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Abstract

In this report, a solution for the common problem of end-effects in production schedul-
ing is investigated. Fisher et. al (2001) developed a method based on ending inventory
valuation. This algorithm will be compared with the classical Wagner-Whitin algo-
rithm and the Silver-Meal heuristic, where a rolling horizon setting is used. Further-
more, this algorithm is compared with an algorithm, as described by Stadtler (2000),
that is specifically used for mitigating end-effects.
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1 Introduction and Problem Description

It is important for companies to know how they need to plan their production. When

a lot-sizing model is used, an appropriate model horizon T should be chosen in order to

plan this production. In this report, a dynamic lot-sizing model is used, where also the

demand is time varying. The chosen horizon should be as large as the expected time that

the company will be in business, but often the model horizon is smaller than this expected

time. This means that production decisions are made for a time period that contains only

several months or is based on a yearly time horizon. The main reason why these short

horizons are used for the production planning is that there is great uncertainty about the

future demand, as it is difficult to obtain accurate forecasts of demands in the future.

However, as one can imagine this approach has also some disadvantages. This planning

is based only on the short run and that does not mean that this planning is also optimal

in the long run. As a consequence, the use of short model horizons leads to end-effects, as

described by Grinold (1983). In the short run it is optimal to end with zero inventory, but

in the long run this can be inefficient as there can be high setup costs in the future. Wagner

and Whitin (1958) and Federgruen and Tzur (1994) obtain a solution that is optimal for an

infinite horizon, by formulating sufficient conditions on the values of demand for a particular

horizon T . The goal of this report is to describe another approach in order to deal with these

end-effects in an efficient manner and to compare this method to other methods that can be

used in order to mitigate these end-effects. In this case the ideas as presented by Fisher et

al. (2001) are used.

The main idea of their approach is to include a valuation term for end-of-horizon inventory

in the objective function of the short horizon model. When such a valuation term is used, it

is not necessarily optimal to end with zero inventory at the end of the horizon, because this

valuation term takes this level of ending inventory into account. This valuation function is

defined as follows:

V (IT ) = K − h

2D
(x∗ − IT )2 (1)

This term is based on the classical EOQ framework. Here, D is the constant demand rate,

K is the cost for placing an order, h the holding cost, T the model horizon, and x∗ follows

from the EOQ formula as x∗ =
√

(2KD/h). This valuation term captures the future setup

costs that are avoided by having this ending inventory. The inventory cost for depleting the

IT units is equal to hI2T/2D. Subtracting this cost from the optimal cost under the optimal

EOQ policy, gives a reduction of (IT/D)C∗ − hI2T/2D. Rewriting this term results in the

valuation function as given in formula (1).

The goal of this report is to implement the valuation term in order to avoid the end-effects
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when solving the dynamic lot-sizing problem (DLSP). The dynamic lot-sizing problem has

as purpose to find a production schedule where the total costs of storing the products and

producing these products is minimized. In this case, there is only one type of product, with

a variable demand in each period. In order to solve the DLSP, Wagner and Whitin (1958)

developed an algorithm based on dynamic programming. However, in this algorithm it is

optimal to end with zero inventory at the end of the model horizon, as time beyond this

model horizon T is not taken into account. This algorithm is modified such that it contains

this valuation function.

The solution obtained by this Ending-Inventory Valuation (or EIV) algorithm will be

compared with two other well-known procedures: The Wagner-Whitin algorithm (1958) and

the Silver Meal heuristic, as enhanced by Blackburn and Millen (1980). Also, this EIV

algorithm will be compared with an algorithm as enhanced by Stadtler (2000), which is

specifically used to mitigate end effects. When solving, a rolling horizon scheme is imple-

mented. This means that the DLSP is solved for the model horizon T , but only the first

production period is taken into account. After that, the schedule start is rolled foreward to

the first period of which the demand is not covered yet, and again the DLSP is solved for

the model horizon. This procedure is repeated until all demand is covered.

The rest of this report is divided as follows: In Section 2 the relevant literature is investi-

gated. In Section 3, the four different algorithms are described. In Section 4, the performance

of these algorithms is analysed, where four different demand patterns are used. Also, in this

section a sensitivity analysis on the EIV algorithm is performed. Finally, in Section 5 the

findings of this report will be concluded and ideas for further research will be proposed.

2 Literature

The idea behind the use of the valuation function is to mitigate the end-effects occurring

when a short horizon is chosen. However, some other methods to deal with this end effects

are proposed in the literature. Stadtler (2000) makes use of a modification of the shortest

route representation of the Single-level Lot-sizing problem (SLLSP) as described by Eppen

and Martin (1987). Stadtler modifies the model by looking beyond the planning horizon, in

order to mitigate the end effects.

Van den Heuvel and Wagelmans (2005) show that the superior performance of the EIV

algorithm is due to the fact that this algorithm uses more information than the other algo-

rithms, as it makes use of accurate future demand estimates. Van den Heuvel and Wagelmans

show that a simple modification to the Wagner-Whitin algorithm will gain similar results.

The idea is that they extend the T -period horizon of the Wagner-Whitin algorithm in order
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to avoid these end-effects.

3 Methodology

In this section, four different procedures to solve the DLSP are discussed. The optimal

solution for the 300 periods is computed, where different demand patterns are used. However,

it is important to test if the EIV algorithm performs better than the other algorithms when

a shorter model horizon is chosen, where the horizon T ranges from 2 to 20 periods. We also

make use of a rolling horizon setting, which means that the DLSP is solved for the whole

period until horizon T , but only the first production lot size is implemented. After that,

the start of the next period is rolled forward, until the first period of which the demand is

not covered yet. Then, the problem is solved for the model horizon and again only the first

production decision is implemented. This process is repeated until the demand of all 300

periods is covered. The found cost when making use of the shorter horizon and the rolling

horizon scheme for each of the different horizon lengths between 2 and 20 and for each of

the different algorithms is compared to the optimal 300 periods solution. From this, the

percentage increase in cost from the optimal solution is calculated.

3.1 Silver Meal heuristic

The general idea of this heuristic is that there occurs a production in a certain period,

covering the demand for a number of following periods, if the average costs of this production

is lowest. For this heuristic we define A[t, s], which is the average cost for periods t until s,

when production took place in period t. We can calculate this average cost as:

A[t, s] =
1

s+ 1− t

(
K +

s−1∑
i=t+1

(i− t)hdi

)
(2)

Here, K is the fixed setup cost for placing an order, h is the holding cost and di is the

demand in period i.

Because we assume that the starting inventory is zero, the setup of this heuristic occurs

in period 1. Next, let t1 be the first period for which the average cost A[1, t1 + 1] is larger

than A[1, t1]. This means that we produce in period 1 an amount of
∑t1

i=1 di , which exactly

suffices the amount of products required for the periods 1 through t1. Let t2 be the first

period after t1 for which the demand in a period differs from zero. Then, the next setup

occurs in period t2 and the previous steps are repeated until the model horizon is reached.

However, as Blackburn and Millen (1980) described it makes more sense to define A[t, s] as
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the average cost for the period t until period s + h , where h is the number of consecutive

periods with zero demand. This adaption only influences the found solution when there are

periods with zero demand, and in that case often an improved solution is found.

3.2 Wagner-Whitin algorithm

The Wagner-Whitin (in the following denoted as WW) algorithm is based on dynamic

programming. The idea behind dynamic programing is to solve the whole problem by solving

subproblems of this large problem separately, where the solution of a certain subproblem is

needed to solve another of these sub problems.

The idea of the WW algorithm is as follows. Let Ct,s, for 1 ≤ t ≤ s, denote the minimum

cost of producing in period t the demand for periods t through s − 1. This means that it

is optimal to produce exactly the demand of the periods t through s− 1, and only produce

when the inventory at the beginning of period t equals zero. Ct,s can be calculated as follows:

Ct,s = K +
s−1∑
i=t+1

(i− t)hdi (3)

Next, let ft be the optimal total cost for periods t until T . ft can be obtained by the

following recursion:

ft = min
t<s≤T+1

(Ct,s + fs) (4)

This recursion starts with initializing fT+1 = 0. Then, for fT the optimal cost is deter-

mined, and this is recursively repeated until f1 is reached, which is the minimum cost for a

schedule for the entire horizon T . The use of this recursive formula decreases the number of

possible combinations that needs to be checked quite drastically. For example, suppose we

have a model horizon of T = 4. Then, if f3 and f4 are known, only three possible combina-

tions need to be checked to determine f2 . These three combinations are either producing

all demand for periods 2 through 4, or producing in period 2 for period 2 only and then use

f3, or produce for periods 2 and 3, and use f4. Especially when the length of the horizon

grows, the decrease in number of possible combinations will be particularly large, which is

the main advantage of the use of dynamic programming. When instead of using dynamic

programming, we would just compute all possible combinations, there would be an expo-

nentially number of combinations that needs to be checked: n = 2t−1. When the problem

instances are getting larger, this would result in an enormous amount of combinations. How-

ever, when dynamic programming is used, only a quadratic number of combinations needs

to be checked, namely: n =
∑n

i=1 i. This can be written as n = 1
2
t(t+ 1).
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3.3 Ending-Inventory Valuation algorithm

