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Abstract  
We investigate the effectiveness of different weighting schemes to combine a set of forecasts from 

linear regression models. We use a set of 218=162.144 one-step ahead forecasts from a previous 

paper by Holtrop et al.(2014), as well as a selection of the best models, to all of which we assign a 

weight and create a single forecast. Our goal is to determine the effectiveness of different weighting 

schemes in comparison to the simple average of all the forecasts. We will evaluate the following 

schemes: The median, inverse MSPE weights, Bayesian Averaging, Principal Component Analysis and 

K-mean-clustering. The forecasts from all models will be evaluated statistically as well as 

economically, by creating a fictive investment strategy based on the produced forecasts. Both give 

somewhat different results, but the main findings are that the mean is a very solid benchmark and 

that other weights are most effective when using the full sample of forecasts. The inverse MSPE 

based weights perform the best of all the created weighting schemes for the full sample, and the K-

Mean-clustering algorithm also gives promising results, especially because only a basic version of the 

algorithm was used. This can be an interesting weighting scheme for future research.  

Keywords: Forecast combinations, volatility, inverse MSPE weights, Bayesian Averaging, Principal 

Component Analysis, K-Mean-Clustering 
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1. Introduction 
The prediction of variables is a hot topic in today's economic circles; it has become more accessible 

to all who need it, and the research on finding the best model for each variable has become more 

widespread than ever. It is an essential subject for most companies, be it in terms of risk 

management, marketing purposes or logistical planning. From all ranges in the world economy, 

expectations of the behavior of the economic variables are needed to predict future market states 

and to determine new market strategies. A vast amount of literature has been dedicated to finding 

the best way to forecast each type of variable. Most of the research focuses on finding the best 

individual model, which can at best be only a reasonable approximation of the reality. Many methods 

require deep knowledge of the underlying structure of the variable that is being forecasted, most of 

which are never completely clear. Furthermore, many assumptions still need to be made and a 

robust model would be very useful. 

For a simple forecast of a variable there are many different ways to approximate this value. Where 

one forecaster can assume a linear relationship, another one might prefer a non-linear model 

specification. The question arises which type of forecast is the correct one, and up to what degree 

one wants to spend his time to tightly specify the exact model. When multiple differently created 

forecasts are available, the ultimate goal is to extract as much information as possible from these 

forecasts. A search can be started to identify the best model, but Bates and Granger(1969) have 

suggested combining the forecasts obtained from the different models. One can argue that the 

combination of forecasts can offer diversification gains that make this choice very attractive. Even if 

the best model at each point in time could be identified, a combination of forecasts could still be 

attractive, even though its success would largely depend on the quality of the weights that are used 

to combine the forecasts (Timmermann, 2006). 

Forecast combinations have proven to produce very good forecasts compared to advanced case-

specific model specifications. Bates and Granger provide the following reasons for this; First, because 

the true data generating process is often unknown, even the best model is likely to be misspecified 

and often provides only a reasonable "local" approximation. Second, because the best model is likely 

to be time variant, a combination of models can provide a better forecast than a single model 

because there is no single model that is best over the entire horizon. By combining the models, the 

appropriate information of the best model can be incorporated at each moment in time.  Last, 

forecast combinations offer diversification gains over regular models. Even if the best model could be 

identified at a point in time, a combination of models could still lead to a lower mean squared 

prediction error than that of the best specified model. The efficiency of a forecast combination can 

be motivated by the same idea as the creation of a portfolio of stocks, resulting in a lower overall risk 

than the risk of the safest stock. 

The aim of this research is to find the best way of combining a set of forecasts. In a previous research 

done by Holtrop et al.(2014), a range of different model types was investigated with regard to their 

forecast quality for the realized volatility of a set of four asset classes, respectively stocks, 

commodities, bonds and an aggregated foreign exchanges measure. The research included a 

principal component analysis, as well as partial least squares regressions and forecast combination 

schemes with mean and median weights. The forecast combination method proved to provide very 

good results, often the best in terms of forecast quality. In this research, we will try to improve the 
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forecast combination method by looking at more advanced weighting schemes, where we use the 

mean forecast as a benchmark to compare against. 

The forecasts for the forecast combination scheme were constructed by creating all possible linear 

models with 18 macroeconomic- and financial variables and an autoregressive term. This resulted in 

218 = 262.144 models, which were then used to produce one-step-ahead forecasts. In this research, 

all the results with respect to the first asset class, stocks, will be presented. Results for the other 3 

asset classes showed similar results, and are available on request. For a uniform evaluation, the 

forecast are evaluated from forecast 26 and onward, because some models start forecasting from 

this period onward. 

The weighting schemes that will be used will both be performed on the full set of 218 forecasts, as 

well as on a selection of the top models. Previous research has shown that the simple average of 

produced forecasts often provides a very good forecast relative to more advanced weighting 

schemes. Prior papers however often analyzed a smaller set of forecasts, with forecasts from 

different types of models, resulting in a small amount of forecasts relative to that of this research. In 

that case, the forecasts are often more uniformly spread around the true value than is the case with 

solely these linear models in this paper, due to which more advanced schemes often proved 

redundant. Due to the large quality difference in the forecasts used in this paper, schemes based on 

forecast-model quality are likely to perform better than the mean, because selecting the good 

forecasts can bring more gains than with a small set of forecasts as used in previous research.  

The mean forecast will be used as the benchmark to be beaten in this research. Weights based on 

model quality will be both based on in- and out-of-sample performance. The first scheme that will be 

used is the median of all forecasts, because the median is more robust to outliers. The second 

scheme is based on each model’s out-of-sample performance, as measured by the inverse mean 

squared prediction error (MSPE) relative to that of the others. In the previous research of 

Holtrop(2014) it was found that the performance of the forecasts varies quite substantially over 

different periods, so a weight based on the moving MSPE could provide better fits over all periods. 

The third model builds on in-sample performance, in the sense that it determines which model is 

most efficiently specified based on the Bayesian Information Criterion (BIC), which uses the in-

sample variance as an estimator for the models’ variance. A small in-sample variance follows from a 

smaller spreads between the true- and estimated value in the estimation period, which in turn 

implies a better forecast quality because of less uncertainty regarding its value. The fourth scheme 

uses a factor based approach to create linear combinations of the forecasts, which are then used in a 

linear regression, reducing the complexity of the problem. The fifth and final scheme is the K-Mean 

algorithm, which splits the forecasts into K clusters based on their forecasting performance. It could 

be that the first cluster of forecasts encompasses the information of all the forecasts from the other 

K-1 clusters, due to which the first cluster will be sufficient for forecasting. 

We have found that in sets where the amount of forecasts is very big, there are gains to be found 

when using more advanced weighting schemes. The inverse MSPE based weights, as well as the 

Bayesian Averaging scheme and the K-Mean-Clustering give better results than the mean. The K-

Mean algorithm that has been used has a very basic specification and can possibly be advanced 

further to provide even better results in future research. 
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This research is organized as follows. Chapter 2 describes the data which is used. In Chapter 3 the 

methodology used is discussed. Chapter 4 contains the results which are evaluated both statistically 

and economically. Finally, in Chapter 5 the conclusion is presented. 

2. Data 
In this research the results from previous research by Holtrop(2014) will be used, which in turn are 

based on a dataset with T=336 monthly observations of 38 macro economical and financial variables 

by Christiansen et al.(2012) from January 1983 up to December 2010. The latter dataset also 

contained the volatility of exchange rates, commodities, stocks and bonds for each month, which 

have been used as dependant variables in the predictive regressions. These volatilities are defined as 

the natural logarithm of the square root of the realized volatility, which in turn is estimated as the 

sum of the squared daily returns. A description of the basic statistical properties of all the 

explanatory  variables as well as of the volatility is attached in Appendix A. In this report, all the 

results will be presented for the stocks; the results for the other three classes are available upon 

request. For a more in-depth analysis of the variables, their effect on the volatility and the 

construction of the forecasts we would like to point to the paper of Holtrop (2014). 

