Are female investors driven differently by sentiments than male investors?

Suzanne C. Wetstein Department of Behavioral Economics, Bachelor of Science in Economics and Business, Erasmus University Rotterdam

August 3, 2014

Abstract

In this study we will look at gender differences in sentiment driven investing. It extends a study by Kaplanski et al. [15] on the influence of sentiment on risk and return expectations and future trading plans. The gender differences in risk and return expectations and trading plans are researched, as well as the gender differences in sentiment and sentiment-creating factors. Lastly, we have also researched the influence of a sentiment index, consisting of a linear combination of the sentiment-creating variables, on the risk and return expectations and trading plans for men and women separately. We find that men expect higher returns and a lower volatility than women and that men trade more. We also find that men and women have no difference in their general feeling and weather perception. They do however differ in the fact that men have a favorite sports team more often than women and that men suffer less from Seasonal Affective Disorder (SAD) than women. When examining the relationship between sentiment and investing for men and women with the sentiment index, we find no significant relation between sentiment and expected risk and return. We do find gender differences in sentiment driven trading plans, more positive sentiment directs women more towards buying instead of selling than men.

Contents

1	Intr	roduction	4
2	Rel	ated literature	6
	2.1	Gender differences in investor trading behavior	6
	2.2	Gender differences in sentiment	8
	2.3	The influence of sentiment on investment	8
3	Dat	a and sample	10
4	Hy	potheses	15
	4.1	Descriptive analysis	15
		4.1.1 Return expectation hypothesis	15
		4.1.2 Risk expectation hypothesis	16
		4.1.3 Trading activity hypothesis	16
		4.1.4 General sentiment effect hypothesis	16
		4.1.5 Sports sentiment effect hypothesis	16
		4.1.6 Weather sentiment effect hypothesis	17
		4.1.7 SAD sentiment effect hypothesis	17
	4.2	Econometric analysis	17
		4.2.1 Overall sentiment effect hypothesis	17
		4.2.2 Overall sentiment effect on trading plans hypothesis	18
5	Met	thods	19
	5.1	Descriptive analysis	19
	5.2	Econometric analysis	21
6	Res	ults and discussion	24
	6.1	Descriptive analysis	24
		6.1.1 Return expectation hypothesis	24
		6.1.2 Risk expectation hypothesis	28
		6.1.3 Trading activity hypothesis	31

		6.1.4	General sentiment effect hypothesis			33
		6.1.5	Sports sentiment effect hypothesis			33
		6.1.6	Weather sentiment effect hypothesis			33
		6.1.7	SAD sentiment effect hypothesis			34
	6.2	Econo	metric analysis			36
		6.2.1	Creating the ISI			36
		6.2.2	Overall sentiment effect hypothesis			36
		6.2.3	Overall sentiment effect on trading plans hypothesis	•		52
7 A	Con Dat	clusion a	n			56 61
	A.1	Questi	[10] [10] [10] [10] [10] [10] [10] [10]	•	·	01
В	Des	$\operatorname{criptiv}$	ve analysis tests - November			66
С	Des	$\operatorname{criptiv}$	e analysis tests - February			83
D	Des	criptiv	ve analysis tests - June			100
\mathbf{E}	Des	criptiv	ve analysis tests - total dataset			117

Chapter 1 Introduction

The main objective of this research is to extent the study of Kaplanski et al. [15] with a gender aspect. Several authors have studied influences of investors' feelings on their risk and return expectations but, in this study, we will look at how different investors are influenced differently by these feelings. With different investors we here mean male and female investors.

In the study of Kaplanski et al. [15] the influences of sentiment on investors' return and risk expectations where studied. They analyzed sentiment using five proxies: the individual's contemporaneous feeling, recent results of their favorite soccer team, perception of the contemporaneous weather and whether the individual is "a spring person" in general and suffers from Winter Blues. They find that sentiment-creating factors systematically affect return and risk expectations, where the return effect is more profound. The happier the subject, the more optimistic he is with regard to the stock market and that the better the general mood of the individual's favorite soccer team. Our study relies on the data gathered in this study and the data comes from the Longitudinal Internet Studies for the Social Sciences (LISS) panel of CentER data at Tilburg University.

In this study we research what influence gender has on how investors are affected by sentiment. First, we look at the difference between males and females in investing and in sentiment. According to previous literature [10],[4] and [22] women are more driven by sentiments than men. From the Kaplanski et al. study we know that sentiment influences investors' risk and return preferences. There has not been a lot of research into the sentiment-gender interaction combined with investment decisions. Therefore we want to study how males and females let sentiment-creating factors influence their subjective market judgment regarding expected risk and return differently.

This study is divided into two parts. A descriptive and an econometric analysis. In the descriptive analysis we study the gender differences in risk and return expectations and in sentiment-creating factors separately. In the econometric analysis part, we study the influence of a sentiment index (created from the sentimentcreating factors) on the risk and return expectations of men and women separately, and compare these results.

We hypothesize that men expect higher returns than women and we find that this is consistent with our results. Our hypothesis that men expect a lower volatility than women is not consistent with our results. We find no difference in the risk expectations of men and women. Consistent with our hypothesis men do trade more than women, but men and women are not differently directed towards buying or selling more stock. Based on our literature study, we hypothesized that men would report a better general feeling than women, but we found no difference in the general feeling of men and women. Our hypothesis that men have a favorite sports team more often than women and that the distribution between good and bad performances of sports teams (as judged by the individual) is the same for men and women is consistent with our results. We expected that men would have a more positive weather perception than women, but our results show no gender difference in weather perception. Our expectation that men suffer less from Seasonal Affective Disorder (SAD) than women was confirmed by our results. In the econometric analysis part we hypothesized that sentiment would have a smaller influence on expected return and risk for men than for women. We found that this is not true, because sentiment has in most cases no influence on expected risk and return. In this part we also hypothesized that sentiment of men would have a larger influence on their investment plans than that of women. We found that sentiment does not have a significant influence on trading plans. We did however find that sentiment has a more towards buying (instead of selling) directed influence on trading plans for women than for men.

The remainder of this paper is organized as follows. Section 2 reports on literature about the difference in investor trading behavior between men and women. Section 3 presents the data and the sample. Section 4 explains our hypotheses and the variables used to test them and section 5 reports our testing methods. In section 6 we will present our results and discuss them. Finally, in section 7 we will conclude.

Chapter 2 Related literature

In this chapter an overview of present literature on the subject of gender differences in sentiment and investor trading behavior will be given. In our research we study the link between gender, sentiments and investment, but since this combination has not been studied much we here look at the link's between each of these. We first look at the gender differences in investing, then at the gender differences in sentiment and finally at the influences of sentiment on investing.

2.1 Gender differences in investor trading behavior

A number of studies examine gender differences in investor trading behavior. According to many studies, women are more risk averse than men in investment decisions. For example Hinz, McCarthy and Turner [13] find that women appear to invest their pension assets more conservatively than men. They tested this using a survey of participants in the federal government's Thrift Savings Plan. A large percentage of women invested in the minimum-risk portfolio available to them. Even after controlling for economic and demographic variables this result persisted. In another study Powell and Ansic [19] examine whether gender differences in risk propensity and strategy in financial decision-making can be viewed as general traits, or whether they arise because of context factors. They find that females are less risk seeking than males irrespective of familiarity and framing, costs or ambiguity. Jianakoplos and Bernasek [14] even wanna go as far as to say that greater financial risk aversion may provide an explanation for women's lower levels of wealth compared to men's. They said this after examining household holdings of risky assets, where they found that as wealth increases, the proportion of wealth held as risky assets is estimated to increase by a larger amount for single men than for single women.

That women appear to be less risk tolerant is closely related to the finding that women are less self confident in their abilities. A study by Beyer [3] found that on a masculine task females underestimated their performance, were less well calibrated, and showed a more conservative response bias than males. However, for feminine and neutral tasks no gender differences in perception were found. This could all be due to the fact that females were more likely than males to recall their mistakes even with performance and accuracy of self-evaluations controlled. Specifying this finding to investing: since women appear to be less risk tolerant investors, are women also less confident in their investment decision-making? Studies have found a lower degree of self confidence amongst women in their ability to make decisions about investment options and in the outcome of these decisions. Estes and Hosseini [7] find that gender is the most important explanatory factor affecting confidence in investment decisions. Females were significantly less confident about their decisions, even after controlling for factors such as age, experience, education, knowledge, and asset holdings. Theoretical models predict that overconfident investors trade excessively. Barber and Odean [2] test this prediction by partitioning investors on gender. They hypothesize that men will trade more excessively than women, since according to psychological research men are more overconfident than women in areas such as finance. Barber and Odean find that men indeed trade more excessively than women, they even trade 45 percent more. They also find that married couples inuence one anothers investment decisions, thereby reducing the effects of gender differences in overconfidence.

According to the same paper by Barber and Odean [2] women's tendency to put more thought into investment decisions results in a higher rate of return, because of the lower trade rate. However, Graham et al. [11] argue that women's tendency to take less investment risk leads to lower investment returns. They refer to past research regarding gender differences in investment strategies which pointed to two results: female investors appear to be more risk averse and to have less confidence in their investment decisions than men. They propose that gender differences in information processing styles may account for the lower risk-taking tendencies among female investors as well as the tendency towards lower confidence levels.

Other studies found that gender was not a critical determinant of investment choice. Embrey and Fox [6] found that women were more likely to hold risky assets if expecting an inheritance, when employed and when holding higher net worth. Men, on the other hand, were more likely to invest in risky assets of they were risk seekers, were divorced, were older or were college educated. In this study gender was not the critical determinant of investment choice. Dwyer et al. [5] find that women do exhibit less risk-taking in their most recent, largest and riskiest mutual fund investment decisions than men. However, they also find that the impact of gender on risk taking is significantly weakened when using investor knowledge of financial markets and investments as a control variable in the regression. So the gender difference is weak for men and women with the same amount of knowledge about investing.

There are a lot of studies done on gender differences in investor trading behavior. There however are not a lot of studies on combinations of gender, sentiment and investing. We have found one study which combines gender, optimism and investment. Felton et al. [8] examine the role of gender and optimism on the riskiness of investment choices of students. The data suggest that males make more risky investment choices than females, but also that this difference was primarily due to the riskier choices of optimistic males. Therefore their results suggest that the gender difference in investment strategies of men and women may be due to a specific subgroup of males (optimists). Our extension of the study of Kaplanski et al. also takes this optimist subgroup into account.

2.2 Gender differences in sentiment

We now know that many studies find that women are more risk-averse and less self confident in their abilities than men. In this study we are interested in whether this could be due to sentiments. Are women, for example, more prone to the impact of sentiment-creating factors? And are women more inclined to let their judgments be influenced by feelings?

Several studies show that women experience emotions more intensely than men. A study by George [10] using positron emission tomography (PET) scans shows that when male and female individuals are asked to recall their saddest memory, brain activity increases significantly more in female brain than in the male brain. Female subjects are also significantly more confident in expressing fear and sadness than male individuals according to Blier and Blier-Wilson [4]. However a study by Simon and Nath [22] suggests that men report positive feelings significantly more often than women. The emotions of fear and sadness in the other papers are also rectified here: women report negative feelings significantly more often than men. This might be the cause of optimism among men and risk intolerance of women. It implies that men might positively estimate their expected return and women might expect a higher than average risk when investing.

2.3 The influence of sentiment on investment

The study which is extended in this paper, by Kaplanski et al., researches the influence of sentiment on investment. They have found that sports results, general feelings and Seasonal Affective Disorder (SAD) significantly affect predictions

about the stock market. The return effect is most pronounced, but also risk expectations and investment plans are influenced. To generalize their sentiment results Kaplanski et al. replace the various sentiment-creating factors by an Investor Sentiment Index (ISI). This index was constructed from the first principal components of the correlation matrix of the sports results, general feeling and SAD variables, found to have a significant effect on expected return. They find that the higher the ISI (and thus the more positive the sentiment), the higher the return expectations and that a higher ISI tends to lower risk expectations, but this last result is not significant. They also find that more positive sentiment increases individuals' intentions to buy rather than to sell stocks. Loewenstein et al. [17] propose a risk-as-feelings hypothesis, which highlights the role of affect experienced at the moment of decision making. Using other psychological studies they show that emotional reactions to risky situations do not correspond with cognitive assessment of those risks. When this happens emotional reactions drive behavior. A study by Fisher and Statman [9] shows a negative relationship between sentiment and future stock returns, which is statistically significant for Wall Street strategists and individual investors.

Summarizing the studied literature we find that there are gender differences in investor trading behavior and gender differences in sentiment and that sentiment influences investment. Combining these findings, it could be that gender differences in trading behavior are explained by their differences in sentiment or that sentiment influences men into other investment decisions than women. These links will be studied further in this paper.

Chapter 3 Data and sample

Our dataset is the same as the one used in the study of Kaplanski et al. [15], since we want to extent this study. The data is collected from the LISS panel (Longitudinal Internet Studies for the Social sciences). The LISS panel is a randomly drawn sample of people living in the Netherlands. In order to focus on individuals who actually invest, 7428 members of the panel were asked whether they invested in stocks. Only the 929 individuals that did invest were approached with questionnaires for this study. These individuals were approached with questionnaires in three waves, in November 2010, February 2011 and June 2011. 808 individuals submitted a complete questionnaire in at least one of these waves. Next to the questionnaire answers we also have access to demographic characteristics of the participants, like age category, gender and education. In Table 3.1 the sample characteristics can be found. The table reports the sample size, number of completed questionnaires and number of people of which the gender is known, which leads to our total usable sample size. From the 808 individuals that filled in the questionnaire at least once, there are 510 males and 298 females. So there are enough subjects in both categories to be able to perform this gender study. Information about the demographic characteristics of the individuals can be found in 3.2. Here we report characteristics of the 770 people that have completed at least one questionnaire and have filled in all questions about their personal characteristics.

Table 3.1: This table reports the descriptive statistics of the sample population. The number of individuals approached, and the number that filled in the questionnaire in each round is shown. Of the 808 unique individuals that completed the questionnaires 510 are male and 298 are female. This table is based on a table from [15].

The sample population	Total	Complete	Incomplete	No response	Missing gender	Total
	approached ¹	questionnaire	questionnaire		information	usable data
Preliminary screening round:	7428	5316	0	2112		
Held stocks in October 2010		676				
Round 1 in November 2010	929	755	124	50	17	738
Round 2 in February 2011	918	714	108	96	6	708
Round 3 in June 2011	804	612	64	128	0	612
Total in all three rounds	2651	2081	296	274	23	2058 ²
¹ At each round, individuals w	ho did not hav	ve stocks were	not approachec	l again.		
² These questionnaires were f	filled by 808 in	idividuals.				

The subjects were approached in waves, with three times the same questionnaire. This questionnaire consisted of three parts. Subjects were asked questions about their past and future investment plans, about their expectations of return and volatility in two stock-market indexes and about the sentiment-creating factors. Table 3.3 reports the descriptive statistics of these variables. In panel A the expectations of the subjects with regard to the stock market and their past and future investment plans can be found. Panel B reports descriptive statistics of the sentiment-creating factors. In the past and future investment plan part subjects were asked about their past and planned investments, however, as can be seen in Table 3.3, in any given month most of the subjects did not trade at all. In the expectations about stock markets part subjects were asked questions about future volatility and return. Their expectations regarding the next month (short term) and next year (long term) volatility and return were asked for both the Amsterdam Exchange index (AEX) and the U.S. S&P500 index. In the sentiment-creating factors part subjects were asked about their contemporaneous general feeling, their perception of the weather over the last three days, whether they generally suffer from Season Affective Disorder (SAD, or Winter Blues), whether they prefer Spring or Autumn and about their favorite sports team's performance. Since the questionnaire was taken in three different moments of the year we can look at seasonal biases. An English version of the questionnaire questions (the questionnaire was taken in Dutch) can be found in Appendix A.1. The multiple choice questions included a wide range of options centered around a neutral option to avoid biases. Some questions also included a 'Don't know/no opinion'-option.

Table 3.2: This table reports the demographic characteristics of the sample population. The sample is composed of 770 individuals who have held stocks in their portfolio, submitted at least one complete questionnaire and of which we have complete personal data. This table is based on a table from [15].

				Demographic	<u>c charac</u>	teristics.				
Gender		Partner		Degree of urbani	ization	Education			Nett incon	e
Male	487	Yes	588	Very high	9 8	Primary School	32	z	o income	35
Female	283	No	182	High	216	High School (vocational)	134	φ	500,00	26
				Moderate	170	High School (general)	84	φ	1.000,00	95
				Low	163	Vocational	131	φ	1.500,00	116
				Not urban	123	College	251	φ	2.000,00	169
						University	138	φ	2.500,00	120
Occupation	13	Age		Number of chil	ldren			φ	3.000,00	102
Employed	350	15-24	20	living at hon	ne			φ	3.500,00	48
Self-employed	62	25-34	4	0	500			φ	4.000,00	21
Unemployed	63	35-44	100	1	65			φ	4.500,00	6
Student	19	45-54	170	2	136			φ	5.000,00	9
Retired	224	55-64	208	e	61			φ	7.500,00	15
Unfit for work	33	65+	228	4	5				€ 7500+	00
Volunteer	19			5	2					
				9	1					

Table 3.3: This table reports the descriptive statistics of the main variables (financial and emotional) used in this study. The total number of observations from all three rounds is 2058 questionnaires, complete with gender information, which were filled in by 808 individuals. This table is based on a table from [15].

2,73 2 1,68

2,39 2

2,42 2 1,59

2,47 2 1,51

1,43

(a)	Panel	А.	Subjective	expecta-
tion	is and t	radi	ng activity	

Total valid Not active Only sell

Total

23 8 8 6 6 60 674 734

92 48 39 24 32 32 235 235 1089 1324

men 122 64 52 52 19 61 61 318 318 318 318

Buy and sell Mustly sell Mostly buy

vomer

men

trading Past

Next year risk expectations AEX S&P 500

Next month risk expectations

The individuals' belief about future returns and risk

S&P 500

vomen

AEX

Choice

S&P 500

Next year return expectations vomen

AEX

Choice

S&P 500

vomen

men

Ä

Choice

Next month return expectations

men

vomen

÷ m 4

Only buy Choice

Future trading

Investment activity

_	_	_			_	_		_	_	
	<u>stic</u>	women	22	296	365	48	m	734		
	-pessimis	men	35	504	651	123	11	1324		
	Optimistic	Choice	Highly optimist	Optimist	Neither	Pessimist	Highly pessimist	Total		
	ormance	women	29	10	12	9	10	67	60	127
	am's perfo	men	106	8	5	18	78	299	210	509
	Favorite sports te	Choice	Good (important)	Good	Neither	Bad	Bad (important)	Total valid	Didn't play	Total
		women	11	9	00	249	120	136	204	734
	Intumn	men	4	12	15	452	262	299	280	1324
nt-creating variables	Spring-a	Choice	Autumn preference			Neither			Spring preference	Total
Sentime		women	392	270	ß	19	734			
	er blues	men	834	389	71	30	1324			
	Wint	Choice	Do not suffer	Mildly suffer	Suffer	Strongly suffer	Total			
	jer	women	42	199	331	137	25	734		
	ent weath	men	6 5	379	618	243	19	1324		
	Curr	Choice	Very good	Good	Normal	Bad	Very bad	Total		
	ыл	women	23	359	308	8	s	734		
	intly feeling	men	8	665	558	09	2	1324		
	Curre	hoice	reat	poo	ormal	ad	ery bad	otal		

(b) Panel В. Sentimentcreating factors

2,61 3 0,67

2,68 3

5,09

5 ⁴,09

5,30 R

5,25 5 24

1,59 0.74

1,47 1 0.70

2,87 3 0,90

2,83 3 0.83

2,51 2 0.68

2,49 2 0,64

Median choice Mean choice

dev.

Std.

Valid choices statistics

H

8

0.71

2,74 3 0,88 153 ³¹ 2 367 367 734 2,79 3 0,93 79 265 372 372 196 16 928 396 1324 men 2,90 3 0,81 17 126 222 105 4 474 260 734 2,98 3 0,91 men 63 566 2666 431 328 328 328 20 1108 1108 1108 1324 2,78 3 0,82 22 184 58 5 377 357 734 8 938 386 1324 2,74 3 0,83 men 60 288 436 146 2,85 3 0,74 19 268 268 3 468 266 734 1 2,88 3 0,81 51 261 560 207 207 15 15 1094 1324 1324 men <u>s</u> ewhat riskier newhat less Auch less risky werage risk **Auch riskier** otal valid Don't know otal 4,89 5 井 65 216 ß 6 0 356 378 734 0,66 5,17 5 men 8 22 123 487 487 215 49 49 404 404 1324 0,95 5,05 0,78 312 9 \$ 28 461 273 734 00 18 1128 196 1324 5,31 5 0,89 9 8 612 317 8 ŝ (-15% or less) (-15% to -10% (10% to 15%) (15% or more -10% to -5%) (5% to 10%) -5% to 0%) (0% to 5%) **Fotal valid** Don't know otal 161 64 17 362 372 734 3,81 4 1,05 9 8 2 men 15 161 161 161 206 62 925 399 3399 4,05 4 0,99 3,91 4 40,1 32 61 158 531 531 252 252 71 71 1105 219 1324 Valid choices statistics 4,02 1,05 4 Median choice 5 (4% or more) Mean choice 1 (-4% or less) -4% to -2%) -2% to 0%) f (0% to 2%) 5 (2% to 4%) Total valid Don't know Std. Dev.

Total

Chapter 4 Hypotheses

As in the methods chapter, this chapter is also split up into a descriptive and an econometric analysis part. In the descriptive analysis part hypotheses are made about gender differences in all variables. In the econometric analysis part hypotheses are made about how male investors are driven differently by sentiments than female investors.

4.1 Descriptive analysis

We employ sixteen variables to study gender differences in risk and return expectations and sentiment-creating variables. The first three groups of variables represents the subjective expectations and trading activity. The first group explores the return expectations, the second group the risk expectations and the third group the trading activity. The following groups represent the sentimentcreating variables: general feeling, sport team's performance, weather, SAD and optimism.

4.1.1 Return expectation hypothesis

In section 2.1 many studies are stated which have found that women are more risk-averse and are less self-confident in their investment decisions. On the basis of these findings we think that women are less confident about their returns and will expect indexes to have lower expected returns in the future. We think this effect will be larger for less known indexes and for larger time spans.

H1: Men expect higher returns than women, especially for less known indexes and larger time spans.

4.1.2 Risk expectation hypothesis

As for the above hypothesis, we use the findings from our literature study. Women are found to be more risk-averse, and we think that they will therefore expect higher risks on the indexes in the future than men. This effect will be larger for less known indexes and for larger time spans.

H2: Men expect a lower volatility than women, especially for less known indexes and larger time spans.

4.1.3 Trading activity hypothesis

Due the more risk-averse attitude and the less self-confidence in investment decisions of women, we think that women will trade less than men. Barber and Odean [2] found in their study that women have a lower trade rate. We think that men will tend more to buying new stocks and women will tend to selling more stocks they own, because men are more risk-seeking than men.

H3: Men trade more, and are more directed towards buying new stock instead of selling stock they own.

4.1.4 General sentiment effect hypothesis

In section 2.2 we found that other literature suggests that women experience their negative emotions more than men and that men report their positive feelings more often. We therefore think that men will report their general feeling as better than women.

H4: The average man will report a better general feeling than the average woman.

4.1.5 Sports sentiment effect hypothesis

Sargent et al. [21] find that male and female sports spectators enjoy different types of sports. Males mostly like watching sports with athletic confrontations that emphasize combative coordination like football, ice hockey and soccer. Females like watching sports in which stylish movements and gracefulness are shown, like gymnastics, skiing and figure skating. As the 'male' sports are shown on television more often, and there are more of them, we think that males will more often have a favorite athlete or sports team than females. We think that the distribution of good and bad performances, as judged by the individuals, over the last three days of favorite sports team's will be the same for men and women. This because winning and losing is just a matter of chance and winning will be judged as positive by the individuals, whereas losing will always be seen as a bad performance. H5: Men have a favorite sports team (person) more often than women. The distribution between good and bad performances (as judged by the individuals) will be equal for men and women.

4.1.6 Weather sentiment effect hypothesis

A study on thermal comfort by Karjalainen [16] shows significant gender differences in comfort and temperature preference. Men are more satisfied with room temperatures then women, prefer a lower room temperature than women and feel both uncomfortably warm and uncomfortably cold less than women. This shows that women are more critical of their thermal environments, which is why we think that men will have a more positive weather perception than women.

H6: Men have a more positive weather perception than women.

4.1.7 SAD sentiment effect hypothesis

In a study on Seasonal Affective Disorder in the Netherlands by Mersch et al. [18] it was that shown that SAD is found more often in young women than in men of all ages and older women. We therefore think that in our study women will report to suffer more from SAD.

H7: Men suffer less from SAD than women.

4.2 Econometric analysis

In all of the above hypotheses we studied the gender difference in each of the variables separately. Even when the differences in each variable are small it is possible that the effect in gender difference of all factors together is substantial. To investigate this we create the Individual Sentiment Index (ISI) for men and women separately, and study its influence on expected return, volatility and trading behavior. The ISI employs all significant sentiment-creating factors to construct the single sentiment index.

4.2.1 Overall sentiment effect hypothesis

Now we can test whether the overall sentiment of men has a different influence on their expected returns than women's overall sentiment. In on our literature study, we found that sentiment influences investment and also that women are affected differently by sentiment. This is why we expect women's overall sentiment to have a different effect on investment expectations than men's. According to the study by Simon and Nath [22] men report positive feelings more often and women report negative feelings more often, but in total women report their feelings more often. We therefore think that the ISI of women will have a greater influence on their expected return and volatility.

H8: The ISI of men has a smaller influence on their expected return and volatility than that of women.