The Ending-Inventory Valuation (or EIV) algorithm is a modification of the WW algo-

rithm as described before. The idea is exactly the same; although the valuation function

given by formula (1) is implemented here. Because in this case the ending inventory can

differ from zero, the cost function and optimal ordering quantity differ from the WW algo-

rithm. We can calculate Ct,s as given in formula (3), except when s = T + 1. Then, the

valuation function is taken into account and that leads to the following formulation:

Ct,T+1 =
T∑
j=t

h(xt −
j∑
i=t

di) +
h

2D
(x∗ − xt +

j∑
i=t

di)
2 (5)

Here xt is the quantity produced in period t. This cost can be seen as the cost incurred

in periods t, ..., T , given that an amount of xt has been produced, less the value of the ending

inventory IT . Minimizing this function results in the following expression for xt, which is

the optimal production quantity:

xt =


∑j

i=t di + x∗ − (T + 1− t)D , if x∗ > (T + 1− t)D∑j
i=t di , if x∗ ≤ (T + 1− t)D

(6)

This means that with this EIV algorithm the produced quantity in a period t can be either

zero or
∑j

i=t di just as with the WW algorithm, but in case the end of the horizon is reached,

the produced quantity will depend on the value of x∗. The production if x∗ > (T + 1− t)D
is such that there is enough produced in order to fulfill the demand of the same number of

periods as the periodic order quantity (POQ). The recursion as described by formula (4)

remains the same for this EIV algorithm.

It is to be expected that this algorithm will outperform the WW algorithm and the SM

heuristic when a rolling horizon is used. However, this is because this algorithm makes use

of extra information, because future demand is also known and used in an effective manner

in order to obtain improved results. For this reason, it is quite unfair to compare these

algorithms, as they do not use the same amount of information. However, Stadtler (2000)

also describes an algorithm that can be used to mitigate end-effects, and a fair comparison

between these algorithms can be made as both algorithms require the same knowledge about

future demand. This algorithm will be described in the next section.
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3.4 Stadtler’s algorithm

Another algorithm that should mitigate the end-effects is the algorithm as proposed by

Stadtler (2000). The general idea behind this algorithm is to determine the number of

periods for which the demand should be produced, and then only the costs for the periods

that are within the model horizon are taken into account. For this algorithm, first the time

between order (TBO) τt is determined for the periods t = 1, ..., T . The time between an

order is the number of periods of which the demand is fulfilled when producing in period t.

Stadtler uses Groff’s stopping criterion in order to determine these TBOs in linear time.

Algorithm 1 Calculating TBOs with Groff’s stopping criterion

1: begin
2: τ0 = 1
3: for t = 1, ..., T do
4: τ = max{1, τt−1 − 1}
5: while t+ τ ≤ Tmax and K

τ(τ+1)
> h

2
Dt+τ do

6: τ = τ + 1
7: τt = τ
8: end while
9: end for

Groff’s stopping criterion is line (5) as described in the algorithm above. The idea is that

the TBO is increased, unless K
τ(τ+1)

> h
2
Dt+τ . This can be seen that the TBO is increased

until the marginal setup costs are larger than the marginal holding costs. Of course, in that

case it is beneficial to start a new production period.

When using Groff’s stopping criterion an important factor is Tmax. For periods beyond

the horizon T , forecasted demand is used, where Tmax gives an upper bound for the number

of periods for which the demand should be forecasted. The choice of Tmax is the same as

suggested by Van den Heuvel and Wagelmans (2005), and equals Tmax = T+
√

(2K/Dh)−1.

The idea behind this choice of Tmax is that it only contains one cycle of forecasted demand

in this case. This is because
√

(2K/Dh) is the periodic order quantity.

For this algorithm, also Dt+τ needs to be known. However, it is possible that t + τ

exceeds the value of the model horizon T . For this reason, we need to simulate the demand

for periods beyond the model horizon T . How this demand is simulated depends on the type

of demand pattern and will be described later in Section 4 for each of the demand patterns

separately.
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When these TBOs are calculated, the costs are calculated as follows:

Ct,T+1 =

 T−t+1
τt

(K +
∑t+τt−1

j=t h(j − t)dj) , if t+ τt − 1 > T

K +
∑t+τt−1

j=t h(j − t)dj , if t+ τt − 1 ≤ T
(7)

The idea behind these costs is that we only take the costs into account that fall within

the horizon T . So, for example if production occurred in period T − 1, and the demand

produced covers the following 3 periods, then only the costs for periods T − 1 and T are

taken into account, as period T + 1 exceeds the planning horizon.

The costs Ct,s, where t < s ≤ T are the same as given in formula (3). After the costs are

calculated, the recursion from the WW algorithm can be used.

4 Results

In order to test the performance of the four algorithms, demand is generated for 300

periods. For the generation of this demand, several demand patterns are used, which are the

same demand patterns as described by Fisher et al. (2001):

• Stationary demand

• Linearly increasing or decreasing demand

• Seasonal demand

• Correlated demand

It is interesting to see whether the chosen demand pattern influences the found solution by

each of the algorithms. It could be that for some of these patterns the algorithms perform

worse. Also, it is interesting to see how the algorithms perform compared to each other.

Especially, how these algorithms perform for different lengths of the model horizon T . This

analysis is performed in Section 4.1 through Section 4.4.

Further, in Section 4.5 sensitivity analysis will be performed in order to determine how the

performance of the EIV algorithm is when the forecasted demand pattern is more inaccurate.

Also, the performance of all algorithms will be compared when the setup costs are either

increased or decreased.

4.1 Stationary demand

In this case, two different distributions are distinguished: the normal and uniform dis-

tribution. First we will consider the normal distribution. The mean µ is set equal to 100,
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and the standard deviation σ = 0, 10, 22, 43. Furthermore, h = 1 and K = 800, and the

long run average demand D = µ. This long run average demand is required in order to

make forecasts for the EIV algorithm and Stadtler’s algorithm. Also, the value of K is such

that the EOQ equals 400 in this case, which are four periods of demand. For the uniform

distribution, the mean µ is also 100, and the range is R = 0, 35, 75, 150. The range of the

uniform distribution is chosen such that the standard error of the normal distribution and

the uniform distribution are comparable. For example, if R = 75, the standard error of the

uniform distribution can be calculated as:

σ(U) =

√
1

12
R2 (8)

This means that the standard error equals
√

468.75, which equals the standard error of the

normal distribution of 22.

As said before, 300 periods of demand are generated, and for each different choice of

input parameters, eight different problem instances containing 300 periods of demand are

generated. We need to mention that the demand is rounded, such that integer values of

demand are obtained. Further, in case of the normal distribution, it is possible that a

negative demand is generated in some period. In that case, the demand in this period is set

equal to 0.

For each problem instance, the optimal 300 periods solution is computed. This means

that we solve the problem instance by making use of the WW algorithm, where the rolling

horizon setting is not implemented. After the optimal solution is determined for each of

the problem instances, the percentage above these optimal costs is calculated for each of the

algorithms in a rolling horizon setting, for the short model horizon varying from T = 2, ..., 20.

Finally, the results represent the average deviation from the optimal solution for the eight

problem instances. In Table 1, the results are represented for the normal distribution. The

results as obtained for the uniform distribution are comparable with these of the normal

distribution and can be found in the Appendix.

From this table it is clear that the EIV algorithm and Stadtler’s algorithm outperform

both the SM and WW algorithm for almost all values of T . Except when T = 3, and

sometimes when T = 4 these algorithms perform worse. Of course, the superior results are

caused by the fact that more information is used of future demand, which especially for

T = 2 results in a large improvement. It is noticeable that SM and WW perform the same

for T = 2, which is logical, as both algorithms will produce the demand for these 2 periods,

ending with zero inventory.