The regressors for the regressions have been extracted from the bigger set of 38 variables by means 

of the Least Angle Regressions (LARS) algorithm. This LARS algorithm ranks the variables by means of 

their correlation with the dependant variable and thus results in the relevance of the variables in 

explaining the volatility. Because the model specification with the top 18 of all 38 variables and a 

moving window of 10 years proved to be the best specification in the research of Holtrop(2014), we 

will only forecasts produced by this model specification in our paper. With these 18 variables, all 

possible linear regression models have been created, to all of which an autoregressive term of the 

volatility was also added since this carries a lot of information, resulting in a total of 218 = 262.144 

models. Next one-step-ahead forecasts were made with each of these models, resulting in 218 one-

month-ahead forecasts of the volatility for each of the 216 forecast periods. 

The forecasts were created using a moving window of length T1 = 120 months, the first estimation 

period being January 1983 up to December 1992 to forecast the first value in T1+1 = January 1993, 

and the last period being December 2000 up to November 2010 to forecast the 216th value in 

December 2010.   
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3. Methodology 
The different weighting schemes will be performed on the matrix with all one-step-ahead forecast 

from all the created models, which is a set of 218
 = 262.144 forecasts for each of the 216 forecast 

periods. Later on, the forecasts will also be split up into a selection of the top 25 and top 100 

forecasts to check the influence of this on the forecast quality and the performance of the different 

weighting schemes.  

In Timmermann(2005), steps are shown to find the optimal weights for a set of forecasts. A 

derivation of the optimal weights for a combination of forecasts is given in Appendix C1. For the 

weighting schemes of which the weights are known, a comparison will be made with respect to the 

optimal weights by inserting both the weights in the formula for the model variance, and then 

dividing the two variances to check the relative performance of the weights. In what follows we will 

give a specification of the weighting models used in this paper and provide a motivation for their use. 

3.1 Simple average 
The benchmark weighting scheme results from taking the mean of all the N one-step-ahead forecasts 

made from all the models j.  

         
 

 
                
 
                                           t = T1+1,..., T 

The simplicity of its specification makes it a very useful scheme to use in practice. The motivation for 

the use of the mean is very straightforward; suppose on has two forecasts on hand, both made by 

experts whom we don't know, with no further information on the relative quality of both forecasts. A 

good way to incorporate the information from both forecasts would then be to average them. A 

same reasoning supports the use of the simple average in the context of combining many forecasts 

from all possible linear models, where we don't know the quality of the individual forecasts made by 

each regression model. 

In practice, the simple average has proven to be a very solid benchmark, which has been shown to be 

very hard to beat by more advanced schemes. Palm and Zellner(1992) gives three main advantages 

of using a simple average forecast;  

1. "Its weights are known and do not have to be estimated, an important advantage if there is little 

evidence on the performance of individual forecasts or if the parameters of the model generating 

the forecasts are time-varying. 

2. In many situations a simple average of forecasts will achieve a substantial reduction in variance 

and bias through averaging out individual bias. 

3. It will often dominate, in terms of MSE, forecasts based on optimal weighting if proper account is 

taken of the effect of sampling errors and model uncertainty on the estimates of the weights." 

Timmermann(2006) notes that the performance of the equal-weighted forecast combinations 

critically depends on the fact that all forecast errors need be of the same magnitude, their ratio being 

close to unity, and the correlation of forecast errors between model-pairs should also be roughly 

equal. Gupta and Wilton(1987) have found that different weighting schemes perform better when 

there are large differences between the sizes of the forecast errors from the different models. 
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In this research, all possible linear models are used to forecast the volatility. The assumption of the 

forecast errors for all models being of equal size is not very realistic. In Appendix B, the distribution 

of the forecast errors of all 218 models for a few periods are shown, and we see that the individual 

forecasts aren’t uniformly spread around the true value, from which we conclude that the models 

have different variances. Division of the variance of the mean scheme model on that of the optimal 

weights results in1  

     
 

    
  

   
     

        
 

   
    

       
  

 

This is larger than one unless       , from which we can conclude that the mean is only optimal 

given that the variances of the different forecast models are equal to each other. Having seen the 

plot in Appendix B, indicating that this is not the case, we can conclude that the possibilities for the 

more difficult models are open. 

3.2 Median 
The first weighting scheme takes the median of all the N forecasts: 

                                                N = 1,..., 2p  ,  t = T1+1,..., T 

With 262.144 models for each time period, of which we have no clue about relative predictive 

quality, many things are possible. Since all possible models are used, including one with only a 

constant and the autoregressive term, some of the forecasts can give results that lie far from the true 

value. Be it positive or negative outliers, the simple average can be negatively influenced by this. If 

for instance there are many forecasts that estimate (far) below the true value, the simple average 

will also be lower than the true value, resulting in a worse performance than one would want. The 

median is more robust to these outliers, and could thus give a better forecast.   

If the forecasts errors are standard normally distributed, which means that they are spread uniformly 

over a certain interval around the true value, both schemes will result in a roughly equal value. When 

this is no longer true, Marcellino(2004) has shown that linear combinations of the forecasts are no 

longer necessarily optimal. For a very much fluctuating series as we use in this paper, it is useful to 

look at both schemes. Computational simplicity of this scheme also supports its use in simple 

forecasting applications. 

3.3 MSPE based weights 
The second weighting scheme is more advanced, in the sense that it involves the individual predictive 

quality of each model. It has often times been argued that it is very difficult to precisely estimate the 

covariance matrix of the forecasts errors, because the amount of forecasts to combine is often 

substantially large. Stock and Watson(2001) proposed to ignore the correlation between the models 

and base the weights only on the models’ relative performance, as measured by their Mean Squared 

Prediction Error (MSPE). To get the most out of this scheme, it is more relevant whether a model 

performed well over recent periods than how it has done over the entire past period. To accomplish 

this, the MSPE will be calculated with a moving window of length 24 months, resulting in weights 

that are based on current performance. 

                                                           
1
 For derivation, see Appendix C.2 
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The mean squared prediction error with a moving window of 24 months for model i at time t is 

defined as  

        
 

  
             

     
      ,        i = 1,...,N   ,   t = T1+26,....,T          

The MSPE for model i at time t, where T1+1 refers to the first made forecast at 1993.1, is calculated 

as the average squared forecast error over the past 24 forecasts, resulting in a moving window of 

length 24 months. This means that the first weight that can be estimated is that of the 26th forecast, 

because we only have MSPE values for period 2 and onward. For instance at time t=T1+26, the 

weights are based on the MSPE that is taken as the average of the squared prediction errors of 

forecasts 2 to 25. The weights for each forecast are then defined as the inverse mean squared 

prediction error raised to a power k divided by the sum of all inverse MSPE's raised to the same 

power k.    

      
       

  

         
    

    
  ,                     i = 1,...,N   ,   t = T1+26,....,T 

This scheme will result in larger relative weights for better performing models since these have a 

lower MSPE, which in turns becomes large as we take inverse powers. This parameter k changes the 

relative size of the weights. Since MSPE values are often in the same order of magnitude, with a 

maximum difference of around a factor 10, the regular inverse MSPE(k=1) gives weights that are still 

all close to each other. To create a bigger spread between the weights, where better forecasts get a 

significantly bigger weight, choices of k>1 can be used. In this paper, we will partially follow the 

paper by Marcellino(2004) and look at the weights with k=1, 2, 5.  

