.000* -0.038 -0.268* 0.162* 

5y PC 1.337 0.091 0.000* -0.001 0.872* 0.119* 

5y OLS 2.120* 0.094 0.000* -0.0296 0.869* 0.097 

5y PC 18var 1.517 0.100 0.000* -0.096 -0.088 0.036 

5y OLS 18var 2.295* 0.101 0.000* -0.103 -0.095 0.030 
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Appendix B Statistical evaluation multi-step ahead forecasts 
Evaluation of (direct) multi step ahead forecasts for the asset classes commodities, foreign exchanges 
and bonds. This is done for auto-regressive model with one lag (AR(1)), forecast combinations (FC) 
and ARX model  with 6 and 12 variables (selected by LARS), Principal Component Analysis (PCA), 
Partially Least Squares (PLS), Random Walk (RW) and Kernel Ridge Regressions (KRR) with two 
shrinkage parameter estimations (PC, OLS) and three different kernels (Poly1, Poly2, Gauss) 
* denotes the rejection of the null hypothesis for a significance level of 5 percent. 
 
COMMODITIES 
3-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) -6.029* 0.508 0.000* 

FC 6 vars -10.49* 0.977 0.000* 

FC 12 vars -9.043* 0.830 0.000* 

ARX 6 vars -8.417* 0.901 0.000* 

ARX 12 vars -4.042* 0.730 0.000* 

PCA -6.157* 0.474 0.000* 

PLS -6.667* 0.472 0.000* 

RW -0.486 0.605 0.000* 

KRR PC Poly1 -2.503* 0.446 0.000* 

KRR PC Poly2 -2.838* 0.444 0.000* 

KRR PC Gauss -5.109* 0.484 0.000* 

KRR OLS Poly1 -4.205* 0.472 0.000* 

KRR OLS Poly2 -3.708* 0.497 0.000* 

KRR OLS Gauss -6.450* 0.965 0.000* 

 
6-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) -8.053* 2.136 0.000* 

FC 6 vars 12.65* 3.492 0.000* 

FC 12 vars 11.28* 2.855 0.000* 

ARX 6 vars -9.623* 3.609 0.000* 

ARX 12 vars -4.868* 2.940 0.000* 

PCA -7.665* 2.125 0.000* 

PLS -8.154* 2.044 0.000* 

RW -0.579 2.614 0.000* 
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KRR PC Poly1 -3.020* 1.821 0.000* 

KRR PC Poly2 -3.370* 1.826 0.000* 

KRR PC Gauss -6.032* 2.069 0.000* 

KRR OLS Poly1 -5.138* 1.964 0.000* 

KRR OLS Poly2 -4.723* 2.106 0.000* 

KRR OLS Gauss -8.110* 4.904 0.000* 

 
12-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) -10.38* 3.482 0.000* 

FC 6 vars -15.78* 14.81 0.000* 

FC 12 vars -15.10* 12.54 0.000* 

ARX 6 vars -12.46* 18.04 0.000* 

ARX 12 vars -8.598* 12.14 0.000* 

PCA -8.883* 10.27 0.000* 

PLS -3.449* 3.625 0.000* 

RW -0.744 11.89 0.000* 

KRR PC Poly1 -3.154* 8.463 0.000* 

KRR PC Poly2 -3.496* 8.449 0.000* 

KRR PC Gauss -2.321* 8.426 0.000* 

KRR OLS Poly1 -5.770* 8.366 0.000* 

KRR OLS Poly2 -5.502* 8.831 0.000* 

KRR OLS Gauss -4.652* 18.80 0.000* 

 

FOREIGN EXCHANGES 
3-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) 1.629 0.730 0.106 

FC 6 vars 21.35* 2.980 0.000* 

FC 12 vars 18.34* 2.292 0.000* 

ARX 6 vars 15.03* 1.818 0.000* 

ARX 12 vars 7.883* 1.113 0.000* 

PCA 1.715 0.733 0.045* 
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PLS 1.118 0.728 0.023* 

RW 0.041 0.684 0.000* 

KRR PC Poly1 1.085 0.593 0.000* 

KRR PC Poly2 0.837 0.566 0.000* 

KRR PC Gauss -0.123 0.821 0.000* 

KRR OLS Poly1 0.928 0.573 0.001* 

KRR OLS Poly2 1.098 0.641 0.000* 

KRR OLS Gauss -3.502* 1.921 0.000* 

 
6-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) 1.690 3.182 0.002* 

FC 6 vars 18.58* 10.76 0.000* 

FC 12 vars 16.55* 8.833 0.000* 

ARX 6 vars 11.76* 8.005 0.000* 

ARX 12 vars 8.013* 6.011 0.000* 

PCA 1.731 3.346 0.000* 

PLS 0.646 3.288 0.000* 

RW 0.074 2.71 0.000* 

KRR PC Poly1 1.430 2.564 0.000* 

KRR PC Poly2 1.052 2.502 0.000* 

KRR PC Gauss 0.539 3.740 0.000* 

KRR OLS Poly1 1.078 2.705 0.000* 

KRR OLS Poly2 0.955 3.176 0.000* 

KRR OLS Gauss -5.285* 14.117 0.000* 

 
12-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) 0.454 13.26 0.000* 

FC 6 vars 12.29* 30.66 0.000* 

FC 12 vars 10.61* 26.66 0.000* 

ARX 6 vars 6.724* 29.84 0.000* 

ARX 12 vars 4.701* 29.61 0.000* 
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PCA 0.657 13.91 0.000* 