When T = 3, the performance of the EIV and Stadtler algorithm is weak. For T = 3,
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Table 1: Percentage deviation from optimality for normally distributed demand
σ = 0 σ = 10 σ = 22 σ = 43

T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 28.57 28.57 0.00 0.00 29.23 29.23 15.51 15.51 31.64 31.64 18.41 18.41 37.33 37.33 22.01 22.01
3 4.76 4.76 0.00 0.00 5.40 5.40 15.13 15.13 7.38 7.38 16.95 16.95 11.75 11.58 21.71 21.75
4 0.00 0.00 0.00 0.00 0.79 0.57 0.70 0.70 1.94 2.39 2.03 2.03 4.55 7.25 4.27 4.26
5 0.00 2.86 0.00 0.00 0.59 3.51 0.56 0.53 1.07 5.45 0.92 0.97 2.33 7.42 2.01 2.07
6 0.00 4.76 0.00 0.00 0.59 5.33 0.48 0.46 0.98 5.19 0.58 0.64 1.86 5.47 1.35 1.22
7 0.00 4.76 0.00 0.00 0.59 1.58 0.38 0.38 0.98 1.94 0.53 0.63 1.73 2.53 0.59 0.55
8 0.00 0.00 0.00 0.00 0.59 0.52 0.34 0.34 0.98 1.12 0.41 0.47 1.73 1.05 0.37 0.33
9 0.00 0.00 0.00 0.00 0.59 1.24 0.27 0.27 0.98 1.14 0.30 0.29 1.73 1.24 0.26 0.27
10 0.00 4.67 0.00 0.00 0.59 1.64 0.31 0.29 0.98 1.29 0.24 0.24 1.73 0.81 0.27 0.30
11 0.00 4.67 0.00 0.00 0.59 0.85 0.23 0.20 0.98 0.85 0.21 0.22 1.73 0.67 0.17 0.17
12 0.00 0.00 0.00 0.00 0.59 0.45 0.19 0.16 0.98 0.60 0.16 0.13 1.73 0.31 0.11 0.12
13 0.00 0.00 0.00 0.00 0.59 0.54 0.16 0.16 0.98 0.34 0.12 0.12 1.73 0.32 0.08 0.06
14 0.00 4.57 0.00 0.00 0.59 0.76 0.13 0.13 0.98 0.44 0.10 0.09 1.73 0.25 0.05 0.05
15 0.00 4.57 0.00 0.00 0.59 0.42 0.13 0.13 0.98 0.28 0.07 0.08 1.73 0.10 0.03 0.02
16 0.00 0.00 0.00 0.00 0.59 0.28 0.14 0.14 0.98 0.16 0.08 0.08 1.73 0.12 0.07 0.06
17 0.00 0.00 0.00 0.00 0.59 0.30 0.11 0.12 0.98 0.18 0.06 0.04 1.73 0.12 0.04 0.05
18 0.00 4.57 0.00 0.00 0.59 0.43 0.08 0.08 0.98 0.13 0.03 0.03 1.73 0.05 0.02 0.02
19 0.00 4.57 0.00 0.00 0.59 0.28 0.08 0.08 0.98 0.11 0.02 0.03 1.73 0.03 0.01 0.01
20 0.00 0.00 0.00 0.00 0.59 0.21 0.04 0.04 0.98 0.10 0.03 0.05 1.73 0.04 0.00 0.00

Note: µ = 100, K = 800, h = 1, T = model horizon, SM = Silver-Meal, WW = Wagner-Whitin, EIV = Ending Inventory
Valuation, ST = Stadtler

x∗ = 400 and D = 100, and usually there will be a production which is around 400 units.

This results in an expected ending inventory of x∗ − 3D = 100. This is often not sufficient

to cover the demand in period T + 1, such that there are high costs because there are extra

inventory costs, which are not compensated by a reduction in setup costs. For T = 4 the

performance of the algorithms is roughly the same, probably due to the fact that this is the

value of the POQ.

When we compare the EIV algorithm and Stadtler’s algorithm, it can be seen that there

are barely any differences between these algorithms, both showing the same pattern. Com-

paring WW and SM, WW outperforms SM in case the model horizon T is extended. However,

the performance of the SM heuristic deteriorates for larger values of the standard error σ,

while, surprisingly, the performance of the WW algorithm improves. This phenomenon was

already observed by Federgruen and Tzur (1994), and they explain this improved perfor-

mance by the fact that it becomes more easy to identify the optimal first production period

after period 1 when the standard error increases.

Finally, a strange pattern occurs for the WW algorithm when σ = 0. Normally, as

the value of T increases, the percentage deviation form optimality decreases. However, the

pattern for this case is somewhat strange. For example, for T = 4, the optimal solution

is found, while for T = 5, the found solution exceeds the cost of the optimal solution with

almost 3 percent. This seems to be strange, but can be explained. The cost per period for

T = 4 will be 1400/4 = 350, as it is optimal to fulfill demand of all periods by producing in

the first period. For T = 5 it is optimal to produce for all 5 periods, which results in a cost
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per period of 1800/5 = 360, an increase of 2.86 percent. For other values of T , the same

reasoning can be used to explain the found solutions. Note that the results differ, depending

on how the WW algorithm is implemented. Here, the first production period is chosen to

be as small as possible. For example, for T = 7 it is optimal to produce for 3 and for 4

periods. As the first production period is smallest, this results in production for 3 periods.

Note that this results in a worse solution in this case, because producing for 4 periods would

be optimal in this case.

4.2 Linearly increasing or decreasing demand

In their report, Fisher et al.(2001) also include the case of a linearly increasing or de-

creasing demand. However, this type of demand pattern seems rather superfluous. The idea

is that the demand for the linearly increasing case is generated as:

dt = µ+ σzt + c(t− 1) (9)

Here, Fisher et al. suggest to take c = 1, 10, 20, 40. However, as one can imagine if c = 40

the demand will explode in the 300 periods. For example, the expected demand is around

12,060 units for the 300th period. In that case, it is optimal to produce in each period. This

production for one period is also which is actually observed for each of the algorithms, and

for this reason the performance of the algorithms will be very comparable, as the production

occurs only for one period. For this reason, this demand pattern is not further analysed in

this report, as it will not provide any useful information.

4.3 Seasonal demand

In this case, the demand is generated with a seasonal pattern. The choice of a sea-

sonal demand pattern is quite natural, because seasonality occurs a lot with actual demand

patterns. The following formula is used to obtain a seasonal pattern:

dt = µ+ σzt + a sin

(
2π

b
(t+ b/4)

)
(10)

Here, zt is a standard normal variable, a denotes the amplitude and b the length of the

cycle. The mean µ is again set equal to 100, a = 20, 40, 60, 80, b = 4, 12, 52, which will create

either a quarterly, monthly or weakly pattern, and σ = 10. As before, h = 1 and K = 800.

However, in contrary to the stationary demand pattern, setting the long run average

demand Dt equal to µ will not be sufficient in this case, as the seasonality is not taken
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into account in this way. For this reason, Dt needs to be adjusted in order to capture the

seasonality, and hence Dt is as follows:

Dt = µ+ a sin

(
2π

b
(t+ b/4)

)
(11)

From these demand forecasts, we can determine which demand estimate needs to be used

when calculating the end-of-horizon inventory, which will be denoted by Dt,T :

Dt,T =
1

t∗

j=t+T+t∗−1∑
j=t+T

Dj (12)

where t∗ =
√

(2K/Dh), the optimal number of periods between two orders. The idea is

that in formula (6) D is replaced by Dt,T and x∗ is replaced by x∗t,T . This x∗t,T is calculated

with the use of the adjusted value Dt,T . The idea behind the calculation of Dt,T in this way

is that during peaks in the seasonal cycle, the production will be higher than the average

production when D = 100 is used, while the opposite will be true for the troughs in the

seasonal cycle. This is accomplished because the future demand after period t+T is used in

order to determine Dt,T . By using t∗, the value of Dt,T will be the average of the demands

from period t+ T through t+ T + t∗ − 1.

Also for this demand pattern, for each combination of input parameters eight different

problem instances containing 300 periods of demand are generated. The results for b = 12

and all values of a are reported in Table 2. In the Appendix, the results for other values of

b are reported.

Table 2: Percentage deviation from optimality for seasonal demand, with b = 12
a = 20 a = 40 a = 60 a = 80

T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 29.84 29.84 16.96 15.00 31.11 31.11 16.50 16.51 35.21 35.21 15.65 17.16 40.73 40.73 13.52 21.29
3 5.77 5.77 16.93 14.35 6.88 6.88 16.80 11.77 10.00 10.00 13.75 11.17 14.66 14.66 13.60 8.34
4 1.09 0.97 4.10 1.25 2.03 2.06 6.07 4.75 4.40 5.01 4.50 4.34 8.23 9.43 6.19 5.17
5 0.77 3.84 0.65 0.67 1.50 4.25 0.70 0.92 3.55 6.61 3.97 4.10 7.83 9.76 4.53 4.93
6 0.80 4.42 0.52 0.54 1.35 2.36 0.56 0.81 2.71 1.88 1.03 1.40 2.61 2.55 2.00 5.20
7 0.80 1.91 0.45 0.46 1.50 2.44 0.50 0.62 3.29 2.47 0.86 1.62 4.48 2.22 1.12 2.15
8 0.80 0.61 0.35 0.37 1.51 1.17 0.46 0.69 3.76 2.23 0.32 0.90 3.71 2.91 0.38 2.52
9 0.80 1.24 0.28 0.26 1.51 1.26 0.32 0.35 4.24 1.68 0.18 0.26 4.63 1.90 0.27 0.67
10 0.80 1.64 0.18 0.24 1.51 1.64 0.22 0.31 4.24 1.08 0.15 0.24 4.68 0.92 0.10 0.17
11 0.80 0.74 0.25 0.27 1.51 1.02 0.14 0.19 4.24 0.76 0.18 0.22 4.68 0.49 0.15 0.21
12 0.80 0.39 0.23 0.22 1.51 0.30 0.14 0.22 4.24 0.24 0.20 0.27 4.68 0.29 0.36 0.42
13 0.80 0.62 0.14 0.15 1.51 0.60 0.15 0.18 4.24 0.40 0.15 0.22 4.68 0.38 0.28 0.52
14 0.80 0.74 0.15 0.17 1.51 0.56 0.10 0.20 4.24 0.34 0.09 0.28 4.68 0.47 0.11 0.63
15 0.80 0.38 0.09 0.11 1.51 0.35 0.08 0.14 4.24 0.30 0.07 0.21 4.68 0.56 0.08 0.53
16 0.80 0.25 0.12 0.10 1.51 0.24 0.07 0.10 4.24 0.29 0.06 0.11 4.68 0.42 0.05 0.33
17 0.80 0.21 0.07 0.10 1.51 0.20 0.09 0.08 4.24 0.18 0.04 0.08 4.68 0.21 0.14 0.13
18 0.80 0.35 0.07 0.10 1.51 0.19 0.04 0.10 4.24 0.12 0.03 0.07 4.68 0.06 0.04 0.06
19 0.80 0.28 0.05 0.06 1.51 0.23 0.05 0.06 4.24 0.12 0.04 0.08 4.68 0.11 0.04 0.07
20 0.80 0.17 0.06 0.05 1.51 0.13 0.04 0.04 4.24 0.13 0.02 0.05 4.68 0.10 0.02 0.02