4.2.2 Overall sentiment effect on trading plans hypothesis

We also analyze the past and future trading plans and their relation to sentiment. Since we found in our literature study that women are less self confident about their trading decisions, we think that men would let their own sentiment influence their trading plans faster. That is why we expect that the ISI of men has a larger influence on their trading behavior than that of women.

H9: The ISI of men has a larger influence on their future investment plans than that of women.

Chapter 5 Methods

In this thesis two types of analysis are done to research the gender differences. Descriptive analysis is done in order to examine the gender differences in all variables (financial and emotional) separately. Econometric analysis is done to be able to see if there are gender differences in sentiment driven investing.

5.1 Descriptive analysis

Gender differences are examined for sixteen different variables. These variables include two variables for past and future trading, four variables for return expectations on stock markets, four variables for volatility expectations on stock markets and six sentiment-creating variables. Tests are done on all three waves of questionnaires separately and on the total set.

We wanted to examine whether the groups of males and females responded to the questions in the same way. For comparing the means of the two groups it would be best to use a parametric test. Parametric methods make more assumptions than non-parametric methods, but if those extra assumptions are fulfilled, parametric methods produce more accurate and precise estimates.

The parametric test used here is the independent samples t-test. This test compares the means of two unrelated groups on the same dependent variable. There are six assumptions underlying this t-test:

- 1. The dependent variable should be measured on a continuous scale (interval or ratio level).
- 2. The independent variable should consist of two categorical, independent groups.
- 3. There should be independence of observations. This means that there should

be no relationship between the groups and between the observations in each group.

- 4. There should be no significant outliers.
- 5. The dependent variable should be approximately normally distributed for each group of the independent variable.
- 6. There needs to be homogeneity of variances.

Regarding the first assumption, our variables are all measured on an ordinal scale, but since there are a lot of categories (for some variables up to 9 categories) we treat our data as 'approximately interval scale.' The robustness of the t-test when using ordinal scaled data is researched in [12], were even for small samples the test turned out to perform well. The second and third assumption are in agreement with our data. We have two independent, categorical groups: men and women. There is no relationship between these groups or between the observations in each group. The fourth assumption is fulfilled because of our ordinal scaled data. This does not allow any significant outliers. The fifth assumption is part of an ongoing debate in the social sciences. The independent t-test requires only approximately normally distributed data because it is quite robust, meaning that the statistic has been shown to yield useful results even when the assumption is violated. And, since our sample size is quite large, even with an unknown population distribution, we know that the sampling distribution of the mean will be approximately normally distributed, as proven by the central limit theorem [23]. Regarding the last assumption, when there is homogeneity of variances this specific t-test can be used, but in cases of unequal variances between the two groups a similar t-test, called Welch's t-test can be used. In this t-test the two population variances are estimated separately.

To test if the assumptions of homogeneity of variances and normal distribution are fulfilled we use other statistic tests. For homogeneity of variances the test used is called Levene's test, in which we specifically look at the mean for this study, and if the variances turn out to be unequal we use Welch's t-test. For testing normality we use the Shapiro-Wilk test because it is the most powerful normality test [20]. The normality is tested for both groups and if in one of the two groups or both the data is not normally distributed we still perform the t-test but also some other tests. We compare the t-test results with the other tests to check the robustness of the t-test. The other tests used here, only in case of non-normality, are two nonparametric tests, which therefore do not need the assumption of normality to give valid results. We use the Kolmogorov-Smirnov test and the Mann-Whitney U test. The Kolmogorov-Smirnov test is a common method for comparing two samples, as it is sensitive to differences in location, but also shape of the distribution functions of the two samples. The Mann-Whitney U test tests whether the two medians of the two groups are equal. Because the Kolmogorov-Smirnov test tests for more deviations from the null hypothesis of identical distributions than does the Mann-Whitney U test, it has less power to detect a shift in the median, but it has more power than the Mann-Whitney U test in detecting changes in the shape of the distributions.

5.2 Econometric analysis

Gender differences in sentiment driven investing are examined by creating an Investor Sentiment Index (ISI), for men and women separately, and testing its influence on expected return. The ISI is a comprehensive measure for sentiment. It is constructed, for men and women separately, as follows:

- 1. First we regress expected return on the sentiment-creating variables to see which variables have a significant influence.
- 2. Take those variables that have a significant influence on the expected return and create a correlation matrix with those variables.
- 3. The ISI now consists of the first principle components of the correlation matrix for these variables.

To examine the effect of the separate sentiment-creating variables on the return expectations of individuals, we run the following ordered probit regression as based on the regression from Kaplanski et al. [15]

$$E(R_{t+1,i}) = \beta_0 + \sum_j \beta_j SENT_{j,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i, \qquad (5.1)$$

where $E(R_{t+1,i})$ is the individuals expected return on the AEX index in the next month, $SENT_{j,i}$ are the sentiment-creating variables and $CONTROLS_{k,i}$ are the control variables. We run this regression for men and women separately. An ordered probit regression is used because the dependent variable is ordinal in nature. In this regression actual values taken on by the dependent variable are irrelevant, but larger values are assumed to correspond to higher outcomes.

The dependent variable in equation (5.1) is the individuals expected return on the AEX index in the coming month, ranging from very low to very high expectations (1-6). If individuals selected option 7 (don't know/ no opinion), they were excluded from the regression to avoid biases.

The sentiment-creating variables implemented here are general feeling, the perceived weather, sport results and SAD. Since we are interested in the influence of SAD as a function of the year, this variable is divided into three variables: SAD reported in the autumn (November 2010), winter (February 2011) and spring-summer wave (June 2011). The separate SAD variables are here regarded as a characteristic of the individual (autumn type, winter type and spring-summer type).

The control variables can be divided into three groups. First, we have the day-of-the-week dummy variables, to control for any effect occurring across the days of the week. Second, we have the individual control variables, which control for certain characteristics of individuals that may significantly affect their expectations about the stock market. The variables age, nett monthly income, urban character of place of residence, partner and children control for biases related to socioeconomic factors. Here partner and children are dummy variables which are 1 if individuals have a partner or children, respectively. The variable education controls, at least partially, for individual financial expertise. To control for individuals that are always optimistic, as to not get the same problem as in the study by Felton et al. [8] described in the related literature section, the pessimistic-optimistic variable keeps in mind individuals general pessimism-optimism tendencies. Finally, to control for exogenous events bias affecting the expectations of all individuals in one wave, we include a fixed effect variable across time. This is needed because we have panel data, and have three observations for each individual in our data. Here we added two dummy variables for the questionnaire waves, allowing for a different threshold at each wave.

Lastly, we accounted for heteroskedasticity due to the possible difference between the variance of error terms across the cluster of observations from individual subjects. A cluster of observations (we have three waves, and therefore three observations for each individual) can be assumed as independent across each other and homoskedastic within the cluster. Here we used cluster robust standard errors, which relaxes the assumptions that error terms are independent and identically distributed.

When having run the ordered probit regression and having found the sentimentcreating variables that have a significant influence on expected return, we can now use principal component analysis to construct the ISI variables. Principal components analysis is a mathematical procedure that reduces a large set of variables to a small set that still contains most of the information in the large set. The principal component analysis is performed on the correlation matrix of the significant variables. The leading eigenvectors from the eigen decomposition of the correlation matrix describe a series of uncorrelated linear combinations of the variables that contain most of the variance [1]. The ISI variables, for men and women separately, are constructed from the first principal components, which account for as much of the variability in the data as possible. To examine whether general sentiment influences men and women differently in their return and volatility expectations and trading plans, we again run ordered probit regressions. The three different models tested here can be seen in equation (5.2), (5.3) and (5.4).

$$E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i, \qquad (5.2)$$

$$E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i, \quad (5.3)$$

$$E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \beta_3 ISI * GENDER_{3,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i,$$
(5.4)

Here $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable and $ISI * GENDER_{3,i}$ is a variable describing the interaction between the ISI and gender. If we find an interaction effect, this means that the ISI has a different influence on the dependent variable, depending on the gender of the individual. Mathematically this can be seen as the partial derivative of the dependent variable to the ISI: $\frac{\partial E(R)}{\partial ISI} = \beta_1 + \beta_3 GENDER$, which is still dependent on gender. In regression 5.4 the coefficients for ISI and gender have a different meaning than in the other two regressions. Here the coefficient for ISI only means something when gender is zero, since gender can be 1 (for males) or 2 (for females) it has no meaning. The coefficient for gender only means something when the ISI is zero, which is not possible since all coefficients in the ISI are positive and the variables in the ISI can only have positive values. Therefore the coefficients for the ISI and gender have no meaning in the third regression. We run all of these regressions with the expected return and volatility on the AEX and S&P500 index in the coming month and year and the past and future trading plans as dependent variables.

Chapter 6 Results and discussion

In this chapter the results of our analyses will be presented. The structure of this chapter will be the same as the hypotheses chapter, so that it is clear for all our hypothesis if they were true or not. Descriptive analysis results will show us the gender differences in the variables (financial and emotional) separately. Econometric analysis will tell us if there are gender differences in sentiment driven investing.

6.1 Descriptive analysis

We employed sixteen variables to study gender differences in risk and return expectations and sentiment-creating variables. Summarized results from all tests done on these sixteen variables can be found in table ??. The full results for all tests on the data from the questionnaires in November, February, June and on the total dataset can be found in Appendices B, C, D and E, respectively. For all sentiment-creating variables the multiple choice answers were sorted from good mood to bad mood. This means that the lower the assigned score by the individual, the better the mood. The hypotheses regarding these variable groups are reported again below and we will see if our results support these hypotheses.

6.1.1 Return expectation hypothesis

In table 6.1 we find the results of the statistical tests for expected return differences between men and women. We can see that the next month return expectations on the AEX index do not differ between men and women for the questionnaires in November and June. In February however there is a difference in expectations according to the T-test, the Kolmogorov-Smirnov test and the Mann-Whitney U test, which means that the means, the overall distribution and the medians here differ with gender. From the T-test we can see than the mean return expectation of men is higher than that of women. Looking at the total dataset for next month return expectations on the AEX index we see that the three comparison tests do not give the same results. According to the T-test there is a difference in return expectations, it shows that men have a higher mean return expectation than women. The Mann-Whitney U test finds a different median return expectation for men and women. However, the Kolmogorov-Smirnov test finds no difference in the population distributions of men and women. This could be because this test tests for more deviations from the null hypotheses of equal groups than the T-test and the Mann-Whitney U test, and therefore has less power to detect a shift in the mean or median than the T-test and Mann-Whitney U test, respectively. We conclude that there is a difference in next month return expectations for the AEX index. Men expect higher returns than women.

When analyzing the results for the next year return expectations on the AEX index, we see that almost all results show a difference between men and women. Only, the Kolmogorov-Smirnov test and Mann-Whitney U test for return expectations in June show no difference in gender. Here it could be the case that the T-test result is not correct because we have used two groups with not approximately normally distributed return expectations and we therefore did not fulfill the assumptions of the T-test. For the questionnaires in November and February, and for the total dataset the return expectations were different for men and women according to all tests. The T-test results tell us that the mean return expectations of men where higher than those of women. We therefore conclude that there is a difference in next year return expectations for the AEX index. This difference is more clear than for the next month return expectations, and men expect higher returns than women.

The results for the next month return expectations for the S&P500 index show different results for the different questionnaire months. In November there seems to be no difference in return expectations for men and women. In February the T-test and Mann-Whitney U test, show a difference in the mean and median return expectations, respectively. However, the Kolmogorov-Smirnov test finds no difference. This can again be due to the fact that this test has less power to detect a shift in the mean or median than the other tests. The results from the June questionnaire are normally distributed for men and women so the T-test is very reliable and we do not need the results from the other tests. The T-test shows a difference in return expectations, men have a higher mean return expectation than women. When looking at the total dataset for the next month return expectations on the S&P500 index we find that there is a difference in return expectations. Men expect higher returns than women.

The results for the next year return expectations on the S&P500 index show

a difference in return expectations between men and women in all months, and in the total dataset. Only the Kolmogorov-Smirnov test finds no difference in the dataset in November and June, but this will again be due to the less power in detecting shifts in the mean and median by this test. We conclude that there is a difference in next year return expectations on the S&P500 index between men and women. This difference is more clear than for the next month expectations for this index, and men expect higher returns than women.

Our hypothesis on gender differences in return expectations was as follows: H1: Men expect higher returns than women, especially for less known indexes and larger time spans. We have found that men indeed expect higher returns than women, especially for larger time spans. We, however, can not conclude from our tests that the difference in expectations by men and women is even larger for less known indexes.

		z	ovember		February		June		Total
	Men/women in the sample	476/2	62 (65% men)	449/2	259 (63% men)	399/2	213 (65% men)	1324/	734 (64% men)
ble	Test type	P-value	Conclusion	P-value	Conclusion	P-value	Conclusion	P-value	Conclusion
ionth	Shapiro-Wilk Test on men	0,00011	not normal	0,00000	not normal	0,00037	not normal	0,00000	not normal
ectations	Shapiro-Wilk Test on women	0,00071	not normal	0,00008	not normal	0,14870	normal	0,00000	not normal
×	Levene's test	0,82960771	homoscedasticity	0,18539299	homoscedasticity	0,34764279	homoscedasticity	0,97970061	homoscedasticity
	T-test	0,1702 (T>t)	no difference	0,0003 (T>t)	difference	0,2376 (T <t)< td=""><td>no difference</td><td>0,0316 (T>t)</td><td>difference</td></t)<>	no difference	0,0316 (T>t)	difference
	Kolmogorov-Smirnov test	1	no difference	0,026	difference	0,994	no difference	0,171	no difference
	Mann-Whitney U Test	0,3854	no difference	0,0008	difference	0,5660	no difference	0,0418	difference
	Men/women in the test	410/1	68 (71% men)	372/1	L57 (70% men)	323/1	128 (72% men)	1105/	453 (71% men)
year	Shapiro-Wilk Test on men	0,00000	not normal	0,00067	not normal	0,00003	not normal	0,00000	not normal
pectations	Shapiro-Wilk Test on women	0,00173	not normal	0,00003	not normal	0,00001	not normal	0,00000	not normal
EX	Levene's test	0,00000054	heteroscedasticity	0,0030662	heteroscedasticity	0,84481569	homoscedasticity	0,00000000	heteroscedasticity
	T-test	0,0022 (T>t)	difference	0,0000 (T>t)	difference	0,0427 (T>t)	difference	0,0000 (T>t)	difference
	Kolmogorov-Smirnov test	0,007	difference	0,000	difference	0,406	no difference	0,000	difference
	Mann-Whitney U Test	0,0021	difference	0,0000	difference	0,0613	no difference	0,0000	difference
	Men/women in the test	424/1	74 (71% men)	377/1	L58 (70% men)	327/1	(72% men)	1128/	461 (71% men)
nonth	Shapiro-Wilk Test on men	0,00127	not normal	0,0007	not normal	0,17921	normal	0,00008	not normal
oectations	Shapiro-Wilk Test on women	0,20017	normal	0,06854	normal	0,99171	normal	0,13241	normal
200	Levene's test	0,39433140	homoscedasticity	0,20581712	homoscedasticity	0,07805149	homoscedasticity*	0,0165738	heteroscedasticity*
	T-test	0,0802 (T>t)	no difference	0,0005 (T>t)	difference	0,0198 (T>t)	difference	0,0001 (T>t)	difference
	Kolmogorov-Smirnov test	0,0717	no difference	0,086	no difference	×	×	0,012	difference
	Mann-Whitney U Test	0,1078	no difference	0,0026	difference	×	×	0,0002	difference
	Men/women in the test	350/1	36 (72% men)	30	2/121 (71%)	273/1	L05 (72% men)	925/3	362 (72% men)
year	Shapiro-Wilk Test on men	0,00002	not normal	0,10282	normal	0,00579	not normal	0,00000	not normal
pectations	Shapiro-Wilk Test on women	0,01136	not normal	0,00002	not normal	0,06772	normal	0,00000	not normal
200	Levene's test	0,00018790	homoscedasticity	0,00012938	heteroscedasticity	0,51754901	homoscedasticity	0,00068989	heteroscedasticity
	T-test	0,0154 (T>t)	difference	0,0000 (T>t)	difference	0,0068 (T>t)	difference	0,0000 (T>t)	difference
	Kolmogorov-Smirnov test	0,134	no difference	0,001	difference	0,273	no difference	0,000	difference
	Mann-Whitney U Test	0,0311	difference	0,0000	difference	0,0085	difference	0,0000	difference
	Men/women in the test	351/1	36 (72% men)	300/1	(119 (72% men)		269/101 (73% men)	920/3	356 (72% men)

Figure 6.1: Representation of the output of the statistical tests done on the expected return on the AEX and S&P500 index for next month and next year. In this table the P-value and conclusion for each test in each month and for the total dataset is given. If the data was normally distributed for men and women, only the t-test was performed and 'x' is filled in for the other tests. *Here we found homoscedasticity (heteroscedasticity) in the mean, but there is heteroscedasticity (homoscedasticity) in the median.

6.1.2 Risk expectation hypothesis

In tabel 6.2 the summarized results on the risk expectations can be found. For the next month risk expectations on the AEX index, we find that in November there is a difference: men expect a lower risk then women. In February we find no difference between the risk expectations of men and women. In June we again find a difference, but here we find that women expect a lower mean risk than men. The results on the total dataset show no difference in risk expectations between men and women. This is probably due to the fact that the differences in risk expectations in November and June compensate each other. We conclude that whether there is a difference in next month risk expectations on the AEX index is dependent on the month of the year.

The results for the next year risk expectations on the AEX index show a difference between men and women in every month of the questionnaire and in the total dataset. Only the Mann-Whitney U test shows no difference between the risk expectations of men and women in the total dataset. This can be due to the fact that the medians are the same, whilst the means and the distribution differ for men and women. A strange finding is that in November, February and in the total dataset men expect a lower risk then women, but in June women expect a lower risk than men. This could be due to the influence of SAD, which we hypothesized to have a stronger influence on women. Here we can not draw a conclusion because we do find a significant difference in the risk expectations of men and women in each month, but it is unclear whether men or women predict a higher risk.

When analyzing the results for the next month risk expectations on the S&P500 index, we find no difference between men and women for November, February and the total dataset. We do find a difference in June, here women expect a lower risk than men, but this difference is so small that it was not detected by the Kolmogorov-Smirnov test. We conclude that there is no gender difference in next month risk expectations on the S&P500 index.

The results for the next year risk expectations on the S&P500 index show no difference between men and women in November. The results from the February questionnaire differ between the tests. The T-test shows a difference but the Kolmogorov-Smirnov test and the Mann-Whitney U test do not. Here it could again be the case that the T-test result is not correct because we have used two groups with not approximately normally distributed risk expectations and we therefore did not fulfill the assumptions of the T-test. In June we find a difference in risk expectations, women expect a lower risk than men. The results from the total dataset show no difference between men and women in risk expectations on the S&P500 index.

When comparing the risk expectation results for different forecast periods and different indexes, we find that in June there is always a difference in risk expectations between men and women. In this month women expect a lower risk than men on both indexes and for next month and next year predictions. In the other months there is no difference, or men expect lower risks.

Our hypothesis on gender differences in risk expectations was as follows: H2: Men expect a lower volatility than women, especially for less known indexes and larger time spans. We have not found that men expect a lower volatility than women. For the AEX index our results are unclear, but for the S&P500 index we have found that there is no difference in the risk expectations of men and women.

		z	ovember		February		June		Total
	Men/women in the sample	476/2	62 (65% men)	449/2	.59 (63% men)	399/2	213 (65% men)	1324/	734 (64% men)
Variable	Test type	P-value	Conclusion	P-value	Conclusion	P-value	Conclusion	P-value	Conclusion
Next month	Shapiro-Wilk Test on men	1,00000	normal	0,80771	normal	0,47622	normal	0,32084	normal
risk expectations	Shapiro-Wilk Test on women	0,04292	not normal	0,68396	normal	0,82014	normal	0,18113	normal
AEX	Levene's test	0,94555602	homoscedasticity	0,48197008	homoscedasticity	0,00165396	heteroscedasticity	0,05569931	homoscedasticity
	T-test	0,0075 (T>t)	difference	0,0812 (T>t)	no difference	0,0027 (T <t)< td=""><td>difference</td><td>0,2450 (T>t)</td><td>no difference</td></t)<>	difference	0,2450 (T>t)	no difference
	Kolmogorov-Smirnov test	0,413	no difference	×	×	×	x	×	×
	Mann-Whitney U Test	0,0323	difference	×	×	×	×	×	×
	Men/ women in the test	402/1	82 (69% men)	370/1	.59 (70% men)	322/1	L27 (72% men)	1094/2	168 (70% men)
Next year	Shapiro-Wilk Test on men	0,16887	normal	0,00513	not normal	0,99998	normal	0,00035	not normal
risk expectations	Shapiro-Wilk Test on women	0,08762	normal	0,79878	normal	0,49057	normal	0,20135	normal
AEX	Levene's test	0,18686630	homoscedasticity	0,02207726	heteroscedasticity	0,07557156	homoscedasticity*	0,01186281	heteroscedasticity
	T-test	0,0179 (T>t)	difference	0,0041 (T>t)	difference	0,0398 (T <t)< td=""><td>difference</td><td>0,0471 (T>t)</td><td>difference</td></t)<>	difference	0,0471 (T>t)	difference
	Kolmogorov-Smirnov test	×	×	0,017	difference	×	x	0,015	difference
	Mann-Whitney U Test	×	×	0,0039	difference	×	x	0,0554	no difference
	Men/women in the test	409/1	80 (69% men)	372/1	.64 (69% men)	327/1	l30 (72% men)	1108/	474 (70% men)
Next month	Shapiro-Wilk Test on men	0,13636	normal	0,78603	normal	0,04489	not normal	0,09254	normal
risk expectations	Shapiro-Wilk Test on women	0,60283	normal	0,55000	normal	0,76128	normal	0,63986	normal
S&P 500	Levene's test	0,55556875	homoscedasticity	0,05897184	homoscedasticity	0,09648992	homoscedasticity	0,44384527	homoscedasticity
	T-test	0,4439 (T <t)< td=""><td>no difference</td><td>0,2514 (T>t)</td><td>no difference</td><td>0,0197 (T<t)< td=""><td>difference</td><td>0,2170 (T<t)< td=""><td>no difference</td></t)<></td></t)<></td></t)<>	no difference	0,2514 (T>t)	no difference	0,0197 (T <t)< td=""><td>difference</td><td>0,2170 (T<t)< td=""><td>no difference</td></t)<></td></t)<>	difference	0,2170 (T <t)< td=""><td>no difference</td></t)<>	no difference
	Kolmogorov-Smirnov test	×	×	×	×	0,345	no difference	×	×
	Mann-Whitney U Test	×	×	×	×	0,0453	difference	×	×
	Men/women in the test	350/1	41 (71% men)	313/1	.29 (71% men)	275/1	L07 (72% men)	938/3	77 (71% men)
Next year	Shapiro-Wilk Test on men	0,02432	not normal	0,66761	normal	0,08355	normal	0,04525	not normal
risk expectations	Shapiro-Wilk Test on women	0,99791	normal	0,04812	not normal	0,9970	normal	0,01004	not normal
S&P 500	Levene's test	0,36179654	homoscedasticity	0,50931098	homoscedasticity	0,53361673	homoscedasticity	0,46816899	homoscedasticity
	T-test	0,1396 (T>t)	no difference	0,0369 (T>t)	difference	0,0919 (T <t)< td=""><td>difference</td><td>0,1813 (T>t)</td><td>no difference</td></t)<>	difference	0,1813 (T>t)	no difference
	Kolmogorov-Smirnov test	0,718	no difference	0,413	no difference	×	x	066'0	no difference
	Mann-Whitney U Test	0,3481	no difference	0,0796	no difference	×	x	0,4261	no difference
	Men/women in the test	352/1	36 (72% men)	309/1	.29 (71% men)	267/1	102 (72% men)	928/3	67 (72% men)

Figure 6.2: Representation of the output of the statistical tests done on the expected volatility on the AEX and S&P500 index for next month and next year. In this table the P-value and conclusion for each test in each month and for the total dataset is given. If the data was normally distributed for men and women, only the t-test was performed and 'x' is filled in for the other tests. *Here we found homoscedasticity (heteroscedasticity) in the mean, but there is heteroscedasticity (homoscedasticity) in the median.

6.1.3 Trading activity hypothesis

In tabel 6.3 the statistical test results for gender differences in trading activity are shown. What stands out in the results on trading activity is that only few individuals have traded in the past and are planning to trade in the future. About a quarter of the people in our study are actively trading. We can also see that men trade more than women because in the total dataset 64% of the individuals are male, but the of the individuals that traded in the past 76% is male and of the individuals that plan to trade in the future 80% is male.

The results for trading in the past show that there is no difference in the buying-selling behavior of men and women. This means that men and women are not differently directed to buying more or selling more stock. We have found this result for each month and for the total dataset. The results for trading plans in the future show similar results. There is no difference in the intended buying-selling behavior of men and women.

Our hypothesis on gender differences in trading activity was as follows: H3: Men trade more, and are more directed towards buying new stock instead of selling stock they own. We have found that men trade more than women, but men are not more directed towards buying new stock instead of selling stock than women. Men and women are not differently directed toward buying more or selling more stock.

