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Waiting Times in Priority Queues

and the Ballot Problem

Abstract

In this article a closed form expression of the waiting time distribution in
an M/M/c queue with multiple priorities and a common service rate is
derived for a customer of arbitrary priority by using a combinatorial ap-
proach related to the ballot problem. Moreover, we apply this approach to
derive the response time distribution in an M/M/1 queue with preemptive
priority, two types of customers and different service rates. An advantage
of the approach is that it relies on purely elementary combinatoric results
and does not require inversion of the Laplace Transform.

Keywords: Non-preemptive queue, preemptive queue, ballot problem, waiting
time, different service rates

1 Introduction

Systems where queues arise (like a call center, a hospital, or a factory) pose
many important problems, and serving customers in the order of arrival is often
inadequate. In a hospital for example, not all patients have injuries which are
equally severe, and from a standpoint of saving lives it is optimal to prioritize.
Similarly, we see a lot of other occasions, for example in business, computer sci-
ence or logistics where prioritizing is an essential part of the system performance.

Out of the need from many fields to understand queuing systems with priorities,
a vast body of literature about te subject has arisen. The systems of interest
(like the hospital) are modeled mathematically by means of a priority queue.
In a priority queue each customer belongs to a priority class and a priority dis-
cipline specifies the order in which customers should be served. Research has
focused on the non-preemptive (or head of the line queue) and the preemptive
disciplines. In both, if a service ends, customers with the highest priority in the
queue are serviced first in order of their arrivals (FCFS). In the non-preemptive
queue, service of a customer is always completed, once it has started. On the
contrary, in the preemptive queue, service is discontinued and the customer who
is in service is sent back to the queue if a customer arrives with a higher priority
than his.

To evaluate a queuing system, several measures are commonly used, which in-
clude the number of customers in system, the waiting time of customers, which
is the time that starts when a customer enters the system and ends when he
enters service and their response time, which is the total time that a customer
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spends in system. For both the preemptive and non-preemptive case, these mea-
sures are well understood, at least for single server Markovian priority queues
with two priority classes or multi server Markovian priority queues with equal
service rates. For other queues, like the M/M/c which allows different service
rates, less results are known. We now briefly address the literature for both the
non-preemptive and the preemptive case.

2 Literature
The Non-Preemptive Queue

Non-preemptive priority has been introduced in Cobham (1953), where a deriva-
tion is given of the expected waiting times in the M/M/c with multiple prior-
ities. The stationary distribution of the number of customers in the system in
the two priority non preemptive M/M/1 queue with different service rates has
been derived by Miller (1981) using a Matrix geometric approach. Marks (1973)
analyzed a state description for the same queuing model which also includes the
priority of the customer which is in service besides the number of customers of
each priority.

Research on the waiting time has focused on the Laplace Transform (LST). For
the single server queue with general service distributions (M/G/1) and two pri-
orities, the LST has been obtained by Kesten and Runnenburg (1957). For the
non-preemptive M/M/c queue with multiple priorities and a common service
rate µ the Laplace transform of the waiting time for an arbitrary priority has
been derived by Kella and Yechialy (1985) and also by Davis (1966). Kella and
Yechialy observed a close relation with waiting times in an M/G/1 queue with
server vacations (with one type of customer) and Davis conditioned on the num-
ber of customers in the system on arrival with equal or higher priority than the
arriving customer. From the LST one can obtain the waiting time distribution
by using contour integration or numeric inversion techniques (e.g. the Fourier
series method, see Abate and Whitt, (1992) ).

The waiting time distribution of customers is closely related the length of busy
periods. In an M/M/1 queue the waiting time of an arriving customer who sees
n customers of his priority or higher on arrival is distributed as the required
time in an M/M/1 queue without priorities to reach an empty system for the
first time given that there are initially n customers (where the single type of
customer arrives at a rate equal to the rate a which higher priority customers in
the priority queue arrive). With a common exponential service rate, this time is
seen to be equally distributed as the convolution of n busy periods in the same
M/M/1 queue (with a single type of customer).

This observation has been used by Dressin and Reich (1956) who obtained the
waiting time distribution as an infinite sum of Bessel functions by inverting

2



the characteristic function of a convolution of busy periods. They obtained
the distribution of a single busy period (which was required to compute the
characteristic function) by inverting the LST, which in turn is characterized by
the Kendall-Takács functional equation (Kendall (1951) derived the equation,
Takács (1955) established a uniqueness result ).

The Preemptive Queue

Successful analysis of the preemptive queue has been achieved earlier that of
the non-preemptive counterpart, perhaps due to the advantage that the num-
ber of customers of each priority in the system provides sufficient information
about the priority class of the customer who is in service. The steady state dis-
tribution of the number of customers in the system under preemptive priority
in the M/M/1 queue with two priority classes and different service rates, has
been derived by several authors (i.e White and Christie (1958), Stephan (1956),
Miller (1981) and Zhang Shi (2010) ).

Recently, Baron, Scheller-Wolf and Wang (2014) studied the Generator Func-
tion for the steady state number of low priority customers in the system in the
M/M/c preemptive queue with two priorities and different service rates. The
authors develop a novel approach which allows analyzing a one dimensional
state space instead of a more complicated two dimensional description (where
the latter consists of the number in system of both priority classes). They ob-
tained a closed form expression for two servers c = 2, and a numeric algorithm
to compute the Generator Function for the case c > 2.

The waiting time of a customer has no clear interpretation in a preemptive
queue, since a customer can be send back several times to the queue while being
in service. Instead one usually considers the response time, which is the total
time that a customer spends in the system. The Laplace Transform of the re-
sponse time of an arbitrary priority in an M/G/1 queue with multiple priorities
is derived in Miller (1960).

Combinatorics and the study of Queues

Combinatorial techniques have often been used in queuing problems. Tanner
(1961) provides a combinatorial prove of the Borel distribution (which gives
the distribution of the number of customers participating in a busy period of
the M/D/1 queue). Combinatorial techniques were also applied by Takács in
many of his works. For example, Takács (1967) considers the distribution of the
supremum of stochastic processes with interchangeable increments, and Tak ács
(1961) derives the joint distribution of the length of a busy period and the num-
ber of customers served in the M/G/1 queue. Tak ács (1962) derives the same
joint distribution for the M/G/1 queue where customers arrive in batches of
fixed size and also for the G/M/1 queue, making use of a generalization of the
ballot problem.
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Two recent examples of a combinatoric approach to queuing problems are Saran
and Nain (2013) and Böhm (2010). Saran and Nain derive the transition prob-
ability of i arrivals and j departures in an M/M/1 queue during an interval of
length t given that there are initially k customers in the system by using re-
sults on monotone lattice paths. Böhm , applies recent advancements in lattice
paths combinatorics to several queuing models, including systems with bulk ar-
rivals and departures and the preemptive M/M/1 queue with two priorities and
a common service rate, where the busy periods is analyzed by using Catalan
numbers and Generating Functions.