Note: µ = 100, K = 800, h = 1, σ = 10
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The percentage deviation from optimality in case of a seasonal demand pattern is particu-

larly large compared to the stationary demand. Especially the SM heuristic performs poorly

compared to that case. Of course, this was to be expected as the SM heuristic does not take

this seasonal pattern into account and hence does not take into account that it would be

better to produce for more periods when the demand is lowest. As the SM heuristic does not

take any demand beyond period t into account, it makes sense that the performance is worse.

The performance of the EIV and Stadtler is roughly the same, due to the adjusted long-run

demand pattern. Stadtler and EIV outperform WW and SM just as with the stationary

demand pattern. Also, WW outperforms SM, especially for larger values of T and for larger

amplitudes - which means for higher values of a.

However, in this case there is a difference in performance between Stadtler’s algorithm

and the EIV algorithm. For small values of a, Stadtler’s algorithm provides better results

compared to the EIV algorithm, while for larger values of a, the EIV algorithm will give

better results. A possible explanation for the observation that Stadtler outperforms EIV

is due to the fact that Stadtler is able to describe the seasonal trend more efficient, which

leads to improved results, especially for smaller values of T . However, when the amplitude

increases, the use of Groff’s heuristic results in worse forecasts of the TBOs.

Again, EIV particulary performs poorly for T = 3, also in comparison to Stadtler’s

algorithm. Despite the fact that the EIV algorithm uses quite accurate demand forecasts,

the performance remains bad. Again, this is mainly due to the fact that it occurs quite often

that the required production for period T + 1 cannot be satisfied with this production, such

that extra inventory costs are incurred, while no reduction in setup costs compensates these

extra costs.

4.4 Correlated demand

The last demand pattern used is a correlated demand pattern. This pattern is generated

by the use of a Markov process. In this case, we assume that there are three different states,

where in each state the demand in that specific state differs from the other states. The

mean of each state equals respectively µL = 60, µM = 100 and µH = 140. The transition

probabilities of this Markov process, where Pi,j is the probability that state j will be the

next state given that the current state is i, are given in Table 3.

For example, if the current state is L ,with probability 0.70 state L is also the next state,

with probability 0.25 the next state is state M, and with probability 0.05 the next state will

be state H. In this case, K = 800, h = 1 and σ = 0, 5, 10, 15.

Now, there are two possible methods that can be used to calculate the long-run average

12



Table 3: Markov process for correlated demand
State in period t+ 1

L M H
L 0.70 0.25 0.05

State in period t M 0.15 0.70 0.15
H 0.05 0.25 0.70

demand. First, the long-run average demand D is the demand in the steady state. In order

to be able to determine this demand in the steady state, it is required to determine the

steady state probabilities. The steady state probabilities can be seen as the proportion of

the total time in which the process is in a certain state i. The steady state probabilities can

be calculated by solving the following set of equations:

πL = 0.70πL + 0.15πM + 0.05πH (13)

πM = 0.25πL + 0.70πM + 0.25πH (14)

πH = 0.05πL + 0.15πM + 0.70πH (15)∑
i=L,M,H

πi = 1 (16)

Solving these set of equations results in πL = 3/11 , πM = 5/11 and πH = 3/11. With

these limiting probabilities, the long-run average demand D can be calculated:

D = πLµL + πMµM + πHµH (17)

This method can work quite effectively when the ending inventory covers multiple peri-

ods. However, if the ending inventory covers only one period, this forecast of D might be

inappropriate.

The second method uses a more myopic demand estimation. For a model horizon of

length T that starts in period t, a forecast of the demand in period t+ T can be obtained.

Dt+T = Pi,LµL + Pi,MµM + Pi,HµH (18)

This formula requires knowledge about the state in period t + T − 1, which is state i

in this formula. Also for this demand pattern, for each combination of input parameters

eight different problem instances containing 300 periods of demand are generated. However,

in order to be able to compare both average long-run demand methods, the same problem

13



instances are used for those methods. The results for all values of σ will be reported below,

as well as the two different methods to obtain the average long-run demand D. In Table 4

the long-run average demand method is used, while in Table 5 the myopic average long-run

demand method is used.

Table 4: Percentage deviation from optimality for correlated demand, making
use of long-run average demand

σ = 0 σ = 5 σ = 10 σ = 15
T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 31.48 31.48 11.56 11.56 31.52 31.52 16.86 16.86 33.26 33.26 16.60 16.60 34.13 34.13 18.33 18.33
3 7.27 7.27 11.57 11.57 7.29 7.29 19.31 19.31 8.48 8.48 18.93 18.93 8.87 8.87 20.71 20.71
4 1.89 2.67 1.89 1.89 2.05 2.72 2.05 2.05 2.71 3.33 2.75 2.75 3.25 3.97 3.20 3.20
5 0.83 5.83 0.83 0.98 1.08 4.73 1.10 1.00 1.50 4.60 1.45 1.47 1.72 5.49 1.64 1.47
6 0.82 3.65 0.77 0.71 0.99 3.83 0.95 1.03 1.27 4.27 0.91 0.78 1.46 4.66 1.06 1.16
7 0.82 2.83 0.50 0.88 0.99 2.26 0.61 0.84 1.20 2.72 0.71 0.96 1.46 2.74 0.61 0.77
8 0.82 1.40 0.46 0.52 0.99 1.45 0.52 0.66 1.20 1.52 0.59 0.66 1.41 1.79 0.49 0.49
9 0.82 1.55 0.51 0.54 0.99 1.50 0.35 0.48 1.20 1.19 0.44 0.48 1.41 1.36 0.39 0.42
10 0.82 1.39 0.26 0.30 0.99 1.18 0.36 0.41 1.20 1.21 0.30 0.33 1.41 1.17 0.31 0.31
11 0.82 0.94 0.19 0.26 0.99 0.77 0.26 0.33 1.20 0.89 0.25 0.34 1.41 0.94 0.21 0.27
12 0.82 0.73 0.20 0.24 0.99 0.65 0.28 0.27 1.20 0.67 0.19 0.22 1.41 0.69 0.22 0.22
13 0.82 0.50 0.20 0.20 0.99 0.47 0.20 0.19 1.20 0.51 0.16 0.15 1.41 0.48 0.15 0.18
14 0.82 0.45 0.15 0.18 0.99 0.38 0.14 0.13 1.20 0.33 0.11 0.12 1.41 0.37 0.10 0.14
15 0.82 0.30 0.14 0.16 0.99 0.29 0.09 0.09 1.20 0.33 0.06 0.06 1.41 0.36 0.04 0.08
16 0.82 0.26 0.09 0.09 0.99 0.22 0.07 0.07 1.20 0.18 0.11 0.10 1.41 0.24 0.08 0.07
17 0.82 0.18 0.06 0.06 0.99 0.19 0.04 0.05 1.20 0.14 0.06 0.07 1.41 0.13 0.06 0.09
18 0.82 0.16 0.04 0.03 0.99 0.12 0.05 0.03 1.20 0.17 0.05 0.05 1.41 0.14 0.03 0.04
19 0.82 0.17 0.06 0.07 0.99 0.15 0.04 0.04 1.20 0.12 0.04 0.04 1.41 0.08 0.02 0.02
20 0.82 0.12 0.06 0.05 0.99 0.09 0.03 0.04 1.20 0.07 0.03 0.03 1.41 0.08 0.03 0.03

Note: µL = 60, µM = 100, µH = 140, K = 800, h = 1

Table 5: Percentage deviation from optimality for correlated demand, making
use of a myopic average long-run demand