		-		-		-		-	
		z	lovember		February		June		Total
	Men/women in the sample	476/2	.62 (65% men)	449/2	.59 (63% men)	399/2	213 (65% men)	1324/7	734 (64% men)
Variable	Test type	P-value	Conclusion	P-value	Conclusion	P-value	Conclusion	P-value	Conclusion
Past trading	Shapiro-Wilk Test on men	0,00879	not normal	0,0154	not normal	0,00631	not normal	0,00002	not normal
	Shapiro-Wilk Test on women	0,01027	not normal	0,36615	normal	0,14115	normal	0,01744	not normal
	Levene's test	0,96848752	homoscedasticity	0,19354453	homoscedasticity	0,26746488	homoscedasticity	0,28258284	homoscedasticity
	T-test	0,1136 (T>t)	no difference	0,3268 (T <t)< td=""><td>no difference</td><td>0,4291 (T<t)< td=""><td>no difference</td><td>0,3750 (T>t)</td><td>no difference</td></t)<></td></t)<>	no difference	0,4291 (T <t)< td=""><td>no difference</td><td>0,3750 (T>t)</td><td>no difference</td></t)<>	no difference	0,3750 (T>t)	no difference
	Kolmogorov-Smirnov test	0,578	no difference	0,949	no difference	0,991	no difference	0,751	no difference
	Mann-Whitney U Test	0,1899	no difference	0,7683	no difference	0,9672	no difference	0,5260	no difference
	Men/women in the test	106/2	11 (72% men)	120/	38 (76% men)	92/1	L9 (83% men)	318/9	38 (76% men)
Future trading	Shapiro-Wilk Test on men	0,18287	normal	0,00107	not normal	0,05686	normal	0,00067	not normal
	Shapiro-Wilk Test on women	0,54365	normal	0,60729	normal	0,99924	normal	0,38672	normal
	Levene's test	0,22371084	homoscedasticity	0,00848455	heteroscedasticity	0,50498185	homoscedasticity	0,00579231	heteroscedasticity
	T-test	0,3694 (T <t)< td=""><td>no difference</td><td>0,1160 (T<t)< td=""><td>no difference</td><td>0,1809 (T<t)< td=""><td>no difference</td><td>0,0729 (T<t)< td=""><td>no difference</td></t)<></td></t)<></td></t)<></td></t)<>	no difference	0,1160 (T <t)< td=""><td>no difference</td><td>0,1809 (T<t)< td=""><td>no difference</td><td>0,0729 (T<t)< td=""><td>no difference</td></t)<></td></t)<></td></t)<>	no difference	0,1809 (T <t)< td=""><td>no difference</td><td>0,0729 (T<t)< td=""><td>no difference</td></t)<></td></t)<>	no difference	0,0729 (T <t)< td=""><td>no difference</td></t)<>	no difference
	Kolmogorov-Smirnov test	×	×	0,413	no difference	×	×	0,352	no difference
	Mann-Whitney U Test	×	×	0,3168	no difference	×	×	0,2155	no difference
	Men/women in the test	78/2	.8 (74% men)	90/1	.8 (83% men)	67/1	l4 (83% men)	235/6	50 (80% men)
Spring-autumn	Shapiro-Wilk Test on men	0,00000	not normal	0,00018	not normal	0,00001	not normal	0'00000	not normal
preference	Shapiro-Wilk Test on women	0,00002	not normal	0,00000	not normal	0,0000	not normal	0,00000	not normal
	Levene's test	0,00455295	heteroscedasticity	0,01518094	heteroscedasticity*	0,0039906	heteroscedasticity	0,00001254	heteroscedasticity
	T-test	0,1376 (T <t)< td=""><td>no difference</td><td>0,2355 (T>t)</td><td>no difference</td><td>0,1728 (T<t)< td=""><td>no difference</td><td>0,2065 (T<t)< td=""><td>no difference</td></t)<></td></t)<></td></t)<>	no difference	0,2355 (T>t)	no difference	0,1728 (T <t)< td=""><td>no difference</td><td>0,2065 (T<t)< td=""><td>no difference</td></t)<></td></t)<>	no difference	0,2065 (T <t)< td=""><td>no difference</td></t)<>	no difference
	Kolmogorov-Smirnov test	0,202	no difference	0,746	no difference	0,232	no difference	0,027	difference
	Mann-Whitney U Test	0,1564	no difference	0,6001	no difference	0,2524	no difference	0,2219	no difference
	Men/women in the test	everyo	one (65% men)	every	one (63% men)	everyo	one (65% men)	everyo	one (64% men)
Optimistic-pessimistic	Shapiro-Wilk Test on men	0,04126	not normal	0,09822	normal	0,18971	normal	0,00938	not normal
	Shapiro-Wilk Test on women	0,94464	normal	0,24505	normal	0,42944	normal	0,01490	not normal
	Levene's test	0,67278206	homoscedasticity	0,9431146	homoscedasticity	0,27108418	homoscedasticity	0,38491962	homoscedasticity
	T-test	0,0493 (T>t)	difference	0,1304 (T>t)	no difference	0,2381 (T>t)	no difference	0,0207 (T>t)	difference
	Kolmogorov-Smirnov test	0,884	no difference	×	×	×	×	0,709	no difference
	Mann-Whitney U Test	0,1371	no difference	×	×	×	×	0,0726	no difference
	Men/women in the test	everyo	one (65% men)	every	one (63% men)	everyo	one (65% men)	everyo	one (64% men)

Figure 6.3: Representation of the output of the statistical tests done past an future trading on the AEX and S&P500 index and on spring-autumn preference and optimism. In this table the P-value and conclusion for each test in each month and for the total dataset is given. If the data was normally distributed for men and women, only the t-test was performed and 'x' is filled in for the other tests. *Here we found homoscedasticity (heteroscedasticity) in the mean, but there is heteroscedasticity (homoscedasticity) in the median.

6.1.4 General sentiment effect hypothesis

The results for the 'currently feeling' variable in table 6.1 show no difference in the mood of men and women, for all months and for the total dataset.

Our hypothesis on gender differences in general sentiment was as follows: H_4 : The average man will report a better general feeling than the average woman. We have found that this is not true. Our results show no difference in the reported current feeling of men and women.

6.1.5 Sports sentiment effect hypothesis

Not many individuals have a favorite sports team, as can be seen in table 6.1. Only 509 men and 127 women reported to have a favorite sports team (or person), which means that 80% of individuals with a favorite sports team are male. Since in the total sample 64% of the individuals was male, we find that males more often have a favorite sports team than women. The tests where done with even less men and women because not all sports teams (persons) had to play a match in the three days before filling in the questionnaire.

In November men reported a significantly worse performance of there favorite sports teams than women and in February and June there was no difference in the judgment between men's and women's favorite sports teams. The results on the total dataset show different results for the different tests. The T-test shows a difference but the Kolmogorov-Smirnov test and the Mann-Whitney U test do not. Here it could again be the case that the T-test result is not correct because we have used two groups with not approximately normally distributed data and we therefore did not fulfill the assumptions of the T-test. We conclude that there is no significant difference in the individual judgment of the performance of men and women's favorite sports teams.

Our hypothesis on gender differences in sports sentiment was as follows: H5: Men have a favorite sports team (person) more often than women. The distribution between good and bad performances (as judged by the individuals) will be equal for men and women. This is hypothesis is consistent with our results.

6.1.6 Weather sentiment effect hypothesis

The results for the current weather perception of men and women only show a gender difference in June. In June the T-test and the Mann-Whitney U test find a difference in mean and median. However this difference is so small that it is not detected by the Kolmogorov-Smirnov test. In the other months and in the total dataset we find no difference in the weather perception between men and women. We conclude that there is no difference in the weather perception of men and women.

Our hypothesis on gender differences in weather sentiment was as follows: H6: Men have a more positive weather perception than women. We have found that this is not true. Our results show no difference in the weather perception of men and women.

6.1.7 SAD sentiment effect hypothesis

When asking individuals in November whether they suffer from winter blues, we find that women report to suffer significantly more than men. In February there is no difference between men and women, but in June women again report to suffer more from SAD. In the total dataset we find that women suffer more from winter blues than men

Our hypothesis on gender differences in SAD sentiment was as follows: H7:Men suffer less from SAD than women. We have found that our results are consistent with this hypothesis.

						-		-	
		2	lovember		February		June		Total
	Men/women in the sample	476/2	:62 (65% men)	449/2	.59 (63% men)	399/2	(13 (65% men)	1324/7	34 (64% men)
Variable	Test type	P-value	Conclusion	P-value	Conclusion	P-value	Conclusion	P-value	Conclusion
Favorite sports	Shapiro-Wilk Test on men	0,81171	normal	0,02328	not normal	0,04430	not normal	0,04010	not normal
team's performance	Shapiro-Wilk Test on women	0,23486	normal	0,06484	normal	0,32396	normal	0,04731	not normal
	Levene's test	0,55686268	homoscedasticity	0,90509389	homoscedasticity	0,14792713	homoscedasticity	0,19987353	homoscedasticity
	T-test	0,0415 (T>t)	difference	0,2880 (T>t)	no difference	0,4214 (T>t)	no difference	0,0417 (T>t)	difference
	Kolmogorov-Smirnov test	×	×	0,953	no difference	0,991	no difference	0,439	no difference
	Mann-Whitney U Test	×	×	0,4895	no difference	0,8945	no difference	0,0904	no difference
	Men/women in the test	144/	31 (82% men)	132/	27 (83% men)	23/5	9 (72% men)	299/6	7 (82% men)
Current weather	Shapiro-Wilk Test on men	1,00000	normal	0,45457	normal	0,03567	not normal	0,49967	normal
perception	Shapiro-Wilk Test on women	0,99998	normal	0,71028	normal	0,76309	normal	0,99948	normal
	Levene's test	0,01185801	heteroscedasticity	0,04248104	heteroscedasticity*	0,2418155	homoscedasticity	0,20044825	homoscedasticity
	T-test	0,3595 (T <t)< td=""><td>no difference</td><td>0,2114 (T>t)</td><td>no difference</td><td>0,0087 (T<t)< td=""><td>difference</td><td>0,1469 (T<t)< td=""><td>no difference</td></t)<></td></t)<></td></t)<>	no difference	0,2114 (T>t)	no difference	0,0087 (T <t)< td=""><td>difference</td><td>0,1469 (T<t)< td=""><td>no difference</td></t)<></td></t)<>	difference	0,1469 (T <t)< td=""><td>no difference</td></t)<>	no difference
	Kolmogorov-Smirnov test	×	×	×	×	0,132	no difference	×	×
	Mann-Whitney U Test	×	×	×	×	0,0169	difference	×	×
	Men/women in the test	everyo	one (65% men)	every	one (63% men)	everyo	one (65% men)	everyo	ne (64% men)
Suffering from	Shapiro-Wilk Test on men	0,00000	not normal	0'00000	not normal	0,00000	not normal	0,00000	not normal
SAD	Shapiro-Wilk Test on women	0,00000	not normal	0,00000	not normal	0,00000	not normal	0,00000	not normal
	Levene's test	0,09989044	heteroscedasticity	0,5075486	homoscedasticity	0,25102369	homoscedasticity*	0,02474815	heteroscedasticity
	T-test	0,0034 (T <t)< td=""><td>difference</td><td>0,0695 (T<t)< td=""><td>no difference</td><td>0,0201 (T<t)< td=""><td>difference</td><td>0,0001 (T<t)< td=""><td>difference</td></t)<></td></t)<></td></t)<></td></t)<>	difference	0,0695 (T <t)< td=""><td>no difference</td><td>0,0201 (T<t)< td=""><td>difference</td><td>0,0001 (T<t)< td=""><td>difference</td></t)<></td></t)<></td></t)<>	no difference	0,0201 (T <t)< td=""><td>difference</td><td>0,0001 (T<t)< td=""><td>difference</td></t)<></td></t)<>	difference	0,0001 (T <t)< td=""><td>difference</td></t)<>	difference
	Kolmogorov-Smirnov test	0,025	difference	0,401	no difference	0,077	no difference	0,000	difference
	Mann-Whitney U Test	0,0023	difference	0,0842	no difference	0,0152	difference	0,0000	difference
	Men/women in the test	everyo	one (65% men)	every	one (63% men)	everyo	one (65% men)	everyo	ne (64% men)
Currently feeling	Shapiro-Wilk Test on men	0,12032	normal	0,56619	normal	0,00128	not normal	0,00000	not normal
general feeling	Shapiro-Wilk Test on women	0,03055	not normal	0,04399	not normal	0,14480	normal	0,00030	not normal
	Levene's test	0,09181225	homoscedasticity	0,63324476	homoscedasticity	0,55209563	homoscedasticity	0,1050292	homoscedasticity
	T-test	0,0979 (T <t)< td=""><td>no difference</td><td>0,2482 (T>t)</td><td>no difference</td><td>0,1532 (T<t)< td=""><td>no difference</td><td>0,1775 (T<t)< td=""><td>no difference</td></t)<></td></t)<></td></t)<>	no difference	0,2482 (T>t)	no difference	0,1532 (T <t)< td=""><td>no difference</td><td>0,1775 (T<t)< td=""><td>no difference</td></t)<></td></t)<>	no difference	0,1775 (T <t)< td=""><td>no difference</td></t)<>	no difference
	Kolmogorov-Smirnov test	0,995	no difference	606'0	no difference	0,851	no difference	1,000	no difference
	Mann-Whitney U Test	0,3183	no difference	0,3618	no difference	0,2599	no difference	0,5069	no difference
	Men/women in the test	everyo	one (65% men)	every	one (63% men)	everyo	one (65% men)	everyo	ne (64% men)

Table 6.1: Representation of the output of the statistical tests done on the sentiment-creating variables sports teams performance, weather perception, SAD and general feeling. In this table the P-value and conclusion for each test in each month and for the total dataset is given. If the data was normally distributed for men and women, only the t-test was performed and 'x' is filled in for the other tests. *Here we found homoscedasticity (heteroscedasticity) in the mean, but there is heteroscedasticity (homoscedasticity) in the median.
6.2 Econometric analysis

6.2.1 Creating the ISI

To create the Investor Sentiment Index, we first ran ordered probit regressions to see which sentiment-creating variables have a significant influence on expected return. The results of these regressions can be found in table 6.2. When using a significance level of 10%, the sentiment-creating variables that have an impact on the expected return of men are general feeling and SAD in the spring-summer. For women the significant variables are also general feeling and SAD in the springsummer. We will now use general feeling and all SAD variables in creating the ISI. By using principal component analysis on the correlation matrix of the significant variables for men, we find the following ISI:

$$ISI_{men} = 0.2928 \cdot \text{general feeling} + 0.5519 \cdot \text{SAD}$$
 in the autumn
+ $0.5552 \cdot \text{SAD}$ in the winter + $0.5490 \cdot \text{SAD}$ in the spring-summer.

(6.1)

Doing the same for women we find:

$$ISI_{women} = 0.1792 \cdot \text{general feeling} + 0.5674 \cdot \text{SAD in the autumn} + 0.5984 \cdot \text{SAD in the winter} + 0.5366 \cdot \text{SAD in the spring-summer.}$$
(6.2)

For creating the ISI_{men} (ISI_{women}) only the observations of the sentiment-creating variables for men (women) are used.

6.2.2 Overall sentiment effect hypothesis

The results of the regression from equation (5.2) with as dependent variables expected AEX return, expected S&P500 return, expected AEX volatility and expected S&P500 volatility can be found in table 6.3, 6.4, 6.5 and 6.6, respectively. As we can see from table 6.3 the ISI for men does not have a significant influence on the AEX return expectations for the next month and year. We can also see that the ISI for women has no significant influence on the AEX return expectations of women for next month and next year. In table 6.4 the results from the regression with the expected return on the S&P500 index are portrayed. We find no significant influence from the ISI for men on the return expectations, next month and next year. For women we find that the ISI has a significant influence (when using a 10% significance level) on the return expectations in the next month. The coefficient here is -0,11, which means that when the score for sentiment is higher (and therefore the sentiment is more negative, worse mood) the expected return is lower, as we would expect. The ISI for women does not have a significant influence

	Men		Wom	en
Sentiment-creating variables	Coeff.	Sign.	Coeff.	Sign.
General feeling	-0,11	0,10	-0,16	0,08
Perceived weather	-0,03	0,50	0,02	0,74
Sport results	-0,04	0,42	0,05	0,62
SAD in the autumn	-0,08	0,24	-0,13	0,25
SAD in the winter	-0,03	0,70	-0,09	0,55
SAD in the spring-summer	0,17	0,08	0,30	0,03
Day-of-the-week control variables				
Sunday dummy	-0,01	0,94	-0,43	0,17
Monday dummy	0,21	0,15	0,17	0,55
Tuesday dummy	0,16	0,34	-0,20	0,53
Wednesday dummy	-0,07	0,68	-0,21	0,57
Thursday dummy	-0,05	0,77	-0,27	0,41
Friday dummy	-0,09	0,58	-0,16	0,60
Individual control variables				
Age	0,10	0,01	-0,07	0,32
Nett income	0,01	0,67	0,02	0,51
Urban character of place of residence	0,00	0,89	-0,05	0,46
Partner dummy	0,01	0,91	0,44	0,01
Children dummy	0,07	0,48	-0,33	0,07
Education level	-0,08	0,01	-0,07	0,17
Pessimistic-optimistic	0,04	0,50	0,00	0,99
Fixed effect control variables				
Winter dummy	0,24	0,00	0,04	0,79
Spring-summer dummy	0,17	0,00	-0,73	0,00
Valid observations (3 waves)	870		343	

Table 6.2: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \sum_j \beta_j SENT_{j,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected return on the AEX index in the next month, $SENT_{j,i}$ are the sentiment-creating variables and $CONTROLS_{k,i}$ are the control variables. We ran this regression for men and women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

on the next year return expectations on the S&P500 index. From table 6.5 we can see that the ISI for men and women both do not have a significant influence on the next month and next year risk expectations on the AEX index. From table 6.6 we can also see that the ISI for men and women does not have a significant influence on the next month and next year risk expectations on the S&P500 index.

The results of the regression from equation (5.3) with as dependent variables expected AEX return, expected S&P500 return, expected AEX volatility and expected S&P500 volatility can be found in table 6.7, 6.8, 6.9 and 6.10, respectively. As we can see from table 6.7 the ISI for men does not have a significant influence on the AEX return expectations for the next month and year. We can also see that the ISI for women has no significant influence on the AEX return expectations of women for next month and next year. In all cases gender does have a significant influence on the AEX return expectations. The coefficient for gender is negative, meaning that females expect a lower return then males, as we also found in section 6.1.1. In table 6.8 the results from the regression with the expected return on the S&P500 index are portrayed. We find no significant influence from the ISI for men or women on the return expectations, next month and next year. Again we find that gender does have a significant influence on the expected return and that females expect lower returns than males. From table 6.9 we can see that the ISI for men and women both do not have a significant influence on the next month and next year risk expectations on the AEX index. However, the risk expectations for the next year are quite close to our significance level of 10%. In this model the gender dummy variable does not have a significant influence on the risk expectations on the AEX index. From table 6.10 we can also see that the ISI for men and women does not have a significant influence on the next month and next year risk expectations on the S&P500 index. Here the gender variable does not have a significant influence on the risk expectations either.

The results of the regression from equation (5.4) with as dependent variables expected AEX return, expected S&P500 return, expected AEX volatility and expected S&P500 volatility can be found in table 6.11, 6.12, 6.13 and 6.14, respectively. Here we only look at the significance and coefficient for the interaction effect, because as discussed in the methods chapter, the coefficients for the ISI and gender have no clear meaning here. As we can see from table 6.11 we can in no case speak of an interaction effect between ISI and gender for the expected return on the AEX index. In table 6.12 we see the regression results for the expected return on the S&P500 index. For the next month return expectations we can speak of an interaction effect. This interaction effect is in both cases negative, meaning that the ISI has a more positive (or less negative) influence on the return expectations for females than for males. For the next year return expectations we have not found an interaction effect. From table 6.13 we do not see a significant interaction effect for men or women for the expected volatility on the AEX index. From table 6.14 we see no influence from an interaction between the ISI and gender on the risk expectations for the S&P500 index.

The hypothesis on overall sentiment effects on risk and return was as follows: *H8: The ISI of men has a smaller influence on their expected return and volatility than that of women.* We have found that this is not true because the ISI has, in almost all cases, no influence on the expected risk and return of men and women. Only in the case of next month return expectations on the S&P500 index for women we find that the ISI for women has a significant influence. We found that the interaction effect between gender and the ISI was only significant for the next month return expectations on the S&P500 index. Here the ISI has a more positive (or less negative) influence on the return expectations for females than for males.

			Dutch	n AEX retu	rn expectat	tions		
		ž	en			Mol	men	
	Moi	hth	Ye	ar	Μo	nth	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	00'0	0,97	0,03	0,59	0,01	0,91	00'0	0,98
Day-of-the-week control variables								
Sunday dummy	-0,03	0,89	0,01	0,98	-0,29	0,33	-0'0	0,82
Monday dummy	0,17	0,20	0,04	0,81	0,26	0,32	0,25	0,31
Tuesday dummy	0,13	0,41	-0,04	0,79	-0,10	0,74	-0,05	0,84
Wednesday dummy	-0,10	0,53	-0,05	0,74	-0,05	0,89	0,32	0,24
Thursday dummy	-0,08	0,61	-0,09	0,60	-0,15	0,62	0,24	0,39
Friday dummy	-0,13	0,43	-0,10	0,57	-0'03	0,92	0,03	0,92
Individual control variables								
Age	0,10	0,01	-0,08	0,05	-0'01	0,30	-0,09	0,22
Nett income	0,01	09'0	0,04	0,07	0,03	0,49	0,03	0,46
Urban character of place of residence	0,02	0,62	-0,02	0,50	-0,05	0,44	-0,12	0,05
Partner dummy	0,01	0,89	0,03	0,82	0,42	0,02	0,25	0,21
Children dummy	0,07	0,46	0,10	0,40	-0,29	0,13	-0,19	0,37
Education level	-0,07	0,01	-0,01	0,85	-0,06	0,22	-0,02	0,77
Pessimistic-optimistic	0,01	06'0	-0,02	0,81	-0,04	0,72	-0,07	0,53
Fixed effect control variables								
Winter dummy	0,25	00'0	0,32	00'0	0,06	0,67	0,04	0,75
Spring-summer dummy	-0,89	0,00	-0,68	00'0	-0,72	00'0	-0,67	0,00
Valid observations (3 waves)	870		886		343		349	

Table 6.3: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected return on the AEX index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index and $CONTROLS_{k,i}$ are the control variables. We ran this regression for men and women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			U.S. SI	& P500 retu	urn expecta	ations		
		ž	ua			Moi	men	
	Mol	nth	Ye	ar	Mo	nth	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	0,03	0,56	-0,02	0,61	-0,11	0,10	0,06	0,42
Day-of-the-week control variables								
Sunday dummy	0,02	06'0	-0,10	0,58	0,20	0,54	-0,01	0,97
Monday dummy	0,17	0,23	0,05	0,73	0,58	0,04	0,29	0,27
Tuesday dummy	0'0	0,70	-0,08	0,61	0,36	0,20	0,05	0,87
Wednesday dummy	0,02	0,92	00'0	0,98	0,86	0,01	0,56	0,06
Thursday dummy	0,01	0,96	-0,18	0,32	0,42	0,17	0,54	0,09
Friday dummy	0,10	0,55	0,04	0,84	0,27	0,41	0,03	0,92
Individual control variables								
Age	0,08	0,04	-0,04	0,39	-0'01	0,31	-0,05	0,54
Nett income	0,04	0,07	0,05	0,08	0,06	0,13	0,06	0,31
Urban character of place of residence	0,04	0,23	0,01	0,84	-0,13	0,10	-0,17	0,05
Partner dummy	-0,01	0,95	-0,02	0,87	0,51	0,03	0,42	0,15
Children dummy	00'0	0,98	0,07	0,55	-0,13	0,52	-0,13	0,55
Education level	-0,05	0,12	0,04	0,23	-0'01	0,25	-0,05	0,45
Pessimistic-optimistic	0,08	0,24	0,06	0,47	0,10	0,36	-0,05	0,65
Fixed effect control variables								
Winter dummy	0,32	00'00	0,34	00'0	0,26	0,06	0,11	0,42
Spring-summer dummy	-0,32	00'0	-0,37	0,00	-0,46	0,00	-0,59	00'0
Valid observations (3 waves)	729		726		269		268	

Table 6.4: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected return on the S&P500 index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index and $CONTROLS_{k,i}$ are the control variables. We ran this regression for men and women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			Dut	ch AEX risł	c expectati	ons		
		Σ	en			Mol	men	
	Mo	nth	Ye	ar	Μo	nth	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	0,03	0,51	0,04	0,39	-0,01	0,87	0,04	0,59
Day-of-the-week control variables								
Sunday dummy	-0,09	0,63	-0,06	0,75	-0,26	0,30	60'0	0,74
Monday dummy	0,04	0,78	0,07	0,63	-0,04	0,85	0,57	0,01
Tuesday dummy	0'06	0,72	0'0	0,67	0,01	0,98	0,40	0,11
Wednesday dummy	-0,01	0,95	-0,01	0,97	0,10	0,68	0,48	0,05
Thursday dummy	-0,10	0,55	0,07	0,68	-0,24	0,36	-0'04	0,88
Friday dummy	-0,04	0,83	0,00	0,99	-0,36	0,15	-0,01	0,96
Individual control variables								
Age	0,14	00'0	0,17	00'0	-0,03	0,69	-0'03	0,62
Nett income	-0,02	0,35	-0,01	0,70	-0,03	0,38	-0,05	0,21
Urban character of place of residence	00'0	0,93	-0'03	0,44	-0,02	0,81	-0'01	0,24
Partner dummy	-0,02	0,84	0,19	0,05	-0,11	0,54	-0,20	0,28
Children dummy	0,08	0,47	0,01	0,91	-0,13	0,49	-0,16	0,40
Education level	-0,04	0,14	-0,01	0,77	-0,04	0,49	-0,01	0,81
Pessimistic-optimistic	-0,04	0,46	-0,01	0,92	-0,07	0,47	-0,04	0,69
Fixed effect control variables								
Winter dummy	0,15	0,08	0,35	00'0	0,07	0,63	0,28	0,02
Spring-summer dummy	-0,89	00'0	-0,66	00'0	-0,57	00'0	-0,32	0,01
Valid observations (3 waves)	863		873		354		363	