The MSPE based weights work well in practice because the off-diagonal elements of the covariance 

matrix of the forecast errors don't have to be estimated. An important paper by Timmermann (2005) 

on the diversification gains of different weighting schemes under quadratic loss shows that these 

weights are only optimal in large samples provided that the correlation between the forecast errors 

is truly equal to zero. Given that we have two sets of forecasts with corresponding model variances  

  
  and    

 , the ratio of variance of the MSPE weights and the optimal weights under quadratic is 

given by2 

     
 

    
    

 

     
       

    

  
     

  

 

  

which is larger than one unless       when       . We can thus conclude that the MSPE based 

weighting scheme is only optimal given that there is no correlation between the used forecasts. 

 

 

 

                                                           
2
 For derivation, Appendix C.3  
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3.4 Bayesian weights 
Buckland et al.(1997) propose to base weights on a Bayesian procedure. Ex ante any of the N models 

is equally likely to be the best model for predicting   , and they show that 

      
      

 
    

   
 

       
 
        

 
   

  ,                       i = 1,...,N   ,   t = T1+1,....,T 

gives the posterior odds of model i being the best predictive model. Here ΔBIC is defined as the value 

of the Bayesian Information Criterion of model i minus the minimum of all the BIC values, with BICi 

defined as 

              
 
                 ,              i = 1,...,N  ,   t = T1+1,....,T 

 
Here, mi denotes the number of variables used in the i-th regression model, ranging from 1 for only 

the autoregressive term to 19 for all included variables, and T1 is the number of observations in the 

estimation sample, which equals 120 for all models due to the moving window model specification. 

Adding more variables to a regression increases the estimation error, but could increase the forecast 

quality. This criterion weighs the addition of extra predictive variables against the effect on the 

models variance σ2, which is estimated by the in-sample variance which is calculated as  

        
 

    
    

 
   

   
  
    

      
,  i = 1,...,N   ,   t = T1+1,....,T 

Here,     is the observed true value at time j and        is the predicted value of model i for time j 

according to the least squares regression line. Values of the BIC are always negative, and a smaller 

negative value (i.e. closer to zero) implies a better model quality. The difference between BICi and 

the best model, ΔBIC, will thus be a positive value. The weights are then defined as the exponent of 

minus a half times the positive value, resulting in the exponent of a large negative value for forecasts 

made by relatively bad models, and the exponent of zero for the best model.  The interval of the 

different weights values is thus very different from the previous weighting schemes, because good 

models get very large weights compared to the worst models.  

Diebold(1991) notes that the performance of the Bayesian Averaging method mainly depends on the 

validity of a maintained assumption, namely that one of the models whose forecasts are combined is 

the true data generating process (DGP). When the true data generating process is among the models 

to combine, this model gets a very large relative weight, with the numerator being equal to e0 = 1 

versus e to a (large) negative power for all other forecasts, which is very beneficial for the schemes 

forecast quality. However, when the true DGP is not among the models, the best specified model will 

still get a weight of one in the limit, but the parameter estimation will converge to a pseudo-true 

value, a value which is closest to that of the true DGP. Since this model is false however, we will not 

make a good parameter estimation. The problem that arises here is that the true reason of forecast 

combination methods, which is to obtain diversification gains from combining information from 

multiple forecasts, will no longer be applicable in this case because most of the information in the 

other forecasts is being discarded. 
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3.5 Principal Component Analysis  
To reduce the dimensionality of the problem, a factor based approach seems suitable. Hsiao and 

Wan(2014) propose to use an eigenvector based approach, performed on the matrix containing all 

forecast errors for a single time period. Next, weights would be determined by finding the minimum 

value over the set of each eigenvalue divided by the sum of the elements of its respective 

eigenvector, and setting the weight equal to the eigenvector following from this procedure, and then 

dividing each element by the sum of all the elements. Because of the vast amount of forecasts, the 

eigenvector based approach as proposed by Hsiao and Wan isn't feasible in this context. Often times 

there will only be a single unique eigenvalue, due to which we can't perform the algorithm proposed 

in their paper. 

Another factor based approach is Principal Component Analysis (PCA), which should be able to 

incorporate the information of all forecasts in an efficient way. This technique involves describing the 

structure of the variation in the dataset in terms of a set of uncorrelated factors, with every factor 

being a specific linear combination of the original forecasts3. The linear combinations that turn out to 

maximize the variance are the eigenvectors from the correlation matrix, ordered from the one 

belonging to the largest eigenvalue up to the one with the smallest eigenvalue. In this dataset the 

eigenvalues will almost all be zero due to the size of the correlation matrix, which will be far from full 

rank. The few eigenvalues that are not equal to zero will however be enough to explain enough of 

the variance in the set of forecasts. 

These factors will then be regressed on the real values of the volatility by means of OLS, and 

forecasts can then be made. In this model again, the first 24 observation are used to initialize the 

model, so forecasting starts from forecast 25 and onward. Factors will be added until a minimum of 

80% of the total variance is explained, which will often already be accomplished by only the first 

factor, because of the structure of this dataset. We will apply this analysis to a subset of all models, 

because it isn’t feasible to create the sample correlation matrix for all the 262.144 models. This 

subset will consist of the maximum computationally feasible number of forecasts, which equals 3000 

for our setup.  

3.6 K-mean-clustering 
The final scheme that will be used is the K-Mean-Clustering algorithm, proposed by Aiolfi and 

Timmermann(2006). In their paper, the forecasts are split up into K clusters based on their historical 

MSPE performance, ranging from cluster 1 with the lowest MSPE’s up to cluster K with the highest 

MSPE’s. For all these K clusters, the mean is taken as a regressor, resulting in K regressors to be 

regressed on the true value     . The choice for K is however of great importance, because the 

splitting should be based on some objectively defined property. In this paper, we will choose K based 

on the mean silhouette value, inspired by a paper on K-mean-clustering by Baridam(2012).  

In this scheme, the observations of the sample are split into K clusters by means of a distance 

objective function that has to be minimized. Observations are plotted with the squared error at time 

t+4 against the mean squared forecast error from t to t+44, and then divided into clusters according 

to their similarity, with the interpretation of respective forecast quality per cluster being very 

straightforward. The group similarity is measured by the distance to its respective cluster centroid, 

                                                           
3
 For an in-depth analysis of PCA, we refer to the paper by Holtrop et al.(2014) 

4
 See Appendix E for example 
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and different choices can be made as distance measures, ranging from squared Euclidian distance 

and the cosine measure, to a sample correlation related measure. We will go with the most common 

one, being the squared Euclidian distance. The performance of the split can be analyzed by means of 

the silhouette value qi. The silhouette value is a measure of the fit to a cluster, weighing within-group 

fit against fit with the other clusters. 

    
          

                 
         

Here, a(i) is the average similarity between x(i) and the rest of the points assigned to cluster Kj, as 

measured by the distance to the centroid of Kj , and b(i) is the minimum average similarity between 

x(i) and the rest of the object in all the other K ≠ Kj clusters. If we calculate this for every point i in 

every created cluster Kj and take the mean value of all these points, we can see if the clustering was 

useful.  A value of qi equal to one implies a perfect fit, a value of zero implies that a point can belong 

to any of the clusters and a value of minus one indicates that it is in the wrong cluster..  

For a set of values for K ranging from 2 to 7, the dataset will be divided into K clusters. Each data 

point is then grouped into a cluster k, and all points are then compared to their respective group 

members and the points in the other k-1 clusters. This results in silhouette values for all points, and 

the mean silhouette point is then taken as a statistic, and plotted against the value of K, creating an 

elbow plot like figure, where to value of K is chosen which produces the highest mean silhouette 

value.  

Next, the mean of all forecasts in each cluster k will be used as a regressor in a least squares 

regression. The value of K is thus best chosen not to large, because for large K we would increase the 

estimation error in the regression. We will create models with and without the intercept, and 

compare them since the coefficient could compensate for a present bias in the forecasts. 

                   
 
   ,                                           t = T1+25,....,T 

We initialize the model with the first 24 observations, and then start estimating the regression 

coefficients with a moving window of length 24. The forecast is then made by multiplying the 

coefficients βi with the observed values of the respective regressors. This model starts from forecast 

25 instead of the regular first (mean & median), as was also the case for the MSPE weighting scheme.  

