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Abstract

I apply constant and time-varying parameter variants of the normal and Sym-
metrized Joe-Clayton copula to AR(p)-GARCH(1,1) models of the DAX - FTSE100
, S&P500 - FTSE100 and the S&P - S&P/TSX returns of equity price indices. Using
a likelihood ratio test, I find that time-varying copulas provide a significantly better
model fit than copulas with constant parameters. The North-American dependence
seems to be more volatile on the short term and the European dependence seems
to have a structural break around 2005. The VaR models for the 99% VaR seem
to perform well, but the 95% and 90% VaR slightly overestimate the risk. Time-
varying copula VaR models don’t perform better than constant copula VaR models,
but it does outperform the benchmark model.

Supervised by Sander Barendse
Erasmus Universiteit Rotterdam

Bachelor scriptie Econometrie & Operationele Research



CONTENTS i

Contents

1 Introduction 1

2 Data 1

3 Methodology 2
3.1 AR-GARCH and Data Analysis . . . . . . . . . . . . . . . . . . . . . 4
3.2 Value-at-Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.3 Christoffersen test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.4 Likelihood Ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4 Results 8
4.1 The Models for the Marginal Distribution . . . . . . . . . . . . . . . 8
4.2 Results for the Copula Models . . . . . . . . . . . . . . . . . . . . . 9
4.3 Value at Risk and Christoffersen . . . . . . . . . . . . . . . . . . . . 14
4.4 Likelihood Ratio test . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Conclusion 19

6 Appendix 21
6.1 Introduction to Copulas . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Conditional copulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.3 Christoffersen test . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24



1 INTRODUCTION 1

1 Introduction

Recently there has been an increasing amount of evidence that stock returns are
more dependent during extreme negative events than during extreme positive events
(Longin and Solnik (2001) and Ang and Chen (2002))). A commonly used measure
of dependence is Pearson’s correlation coefficient. However, Pearson’s correlation
is not able to fully capture the dependence as joint asset returns are non-elliptical,
Chicheportiche and Bouchaud (2012) shows this for stock returns. Pearson’s correla-
tion is only able to capture the dependency relationship when the joint distribution
is elliptical. Pearson’s correlation is only a linear measure of dependence and it
is not able to capture non linear dependencies. Linear correlation only measures
the degree of dependence and not the structure of dependence (Rachev (2009) and
Necula (2010)).

Sklar (1959) introduced that every joint distribution function can be decom-
posed into its marginal distributions and a copula, which completely describes the
dependency between the variables. Patton (2006) extended Sklar’s Theorem by in-
troducing conditional copulas and thus allowing to use copula theory in the analysis
of time-varying conditional dependence.

In this paper I apply time-varying copulas on North-American and European
equity returns. The Value-at-Risk (VaR) is calculated by simulation and the VaR
models is evaluated with a test suggested by Christoffersen (1998) . Next to the VaR
I also look at the differences between the North-American and European equity re-
turns to see if there are any differences in dependence between the North-American
equities and European equities. I’m going to test three different hypotheses:
- The time-varying VaR models calculated by Monte Carlo simulation perform bet-
ter compared to constant copulas or other benchmark models.
- The dependence between North-American and European equity returns is differ-
ent.
- Time-varying copulas provide a better model fit than constant copulas.

I proceed as follows. In Section 2 the data set is discussed, the methodology
is discussed in Section 3. The results are discussed in Section 4 and I conclude in
Section 5.

2 Data

The data used in this paper is the daily price index from two North-American and
two European equity price indices. The North-American equities are the S&P 500
and S&P/TSX Composite Index. The S&P 500 is a market index which consists
500 large companies listed on the New York Stock Exchange (NYSE) or on the
NASDAQ stock market. The S&P/TSX Composite Index is a market index which
contains the largest companies on the Toronto Stock Exchange(TSX).
The European equities are the FTSE 100 and the Deutscher Aktien Index (DAX).
The FTSE 100 is a index which contains the 100 companies listed on the Lon-
don Stock Exchange with the highest market capitalization. The DAX is a index
containing the 30 biggest companies trading on the Frankfurt Stock Exchange.

The daily data is obtained from Datastream and the sample is from January 1,
1990 to June 10th 2014. This sample contains 6,377 observations and all prices are
converted to the US dollar. Figure 1 shows the price index of the four equities.
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Figure 1: Plots of the complete data set of the price index for all four equities

3 Methodology

In this paper a bivariate copula is applied, the joint distribution is given by:

F (x1, x2) = C(F1(x1), F2(x2)) (1)

The copula function is given by C. F1(x1) and F2(x2) are the marginal distribu-
tions which are uniformly distributed.

An interesting form of dependence is the tail dependence, which is a measure of
dependence in the lower or upper tail of the bivariate distribution. Basicaly lower
tail dependence is defined as the limiting probably that, given an extremely small
value of v, the variable u also takes an extremele small value, and vice versa for
upper tail dependence. The formal definition is:

τL = lim
ε↓0

P[U < ε|V < ε] = lim
ε↓0

C(ε, ε)

ε
(2)

τU = lim
ε↑1

P[U > ε|V > ε] = lim
ε↑1

1− 2ε+ C(ε, ε)

1− ε
(3)

Patton (2006) applied Sklar (1959) Theorem to introduce time-varying condi-
tional copulas. This paper applies two of these time-varying conditional copulas,
the Symmetrized-Joe-Clayton (SJC), which is a modification of the BB7 copula of
Joe (1997). The SJC copula is given by:

CSJC(u, v | τU , τL) = 0.5× (CJC(u, v | τU , τL) + CJC(1− u, 1− v | τU , τL) + u+ v − 1)

(4)