Table 6.5: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected volatility on the AEX index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index and $CONTROLS_{k,i}$ are the control variables. We ran this regression for men and women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			U.S.	S&P500 ris	sk expectat	ions		
		Σ	en			Mol	men	
	Mo	nth	Ye	ar	β	nth	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	<u>Coeff.</u>	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	00'0	0,96	-0,02	0,68	-0,04	0,51	0,02	0,81
Day-of-the-week control variables								
Sunday dummy	-0,25	0,21	-0,27	0,14	-0,01	0,99	-0,32	0,33
Monday dummy	0,07	0,70	0,02	06'0	0,10	0,74	0,08	0,79
Tuesday dummy	-0,10	0,58	-0,13	0,41	-0,13	0,68	-0,17	0,60
Wednesday dummy	-0,13	0,51	-0,20	0,28	0,36	0,20	0,14	0,66
Thursday dummy	-0,02	06'0	-0,06	0,73	-0,01	0,96	-0,35	0,25
Friday dummy	-0,24	0,24	-0'01	0,72	-0,17	0,60	-0,45	0,15
Individual control variables								
Age	0,08	0,03	0,07	0,17	-0,04	0,57	00'0	0,96
Nett income	-0,02	0,38	0,02	0,28	0,03	0,49	-0,05	0,35
Urban character of place of residence	-0,01	0,73	0,02	0,50	-0,09	0,14	-0,11	0,15
Partner dummy	0,15	0,18	0,26	0,03	0,11	0),60	0,04	0,89
Children dummy	0,10	0,28	0,13	0,26	0,06	0,76	-0,01	0,98
Education level	-0,04	0,18	-0,03	0,48	-0,06	0,24	-0,04	0,54
Pessimistic-optimistic	0,08	0,22	0,05	0,46	-0,01	06'0	-0,03	0,78
Fixed effect control variables								
Winter dummy	0,28	00'0	0,37	00'0	0,16	0,31	0,32	0,02
Spring-summer dummy	-0,43	0,00	-0,25	00'0	-0,27	0,07	0,01	0,95
Valid observations (3 waves)	737		730		283		273	

Table 6.6: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected volatility on the S&P500 index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index and $CONTROLS_{k,i}$ are the control variables. We ran this regression for men and women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			Dutch	AEX retu	rn expectat	ions		
		ISI for	men			ISI for v	vomen	
	Mol	hth	Ye	ar	Mo	ht	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	0,01	0,79	0,02	0,60	0,01	0,69	0,02	0,60
Gender dummy	-0,15	0,06	-0,34	00'0	-0,16	0,06	-0,34	0,00
Day-of-the-week control variables								
Sunday dummy	-0,10	0,50	0,01	0,97	-0,10	0,49	0,01	0,97
Monday dummy	0,20	0,10	0,10	0,43	0,20	0,10	0,10	0,42
Tuesday dummy	0,06	0,63	-0,03	0,81	0'06	0,63	-0'03	0,81
Wednesday dummy	-0,05	0,71	0,07	0,63	-0,05	0,72	0,07	0,63
Thursday dummy	-0,09	0,50	0,01	0,94	-0,09	0,50	0,01	0,94
Friday dummy	-0,11	0,43	-0,05	0,73	-0,11	0,43	-0,05	0,73
Individual control variables								
Age	0,06	0,07	-0,08	0,03	0,06	0,07	-0,08	0,03
Nett income	0,01	0,49	0,04	0,06	0,01	0,49	0,03	0,06
Urban character of place of residence	00'0	0,89	-0,04	0,15	00'0	06'0	-0,04	0,15
Partner dummy	0,11	0,19	0,07	0,50	0,11	0,19	0,07	0,50
Children dummy	-0,01	0,93	0,04	0,68	-0,01	0,94	0,04	0,68
Education level	-0,06	0,02	-0,01	0,81	-0,06	0,01	-0,01	0,81
Pessimistic-optimistic	-0,01	0,87	-0'03	0,60	-0,01	0,84	-0'03	0,60
Fixed effect control variables								
Winter dummy	0,20	00'0	0,25	00'0	0,20	00'0	0,25	0,00
Spring-summer dummy	-0,84	00'0	-0,67	00'0	-0,84	00'0	-0,67	0,00
Valid observations (3 waves)	1213		1235		1213		1235	

Table 6.7: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected return on the AEX index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable and $CONTROLS_{k,i}$ are the control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			<u>U.S. S</u>	&P500 ret	urn expecta	ations		
		ISI for	rmen			ISI for v	vomen	
	Mo	nth	Ye	ar	Mo	uth	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	-0,01	0,84	-0,01	0,87	00′0	0,93	-0,01	0,89
Gender dummy	-0,21	0,02	-0,24	0,02	-0,21	0,02	-0,24	0,02
Day-of-the-week control variables								
Sunday dummy	0,04	0,81	-0,10	0,56	0,04	0,82	-0,10	0,56
Monday dummy	0,24	0,05	0,10	0,44	0,24	0,05	0,10	0,44
Tuesday dummy	0,10	0,47	-0,05	0,72	0,10	0,47	-0,05	0,72
Wednesday dummy	0,22	0,12	0,13	0,38	0,22	0,12	0,13	0,38
Thursday dummy	0,10	0,50	-0,02	06'0	0,10	0,50	-0,02	06'0
Friday dummy	0,11	0,45	0,02	06'0	0,10	0,45	0,02	06'0
Individual control variables								
Age	0,05	0,11	-0,04	0,32	0,05	0,10	-0,04	0,32
Nett income	0,04	0,03	0,04	0,07	0,04	0,03	0,04	0,07
Urban character of place of residence	0,01	0,79	-0,02	0,53	0,01	0,79	-0,02	0,53
Partner dummy	0,10	0,33	0,06	0,64	0,10	0,33	0,06	0,64
Children dummy	00'0	0,98	0,05	0,66	00′0	0,97	0,05	0,66
Education level	-0,05	0,07	0,03	0,41	-0,05	0,07	0,03	0,42
Pessimistic-optimistic	0,07	0,23	0,02	0,79	0,07	0,24	0,02	0,80
Fixed effect control variables								
Winter dummy	0,30	00'0	0,28	00'0	0,30	00'0	0,28	00'0
Spring-summer dummy	-0,34	00'0	-0,41	00'0	-0,34	00'0	-0,41	00'0
Valid observations (3 waves)	998		994		998		994	

Table 6.8: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected return on the S&P500 index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable and $CONTROLS_{k,i}$ are the control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			Dut	ch AEX risl	<u>c expectati</u>	Suc		
		ISI for	r men			ISI for v	vomen	
	Μo	nth	Ye	ar	β	nth	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	0,03	0,39	0,06	0,14	0,03	0,34	0,06	0,13
Gender dummy	-0,12	0,14	-0,12	0,17	-0,12	0,14	-0,12	0,17
Day-of-the-week control variables								
Sunday dummy	-0,12	0,40	00'0	0,99	-0,12	0,41	00'0	0,99
Monday dummy	0,03	0,78	0,20	0,12	0,04	0,77	0,20	0,12
Tuesday dummy	0,05	0,69	0,16	0,19	0,05	0,69	0,17	0,19
Wednesday dummy	0,04	0,78	0,15	0,30	0,04	0,77	0,15	0,30
Thursday dummy	-0,13	0,37	0,04	0,78	-0,13	0,38	0,04	0,78
Friday dummy	-0,12	0,39	-0,01	0,92	-0,12	0,40	-0,01	0,93
Individual control variables								
Age	0,11	00'0	0,13	00'0	0,11	00'0	0,13	00'0
Nett income	-0,02	0,28	-0,01	0,60	-0,02	0,29	-0,01	0,60
Urban character of place of residence	-0,01	0,78	-0,04	0,14	-0,01	0,78	-0,04	0,14
Partner dummy	-0,04	0,61	0,10	0,23	-0,04	0,61	0,10	0,23
Children dummy	0,04	0,63	-0,02	0,86	0,04	0,63	-0,02	0,86
Education level	-0,04	0,14	-0,01	0,69	-0,04	0,14	-0,01	0,70
Pessimistic-optimistic	-0,05	0,33	-0,02	0,70	-0,05	0,32	-0,02	0,70
Fixed effect control variables								
Winter dummy	0,13	0,07	0,32	00'0	0,13	0,07	0,32	00'0
Spring-summer dummy	-0,79	00'0	-0,56	00'0	-0,79	00'0	-0,56	00'0
Valid observations (3 waves)	1217		1236		1217		1236	

Table 6.9: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected volatility on the AEX index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable and $CONTROLS_{k,i}$ are the control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			<u>U.S.</u>	S&P500 ris	sk expectat	ions		
		ISI for	men			ISI for v	vomen	
	Mo	nth	Ye	ar	Mo	nth	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	00'0	0,92	00'0	0,99	00'0	0,98	00'0	0,94
Gender dummy	0,06	0,55	-0,02	0,88	0,06	0,55	-0,02	0,87
Day-of-the-week control variables								
Sunday dummy	-0,18	0,29	-0,26	0,10	-0,18	0,29	-0,26	0,10
Monday dummy	0,08	0,62	0,04	0,77	0,08	0,62	0,04	0,77
Tuesday dummy	-0,13	0,42	-0,13	0,37	-0,13	0,42	-0,13	0,37
Wednesday dummy	0,02	0,91	-0,09	0,55	0,02	0,91	-0,09	0,56
Thursday dummy	-0'03	0,83	-0,15	0,31	-0'03	0,83	-0,15	0,32
Friday dummy	-0,23	0,17	-0,19	0,24	-0,23	0,17	-0,19	0,24
Individual control variables								
Age	0,05	60'0	0,06	0,17	0,05	60'0	0,06	0,17
Nett income	00'0	0,79	0,01	0,64	00'0	0,79	0,01	0,64
Urban character of place of residence	-0'03	0,27	-0,01	0,66	-0'03	0,27	-0,01	0,66
Partner dummy	0,12	0,22	0,20	0'0	0,12	0,22	0,20	0,06
Children dummy	60'0	0,28	0,11	0,31	60'0	0,27	0,11	0,30
Education level	-0,04	0,12	-0'03	0,32	-0,04	0,11	-0'03	0,32
Pessimistic-optimistic	0,05	0,38	0,02	0,71	0,05	0,39	0,02	0,73
Fixed effect control variables								
Winter dummy	0,25	00'0	0,34	00'0	0,25	00'0	0,34	0,00
Spring-summer dummy	-0,37	00'0	-0,18	0,01	-0,37	00'0	-0,18	0,01
Valid observations (3 waves)	1020		1003		1020		1003	

Table 6.10: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected volatility on the S&P500 index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable and $CONTROLS_{k,i}$ are the control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			Dutch	n AEX retu	rn expectat	tions		
		ISI for	men			ISI for v	vomen	
	Mo	lth	Ye	ar	Mo	lth	Ye	ar
	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	-0,02	0,81	0,07	0,50	-0,02	0,83	0,07	0,51
Gender dummy	-0,24	0,33	-0,21	0,38	-0,24	0,31	-0,22	0,33
Interaction effect: ISI*Gender	0,03	0,72	-0,04	0,56	0,03	0,70	-0,04	0,57
Day-of-the-week control variables								
Sunday dummy	-0,10	0,50	0,01	0,97	-0,10	0,49	0,01	0,96
Monday dummy	0,20	0,10	0,10	0,42	0,20	0,10	0,10	0,41
Tuesday dummy	0,06	0,64	-0'03	0,82	0,06	0,63	-0'03	0,82
Wednesday dummy	-0,05	0,70	0,07	0,61	-0,05	0,70	0,07	0,61
Thursday dummy	-0,09	0,50	0,01	0,95	-0,09	0,51	0,01	0,95
Friday dummy	-0,11	0,44	-0,05	0,72	-0,11	0,44	-0,05	0,72
Individual control variables								
Age	0,06	0,07	-0,08	0,03	0,06	0,06	-0,08	0,03
Nett income	0,01	0,50	0,04	0,06	0,01	0,49	0,04	0,06
Urban character of place of residence	00'0	06'0	-0,04	0,16	00'0	0,91	-0,04	0,16
Partner dummy	0,11	0,20	0,07	0,49	0,11	0,20	0,07	0,49
Children dummy	-0,01	0,95	0,04	0,71	00'0	0,96	0,04	0,71
Education level	-0,06	0,01	-0,01	0,82	-0,06	0,01	-0,01	0,83
Pessimistic-optimistic	-0,01	0,88	-0,03	0,60	-0,01	0,86	-0,03	0,60
Fixed effect control variables								
Winter dummy	0,20	00'0	0,25	00'0	0,20	00'0	0,25	0,00
Spring-summer dummy	-0,84	00'0	-0,67	0,00	-0,84	00'0	-0,67	00'0
Valid observations (3 waves)	1213		1235		1213		1235	

Table 6.11: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \beta_3 ISI * GENDER_{3,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected return on the AEX index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable, $ISI * GENDER_{3,i}$ is a variable describing the interaction between the ISI and gender and $CONTROLS_{k,i}$ are the control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			U.S. S	& P500 ret	urn expecta	ations		
		ISI for	rmen			ISI for v	vomen	
	Mo	nth	Ye	ar	Mo	nth D	Ye	ar
	Coeff.	Sign.	<u>Coeff.</u>	Sign.	<u>Coeff.</u>	<u>Sign.</u>	Coeff.	Sign.
ndividual Sentiment Index (ISI)	0,15	0,15	-0,06	0,62	0,16	0,13	-0,05	0,65
Gender dummy	0,19	0,45	-0,36	0,20	0,17	0,48	-0,35	0,20
Interaction effect: ISI*Gender	-0,12	60'0	0,04	0,64	-0,12	60'0	0,04	0,66
Day-of-the-week control variables								
Sunday dummy	0,04	0,78	-0,10	0,55	0,04	0,78	-0,10	0,55
Monday dummy	0,25	0,04	0,10	0,45	0,25	0,04	0,10	0,45
Tuesday dummy	0,12	0,40	-0,05	0,70	0,12	0,40	-0,05	0,70
Wednesday dummy	0,24	0,10	0,12	0,40	0,24	0,10	0,12	0,40
Thursday dummy	0,10	0,51	-0,02	06'0	0,10	0,51	-0,02	06'0
Friday dummy	0,11	0,44	0,02	06'0	0,11	0,44	0,02	06'0
Individual control variables								
Age	0,05	0,12	-0,04	0,32	0,05	0,12	-0,04	0,32
Nett income	0,04	0,03	0,04	0,07	0,04	0,04	0,04	0,07
Urban character of place of residence	0,01	0,73	-0,02	0,52	0,01	0,74	-0,02	0,52
Partner dummy	0,10	0,33	0,06	0,63	0,10	0,33	0,06	0,63
Children dummy	-0,01	0,93	0,05	0,64	-0,01	0,93	0,05	0,63
Education level	-0,05	60'0	0,02	0,44	-0,05	60'0	0,02	0,44
Pessimistic-optimistic	0,07	0,22	0,02	0,79	0,07	0,23	0,02	0,80
Fixed effect control variables								
Winter dummy	0,30	00'0	0,28	00'0	0,31	00'0	0,28	00'0
Spring-summer dummy	-0,35	00'0	-0,41	00'0	-0,35	00'00	-0,41	00'0
Valid observations (3 waves)	998		994		998		994	

Table 6.12: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \beta_3 ISI * GENDER_{3,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected return on the S&P500 index in the next month or year, $GENDER_{2,i}$ is a gender dummy variable $ISI_{1,i}$ is the Investor Sentiment Index, $ISI * GENDER_{3,i}$ is a variable describing the interaction between the ISI, and $CONTROLS_{k,i}$ are the control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			Dut	ch AEX risł	c expectatio	Suc		
		ISI for	men			ISI for v	vomen	
	Mo	nth	Ye	ar	Mo	lth	Ye	ar
	Coeff.	<u>Sign.</u>	Coeff.	Sign.	Coeff.	Sign.	<u>Coeff.</u>	Sign.
Individual Sentiment Index (ISI)	0,04	0,73	0,01	0,96	0,04	0,66	0,01	0,89
Gender dummy	-0,10	0,66	-0,25	0,33	-0,09	0,68	-0,22	0,35
Interaction effect: ISI*Gender	00'0	0,95	0,04	0,60	-0,01	06'0	0,03	0,66
Day-of-the-week control variables								
Sunday dummy	-0,12	0,40	00'0	0,99	-0,12	0,40	00'0	1,00
Monday dummy	0,03	0,78	0,20	0,12	0,04	0,77	0,20	0,12
Tuesday dummy	0,05	0,69	0,16	0,19	0,05	0,69	0,17	0,19
Wednesday dummy	0,04	0,77	0,14	0,31	0,04	0,77	0,14	0,31
Thursday dummy	-0,13	0,37	0,04	0,77	-0,13	0,38	0,04	0,76
Friday dummy	-0,12	0,39	-0,01	0,95	-0,12	0,39	-0,01	0,95
Individual control variables								
Age	0,11	00'0	0,13	00'0	0,11	00'0	0,13	0,00
Nett income	-0,02	0,29	-0,01	0,59	-0,02	0,29	-0,01	0,59
Urban character of place of residence	-0,01	0,78	-0,04	0,13	-0,01	0,78	-0,04	0,13
Partner dummy	-0,04	0,61	0,10	0,23	-0'04	0,61	0,10	0,24
Children dummy	0,04	0,64	-0,01	0,89	0,04	0,63	-0,01	0,88
Education level	-0,04	0,14	-0,01	0,68	-0,04	0,14	-0,01	0,68
Pessimistic-optimistic	-0,05	0,33	-0,02	0,71	-0,05	0,32	-0,02	0,71
Fixed effect control variables								
Winter dummy	0,13	0,07	0,32	00'0	0,13	0,07	0,32	0,00
Spring-summer dummy	-0,79	00'00	-0,56	0,00	-0,79	00'0	-0,56	00'0
Valid observations (3 waves)	1217		1236		1217		1236	

Table 6.13: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \beta_3 ISI * GENDER_{3,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected volatility on the AEX index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable, $ISI * GENDER_{3,i}$ is a variable describing the interaction between the ISI and $CONTROLS_{k,i}$ are the control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

			<u>U.S.</u>	58.P500 ris	k expectati	ons		
		ISI for	men			ISI for v	vomen	
	Mor	th	Ye	ar	Moi	th	Ye	ar
	<u>Coeff.</u>	Sign.	Coeff.	Sign.	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	0,06	0,63	-0,07	0,58	0,06	0,59	-0,07	0,59
Gender dummy	0,21	0,44	-0,20	0,52	0,21	0,41	-0,19	0,52
Interaction effect: ISI*Gender	-0,05	0,56	0,05	0,56	-0,05	0,53	0,05	0,55
Day-of-the-week control variables								
Sunday dummy	-0,18	0,29	-0,26	0,10	-0,18	0,29	-0,26	0,10
Monday dummy	0,08	0,61	0,04	0,78	0,08	0,60	0,04	0,78
Tuesday dummy	-0,12	0,44	-0,13	0,36	-0,12	0,44	-0,13	0,36
Wednesday dummy	0,02	0,89	-0,10	0,54	0,02	0,89	-0,10	0,53
Thursday dummy	-0,04	0,83	-0,15	0,32	-0,04	0,83	-0,15	0,32
Friday dummy	-0,23	0,17	-0,18	0,25	-0,23	0,17	-0,18	0,24
Individual control variables								
Age	0,05	0,10	0,06	0,16	0,05	0,10	0,06	0,16
Nett income	00'0	0,81	0,01	0,65	00'0	0,81	0,01	0,64
Urban character of place of residence	-0,03	0,28	-0,02	0,64	-0,03	0,28	-0,02	0,64
Partner dummy	0,12	0,22	0,20	0,06	0,12	0,22	0,20	0,06
Children dummy	60'0	0,30	0,12	0,28	60'0	0,30	0,12	0,28
Education level	-0,04	0,12	-0,03	0,29	-0,04	0,13	-0,03	0,29
Pessimistic-optimistic	0,05	0,38	0,02	0,71	0,05	0,39	0,02	0,73
Fixed effect control variables								
Winter dummy	0,25	00'0	0,34	0,00	0,25	0,00	0,34	00'0
Spring-summer dummy	-0,37	00'0	-0,17	0,01	-0,37	0,00	-0,17	0,01
Valid observations (3 waves)	1020		1003		1020		1003	

Table 6.14: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \beta_3 ISI * GENDER_{3,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ is the individuals expected volatility on the S&P500 index in the next month or year, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable, $ISI * GENDER_{3,i}$ is a variable describing the interaction between the ISI and $CONTROLS_{k,i}$ are the control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

6.2.3 Overall sentiment effect on trading plans hypothesis

In table 6.15 we find the results from our ordered probit regression in equation (5.2), with future trading plans as the dependent variable. Here we have also added a recent trading control variable. We can see that the ISI for men and women has no significant influence on their future trading plans. What we can also see is that for men their past trading has a significant influence on their future trading. When men have bought more in the past they will also buy more in the future and when individuals were used to selling more in the past, they will also sell more in the future. For women this relationship between past and future trading is not significant. Since for this regression their were only 29 observations for women, the results for women are debatable.

In table 6.16 we find the results from our ordered probit regression in equation (5.3), with future trading plans as the dependent variable. Here we have also added a recent trading control variable. We can see that the ISI for men and women has no significant influence on their future trading plans. Gender does have a significant influence on the trading plans, males generally are more directed towards selling than women. What we can also see is that for men and women their past trading has a significant influence on their future trading. When individuals have bought more in the past they will also buy more in the future and when individuals were used to selling more in the past, they will also sell more in the future.

In table 6.17 we find the results from our ordered probit regression in equation (5.4), with future trading plans as the dependent variable. Here we have also added a recent trading control variable. Here the interaction effect is significant, and has a negative coefficient. This means that the ISI has a more towards buying directed influence on the trading plans for females than for males. What we can also see is that for men and women their past trading has a significant influence on their future trading. When individuals have bought more in the past they will also buy more in the future and when individuals were used to selling more in the past, they will also sell more in the future.

The hypothesis on overall sentiment effect on future trading was as follows: H9: The ISI of men has a larger influence on their future investment plans than that of women. We have not found that this is true. The ISI of both men and women have no significant influence on their future trading plans. What we did find is an interaction effect between gender and the ISI. We found that the ISI has a more towards buying directed influence on the trading plans of women than of men.

		Future tra	ding plans	
	Ň	u	Wor	nen
	Coeff.	Sign.	<u>Coeff.</u>	Sign.
Individual Sentiment Index (ISI)	0,12	0,29	1,76	0,53
Recent trading control variable				
Bought-Sold	0,32	00'0	1,55	0,36
Day-of-the-week control variables				
Sunday dummy	-0,23	0,63	0,44	0,93
Monday dummy	-0,37	0,34	3,88	0,27
Tuesday dummy	0,05	0,91	-1,55	0,23
Wednesday dummy	-0,33	0,46	2,57	0,31
Thursday dummy	0,15	0,75	-2,12	0,66
Friday dummy	0,15	0,79	-3,20	0,34
Individual control variables				
Age	0,20	0,03	1,23	0,45
Nett income	0,07	0,06	0,55	0,45
Urban character of place of residence	-0,03	0,79	2,41	0,16
Partner dummy	0,33	0,17	-0,04	0,98
Children dummy	-0,09	0,74	6,10	0,41
Education level	0,01	0,91	-2,32	0,38
Pessimistic-optimistic	-0,06	0,67	-4,96	0,33
Fixed effect control variables				
Winter dummy	-0,53	0,03	4,07	0,43
Spring-summer dummy	-0,05	0,85	4,11	0,36
Valid observations (3 waves)	128		29	

Table 6.15: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 PT_{2,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ represents the individuals future trading plans regarding the balance of buying and selling, $ISI_{1,i}$ is the Investor Sentiment Index, $PT_{2,i}$ is a recent trading control variable and $CONTROLS_{k,i}$ are the other control variables. We ran this regression for men and women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

		Future tra	ding plans	
	ISI for	men	ISI for v	vomen
	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	00'0	0,97	00'0	1,00
Gender dummy	0,53	0,09	0,53	0,09
Recent trading control variable				
Bought-Sold	0,34	00'0	0,34	00'0
Day-of-the-week control variables				
Sunday dummy	-0,32	0,46	-0,32	0,46
Monday dummy	-0,33	0,32	-0,33	0,32
Tuesday dummy	-0,16	0,64	-0,16	0,64
Wednesday dummy	-0,27	0,47	-0,27	0,47
Thursday dummy	60'0	0,79	0,09	0,80
Friday dummy	0,01	0,99	0,01	0,98
Individual control variables				
Age	0,25	0,01	0,25	0,01
Nett income	0,05	0,20	0,05	0,21
Urban character of place of residence	0,02	0,80	0,02	0,80
Partner dummy	0,29	0,24	0,29	0,24
Children dummy	-0,05	0,86	-0,05	0,85
Education level	-0,09	0,29	-0,09	0,29
Pessimistic-optimistic	-0,13	0,27	-0,13	0,28
Fixed effect control variables				
Winter dummy	-0,50	0,03	-0,50	0,03
Spring-summer dummy	-0,07	0,74	-0,07	0,74
Valid observations (3 waves)	157		157	

Table 6.16: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \beta_3 PT_{3,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ represents the individuals future trading plans regarding the balance of buying and selling, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable, $PT_{3,i}$ is a recent trading control variable and $CONTROLS_{k,i}$ are the other control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

		Future tra	ding plans	
	ISI for	men	ISI for v	vomen
	Coeff.	Sign.	Coeff.	Sign.
Individual Sentiment Index (ISI)	1,05	00'0	1,05	0,00
Gender dummy	3,54	00'0	3,34	00'0
Interaction effect: ISI*Gender	-0,93	00'0	-0,92	00'0
Recent trading control variable				
Bought-Sold	0,33	00'0	0,33	00'0
Day-of-the-week control variables				
Sunday dummy	-0,27	0,53	-0,27	0,53
Monday dummy	-0,34	0,32	-0,35	0,31
Tuesday dummy	-0,02	0,96	-0,02	0,96
Wednesday dummy	-0,24	0,53	-0,24	0,53
Thursday dummy	0,10	0,78	0,12	0,75
Friday dummy	0,18	0,71	0,17	0,72
Individual control variables				
Age	0,21	0,02	0,21	0,02
Nett income	0,06	0,13	0,06	0,13
Urban character of place of residence	0,06	0,48	0'0	0,50
Partner dummy	0,31	0,19	0,31	0,18
Children dummy	-0,24	0,34	-0,25	0,34
Education level	-0'03	0,75	-0'03	0,74
Pessimistic-optimistic	-0,04	0,74	-0,04	0,72
Fixed effect control variables				
Winter dummy	-0,50	0,03	-0,50	0,03
Spring-summer dummy	0,02	0,93	0,02	0,92
Valid observations (3 waves)	157		157	

Table 6.17: This table reports the following ordered probit regression results $E(R_{t+1,i}) = \beta_0 + \beta_1 ISI_{1,i} + \beta_2 GENDER_{2,i} + \beta_3 ISI * GENDER_{3,i} + \beta_4 PT_{4,i} + \sum_k \beta_k CONTROLS_{k,i} + \varepsilon_i$, where $E(R_{t+1,i})$ represents the individuals future trading plans regarding the balance of buying and selling, $ISI_{1,i}$ is the Investor Sentiment Index, $GENDER_{2,i}$ is a gender dummy variable, $ISI * GENDER_{3,i}$ is a variable describing the interaction between the ISI, $PT_{4,i}$ is a recent trading control variable and $CONTROLS_{k,i}$ are the other control variables. We ran this regression for the ISI for men and ISI for women separately. Valid observations incorporate the total number of complete questionnaires, less individuals who have selected a non-quantitative choice (don't know/ no opinion).