Because of the computational complexity of current silhouette value approximations, the analysis is 

performed on the top 1000 models based on their average MSPE over all 216 forecasts, instead of on 

the full sample of forecasts. 

Because of the big difference in performance between the forecast models, splitting the forecasts 

based on their performance could lead to an increased forecast quality. It could also be interesting to 

see if only the best few clusters get weights, and the worse clusters simple get a coefficient of zero. 

This would imply that the good forecasts encompass all the information from the lesser forecasts. 

3.7 Statistical Analysis 
To compare the relative performance of the models, a statistical analysis will be performed. For a 

uniform comparison, we will start the statistical analysis at forecast 26 instead of forecast 1 since 

some models use a moving window for the estimation, where the first set of observation is used as 

an initialization period.  
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First we will check whether the models produce unbiased forecasts, which is one of the main 

properties that a good estimator should possess. This property means that the expected value of the 

forecasts that are produced by the model should equal to the true value of the variable that is being 

estimated. This hypothesis can be tested by a standard Z test, defined as 

   
   

 
 

where X is the estimated value,   is the true value and  2 is the variance of X. This statistic follows a 

standard normal distribution, which results in a critical value of ±1.96 at a 5 percent significance 

level.  

The second value that will be reported is the Mean Squared Prediction error (MSPE) of each model, 

relative to that of the mean weight scheme. This gives an indication of the relative performance of a 

model, with an MSPE smaller than one for a better forecast which is better than that of the mean 

scheme. Since these aren’t directly comparable in the sense that a lower MSPE doesn’t automatically 

imply a better forecast, the Diebold Mariano(1995) test will be used to compare different forecasts, 

which will be explained later in this section. 

To check for the efficiency of the forecast, Mincer and Zarnowitz(1969) proposed to check this by 

performing a regression of the forecasted value and a constant on the realized value.  

                      

A Wald test is then performed on the joint restriction of both coefficients, with the restrictions   =0 

and  =1, the null hypothesis being optimality of the forecasts under MSPE loss. The idea behind 

these restrictions is that there should be no way of being able to predict the forecast error at a time 

t+1 when knowing      . The level of significance will again be 5 percent. 

The relative forecast quality of the different models will be assessed by means of the Diebold-

Mariano test. Say we have two sets with each P one-step-ahead forecasts for our series, say from 

model i and model j, for times t=T,...,T+P-1. Define the “loss differential” as              
  

        
  . Equal forecast accuracy implies that the expected value of the loss differential is equal to 

zero. We can test for this by means of the Diebold-Mariano test statistic, given by   

    
  

    
     
  

  

which is distributed standard normal. Here    is the sample mean of dt+1 and Var(dt+1) can be 

estimated by 
 

   
                
 . If the absolute DM test statistic is larger than the critical value, 

we reject the null hypothesis of equal forecast quality. The one sided alternative hypothesis leads to 

comparative conclusions; if the DM statistic is positive, this means that    is positive, which in turn 

means that   
  is larger than   

 , and thus that model i produces worse forecasts because it has 

larger forecast errors. 
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3.8 Economical Evaluation 
A new type and practical type of evaluation which is more and more used is the economical 

evaluation. For this analysis, we will follow Cakmakli and Van Dijk(2013). Here, a fictive investor will 

base his portfolio selection on an investment function. The investment function of returns and 

volatility forecasts is given by 

    
    

           
 

 
                                                                  

Here   is the rate of risk aversion. The portfolio return (      ) consists of a risk-free 3-months T-

bond return and monthly stock return of the S&P 500(      ).  For the economical evaluation of the 

forecasts for the volatility of the stocks, the portfolio consists of the risk free return and stock 

returns. Unfortunately no data is available for 1-month T-bill rate before year 2001, so therefore the 

3-months t-bill rate is used for the risk-free return (      ). The portfolio return (      ) is given by 

                                 

The return forecast will be the average return of the past 10 years, the variance forecast will be a 

transformation of the forecasts that are constructed in this paper. To obtain the optimal weights in 

the portfolio, the investment function is maximized. The variance of the risk free return is equal to 

zero because it is assumed that        is fixed at the end of month t. For the variance of the portfolio 

it holds that  

                
             

So, the optimal weights     
  can be derived by maximizing equation (6), which are given by 

    
  

                 

            
 

Two cases are considered; first, the weights are bounded between zero and one (    
        ). 

These weights imply that short selling and lending are not allowed. In the second case, short selling 

and lending are permitted (    
         ). Transaction costs are neglected. To evaluate what an 

investor is willing to pay for using the volatility forecasts of this paper, the maximum performance 

fee is calculated. To be able to do this, a quadratic utility function is assumed (West, Edison & Cho, 

1993). The average utility is given by 

   
 

 
          

 

 

 

     
      
  

   

   

                                            

Here W is defined as the wealth to be invested and n is the number of time periods where the 

investing is analyzed. In order to calculate the maximum performance fee, the utility of a strategy 

arising from the forecast of the constructed models (strategy a) needs to be compared with an 

unsophisticated buy-and-hold strategy (strategy b). The buy-and-hold strategy consists of either only 

investing in the risk-free t-bonds, only investing in the market, or in an equally weighted combination 

of the two. 
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From this equation the delta can be calculated, which is a fraction of the wealth that the investor is 

maximally willing to pay for this information. The higher this delta, the better a model performs, 

since the investor makes a profit of at least (delta*100) percent. 
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4. Results 
To analyze the performance of the different weighting schemes from Chapter 3, we will analyze the 

results for all the models. In Section 4.1, the basic statistical properties will be highlighted to indicate 

their individual performance. In Section 4.2 the models will be compared with their counterparts; 

Section 4.2.1 compares each model to the relevant benchmark model, Section 4.2.2 compares the 

different models with each other, which will lead to a ranking of all the models. Section 4.3 

encompasses the economical evaluation, for which the realized variance will be used. The 

transformation from realized volatility to realized variance is included in Appendix H. 

4.1 Statistical properties 
We will first analyze the quality of the different weighting schemes via a statistical evaluation, for 

which the results are shown in table 1. The models are tested for at unbiasedness at a level of 5%, 

resulting in a critical value of 1.96. The MSPE values are displayed relative to that of the mean 

scheme which corresponds to the same set of forecasts for a fair comparison.  

 

  

Model Unbiasedness MSPE Mincer-Zarnowitz 
Mean  -2,64* 1,000 0,0311* 

Mean, top 25 -2,46* 1,000 0,0227* 
Mean, top 100 -2,35* 1,000 0,0361* 

Median -2,67* 1,088 0,0295* 
Median, top 25 -2,51* 1,113 0,0146* 

Median, top 100 -2,37* 1,123 0,0306* 
MSPE expanding window -2,65* 3,314 0,0304* 

MSPE moving window, k=1 -2,66* 0,995 0,0305* 
MSPE moving window, k=2 -2,68* 0,990 0,0296* 
MSPE moving window, k=5 -2,73* 0,983 0,0261* 

MSPE  moving window, top 25,   k=1 -2,45* 0,990 0,0230* 
MSPE  moving window, top 25,   k=2 -2,44* 0,992 0,0225* 
MSPE  moving window, top 25,   k=5 -2,40* 0,998 0,0210* 
MSPE  moving window, top 100, k=1 -2,35* 0,998 0,0283* 
MSPE  moving window, top 100, k=2 -2,36* 1,000 0,0332* 
MSPE  moving window, top 100, k=5 -2,35* 0,998 0,0283* 

Bayesian Averaging -2,13* 0,998 0,0304* 
Bayesian Averaging, top 25 -2,05* 1,075 0,0860 

Bayesian Averaging, top 100 -2,84* 1,107 0,0037* 
PCA, top 3000 0,14 0,098 0,0152* 

PCA, top 25 0,19 0,907 0,0649 
PCA, top 100 0,20 0,907 0,0528 

K-mean with intercept  0,59 1,041 0,0284* 
K-mean without intercept -0,31 1,016 0,0125* 

K-mean with intercept, top 100 -0,05 1,098 0,0226* 
K-mean without intercept, top 100 -0,73 1,078 0,0220* 

Table 1.  Information based on basic statistical tests.         