σ = 0 σ = 5 σ = 10 σ = 15
T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 31.48 31.48 15.19 14.91 31.52 31.52 17.53 19.18 33.26 33.26 16.87 18.09 34.13 34.13 18.26 19.61
3 7.27 7.27 12.84 14.94 7.29 7.29 17.74 19.47 8.48 8.48 18.15 19.00 8.87 8.87 18.78 19.08
4 1.89 2.67 5.44 3.47 2.05 2.72 5.48 3.59 2.71 3.33 5.72 4.79 3.25 3.97 6.17 5.28
5 0.83 5.83 0.98 0.83 1.08 4.73 1.17 0.93 1.50 4.60 1.55 1.16 1.72 5.49 1.55 1.47
6 0.82 3.65 0.67 0.64 0.99 3.83 0.86 0.69 1.27 4.27 0.70 0.72 1.46 4.66 0.86 0.76
7 0.82 2.83 0.54 0.47 0.99 2.26 0.61 0.46 1.20 2.72 0.57 0.47 1.46 2.74 0.50 0.49
8 0.82 1.40 0.39 0.26 0.99 1.45 0.48 0.40 1.20 1.52 0.54 0.39 1.41 1.79 0.40 0.34
9 0.82 1.55 0.36 0.40 0.99 1.50 0.41 0.34 1.20 1.19 0.41 0.31 1.41 1.36 0.31 0.41
10 0.82 1.39 0.26 0.21 0.99 1.18 0.31 0.28 1.20 1.21 0.21 0.24 1.41 1.17 0.28 0.26
11 0.82 0.94 0.18 0.18 0.99 0.77 0.26 0.26 1.20 0.89 0.25 0.18 1.41 0.94 0.17 0.20
12 0.82 0.73 0.20 0.19 0.99 0.65 0.25 0.24 1.20 0.67 0.21 0.15 1.41 0.69 0.23 0.16
13 0.82 0.50 0.15 0.14 0.99 0.47 0.16 0.14 1.20 0.51 0.16 0.13 1.41 0.48 0.12 0.15
14 0.82 0.45 0.13 0.13 0.99 0.38 0.12 0.07 1.20 0.33 0.10 0.09 1.41 0.37 0.11 0.08
15 0.82 0.30 0.13 0.11 0.99 0.29 0.09 0.07 1.20 0.33 0.05 0.06 1.41 0.36 0.04 0.04
16 0.82 0.26 0.09 0.07 0.99 0.22 0.05 0.03 1.20 0.18 0.09 0.08 1.41 0.24 0.06 0.05
17 0.82 0.18 0.06 0.06 0.99 0.19 0.03 0.04 1.20 0.14 0.05 0.05 1.41 0.13 0.06 0.05
18 0.82 0.16 0.04 0.03 0.99 0.12 0.04 0.05 1.20 0.17 0.03 0.03 1.41 0.14 0.04 0.03
19 0.82 0.17 0.05 0.04 0.99 0.15 0.04 0.04 1.20 0.12 0.03 0.04 1.41 0.08 0.03 0.02
20 0.82 0.12 0.06 0.06 0.99 0.09 0.03 0.04 1.20 0.07 0.02 0.03 1.41 0.08 0.02 0.02

Note: µL = 60, µM = 100, µH = 140, K = 800, h = 1
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From both tables it is clear that the EIV algorithm and Stadtler’s algorithm outperform

WW and SM. First, when the long-run average demand is used, the performance of Stadtler

and EIV is almost the same for each value of T . Of course, because both algorithms use

D = 100 for all values of t, there are barely differences (the same can be concluded when

stationary demand is used). However, when a myopic average long-run demand is used, there

are differences between Stadtler and EIV, especially for small values of the model horizon T

(T ≤ 4). It seems that Stadtler performs worse for T = 2 and T = 3, while EIV performs

worse for T = 4. Again, for these short horizons the amount produced is important, as

sometimes the demand for period T + 1 cannot be satisfied while extra inventory costs are

incurred.

It is interesting to compare both tables with each other, in order to find out whether there

are major differences in performance when another type of average long-run demand D is

used. Of course, SM and WW have exactly the same values, because the average long-run

demand D does not influence the found solution of these algorithms. For the EIV algorithm,

the differences are small between both methods. For T = 3, the performance of the myopic

average long-run demand method is better compared to the other method. This difference

is probably due to the fact that there is usually 1 period of inventory left for T = 3, and

this ending-inventory for this period is more precisely determined when the myopic demand

pattern is used. However, for T = 4 the opposite is true. The performance of the long-run

average demand method is a lot better compared to the myopic method. This observation is

quite unexpected, as the performance should have been comparable. The difference is due to

higher inventory costs in case of the myopic average long-run demand method. Only when

σ = 0 these patterns do not hold, and for this case the long-run average demand method

outperforms the myopic demand method. Because in this case, the demand in a period

always equals either 60, 100 or 140, it is quite effective to assume that D = 100. This results

in less extra inventory and for this reason a solution with lower costs is found.

For Stadtler’s algorithm the differences are smaller, although it seems to be that the

long-run average demand method gives better results. This can be the result of how the

TBOs are determined. Especially for T = 2 there are some differences.

4.5 Sensitivity analysis

In this section, sensitivity analysis of the algorithms is performed. First, the robustness

of the EIV algorithm is investigated when the long-run demand forecasts are less accurate

compared to the previous sections. Then, the performance of each of the algorithms is

investigated when the setup costs are varied.
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4.5.1 Effect of inaccurate demand forecasts

In the results as obtained in the previous sections, the assumption was made that the

demand can be forecasted accurately. However, in practice it is highly unlikely that such

accurate demand forecasts can be obtained. Either because the patterns in real demand will

not be as clear as assumed here, or because it often occurs that the pattern as observed

in the past will change in the future. It is interesting to see whether the superior results

in comparison to the SM heuristic and the WW algorithm still exist when these demand

patterns are less accurate.

To test the robustness of this algorithm, the problem instances as described in Section

4.1 will be executed again, although D is replaced by D∗, where D∗ = αD. Here, α is

a coefficient, such that the demand is either underestimated or overestimated. For this,

α = 0.8, 0.9, 1.1, 1.2. Table 6 reports the results of these cases, for all different values of σ,

σ = 0, 10, 22, 43. This table also contains columns with α = 1, this is just the same case as

described in Section 4.1.

Table 6: Performance of the EIV algorithm when the demand is inaccurate
T σ = 0 σ = 10 σ = 22 σ = 43
α 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2 0.8 0.9 1.0 1.1 1.2
2 32.48 32.76 0.00 0.00 32.48 16.61 15.96 15.51 15.51 16.61 18.82 18.50 18.41 18.41 18.82 21.76 21.70 22.01 22.01 21.76
3 5.07 2.54 0.00 30.22 26.82 7.10 8.07 15.13 24.22 26.95 13.78 15.54 16.95 20.70 23.65 19.98 20.16 21.71 23.20 22.73
4 10.71 5.36 0.00 0.00 0.00 9.99 5.64 0.70 0.76 0.63 9.58 6.01 2.03 1.86 2.00 10.89 7.87 4.27 4.31 4.90
5 0.00 0.00 0.00 0.00 0.00 0.67 0.55 0.56 0.72 0.95 1.19 1.01 0.92 0.92 0.98 2.05 1.81 2.01 2.16 2.14
6 0.00 0.00 0.00 0.00 0.00 0.46 0.49 0.48 0.51 0.53 0.61 0.57 0.58 0.60 0.68 1.25 1.30 1.35 1.24 1.33
7 0.00 0.00 0.00 0.00 0.00 0.41 0.42 0.38 0.46 0.61 0.54 0.51 0.53 0.54 0.64 0.84 0.66 0.59 0.54 0.64
8 0.00 0.00 0.00 0.00 0.00 0.46 0.44 0.34 0.35 0.37 0.51 0.42 0.41 0.50 0.65 0.43 0.47 0.37 0.38 0.35
9 0.00 0.00 0.00 0.00 0.00 0.35 0.30 0.27 0.27 0.37 0.39 0.40 0.30 0.32 0.38 0.28 0.29 0.26 0.29 0.29
10 0.00 0.00 0.00 0.00 0.00 0.29 0.28 0.31 0.28 0.27 0.28 0.25 0.24 0.25 0.29 0.29 0.29 0.27 0.26 0.27
11 0.00 0.00 0.00 0.00 0.00 0.23 0.20 0.23 0.23 0.27 0.25 0.24 0.21 0.24 0.21 0.19 0.20 0.17 0.16 0.19
12 0.00 0.00 0.00 0.00 0.00 0.25 0.20 0.19 0.16 0.17 0.18 0.16 0.16 0.16 0.16 0.17 0.14 0.11 0.11 0.11
13 0.00 0.00 0.00 0.00 0.00 0.22 0.22 0.16 0.16 0.20 0.14 0.13 0.12 0.13 0.12 0.08 0.10 0.08 0.07 0.06
14 0.00 0.00 0.00 0.00 0.00 0.12 0.12 0.13 0.14 0.20 0.10 0.10 0.10 0.07 0.09 0.06 0.07 0.05 0.05 0.07
15 0.00 0.00 0.00 0.00 0.00 0.12 0.11 0.13 0.15 0.22 0.09 0.07 0.07 0.09 0.10 0.03 0.05 0.03 0.04 0.04
16 0.00 0.00 0.00 0.00 0.00 0.17 0.12 0.14 0.14 0.14 0.09 0.09 0.08 0.08 0.06 0.05 0.05 0.07 0.07 0.07
17 0.00 0.00 0.00 0.00 0.00 0.15 0.12 0.11 0.10 0.14 0.05 0.05 0.06 0.04 0.03 0.03 0.04 0.04 0.03 0.03
18 0.00 0.00 0.00 0.00 0.00 0.09 0.07 0.08 0.10 0.12 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.02
19 0.00 0.00 0.00 0.00 0.00 0.09 0.07 0.08 0.10 0.12 0.03 0.02 0.02 0.04 0.05 0.01 0.01 0.01 0.01 0.01
20 0.00 0.00 0.00 0.00 0.00 0.10 0.07 0.04 0.06 0.08 0.04 0.04 0.03 0.04 0.04 0.01 0.00 0.00 0.00 0.01