Chapter 7 Conclusion

In this study, we have tested the relation between various sentiment-creating factors, gender and risk and return expectations, as well as future trading plans of individuals that invest in the stock market. The statistical analyses are based on 2058 questionnaires completed by 808 individuals, who are a representative sample of the population of the Netherlands. The questionnaire has been taken in three waves, in November, February and June, allowing us to test the effect of SAD for men and women on risk and return expectations in different seasons. The risk and return expectations of the individuals are asked for a local index, the AEX index and a U.S. index, the S&P500 index.

In our descriptive analysis we have tested on gender differences in risk and return expectations and in sentiment-creating variables. We find that men expect higher returns and a lower volatility than women, especially for larger time spans. We have also found that men tend to trade more than women. When testing gender differences in the sentiment-creating variables, we find that there is no difference in the reported general feeling of men and women. We also find that men have a favorite sports team more often than women and that there is no difference in weather perception between men and women. Lastly, we found that men suffer less from SAD than women.

We have combined the separate sentiment-creating variables into one sentiment index (ISI), for men and women separately. We have found that this sentiment index has no influence on the expected risk and return for men and for women on both the AEX and the S&P500 index. We did find an interaction effect between the sentiment index and gender for future trading plans. The ISI has a more towards buying directed influence on trading plans for women than for men.

It could be that we find no gender differences in influence of sentiment on expected risk and return because of selection bias. Selection bias means an error in choosing the individuals to take part in our study. We have only selected individuals that invested in the stock market. Not many women invest in the stock market, and it could be that the women that do are less risk averse than other women. This would influence our results to not finding a gender difference in investor sentiment where there actually is one.

Concluding, we find no differences in risk and return expectations men and women due to sentiment-creating factors. We do find gender differences in risk and return expectations, but these do not seem to be correlated to the gender differences in sentiment. We do find a different influence of sentiment on trading plans for men and women.

Bibliography

- [1] Herv Abdi and Lynne J. Williams. Principal component analysis. *Interdisciplinary Reviews: Computational Statistics*, 2:433–459, 2010.
- [2] Brad M. Barber and Terrance Odean. Boys will be boys: gender, overconfidence and common stock investment. The Quarterly Journal of Economics, 116:261–292, 2001.
- [3] Sylvia Beyer. Gender differences in self-perception and negative recall biases. Sex Roles, 38:103–133, 1998.
- [4] Micheal J. Blier and Linda A. Blier-Wilson. Gender differences in self-rated emotional expressiveness. Sex Roles, 21:287–295, 1989.
- [5] Peggy D. Dwyer, James H. Gilkeson, and John A. List. Gender differences in revealed risk taking: evidence from mutual fund investors. *Economics Letters*, 76:151–158, 2002.
- [6] Lori L. Embrey and Jonathan J. Fox. Gender differences in the investment decision-making process. *Financial Counseling and Planning*, 8:33–40, 1997.
- [7] R. Estes and J. Hosseini. The gender gap on wall street: an empirical analysis of confidence in investment decision making. *The Journal of Psychology*, 122:577–590, 1988.
- [8] James Felton, Bryan Gibson, and David M. Sanbonmatsu. Preference for risk in investing as a function of trait optimism and gender. *Journal of Behavioral Finance*, 4:1–25, 2003.
- [9] K.L. Fisher and M. Statman. Investor sentiment and stock returns. *Financial Analysts Journal*, 56:16–23, 2000.
- [10] M. R. George. Do male and female brains respond differently to severe emotional stress?: in a flurry of new research, scientists are finding tantalizing clues. *Newsweek*, What every woman needs to know:68–71, 1999.

- [11] Judy F. Graham, Edward J. Stendardi Jr, Joan K. Myers, and Mark J. Graham. Gender differences in investment strategies: an information processing perspective. *International Journal of Bank Marketing*, 20:17–26, 2002.
- [12] Timothy Heeren and Ralph D'Agostino. Robustness of the two independent samples t-test when applied to ordinal scaled data. *Statistics in Medicine*, 6:79–90, 2006.
- [13] Richard P. Hinz, David D. McCarthy, and John A. Turner. Are women conservative investors? gender differences in participant directed pension investments. In Michael S. Gordon, Olivia S. Mitchell, and Marc M. Twinney, editors, *Positioning Pensions for the Twenty-first Century*, pages 91–100. University of Pennsylvania Press, 1997.
- [14] Nancy Ammon Jianakoplos and Alexandra Bernasek. Are women more risk averse? *Economic Inquiry*, 36:620–630, 2007.
- [15] G. Kaplanski, H. Levy, C. Veld, and Y. Veld-Merkoulova. Do happy people make optimistic investors? *Journal of finance and quantitative analysis*, 2:1– 61, 2012.
- [16] Sami Karjalainen. Gender differences in thermal comfort and use of thermostats in everyday thermal environments. *Building and environment*, 42:1594–1603, 2007.
- [17] George F. Loewenstein, Elke U. Weber, Christopher K. Hsee, and Ned Welch. Risk as feelings. *Psychological Bulletin*, 127:267–286, 2001.
- [18] Peter Paul A. Mersch, Hermine M. Middendorp, Antoinette L. Bouhuys, Domien G. M. Beersma, and Rutger H. van den Hoofdakker. The prevalence of seasonal affective disorder in the netherlands: a prospective and retrospective study of seasonal mood variation in the general population. *Biological Psychiatry*, 45:1013–1022, 1999.
- [19] M. Powell and D. Ansic. Gender differences in risk behaviour in financial decision-making: An experimental analysis. *The Journal of Economic Psychology*, 18:605–628, 1997.
- [20] Nornadiah Mohd Razali. Power comparisons of shapiro-wilk, kolmogorovsmirnov, lilliefors and anderson-darling tests. *Journal of Statistical Modeling* and Analytics, 2:21–33, 2011.
- [21] Stephanie Lee Sargent, Dolf Zillmann, and James B. Weaver III. The gender gap in the enjoyment of televised sports. *Journal of Sport and Social Issues*, 22:46–64, 1998.

- [22] Robin W. Simon and Leda E. Nath. Gender and emotion in the united states: do men and women differ in self-reports of feelings and expressive behvaior? *American Journal of Sociology*, 109:1137–1176, 2004.
- [23] Emory University. t-test for independent means, 2013. http://www.psychology.emory.edu/clinical/bliwise/Tutorials/TOM/meanstests/tind.htm.

Appendix A

Data

A.1 Questionnaire, source:[15]

This appendix contains questions that we submitted to the members of the LISS panel. The original questionnaire was in Dutch and it is available from the authors on request.

Question A (Stock holder screening question)

What is the approximate total value of stocks in your current financial investment portfolio? Stocks are defined as stocks of individual firms and investments in equity mutual funds (including mutual funds that do not only invest in stocks, but also in other financial securities, for example bonds). They exclude investments in "investment mortgages". The total value is: l = I don't have any investments in stocks

2 = 0-20,000 Euro 3 = 20,001-40,000 Euro 4 = 40,001-60,000 Euro 5 = 60,001-80,000 Euro 6 = 80,001-100,000 Euro 7 = 100,001-150,000 Euro 8 = 150,001-200,000 Euro 9 = 200,001+ Euro

The remainder of the questionnaire only went to respondents that answered 2-9 on this question (thus, we excluded investors who don't have any stocks).

Question B

What percentage of your investment portfolio is held in stocks? Stocks are defined as stocks of individual firms and investments in equity mutual funds (including mutual funds that do not only invest in stocks, but also in other financial securities, for example bonds). They exclude investments in "investment mortgages". The total investment portfolio is defined as the sum of all your financial investments, such as stocks, bonds, savings accounts, checking accounts, cash, etc. (excluding your main residence and other property holdings).

1 = 0%-20% 2 = 21%-40% 3 = 41%-60% 4 = 61%-80% 5= more than 80%

Questions C, D (Next month return expectations questions)

What is your best forecast for the rate of return on the Dutch stock market as measured by the AEX index for the coming month (the AEX index consists of 25 Dutch stocks that are representative of Euronext Amsterdam, formerly known as the Amsterdam Stock Exchange)?

What is your best forecast for the rate of return on the U.S. S&P 500 index for the next coming month (the U.S. S&P 500 index is a basket of 500 U.S. stocks that is representative of the American stock market)?

1 = -4% or worse 2 = -4% to -2% 3 = -2% to 0% 4 = 0% to 2%5 = 2% to 4% 6 = 4% or better 7 = Don't know/no opinion

Questions E, F (Next year return expectations questions)

What is your best forecast for the rate of return on the Dutch AEX index for the coming year (the AEX index consists of 25 Dutch stocks that are representative of Euronext Amsterdam, formerly known as the Amsterdam Stock Exchange)?

What is your best forecast for the rate of return on the U.S. S&P 500 index for the next coming year (the U.S. S&P 500 index is a basket of 500 U.S. stocks that is representative of the American stock market)?

 $1 = -15\% \text{ or worse} \\2 = -15\% \text{ to } -10\% \\3 = -10\% \text{ to } -5\% \\4 = -5\% \text{ to } 0\% \\4 = 0\% \text{ to } 5\% \\5 = 5\% \text{ to } 10\% \\6 = 10\% \text{ to } 15\% \\7 = 15\% \text{ or better} \\8 = \text{Don't know/no opinion}$

Questions G, H, I, J (Volatility expectations questions)

How do you consider the Netherlands stock market risk (volatility) for the coming month relative to an average month (the degree of risk means by how much the market is expected to fluctuate)?

How do you consider the Netherlands stock market risk (volatility) for the coming year relative to an average year (the degree of risk means by how much the market is expected to fluctuate)?

How do you consider the U.S. stock market risk (volatility) for the coming month relative to an average month (the degree of risk means by how much the market is expected to fluctuate)?

How do you consider the U.S. stock market risk (volatility) for the coming year relative to an average year (the degree of risk means by how much the market is expected to fluctuate)?

1 = Much less risky 2 = Somewhat less risky 3 = Similar risk to other months 4 = Somewhat riskier 5 = Much riskier 6 = Don't know/no opinion

Questions K, L, M (Sport fan questions) Are you a fan or a supporter of a sport club or individual sportsperson? 1 = Yes 2 = No With which sport is this club or sportsperson associated? If you are a supporter of multiple clubs or sportspersons, then please choose the club or sportsperson that you follow the most.

- 1 = Soccer
- 2 = Tennis
- 3 = Speed skating
- 4 = Grass hockey
- 5 = Cycling
- 6 = Swimming
- 7 = Darts
- 8 = Other (please specify)
- 9 = Not a sport fan (skip next question)

If your favorite sport team (person) has played in the last three days, how do you consider the game result?

- l = The result was good in an important game/tournament
- 2 = The result was good in a not very important game/tournament
- 3 = The result was neither good nor bad
- 4 = The result was bad in a not very important game/tournament
- 5 = The result was bad in an important game/tournament
- 6 = Not relevant (no game played or not a sport fan)
- Question N (Weather question)
- How would you describe the weather in the last two days?
- l = Very good
- 2 = Good
- 3 = Not particularly good and not particularly bad
- 4 = Bad
- 5 = Very bad

Question O (Spring preference question)

- Do you generally feel better in the autumn or in the spring?
- l = I generally feel much better in the autumn
- 4 = I generally feel the same in the autumn as in the spring
- 7 = I generally feel much better in the spring

Question P (Winter Blues question)

Do you (ever) suffer from "Winter Blues"? Winter Blues is a disorder that occurs in the autumn and early winter and is characterized by symptoms such as difficulty concentrating, social withdrawal, loss of energy, sleep disturbance and other related symptoms.

- l = I don't suffer from Winter Blues at all
- 2 = I mildly suffer from Winter Blues
- 3 = I suffer from Winter Blues
- 4 = I strongly suffer from Winter Blues

Question Q (General feeling question)

At the moment, which sentence best describes your feelings?

- l = I feel great today
- 2 = I feel good today
- 3 = I feel normal (neither good nor bad) today
- 4 = I feel bad today

5 = I feel very bad today

Question R (Optimism-pessimism question)

In general, how do you consider yourself relative to other people?

l = I am a very positive person relative to other people

2 = I am a more positive person relative to other people

3 = I am neither a more positive person nor a less positive person relative to other people

4 = I am a less positive person relative to other people

5 = I am a much less positive person relative to other people

Questions S, T (Past and planned investments questions)

If you made transactions in your stocks holdings during the last month, did you mostly buy or sell stocks? The term "mostly" should be interpreted in terms of the total monetary value of the transaction (amount of stocks times price of stock)

1 = I only bought stocks

2 = I mostly bought stocks, but I also sold stocks

3 = I bought as many stocks as I sold

4 = I mostly sold stocks, but I also bought stocks

5 = I only sold stocks

6 = Not relevant (I did not make any stock transactions)

In the next few days, do you intend to mostly buy or sell stocks? The term "mostly" should be interpreted in terms of the total monetary value of the transaction (amount of stocks times price of stock):

l = I intend to only buy stocks

2 = I intend to mostly buy stocks, but I also intend to sell stocks

3 = I intend to buy as many stocks as I intend to sell

4 = I intend to mostly sell stocks, but I also intend to buy stocks

5 = I only intend to sell stocks

6 = Not relevant (Currently I do not intend to make any stock transactions)

Appendix B

Descriptive analysis tests -November

Shapiro-Wilk	W	test	for	normal	data	

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a003	106	0.96647	2.906	2.374	0.00879
	(a)	Shapiro-W	ilk test on i	men	

Variable	Obs	W	v	z	Prob≻z
dt10a003	41	0.92551	3.001	2.316	0.01027
	(b) S	hapiro-Will	k test on w	vomen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht	ob	s rank sum	expected	
				Male	10	6 8134	7844	
Gender	Mean	Std. Dev.	Freq.	Female	4	1 2744	3034	
Male Female	2.509434	1.5445467	106 41	combined	14	10878	10878	
				unadjusted v	ariance	53600.67		
Total	2.414966	1.5208304	147	adjustment f	or ties	-4658.96		
W0 = 0.8138	82625 df(1,	145) Pr	F = 0.368487	adjusted var	iance	48941.71		
W50 = 0.1944	44126 df(1,	145) Pr :	≻ F = 0.659902	Ho: dt10a003	(geslacht= z = 1.3	==Male) = dt10a	1003 (geslacht=	==Female)
W10 = 0.8138	82625 df(1,	145) Pr :	F = 0.368487	Prob >	z = 0.1	.899		
	(c) Lev	rene's test			(d) Ma	ann-Whitney	U test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	106	2.509434	.1500196	1.544547	2.211973	2.806895
Female	41	2.170732	.2260543	1.447454	1.713859	2.627604
combined	147	2.414966	.125436	1.52083	2.167061	2.662871
diff		.3387023	.2792512		2132264	. 8906309
diff :	= mean(Male)	- mean(Fem	ale)		t	= 1.2129
Ho: diff :	= 0			degrees	of freedom	= 145
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$) = 0.8864	Pr($\mathbb{T} > t) = 0$	0.2271	$\Pr(T > t$) = 0.1136
			(e) T-test	-		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected
Male:	0.0000	1.000	
Female:	-0.1348	0.341	
Combined K-S:	0.1348	0.656	0.578
	(f) Ke	olmogoro	v-Smirnov test

Figure B.1: Results of all statistical tests done on the variable 'past trading', for the questionnaire filled in in November. 67

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a004	78	0.97751	1.512	0.904	0.18287

(a) Shapiro-Wilk test on men

Variable	Obs	W	v	z	Prob>z
dt10a004	28	0.96860	0.948	-0.110	0.54365
	(b)	Shapiro-Wil	k test on v	vomen	

	G	ender		Mean	Std.	Dev.		Freq.	
		Male	2.	5641026	1.50	83296		78	
	F	emale	2.	6785714	1.67	89232		28	
		Total	2.	5943396	1.54	78298		106	
WO	=	1.498	22203	df(1,	104)	Pr	> F =	0.2237	71084
W50	=	0.706	24674	df(1,	104)	Pr	> F =	0.4026	62055
W10	=	1.498	22203	df(1,	104)	Pr	> F =	0.2237	71084
				(c) Le	vene's	test			

Two-sample t test with equal variances

_						
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	78	2.564103	.1707847	1.50833	2.224027	2.904178
Female	28	2.678571	.3172867	1.678923	2.027553	3.32959
combined	106	2.59434	.1503385	1.54783	2.296246	2.892433
diff		1144689	.342448		7935561	.5646184
diff =	= mean(Male	e) - mean(Fem	ale)		t	= -0.3343
Ho: diff =	= 0			degrees	of freedom	= 104
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0
$\Pr(T \leq t)$) = 0.3694	Pr(T > t) = (0.7389	Pr(T > t) = 0.6306
			(d) T-test	5		

Figure B.2: Results of all statistical tests done on the variable 'future trading', for the questionnaire filled in in November.

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a005	410	0.98320	4.729	3.701	0.00011
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob>z
dt10a005	168	0.96839	4.054	3.192	0.00071
	(b) S	hapiro-Wilk	test on w	omen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht	obs	rank sum	expected	
				Male	410	120131	118695	
Gender	Mean	Std. Dev.	Freq.	Female	168	47200	48636	
Male	4.1878049	.90710187	410	combined	578	167331	167331	
remare	4.10/1425	. 96031203	100	unadjusted va	riance 332	3460.00		
Total	4.1643599	.9228336	578	adjustment fo	r ties -58	5917.64		
W0 = 0.046	35515 df(1,	576) Pr	> F = 0.82960	adjusted vari	ance 273	7542.36		
W50 = 0.033	76149 df(1,	576) Pr :	> F = 0.85427	Ho: dt10a005(geslacht==M z = 0.868	ale) = dt10a(005(geslacht=	==Female)
W10 = 0.000	76203 df(1,	576) Pr	> F = 0.97798	B Prob > z	= 0.385	4		
	(c) Lev	vene's test			(d) Man	n-Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	410	4.187805	.0447986	.9071019	4.099741	4.275869
Female	168	4.107143	.0741051	.9605121	3.960839	4.253446
combined	578	4.16436	.0383848	.9228336	4.088969	4.239751
diff		.080662	.0845424		0853869	. 246711
diff :	= mean(Male)	- mean(Fe	male)		t	= 0.9541
Ho: diff :	= 0			degrees	of freedom	= 576
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$) = 0.8298	Pr(T > t = 0	0.3404	Pr(T ≻ t) = 0.1702
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected
Male:	0.0000	1.000	
Female:	-0.0276	0.834	
Combined K-S:	0.0276	1.000	1.000
	(f) Ko	olmogoro	v-Smirnov test

Figure B.3: Results of all statistical tests done on the variable 'next month return expectations AEX', for the questionnaire filled in in November. 69

chapted with a cere tot moting adva	Shapiro-Wilk	W	test	for	normal	data
-------------------------------------	--------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob>z
dt10a006	424	0.95240	13.805	6.263	0.00000
	(a)	Shapiro-W	ilk test on	men	

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob≻z
dt10a006	174	0.97279	3.597	2.924	0.00173
	(b) S	Shapiro-Will	k test on w	vomen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

	0	Gender	Mean	Std.	Dev.	Freq.	
	1	Male Semale	5.365566 5.1494253	.8996 .6719	1545 6091	424 174	
		Total	5.3026756	.844	9433	598	
WO	=	25.683	3470 df(1,	596)	Pr >	F = 0.000000	54
W50	=	13.73	1672 df(1,	596)	Pr >	F = 0.000230	5
W10	=	17.313	3266 df(1,	596)	Pr ≻	F = 0.0000363	36
			(c) Lev	vene's te	est		

geslacht	obs	rank sum	expected
Male Female	424 174	132128.5 46972.5	126988 52113
combined	598	179101	179101
unadjusted var adjustment for	iance 3682 ties -886	652.00 665.78	
adjusted varia	nce 2795	986.22	

Ho: dt10a006(geslacht==Male) = dt10a006(geslacht==Female) z = 3.074 Prob

$$b > |z| = 0.0021$$

(d) Mann-Whitney U test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	424	5.365566	.0436892	.8996154	5.279691	5.451441
Female	174	5.149425	.0509412	.6719609	5.048879	5.249972
combined	598	5.302676	.0345523	.8449433	5.234817	5.370534
diff		.2161408	.0756185		.0676296	.3646519
diff = Ho: diff =	= mean(Male) = 0	- mean(Fem	ale)	degrees	t : of freedom :	= 2.8583 = 596
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0
$\Pr(T < t)$	= 0.9978	Pr($ \mathbf{T} > \mathbf{t}) = 0$	0.0044	$\Pr(T > t)$) = 0.0022
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected
Male:	0.0146	0.949	
Female:	-0.1482	0.004	
Combined K-S:	0.1482	0.009	0.007
	(f) Ko	olmogoro	v-Smirnov test

Figure B.4: Results of all statistical tests done on the variable 'next year return expectations AEX', for the questionnaire filled in in November. 70

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a007	350	0.98533	3.585	3.019	0.00127
	(a)) Shapiro-V	Vilk test or	n men	

Variable	Obs	W	v	z	Prob≻z
dt10a007	136	0.98643	1.452	0.841	0.20017
	(b) \$	Shapiro-Wil	k test on w	vomen	

.