Contribution

Karlin and Tailor (1981) show how the ballot problem, which has been intro-
duced by Bertrand (1887) and a related problem concerning empiric distribu-
tions can be analyzed by a combinatorial approach based on the number of
monotone lattice paths. In this article we apply this approach to derive the
waiting time distribution in the non-preemptive M/M/c queue for a customer
of arbitrary priority assuming a common exponential service.

Our derivation only involves a few elementary combinatorial techniques and
provides a great simplification of the work of Dressin and Reich. We are not
aware of a simple probabilistic derivation of the waiting time distribution for
the M/M/c with arbitrary priorities, which does not involve inversion of the
Laplace Transform or the Characteristic Function. Moreover our approach also
easily generalizes to several queuing systems where service rates are unequal. In
particular, we apply the same technique to derive the response time distribution
in the M/M/1 preemptive queue with two priority classes, allowing different ser-
vice rates.

The article is organized as follows. After a brief discussion of the ballot problem
and results on lattice path enumeration which we employ (Section 3 ) the deriva-
tion of the waiting time is carried out in Section 4. The Laplace Transform of
the distribution obtained is verified in Section 5. In Section 6 we derive the re-
sponse time in the M/M/1 preemptive queue, and verify the Laplace Transform
in Section 7 . The article ends with some conclusive remarks.

3 The Ballot Problem and Monotone Lattice
Paths

The ballot problem has been introduced by Bertrand (1887). Since then a lot
of variations on the initial problem have been analyzed and proven in several
distinct ways (e.g. Addario-Berry and Reed (2007), Renault (2007)). Moreover,
the results have found surprising applications in the theory of stochastic pro-
cesses (see e.g. Takács (1962) , Karlin and Taylor (1981) ). The basic problem
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considered by Bertrand is as follows. There are two politicians who obtained
A respectively B < A votes. The ballots are counted one by one. What is the
probability ζA,B that the winner has a lead during the entire counting process?

Karlin and Tailor (1981) discuss several solutions to this problem. One of them
will be applied in this article to derive waiting time distributions. This solutions
proceeds as follows. Each time a ballot with a vote for the winning (losing) can-
didate is encountered during the counting process draw a vertical (horizontal)
line segment (of unit length) in the plane (start in (0, 0) ). We obtain a step
function which connects (0, 0) and (B,A) and will call this a monotone lattice
path. An example is given in figure 1. Clearly each of the

(
A+B
A

)
possible mono-

tone lattice paths is encountered with the same probability. However, not all of
them correspond to a realization where the winning candidate has always a lead.

Monotone lattice where the winner has a lead all the time, never fall between the
line y = 1 + x (except for the first vertical line segment). The set of monotone
lattice paths from (0, 0) to (B,A − 1) which lie above y = 1 + x correspond
bijectively to the set of monotone lattice paths between (0, 0) and (B,A − 1)
which lie above the diagonal. For the number of such monotone lattice paths,
see Brualdi (2009), Chapter 8. The probability ζA,B is then given by:

ζA,B =
A−B
A+B

.

−1 0 1 2 3 4 5 6 7
−1

0

1

2

3

4

5

6

7

Figure 1: A Monotone Lattice Path with A = 6 and B = 4.

We now define monotone lattice paths and related terminology more formally.
A monotone lattice path between two coordinates (a, b) and (c, d), a, b, c, d ∈ N,
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a ≤ c, b ≤ d is a sequence of distinct pairs of integers (ni,mi)
r
i=1, r ∈ N,

such that (n1,m1) = (a, b) , (nr,mr) = (c, d) which is monotone (that is for
a ∈ {n,m} we have ai ≤ aj if i ≤ j). We call each pair in the sequence a node
or lattice point.

A monotone lattice path is called super-diagonal, if mi ≥ ni for i = 1, .., r. We
will make use of the following result about monotone lattice paths is subsequent
proves, which can be found in Brualdi (2009), Chapter 8.

Lemma 1 The number of super diagonal monotone lattice paths between the
lattice points (a, b) and (k, k) 6= (a, b) with a ≤ b, a ≤ k, b ≤ k is given by:

N(a,b):(k,k) =
b+ 1− a
k − a+ 1

(
2k − a− b
k − b

)
.

We remark that our terminology is slightly different from the one in Brualdi,
where instead of monotone lattice path the term rectangular lattice path is used.
Secondly, the results of Brualdi are stated for sub diagonal monotone lattice
paths, but the corresponding results for super diagonal elements are easily de-
rived from these. For example the number of sub-diagonal monotone lattice
paths between (0, 0) and (p, q), with p ≤ q is the same as the number of mono-
tone super diagonal lattice paths between q and p.

The following Lemma will be used in Section 6:

Lemma 2 The number of super diagonal monotone lattice paths between the
lattice points (0, n) and (n+k, n+k) with n ≥ 0, k ≥ 0, n+k > 0, which touch
the diagonal excluding the end point r times with 0 ≤ r ≤ k, is given by:

%(0,n),(n+k,n+k),r =
n+ r

n+ k

(
n+ r − 1 + 2(k − r)

k − r

)
.

Moreover, for n = 0, k = 0 and r = 0, the only monotone lattice path consists
of the single lattice point (0, 0):

%(0,0),(0,0),0 = 1.

The result presented in Lemma 2 is well known, see e.g. Saran and Nain (2013).

4 Derivation of Waiting Time Distributions
In this section we derive the distribution of the waiting time of a customer of
arbitrary priority in the non-preemptive M/M/c queue with K types of cus-
tomers. We assume that type i priority customers arrive according to a Poisson
process with rate λi, i = 1, ...,K,, where a lower index corresponds to a higher
priority. Importantly, we consider the case where service rates are equal to a
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common value µ for all types of customers. We will make use of the following
additional notation:

λ =

K∑
j=1

λj , ρi =
λi
µ
, ρ =

K∑
j=1

ρj , σi =

i∑
j=1

ρi

Λi =
∑
j<i

λj , γi = Λi + cµ.

To ensure stability, we assume λ < cµ.