PLS -0.683 13.87 0.000* 

RW -0.713 14.89 0.000* 

KRR PC Poly1 1.374 15.15 0.000* 

KRR PC Poly2 0.723 13.18 0.000* 

KRR PC Gauss 0.666 19.31 0.000* 

KRR OLS Poly1 0.906 15.38 0.000* 

KRR OLS Poly2 0.818 20.33 0.000* 

KRR OLS Gauss -6.028* 66.27 0.000* 

 

BONDS 
3-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) 0.858 0.532 0.425 

FC 6 vars 17.16* 1.364 0.000* 

FC 12 vars 13.87* 1.116 0.000* 

ARX 6 vars 13.36* 1.129 0.000* 

ARX 12 vars 7.253* 0.930 0.000* 

PCA 1.271 0.502 0.430 

PLS 0.448 0.452 0.903 

RW -0.062 0.764 0.000* 

KRR PC Poly1 0.149 0.579 0.000* 

KRR PC Poly2 0.453 0.579 0.000* 

KRR PC Gauss 1.559 0.678 0.000* 

KRR OLS Poly1 0.445 0.476 0.023* 

KRR OLS Poly2 -0.049 0.529 0.000* 

KRR OLS Gauss -0.740 1.948 0.000* 

 
6-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) 0.539 1.937 0.708 

FC 6 vars 12.37* 3.445 0.000* 

FC 12 vars 9.023* 2.983 0.000* 
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ARX 6 vars 7.726* 2.953 0.000* 

ARX 12 vars 3.014* 2.934 0.000* 

PCA 1.266 1.834 0.265 

PLS 0.588 1.711 0.191 

RW -0.228 3.228 0.000* 

KRR PC Poly1 -0.035 2.406 0.000* 

KRR PC Poly2 0.214 2.466 0.000* 

KRR PC Gauss 4.876* 3.834 0.000* 

KRR OLS Poly1 0.108 2.059 0.000* 

KRR OLS Poly2 -0.392 2.448 0.000* 

KRR OLS Gauss 1.669 12.23 0.000* 

 
12-months ahead 

Model Unbiasedness MSPE Mincer-Zarnowitz 

  p-value 
AR(1) 0.639 8.206 0.224 

FC 6 vars 8.271 11.20 0.000* 

FC 12 vars 6.475 11.80 0.000* 

ARX 6 vars 4.335 10.93 0.000* 

ARX 12 vars 3.446 12.63 0.000* 

PCA 1.498 8.190 0.000* 

PLS 1.091 8.137 0.000* 

RW 0.186 14.49 0.000* 

KRR PC Poly1 0.208 11.01 0.000* 

KRR PC Poly2 0.455 11.39 0.000* 

KRR PC Gauss 3.845 18.03 0.000* 

KRR OLS Poly1 0.307 10.25 0.000* 

KRR OLS Poly2 -0.117 12.63 0.000* 

KRR OLS Gauss 0.059 44.25 0.000* 
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Appendix C Diebold-Mariano statistics for multi-step ahead forecasts 
Results for the DM test where the model on the left is the first model, and the model on the top axis 

is the second model 

Stocks 

 
 
Commodities 
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Foreign exchanges 

 
 
Bonds 
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Appendix D Economic evaluation 

 
The models corresponding to the numbers are found below: 

Model 
# 

Type of 
kernel 

Tuning parameter estimation 
method 

Number of 
variables 

Moving 
window 

1 Linear Principal components 38 10 years 

2 Linear Principal components 18 10 years 

3 Linear OLS all variables 38 10 years 

4 Linear OLS all variables 18 10 years 

5 Quadratic Principal components 38 10 years 

6 Quadratic Principal components 18 10 years 

7 Quadratic OLS all variables 38 10 years 

8 Quadratic OLS all variables 18 10 years 

9 Gaussian Principal components 38 10 years 

10 Gaussian Principal components 18 10 years 

11 Gaussian OLS all variables 38 10 years 

12 Gaussian OLS all variables 18 10 years 

13 Linear Principal components 38 5 years 

14 Linear Principal components 18 5 years 

15 Linear OLS all variables 38 5 years 

16 Linear OLS all variables 18 5 years 

17 Quadratic Principal components 38 5 years 

18 Quadratic Principal components 18 5 years 

19 Quadratic OLS all variables 38 5 years 
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20 Quadratic OLS all variables 18 5 years 

21 Gaussian Principal components 38 5 years 

22 Gaussian Principal components 18 5 years 

23 Gaussian OLS all variables 38 5 years 

24 Gaussian OLS all variables 18 5 years 

  