Note: Displayed are the results for the mean, median, inverse MSPE based weights values of k being 1,2 
and 5, the Bayesian Averaging model, Principal Component Analysis and the K-Mean-Clustering algorithm, 
all applied to the full sample as well as the selection of top 25 and top 100 forecasts. The second column 
contains Z statistics for unbiasedness. The third column contains the relative MSPE values, e.g. for PCA top 
25 being the ratio of the MSPE of PCA top 25 divided by that of mean top 25.  The fourth column contains 
the p value for the Mincer-Zarnowitz test. An asterisk indicates significance at 5 percent level.  
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Almost all models give negatively biased forecasts, indicating that they all tend to overestimate the 

true value in a negative way. The only models that produce unbiased forecasts are the Principal 

Component Analysis and the K-mean algorithm. These two schemes seem to weigh the forecasts very 

well, and are capable to remove any bias present. 

The Mean Squared Prediction errors (MSPE) of the models  are all roughly equal, the only clear 

outlier being the MSPE of the MSPE expanding scheme. As was said before, the performance of the 

expanding MSPE scheme is most likely due to its bad adjustment to relative performance of models, 

resulting in forecasts that aren’t time optimal. All other models seem to forecast very well, with a 

good average quality of their forecasts. The results for unbiasedness make clear that the models 

often seem to forecast below the true value, but we can see that the forecasts lie close to the real 

value. 

In column four, the p values for the Mincer-Zarnowitz regressions are displayed. For almost all 

models, we reject the null hypothesis of forecast optimality under MSPE loss at the 5 percent level, 

so we can conclude that all models produce inefficient forecasts. The only model that produces 

efficient forecast is the PCA model on the selection of top 25 and top 100 models and the Bayesian 

averaging model on the top 25 selection. This result seemed to be due to the length of the evaluation 

period, since for evaluation from forecast 1 until 216 the forecasts for the relevant schemes were 

efficient and unbiased. An explanation for this is still missing.  

4.2 Model Comparison 
For each model, different specifications have been used during the estimation. The question is up to 

what degree this increases the performance of the weighting scheme. Regressions were first run on 

all the available 262.144 forecasts, which contained many forecasts that were off. In Appendix D the 

spread of all the forecasts for one time period is shown, and it is clearly visible that the spread among 

the forecasted values can be humongous. With the true value at around -1.43, model estimates 

range from zero to -2,5. A preselection was made of the forecasts, resulting in a top 25 and top 100 

of models. This greatly increased the average quality of the forecasts and drastically decreased the 

amount of forecasts. The spread between these forecast is now very small, as can be seen in figure 2 

and 3 in Appendix D, resulting in a selection from on average better forecasts. In the next two 

sections, the differences between the specifications will both be analyzed for individual weighting 

schemes as well as between all the schemes.  

4.2.1 Intra-Model Comparison 

We start off with results for the basic mean and median 

based weighting schemes. The Diebold-Mariano statistics 

for these forecasts are shown in table 2 and 3. For both 

models, the preselection of models results in a better 

quality of the forecasts. As for both the mean and the 

median the quality of the top 100 models is significantly 

better than that of the top 25, we can conclude that the 

performance increases when the amount of models 

included in the top models increases. This is quite 

unexpected, since one would expect that the simple 

average of the top 25 models would perform better 

Table 2. Diebold Mariano statistics for comparison 
of relative forecast quality for the Mean scheme. 
An asterisk indicates significance at 5 percent level.  

 

Table 3. Diebold Mariano statistics for comparison of 
relative forecast quality for the Median scheme. An 
asterisk indicates significance at 5 percent level.  

 

Model Mean Mean top 25 

Mean - - 
Mean top 25 -1,757* - 

Mean top 100 -2,164* -1,711* 

Model Median Median top 25 

Median - - 
Median top 25 -1,295   - 

Median top 100   -1,807* -2,390* 
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than that of the top 100 models. An explanation for this result is still missing, but could have 

something to do with the negative biasedness of all forecasts, where the top 25 are all biased one 

way, whereas the top 100 are more spread, some being biased upward and some  downward. For all 

models, the mean significantly outperforms the median weights, so we use the mean as the 

benchmark for the other models. The outperformance of the top 25 by the top 100 gives rise to the 

question whether it would be beneficial to include more models in the top selection. In appendix F, 

we have included a set of DM-statistics, which show that the outperformance stops at the top 100, 

and this is thus the most beneficial selection. 

 In table 4 the results for the MSPE based weights are 

shown in comparison to those of the mean. In table 4, the 

first thing that we note is that the MSPE weights with the 

expanding window perform very poor, as was expected. 

Furthermore we see that the regular inverse MSPE scheme 

outperforms the mean weights, but for the other cases of k 

this is not the case. For the selection of top 25 and 100 

models there is no significant difference between the 

qualities of the forecasts.  For this scheme, we conclude 

that the increase of the value of k does not provide us with 

a better forecast quality.  

In table 5, the results for the Bayesian Averaging scheme 

are displayed. The Bayesian Averaging model barely 

benefitted from the preselection. This can be partially 

explained by the main idea behind this scheme, which was 

that it gives a very big weight to the best specified model, 

and almost zero weight to the rest of the forecasts. In the full set of forecasts as well as in the 

selection, it will select the same model and assign the rest of the weight to the other forecasts, 

resulting in very little difference between forecasts 

from the two different selections. There was no 

significant difference between the forecast quality 

of the Bayesian averaging model and the mean 

when performed on the full sample. On the 

selection of top 25 and 100 forecasts, the Bayesian 

averaging model had significantly worse 

forecasts 

For the Principal Component Analysis, 

the results are presented in table 6. The 

PCA weights are not able to provide 

better forecast than the mean for any of 

the selections. This is probably caused by 

the estimation of the correlation matrix of the forecasts, which will have large estimation errors due 

to its size, as well as the very solid performance of the mean. With forecasts all having good quality 

here, there is very little room for improvement upon the mean of all selected forecasts.  

                 Model Mean 

MSPE expanding 2,021* 
             MSPE k=1 -1,663* 
            MSPE k=2 -1,508 
             MSPE k=5 -0,950 

Model Mean top 25 

MSPE top 25 k=1 -1,222 
MSPE top 25 k=2 -0,903 
MSPE top 25 k=5 -0,152 

Model Mean top 100 
MSPE top 100 k=1 -1,222 
MSPE top 100 k=2 -0,903 
MSPE top 100 k=5 -0,152 

Table 4. Diebold Mariano statistics for 
comparison of relative forecast quality between 
the inverse MSPE schemes and the respective 
mean weights. An asterisk denotes significance at 
5 percent level. 

Model Bayes Bayes top 25 

Bayes - - 
Bayes top 25 -0,453 - 

Bayes top 100 -0,580 -1,007 

Table 5. Diebold Mariano statistics for comparison of 
relative forecast quality for the Bayesian weight scheme. 
An asterisk indicates significance at 5 percent level.  