Denote the waiting time of priority i customer by Wi. Consider an arbitrary
customer of priority i (which we call the tagged customer). Without loss of
generality, we may assume that he arrives at time t = 0. Let Li be the random
variable which is equal to zero if c − 1 or less servers are busy and equal to n
if all servers are busy and n− 1 customers of priority i or higher are waiting in
queue at the moment when the tagged customer arrives. Let η0 be the steady
state probability P[Li = 0] and ηi,n be the steady state probability P[Li = n],
which are derived in Davis (1965):

η0 =

1 +

(
(1− ρ)c!

(cρ)c

) c−1∑
j=0

(cρ)j

j!

−1

(1)

ηi,n = (1− η0)(1− σi)σn−1
i for n ≥ 1.

By conditioning on Li we obtain:

P[Wi ≤ t] = η0 +

∞∑
n=1

ηi,nP[Wi ≤ t|Li = n]. (2)

Define the process {∆(s) : s ≥ 0} with state space N, where the state represents
the difference between the number of customers in the system that are served
before the tagged customer and c−1. We can interpret the state as the number of
departures that have to occur before the tagged customer can enter service if no
customers of higher priority arrive in between. The state increases upon arrival
of a high priority customer and decreases when a service is completed. Note
that given Li = n, ∆ starts in state n irrespective of the priority composition
of the customers that are before him. Note also that the tagged customer gets
into service when state 0 is hit by ∆. Define ψ := inf{s : ∆(s) = 0}. We obtain
the following result:

P[Wi ≤ t|Li = n] = P[ψ ≤ t|Li = n]. (3)
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Let {Y (s) : s ≥ 0} be a Continuous Time Markov Chain (CTMC) with state
space Z which has the following properties: given Li = n it starts in state n; it
has state independent holding times with common rate γi; lastly the embedded
Markov Chain is a simple random walk where each transition is an increase of
the state with probability pu := Λi

γi
and a decrease of the state with probability

pd := cµ
γi

. It is clear that ∆ can be seen as a restriction of Y to 0 ≤ t ≤ ψ.
Following this interpretation the tagged customers gets into service when state
0 is hit for the first time by the process Y . In terms of Y the conditional
probability of the event {Wi ≤ t} given L = n becomes:

P[Wi ≤ t|L = n] = P[ψ ≤ t|Y (0) = n]. (4)

Let {τj}∞j=1 be the sequence of occurrence times of the transitions corresponding
to the stochastic process Y . We define for n, k ∈ N the events Bn,k as follows:

Bn,k = {ψ = τk, Y (0) = n} .

Note that the events Bn,k give a partition of the state space. Clearly for k < n
the probability of Bn,k is zero, since at least n transitions are required for Y
to reach state 0 if it starts at level n. Moreover, since transitions of Y occur
according to a Poisson process with rate γi we see that the waiting time of the
customer is Erlang distributed with parameters k and γi. Hence, we have:

P [ψ ≤ t|L = n] =

∞∑
k=n

P [Bn,k] Erl(t; k, γi), (5)

where Erl(t; k, γi) denotes the cdf of an Erlang random variable with parameters
(k, γi) evaluated in t.

Denote the probability mass function of a binomial distribution with parameters
n and p evaluated in m by bin(m;n, p). The following Lemma expresses the
probabilities P[Bn,k] in closed form:

Lemma 3

P[Bn,k] = bin

(
k − n

2
; k,

Λi
γi

)
n

k
.

Proof: First, we assert that the probability that Bn,k occurs is equal to 0 if
k − n is not divisible by 2. For n uneven, the state of Y is even if and only if
the number of transitions that occurred is uneven. Since 0 is even, this implies
that the value of k for which τk = ψ is uneven. Therefore 2 divides n − k. A
similar argument holds for the case where n is even. In the remaining of this
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proof we will only consider the case where n− k is divisible by 2.

We denote a transition of Y by U if the state increases and by D if the state
decreases. Let mj be the j-th transition of Y that takes values in the set
{U,D}. Furthermore we define a transition sequence (of length r) as a sequence
e = {ej}rj=1, with r ∈ N∪{∞}, ej ∈ {U,D}, j = 1, .., r and define the probability
of a transition sequence e by P[e] = P[mj = ej , j = 1, .., r]. Let Nu(r) be the
number of U transitions and Nd(r) the number of D transitions among the first
r transitions of Y . Then, the probability of a transition sequence e of length r
is given by:

P(e) = pN
u(r)

u p
Nd(r)
d .

Similarly, we define the conditional probability P[e|Bn,k] and will say that a
transition sequence e is (n, k)-feasible if P [e|Bn,k] > 0. Intuitively, this means
that the event sequence represents a realization of the process Y which starts in
state n and goes to state 0 in k transitions. Clearly, the event Bn,k is determined
by the first k transitions of Y (after the first k transitions of Y we know whether
Bn,k occurred or not), hence we can compute P [Bn,k] as the probability that
a transition sequence of length k is (n, k)-feasible. The remaining part of this
proof consists of this computation.

First, we characterize the set of (n, k)-feasible transition sequences of length k.
We assert that the number of D and U events are the same for all such sequences.
First, note that Nu(k)+Nd(k) = k. On the other hand, it is also necessary that
Nu(k)−Nd(k) = −n since transition k coincides with the first time the process
Y , which starts at state n, hits state 0. These two relations uniquely determine
the number of U and D events. Specifically, we have Nd(k) = 0.5(k + n) and
Nu(k) = 0.5(k − n). Note that Nd(k) and Nu(k) are integer if an only if k − n
is divisible by 2. It follows that each (n, k)-feasible sequence of length k occurs
with the same probability (that only depends on n and k). The immediate
consequence is that we can compute P [Bn,k] by merely counting the number
%n,k of transition sequences of length k that are (n, k)-feasible, since we have:

P [Bn,k] = %n,kp
0.5(k+n)
d p0.5(k−n)

u .

The problem of counting the number of distinct (n, k) feasible transition se-
quences of length k, can be related to counting the number of super-diagonal
monotone lattice paths between given lattice points in the plane. First, given
a transition sequence {ej}kj=1 we construct a monotone lattice path as follows.
We start at the node (0, n− 1) in the plane, and consider the transitions one by
one. For an U transition we draw a vertical line segment, and for a D transition
we draw a horizontal line segment. Obviously, we end up in the lattice point
with coordinates Nd(k) and n − 1 + Nu(k). For each (n, k)-feasible transition
sequence this ending point is the same. Moreover, there is a bijection between
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(n, k)-feasible transition sequences and super diagonal monotone lattice paths of
length k−1 between the lattice points (0, n−1) and (Nd(k)−1, n−1+Nu(k)).
To see this, the following conditions should be satisfied for a transition sequence
to be (n, k) feasible:

• For r = 1, ..., k−1 the number ofD transitions among the first r transitions
of the process Y exceeds the number of U transitions by at most n− 1.