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht	obs	rank sum	expected	
			Male	350	87303	85225	
Mean	Std. Dev.	Freq.	Female	136	31038	33116	
4.0457143	.98013006	350	combined	486	118341	118341	
3.9044118	1.031925	136					
			unadjusted var	iance 1931	766.67		
4.0061728	.99584858	486	adjustment for	ties -262	112.51		
83897 df(1,	484) Pr >	F = 0.3943314	adjusted varia	ance 1669	654.16		
20778 df(1,	484) Pr >	F = 0.56462988	Ho: dt10a007(g	geslacht==Ma	le) = dt10a0	07(geslacht=	=Female)
			2	s = 1.608			
75924 df(1,	484) Pr >	F = 0.39209128	Prob > z	= 0.1078	1		
(c) Lev	vene's test			(d) Mann	-Whitney U	J test	
	Mean 4.0457143 3.9044118 4.0061728 33897 df(1, 20778 df(1, 75924 df(1, (c) Lev	Mean Std. Dev. 4.0457143 .98013006 3.9044118 1.031925 4.0061728 .99584858 33897 df(1, 484) Pr > 20778 df(1, 484) Pr > 75924 df(1, 484) Pr > (c) Levene's test	MeanStd. Dev.Freq. 4.0457143 .98013006350 3.9044118 1.031925 136 4.0061728 .99584858486 38897 df(1, 484)Pr > F = 0.394331420778df(1, 484)Pr > F = 0.56462988 75924 df(1, 484)Pr > F = 0.39209128(c)Levene's test	Mean Std. Dev. Freq. Male 4.0457143 .98013006 350 combined 3.9044118 1.031925 136 unadjusted var 4.0061728 .99584858 486 adjustment for 33897 df (1, 484) Pr > F = 0.3943314 adjusted variation 20778 df (1, 484) Pr > F = 0.56462988 Ho: dt10a007 (control of the state) 75924 df (1, 484) Pr > F = 0.39209128 Prob > z (c) Levene's test	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	geslacht obs rank sum Male 350 87303 4.0457143 .98013006 350 Gombined 486 118341 3.9044118 1.031925 136 unadjusted variance 1931766.67 4.0061728 .99584858 486 unadjusted variance 1931766.67 38897 df(1, 484) Pr > F = 0.3943314 adjustment for ties -262112.51 20778 df(1, 484) Pr > F = 0.56462988 Ho: dt10a007(geslacht==Male) = dt10a0 $z = 1.608$ Prob > z = 0.1078 (d) Mann-Whitney U (c) Levene's test (d) Mann-Whitney U	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Two-sample t test with equal variances

Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
350	4.045714	.0523902	.9801301	3.942674	4.148754
136	3.904412	.0884868	1.031925	3.729412	4.079412
486	4.006173	.0451726	.9958486	3.917415	4.094931
	.1413025	.1005244		0562156	.3388206
= mean(Male)	- mean(Fe	male)		t	= 1.4057
= 0			degrees	of freedom :	= 484
iff < 0		Ha: diff !=	0	Ha: d	iff > 0
= 0.9198	Pr($ \mathbf{T} > \mathbf{t}) = 0$	0.1605	Pr(T > t) = 0.0802
		(e) T-test	,		
	Obs 350 136 486 = mean(Male) = 0 .ff < 0 = 0.9198	Obs Mean 350 4.045714 136 3.904412 486 4.006173 .1413025 = mean(Male) - mean(Fer 0 - mean(Fer .0,9198 Pr(Obs Mean Std. Err. 350 4.045714 .0523902 136 3.904412 .0884868 486 4.006173 .0451726 .1413025 .1005244 = mean(Male) - mean(Female) = 0	Obs Mean Std. Err. Std. Dev. 350 4.045714 .0523902 .9801301 136 3.904412 .0884868 1.031925 486 4.006173 .0451726 .9958486 .1413025 .1005244 .1413025 .1005244 = mean(Male) - mean(Female) .0 degrees .ff < 0	Obs Mean Std. Err. Std. Dev. [95% Conf. 350 4.045714 .0523902 .9801301 3.942674 136 3.904412 .0884868 1.031925 3.729412 486 4.006173 .0451726 .9958486 3.917415 .1413025 .1005244 0562156 = mean(Male) - mean(Female) t = 0 degrees of freedom .ff < 0

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0050	0.995	
Female:	-0.0684	0.400	
Combined K-S:	0.0684	0.749	0.717

(f) Kolmogorov-Smirnov test

Figure B.5: Results of all statistical tests done on the variable 'next month return expectations S&P 500', for the questionnaire filled in in November. 71
Shapiro-Wilk	W	test	for	normal	data	
-						

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z		
dt10a008	351	0.97675	5.696	4.115	0.00002		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z
dt10a008	136	0.97434	2.746	2.278	0.01136
	(b) S	hapiro-Will	k test on w	romen	

				geslacht obs rank sum expected
				Male 351 88344.5 85644
Gender	Mean	Std. Dev.	Freq.	Female 136 30483.5 33184
Male	5.1823362	. 99474402	351	combined 487 118828 118828
Female	4.9779412	.75490408	136	unadjusted variance 1941264 00
Total	5.1252567	.93773142	487	adjustment for ties -371163.52
= 14.1650	5490 df(1, 485	5) Pr > 1	r = 0.0001879	adjusted variance 1570100.48
= 7.0331	L787 df(1, 485	5) Pr > 1	7 = 0.00826338	Ho: dt10a008(geslacht==Male) = dt10a008(geslacht==Female) z = 2 155
= 10.1169	9177 df(1, 485	5) Pr > 1	r = 0.00156324	Prob > z = 0.0311
	(c) Lever	ne's test		(d) Mann-Whitney U test

Two-sample t test with equal variances

WO

W50 =

W10 =

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	351	5.182336	.0530955	. 994744	5.07791	5.286763
Female	136	4.977941	.0647325	.7549041	4.84992	5.105962
combined	487	5.125257	.0424927	.9377314	5.041765	5.208749
diff		. 204395	.0943575		.018995	. 389795
diff =	= mean(Male)	- mean(Fer	male)		t:	= 2.1662
Ho: diff =	= 0			degrees	of freedom :	= 485
Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
$\Pr(T < t)$	= 0.9846	Pr ($ \mathbf{T} > \mathbf{t}) = 0$	0.0308	$\Pr(T > t)$) = 0.0154
			(e) T-test	,		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0076	0.989	
Female:	-0.1153	0.074	
Combined K-S:	0.1153	0.147	0.134

(f) Kolmogorov-Smirnov test

Figure B.6: Results of all statistical tests done on the variable 'next year return expectations S&P 500', for the questionnaire filled in in November. 72

bildpito with w bebb tot mothat daba	S	hapiro-Wilk	W	test	for	normal	data
--------------------------------------	---	-------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob>z
dt10a009	402	0.99975	0.070	-6.333	1.00000
	(a)	Shapiro-W	ilk test on	men	

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob≻z
dt10a009	182	0.98460	2.117	1.718	0.04292
	(b)	Shapiro-Wi	ilk test on	women	

				geslacht	obs	rank sum	expected	
				Male	402	121143.5	117585	
Gender	Mean	Std. Dev.	Freq.	Female	182	49676.5	53235	
Male Female	3.0522388 2.8956044	.72004257	402 182	combined	584	170820	170820	
				unadjusted va	riance 356	6745.00		
Total	3.0034247	.72210046	584	adjustment fo	rties -80	4339.52		
W0 = 0.004	66734 df(1,	582) Pr>	F = 0.945556	adjusted vari	ance 276	2405.48		
W50 = 0.283	43687 df(1,	582) Pr >	F = 0.594660	Ho: dt10a009(geslacht==M	ale) = dt10a0	09(geslacht=	=Female)
					z = 2.141			
W10 = 0.491	81265 df(1,	582) Pr >	F = 0.483400	Prob > z	= 0.032	3		
	(c) Lev	rene's test			(d) Man	n-Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	402	3.052239	.0359125	.7200426	2.981639	3.122839
remaie	102	2.895604	.053136	. /166/04	2.790755	3.000454
combined	584	3.003425	.0298807	.7221005	2.944738	3.062112
diff		.1566344	.0642423		.0304593	.2828095
diff =	= mean(Male)	- mean(Fe	male)		t	= 2.4382
Ho: diff =	= 0			degrees	of freedom :	= 582
Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
Pr(T ≺ t)	= 0.9925	Pr($ \mathbf{T} > \mathbf{t}) = 0$	0.0151	Pr(T > t)) = 0.0075
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value		Exact	
Male:	0.0000	1.000			
Female:	-0.0775	0.222			
Combined K-S:	0.0775	0.439		0.413	
	(0) 17		a		

(f) Kolmogorov-Smirnov test

Figure B.7: Results of all statistical tests done on the variable 'next month risk expectations AEX', for the questionnaire filled in in November. 73

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob≻z
dt10a010	409	0.99467	1.495	0.959	0.16887
	()	aı ·	11 / /		

(a) Shapiro-Wilk test on men

Variable	Obs	W	v	z	Prob≻z
dt10a010	180	0.98672	1.808	1.356	0.08762
	(b) S	Shapiro-Will	k test on w	vomen	

Gender	Mean	Std. Dev.	Freq.
Male	3.0366748	.90267831	409
Female	2.8722222	.80522425	180
Total	2.9864177	.87665426	589
W0 = 1.7462	2291 df(1, 5	i87) Pr > P	7 = 0.1868663
W50 = 3.574	5284 df(1, 5	i87) Pr > P	F = 0.05916081
W10 = 3.888	9790 df(1, 5	187) Pr > H	5 = 0.04907299
	(c) Lev	ene's test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	409 180	3.036675 2.872222	.0446346 .0600179	.9026783 .8052243	2.948932 2.753789	3.124417 2.990656
combined	589	2.986418	.0361219	.8766543	2.915474	3.057361
diff		.1644526	.0781857		.0108949	.3180103
diff = Ho: diff =	= mean(Male) = 0	- mean(Fem	ale)	degrees	t of freedom	= 2.1034 = 587
Ha: di Pr(T < t)	iff < 0) = 0.9821	Pr(Ha: diff != T > t) = (0 D.0359	Ha: d Pr(T > t	iff ≻ 0) = 0.0179
			(d) T-test	-		

Figure B.8: Results of all statistical tests done on the variable 'next year risk expectations AEX', for the questionnaire filled in in November.

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a011	350	0.99349	1.590	1.097	0.13636
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a011	141	0.99193	0.891	-0.261	0.60283
	(b) S	Shapiro-Wil	k test on v	vomen	

	G	ender		Mean	Std.	Dev.		Freq.	
		Male		2.74	.838	43899		350	
	F	emale	2	.751773	.829	42345		141	
		Total	2.	7433809	.835	03145		491	
wo	=	0.3479	91405	df(1,	489)	Pr :	> F =	0.5555	6875
W50	=	0.3987	79361	df(1,	489)	Pr :	> F =	0.5280	0803
W10	=	0.3673	33178	df(1,	489)	Pr 3	> F =	0.5447	4351
				(c) Le	vene's	test			

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	350 141	2.74 2.751773	.0448164	.838439 .8294235	2.651856	2.828144
combined	491	2.743381	.0376844	.8350315	2.669338	2.817424
diff		011773	.0833748		1755901	. 152044
diff = Ho: diff =	diff = mean(Male) - mean(Female) t = -0.1412 Ho: diff = 0 degrees of freedom = 489					
Ha: di Pr(T < t)	iff < 0) = 0.4439	Pr(Ha: diff != T > t) = (0 D.8878	Ha: d Pr(T ≻ t	iff > 0) = 0.5561
(d) T-test						

Figure B.9: Results of all statistical tests done on the variable 'next month risk expectations S&P 500', for the questionnaire filled in in November.

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a012	352	0.99063	2.302	1.972	0.02432
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob>z
dt10a012	136	0.99738	0.281	-2.864	0.99791
	(b) S	hapiro-Will	k test on w	vomen	

.

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht	obs	rank sum	expected	
				Male	352	87314.5	86064	
Gender	Mean	Std. Dev.	Freq.	Female	136	32001.5	33252	
Male	2.7215909	.96773579	352	combined	488	119316	119316	
Female	2.6176471	.90315352	136					
				unadjusted va	riance 1950	784.00		
Total	2.692623	.95040621	488	adjustment fo	r ties -174	199.52		
W0 = 0.833	21695 df(1, 4	86) Pr >	F = 0.36179654	adjusted vari	ance 1776	5584.48		
W50 = 0.844	73572 df(1, 4	86) Pr >	F = 0.35850178	Ho: dt10a012(geslacht==Ma	ale) = dt10a0	12(geslacht==Fema	le)
W10 = 1.068	80178 df(1, 4	86) Pr >	F = 0.30173041	Prob > z	z = 0.938 = 0.3481			
	() -				(->		_	
	(c) Leve	ene's test			(d) Manı	n-Whitney l	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
Male	352	2.721591	.0515805	.9677358	2.620145	2.823037	
Female	136	2.617647	.0774448	.9031535	2.464485	2.770809	
combined	488	2.692623	.0430229	. 9504062	2.60809	2.777156	
diff		.1039439	.0959403		0845651	. 2924528	
diff =	= mean(Male)	- mean(Fe	male)		t	= 1.0834	
Ho: diff =	= 0			degrees	of freedom :	= 486	
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0	
Pr(T < t)) = 0.8604	Pr($ \mathbf{T} > \mathbf{t}) = 0$	0.2792	Pr(T > t) = 0.1396	
(e) T-test							

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0000	1.000	
Female:	-0.0683	0.400	
Combined K-S:	0.0683	0.749	0.718
	(f) Ko	olmogorov-	Smirnov test

Figure B.10: Results of all statistical tests done on the variable 'next year risk expectations S&P 500', for the questionnaire filled in in November. 76

Shapiro-Wilk W test for normal data

(b) Shapiro-Wilk test on women

W

0.95648

v

1.418

z

0.723

Prob>z

0.23486

Variable	Obs	W	v	z	Prob>z				
dt10a016	144	0.99398	0.676	-0.884	0.81171				
(a) Shapiro-Wilk test on men									

	G	ender		Mean	Std.	Dev.			Freq.	
		Male	з.	1111111	1.64	76774			144	
	F	emale	2.	5483871	1.5	45719			31	
		Total	з.	0114286	1.63	99768			175	
WO	=	0.3465	51088	df(1,	173)	Pr	> F	=	0.5568	6268
W50	=	0.5633	36632	df(1,	173)	Pr	> F	=	0.4539	2673
W10	=	0.3465	51088	df(1,	173)	Pr	> F	=	0.5568	6268
				(c) Le	vene's	test				

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
Male	144	3.111111	.1373064	1.647677	2.839699	3.382524		
Female	31	2.548387	.2776193	1.545719	1.981413	3.115361		
combined	175	3.011429	.1239706	1.639977	2.766749	3.256108		
diff		.562724	. 3228237		0744562	1.199904		
diff = Ho: diff =	= mean(Male) = 0	- mean(Fem	ale)	degrees	t of freedom	= 1.7431 = 173		
Ha: d: Pr(T < t)	iff < 0) = 0.9585	Pr(Ha: diff != T > t) = (0 0.0831	Ha: d Pr(T > t	iff > 0) = 0.0415		
	(d) T-test							

Figure B.11: Results of all statistical tests done on the variable 'Favorite sports team's performance', for the questionnaire filled in in November.

Variable

dt10a016

Obs

31

Variable	Obs	W	v	z	Prob>z				
dt10a017	476	0.99967	0.107	-5.368	1.00000				
(a) Shapiro-Wilk test on men									

1	(a)	snapno-	VV IIK	test	on	mer

Variable	Obs	W	v	z	Prob>z
dt10a017	262	0.99907	0.175	-4.059	0.99998
	(b) S	hapiro-Will	k test on v	vomen	

	Ge	ender		Mear	n S	td.	Dev.			Fre	q.
		Male	з.	0609244	4 .'	7472	25208			4	76
	Fe	emale	3.	0839695	5.	8757	71027			2	62
	1	Total	3.	0691057	1.	7941	72106	;		7	38
WO	=	6.363	5295	df(1,	736)		Pr	> 1	F =	0.01	185801
W50	=	4.9479	9992	df(1,	736)		Pr	> 1	F =	0.02	642345
W10	=	4.5453	3076	df(1,	736)		Pr	> 1	F =	0.03	333961
				(c) Le	evene	's t	est				

Two-sample t test with unequal variances

-						
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	476	3.060924	.0342502	.7472521	2.993624	3.128225
Female	262	3.083969	.0541016	.8757103	2.977438	3.190501
combined	738	3.069106	.0292541	.7947211	3.011674	3.126537
diff		0230451	.0640317		1488685	.1027783
diff :	= mean(Male) - mean(Fem	ale)		t	= -0.3599
Ho: diff :	= 0		Satterthwai	te's degrees	of freedom :	= 470.597
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d:	iff > 0
$\Pr(T < t)$) = 0.3595	Pr()	T > t = 0	0.7191	$\Pr(T > t)$) = 0.6405
			(d) T-test	t		

Figure B.12: Results of all statistical tests done on the variable 'Current weather perception', for the questionnaire filled in in November.

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z			
dt10a018	476	0.97563	7.843	4.940	0.00000			
(a) Shapiro-Wilk test on men								

Variable	Obs	W	v	z	Prob>z					
dt10a018	262	0.96884	5.889	4.135	0.00002					
(b) Shapiro-Wilk test on women										

.

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht obs rank sum expected	
Gender	Mean Std. Dev.	Freq.	Male 476 172084 175882 Female 262 100607 96809	
Male Female	5.210084 1.2113425 5.3206107 1.3688778	476 262	combined 738 272691 272691	
			unadjusted variance 7680180.67	
Total	5.2493225 1.2696887	738	adjustment for ties -499657.74	
W0 = 8.098	6701 df(1, 736) Pr	> F = 0.004552	adjusted variance 7180522.93	
W50 = 7.224	5474 df(1, 736) Pr	> F = 0.007353	Ho: dt10a018(geslacht==Male) = dt10a018(geslacht== $z = -1.417$	=Female)
W10 = 8.241	6545 df(1, 736) Pr	> F = 0.004211	Prob > z = 0.1564	
	(c) Levene's test		(d) Mann-Whitney U test	

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]			
Male	476	5.210084	.0555218	1.211343	5.100985	5.319183			
Female	262	5.320611	.0845696	1.368878	5.154085	5.487136			
combined	738	5.249322	.0467379	1.269689	5.157567	5.341078			
diff		1105267	.1011666		3093056	.0882523			
diff =	= mean(Male) - mean(Fem	ale)		t	= -1.0925			
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom	= 484.975			
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0			
$\Pr(T < t)$) = 0.1376	Pr(T > t =	0.2751	$\Pr(T > t$) = 0.8624			
(e) T-test									

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value		Exact
Male:	0.0811	0.108		
Female:	-0.0183	0.893		
Combined K-S:	0.0811	0.216		0.202
	(0) ==		~	

(f) Kolmogorov-Smirnov test

Figure B.13: Results of all statistical tests done on the variable 'spring-autumn preference', for the questionnaire filled in in November. 79

 Shapiro-Wilk	W	test	for	normal	data	

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z					
dt10a019	476	0.94637	17.260	6.832	0.0000					
(a) Shapiro-Wilk test on men										

Variable	Obs	W	v	z	Prob≻z				
dt10a019	262	0.95324	8.839	5.082	0.0000				
(b) Shapiro-Wilk test on women									

geslacht	obs	rank sum	expected
Male Female	476 262	168582.5 104108.5	175882 96809
combined	738	272691	272691
unadjusted van adjustment fon	riance 768 r ties -1 	0180.67 .93e+06	
adjusted varia	ance 575	0429.70	

Ho: dt10a019(geslacht==Male) = dt10a019(geslacht==Female) z = -3.044Prol

$$|b > |z| = 0.0023$$

(d) Mann-Whitney U test

Mean Std. Dev. Gender Freq. Male 1.4516807 .70171017 476 Female 1.6068702 .76440855 262 Total 1.5067751 .7278769 738 = 4.2375592 df(1, 736) Pr > F = 0.03989044 WO W50 = 7.7521423df(1, 736) Pr > F = 0.00550263W10 = 7.9087620 df(1, 736) Pr > F = 0.00505059(c) Levene's test

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
Male Female	476 262	1.451681 1.60687	.0321628 .0472253	.7017102 .7644086	1.388482 1.513879	1.51488 1.699861		
combined	738	1.506775	.0267935	.7278769	1.454174	1.559376		
diff		1551896	.0571374		2674484	0429307		
diff = mean(Male) - mean(Female) t = -2.716 Ho: diff = 0 Satterthwaite's degrees of freedom = 500.14								
Ha: d: Pr(T < t)	iff < 0) = 0.0034	Pr (Ha: diff != T > t) = ((e) T-test	0 D.0068	Ha: d: Pr(T > t	iff > 0) = 0.9966		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.1123	0.014	
Female:	0.0000	1.000	
Combined K-S:	0.1123	0.028	0.025

(f) Kolmogorov-Smirnov test

Figure B.14: Results of all statistical tests done on the variable 'suffering from winter blues', for the questionnaire filled in in November. 80

Shapiro-Wilk	W	test	for	normal	data
errepare name				and the second second	

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z						
dt10a020	476	0.99493	1.631	1.173	0.12032						
	(a) Shapiro-Wilk test on men										

Variable	Obs	W	v	z	Prob>z
dt10a020	262	0.98819	2.232	1.873	0.03055
	(b) S	Shapiro-Wil	k test on w	vomen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht obs rank sum expected
				Male 476 173410 175882
Gender	Mean	Std. Dev.	Freq.	Female 262 99281 96809
Male Female	2.5084034	.61723729	476	combined 738 272691 272691
				unadjusted variance 7680180.67
Total	2.5311653	.64412932	738	adjustment for ties -1.54e+06
W0 = 2.849	7419 df(1, 73	36) Pr > 1	F = 0.09181225	adjusted variance 6135430.47
W50 = 1.458	0274 df(1, 73	36) Pr > 1	F = 0.22763214	Ho: dt10a020(geslacht==Male) = dt10a020(geslacht==Female) z = -0.998
W10 = 3.226	5940 df(1, 73	36) Pr > 3	F = 0.07286122	Prob > z = 0.3183
	(c) Leve	ene's test		(d) Mann-Whitney U test

Two-sample t test with equal variances

-								
Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
Male	476	2.508403	.028291	. 6172373	2.452812	2.563994		
Female	262	2.572519	.0426043	.6896113	2.488627	2.656411		
combined	738	2.531165	.0237107	. 6441293	2.484617	2.577714		
diff		0641157	.0495277		1613481	.0331167		
diff =	= mean(Male	e) - mean(Fem	ale)		t	= -1.2945		
Ho: diff =	= 0			degrees	of freedom	= 736		
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0								
$\Pr(T < t)$) = 0.0979	Pr(T > t) = (0.1959	Pr(T > t) = 0.9021		
(e) T-test								

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0307	0.727	
Female:	-0.0023	0.998	
Combined K-S:	0.0307	0.997	0.995
	(f) Ke	olmogorov	-Smirnov test

Figure B.15: Results of all statistical tests done on the variable 'currently feeling (mood)', for the questionnaire filled in in November. 81

Shapiro-Wilk	W	test	for	normal	data	
-						

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a021	476	0.99359	2.062	1.736	0.04126
	(a)	Shapiro-W	ilk test on a	men	

Variable	Obs	W	v	z	Prob>z
dt10a021	262	0.99733	0.505	-1.595	0.94464
	(b) S	hapiro-Wilk	test on v	vomen	

.

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht	obs	rank sum	expected	
			Male	476	179628.5	175882	
Gender	Mean Std. Dev.	Freq.	Female	262	93062.5	96809	
Male	2.6764706 .71107994	476	combined	738	272691	272691	
Female	2.5877863 .67090868	262	unadjusted var	riance 7680	180.67		
Total	2.6449864 .69791942	738	adjustment for	ties -1.	33e+06		
W0 = 0.178	50792 df(1, 736) Pr > F	= 0.67278206	adjusted varia	ance 6350	824.91		
W50 = 0.0590	D2359 df(1, 736) Pr > F	= 0.8081136	Ho: dt10a021(0	geslacht==Ma z = 1.487	le) = dt10a0	21(geslacht==Fe	male)
W10 = 0.006	97725 df(1, 736) Pr > F	= 0.9334529	Prob > z	= 0.1371			
	(c) Levene's test			(d) Manr	n-Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
Male	476	2.676471	.0325923	.7110799	2.612428	2.740513		
Female	262	2.587786	.0414489	. 6709087	2.506169	2.669403		
combined	738	2.644986	.0256908	. 6979194	2.594551	2.695422		
diff		.0886843	.0536252		0165922	.1939609		
diff =	= mean(Male)	- mean(Fem	nale)		t	= 1.6538		
Ho: diff =	= 0			degrees	of freedom	= 736		
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0		
$\Pr(T < t)$	= 0.9507	Pr(T > t) = 0	0.0986	Pr(T ≻ t) = 0.0493		
(e) T-test								

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value		Exact
Male:	0.0000	1.000		
Female:	-0.0438	0.523		
Combined K-S:	0.0438	0.903		0.884
	(0) 77		~	

(f) Kolmogorov-Smirnov test

Figure B.16: Results of all statistical tests done on the variable 'general feeling: optimistic-pessimistic', for the questionnaire filled in in November. 82

Appendix C

Descriptive analysis tests -February

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a003	120	0.97275	2.622	2.160	0.01540
	(a)	Shapiro-Wi	ilk test on i	men	

Variable	Obs	W	v	z	Prob>z
dt10a003	38	0.96902	1.177	0.342	0.36615
	(b)	Shapiro-W	ilk test on	women	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht	obs	rank sum	expected	
			Male	120	9470.5	9540	
Gender	Mean Std. Dev.	Freq.	Female	38	3090.5	3021	
Male Female	2.575 1.5806737 2.7105263 1.738404	120 38	combined	158	12561	12561	
			unadjusted va	riance 60	0420.00		
Total	2.6075949 1.615354	158	adjustment fo	rties -4	4741.80		
W0 = 1.705	10114 df(1, 156) Pr	> F = 0.19354453	adjusted vari	ance 55	5678.20		
W50 = 0.802	45761 df(1, 156) Pr	> F = 0.37173978	Ho: dt10a003(geslacht==Ma z = -0.295	ale) = dt10a0	03(geslacht=	=Female)
W10 = 1.705	10114 df(1, 156) Pr	> F = 0.19354453	Prob > z	= 0.7683	3		
	(c) Levene's test			(d) Mani	n-Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	120	2.575	.1442951	1.580674	2.289281	2.860719
Female	38	2.710526	.2820064	1.738404	2.139127	3.281925
combined	158	2.607595	.1285107	1.615354	2.353762	2.861428
diff		1355263	.3014534		7309835	. 4599309
diff =	= mean(Male) - mean(Fem	ale)		t	= -0.4496
Ho: diff =	= 0			degrees	of freedom :	= 156
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0
$\Pr(T < t)$	= 0.3268	Pr(T > t =	0.6536	$\Pr(T > t)$) = 0.6732
			(e) T-test	t		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value		Exact
Male:	0.0908	0.621		
Female:	-0.0197	0.978		
Combined K-S:	0.0908	0.971		0.949
	(C) TZ	1	a	

(f) Kolmogorov-Smirnov test

Figure C.1: Results of all statistical tests done on the variable 'past trading', for the questionnaire filled in in February. 84

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a004	90	0.94682	4.022	3.070	0.00107
	(a)) Shapiro-W	Vilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a004	18	0.96029	0.873	-0.272	0.60729
	(b) S	Shapiro-Will	k test on w	vomen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				gesla	acht d	obs 1	rank sum	expected	
					Male	90	4789	4905	
Gender	Mean	Std. Dev.	Freq.	Fer	male	18	1097	981	
Male Female	2.1888889	1.3145208	90 18	combi	ined :	108	5886	5886	
				unadjuste	ed variance	14718	5.00		
Total	2.2777778	1.399822	108	adjustmer	nt for ties	-1285	5.09		
WO = 7.1944	4462 df(1, 10	6) Pr >	F = 0.008484	adjusted	variance	13429	9.91		
W50 = 4.4453	3687 df(1, 10	6) Pr >	F = 0.037352	Ho: dt10a	a004(geslacht z = -1)	t==Male) .001) = dt10a0	04(geslacht=	=Female)
W10 = 6.5052	2638 df(1, 10	6) Pr >	F = 0.012184	Prob	> z = 0.	.3168			
	(c) Leve	ne's test			(d) N	Aann-V	Whitney U	J test	