Model Mean Mean top 25 Mean top 100 

PCA top 3000 -0,269   
PCA top 25  0,363 - 

PCA top 100  - 0,688 
Table 6. Diebold Mariano statistics for comparison of relative forecast 
quality for the PCA weight scheme. An asterisk indicates significant at 
5 percent level 
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The k-mean algorithm was performed on 

the top 1000 models with the lowest 

average MSPE. For the choice of K, the 

plot of the mean silhouette values is 

displayed in figure 1. We can conclude 

that we should choose two clusters for 

this sample, because this is the only 

peak. Next, the mean value of each of 

the two clusters was used as a regressor 

on the true value, in a regression with 

and one without an intercept. In figure 

E.2 and E.3 in Appendix E, we have 

plotted the estimated regression 

coefficients over time, for both the 

regression with and without an intercept. We see no clear patterns in their course, and the 

coefficients vary quite substantially over time. We see that the intercept is often different from zero, 

indicating that a bias is presumably being adjusted. Also we see that the second (third) coefficient β2  

shows a same pattern as the first (second) coefficient β1 and is not equal to zero, as would have been 

the case if the forecasts from the first cluster encompassed the information in the second cluster. 

The Diebold-Mariano statistic showed no significant differences between the quality of the forecasts 

from both models. 

4.2.2 Inter-Model Comparison 

Having seen that the preselection offers significant gains for all weighting schemes individually, the 

question arises what the effects are on the relative quality change for the different schemes. We will 

first analyze the performance of the models over the full range of 262.144 forecasts, of which a plot 

for 1 time period was shown in figure D.1. 

Because of the large spread of the forecasted values, a good selection method can offer many gains. 

The big relative differences between the individual forecasts give good options for the weighting 

schemes that choose the right forecasts, leading these to predict a more accurate value than that 

produced by taking a simple average. As was seen in figure D.1, the mean and median of all forecasts 

probably offer a forecast that is biased upwards. With a better weighting scheme, only the values 

that offer good forecasts will be given large weights, resulting in an increase in forecast quality.  

In table 7 results are shown for the relative quality of all the models over this full sample of forecasts. 

It can be seen that the MSPE based weights produce significantly better forecasts than the simple 

average and the median of all forecasts. This complies with the expectation that was stated earlier, 

because the MSPE increases the 

weight of models that perform well. 

The performance of the Bayesian 

Averaging weighting scheme is 

somewhat disappointing. This 

mediocre performance can probably 

be explained by the violation of the 

assumption that is made in this 

Model Mean  MSPE  Bayesian K-Mean 

Mean  - - - - 
Median  0,512  1,781* 0,641 -1,652 

MSPE  k=1 -1,663* - - - 
Bayesian  -0,022 0,062 - - 
K-Mean -1,556 -1,501 -1,801* - 

K-Mean intercept -1,097 -1,040 -1,227 0,652 

Table 7. Diebold Mariano statistics for comparison of relative forecast quality 
for the different models. An asterisk indicates significance at 5 percent level. 

Figure 1. Graph of the value of K against the mean silhouette value. 
Note: A higher mean silhouette value implies a better overall 
cluster fit. 
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model, which was stated by Diebold (1991). Because the volatility is a very fluctuating series, it 

doesn’t seem reasonable to assume that the data generating process (DGP) follows a linear 

specification. Therefore, the true data generating model is not among the models that are being 

combined, and thus the method performs rather poorly. Both K-mean specifications offer very good 

results. Though none of their DM-statistics are significant, their negative values point towards a good 

performance compared to the other models. The best weighting scheme for the full sample has 

proven to be the regular inverse MSPE based weights. In Appendix G, we have included a graph of 

the moving Out-of-Sample R2, showing that  the mean and MSPE perform almost as well for all 

periods. 

For the selection of the top models, the results are very different. Because of the very tight spread 

around the true value, these forecasts are all of high quality, resulting in good forecasts regardless of 

the weighting scheme that is selected. In table 8 a second comparison of all models is shown, but this 

time for the set of top 100 models. 

 A very different ranking emerges from this table than from the previous one, and there is no longer a 

model that performs better than the mean. Within the top 100 models, there is never a model that is 

always among this top during the full time period of 216 months. Different models perform well at 

different times, and the best model is very time variant. The mean always results in a good forecast, 

because all the forecasts lie evenly spread around the true value (see Figure D.2). The moving 

window of the MSPE causes the weights to only slowly adjust if a model is no longer the best, so it is 

probable that due to this not always the right models are selected. Where the effect of this is limited 

when looking at all models, this effect is more present in this context. The Bayesian Averaging model 

performs quite well, but is significantly outperformed by the more basic schemes. The K-Mean 

algorithm didn't result in better forecasts on the selection of forecasts as it did on the full sample.  

We have seen that for the full sample of forecasts, the regular inverse MSPE based weights are the 

only weights that outperform the mean weights. The K-Mean algorithm also worked very well, but 

was not significantly better than the mean. For the selection of forecasts, there is no model that 

provides better forecasts than the mean. 

  

Table 8. Diebold Mariano statistics for comparison of relative forecast quality for the different models over the sub 
selection of the top 100 forecasts. An asterisk indicates significance at 5 percent level.  

Model Mean top 
100 

MSPE top 
100 

Bayesian 
Average top 

100 

PCA top 
100 

K-Mean without 
intercept top 100  

Mean, top 100 - - - - - 
Median, top 100 0,231   0,467 1,408 -0,567 -1,381 

MSPE, top 100 -0,201 - - - - 
Bayesian Average, 

top 100 
2,423* 2,514* - - - 

PCA, top 100 0,688 0,679 -0,954 - - 
K-Mean without 

intercept, top 100 
1,800* 1,705* -0,489 0,794 - 

K-Mean with 
intercept, top 100 

1,724* 1,772* 0,119 -2,069* 1,033 
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4.3 Economical Evaluation  
In this section the different forecasts will be evaluated economically, as described in Section 3.8. The 

results of the evaluation are shown in Table 4.6. In this table, the weights were performed on the full 

set of forecasts and the best specification of each model as found in the previous section is chosen as 

the model for this analysis.  

Stocks Mean STD         

100% Market 17.28 54.27         

50% Market 11.45 25.16         

0% Market 3.81 1.66         

 Weights         Weights         

Model Mean STD Δ50 Δ100 Δ05  Mean STD Δ50 Δ100 Δ05 

Real 11.45 20.76 1151 4480 22  12.24 22.98 910 4461 -1592 

Mean 11.02 22.51 865 4361 42  11.28 22.98 814 4365 -2230 

Median 11.13 22.90 813 4354 2  11.43 23.41 752 4358 -2227 

MSPE 10.97 22.61 844 4351 2  11.23 24.09 791 4355 -2247 

Bayesian 11.86 25.21 391 4313 21  12.33 26.32 4 4300 -2271 

K-Mean no intercept 10.21 19.37 1185 4411 8  10.55 20.15 1133 4415 -2024 

K-Mean intercept 9.89 18.74 1217 4403 8  10.14 19.32 1183 4406 -2028 

Table 9. Economic evaluation of the stock return volatility forecasts of the constructed models and the benchmark 
model, performed on the full sample.                              
Note: Delta50, Delta100 and Delta0 are the performance fees an investor is willing to pay extra to use the models instead 
of the standard strategies, displayed in basis points. Mean and STD are respectively the average and the standard 
deviation of the portfolio return. The ‘real’ model is the economic evaluation where the optimal weights were to be 
constructed with the real values for the variances.  Two weightings schemes are used, where in the second weighting 
scheme short selling and lending is allowed.  

Table 9 shows that the 100% market strategy does have a very high mean return, but it also has a 

high standard deviation, which is not optimal for our considered investor. The risk-free strategy has a 

low standard deviation, but consequently a relatively low return. The optimal balance between risk 

and return would be accomplished by either the 50% or the 0% market strategy, dependent on our 

investors investment function. Investing based on the real value shows very promising results, as the 

return is equal and the standard deviation is smaller than that of the 50% market strategy. We can 

also see in the table that there is no model which would be better for this investor than the real 

volatilities, as based on the mean of the investment return. We do however see that the investor 

would pay a roughly equal performance for many of our weighting schemes, which is a good 

indication of the quality of these models. Specifically the K-Mean based weighting schemes show 

very promising results. Even though the mean of this strategy lies noticeably lower than that of the 

real volatility based strategy, the standard deviation is lower. For Delta 50, the performance fee that 

the investor is willing to pay is even larger than the fee that he would pay to use the real values. The 

                                                           
5 For Delta 0, the risk aversion rate is set to γ=1. For the regular value of γ=6, the utility function of 

the 0% market buy-and-hold strategy did not coincide with the utility function of any model, 

indicating that our model performed insufficient.  
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Bayesian model shows the lowest rating, probably due to the high standard deviation of the return. 