• The first k− 1 transitions contain n+k
2 − 1 transitions of type D and k−n

2
transitions of type U (hence the number of D event lead by n− 1).

• Transition k is of type D.

Clearly transition sequences that satisfy these conditions and super diagonal
monotone lattice paths between the aforementioned lattice points correspond
one to one (see also example 1 below).
Finally, using Lemma 1 on the number of such super-diagonal monotone lattice
paths between two lattice points it follows:

%n,k =
2n

k + n

(
k − 1

0.5k − 0.5n

)
.

With this we obtained the desired result, hence the proof is complete. �

Example 1 Figure 2 shows the construction of a monotone lattice path from
the sequence (DDUDUDD), which corresponds to a (3, 7) feasible transition
sequence of length 7. Indeed, we see that the first k − 1 steps trace out a super-
diagonal monotone lattice path between (0, 2) and (4, 4):

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Figure 2: A Monotone Lattice Path
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By combining equations (1)-(4) and Lemma 3, we obtain the distribution of Wi:

Theorem 1 Consider the M/M/c model with non-preemptive priority and K
priority classes. The waiting time distribution of a priority i customer is given
by (where k runs over all integers larger then n which have the same parity as
n):

P[Wi ≤ t] = η0 +

∞∑
n=1

∑
n≤k

k≡n mod 2

ηnbn,k%n,kErl(t; k, γi),

where ηn is given by equation (1) and bn,k and %n,k are given by:

bn,k =

(
cµ

γi

)0.5(k+n)(
Λi
γi

)0.5(k−n)

ρn,k =
2n

k + n

(
k − 1

0.5k − 0.5n

)
.

5 Verification Of Laplace Transform
Next, we show that the Laplace transform corresponding to the waiting time
Wi is the same as the one derived in Kella and Yechialy (1985) which is given
by:

E
[
e−Wis

]
= η0 + (1− η0)

(
(1− σi)x(s)

1− σix(s)

)
,

where η0 is the probability that c or less servers are busy and x(s) solves the
following quadratic equation in y:

Λiy
2 − (γi + s)y + cµ = 0. (6)

One the unit circle |z| = 1 and for Re(s) > 0 we have:

∣∣∣∣ cµ

γi + s
+

Λi
γi + s

z2

∣∣∣∣ ≤ Λi
|γi + s|

+
cµ

|γi + s|

≤ Λi
|γi + Re(s)|

+
cµ

|γi + Re(s)|

=
Λi

γi + Re(s)
+

cµ

γi + Re(s)
< 1, (7)

where the second inequality follows since the vector γi + Re(s) is the projection
of the vector γi + s on the real axis hence, |γi + Re(s)| < |γi + s|. It follows that
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equation (6) has a unique solution inside the unit circle by Rouché’s theorem.
Solving equation (6) gives:

x(s) =
γi + s

2Λi
−

√(
γi + s

4Λi

)2

− cµ

Λi
. (8)

Theorem 1 gives for the Laplace Transform of Wi:

E[e−Wis] = η0 +

∞∑
n=1

ηn

 ∑
n≤k

k≡n mod 2

bn,k%n,k

(
1

1 + 1
γi
s

)k .

Let us define:

hn(s) =
∑
n≤k

k≡n mod 2

bn,k%n,k

(
1

1 + 1
γi
s

)k
. (9)

We make use of the following Lemma, of which the proof is postponed until the
Laplace Transform has been verified:

Lemma 4

hn(s) = x(s)n.

Using Lemma 4 we obtain:

E[e−Wis] = η0 +

∞∑
n=1

ηnx(s)n

= η0 + (1− η0) (1− σi)
∞∑
n=1

σn−1
i x(s)n

= η0 + (1− η0)

(
(1− σi)x(s)

1− σix(s)

)
.

This is the expression of the Laplace Transform derived in Kella and Yechiali
(1985).

We now prove Lemma 4. Based on the derivation of Wi we can conclude that
bn,k%n,k is the probability mass function evaluated at k of the required number
of transitions M to reach state 0 by an asymmetric random walk starting in
state n. We see that hn(s) can be interpreted as the following expectation:
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ĥn(s) = E

( 1

1 + 1
γi
s

)M
| Y (0) = n

 . (10)

We now proceed as follows. We have written ĥn(s) instead of hn(s) on the left
side since at this stage we cannot be sure that the probability mass function of
the described random walk has been derived correctly. First, we analyze ĥn(s)

and afterwards we prove by induction that hn(s) = ĥn(s).

Now let T be the expected number of transitions required to reach state n− 1
by an asymmetric random walk starting in state n with parameters pu = Λi

γi
and

pd = cµ
γi

. Note that T does not depend on n since the transition probabilities
are independent of the state. By conditioning on the first transition we obtain
the following result:

ĥ1(s) =

(
cµ

γi + s

)
+

(
Λi

γi + s

)
ĥ1(s)2.

Hence we see that ĥ1(s) solves Equation (6). It must be the case that ĥ1(s) =
x(s), for the other solution lies outside the unit circle for Re(s) > 0. Next,

observe that ĥn = ĥ1(s)n, and it follows that ĥn(s) = x(s)n. We now show by
using induction on n that hn(s) = x(s)n for all n ≥ 1. The expression for h1(s)
is given by:

h1(s) =

∞∑
k≥1

k≡1 mod 2

(
cµ

γi

) k+1
2
(

Λi
γi

) k−1
2 1

k

(
k
k−1

2

)(
1

1 + 1
γi
s

)k

= cµ

∞∑
m=0

1

2m+ 1

1

γi + s

(√
cµΛi

γi + s

)2m(
2m+ 1

m

)

=

√
cµ

Λi

∫ √cµΛi
γi+s

0

∞∑
m=0

(
y2
)m(2m+ 1

m

)
dy.

We make use of the following identity, for |w| < 1
4 , which can be found in

Prudnikov (1986):

∞∑
m=0

wm
(

2m+ s

m

)
=

2s(√
1− 4w + 1

)s√
1− 4w

.

Applying this result to calculate h1(s) gives (note that y2 < 1
4 within the domain

of integration), for x(s) being given by Equation (8):
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h1(s) =

√
cµ

Λi

∫ √cµΛi
γi+s

0

2

1− 4y2 +
√

1− 4y2
dy

=

√
cµ

Λi

[
1−

√
1− 4y2

2y

]y=

√
cµΛi
γi+s

y=0

= x(s).