Note: µ = 100, K = 800, h = 1

From this table there are some noticeable changes from the case where α = 1.0. First,

for T = 2 it seems that for each value of α that the performance becomes worse. However,

for α = 1.1 this is not the case, as the results obtained for this value are exactly the same

compared to α = 1.0. The explanation for this strange observation follows from formula (6).

When T = 2, the amount produced in the first period will be equal to
∑T

i=T−1 di + x∗− 2D.

This is for α = 1.1 equal to
∑T

i=T−1 di + 419.5 − 420, which is the same as when α = 1.0,

because only integer values can be produced. However, for other values of α the expected

amount of production equals either 398 or 399 units. Of course, for σ = 0 this results in a

huge change in results, as the fourth demand period (so period T + 2) cannot be sufficed

from the produced demand.
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For T = 3 we observe a remarkable pattern: In case the demand is underestimated, the

obtained solution outperforms the case where the demand is accurately forecasted. Although

this result seems to be counterintuitive, an explanation follows from formula (6). For exam-

ple, for α = 0.8 it is optimal to produce in the first period for all periods until the model

horizon. This means that the production in the first period is
∑T

i=T−1 di+357.8−240, which

exceeds the production for the case where α = 1.0 with 18 units. This increase in production

is due to the fact that the optimal periodic order quantity (POQ) is larger compared to the

basic case where POQ = 4, as can be deducted from the formula of the POQ:
√

(2K/Dh).

Because, D is 80 instead of 100, the value of the POQ increases. This leads to an increase in

inventory costs, but this increased production will often result in a decrease in setup costs.

This is an improvement to the normal case, because in that case it occurred quite often that

this production did not satisfy the demand in period T + 1.

An overestimation of demand forecasts gives opposite results. A decrease in the POQ

leads to a decrease in production, such that less periods of demand can be covered with this

production. For α = 1.2 the production is
∑T

i=T−1 di + 438.2 − 360, a decrease of 22 units

compared to the standard case. Of course, for the cases where the demand in period T + 1

could not have been satisfied in the normal case a decrease in inventory costs is realized.

However, in that case it is also quite often possible to satisfy that demand, resulting in

a decrease in setup costs. However, for α = 0.8 is this case not very likely, and hence a

reduction in setup costs almost never occurs.

Finally, there are some differences for T = 4. In case the demand is underestimated, the

obtained solution is poor compared to the normal case. This is because the production is

higher compared to this case. Where in case for T = 3 this increase in production results in

better results, in this case it gives poor results. This is due to an increase in inventory costs,

as the production only should satisfy these 4 periods of demand. However, in case α = 0.8

the expected production is around 438 units. These 38 extra units are not sufficient to cover

the demand in period T + 1 = 5, and hence only an increase in inventory costs is incurred.

In case the demand is overestimated, the results are almost equal to the normal case. This

is due to the fact that the production equals
∑T

i=T−1 di , because 4D > x∗.

For all other values of T , the differences are fairly small. Hence, it seems that the EIV

algorithm produces robust solutions, except for small (T ≤ 4) values of T .

4.5.2 Effect of changing values of setup costs

In the previous sections, the setup costs were chosen such that the POQ equals 4. How-

ever, it is interesting to see how the algorithms perform when the setup costs are varied.

Here, it is especially interesting to see whether some observed patterns remain visible and
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if the values of the percentage deviation from the optimal solution deviate from the ones as

described in Table 1. The POQ is defined as t∗ =
√

(2K/Dh). Now, we choose K such that

this POQ equals 3 periods or 5 periods, implying that K = 450 and K = 1250. In Table 7

the results are shown for the case of normally distributed demand where K = 450, in Table

8 the case of normally distributed demand where K = 1250.

Table 7: Percentage deviation from optimality for setup costs K = 450
σ = 0 σ = 10 σ = 22 σ = 43

T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 10.00 10.00 0.00 0.00 10.45 10.45 21.69 21.69 12.59 12.59 23.18 23.18 17.77 17.77 29.29 29.29
3 0.00 0.00 0.00 0.00 0.56 0.56 0.69 0.69 1.90 2.51 1.91 1.91 5.04 6.55 4.64 4.64
4 0.00 5.00 0.00 0.00 0.49 5.34 0.58 0.58 1.23 5.62 0.92 1.01 2.28 6.40 1.74 1.76
5 0.00 9.93 0.00 0.00 0.49 2.92 0.52 0.55 1.15 2.70 0.54 0.62 1.64 3.28 0.87 0.89
6 0.00 0.00 0.00 0.00 0.49 0.57 0.42 0.41 1.15 1.39 0.41 0.41 1.60 1.63 0.45 0.50
7 0.00 0.00 0.00 0.00 0.49 1.95 0.36 0.36 1.15 1.37 0.32 0.33 1.60 1.01 0.26 0.26
8 0.00 9.80 0.00 0.00 0.49 1.17 0.33 0.32 1.15 0.86 0.21 0.22 1.60 0.45 0.18 0.19
9 0.00 0.00 0.00 0.00 0.49 0.49 0.26 0.26 1.15 0.53 0.18 0.16 1.60 0.29 0.06 0.08
10 0.00 0.00 0.00 0.00 0.49 0.93 0.20 0.20 1.15 0.38 0.10 0.10 1.60 0.19 0.05 0.04
11 0.00 9.73 0.00 0.00 0.49 0.71 0.20 0.18 1.15 0.35 0.09 0.09 1.60 0.17 0.04 0.04
12 0.00 0.00 0.00 0.00 0.49 0.38 0.14 0.17 1.15 0.16 0.05 0.06 1.60 0.08 0.02 0.02
13 0.00 0.00 0.00 0.00 0.49 0.53 0.12 0.13 1.15 0.16 0.06 0.05 1.60 0.07 0.02 0.03
14 0.00 9.60 0.00 0.00 0.49 0.39 0.11 0.10 1.15 0.11 0.05 0.04 1.60 0.03 0.01 0.00
15 0.00 0.00 0.00 0.00 0.49 0.26 0.11 0.11 1.15 0.08 0.03 0.03 1.60 0.02 0.00 0.00
16 0.00 0.00 0.00 0.00 0.49 0.38 0.10 0.11 1.15 0.08 0.03 0.02 1.60 0.02 0.01 0.01
17 0.00 9.53 0.00 0.00 0.49 0.27 0.10 0.10 1.15 0.06 0.01 0.00 1.60 0.01 0.01 0.01
18 0.00 0.00 0.00 0.00 0.49 0.15 0.07 0.06 1.15 0.03 0.02 0.02 1.60 0.00 0.01 0.01
19 0.00 0.00 0.00 0.00 0.49 0.20 0.08 0.08 1.15 0.04 0.03 0.03 1.60 0.00 0.01 0.01
20 0.00 9.40 0.00 0.00 0.49 0.20 0.07 0.07 1.15 0.03 0.00 0.00 1.60 0.01 0.00 0.00

Note: µ = 100, K = 450, h = 1

From Table 7, there are some noticeable changes compared to Table 1. First, for T = 2

WW and SM outperform EIV and Stadtler, while this was not the case previously. This

observation requires the same kind of explanation as provided before where it concerned the

poor performance of EIV for T = 3. Because the POQ is 3 instead of 4, the same reasoning

for T = 2 should be given here, as for T = 3 before. If T = 2, production only occurs in the

first period, and the production is usually around 300 units. However, quite often this is not

sufficient to satisfy the demand in period T + 1, such that extra inventory costs are incurred

and no reduction in setup costs compensates these extra inventory costs. Because the POQ

is reduced from 4 to 3, the observed patterns in Table 1 are moved in this case, such that

specific observations for T = x in Table 1 are now observed for T = x− 1.