Here the Joe-Clayton copula is as follow:
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CJC(u, v|τU , τL) = (1− ([1− (1− u)κ]−γ + [1− (1− v)κ]−1/γ − 1)−1/γ)1/κ (5)

The conditioning variables τU and τL of this conditional copula are respectively
the upper and lower tail dependence coefficients. Patton (2006) uses the following
update equations for these tail dependence coefficients:

τUt = Λ

ωU + βLτ
U
t−1 + αU

1

10

10∑
j=1

| ut−j − vt−j |

 (6)

τLt = Λ

ωL + βLτ
L
t−1 + αL

1

10

10∑
j=1

| ut−j − vt−j |

 (7)

Where Λ(x) = (1 + e−x)−1 is the logistic transformation to ensure that τU and τL

are in (0, 1) at all times. The second copula that this paper uses is the Gaussian
(normal) copula. This equation is given by:

C(u, v|ρ) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

[
−(r2 − 2ρrs+ s2)

2(1− ρ2)

]
dr ds (8)

Here Φ−1 is the inverse of the standard normal c.d.f . In order to make this copula
time-varying, Patton (2006) uses an evoluation equation for the correlation param-
eter ρ:

ρt = Λ̃

ωρ + βρ · ρt−1 + α · 1

10

10∑
j=1

Φ−1(ut−j) · Φ−1(vt−j)

 (9)

The correlation has to stay within (-1,1) so again a logistic transformation is used
Λ̃(x) = (1− e−x)(1 + e−x)−1.

For a more in depth introduction to copulas see the appendix.

As stated earlier two uniformly distributed variables are used in the copula,
however since the true distribution of the marginal models is not known it’s hard to
find a good model which results in uniformly distributed variables. Therefore the
standard residuals are first transformed into ranks. These ranks are then used for
the copula models. The ranks are made as follows:

R∗ =
Ri
n+ 1

, S∗ =
Si

n+ 1
(10)

It is computationally more demanding to use maximum likelihood to estimate the
marginal model and copula parameters at the same time. Therefore pseudo maxi-
mum likelihood is used (see Genest and Favre (2007)). This means that the marginal
models and copula parameters are estimated seperatly.
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3.1 AR-GARCH and Data Analysis

So in this paper the daily data from four different equity price indices are used from
January 1st 1990 to June 10th 2014 containing 6,377 observations. Jondeau and
Rockinger (2006) suggest to eliminate the observations when a holiday occurred.
When these observations are not eliminated they show the same price index as the
day before and while they don’t affect the dependency between stock markets during
extreme events, they do affect the estimation of the return marginal distribution and
subsequently the estimation of the distribution of the copula. In this paper these
observations are also eliminated, this resulted in an elimination of 268 observations
and now there is a total of 6109 observations. If the log differences of the returns;
rt = 100 x ln (Pt/Pt−1), where Pt is the value of the equity index at time t, is zero
for atleast one of the equities, then this observation is removed for all equities.

All equities have a trend, however after taking the log differences this trend is
removed. The equities are also tested on seasonality. This is done by creating four
binary dummy variables and these are jointly tested to be equal. The FTSE100,
S&P500 and the S&P/TSX don’t show any seasonality, however the DAX does
appear to have some seasonality as the wald test returns a p-value that does not
reject on the 5% level. The p-value for the DAX is 0.0222, however as this is not
rejected on the 1% level I won’t take any measures so the models used for the
equities does not change too much between each other.

This paper uses AR-GARCH models with student’s t distributed error terms.
First I test whether the time-series data is stationary, this is done with the Aug-
mented Dickey Fuller test. The p-values are 0.001 , 0.000 , 0.001, 0.000 for the
DAX, FTSE100, S&P500 and S&P/TSX respectively. This suggests that the null
hypothesis is rejected and that the log differences are stationary. The log returns of
the price indices are shown in figure 2
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Figure 2: Plots of the complete data set for the returns of the equities
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Table 1 presents some summary statistics of rt. All equities show a negative
skewness and a kurtosis that is higher than normal. The negative skewness indicates
that negative returns happen more often than large positive returns. The kurtosis
is higher than the kurtosis of the normal distribution, this suggests that the equities
have a high peak and fat tails, so it might indeed be better to use student’s t
distributed error terms in the AR-GARCH models. The Q-Q-plots in figure 3
shows that the equities might not be normal. The Jarque-Bera also rejects the null-
hypothesis of normality, so none of the equity price indices are normally distributed.

DAX FSTE100 S&P 500 S&P/TSX
Mean 0.025 0.014 0.026 0.017
Maximum 12.370 12.219 10.957 9.925
Minumum -13.058 -10.538 -9.470 -13.789
Std. Dev. 1.560 1.272 1.152 1.227
Skewness -0.090 -0.075 -0.240 -0.820
Kurtosis 8.240 11.617 11.658 14.893
Jarque-Bera 6995* 18903* 19134* 36685*
Number of obs. 6108

* rejection of the null hypothesis at the 0.05 level

Table 1: Descriptive statistics for rt of the equity price index
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Figure 3: QQ-plots of the returns of the equity price index versus normal density

The correlation between the four equities is given in table 2. The DAX -
FTSE100 have the highest correlation and after that the S&P 500 - S&P/TSX.
This makes sense as these are the combinations for the European equity and North-
American equity. Between the European and North-American equities the correla-
tion is still fairly high (between 0.45 and 0.60). This suggests that there is some
connection between the equities of Europe and North-America.

DAX FTSE100 S&P 500 S&P/TSX
DAX 1 0.7439 0.4998 0.5485
FTSE100 0.7439 1 0.4684 0.5785
S&P 500 0.4998 0.4684 1 0.6650
S&P/TSX 0.5485 0.5785 0.6650 1

Table 2: The correlation between the four returns of the equity price index.