In the second part of the table, where short selling and going long are allowed, we don’t see results 

that vary much from the first part. The Delta 0 fees are all negative, indicating that we do not have 

any interesting information which would increase the investors’ profit. 

Stocks Mean STD         

100% Market 17.28 54.27         

50% Market 11.45 25.16         

0% Market 3.81 1.66         

 Weights         Weights         

Model Mean STD Δ50 Δ100 Δ06  Mean STD Δ50 Δ100 Δ05 

Real 11.45 20.76 1151 4480 22  12.24 22.98 910 4461 -1592 

Mean 11.04 22.69 838 4355 5  11.32 23.56 715 4342 -2226 

Median 11.06 22.61 853 4360 5  11.39 23.63 709 4545 -2227 

MSPE 10.86 22.57 840 4342 4  11.13 23.41 724 4330 -2224 

PCA 9.99 18.59 1242 4418 22  10.2 18.98 1225 4425 -2215 

Bayesian 11.31 24.17 593 4311 3  11.59 25.04 412 4295 -2258 

K-Mean no intercept  10.21 19.37 1185 4411 8  10.55 20.15 1133 4415 -2024 

K-Mean intercept 9.89 18.74 1217 4403 8  10.14 19.32 1183 4406 -2028 

Table 10. Economic evaluation of the stock return volatility forecasts of the constructed models and the benchmark 
model, performed on the top 100 models.   Note: Delta50, Delta100 and Delta0 are the performance fees an investor is 
willing to pay extra to use the models instead of the standard strategies, displayed in basis points. Mean and STD are 
respectively the average and the standard deviation of the portfolio return. The ‘real’ model is the economic evaluation 
where the optimal weights were to be constructed with the real values for the variances.  Two weightings schemes are 
used, where in the second weighting scheme short selling and lending is allowed.  

In the second table, the analysis is shown for the models on the top 100 forecasts. We see that the 

Bayesian model is still the worst model, but the PCA based weights show very good results. The PCA 

scheme shows performance fees that closely exceed those of the K-Mean schemes which showed to 

be the best when analyzing the full set of forecasts. A remarkable result is that, in the full sample, for 

the statistical evaluation the MSPE based weights performed best, but for the economical evaluation 

the K-Mean algorithm based weights prove to provide the best results. For the top 100 selection, the 

PCA analysis shows to work even better than the K-Mean scheme, even though in the statistical 

analysis it was shown that the mean proved to be the best model. Since the investor in this paper is 

rather risk-averse, the standard deviation is more important in the economic evaluation, causing the 

other models to provide better results. 

                                                           
6 For Delta 0, the risk aversion rate is set to γ=1. For the regular value of γ=6, the utility function of 

the 0% market buy-and-hold strategy did not coincide with the utility function of any model, 

indicating that our model performed insufficient.  

 

 



20 
 

5. Conclusion 
This paper examined the effects of combining a set of one-step-ahead forecasts from linear 

regression models using different weighting schemes. The weights were used both on the full set of 

forecasts as well as a selection of the top 100, to find a weighting scheme that could outperform the 

simple average of these forecasts, which has proven to be a very solid benchmark in previous 

research. 

Different conclusions can be drawn from this research. For the full sample where there are many 

forecasts to be combined, there are big opportunities for more advanced weighting schemes. The 

inverse MSPE based weights perform very well compared to the mean in the statistical analysis. The 

Bayesian averaging scheme did not prove as valuable as expected, probably due to the violation of 

the assumption about the DGP in this dataset. Both in the statistical as well as in the economical 

evaluation, this model did not give valuable results. The results for the K-mean algorithm are very 

promising, and results indicate that this scheme could be a good candidate for further research. Even 

though the specification of the K-Mean algorithm was very basic, it showed good results in both the 

statistical as well as the economical evaluation.  

For the selection of the top models however, advanced weighting schemes are fairly redundant when 

reviewed in terms of statistical properties. Because of the good quality of the selected forecasts to 

combine, there is fairly little space for improvements regarding the weights. For an investor however, 

there are weighting schemes that provide him with more profit than the mean of the forecasts could, 

so performance depends on the area of usage. 

We conclude that the use of more advanced weighting schemes is most useful when the sample of 

forecasts is large, because here the quality difference is very big. For small sets of forecasts, of more 

or less equal quality, the usefulness of more advanced methods depends on the use of the forecasts.  
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Appendices 

 

Appendix A : Statistical properties of regressors 
This following table displays the basic statistical properties of the variables that were used to forecast 

the volatility, extracted from the paper of Holtrop(2014) 

 Variable Abbrev. Mean Std. Skew. Kurt. AC(1) 

A. Equity Market Variables and Risk Factors     

 1 Dividend Price Ratio (Log)* D-P 0.28 4.58 0.77 6.44 0.06 

 2 Earnings Price Ratio (Log)  E-P -3.02 0.43 -1.31 6.49 0.98 

 3 US Market Excess Return   MKT 0.59 4.57 -0.91 5.77 0.10 

 4 Size Factor  SMB 0.12 3.23 0.81 11.44 -0.03 

 5 Value Factor  HML 0.35 3.15 0.05 5.54 0.14 

 6 Short Term Reversal Factor   STR 0.37 3.44 0.17 8.34 -0.02 

 7 S&P500 Turnover  TURN 0.01 0.16 -0.07 3.38 -0.51 

 8 Return MSCI World  MSCI 0.73 4.26 -1.20 6.44 0.13 

B. Interest Rates, Spreads and Bond Market Factors    

 9 T-Bill Rate (Level)* T-B -0.23 2.32 0.95 5.12 0.48 

 10 Rel. T-Bill Rate  RTB -0.18 0.86 -0.30 2.85 0.95 

 11 Long Term Bond Return  LTR 0.81 2.97 0.20 4.78 0.02 

 12 Rel. Bond Rate RBR -0.18 0.63 -0.36 4.49 0.87 

 13 Term Spread*   T-S -0.01 33.77 0.34 3.67 0.08 

 14 Cochrane Piazzesi Factor  C-P 1.22 1.56 0.41 3.34 0.90 

C. FX Variables and Risk Factors     

 15 Dollar Risk Factor  DOL 0.12 2.19 -0.34 4.02 0.12 

 16 Carry Trade Factor  C-T 0.05 2.58 -0.69 4.38 0.18 

 17 Average Forward Discount  AFD 0.18 0.19 0.87 7.83 0.75 

D. Liquidity and Credit Risk Variables     

 18 Default Spread   DEF 0.11 0.43 2.48 12.3 0.94 

 19 FX Average Bid-ask Spread  BAS 1.43 5.00 1.92 7.46 0.88 

 20 Pastor-Stambaugh Liquidity Factor  PS -0.28 6.83 -1.76 10.49 0.00 

 21 TED Spread  TED 0.07 0.00 1.78 8.67 0.81 

E. Macroeconomic Variables      

 22 Inflation Rate, Monthly   INFM 0.24 0.31 -1.38 11.31 0.47 

 23 Inflation Rate, Yearly INFA 2.91 1.26 -0.48 4.41 0.95 

 24 Industrial Production Growth, Monthly  IPM 0.20 0.66 -1.32 10.18 0.23 

 25 Industrial Production Growth, Yearly*  IPA 0.27 9.52 0.29 6.96 0.28 

 26 Housing Starts  H-S -2.20 24.9 -0.04 4.52 0.79 

 27 M1 Growth, Monthly  M1M 0.40 0.79 1.51 13.79 0.18 

 28 M1 Growth, Yearly  M1A 4.81 4.98 0.29 2.31 0.98 

 29 Orders, Monthly  ORDM 0.11 1.78 0.00 3.15 -0.19 

 30 Orders, Yearly ORDA 1.20 6.93 -1.51 8.49 0.93 

 31 Return CRB Spot  CRB 0.25 2.74 -1.76 17.62 0.25 

 32 Capacity Utilization  CAP 0.02 0.66 -1.07 8.95 0.25 

 33 Employment Growth  EMPL 0.11 0.19 -0.37 7.40 0.65 

 34 Consumer Sentiment  SENT 0.01 4.70 0.07 5.66 0.00 

 35 Consumer Confidence  CONF 0.02 8.25 -0.29 9.94 0.07 
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 36 Diffusion Index  DIFF 8.68 16.91 -0.64 3.57 0.83 