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	90	2.188889	.1385627	1.314521	1.913568	2.46421
Female	18	2.722222	.4106869	1.742397	1.855749	3.588696
combined	108	2.277778	.1346979	1.399822	2.010755	2.544801
diff		5333333	. 4334321		-1.434604	. 3679375
diff =	= mean(Male	e) - mean(Fem	ale)		t	= -1.2305
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom :	= 21.0386
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$) = 0.1160	Pr(T > t =	0.2321	$\Pr(T > t)$) = 0.8840
			(e) T-test	t		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.2222	0.227	0.413
Female:	0.0000	1.000	
Combined K-S:	0.2222	0.449	

(f) Kolmogorov-Smirnov test

Figure C.2: Results of all statistical tests done on the variable 'future trading', for the questionnaire filled in in February. 85

Shapiro-Wil)	¢Ψ	test	for	normal	data	
--------------	----	------	-----	--------	------	--

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a005	372	0.96872	8.070	4.952	0.00000
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a005	157	0.95623	5.296	3.788	0.00008
	(b) S	hapiro-Will	k test on w	vomen	

	geslacht	obs	rank sum	expected
	Male	372	103565	98580
eq.	Female	157	36620	41605
372	combined	529	140185	140185
157				
	unadjusted variar	ice 2579	510.00	
529	adjustment for ti	.es -389	271.97	
18539299	adjusted variance	2190	238.03	
52119839	Ho: dt10a005(ges]	.acht==Ma	le) = dt10a0	05(geslacht==Fe

z = 3.368 Prob > |z| = 0.0008

(d) Mann-Whitney U test

Fr Gender Mean Std. Dev. Male 4.3655914 .93779516 Female 4.044586 1.0336886 4.2703214 Total .97734183 = 1.75844531 Pr > F = 0WO df(1, 527) W50 = 0.41207286 df(1, 527)Pr > F = 0 $W10 = 0.23181053 \, df(1, 527)$ Pr > F = 0.63038444(c) Levene's test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	372	4.365591	.0486224	. 9377952	4.269981	4.461201
Female	157	4.044586	.0824973	1.033689	3.88163	4.207542
combined	529	4.270321	.0424931	.9773418	4.186845	4.353798
diff		.3210054	.0920472		.140181	.5018298
diff =	= mean(Male)	- mean(Fer	male)		t	= 3.4874
Ho: diff =	= 0			degrees	of freedom :	= 527
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
$\Pr(T < t)$	= 0.9997	Pr($ \mathbb{T} > t) = 0$	0.0005	$\Pr(T > t)$) = 0.0003
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact	
Male:	0.0000	1.000		
Female:	-0.1381	0.015		
Combined K-S:	0.1381	0.030	0.026	
	(f) Ko	olmogorov-	Smirnov test	t

Figure C.3: Results of all statistical tests done on the variable 'next month return expectations AEX', for the questionnaire filled in in February. 86

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z			
dt10a006	377	0.98520	3.863	3.207	0.00067			
(a) Shapiro-Wilk test on men								

Variable	Obs	W	v	Z	Prob≻z
dt10a006	158	0.95108	5.951	4.054	0.00003
	(b) S	hapiro-Will	k test on w	omen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht obs rank sum expected
				Male 377 109505 101036
Gender	Mean	Std. Dev.	Freq.	Female 158 33875 42344
Male	5.5994695	.76929073	377	combined 535 143380 143380
Female	5.1708861	.79962601	158	
				unadjusted variance 2660614.67
Total	5.4728972	.80186698	535	adjustment for ties -491290.86
WO = 8.8485	5164 df(1, 5	33) Pr >	F = 0.0030662	adjusted variance 2169323.81
W50 = 10.1483	3689 df(1, 5	33) Pr >	F = 0.00152882	Ho: dtl0a006(geslacht==Male) = dtl0a006(geslacht==Female) z = 5.750
W10 = 10.6882	2154 df(1, 5	33) Pr >	F = 0.00114779	Prob > z = 0.0000
	(c) Lev	ene's test		(d) Mann-Whitney U test

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	377	5.599469	.0396205	.7692907	5.521564	5.677375
	100	0.170000			0.010200	0.290007
combined	535	5.472897	.0346677	.801867	5.404795	5.540999
diff		.4285834	.0749442		.2810681	.5760987
diff =	= mean(Male)	- mean(Fem	ale)		t	= 5.7187
Ho: diff =	= 0		Satterthwait	te's degrees	of freedom :	= 284.547
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$	= 1.0000	Pr (T > t = 0	0.0000	$\Pr(T > t)$) = 0.0000
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0000	1.000	
Female:	-0.2455	0.000	
Combined K-S:	0.2455	0.000	0.000
	(f) Ke	olmogorov	-Smirnov test

Figure C.4: Results of all statistical tests done on the variable 'next year return expectations AEX', for the questionnaire filled in in February. 87

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a007	302	0.98181	3.899	3.195	0.00070
	(a)	Shapiro-W	ilk test on i	men	

Variable	Obs	W	v	z	Prob>z
dt10a007	121	0.97997	1.941	1.487	0.06854
	(b) S	hapiro-Will	k test on w	romen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslach	t	obs	rank sum	expected	
Gender	Mean St	d. Dev. 1	Freq.	Mal Femal	e	302 121	67235 22441	64024 25652	
Male Female	4.3046358 .93 3.9669421 .93	2577257 9107588	302 121	combine	d	423	89676	89676	
				unadjusted	variance	12911	50.67		
Total	4.2080378 .9	5601447	423	adjustment	for ties	-1571	44.66		
W0 = 1.605	56292 df(1, 421)	Pr > F = 0	0.20581712	adjusted va	riance	11340	06.00		
W50 = 0.239	77194 df(1, 421)	Pr > F = 0	0.62462593	Ho: dt10a00	7(geslac) z =	ht==Mal 3.015	e) = dt10a0	07(geslacht==Fe	male)
W10 = 0.440	74685 df(1, 421)	$\Pr > F = 0$	0.50712561	Prob >	z =	0.0026			
	(c) Levene	's test			(d)	Mann-	Whitney U	test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	302	4.304636	.0532722	.9257726	4.199803	4.409469
Female	121	3.966942	.0900978	.9910759	3.788555	4.14533
combined	423	4.208038	.046483	.9560145	4.116671	4.299405
diff		.3376936	.1016565		.1378761	.5375112
diff =	= mean(Male)	- mean(Fe	male)		t	= 3.3219
Ho: diff =	= 0			degrees	of freedom :	= 421
Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
Pr(T < t)	= 0.9995	Pr(T > t) = 0	0.0010	$\Pr(T > t)$) = 0.0005
			(e) T-test	-		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0000	1.000	
Female:	-0.1329	0.047	
Combined K-S:	0.1329	0.095	0.086
	$(\mathbf{f}) \mathbf{T}$	1	a • •

(f) Kolmogorov-Smirnov test

Figure C.5: Results of all statistical tests done on the variable 'next month return expectations S&P 500', for the questionnaire filled in in February. 88

Shapiro-Wilk	W	test	for	normal	data
Dudbiro witr		0250	101	TIOTMAT	uava

Variable Obs W v z Prob>z 0.99195 dt10a008 300 1.715 1.266 0.10282 (a) Shapiro-Wilk test on men

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob>z
dt10a008	119	0.93457	6.252	4.105	0.00002
	(b) S	Shapiro-Wil	k test on w	vomen	

			geslacht	obs	rank sum	expected
			Male	300	67149.5	63000
Gender	Mean Std. Dev.	Freq.	Female	119	20840.5	24990
Male	5.3866667 .86001219	300	combined	419	87990	87990
Total	5.2768496 .87206163	419	unadjusted va: adjustment fo:	riance 1249 r ties -226	500.00 058.79	
W0 = 14.92	9389 df(1, 417) Pr > H	F = 0.00012938	adjusted varia	ance 1023	441.21	
W50 = 4.253	3474 df(1, 417) Pr > 1	F = 0.03978898	Ho: dtl0a008(geslacht==Ma z = 4.102	ale) = dt10a0	08(geslacht==Female
W10 = 12.78	6730 df(1, 417) Pr > H	F = 0.00038999	Prob > z	= 0.0000	1	
	(c) Levene's test			(d) Manr	n-Whitney U	J test

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	300	5.386667	.0496528	.8600122	5.288953	5.48438
Female	119	5	.0773437	.8437206	4.846838	5.153162
combined	419	5.27685	.042603	.8720616	5.193107	5.360592
diff		.3866667	.09191		.2055322	.5678011
diff =	= mean(Male)	- mean(Fe	male)		t	= 4.2070
Ho: diff =	= 0		Satterthwait	e's degrees:	of freedom :	= 220.524
Ha: di	iff ≺ 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$	= 1.0000	Pr($ \mathbf{T} > \mathbf{t}) = 0$	0.000	$\Pr(T > t)$) = 0.0000
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0000	1.000	
Female:	-0.2034	0.001	
Combined K-S:	0.2034	0.002	0.001
	(f) Ko	olmogorov-	-Smirnov test

Figure C.6: Results of all statistical tests done on the variable 'next year return expectations S&P 500', for the questionnaire filled in in February. 89

Variable	Obs	W	v	z	Prob>z
dt10a009	370	0.99730	0.693	-0.870	0.80771
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a009	159	0.99338	0.810	-0.479	0.68396
	(b) S	Shapiro-Will	k test on v	vomen	

	G	ender		Mean	Std.	Dev.		Freq.	
	F	Male 'emale	2.	3.1 9937107	.795	14107 17922		370 159	
		Total	3.	0680529	.801	92724		529	
WO	=	0.495	L0400	df(1,	527)	Pr	> F	= 0.4819	97008
W50	=	0.000	70032	df(1,	527)	Pr	> F	= 0.9788	39766
W10	=	0.148	77057	df(1,	527)	Pr	> F	= 0.6998	36867
				(c) Le	vene's	test			

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	370	3.1	.0413374	.7951411	3.018714	3.181286
Female	159	2.993711	.0646479	.8151792	2.866025	3.121396
combined	529	3.068053	.0348664	.8019272	2.999559	3.136547
diff		.1062893	.0759749		0429615	.2555401
diff =	= mean(Male)	- mean(Fem	ale)		t:	= 1.3990
Ho: diff =	= 0			degrees	of freedom :	= 527
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
$\Pr(T < t)$) = 0.9188	Pr($\mathbb{T} > t) = 0$	0.1624	$\Pr(T > t)$) = 0.0812
			(d) T-test			

Figure C.7: Results of all statistical tests done on the variable 'next month risk expectations AEX', for the questionnaire filled in in February.

Shapiro-Wilk	W	test	for	normal	data	
-						

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a010	372	0.98856	2.952	2.567	0.00513
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob>z
dt10a010	164	0.99449	0.692	-0.837	0.79878
	(b) S	Shapiro-Wil	k test on v	women	

expected	rank sum	obs	geslacht	
99882	104328	372	Male	
44034	39588	164	Female	
143916	143916	536	combined	
	108.00	ciance 27301	unadjusted var	
	910.13	ties -3619	adjustment for	
	197.87	ance 23681	adjusted varia	

Ho: dt10a010(geslacht==Male) = dt10a010(geslacht==Female) z = 2.889

Prob > |z| = 0.0039

(d) Mann-Whitney U test

Freq. Gender Mean Std. Dev. Male 3.2983871 .83372161 372 3.097561 .79275486 164 Female Total 3.2369403 .82587657 536 W0 = 5.2704293 df(1, 534) Pr > F = 0.02207726W50 = 4.5193681 df(1, 534) Pr > F = 0.03397141W10 = 4.4538073 df(1, 534) Pr > F = 0.03528793(c) Levene's test

Two-sample t test with unequal variances

$\begin{array}{c c c c c c c c c c c c c c c c c c c $							
Male 372 3.298387 .0432265 .8337216 3.213388 3.38338 Female 164 3.097561 .0619038 .7927549 2.975324 3.21975 combined 536 3.23694 .0356724 .8258766 3.166865 3.30701 diff .2008261 .0755023 .0522939 .349358 diff mean(Male) - mean(Female) t = 2.655 .652 Ho: diff = 0 Satterthwaite's degrees of freedom = 326.55 Ha: diff < 0	Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Female 164 3.097561 .0619038 .7927549 2.975324 3.21975 combined 536 3.23694 .0356724 .8258766 3.166865 3.30701 diff .2008261 .0755023 .0522939 .349356 diff mean(Male) - mean(Female) t = 2.655 .655 Ho: diff = 0 Satterthwaite's degrees of freedom = 326.55 Ha: diff < 0	Male	372	3.298387	.0432265	.8337216	3.213388	3.383387
combined 536 3.23694 .0356724 .8258766 3.166865 3.30701 diff .2008261 .0755023 .0522939 .349358 diff mean(Male) mean(Female) t = 2.659 Ho: diff = 0 Satterthwaite's degrees of freedom = 326.559 Ha: diff < 0	Female	164	3.097561	.0619038	.7927549	2.975324	3.219798
diff .2008261 .0755023 .0522939 .349356 diff = mean(Male) - mean(Female) t = 2.659 Ho: diff = 0 Satterthwaite's degrees of freedom = 326.55 Ha: diff < 0	combined	536	3.23694	.0356724	.8258766	3.166865	3.307016
diff = mean(Male) - mean(Female) t = 2.659 Ho: diff = 0 Satterthwaite's degrees of freedom = 326.59 Ha: diff < 0	diff		.2008261	.0755023		.0522939	. 3493584
Ho: diff = 0 Satterthwaite's degrees of freedom = 326.59 Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.9959 Pr(T > t) = 0.0082 Pr(T > t) = 0.004 (e) T-test	diff =	= mean(Male)	- mean(Fem	ale)		t:	= 2.6599
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0 Pr(T < t) = 0.9959 $Pr(T > t) = 0.0082$ $Pr(T > t) = 0.004(e) T-test$	Ho: diff =	= 0		Satterthwait	te's degrees	of freedom :	= 326.596
$Pr(T < t) = 0.9959 \qquad Pr(T > t) = 0.0082 \qquad Pr(T > t) = 0.004$ (e) T-test	Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
(e) T-test	<pre>Pr(T < t)</pre>	= 0.9959	Pr(T > t) = (0.0082	$\Pr(T > t)$) = 0.0041
				(e) T-test	- ,		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact	
Male:	0.0025	0.999		
Female:	-0.1426	0.010		
Combined K-S:	0.1426	0.020	0.017	
	(f) Ke	olmogorov	-Smirnov te	est

Figure C.8: Results of all statistical tests done on the variable 'next year risk expectations AEX', for the questionnaire filled in in February. 91

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z	,		
dt10a011	313	0.99677	0.714	-0.793	0.78603			
(a) Shapiro-Wilk test on men								

Variable	Obs	W	v	z	Prob≻z
dt10a011	129	0.99076	0.946	-0.126	0.55000
	(b) S	hapiro-Will	test on w	vomen	

	Ge	ender		Mear	n S	td.	Dev.				Freq.	
		Male	2.	9648562	2.	7978	36056	5			313	
	Fe	emale	2.	9069761	· .	8871	78042	2			129	
	1	Total	2.	9479638	8.1	8245	51548	3			442	!
WO	=	3.5846	5417	df(1,	440)		Pr	>	F	-	0.0589	7184
W50	=	2.2944	1327	df(1,	440)		Pr	>	F	-	0.1305	5665
W10	=	2.4220	5197	df(1,	440)		Pr	>	F	-	0.1203	1374
				(c) Le	evene	's t	\mathbf{est}					

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]		
Male Female	313 129	2.964856 2.906977	.0450977 .0781647	.7978606 .8877804	2.876122 2.752315	3.05359 3.061639		
combined	442	2.947964	.0392182	.8245155	2.870886	3.025042		
diff		.0578795	.0863205		1117723	. 2275313		
diff : Ho: diff :	= mean(Male) = 0	- mean(Fem	ale)	degrees	t : of freedom :	= 0.6705 = 440		
Ha: d: Pr(T < t)	iff < 0) = 0.7486	Pr(Ha: diff != T > t) = (0 D.5029	Ha: d: Pr(T > t)	iff > 0) = 0.2514		
	(d) T-test							

Figure C.9: Results of all statistical tests done on the variable 'next month risk expectations S&P 500', for the questionnaire filled in in February.

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z	Va		
dt10a012	309	0.99620	0.832	-0.433	0.66761	dt		
(a) Shapiro-Wilk test on men								

Variable	Obs	W	v	z	Prob≻z
dt10a012	129	0.97952	2.095	1.663	0.04812
	(b) S	Shapiro-Will	k test on w	omen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht	:	obs	rank sum	expected	
				Male		309	69823	67825.5	
Gender	Mean	Std. Dev.	Freq.	Female	•	129	26318	28315.5	
Male	3.0711974	.8724381	309	combined	i	438	96141	96141	
	2.5005707			unadjusted v	ariance	1458	248.25		
Total	3.0228311	.87655934	438	adjustment f	or ties	-160	212.35		
WO = 0.436	20017 df(1,	436) Pr	> F = 0.509310	adjusted var	iance	1298	035.90		
W50 = 0.269	25052 df(1,	436) Pr	> F = 0.604098	Ho: dt10a012	(geslach z = 1	t==Ma	le) = dt10a0	12 (geslacht=	=Female)
W10 = 0.001	02252 df(1,	436) Pr	> F = 0.974505	Prob ≻	z = 0	.0796			
	(c) Lev	ene's test			(d) I	Mann	-Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	309	3.071197	.0496313	.8724381	2.973538	3.168857
Female	129	2.906977	.077386	.8789363	2.753855	3.060098
combined	438	3.022831	.0418836	.8765593	2.940513	3.105149
diff		.1642207	.0916534		0159168	. 3443581
diff =	= mean(Male)	- mean(Fer	nale)		t	= 1.7918
Ho: diff =	= 0			degrees	of freedom	= 436
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$) = 0.9631	Pr($ \mathbf{T} > \mathbf{t}) = 0$	0.0739	$\Pr(T > t$) = 0.0369
			(e) T-test	i		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0000	1.000	
Female:	-0.0906	0.224	
Combined K-S:	0.0906	0.444	0.413
	(f) Ko	olmogorov	-Smirnov test

Figure C.10: Results of all statistical tests done on the variable 'next year risk expectations S&P 500', for the questionnaire filled in in February. 93

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a016	132	0.97680	2.420	1.990	0.02328
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob>z
dt10a016	27	0.92887	2.091	1.515	0.06484
	(b) \$	Shapiro-Will	k test on w	vomen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht	obs	rank sum	expected
Gender	Mean Std. Dev	. Freq.	Male Female	132 27	10703 2017	10560 2160
Male	2.4393939 1.514598	6 132	combined	159	12720	12720
Total	2.408805 1.51871	8 159	unadjusted va: adjustment fo:	riance 4 r ties -	7520.00 4708.59	
W0 = 0.014	26156 df(1, 157) P	r > F = 0.905093	adjusted varia	ance 4	2811.41	
W50 = 0.003	63998 df(1, 157) P	r > F = 0.951967	Ho: dt10a016(geslacht==M z = 0.691	(ale) = dt10a()16(geslacht==Female)
W10 = 0.014	26156 df(1, 157) P	r > F = 0.905093	Prob > z	= 0.489	5	
	(c) Levene's test			(d) Man	n-Whitney U	J test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	132	2.439394	.1318289	1.514599	2.178605	2.700183
Female	27	2.259259	.3000123	1.55891	1.642575	2.875943
combined	159	2.408805	.1204422	1.518718	2.170921	2.646689
diff		.1801347	.3214784		4548459	.8151152
diff =	= mean(Male)	- mean(Fe	male)		t	= 0.5603
Ho: diff =	= 0			degrees	of freedom :	= 157
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0
Pr(T < t)	= 0.7120	Pr(T > t) =	0.5761	Pr(T > t) = 0.2880
			(e) T-test	5		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0034	0.999	
Female:	-0.1019	0.628	
Combined K-S:	0.1019	0.974	0.953
	(f) Ko	olmogorov-	Smirnov test

Figure C.11: Results of all statistical tests done on the variable 'Favorite sports team's performance', for the questionnaire filled in in February. 94

Variable	Obs	W	v	z	Prob≻z
dt10a017	449	0.99657	1.049	0.114	0.45457
	(a)	Shapiro-Wi	ilk test on	men	

(a)	snapno-	VV IIK	test	on	mer

Variable	Obs	W	v	z	Prob≻z
dt10a017	259	0.99579	0.788	-0.554	0.71028
	(b) S	hapiro-Will	k test on v	vomen	

	G	ender		Mear	n St	d.	Dev.		Freq	-
		Male	2.	772828	5.8	8194	4628		44	9
	F	emale	2.	718146	7.9	9031	0556		25	9
		Total	2.	752824	9.1	3507	7912		70	8
WO	=	4.1308	3878	df(1,	706)		Pr >	F =	0.042	48104
W50	=	3.1669	9369	df(1,	706)		Pr ≻	F =	0.075	57334
W10	=	3.6995	5427	df(1,	706)		Pr >	F =	0.054	82922
				(c) Le	evene	's t	\mathbf{est}			

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	449	2.772829	.0386721	.8194463	2.696827	2.84883
Female	259	2.718147	.0561162	.9031056	2.607643	2.828651
combined	708	2.752825	.0319742	.8507791	2.690049	2.815601
diff		.0546818	.068151		079218	.1885816
diff =	= mean(Male)	- mean(Fem	ale)		t	= 0.8024
Ho: diff =	= 0		Satterthwait	te's degrees	of freedom =	= 496.728
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
Pr(T < t)) = 0.7886	Pr(T > t = 0	0.4227	$\Pr(T > t)$) = 0.2114
			(d) T-test	-		

Figure C.12: Results of all statistical tests done on the variable 'Current weather perception', for the questionnaire filled in in February.

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z		
dt10a018	449	0.98547	4.436	3.563	0.00018		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z
dt10a018	259	0.96357	6.815	4.473	0.00000
	(b) S	hapiro-Wilk	test on w	romen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

	geslacht obs rank sum e	xpected
	Male 449 160499 1	59170.5
Freq.	Female 259 90487	91815.5
449	combined 708 250986	250986
259	·	
	unadjusted variance 6870859.92	
708	adjustment for ties -448055.22	
= 0.01518094	adjusted variance 6422804.70	
= 0.11352099	Ho: dt10a018(geslacht==Male) = dt10a018(geslach
	z = 0.524	

Prob > |z| = 0.6001

(d) Mann-Whitney U test

Gender Mean Std. Dev. Male 5.4164811 1.2074157 Female 5.3436293 1.3416653 5.3898305 Total 1.257738 = 5.9242378 df(1, 706) Pr > F WO W50 = 2.5107349 df(1, 706) Pr > F W10 = 6.3500274 df(1, 706) Pr > F = 0.01195744(c) Levene's test

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	449	5.416481	.0569815	1.207416	5.304497	5.528465
Female	259	5.343629	.083367	1.341665	5.179463	5.507796
combined	708	5.389831	.0472687	1.257738	5.297027	5.482634
diff		.0728517	.1009799		1255521	. 2712555
ht == 1 _{ff} =	= mean(Male)	- mean(Fer	male)		t	= 0.7214
Ho: diff =	= 0		Satterthwait	e's degrees:	of freedom =	= 493.36
Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
$\Pr(T < t)$	= 0.7645	Pr(T > t) = 0	.4710	$\Pr(T > t)$	= 0.2355
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0330	0.699	
Female:	-0.0517	0.415	
Combined K-S:	0.0517	0.772	0.746
	(\mathbf{C}) TZ	1	a • •

(f) Kolmogorov-Smirnov test

Figure C.13: Results of all statistical tests done on the variable 'spring-autumn preference', for the questionnaire filled in in February. 96

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z		
dt10a019	449	0.95889	12.554	6.052	0.0000		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z		
dt10a019	259	0.95360	8.682	5.037	0.00000		
(b) Shapiro-Wilk test on women							

ī

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht obs rank sum expected
				Male 449 155203.5 159170.5
Gender	Mean	Std. Dev.	Freq.	Female 259 95782.5 91815.5
Male Female	1.4944321 1.5752896	.69474443 .70787884	449 259	combined 708 250986 250986
				unadjusted variance 6870859.92
Total	1.5240113	.70016346	708	adjustment for ties -1.59e+06
WO = 0.439	56559 df(1,	706) Pr >	F = 0.5075486	adjusted variance 5276582.16
W50 = 2.194	25763 df(1,	706) Pr >	F = 0.13897209	Ho: dtl0a019(geslacht==Male) = dtl0a019(geslacht==Female) z = -1.727
W10 = 1.300	00909 df(1,	706) Pr >	F = 0.25459821	Prob > z = 0.0842
	(c) Lev	vene's test		(d) Mann-Whitney U test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	449 259	1.494432 1.57529	.032787 .0439855	.6947444 .7078788	1.429997 1.488673	1.558868 1.661906
combined	708	1.524011	.0263138	.7001635	1.472349	1.575674
diff		0808575	.0545854		1880267	.0263116
diff : Ho: diff :	= mean(Male = 0	e) - mean(Fem	ale)	degrees	t : of freedom :	= -1.4813 = 706
Ha: d: Pr(T < t)	iff < 0) = 0.0695	Pr(Ha: diff != T > t) = (e) T-test	0 0.1390	Ha: d Pr(T > t	iff ≻ 0) = 0.9305

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0685	0.214	0.401
Female:	-0.0007	1.000	
Combined K-S:	0.0685	0.424	

(f) Kolmogorov-Smirnov test

Figure C.14: Results of all statistical tests done on the variable 'suffering from winter blues', for the questionnaire filled in in February. 97

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z		
dt10a020	449	0.99695	0.933	-0.167	0.56619		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob≻z
dt10a020	259	0.98889	2.079	1.706	0.04399
	(b) S	Shapiro-Will	k test on w	vomen	

				geslacht obs rank sum expected	
		a. 1. 5.	_	Male 449 161321 159170.5	
Gender	Mean	Std. Dev.	Freq.	Female 259 89665 91815.5	
Male Female	2.5100223 2.4749035	.65158615 .67796684	449 259	combined 708 250986 250986	
				unadjusted variance 6870859.92	
Total	2.4971751	.66109757	708	adjustment for ties -1.31e+06	
W0 = 0.2278	88435 df(1,	706) Pr	> F = 0.633244	476 adjusted variance 5560321.59	
W50 = 0.3894	45009 df(1,	706) Pr	> F = 0.532790	019 Ho: dt10a020(geslacht==Male) = dt10a020(geslacht== z = 0.912	=Female)
W10 = 0.1028	B3626 df(1,	706) Pr	> F = 0.748547	71 Prob > z = 0.3618	
	(c) Lev	vene's test		(d) Mann-Whitney U test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	449 259	2.510022 2.474903	.0307503 .0421268	.6515861 .6779668	2.44959 2.391947	2.570455 2.55786
combined	708	2.497175	.0248456	.6610976	2.448395	2.545955
diff		.0351188	.0516029		0661947	.1364323
diff = Ho: diff =	= mean(Male) = 0	- mean(Fe	nale)	degrees	t : of freedom :	= 0.6806 = 706
Ha: d: Pr(T < t)	iff < 0) = 0.7518	Pr(Ha: diff != T > t) = (e) T-test	0 D.4964 ;	Ha: d Pr(T > t	iff > 0) = 0.2482

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0067	0.985	
Female:	-0.0427	0.549	
Combined K-S:	0.0427	0.926	0.909
	$(\mathbf{f}) \mathbf{V}$	1	Continue or to

(f) Kolmogorov-Smirnov test

Figure C.15: Results of all statistical tests done on the variable 'currently feeling (mood)', for the questionnaire filled in in February. 98

Shapiro-Wilk W	test for	normal	data
----------------	----------	--------	------

Variable	Obs	W	v	z	Prob>z
dt10a021	449	0.99438	1.716	1.292	0.09822
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a021	259	0.99281	1.345	0.690	0.24505
	(b) S	hapiro-Will	k test on w	omen	

	G	ender		Mean	Std.	Dev.			Freq.	
		Male	2	. 674833	. 698	41276			449	
	F	emale	2.	6138996	. 685	93274			259	
		Total	2.	6525424	. 694	00894			708	
wo	=	0.0050	9527	df(1,	706)	Pr	> F	=	0.9431146	i.
W50	=	0.0263	36130	df(1,	706)	Pr	> F	=	0.8710675	3
W10	=	0.291	70050	df(1,	706)	Pr	> F	=	0.5893031	9
				(c) Le	vene's	test				

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	449 259	2.674833 2.6139	.0329601 .0426218	.6984128 .6859327	2.610057 2.529969	2.739609 2.69783
combined	708	2.652542	.0260825	. 6940089	2.601334	2.703751
diff		.0609333	.0541411		0453634	.1672301
diff = Ho: diff =	= mean(Male) = 0	- mean(Fem	ale)	degrees	t of freedom	= 1.1255 = 706
Ha: di Pr(T < t)	iff < 0) = 0.8696	Pr(Ha: diff != T ≻ t) = (0 D.2608	Ha: d Pr(T ≻ t	iff ≻ 0) = 0.1304
			(d) T-test	5		

Figure C.16: Results of all statistical tests done on the variable 'general feeling: optimistic-pessimistic', for the questionnaire filled in in February.