A basic AR-GARCH(1,1) model is used for each equity (see equations 11, 12
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and 13), as it is the most common model to describe financial time series (Diebold
et al. (1998)). The amount of AR lag terms used is determined by the correlogram
of the returns. For all returns it shows that there is no autocorrelation on a 0.05
level, so only the first AR term is added so the first expression is not just a constant
(equation 11).

Xi,t = µxi +

n∑
j=1

φj,xiXi,t−1 + εxi,t (11)

σ2
xi,t = ωxi + βxiσ

2
xi,t−1 + αxiε

2
xi,t−1 (12)

√
υxi

σ2
xi,t

(υxi − 2)
· εxi,t ∼ iid tυxi (13)

3.2 Value-at-Risk

A popular method used in financial markets is the so-called ’Value-at-Risk’ (VaR).
The VaR measures the potential loss of an asset. For example if you know the 99%
VaR for 1-day-ahead for the next 100 days, then over 100 days there is on average
1 day in which you lose more than the value given by the VaR. The V aRt(1− q, h)
is the qth quantile of the distribution of the h-day return rt+h,h :

P [rt+h,h ≤ V aRt(1− q, h)] = q (14)

So for the 1-day-ahead 95% this means that the probability that the actual return
is smaller or equal to the VaR value is equal to 0.05.

The VaR is estimated by using Monte Carlo simulations. To get the 1-day-ahead
VaR value for time t the data of time t− 1 is used to estimate the GARCH model.
The standard residuals from the GARCH models of the equities are used to estimate
the copula model. After this two independent random vectors u1 and v are created
and put in the inverse copula function to create a new vector u2, so u2 = C−1

2|1 (v|u1).
Now we have two vectors u1 and u2 that we pair up. The dependence of these two
vectors are now similar to the dependence explained by the copula model, so for
example if the normal copula has a correlation of 0.5 , then the vector pair should
also have a correlation of 0.5. Once these vector pairs are created they are converted
to the simulated standard errors by using the student’s t inverse distribution with
degrees of freedom equal to the ones estimated by the AR-GARCH model. The
student’s t distribution is used as the AR-GARCH model is estimated using the
student’s t error distribution. After this the simulated standard errors are put into
the AR-GARCH model to get the simulated returns of the equities. For this Monte
Carlo simulation the vectors contain thousand variables for each time t. A equally
weighted portfolio is created from the simulated return pairs and for example the
95% VaR is then the 50th smallest return. For the estimation of the AR-GARCH
model a moving window is used containing the previous 500 days. 500 days are
taken as this is a good datasize to estimate a GARCH model with (Hwang and
Pereira (2004)).

3.3 Christoffersen test

In order to evaluate the estimated VaR values the Christoffersen test is used (see
Christoffersen (1998)). The Christoffersen test contains two different likelihood ra-
tio (LR) tests and then a third (LR) test which is basically a combination of the



4 RESULTS 8

first two. The first test tests the hypothesis of E[It] = p against the alternative
E[It] 6= p given independence. Here It is an indicator function which is equal to
one if the true value is bigger than the VaR value and zero if the true value is
smaller than the VaR value and p is the percent for which the VaR is evaluated.
This first test is also called the unconditional coverage (uc) test. The second test
tests for independence and is called the independence (ind) test. The null hypothe-
sis is that there is no dependence against the alternative that there is dependence.
A good VaR estimate should not exceed the true value for a given percent of the
cases. Also there should not be any clusters of exceedings, so the VaR values should
be independent of each other. The third test combines the first and the second
test, so that the test looks at both of these aspects. This way it is possible to test
the VaR values for both unconditional coverage and independence at the same time.

For a more in-depth explanation of the Christoffersen test, see the appendix.

3.4 Likelihood Ratio test

In order to test whether the time-varying copulas provide a better model fit than the
copulas with constant parameter a likelihood ratio test is performed. The underlying
marginal distributions are the same for both copulas, so it is possible to use a
likelihood ratio test on the copula likelihoods. Setting parameters α and ω to
zero and β to one in the equation for the time-varying copulas (equation 6, 7 and
9) is the same as the copula with constant parameters. The model under the
null hypothesis with constant parameters is thus nested in the model under the
alternative hypothesis with time-varying parameters.

4 Results

4.1 The Models for the Marginal Distribution

As explained in section 3.1, AR-GARCH(1,1) models are used for each equity. The
results of the parameters of these marginal distributions is given in table 3. Ev-
erything except for the AR(1) values seem to be significantly different from zero.
The AR(1) term for the DAX, FTSE100 and S&P500 are not significantly different
from zero. However, as stated before the AR(1) terms are kept in the model so the
first part is not only the constant parameter. All constant parameters are positively
significant from zero, so all equity price indices increase over team. In all four cases
the sum of the lagged e2 and lagged variance is smaller than one, this suggests that
the GARCH model is stationary.
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DAX FTSE100 S&P500 S&P/TSX

Constant 0.073 0.044 0.063 0.048
(0.014) (0.012) (0.010) (0.012)

AR(1) -0.025 -0.002 -0.022 0.123
(0.013) (0.013) (0.014) (0.013)

GARCH constant 0.018 0.014 0.007 0.006
(0.004) (0.003) (0.002) (0.002)

Lagged e2 0.075 0.069 0.067 0.067
(0.007) (0.006) (0.006) (0.006)

Lagged variance 0.919 0.922 0.929 0.929
(0.007) (0.007) (0.006) (0.006)

Degrees of freedom 8.762 10.468 6.778 8.516
(0.713) (1.242) (0.577) (0.722)