This completes the induction base. Next, we assume that the claim hm(s) =
x(s)m holds for all positive integers m < n, and consider hn. The following
recurrence relation holds for the number of (n, k)-feasible event sequences %n,k =
%n−1,k+1 + %n−2,k with n > 2. It is important to observe that %n,k = 0 if n > k
(since then it is impossible to go from n to 0 in k transitions ). For n = 2 we
have %2,k = %1,k+1. Although the case n = 2 is slightly different from n > k we
remark that the following proof remains valid for n = 2 if we define %0,0 = 1
and %0,k = 0 for k > 0 and h0(s) = 1. It follows that:

hn(s) =

∞∑
k≥n

k≡n mod 2

bn,k%n,k

(
1 +

1

γi

)−k

=

∞∑
k≥n

k≡n mod 2

bn,k%n−1,k+1

(
1 +

1

γi

)−k
−

∞∑
k≥n

k≡n mod 2

bn,k%n−2,k

(
1 +

1

γi

)−k

=

(
1 +

1

γi

) ∞∑
k≥n

k≡n mod 2

bn,k%n−1,k+1

(
1 +

1

γi

)−(k+1)

−
∞∑
k≥n

k≡n mod 2

bn,k%n−2,k

(
1 +

1

γi

)−k
.

We observe that:

bn,k =
γi
Λi
bn−1,k+1

=
cµ

Λi
bn−2,k.

Substituting these expression for bn,k and changing the summation index gives:
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hn(s) =
γi
Λi

∞∑
k≥(n−1)+2

k≡n−1 mod 2

bn−1,k%n−1,k

(
1 +

1

γi

)−k

−cµ
Λi

∞∑
k≥(n−2)+2

k≡n−2 mod 2

bn−2,k%n−2,k

(
1 +

1

γi

)−k

=
γi
Λi

(
x(s)n−1 − bn−1,n−1ρn−1,n−1

(
1 +

1

γi

)−(n−1)
)

−cµ
Λi

(
x(s)n−2 − bn−2,n−2%n−2,n−2

(
1 +

1

γi

)−(n−2)
)
.

The last equality makes use of the induction hypothesis and the fact that the
coefficients bn,kρn,k define for fixed n a probability mass function. Rewriting
the last expression further gives:

hn(s) =

(
1 +

1

γi

)
γi
Λi

(
x(s)n−1 −

(
cµ

γi

)n−1(
1 +

1

γi

)−(n−1)
)

−cµ
Λi

(
x(s)n−2 −

(
cµ

γi

)n−2(
1 +

1

γi

)−(n−2)
)

=

(
γi + s

Λi
x(s)− cµ

Λi

)
x(s)n−2

= x(s)n.

The last equation follows from the fact that x(s) satisfies equation (6). We
see that the desired result is obtained and conclude that our results on the
distribution of Wi are consistent with Kella and Yechialy (1985). �

6 Derivation of Response Time Distribution for
Preemptive M/M/1 with two Priorities and
Unequal Service Rates

In this section we derive a closed form expression for the distribution of the re-
sponse time in the M/M/1 queue with two priority classes and different service
rates. Denote the arrival rates of the two priority classes by λi, i = 1, 2 and the
service rates by µi, i = 1, 2. We define γi = λ1 + µi, ρi = λi

µi
and ρ = ρ1 + ρ2.

For ergodicity we assume 1− ρ > 0.
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Observe that due to the preemptive policy, the response time of a high priority
customer is identical to the response time of a customer in a M/M/1 queue,
with arrival rate λ1 and service rate µ1. It is well known that in this system, for
an arriving customer who sees n customers in system at arrival, the response
time is Erlang distributed with parameters n+ 1 and µ1. In the remaining part
of this section we focus on the low priority customer.

Consider an arbitrary customer of low priority at the moment of his arrival.
Let πn,m be the steady state probability of n high priority and m low priority
customers in the system, corresponding to a preemptive M/M/1 queue with two
priorities. These probabilities are derived in Miller (1981). Let Li, i = 1, 2 be
the number of type i customers in the system. By conditioning on the number
of high priority and low priority customers that the tagged customer sees on
arrival and applying PASTA we obtain:

P [R2 ≤ t] =

∞∑
n=0

∞∑
m=0

πn,mP[R2 ≤ t|L1 = n,L2 = m]. (11)

Define the event Bn,m,k,r as the event where the tagged customer sees n high
priority and m low priority customers in the system upon arrival, where k high
priority customers arrive while he is in the system and where r times the system
is entered by a high priority customer such that only low priority customers are
present at his arrival while the tagged customer is in the system. We consider
the process Y , of which the states are integer pairs, where the state (n,m) is
interpreted as the number of high priority customers in the system being n and
the number of low priority customers which will be served before the tagged
customer being m. The process Y switches between two regimes: when a high
priority customer is in service (regime 1) the holding time is exponential with
rate λ1 + µ1, while it is exponential with rate λ1 + µ2 if a low priority is in
service (regime 2).

Denote the probability mass of a binomial random variable with parameters
(N, p) evaluated in d by bin(d;N, p) and denote the probability mass of a
negative binomial random variable with parameters (R, p) evaluated in d by
Nbin(d;R, p). The probability of Bn,m,k,r is given by the following Lemma:

Lemma 5

P[Bn,m,k,r] = βn,k,rυm,r.

where %(n,0),(n+k,n+k),r is given in Lemma 2 and βn,k,r, υm,r are given by:
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βn,k,r = %(n,0),(n+k,n+k),r

(
µ1

γ1

)n+k (
λ1

γ1

)k−r
=

n+ r

n+ 2k − r
bin

(
n+ k;n+ 2k − r, µ1

γ1

)

υm,r =

(
r +m

m

)(
µ2

γ2

)m+1(
λ1

γ2

)r
= Nbin

(
m; r,

µ2

γ2

)
.

Proof: We consider transitions sequences e which consists of the transitions
of Y that correspond to arrivals and departures of high priority customers and
transition sequences ẽ which consist of all transitions of Y , including the depar-
tures of the m low priority customers. A transition sequence e will be called
(n,m, k, r)-feasible if P [e|Bn,m,k,r] > 0. A transition sequence of type ẽ is
(n,m, k, r)-feasible if there is an (n,m, k, r)-feasible transition sequence e such
that deleting the transitions that correspond to the departures of the m+ 1 low
priority customers from e gives ẽ.