Also, the absolute differences from optimality are interesting. Here, it seems that SM and

WW perform especially better for T = 2 and T = 3 than before. This improved performance

is due to the decrease of the POQ. Previously, it was optimal to produce for four periods of

demand, while in this case it is optimal to produce only for three periods of demand. As SM

and WW always end with zero inventory, the percentage deviation from the optimal solution

decreases for T = 2 in this case, as producing for two periods is closer to the optimal of
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producing for three periods than it was before compared to the four periods production.

Table 8: Percentage deviation from optimality for setup costs K = 1250
σ = 0 σ = 10 σ = 22 σ = 43

T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 50.00 50.00 0.00 0.00 50.77 50.77 11.92 11.92 53.38 53.38 14.13 14.13 59.48 59.48 17.72 17.72
3 14.81 14.81 0.00 0.00 15.48 15.48 11.98 11.98 17.50 17.50 14.30 14.30 21.94 21.94 17.29 17.29
4 2.78 2.78 0.00 0.00 3.35 3.35 12.17 12.17 5.10 5.10 14.66 14.70 9.36 9.75 17.41 17.65
5 0.00 0.00 0.00 0.00 0.62 0.61 0.66 0.66 1.79 2.52 1.68 1.69 4.36 6.17 3.77 3.70
6 0.00 1.85 0.00 0.00 0.48 2.51 0.44 0.51 1.07 4.46 0.90 0.95 2.33 6.99 1.99 2.05
7 0.00 6.26 0.00 0.00 0.48 6.04 0.44 0.44 0.98 6.07 0.86 0.86 2.16 6.61 1.52 1.32
8 0.00 2.78 0.00 0.00 0.48 3.24 0.39 0.41 0.98 3.75 0.65 0.59 2.10 3.65 0.99 0.99
9 0.00 2.78 0.00 0.00 0.48 1.04 0.41 0.41 0.98 1.51 0.59 0.56 1.95 1.98 0.52 0.53
10 0.00 0.00 0.00 0.00 0.48 0.43 0.34 0.33 0.98 0.93 0.53 0.48 1.95 1.03 0.48 0.48
11 0.00 0.00 0.00 0.00 0.48 0.98 0.24 0.23 0.98 1.16 0.34 0.33 1.95 1.35 0.35 0.32
12 0.00 1.85 0.00 0.00 0.48 1.80 0.22 0.23 0.98 1.42 0.29 0.26 1.95 1.02 0.24 0.31
13 0.00 2.74 0.00 0.00 0.48 1.36 0.20 0.23 0.98 1.19 0.22 0.20 1.95 0.72 0.24 0.20
14 0.00 2.74 0.00 0.00 0.48 0.55 0.18 0.14 0.98 0.75 0.19 0.15 1.95 0.57 0.17 0.14
15 0.00 0.00 0.00 0.00 0.48 0.37 0.12 0.12 0.98 0.41 0.11 0.10 1.95 0.42 0.14 0.11
16 0.00 0.00 0.00 0.00 0.48 0.45 0.14 0.15 0.98 0.47 0.14 0.13 1.95 0.25 0.06 0.06
17 0.00 0.00 0.00 0.00 0.48 0.66 0.12 0.12 0.98 0.46 0.11 0.14 1.95 0.28 0.05 0.08
18 0.00 2.67 0.00 0.00 0.48 0.62 0.13 0.14 0.98 0.39 0.09 0.10 1.95 0.22 0.04 0.06
19 0.00 2.67 0.00 0.00 0.48 0.36 0.11 0.10 0.98 0.26 0.07 0.08 1.95 0.13 0.05 0.05
20 0.00 0.00 0.00 0.00 0.48 0.15 0.10 0.11 0.98 0.23 0.06 0.06 1.95 0.13 0.06 0.06

Note: µ = 100, K = 1250, h = 1

When the setup costs are increased, such that the POQ is increased from 4 to 5, the

opposite from the case where the setup costs were decreased is true. Instead of an improved

percentage deviation for the SM and WW algorithm for the small values of T , the percentage

deviation is quite dramatic for T = 2, up to 60 percent. Of course, producing only two periods

of demand, while it is optimal to produce for around five periods of demand should lead to

these huge differences.

The EIV algorithm and Stadtler’s algorithm outperform WW and SM in all cases, except

for T = 4. Of course, this poor performance for T = 4 has the same reasoning as in the case

where K = 800 for T = 3.

The effect of changing the setup costs can be quite dramatic, especially when it is optimal

to produce for a large amount of periods and a short model horizon is used. In that case,

the obtained solutions with either the SM heuristic or WW algorithm are very poor, and can

be improved by using Stadtler or the EIV algorithm. Furthermore, it is noticeable that the

patterns as observed in case K = 800 remain visible, even for different values of K. The only

difference is that these patterns move, where the direction of this movement is dependent on

the increase or decrease of the setup costs K.
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5 Conclusion

It is important that an appropriate model horizon T is chosen when planning production

in case a lot-sizing model is used. This model horizon T should equal the expected lifetime of

a company, but often much smaller values of T are used in order to make actual production

plannings. However, using these smaller values for T leads to so called end-effects. This

means that the solution found in the short run does not need to be optimal in the long run.

In order to mitigate these end-effects, Fisher et al. (2001) use a valuation term as given

in formula (1). The idea is that this term takes ending inventory into account, such that

it is not necessarily optimal to end with zero inventory. This Ending Inventory Valuation

(EIV) algorithm is compared with three other algorithms: The Silver Meal heuristic, the

Wagner-Whitin algorithm and Stadtler’s algorithm. The idea behind Stadtler’s algorithm is

to take only costs into account for periods that are within the model horizon.

In order to test the performance of this EIV algorithm, eight problem instances containing

300 periods of demand are generated. There are four different demand patterns used, the

same as described by Fisher et al. (2001). In general, the EIV algorithm outperforms

the WW algorithm and the SM heuristic. However, making a comparison between these

algorithms is quite unfair. The EIV uses extra information compared to SM and WW,

because forecasted demand is used. Also, SM and WW will always end with zero inventory,

while EIV is able to have ending inventory due to this valuation term. The performance of

the EIV algorithm can be compared with Stadtler’s algorithm, and the performance is in

most cases comparable.

However, accurate demand forecasts were used in order to obtain the results for the EIV

algorithm. In reality, it seems unlikely that accurate demand forecasts can be obtained.

For this reason, a sensitivity analysis is performed in order to investigate the performance

of the EIV algorithm when demand forecasts are less accurate. Even if the demand is

underestimated with twenty percent, EIV still outperforms SM and WW, except for really

small model horizons (T ≤ 4). However, in practice it seems unlikely that these very short

model horizons are used. Hence, it seems that the performance of the EIV algorithm remains

superior, despite less accurate demand forecasts are used. It can be concluded that the EIV

algorithm gives quite robust results, and if a reasonable demand forecast can be made, is

preferred over SM and WW.
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6 Further research and Improvements

The biggest improvement that should be made is to generate a greater amount of different

demand patterns compared to the eight problem instances for each different demand pattern

that has been used. The absolute values of percentage deviation from optimality are too

volatile when only eight problem instances are used. For example, in case of the normal

distribution, the optimal 300 period solution ranges from 95224 euros to 99725 euros, a

difference of almost five percent. In order to obtain more robust absolute differences from

optimality, a larger amount of problem instances is required. Fisher et al. (2001) probably

used a small number of problem instances due to the rapidly increasing running times.

However, nowadays this should not be a problem, mainly because the running times are

decreased in general due to the improved processors of personal computers.