Table 3: Results for the AR(1)-GARCH(1,1) model estimations, with the standard errors in parentheses

4.2 Results for the Copula Models

The results for the estimated normal and SJC for both the constant and time-
varying copula is given by table 4. All parameters for the DAX-FTSE100 in the
time-varying copulas are significant, so this might indicate that the time-varying
models have a better fit than the constant models. The constant lower tail depen-
dence is higher than the constant upper tail dependence for all three equity pairs.
For the time-varying tail dependence this is not always the case as can be seen in
figure 7,8 and 9. Both the S&P500-FTSE100 and S&P500-S&P/TSX have some
insignificant parameters for the time-varying SJC copula. This may suggest that
the tail dependence moves alot which makes it harder to find a good update equa-
tion to capture this effect. For the S&P500-S&P/TSX it is mainly the upper tail
dependence that fluctuates alot as the αU is very high. For the S&P500-FTSE100
both lower and upper tail dependence seem to fluctuate a lot as both αU and αL

are rather high.
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DAX - FTSE100 S&P500 - FTSE100 S&P500 - S&P/TSX

Constant normal copula
ρ̄ 0.690 0.422 0.602

(0.006) (0.010) (0.007)
Copula likelihood 1970 600 1374

Constant SJC copula
τ̄U 0.470 0.204 0.340

(0.012) (0.016) (0.015)
τ̄L 0.530 0.254 0.450

(0.010) (0.015) (0.011)
Copula likelihood 2024 619 1396

Time-varying normal copula
Constant -0.033 -0.088 2.651

(0.011) (0.001) (0,100)
α 0.375 0.016 0.714

(0.031) (0.000) (0.069)
β 2.196 2.332 -2.765

(0.045) (0.006) (0.081)
Copula likelihood 2119 619 1419

Time-varying SJC copula
ConstantU -1.968 1.944 2.027

(0.017) (0.359) (1.019)
αU -0.657 -9.127 -11.129

(0.083) (1.504) (2.830)
βU 4.123 -5.117 -1.452*

(0.024) (0.289) (1.485)
ConstantL -1.929 0.218* -1.918

(0.016) (0.943) (0.026)
αL -0.464 -6.229 -0.412

(0.068) (2.400) (0.094)
βL 4.023 0.714* 3.984

(0.019) (1.539) (0.028)
Copula likelihood 2375 656 1498
*The null hypothesis is not rejected. These values are not significantly different from zero.

Table 4: Estimation output for the copula models, the standard errors are given in parenthesis
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Figure 4 shows the correlation for both the constant and time-varying normal
copula for the DAX - FTSE100 pair. The correlation seems to fluctuate between
0.6 and 0.8, but there are a few cases where the correlation drops down. I could not
find a good explanation for this, as the price index for both the DAX and FTSE100
seem to have no special events during these time periods. After 1997 these big drops
in correlation no longer happen.
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Figure 4: Correlation of the normal copula for the DAX and FTSE100

The correlation for the constant and time-varying normal copula for the S&P500
- FTSE100 pair is shown in figure 5. Here the correlation is between 0.3 and 0.5,
this is lower than the DAX - FTSE100. This can be explained by the fact that the
DAX and FTSE100 are European equities and have a higher correlation as shown
in table 2.
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Figure 5: Correlation of the normal copula for the S&P500 and FTSE100

The correlation of the S&P500 - S&P/TSX pair is given in figure 6. The corre-
lation of this pair is between 0.45 and 0.8 which is slightly lower than the DAX -
FTSE100. This is in line with the correlation as shown in table 2. Overall this may
indicate that the correlation between the European equities is slightly higher than
the North-American equities, but no real conclusions can be taken from this yet.
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Figure 6: Correlation of the normal copula for the S&P500 and S&P/TSX
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Figure 7: Difference between upper and lower tail dependence for the DAX and FTSE100

In figure 7 the difference between τU and τL is given for the constant and time-
varying SJC copula of the DAX - FTSE100 pair. Up to 2005 the difference is
below zero, so this suggests that joint negative events happen more often than joint
positive events. After this point there seems to be some structural break, which
makes the time-varying difference change from below the constant difference to
above the constant difference. This means that the difference between τU and τL

has become smaller.
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Figure 8: Difference between upper and lower tail dependence for the S&P500 and FTSE100

Figure 8 shows the difference for the S&P500 - FTSE100 pair. Just like the DAX
- FTSE100 the difference is below zero, so again this suggests that there are more
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joint negative events than joint positive events. Around 2009 - 2012 the difference
between τU and τL becomes a little more negative. This difference may be caused
by the latest crisis. This suggests that during the crisis there are even more joint
negative events than joint positive events.
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Figure 9: Difference between upper and lower tail dependence for the S&P500 and S&P/TSX

Lastly the difference between τU and τL for the constant and time-varying SJC
copula of the S&P500 - S&P/TSX is given in figure 9. The difference between τU

and τL seems to fluctuate more heavily than the DAX - FTSE100, so this may
suggest that the upper and lower tail dependence in Europe is more steady than
the North-American tail dependence on the short term. On the long term, however,
the DAX - FTSE100 seems to have a structural break. This does not happen for
the S&P500 - S&P/TSX. The recent crisis did seem to slightly affect the S&P500 -
S&P/TSX, but there is no real change seen in the DAX - FTSE100. Perhaps this
is because the crisis had the biggest impact on North-America.