 37 Chicago PM Business Barometer  PMBB 55.15 7.33 -0.37 3.37 0.88 

 38 ISM PMI  PMI 52.08 5.35 -0.39 3.77 0.93 
Table A.1 . Basic statistical properties of all the regressors.                                                                                                             
Note: The table shows the summary statistics for the 38 macro-economical and financial predictive variables. The 
reported statistics include the mean, standard deviation (Std.), Skewness (Skew.), Kurtosis (Kurt.), as well as the first 
order autocorrelation coefficient (AC(1)). An asterisk (*) denotes that the variable is changed from Christianssen et al. 
(2012), corrected for a unit root. 

 

 
Table A.2 . Graph of the realized volatility of stocks over the entire horizon 

 

 

 

 Realized Volatility Stocks 

Mean -3.21 

Standard dev. 0.45 

Skewness 0.81 

Kurtosis 4.44 

JB P-value 0.00 

AC(1) 0.71 

Table A.3 . Basic statistical properties of the realized volatility of stocks 
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Appendix B : Histograms of forecast error distribution 
Below are three histograms displaying the distribution of the forecast errors for all the 218=262.144 

forecasts. The histograms are created for the first forecast at time T1+1, the 100th forecast and the 

200th forecast. For all three histograms, we can clearly conclude that the forecast errors are not 

standard normal distributed. 

 
Figure B1:  Histogram of forecast errors of all models at time t=T1+1.  

note: The y axis refers to the amount of models, the x-axis is the size of the forecast error 

   

 

Figure B2:  Histogram of forecast errors of all models at time t=T1+100.  

note: The y axis refers to the amount of models, the x-axis is the size of the forecast error 
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Figure B3:  Histogram of forecast errors of all models at time t=T1+200.  

note: The y axis refers to the amount of models, the x-axis is the size of the forecast error 
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Appendix C : Derivations of weight properties 

Appendix C.1 : Derivation of the optimal weights for a combination of forecasts  

Say that we have two sets of forecasts   and     with corresponding forecast errors    and   , which 

we want to combine by assigning weights    and      . The forecast error for their combination 

than becomes               , with mean zero and variance equal to 

       
            

             

We can then derive the optimal weights    by differentiating the models variance with respect to w, 

which gives          
   
     

  
     

      
 

The model variance of these optimal weights can be obtained by substituting w with w* in the model 

variance equation, resulting in a model variance equal to 

    
        

  
   

       
  

  
    

          
  

This expressions is smaller than the minimum of   
  and   

  , and diversification is useful as long as 

non of the following cases occur:   or    equal to zero;       and       or      
  

  
 

 

Appendix C.2 : Derivation of the model variance ratio of mean vs optimal weights 

For an equal weighted combination of the two forecasts,   
 

 
   

 

 
  , the model variance now 

becomes  

     
   

 

 
  
    

 

 
  
    

 

 
        

Dividing this on the optimal model variance yields, after some rearranging 

     
 

    
  

   
     

        
 

   
    

       
  

 

 

Appendix C.3 : Derivation of the model variance ratio of MSPE vs optimal weights 

For a weight based on the MSPE, the forecast becomes   
  
 

  
    

    
  
 

  
    

   , with corresponding 

model variance equal to  

     
   

  
   

     
     

           

   
     

   
 

Dividing this on the optimal model variance yields, after some rearranging 
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Appendix D: Plots of the forecasted values against the true value. 

 

 

Figure D.1 : Display of all the 2
18

 = 262.144 forecasts against the true value. 

 

 
Figure D.2 : Display of the selection of 100 forecasts against the true value. 
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Figure D.3 : Display of the selection of 25 forecasts against the true value. 
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Appendix E : K-Mean-Clustering algorithm 
 

Appendix E.1 . Groups for the K-Mean-Clustering  

 

Figure E.1 . Plot of the group division as found by the K-mean-Clustering algorithm. Note: The y-axis contains the average 
squared forecast error over the last 4 periods, and the x-axis contains the squared forecast error of the current period. 

The groups have been chosen based on current performance with respect to performance over the 

past 4 periods. Models that did well over the last 4 periods(having a low y-value) and still do 

well(having a low x-value), are chosen by this algorithm as members of the first group. This 

interpretation can be extended in a very straightforward way if more clusters need to be chosen. 
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Appendix E.2 . Plots of the regression coefficients over time 

 

Figure E.2 : Plot of the regression coefficients over time for the regression with the intercept. 

 

Figure E.3 : Plot of the regression coefficients over time for the regression without the intercept  
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Appendix F . DM-statistics for bigger  selections of forecasts 
 

Model Mean Mean top25 Mean top100 Mean top500 Mean top1000 
Mean      

Mean top25 -1,757*     
Mean top100 -2,164* -1,711*    
Mean top200 -2,220* -0,998 0,258   
Mean top500 -2,564* -1,205 -0,469 -1,267  

Mean top1000 -2,840* -1,179 -0,582 -1,043 -0,717 
Table F.1 . Forecast quality comparison by means of Diebold Mariano statistics. Note: Values smaller than the critical 
value of -1,96 indicate that the model in the row performs better, and values larger than 1,96 indicate that the model in 
the column performs better. Critical values are at the 5 percent level. 

We can see that all the forecasts from selections outperform the forecast of the mean on the full 

sample of forecasts, but there is not a single model which outperforms the mean on the top 100. We 

can safely conclude that this is a good top selection to use. 
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Appendix G . Moving Out-of-Sample R2 

 

Tabel G.1 . Graph over the moving out of sample R
2
, moving window length 24 months, with the mean as benchmark and 

all the forecasts as sample. Note: A positive value implies outperformance of the mean, while a negative value implies 
that the model performs worse than the benchmark model. 

We can clearly see the good all-round performance of the MSPE based scheme, as well as the K-

Mean no intercept scheme. Both have a positive OOS R2 most of the time, indicating a better 

performance than the mean. The other schemes performances fluctuate very much, with more 

negative than positive peaks, indicating their worse performance. 
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Appendix H . Transformation of volatility to realized variance  
This derivation has been extracted from the report by Holtrop(2014).   

In this paper the realized volatility has been forecasted. Transforming the forecasts for the realized 

volatility into those of realized variance is done in the following way. The realized volatility is given by  

                 
  

   
                 

The realized volatility (     ) is the natural logarithm of the square root of the realized variance, the 

realized variance is set as X. 

             
  

   
              

In this research forecasts are made for the realized volatility (RV). In order to transform these results 

into the realized variance X, it is needed to determine the expected value of X, given the distribution 

of the RV. Suppose that the realized volatility has a normal distribution with mean   and variance σ : 

             
   

Rewriting the RV gives: 

              
 

 
             

   

One can say that: 

                 
   

                                 
 
 
   

This results into the expected value of the realized variance X: 

              
 
 

 