To compute the probability of an (n,m, k, r)-feasible transition sequence e, we
first show that the number of transitions of Y while Y is in regime 1 is equal
to n+ 2k − r, and the number of transitions of Y while in regime 2 is equal to
m + r + 1. To see this note that r times a high priority arrives while Y is in
regime 2. Hence, out of the k high priority arrivals, k − r arrive in regime 1
and r arrive in regime 2. Moreover, it is clear that all high priority departures
occur in regime 1. Lastly, the number of transitions of Y in regime 2 consists of
the m + 1 low priority departures, and the r high priority arrivals when a low
priority customer is in service. Hence the probability of each (n,m, k, r)-feasible
transition sequence e is equal to:

P[e] =

(
µ1

γ1

)n+k (
λ1

γ1

)k−r (
µ2

γ2

)m+1(
λ1

γ2

)r
. (12)

It remains to compute the number of (n,m, k, r)-feasible transition sequences
(P [Bn,m,k,r] is equal to this number times the probability P[e], where e is an
(n,m, k, r) feasible transition sequence). Observe that the set of (n,m, k, r) fea-
sible transition sequences ẽ corresponds bijectively with the set of super-diagonal
monotone lattice paths between the lattice points (n, 0) and (n + k, n + k)
which touch the diagonal r times, excluding the final point. The number
%(n,0),(n+k,n+k),r of such monotone lattice paths is given in Lemma 2. The
departure of each of the m low priority customers occurs in one of the r + 1
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intervals when there are no high priority customers in the system. Moreover we
know that the tagged customer departs in interval r + 1. Hence the number of
(n,m, k, r)-feasible transition sequences e is equal to %(n,0),(n+k,n+k),r multiplied

by
(
m+k
k

)
, which is the number of distinct ways to take m objects from a set of

r + 1 objects where duplicates are allowed. �

Given the event Bn,m,k,r, the response time of the tagged customer is distributes
as a the sum of two independent Erlang variables with parameters (ai, γi), i =
1, 2 where ai is the number of transitions by Y that occur in regime i. We have
seen in the proof of Lemma 5 that a1 = n + 2k − r and a2 = m + 1 + r. Let
G((ai, γi)i=1,2; t) be the cdf of this sum evaluated in t. A closed form finite sum
representation of the pdf is derived in Mathai (1982). Combining equation (11)
and Lemma 5 we obtain the distribution of the response time:

Theorem 2 The distribution of the response time of the low priority customer
is given by:

P [R2 ≤ t] =

∞∑
n=0

∞∑
m=0

∞∑
k=0

k∑
r=0

πn,mβn,k,rυm,rG((ai, γi)i=1,2; t) (13)

where a1 = n+ 2k− r, a2 = m+ 1 + r, and βn,k,r, υm,r are given in Lemma 5.

7 Verification Of Laplace Transform
Now, we verify that the Laplace Transform of R2, equals the Laplace Transform
known in literature, which is given by (see e.g. Baron, Scheller-Wolf and Wang
(2014) ):

E
[
e−R2s

]
=

2 (λ1µ1 + λ2µ1 − µ1µ2)

(µ2 − 2µ1)s+ λ1µ2 + 2λ2µ1 − µ1µ2 − µ2

√
(λ1 + µ1 + s)2 − 4λ1µ1

.(14)

From Theorem 2 it follows that the Laplace transform of R2 is:

E
[
e−R2s

]
=

∞∑
n=0

∞∑
m=0

∞∑
k=0

k∑
r=0

πn,mβn,k,rυm,r

(
1

1 + s
γ1

)n+2k−r (
1

1 + s
γ2

)m+1+r

.(15)

Let us focus for fixed n and m on the quantity:

hn,m =
∑∞
k=0

∑k
r=0 βn,k,rυm,r

(
1

1+ s
γ1

)n+2k−r (
1

1+ s
γ2

)m+1+r

. (16)

Note that hn,m, depends on s, but we suppress the dependence on s in the
notation for convenience. The following Lemma gives an explicit expression for
hn,m:
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Lemma 6 For all integers n ≥ 0 and m ≥ 0 it holds that:

hn,m = hn1,0h
m+1
0,0 , (17)

where h1,0 and h0,0 are given by:

h1,0 =
γ1 + s

2λ1
−

√(
γ1 + s

2λ1

)2

− µ1

λ1
(18)

h0,0 =
µ2

γ2 + s− λ1h1,0
. (19)

For the moment we postpone the proof of Lemma 6 and will come back to it after
the Laplace Transform has been verified. By combining equations (15)-(17) we
obtain:

E
[
e−R2s

]
= h0,0

∞∑
n=0

∞∑
m=0

πn,mh
n
1,0h

m
0,0. (20)

We see that the joint Generating Function H(x, t) of the number of customers
in stationary state is evaluated in (x, t) = (h1,0, h0,0). This Generating Function
is well known (see for example Marks 1972, and Miller, 1960 ) and is given by:

H(x, t) =

µ2

µ1
(1− ρ1 − ρ2) (1− t)

(Γ(t) + tκ(t)) (1− xκ(t))
, (21)

where Γ(t) and κ(t) are given by:

Γ(t) =
µ2

µ1
ρ2t

2 −
(
ρ1 +

µ2

µ1
ρ2 +

µ2

µ1

)
t+

µ2

µ1
,

κ(t) =
1

2

(
ρ1 +

µ2

µ1
ρ2(1− t)

)
+ 1−

√
1

4

(
ρ1 +

µ2

µ1
ρ2(1− t) + 1

)2

− ρ1.

Observe that κ(t) satisfies the following expression:

κ(t)2 −
(
ρ1 +

µ2

µ1
ρ2(1− t) + 1

)
κ(t) = −λ1

µ1
. (22)

After expanding the brackets in (21), we get:
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H(h1,0, h0,0) =

µ2

µ1
(1− ρ1 − ρ2) (1− h0,0)

Γ(h0,0) + (h0,0 − h1,0Γ(h0,0))κ(h0,0)− h1,0h0,0κ(h0,0)2
.(23)

Dividing the coefficient of κ(h0,0) by h1,0h0,0 gives:

h0,0 − h1,0Γ(h0,0)

h1,0h0,0

=
1

h1,0
− µ2

µ1
ρ2h0,0 +

(
ρ1 +

µ2

µ1
ρ2 +

µ2

µ1

)
− 1

h0,0

µ2

µ1

=
1

h1,0
+

(
ρ1 +

µ2

µ1
ρ2(1− h0,0) + 1

)
−
(
µ2 − h0,0µ2 + h0,0µ1

h0,0µ1

)
. (24)

By cross multiplying and using equation (19), we see that:

1

h1,0
=

µ2 − h0,1µ2 + h0,0µ1

h0,0µ1
. (25)

Combining equations (22)-(25) gives:

H(h1,0, h0,0) =

µ2

µ1
(1− ρ1 − ρ2) (1− h0,0)

Γ(h0,0) + h1,0h0,0

(
λ1

µ1

)
=

2 (λ1µ1 + λ2µ1 − µ1µ2) · · ·

2λ2µ1

(
h2

0,0

h0,0−1

)
− 2 (λ1µ1 + λ2µ1 + µ1µ2)

(
h0,0

h0,0−1

)
+ · · ·

· · ·

2µ1µ2

(
1

h0,0−1

)
+ 2h1,0λ1µ1

(
h0,0

h0,0−1

) . (26)

Substituting (26) in (20) gives:

E
[
e−R2s

]
=

2 (λ1µ1 + λ2µ1 − µ1µ2) · · ·

2λ2µ1

(
h0,0

h0,0−1

)
− 2 (λ1µ1 + λ2µ1 + µ1µ2)

(
1

h0,0−1

)
+ · · ·

· · ·

2µ1µ2

(
1

h0,0(h0,0−1)

)
+ 2h1,0λ1µ1

(
1

h0,0−1

) . (27)

By comparing with equation (14) we see that it suffices to focus on the denom-
inator. We obtain, by using (19):
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2λ2µ1h0,0 − 2 (λ1µ1 + λ2µ1 + µ1µ2) + 2µ1µ2h
−1
0,0 + 2h1,0λ1µ1

= 2λ2µ1h0,0 − 2 (λ1µ1 + λ2µ1 + µ1µ2) + 2µ1(γ2 + s− λ1h1,0) + 2h1,0λ1µ1

= 2λ2µ1 (h0,0 − 1) + 2µ1s. (28)

Substituting (28) in (27) gives:

E
[
e−R2s

]
=

2 (λ1µ1 + λ2µ1 − µ1µ2) · · ·
2λ2µ1 + 2µ1s

h0,0−1

. (29)

Moreover, by using (18) and (19) we have:

2µ1s

h0,0 − 1
=

2µ1λ1s+ 2µ1s
2 − 2µ1λ1sh1,0

λ1h1,0 − λ1 − s

=

−2µ1s

[(
µ1−λ1−s

2

)
− λ1

√(
γ1+s
2λ1

)
− µ1

λ1

]
+ 2µ1µ2(

µ1−λ1−s
2

)
− λ1

√(
γ1+s
2λ1

)
− µ1

λ1

= −2µ1s+
4µ1µ2s

µ1 − λ1 − s−
√

(λ1 + µ1 + s)2 − 4λ1µ1

. (30)

We consider the product:

Π2
i=1

(
µ1 − λ1 − s+ (−1)i

√
(λ1 + µ1 + s)2 − 4λ1µ1

)
= −4µ1s. (31)

By combining (30) and (31) we get:

2µ1s

h0,0 − 1
= −2µ1s− µ2 (µ1 − λ1 − s)− µ2

√
(λ1 + µ1 + s)2 − 4λ1µ1

= −2µ1s− µ2µ1 + µ2λ1 + µ2s− µ2

√
(λ1 + µ1 + s)2 − 4λ1µ1.(32)

Lastly, substitution of (32) in (29) gives:

E
[
e−R2s

]
=

2 (λ1µ1 + λ2µ1 − µ1µ2)

(µ2 − 2µ1)s+ λ1µ2 + 2λ2µ1 − µ1µ2 − µ2

√
(λ1 + µ1 + s)2 − 4λ1µ1

.(33)

This is the same as the expression given by equation (14). Hence we obtain the
Laplace transform of R2 known in literature.
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Proof Lemma 6: First we give an interpretation of the result in terms of
random walks. This step is important, especially for those who seek to apply
the ideas of this article to other queuing systems, for it provides insights how
to derive analogues of Lemma 6.

Consider a non-stationarity random walk in two dimensional space which starts
in state (n,m+1) having the following properties. If the state is (n′,m′), n′ > 0
(regime 1) the next state is (n′+1,m′) with probability λ1

γ1
and (n′−1,m′) with

probability µ1

γ1
. If the state is (0,m′) (regime 2) the next state is (0,m′−1) with

probability µ2

γ2
and (1,m′) with probability λ1

γ2
. Let T in,m, i = 1, 2 the number

of transitions that occur while this random walk is in regime i before the state
(0, 0) is visited for the first time if the random walk starts in state (0,m + 1).
From the proof of Lemma 5, we can interpret hn,m as the following expectation:

ĥn,m =: E
[(

1
1+ s

γ1

)T 1
n,m
(

1
1+ s

γ2

)T 2
n,m

]
. (34)

Now observe that, for n > 0 the random variable T 2
n,m is equal to the random

variable T 2
0,m, since all transitions occur in regime 1 until state (0,m) is entered

the first time. Secondly, observe that for n > 1 it holds that ĥn,m = ĥn1,0ĥ0,m,

and ĥ0,m = ĥm+1
0,0 which gives:

ĥn,m = ĥn1,0ĥ
m+1
0,0 . (35)

By conditioning on the first transition we obtain:

ĥ1,0 =
µ1

γ1 + s
+

λ1

γ1 + s
ĥ2

1,0. (36)

One the unit circle |z| = 1 and for Re(s) > 0 we have:

∣∣∣∣ µ1

γ1 + s
+

λ1

γ1 + s
z2

∣∣∣∣ ≤ λ1

|γ1 + s|
+

µ1

|γ1 + s|

≤ λ1

|γ1 + Re(s)|
+

µ1

|γ1 + Re(s)|

=
λ1

γ1 + Re(s)
+

µ1

γ1 + Re(s)
< 1. (37)

Hence, a unique solution exists with |ĥ1,0| < 1 by Rouché’s theorem. Solving
equation (36) gives:

ĥ1,0 =
γ1 + s

2λ1
−

√(
γ1 + s

2λ1

)2

− µ1

λ1
. (38)
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Similarly, conditioning on the first transition gives we obtain the following ex-
pression for ĥ0,0:

ĥ0,0 =
µ2

γ2 + s
+

λ1

γ2 + s
ĥ1,0ĥ0,0.