4.3 Value at Risk and Christoffersen

The VaR is simulated for five different models: The SJC copula with constant
parameter, SJC copula with time-varying parameter, normal copula with constant
parameter, normal copula with time-varying parameter and a AR(1)-GARCH(1,1)
model. The AR(1)-GARCH(1,1) model serves as a benchmark model to see how
well the copula models perform. The VaR I will evaluate are the 99%, 95% and
90% 1-day-ahead VaR. Once the VaR values are simulated the Christoffersen test is
applied. The results from the Christoffersen test for the pair DAX - FTSE100 are
shown in table 5:

For the 99% VaR none of the combined tests is rejected, so this means the
amount of hits are not significantly different from the expected hits. A total of
5.608 VaR values are estimated, so this means the expected hits for the 99%, 95%,
90% VaR are respectively 56, 280 , 561. If you compare these expected hits with the
actual hits then it looks like the 99% VaR is fairly accurate, but the 95% and 90%
VaR slightly overestimate the risk. The main problem seems to be the independence
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unconditional independence combined #hits
99%

Normal constant 0.901 * * 57
Normal time-varying 0.901 0.612 0.873 57
SJC constant 0.797 * * 58
SJC time-varying 0.901 0.612 0.873 57
AR-GARCH 0.000 0.000 0.000 168

95%
Normal constant 0.058 0.000 0.000 250
Normal time-varying 0.027 0.000 0.000 245
SJC constant 0.077 0.000 0.000 252
SJC time-varying 0.023 0.000 0.000 244
AR-GARCH 0.000 0.000 0.000 492

90%
Normal constant 0.008 0.000 0.000 502
Normal time-varying 0.003 0.000 0.000 496
SJC constant 0.109 0.007 0.007 525
SJC time-varying 0.099 0.000 0.000 524
AR-GARCH 0.000 0.000 0.000 775

Table 5: Results for the one-day-ahead VaR for the DAX-FTSE100 Christoffersen test. The p-values of
the test are given. The asterix means there is never two hits in a row, so the independence and thus the
combined test can’t be performed. This basically means the null-hypothesis is not rejected so there is no
dependence.

test. Only the 99% VaR does not reject the independence test, the 95% and 90% do
reject the independence test. This means that two hits in a row happen too often, so
the hits are not independent, so it seems like there are some clusters. These clusters
mainly appear when there is an increase in volatility. This makes some sense as it
is harder to estimate a good VaR when the volatility increases. Compared to the
benchmark AR-GARCH model the copula models seem to perform really well. In
all three cases the AR-GARCH model heavily underestimates the risk which results
in a large amount of hits.
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Figure 10: Plot of the 95% VaR for the DAX - FTSE100

The plot of the 95% VaR can be seen in figure 10.It is hard to see the difference
between the copula models, but the AR-GARCH can be clearly seen. It looks like
the AR-GARCH model does indeed underestimate the risk. In figure 11 only the
last 500 observations are shown to get a better picture of how the VaR performs.
Now the AR-GARCH is seen even more clearly and there are some slight differences
between the copula models, but these differences are not big.
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Figure 11: Plot of the 95% VaR for the DAX - FTSE100 where only the last 500 observations are shown
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Figure 12: Plot of the DAX - FTSE100 for the 90% , 95% and 99% VaR

The results from the Christoffersen test for the S&P500 - FTSE100 are in table 6.
The VaR for this portfolio seems to perform worse than the VaR for the portfolio of
DAX - FTSE100. Only the normal copula with constant parameter for the 99% VaR
does not reject the combined test. Even the AR-GARCH model seems to perform
about equally well for the 90% VaR. Although the AR-GARCH underestimates the
risk once again, for the 90% VaR this is about equal to the overestimation of risk
for the copula models. The bad results of the copula models can be explained by
the lower correlation between the two equities. Also this might suggest that the
price indices for the North-American and European equities differ quite a bit from
each other. Again these clusters happen when there is an increase in volatility.

The results from the Christoffersen test for the S&P500 - S&P/TSX are in table
7. The 99% VaR results for the copula models are not rejected, except for the SJC
time-varying copula. For the 95% and 90% VaR the copula models overestimate
the risk once again. The independence test is not always rejected in these cases
at the 1% level, so compared to the other equity pairs this VaR model seems to
be more independent. The benchmark AR-GARCH model underestimates the risk
once again and performs worse than the copula models.

Overall when comparing the European and North-American pairs it looks like the
European pair performs better in the unconditional test, but the North-American
pair performs better in the independence test.

More plots of the VaR are located in the appendix.

4.4 Likelihood Ratio test

The likelihood ratio test described in section 3.4 is applied to the normal copula
and SJC copula to see if the time-varying copula model has a better fit than the
constant copula model. The p-values of the test is given in table 8. In each case the
null hypothesis is heavily rejected, so the time-varying copulas provide a better fit
than the constant copulas. This suggests that the correlation between the equities
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unconditional independence combined #hits
99%

Normal constant 0.163 0.396 0.264 46
Normal time-varying 0.034 0.309 0.062 41
SJC constant 0.004 0.233 0.008 36
SJC time-varying 0.006 0.024 0.002 37
AR-GARCH 0.000 0.741 0.000 94

95%
Normal constant 0.003 0.005 0.000 233
Normal time-varying 0.005 0.001 0.000 236
SJC constant 0.001 0.070 0.001 228
SJC time-varying 0.002 0.000 0.000 231
AR-GARCH 0.000 0.000 0.000 370

90%
Normal constant 0.000 0.002 0.000 469
Normal time-varying 0.000 0.037 0.000 476
SJC constant 0.005 0.001 0.000 498
SJC time-varying 0.002 0.000 0.000 493
AR-GARCH 0.002 0.000 0.000 633

Table 6: Results for the one-day-ahead VaR for the S&P500 - FTSE100 Christoffersen test. The p-values
of the test are given.

change over time. This however can’t be seen in the VaR results. Maybe the
moving window used for the simulation of the VaR results already compensates for
the change of the correlation over time.