Further research on this topic should be performed, in order to find an effective algorithm

to mitigate end-effects. As said before, the performance of the EIV algorithm and Stadtler’s

algorithm is particulary poor for the model horizon T = POQ − 1. In this case, WW and

SM outperform this algorithm.
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Appendices

Table 9: Percentage deviation from optimality for the uniform distribution
R = 0 R = 35 R = 75 R = 150

T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 28.57 28.57 0.00 0.00 29.41 29.41 15.36 15.36 31.62 31.62 17.73 17.73 38.09 38.09 21.62 21.62
3 4.76 4.76 0.00 0.00 5.41 5.41 14.86 14.86 7.15 7.15 17.85 17.85 12.36 12.36 21.90 21.90
4 0.00 0.00 0.00 0.00 0.57 0.57 0.90 0.90 1.75 2.20 1.70 1.70 4.66 7.29 4.74 4.74
5 0.00 2.86 0.00 0.00 0.75 3.37 0.57 0.69 1.07 5.00 0.90 1.05 2.26 7.63 2.00 2.07
6 0.00 4.76 0.00 0.00 0.75 5.35 0.53 0.57 1.09 5.18 0.80 0.77 1.76 4.84 0.86 0.87
7 0.00 4.76 0.00 0.00 0.75 1.56 0.45 0.48 1.09 2.18 0.66 0.70 1.70 2.12 0.68 0.65
8 0.00 0.00 0.00 0.00 0.75 0.58 0.35 0.34 1.09 1.20 0.41 0.44 1.68 1.22 0.44 0.44
9 0.00 0.00 0.00 0.00 0.75 1.10 0.24 0.25 1.09 1.25 0.27 0.29 1.68 1.33 0.33 0.37
10 0.00 4.67 0.00 0.00 0.75 1.70 0.24 0.21 1.09 1.50 0.24 0.23 1.68 0.72 0.36 0.39
11 0.00 4.67 0.00 0.00 0.75 0.85 0.17 0.19 1.09 0.92 0.19 0.21 1.68 0.48 0.22 0.24
12 0.00 0.00 0.00 0.00 0.75 0.43 0.14 0.13 1.09 0.54 0.20 0.20 1.68 0.38 0.16 0.14
13 0.00 0.00 0.00 0.00 0.75 0.54 0.12 0.12 1.09 0.50 0.11 0.13 1.68 0.40 0.06 0.07
14 0.00 4.57 0.00 0.00 0.75 0.80 0.11 0.12 1.09 0.41 0.12 0.13 1.68 0.23 0.05 0.04
15 0.00 4.57 0.00 0.00 0.75 0.48 0.13 0.14 1.09 0.31 0.10 0.10 1.68 0.14 0.04 0.06
16 0.00 0.00 0.00 0.00 0.75 0.24 0.11 0.11 1.09 0.24 0.07 0.08 1.68 0.06 0.04 0.03
17 0.00 0.00 0.00 0.00 0.75 0.36 0.07 0.08 1.09 0.22 0.06 0.05 1.68 0.12 0.02 0.03
18 0.00 4.57 0.00 0.00 0.75 0.38 0.07 0.07 1.09 0.17 0.03 0.03 1.68 0.09 0.02 0.03
19 0.00 4.57 0.00 0.00 0.75 0.29 0.08 0.08 1.09 0.13 0.03 0.03 1.68 0.05 0.01 0.01
20 0.00 0.00 0.00 0.00 0.75 0.17 0.06 0.06 1.09 0.13 0.04 0.04 1.68 0.02 0.01 0.01

Note: µ = 100, K = 800, h = 1

Table 10: Percentage deviation from optimality for seasonal demand, where b = 4
a = 20 a = 40 a = 60 a = 80

T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 32.44 32.44 10.29 17.66 36.29 36.29 12.72 15.71 40.75 40.75 19.68 15.14 44.97 44.97 26.16 17.42
3 7.94 7.94 7.66 18.49 11.14 11.14 12.57 15.80 14.53 14.53 18.85 15.75 18.02 18.02 22.61 15.82
4 0.48 5.98 0.35 0.32 0.33 12.05 0.35 0.35 0.36 18.69 0.30 0.34 0.33 25.68 0.31 0.33
5 0.55 5.88 0.65 0.39 0.32 9.00 0.55 0.29 0.33 11.20 0.49 0.30 0.29 6.41 0.59 0.30
6 0.55 6.56 0.31 0.25 0.32 0.95 0.28 0.33 0.33 0.39 0.31 0.32 0.29 0.33 0.46 0.28
7 0.55 0.41 0.25 0.22 0.32 0.39 0.28 0.35 0.33 0.38 0.30 0.30 0.29 0.31 0.50 0.30
8 0.55 1.11 0.16 0.17 0.32 0.33 0.16 0.21 0.33 0.34 0.17 0.24 0.29 0.33 0.20 0.25
9 0.55 0.61 0.17 0.10 0.32 0.36 0.19 0.18 0.33 0.76 0.26 0.20 0.29 1.18 0.36 0.18
10 0.55 1.31 0.15 0.10 0.32 0.82 0.25 0.18 0.33 0.38 0.26 0.18 0.29 0.28 0.38 0.20
11 0.55 0.25 0.12 0.09 0.32 0.32 0.19 0.15 0.33 0.29 0.22 0.15 0.29 0.24 0.31 0.13
12 0.55 0.26 0.10 0.11 0.32 0.23 0.08 0.08 0.33 0.23 0.07 0.13 0.29 0.20 0.05 0.10
13 0.55 0.24 0.10 0.09 0.32 0.21 0.12 0.08 0.33 0.32 0.16 0.11 0.29 0.48 0.23 0.08
14 0.55 0.47 0.09 0.08 0.32 0.29 0.14 0.11 0.33 0.20 0.17 0.10 0.29 0.18 0.31 0.08
15 0.55 0.14 0.12 0.07 0.32 0.21 0.11 0.08 0.33 0.17 0.13 0.09 0.29 0.11 0.19 0.07
16 0.55 0.14 0.06 0.05 0.32 0.14 0.05 0.06 0.33 0.15 0.03 0.06 0.29 0.13 0.05 0.06
17 0.55 0.16 0.06 0.04 0.32 0.13 0.08 0.05 0.33 0.17 0.07 0.05 0.29 0.24 0.09 0.05
18 0.55 0.24 0.07 0.04 0.32 0.17 0.10 0.03 0.33 0.11 0.08 0.04 0.29 0.06 0.19 0.06
19 0.55 0.10 0.06 0.05 0.32 0.10 0.06 0.02 0.33 0.11 0.06 0.05 0.29 0.07 0.11 0.05
20 0.55 0.09 0.05 0.04 0.32 0.09 0.03 0.02 0.33 0.08 0.02 0.04 0.29 0.08 0.02 0.05

Note: µ = 100, K = 800, h = 1, σ = 10
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Table 11: Percentage deviation from optimality for seasonal demand, where b = 12
a = 20 a = 40 a = 60 a = 80

T SM WW EIV ST SM WW EIV ST SM WW EIV ST SM WW EIV ST
2 29.83 29.83 17.24 16.02 31.63 31.63 15.66 16.40 34.24 34.24 13.07 16.09 38.95 38.95 14.42 17.03
3 5.69 5.69 16.98 15.96 7.02 7.02 15.85 11.44 9.07 9.07 13.43 8.74 12.79 12.79 10.50 7.43
4 1.07 0.82 4.72 1.12 1.89 1.91 5.68 4.07 3.17 3.78 5.26 4.45 5.71 7.30 4.33 3.88
5 0.61 3.63 0.50 0.47 0.73 3.98 0.73 0.67 1.43 4.42 2.88 2.53 3.17 5.83 2.96 2.61
6 0.61 4.57 0.44 0.46 0.70 3.34 0.45 0.42 0.91 2.56 0.69 0.67 1.98 2.97 1.80 2.17
7 0.61 1.87 0.34 0.35 0.70 2.40 0.40 0.43 0.73 2.62 0.46 0.41 1.44 2.71 1.31 1.49
8 0.61 0.75 0.32 0.34 0.70 1.67 0.37 0.38 0.75 2.45 0.36 0.38 1.26 2.57 0.87 1.09
9 0.61 1.19 0.27 0.32 0.70 1.05 0.25 0.27 0.74 1.70 0.25 0.27 1.08 2.17 0.47 0.69
10 0.61 1.51 0.26 0.24 0.70 0.94 0.26 0.22 0.74 1.10 0.24 0.32 1.08 1.37 0.40 0.71
11 0.61 0.90 0.23 0.19 0.70 0.91 0.19 0.18 0.74 1.07 0.24 0.28 1.08 1.46 0.31 0.45
12 0.61 0.54 0.19 0.19 0.70 0.71 0.12 0.11 0.74 0.86 0.21 0.19 1.08 1.28 0.27 0.40
13 0.61 0.72 0.13 0.14 0.70 0.57 0.08 0.10 0.74 0.63 0.19 0.16 1.08 1.08 0.23 0.31
14 0.61 0.59 0.13 0.12 0.70 0.41 0.09 0.10 0.74 0.75 0.12 0.12 1.08 0.72 0.18 0.25
15 0.61 0.52 0.11 0.13 0.70 0.41 0.08 0.08 0.74 0.58 0.09 0.12 1.08 0.61 0.15 0.20
16 0.61 0.34 0.10 0.10 0.70 0.34 0.07 0.08 0.74 0.40 0.11 0.16 1.08 0.55 0.12 0.17
17 0.61 0.37 0.09 0.09 0.70 0.30 0.07 0.07 0.74 0.40 0.10 0.11 1.08 0.46 0.09 0.15
18 0.61 0.30 0.09 0.08 0.70 0.22 0.07 0.07 0.74 0.41 0.09 0.13 1.08 0.45 0.07 0.11
19 0.61 0.21 0.09 0.08 0.70 0.16 0.06 0.06 0.74 0.29 0.10 0.10 1.08 0.42 0.05 0.05
20 0.61 0.19 0.09 0.09 0.70 0.21 0.05 0.04 0.74 0.27 0.09 0.09 1.08 0.25 0.06 0.05

Note: µ = 100, K = 800, h = 1, σ = 10
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