Solving for ĥ0,0 gives:

ĥ0,0 =
µ2

γ2 + s− λ1ĥ1,0

. (39)

To complete the argument, we prove by induction that hn,m = ĥn,m for all
n ≥ 0 and m ≥ 0. First we consider values of (n,m) with n > 0 (the process Y
starts in regime 1). We have:

hn,m =

∞∑
k=0

k∑
r=0

(
µ1

γ1

)n+k (
λ1

γ1

)k−r (
µ2

γ2

)m+1(
λ1

γ2

)r (
r +m

m

)
n+ r

n+ k

(
n+ r − 1 + 2(k − r)

k − r

)(
1

1 + s
γ1

)n+2k−r (
1

1 + s
γ2

)m+1+r

=

∞∑
r=0

(
µ2

γ2

)m+1(
λ1

γ2

)r (
γ1 + s

λ1

)n+r
(

1

1 + s
γ2

)m+1+r

(n+ r)

(
r +m

m

)
∞∑
k=0

1

n+ k + r

(
µ1λ1

(γ1 + s)
2

)n+k+r (
n+ r − 1 + 2k

k

)
, (40)

where the equality follows from rearranging the sums. The second summation
can be rewritten as:

∞∑
k=0

1

n+ k + r

(
µ1λ1

(γ1 + s)
2

)n+k+r (
n+ r − 1 + 2k

k

)

=

∫ µ1λ1
(γ1+s)2

0

yn+r−1
∞∑
k=0

yk
(
n+ r − 1 + 2k

k

)
dy. (41)

We make use of the following identity, for |w| < 1
4 , which can be found in

Prudnikov (1986):

∞∑
m=0

wm
(

2m+ s

m

)
=

2s(√
1− 4w + 1

)s√
1− 4w

.
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Applying this result gives (note that y < 1
4 within the domain of integration):

yn+r−1
∞∑
k=0

yk
(
n+ r − 1 + 2k

k

)
=

1√
1− 4y

(
2y√

1− 4y + 1

)n+r−1

. (42)

Combining equations (40)- (42) gives:

hn,m =

∞∑
r=0

(
µ2

γ2

)m+1(
λ1

γ2

)r (
γ1 + s

λ1

)n+r
(

1

1 + s
γ2

)m+1+r

(n+ r)

(
r +m

m

)∫ µ1λ1
(γ1+s)2

0

1√
1− 4y

(
2y√

1− 4y + 1

)n+r−1

dy.(43)

After carrying out the integration, we obtain:

∫ µ1λ1
(γ1+s)2

0

1√
1− 4y

(
2y√

1− 4y + 1

)n+r−1

dy.

=
1

n+ r

[(
1

2
− 1

2

√
1− 4y

)n+r
]y=

µ1λ1
(γ1+s)2

y=0

=
1

n+ r

(
λ1

γ1 + s

)n+r

ĥn+r
1,0 . (44)

Substituting (44) in equation (43) gives:

hn,m =

∞∑
r=0

(
γ2

γ2 + s

)m+1+r (
µ2

γ2

)m+1(
λ1

γ2

)r
ĥn+r

1,0

(
m+ r

r

)

= ĥn1,0

(
γ2

γ2 + s

)m+1 ∞∑
r=0

e
ln

(
γ2ĥ1,0
γ2+s

)
r
(
m+ r

r

)(
µ2

γ2

)m+1(
λ1

γ2

)r

= ĥn1,0

(
γ2

γ2 + s

)m+1

LNbin

(
− ln

(
γ2ĥ1,0

γ2 + s

)
; r,

λ1

γ2

)
, (45)

where LNbin(y; r, p) is the Laplace Transform of a Negative Binomial random
variable with parameters (r, p) evaluated in y. From equation (45) we obtain:
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hn,m = ĥn1,0

(
γ2

γ2 + s

)m+1
 1− λ1

γ2

1− λ1

γ2

(
γ2

γ2+s

)
ĥ1,0

m+1

= ĥn1,0

(
µ2

γ2 + s− λ2ĥ1,0

)m+1

= ĥn1,0ĥ
m+1
0,0 ,

where the last equality follows from (39). It remains to prove that h0,m = ĥ0,m

for all m ≥ 0. To this end consider h0,m, which is given by:

h0,m =

∞∑
k=1

k∑
r=0

(
µ1

γ1

)k (
λ1

γ1

)k−r (
µ2

γ2

)m+1(
λ1

γ2

)r (
r +m

m

)
r

k

(
r − 1 + 2(k − r)

k − r

)(
1

1 + s
γ2

)2k−r (
1

1 + s
γ1

)m+1+r

+

(
µ2

γ2

)m+1
(

1

1 + s
γ2

)m+1

=

∞∑
r=1

(
µ2

γ2

)m+1(
λ1

γ2

)r (
γ1 + s

λ1

)r (
1

1 + s
γ2

)m+1+r

r

(
r +m

m

)
∞∑
k=0

1

k + r

(
µ1λ1

(γ1 + s)
2

)k+r (
r − 1 + 2k

k

)

+

(
µ2

γ2

)m+1
(

1

1 + s
γ2

)m+1

.

By equations (41)-(44) this is equal to:

h0,m =

∞∑
r=1

(
γ2

γ2 + s

)m+1+r (
µ2

γ2

)m+1(
λ1

γ2

)r
ĥr1,0

(
m+ r

r

)

+

(
µ2

γ2

)m+1
(

1

1 + s
γ2

)m+1

=

∞∑
r=0

(
γ2

γ2 + s

)m+1+r (
µ2

γ2

)m+1(
λ1

γ2

)r
ĥr1,0

(
m+ r

r

)
= ĥm+1

0,0 .
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The last equality follows from equation (45). We have now shown that hn,m =

ĥn1,0ĥ
m+1
0,0 for all integers n ≥ 0 andm ≥ 0. This completes the proof of Lemma 6.

�

8 Concluding Remarks

We derived the waiting time distribution in the M/M/c non-preemptive queue
with multiple priorities and a common service rate and the distribution of the
response time in an M/M/1 preemptive queue with two priorities and different
service rates. The analysis of the response time may lead to new results for
other Markovian priority queuing models with different service rates. More-
over, besides the non-preemptive and preemptive disciplines one may apply the
techniques to other disciplines.

Natural directions to consider are the preemptive M/M/1 with multiple prior-
ities and the preemptive M/M/c with two or more priorities. Increasing the
number of priorities requires a more difficult state description, since one needs
the number of each priority class in the system, and also requires a more com-
plicated combinatorial analysis, since the number of regimes increases. Adding
more servers increases the complexity further.

Extension of the results to the non-preemptive queue requires a state description
which includes besides the number of customers of each priority in the system
also the priority of the customer currently in service. Steady state probabilities
for a state description that also includes the type in service have been derived
by Marks (1973). As we see from these research directions, additional challenges
inevitably arise. On the other hand the techniques may be developed further.
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