p-value
Normal Copula SJC Copula

DAX - FTSE100 0.000 0.000
S&P500 - FTSE100 0.000 0.000
S&P500 - S&P/TSX 0.000 0.000

Table 8: Likelihood Ratio test for constant copulas versus time-varying copulas.
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unconditional independence combined #hits
99%

Normal constant 0.678 0.530 0.753 53
Normal time-varying 0.885 * * 55
SJC constant 0.124 * * 45
SJC time-varying 0.006 * * 37
AR-GARCH 0.000 0.098 0.000 127

95%
Normal constant 0.037 0.071 0.022 247
Normal time-varying 0.014 0.005 0.001 241
SJC constant 0.023 0.183 0.031 244
SJC time-varying 0.014 0.023 0.004 241
AR-GARCH 0.000 0.010 0.000 428

90%
Normal constant 0.000 0.007 0.000 471
Normal time-varying 0.000 0.006 0.000 464
SJC constant 0.001 0.029 0.000 488
SJC time-varying 0.000 0.023 0.000 480
AR-GARCH 0.000 0.002 0.000 698

Table 7: Results for the one-day-ahead VaR for the S&P500 - S&P/TSX Christoffersen test. The p-values
of the test are given. The asterix means there is never two hits in a row, so the independence and thus
the combined test can’t be performed. This basically means the null-hypothesis is not rejected so there
is no dependence.

5 Conclusion

In this paper time-varying conditional copulas are used, suggested by Patton (2006).
In total there are four different copulas used, the normal and SJC copula, both with
and without time-varying parameters. These copulas are applied on equity price
indices for the S&P500 , DAX , FTSE100 and the S&P/TSX.

I test three different hypotheses. The first and main hypothesis is that time-
varying VaR models calculated by Monte Carlo simulation perform better compared
to constant copulas or other benchmark models. The second hypothesis is that the
dependence between North-American and European equity returns is different. The
last hypothesis is that time-varying copulas provide a better model fit than constant
copulas.

An AR(1)-GARCH(1-1) with t-distributed errors for the marginal models of the
returns of the equity price indices is used.

A likelihood ratio test is used to formally test whether the copula likelihood
of the time-varying model is significantly better than the copula likelihood of the
copula with constant parameter. For all three pairs I find a significant rejection of
the null hypothesis that the models perform equally well.

It is hard to find real differences between the dependence of the North-American
and European returns. The correlation of the European returns is slightly higher
than the North-American returns. The North-American dependence seems more
volatile on the short term, but on the long term the European returns seem to have
some structural break around 2005.

The Christoffersen test is used to test the performance of the VaR models. The
99% VaR seems fairly accurate, but the 95% and 90% VaR are often rejected by both
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all tests. This suggests that the VaR models are not independent. The benchmark
AR(1)-GARCH(1,1) with t-distributed errors seems to perform a lot worse, so in
the end the time-varying copula does not seem to perform better (or worse) than
the constant copula, but it does perform better than the benchmark model.
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6 Appendix

6.1 Introduction to Copulas

The use of the correlation coefficient has a few limitations. First of all empirical
research in finance shows that joint asset returns are non-elliptical, see for example
Chicheportiche and Bouchaud (2012) for the stock returns. Besides, it is also only
a linear measure of dependence and therefore not possible to capture non linear
dependencies. For example, consider a standard normal variable X. Then the cor-
relation between X and X2 is approximately zero even though their dependence is
perfectly quadratic (Alexander (2008)). Furthermore, the correlation coefficient is
not invariant under (monotonic) transformations of the variables of interest (Em-
brechts et al. (2002)). For example, the correlation between x and y is not the same
as the correlation between ln(x) and ln(y).

Sklar (1959) shows that the dependence between random variables can be better
understood through the use of a copula. We state his result for the bivariate case
as we only analyze a portfolio with n = 2 assets in this paper.

F (x1, x2) = C(F1(x1), F2(x2)), (15)

This means that a joint distribution with two variables can be split up into two
marginal distributions and a copula that governs the dependence structure. This
completely describes the dependence between variables and thus is not just a lin-
ear measure such as the correlation coefficient. For example, when x and y are
independent, the copula function is given by:

C(F1(x1), F2(x2)) = F1(x1)F2(x2) (16)

An expression of the bivariate density function is obtained by simply differentiating
with respect to each variable.

f(x1, x2) = f1(x1)f2(x2)c(F1(x1), F2(x2)), (17)

where,

c(F1(x1), F2(x2)) =
δ2C(F1(x1), F2(x2))

δF1(x1)δF2(x2)
(18)

Equation (18) is also called the copula density. According to Alexander (2008),
the marginal distributions F1(x1) and F2(x2) are uniformly distributed. When we
substitute u1 = F1(x1) and u2 = F1(x2), also known as the probability integral
transforms into the copula we get the copula density c(u1, u2).

A great benefit of using copulas is that they can be applied to any marginal
distribution. For example, it is possible to apply a normal copula to a marginal
Student’s t-distribution with v1 degrees of freedom (df) and to another marginal
Student t-distribution with v2 df . The same copula can be applied to two completely
different marginal distributions, resulting in a new joint distribution. Thus, the use
of copula modeling allows us to specify a vast number of joint distributions.

An intesting form of dependence to take a closer look at is the tail dependence,
which is a measure of the dependence in the lower or upper tail of a bivariate
distribution. Loosely speaking, lower tail dependence is defined as the limiting
probability that, given an extremely small value of v, the variable u also takes an
extremely small value, and vice versa for upper tail dependence. Various copulas
exhibit different forms of tail dependence. The formal defnition is given below.

τL = lim
ε↓0

P[U < ε|V < ε] = lim
ε↓0

C(ε, ε)

ε
(19)
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τU = lim
ε↑1

P[U > ε|V > ε] = lim
ε↑1

1− 2ε+ C(ε, ε)

1− ε
(20)

The standard copulas are the Gaussian copulas, which include the normal and
Student’s t copula. The normal copula is symmetric, meaning that C(u1, u2) =
C(u2, u1), so it is not able to model asymmetric dependence between two assets
The Students t copula is symmetric as well however the t copula tails contain more
density than the normal copula, whereas the normal copula has more mass around
its center. The copula density of the normal copula is given below.

c(u1, u2; ρ) = (1− ρ2)−1/2 exp

(
−ρ

2ξ2
1 − 2ρξ1ξ2 + ρ2ξ2

2

2(1− ρ2)

)
(21)

Where ξ1 = Φ−1(u1) and ξ2 = Φ−1(u2). We show two contour plots to further
illustrate that ρ is not a sufficient measure of dependence. The first figure shows
the contour plot of a normal copula with a correlation coefficient of 0.5. The second
plot shows the contour plot of a bivariate Clayton copula (see equation 22). The
parameter of this copula is calibrated such that the corerlation coefficient is 0.5
as well, but it is obvious that the underlying dependence structure is completely
different. It is better suited for modeling joint negative events.

c(u1, u2) = (α+ 1)(u−α1 + u−α2 − 1)−2−(1/α)u−α−1
1 u−α−1

2 (22)

Normal copula, ρ = 0.5
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Figure 13: Bivariate normal copula contour plot
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Clayton copula, κ = 1
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Figure 14: Bivariate Clayton contour plot

6.2 Conditional copulas

In this paper we mainly study methods and techniques introduced by Patton (2006)
and apply these to the exchange rate pairs described in the data section. In his
paper Patton (2006) studies asymmetric dependence between exchange rates using
time-varying conditional copulas. The definition of the conditional copulas given
below.

FXY |W (x, y | w) =C(FX|W (x | w), FY |W (y | w) | w),

∀(x, y) ∈ R̄→ R̄ and each w ∈W
(23)

We follow Patton (2006) and use the symmetrized Joe Clayton copula, which is a
modification of the BB7 copula from Joe (1997). The SJC copula is given below:

CSJC(u, v | τU , τL) = 0.5× (CJC(u, v | τU , τL) + CJC(1− u, 1− v | τU , τL) + u+ v − 1)

(24)

The conditioning variables τU and τL of this conditional copula respectively are the
upper and lower tail dependence coefficients. We want to make τU and τL time-
varying as we study the difference between copulas with time-varying parameters
versus constant paramters. To do so we again follow Patton (2006), who proposes
the evolution equation given in equations 25 and 26.

τUt = Λ

ωU + βLτ
U
t−1 + αU

1

10

10∑
j=1

| ut−j − vt−j |

 (25)
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τLt = Λ

ωL + βLτ
L
t−1 + αL

1

10

10∑
j=1

| ut−j − vt−j |

 (26)

The evolution equations are similar to an autoregressive process and we also utilize
past information of longer lags by adding the mean absolute difference of the last 10
observations. Subsequently we apply the logistic transformation Λ(x) = (1+e−x)−1

to ensure that τU and τL stay within (0,1).
The benchmark model we use is the normal copula without time variation, see

equation 27.

C(u, v|ρ) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞

1

2π
√

1− ρ2
exp

[
−(r2 − 2ρrs+ s2)

2(1− ρ2)

]
dr ds (27)

Where Φ−1 is the inverse of the standard normal c.d.f .Of course, this copula has
only one paramter, which is the correlation parameter ρ. We also make it time-
varying by using the same evolution equation as Patton (2006).

ρt = Λ̃

ωρ + βρ · ρt−1 + α · 1

10

10∑
j=1

Φ−1(ut−j) · Φ−1(vt−j)

 (28)

As the correlation has to stay within (-1,1) we again apply a logistic transformation,
given by Λ̃(x) = (1 − e−x)(1 + e−x)−1. The update process is comparable to the
SJC case, and we also look at the influence of the last 10 lags, which is done to keep
the specifications comparable.

6.3 Christoffersen test

We use the VaR values to see if a copula with time-varying parameter performs
better than the copula with a constant parameter. A popular test used to evaluate
different VaR models is a test suggested by Christoffersen (1998). The test works as
follows: Observe a sample path {yt}T(t=1), of the time series yt. Define an indicator
function

It =

{
1, if yt ∈ [Lt|t−1(p), Ut|t−1(p)]

0, if yt /∈ [Lt|t−1(p), Ut|t−1(p)]
(29)

In the case of VaR this interval is only one-sided as we’re only interested in the
lower side. So for us the interval defined for the indicator function is equal to
(V aR(t|t−1)(p),+∞).

With the help of this indicator function Christoffersen suggests three likelihood
ratio (LR) tests. First an LR test for unconditional coverage, second an LR test of
independence and lastly a combination of the first two.

The first tests the hypothesis ofE[It] = p against the alternative E[It] 6= p given
independence. The likelihood under the null hypothesis is:

L(p; I1, I2, ..., It) = (1− p)n0pn1 (30)

And under the alternative:

L(π; I1, I2, ..., It) = (1− π)n0πn1 (31)
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In the likelihood the n0 and n1 are the total amount of zeros and ones in the
indicator, respectively.
The LR test becomes:

LRuc = −2log

(
L(p; I1, I2, ..., It)

L(π̂; I1, I2, ..., It)

)
∼ χ2(s− 1) = χ2(1), (32)

Where π̂ = n1/(n0 + n1) is the maximum likelihood estimate of π, and s = 2 is the
number of possible outcomes of the sequence (zero or one).

In this test the order of zeros and ones in the indicator vector does not matter.
Only the total number of zeros and ones are important. It only tests on the coverage
and doesn’t hold into account any possible clusters. This is why Christoffersen uses
the second LR test to test for independence.

In this second test Christoffersen tests the null hypothesis that there is indepen-
dence against the alternative that there is dependence. For the alternative Christof-
fersen uses a binary first-order Markov chain, with transition probability matrix

Π1 =

[
1− π01 π01

1− π11 π11

]
,where πij = Pr(It = j | It−1 = i). (33)

The likelihood function for this process is:

L(Π1; I1, I2, ..., IT ) = (1− π01)n00πn01
01 (1− π11)n10πn11

11 , (34)

where nij is the total amount of observations with value i followed by value j.
The maximum likelihood estimation for Π1 is:

Π̂1 =

[
n00/(n00 + n01) n01/(n00 + n01)
n10/(n10 + n11) n11/(n10 + n11)

]
(35)

For the null hypothesis of independence Christoffersen uses again a binary first or-
der Markov chain,

Π2 =

[
1− π2 π2

1− π2 π2

]
(36)

Here the different Markov states are independent of each other. The likelihood un-
der the null becomes:

L(Π2; I1, I2, ..., IT ) = (1− π2)n00+n10πn01+n11
2 (37)

The maximum likelihood estimate is: π̂2 = (n01 +n11)/(n00 +n10 +n01 +n11). The
LR test becomes:

LRind = −2log

(
L(Π̂2; I1, I2, ..., IT )

L(Π̂1; I1, I2, ..., IT )

)
∼ χ2((s− 1)2) = χ2(1) (38)

This test only tests the independence part of the time series, but it says nothing
about the coverage of the series. We combine the tests for unconditional coverage
and independence, so that the test looks at both of these aspects. This is the third
LR test Christoffersen uses. Here Christoffersen tests the null of the unconditional
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coverage test against the alternative of the independence test. This gives the fol-
lowing LR test:

LRcc = −2log

[
L(p; I1, I2, ..., It)

L(Π̂1; I1, I2, ..., IT )

]
∼ χ2(s(s− 1)) = χ2(2) (39)

We ignore the first observation, so we simply add the first two tests together that:

LRcc = LRuc + LRind (40)

This test allows to test time series for both unconditional coverage and for indepen-
dence.
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Figure 15: Plot of the 95% VaR for the S&P500 - FTSE100
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Figure 16: Plot of the SJC time-varying 99% , 95% and 90% VaR for the S&P500 - FTSE100
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Figure 17: Plot of the 95% VaR for the S&P500 - S&P/TSX
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Figure 18: Plot of the SJC time-varying 99% , 95% and 90% VaR for the S&P500 - S&P/TSX
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LIST OF FIGURES 31

List of Figures

1 Plots of the complete data set of the price index for all four equities 2
2 Plots of the complete data set for the returns of the equities . . . . . 4
3 QQ-plots of the returns of the equity price index versus normal density 6
4 Correlation of the normal copula for the DAX and FTSE100 . . . . 11
5 Correlation of the normal copula for the S&P500 and FTSE100 . . . 12
6 Correlation of the normal copula for the S&P500 and S&P/TSX . . 12
7 Difference between upper and lower tail dependence for the DAX and

FTSE100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
8 Difference between upper and lower tail dependence for the S&P500

and FTSE100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
9 Difference between upper and lower tail dependence for the S&P500

and S&P/TSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
10 Plot of the 95% VaR for the DAX - FTSE100 . . . . . . . . . . . . . 16
11 Plot of the 95% VaR for the DAX - FTSE100 where only the last 500

observations are shown . . . . . . . . . . . . . . . . . . . . . . . . . . 16
12 Plot of the DAX - FTSE100 for the 90% , 95% and 99% VaR . . . . 17
13 Bivariate normal copula contour plot . . . . . . . . . . . . . . . . . . 22
14 Bivariate Clayton contour plot . . . . . . . . . . . . . . . . . . . . . 23
15 Plot of the 95% VaR for the S&P500 - FTSE100 . . . . . . . . . . . 26
16 Plot of the SJC time-varying 99% , 95% and 90% VaR for the S&P500

- FTSE100 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
17 Plot of the 95% VaR for the S&P500 - S&P/TSX . . . . . . . . . . . 27
18 Plot of the SJC time-varying 99% , 95% and 90% VaR for the S&P500

- S&P/TSX . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

List of Tables

1 Descriptive statistics for rt of the equity price index . . . . . . . . . 5
2 The correlation between the four returns of the equity price index. . 6
3 Results for the AR(1)-GARCH(1,1) model estimations, with the stan-

dard errors in parentheses . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Estimation output for the copula models, the standard errors are

given in parenthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Results for the one-day-ahead VaR for the DAX-FTSE100 Christof-

fersen test. The p-values of the test are given. The asterix means
there is never two hits in a row, so the independence and thus the
combined test can’t be performed. This basically means the null-
hypothesis is not rejected so there is no dependence. . . . . . . . . . 15

6 Results for the one-day-ahead VaR for the S&P500 - FTSE100 Christof-
fersen test. The p-values of the test are given. . . . . . . . . . . . . . 18

8 Likelihood Ratio test for constant copulas versus time-varying copulas. 18
7 Results for the one-day-ahead VaR for the S&P500 - S&P/TSX Christof-

fersen test. The p-values of the test are given. The asterix means
there is never two hits in a row, so the independence and thus the
combined test can’t be performed. This basically means the null-
hypothesis is not rejected so there is no dependence. . . . . . . . . . 19