Appendix D Descriptive analysis tests - June

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a003	92	0.95983	3.094	2.494	0.00631
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob>z
dt10a003	19	0.92519	1.708	1.075	0.14115
	(b) \$	Shapiro-Will	k test on w	vomen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht		obs r	ank sum	expected
Candar	Mean Std De	u Freg	Male		92	5157	5152
Gender	nean bout be	v. rreq.	remaie		19	1059	1064
Male Female	2.3043478 1.38864 2.3684211 1.57093	41 92 48 19	combined	: :	111	6216	6216
			unadjusted v	ariance	16314	. 67	
Total	2.3153153 1.41409	77 111	adjustment f	or ties	-1491	.38	
W0 = 1.2423	37788 df(1, 109)	Pr > F = 0.2674	adjusted var	iance	14823	. 28	
W50 = 0.8658	39809 df(1, 109)	Pr > F = 0.3541	5 Ho: dt10a003	(geslacht z = 0	t==Male) .041	= dt10a0	03(geslacht==Female
W10 = 1.2423	37788 df(1, 109)	$\Pr > F = 0.2674$	B Prob >	z = 0	. 9672		
	(c) Levene's tes	it		(d) M	Mann-W	Vhitney U	J test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	92	2.304348	.1447762	1.388644	2.016768	2.591928
Female	19	2.368421	.3603972	1.570935	1.611255	3.125587
combined	111	2.315315	.1342202	1.414098	2.049322	2.581308
diff		0640732	.3579229		7734647	. 6453183
diff =	= mean(Male	e) - mean(Fem	ale)		t	= -0.1790
Ho: diff =	= 0			degrees	of freedom	= 109
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr(T < t)) = 0.4291	Pr(T > t) =	0.8583	Pr(T ≻ t) = 0.5709
			(e) T-test	t		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.1001	0.729	
Female:	-0.0715	0.851	
Combined K-S:	0.1001	0.997	0.991
	(f) Ke	olmogorov-	Smirnov tes

Figure D.1: Results of all statistical tests done on the variable 'past trading', for the questionnaire filled in in June.

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a004	67	0.96510	2.073	1.582	0.05686
	(a)	Shapiro-Wi	lk test on	men	

(a) Snapiro-Wilk test on n	ler
----------------------------	-----

Variable	Obs	W	v	z	Prob≻z
dt10a004	14	0.98920	0.200	-3.170	0.99924
	(h) C	hanina Will	toot on m		

(b) Shapiro-Wilk test on women

	G	ender		Mean	Std.	Dev.	Freq.	
		Male	2.	4477612	1.48	00039	67	
	F	emale	2.	8571429	1.70	32613	14	
		Total	2.	5185185	1.51	74906	81	
WO	=	0.448	54021	df(1,	79)	Pr ≻ F	= 0.5049818	35
W50	=	0.4502	22486	df(1,	79)	Pr ≻ F	= 0.5041853	32
W10	=	0.448	54021	df(1,	79)	Pr > F	= 0.5049818	35
				(c) Lev	vene's 1	test		

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
Male	67	2.447761	.1808113	1.480004	2.08676	2.808763	
Female	14	2.857143	. 4552157	1.703261	1.873709	3.840577	
combined	81	2.518519	.1686101	1.517491	2.182974	2.854063	
diff		4093817	. 4463739		-1.297867	.4791033	
diff = Ho: diff =	= mean(Male = 0	e) - mean(Fem	ale)	degrees	t of freedom	= -0.9171 = 79	
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff > 0	
$\Pr(T < t)$) = 0.1809	Pr(T > t) =	0.3619	Pr(T ≻ t) = 0.8191	
(d) T-test							

Figure D.2: Results of all statistical tests done on the variable 'future trading', for the questionnaire filled in in June.

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a005	323	0.98158	4.190	3.375	0.00037
	(a)) Shapiro-V	Vilk test or	n men	

Variable	Obs	W	v	z	Prob>z
dt10a005	128	0.98436	1.590	1.042	0.14870
	(b) \$	Shapiro-Wi	lk test on	women	

.

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht	obs	rank sum	expected
Graden	Mana Stal Dav		-	Male	323	72319	72998
Gender	Mean Std. Dev	7. Freq.	_	Female	128	29607	28928
Male	3.3962848 1.088150	59 323		combined	451	101926	101926
Female	3.4765625 1.042142	23 128	ι	unadjusted van	iance 1557	290.67	
Total	3.4190687 1.07475	58 451	a	adjustment for	ties -157	400.04	
W0 = 0.8838	39426 df(1, 449) I	Pr > F = 0.34764	79 a	adjusted varia	ince 1399	890.63	
W50 = 0.9477	76538 df(1, 449) I	Pr > F = 0.33081	93 F	Ho: dt10a005(g	geslacht==Ma z = -0.574	le) = dt10a0	05(geslacht==Female)
W10 = 0.9022	29402 df(1, 449) I	Pr > F = 0.34267	35	Prob ≻ z	= 0.5660		
	(c) Levene's test	5			(d) Manr	n-Whitney U	J test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	323	3.396285	.0605467	1.088157	3.277168	3.515402
Female	128	3.476563	.0921132	1.042142	3.294287	3.658838
combined	451	3.419069	.0506083	1.074757	3.319611	3.518527
diff		0802777	.1123126		3010012	.1404459
diff =	= mean(Male	e) - mean(Fer	nale)		t	= -0.7148
Ho: diff =	= 0			degrees	of freedom	= 449
Ha: di	iff ≺ 0		Ha: diff !=	0	Ha: d	iff ≻ 0
Pr(T < t)	= 0.2376	Pr(T > t) =	0.4751	Pr(T > t) = 0.7624
			(e) T-test	t		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male: Female:	0.0420	0.723	
Combined K-S:	0.0420	0.997	0.994

(f) Kolmogorov-Smirnov test

Figure D.3: Results of all statistical tests done on the variable 'next month return expectations AEX', for the questionnaire filled in in June. 103

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z		
dt10a006	327	0.97573	5.583	4.053	0.00003		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob≻z
dt10a006	129	0.93654	6.492	4.207	0.00001
	(b) S	hapiro-Will	k test on w	romen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

					geslacht		obs	rank sum	expected	
Gender	Mean	Std Dev	Freq		Male	3	327	76791	74719.5	
								27100		
Male	4.9051988	.86878584	327		combined	4	456	104196	104196	
Female	4.751938	.8199753	129				10004	0.05		
Total	4 8618421	85715611	456		adjustment for	r ties	-38069	91 82		
10041	1.0010121		100		adjustment it.	L DIES				
W0 = 0.0383	35698 df(1,	454) Pr	> F = 0.8448	569	adjusted varia	ance	122577	77.43		
W50 = 0.5432	20063 df(1,	454) Pr	> F = 0.4614		Ho: dt10a006(g	geslacht	t==Male	a) = dt10a0	06(geslacht=	==Female)
					:	z = 1.	.871			
W10 = 0.5157	74973 df(1,	454) Pr	> F = 0.4730	978	Prob ≻ z	= 0	.0613			
	(c) Lev	vene's test				(d) M	/Iann-	Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	327	4.905199	.048044	.8687858	4.810683	4.999714
remare	123	4.751536	.0721940	. 8199755	4.605088	4.034700
combined	456	4.861842	.04014	.8571561	4.782959	4.940725
diff		.1532608	.0889274		0214995	.3280211
diff =	= mean(Male)	- mean(Fe	male)		t	= 1.7234
Ho: diff =	= 0			degrees	of freedom =	= 454
Ha: di	iff < 0		Ha: diff !=	0	Ha: d:	iff ≻ 0
$\Pr(T < t)$	= 0.9573	Pr(T > t) = 0	0.0855	$\Pr(T > t)$) = 0.0427
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0000	1.000	
Female:	-0.0905	0.220	
Combined K-S:	0.0905	0.435	0.406
	$(f) \mathbf{V}$	Imoronou	Sminnort

(f) Kolmogorov-Smirnov test

Figure D.4: Results of all statistical tests done on the variable 'next year return expectations AEX', for the questionnaire filled in in June.

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob>z
dt10a007	273	0.99244	1.481	0.918	0.17921
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a007	105	0.99604	0.341	-2.396	0.99171
	(b) S	Shapiro-Wil	k test on v	vomen	

	G	ender		Mean	Std.	Dev.	Freq.	
		Male	3.	7582418	1.00	74063	273	
	F	emale	з.	5142857	1.084	41009	105	
		Total	3.	6904762	1.03	33633	378	
WO	=	3.1220	0346	df(1,	376)	Pr ≻ F	= 0.0780514	9
W50	=	4.8747	7118	df(1,	376)	Pr ≻ F	= 0.0278560	7
W10	=	2.8523	3523	df(1,	376)	Pr ≻ F	= 0.0920694	
				(c) Le	vene's t	\mathbf{est}		

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	273	3.758242	.060971	1.007406	3.638207	3.878277
Female	105	3.514286	.1057974	1.084101	3.304485	3.724086
combined	378	3.690476	.0531643	1.033633	3.58594	3.795012
diff		.243956	.118186		.0115676	. 4763445
diff =	= mean(Male)	- mean(Fem	ale)		t	= 2.0642
Ho: diff =	= 0			degrees	of freedom :	= 376
Ha: di	iff ≺ O		Ha: diff !=	0	Ha: d	iff ≻ 0
Pr(T < t)) = 0.9802	Pr(T > t = 0	0.0397	$\Pr(T > t)$) = 0.0198
			(d) T-test	- -		

Figure D.5: Results of all statistical tests done on the variable 'next month return expectations S&P 500', for the questionnaire filled in in June.

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z	
dt10a008	269	0.98476	2.949	2.525	0.00579	
(a) Shapiro-Wilk test on men						

Variable	Obs	W	v	z	Prob>z
dt10a008	101	0.97646	1.959	1.493	0.06772
	(b) S	Shapiro-Will	k test on w	vomen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht obs rank sum expected
				Male 269 52094 49899.5
Gender	Mean	Std. Dev.	Freq.	Female 101 16541 18735.5
Male Female	4.9107807 4.6534653	.91801769 .80542714	269 101	combined 370 68635 68635
Total	4.8405405	.89502069	370	unadjusted variance 839974.92 adjustment for ties -144974.17
WO = 0.419	58317 df(1,	368) Pr	> F = 0.5175	adjusted variance 695000.75
W50 = 0.000	07069 df(1,	368) Pr	> F = 0.9932	Ho: dt10a008(geslacht==Male) = dt10a008(geslacht==Female $z = 2.632$
W10 = 0.223	14852 df(1,	368) Pr	> F = 0.63693	Prob > z = 0.0085
	(c) Lev	vene's test		(d) Mann-Whitney U test

Two-sample t test with equal variances

_

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	269 101	4.910781 4.653465	.0559725 .080143	.9180177 .8054271	4.800579 4.494464	5.020982 4.812467
combined	370	4.840541	.0465299	.8950207	4.749043	4.932038
diff		.2573153	.1037254		.0533465	.4612842
diff = Ho: diff =	= mean(Male) = 0	- mean(Fer	nale)	degrees	t of freedom	= 2.4807 = 368
Ha: d: Pr(T < t)	iff < 0) = 0.9932	Pr (Ha: diff !=	0 D.0136	Ha: d Pr(T > t	iff > 0) = 0.0068
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value		Exact
Male:	0.0050	0.996		
Female:	-0.1135	0.151		
Combined K-S:	0.1135	0.300		0.273
	(0)	-	~	

(f) Kolmogorov-Smirnov test

Figure D.6: Results of all statistical tests done on the variable 'next year return expectations S&P 500', for the questionnaire filled in in June. 106

Shapiro-Wilk W test for normal dat

Variable	Obs	W	v	z	Prob>z			
dt10a009	322	0.99548	1.026	0.060	0.47622			
(a) Shapiro-Wilk test on men								

Variable	Obs	W	v	z	Prob≻z		
dt10a009	127	0.99341	0.665	-0.916	0.82014		
	(b) S	(b) Shapiro-Wilk test on women					

	Gender		Mean	1 St	d. Dev			Freq	I-
	Male	2.	4285714	.7	506116	8		32	22
	Female	2.	6220472	2 .6	163014	9		12	27
	Total	2.	4832962	2.7	198163	2		44	19
wo	= 10.020	4175	df(1,	447)	Pr	>	F =	0.001	65396
W50	= 10.047	5875	df(1,	447)	Pr	>	F =	0.001	63028
W10	= 9.025	1829	df(1,	447)	Pr	>	F =	0.002	281246
			(c) Le	vene'	s test				

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	322	2.428571	.04183	.7506117	2.346276	2.510867
Female	127	2.622047	.0546879	.6163015	2.513821	2.730273
combined	449	2.483296	.0339702	.7198163	2.416535	2.550057
diff		1934758	.0688514		3290098	0579418
diff :	= mean(Male) - mean(Fem	ale)		t	= -2.8100
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom :	= 279.066
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$) = 0.0027	Pr()	T > t = 0	0.0053	$\Pr(T > t)$) = 0.9973
			(d) T-test	t		

Figure D.7: Results of all statistical tests done on the variable 'next month risk expectations AEX', for the questionnaire filled in in June.
Shapiro-Wilk W test for normal data

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob>z
dt10a010	327	0.99925	0.174	-4.127	0.99998
	(a)	Shapiro-Wi	ilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a010	130	0.99019	1.011	0.024	0.49057
	(b) S	hapiro-Will	k test on w	romen	

	G	ender		Mear	ı S	td.	Dev.				Freq.	
		Male	2.	5412844	1.	845	76292	2			327	,
	E	emale	2.	6923077		7859	98335	5			130)
		Total	2.	5842451	L.	831:	14612	2			457	,
WO	=	3.1721	1336	df(1,	455)		Pr	>	F	=	0.0755	57156
W50	=	3.1780	0266	df(1,	455)		Pr	>	F	=	0.0753	80144
W10	=	4.472	7822	df(1,	455)		Pr	>	F	=	0.0349	8194
				(c) Le	evene	e's t	est					

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	327 130	2.541284	.0467708	.8457629	2.449274 2.555918	2.633295
combined	457	2.584245	.0388794	.8311461	2.50784	2.66065
diff		1510233	.0859803		3199911	.0179446
diff = Ho: diff =	= mean(Male = 0	e) - mean(Fem	ale)	degrees	t of freedom	= -1.7565 = 455
Ha: di	iff < 0	Dr ()	Ha: diff !=	· 0	Ha: d	iff > 0 = 0.9602
	- 0.0390	EL ()	(d) T-tes	t	22(1 7 6	, = 0.9002

Figure D.8: Results of all statistical tests done on the variable 'next year risk expectations AEX', for the questionnaire filled in in June.

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a011	275	0.98952	2.066	1.697	0.04489
	(a)	Shapiro-W	ilk test on :	men	

Variable	Obs	W	v	z	Prob>z
dt10a011	107	0.99168	0.727	-0.710	0.76128
	(b) S	hapiro-Will	k test on w	romen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht	obs	rank sum	expected	
Gender	Mean Std.	Dev. Freq.	Male Female	275 107	50884.5 22268.5	52662.5 20490.5	
Male Female	2.4763636 .770 2.6542056 .715	33589 275 10395 107	combined	382	73153	73153	
Total	2.526178 .758	56997 382	unadjusted v adjustment fo	ariance 93 or ties -15	9147.92 0613.64		
W0 = 2.7763	3513 df(1, 380)	Pr > F = 0.09648	adjusted var:	iance 78	8534.28		
W50 = 3.6374	4866 df(1, 380)	Pr > F = 0.05724	Ho: dt10a011	(geslacht==M	[ale) = dt10a(11 (geslacht==F	female)
W10 = 2.2940	0475 df(1, 380)	Pr > F = 0.13070	Prob > :	z = -2.002 z = 0.045	3		
	(c) Levene's t	test		(d) Man	n-Whitney	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	275	2.476364	.046453	.7703359	2.384913	2.567814
Female	107	2.654206	.0691317	.7151039	2.517145	2.791266
combined	382	2.526178	.0388118	. 75857	2.449866	2.60249
diff		177842	.0860624		3470601	0086239
diff =	= mean(Male)	- mean(Fem	nale)		t	= -2.0664
Ho: diff =	= 0			degrees	of freedom :	= 380
Ha: di	iff ≺ 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$	= 0.0197	Pr(T > t = 0	0.0395	Pr(T > t) = 0.9803
			(e) T-test	5		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.1041	0.188	
Female:	0.0000	1.000	
Combined K-S:	0.1041	0.374	0.345
	(f) 17	. 1	C + -

(f) Kolmogorov-Smirnov test

Figure D.9: Results of all statistical tests done on the variable 'next month risk expectations S&P 500', for the questionnaire filled in in June.

Shapiro-Wilk 🛛	l test fo	or normal o	data
----------------	-----------	-------------	------

Variable	Obs	W	v	z	Prob≻z
dt10a012	267	0.99060	1.807	1.382	0.08355
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob>z
dt10a012	102	0.99668	0.279	-2.834	0.99770
	(b)	Shapiro-W	ilk test on	women	

	G	ender		Mean	Std.	Dev.			Freq.	
		Male	2.	5543071	.858	31306			267	
	F	emale	2.	6862745	. 832	27461			102	
		Total	2.	5907859	.852	12119			369	
WO	=	0.388	23290	df(1,	367)	Pr	> F	=	0.53361	673
W50	=	0.721	83334	df(1,	367)	Pr	> F	=	0.39609	708
W10	=	1.456	63893	df(1,	367)	Pr	> F	=	0.22824	299
				(c) Le	vene's	test				

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	267	2.554307	.0525279	.8583131	2.450884	2.65773
remare	102	2.000273	.0824075	.0322740	2.3228	2.049/45
combined	369	2.590786	.0443597	.8521212	2.503556	2.678016
diff		1319674	.0990838		3268106	.0628758
diff : Ho: diff :	= mean(Male = 0	e) - mean(Fem	ale)	degrees	t of freedom	= -1.3319 = 367
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0
$\Pr(T < t)$) = 0.0919	Pr(T > t =	0.1837	$\Pr(T > t$) = 0.9081
			(d) T-tes	t		

Figure D.10: Results of all statistical tests done on the variable 'next year risk expectations S&P 500', for the questionnaire filled in in June.

Shapiro-Wilk	W	test	for	normal	data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a016	23	0.91167	2.310	1.703	0.04430
	(a)	Shapiro-W	Vilk test on	men	

Variable	Obs	W	v	z	Prob>2
dt10a016	9	0.91114	1.306	0.457	0.32396
	(b) S	hapiro-Wil	k test on w	romen	

geslacht	obs	rank	sum	expected
Male Female	23 9	31 18	76.5 51.5	379.5 148.5
combined	32		528	528
unadjusted variance adjustment for ties		569.25 -57.49		
adjusted varia	ance	511.76		

Ho: dtl0a016(geslacht==Male) = dtl0a016(geslacht==Female) z = -0.133

Prob > |z| = 0.8945

(d) Mann-Whitney U test

Std. Dev. Gender Mean Freq. Male 2.2173913 1.4446302 23 Female 2.1111111 1.0540926 9 2.1875 1.3304741 32 Total = 2.2057848 df(1, 30) Pr > F = 0.14792713WO W50 = 1.6146901 df(1, 30) Pr > F = 0.21359968 W10 = 2.2057848 df(1, 30) Pr > F = 0.14792713(c) Levene's test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	23	2.217391	.3012262	1.44463	1.592686	2.842096
Female	9	2.111111	.3513642	1.054093	1.300864	2.921358
combined	32	2.1875	.2351968	1.330474	1.707813	2.667187
diff		.1062802	.5314068		9789973	1.191558
diff = Ho: diff =	= mean(Male) = O	- mean(Fe	male)	degrees	t : of freedom :	= 0.2000 = 30
Ha: d: Pr(T < t)	iff < 0) = 0.5786	Pr (Ha: diff != T > t) = (0 D.8428	Ha: d: Pr(T > t)	iff > 0) = 0.4214
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact	
Male:	0.1449	0.762		
Female:	-0.1304	0.802		
Combined K-S:	0.1449	0.999	0.991	
	(f) Ke	olmogorov-	Smirnov te	st

Figure D.11: Results of all statistical tests done on the variable 'Favorite sports team's performance', for the questionnaire filled in in June. 111

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a017	399	0.99223	2.134	1.803	0.03567
	(a)	Shapiro-Wi	ilk test on :	men	

Variable	Obs	W	v	z	Prob>z
dt10a017	213	0.99535	0.733	-0.716	0.76309
	(b) :	Shapiro-Wi	ilk test on	women	

.

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht	obs	rank sum	expected
			Male	399	117601.5	122293.5
Gender	Mean Std. Dev.	Freq.	Female	213	69976.5	65284.5
Male	2.6115288 .87796442	399	combined	612	187578	187578
Female	2.7887324 .8727882	213	unadjusted var	riance 4341	419.25	
Total	2.6732026 .87951828	612	adjustment for	rties -483	134.29	
W0 = 1.372	6442 df(1, 610) Pr	> F = 0.2418155	adjusted varia	ance 3858	284.96	
W50 = 2.015	4257 df(1, 610) Pr :	F = 0.15621841	Ho: dt10a017(6	geslacht==Ma z = -2.389	ale) = dt10a0	17(geslacht==Female
W10 = 1.749	0880 df(1, 610) Pr	≻ F = 0.18648705	Prob > z	= 0.0169	•	
	(c) Levene's test			(d) Manr	n-Whitney U	J test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	399 213	2.611529 2.788732	.0439532 .0598025	.8779644 .8727882	2.525119 2.670849	2.697938 2.906616
combined	612	2.673203	.0355524	.8795183	2.603383	2.743022
diff		1772036	.0743511		3232187	0311884
diff : Ho: diff :	= mean(Male = O	e) - mean(Fem	ale)	degrees	t of freedom	= -2.3833 = 610
Ha: d: Pr(T < t)	iff < 0) = 0.0087	Pr(Ha: diff != T > t) = 1	0 0.0175	Ha: d Pr(T > t	iff > 0) = 0.9913

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0975	0.071	
Female:	0.0000	1.000	
Combined K-S:	0.0975	0.143	0.132
	$(f) K_{c}$	Imororov	Smirnov to

(f) Kolmogorov-Smirnov test

Figure D.12: Results of all statistical tests done on the variable 'Current weather perception', for the questionnaire filled in in June. 112

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a018	399	0.97809	6.017	4.270	0.00001
	(a)	Shapiro-Wi	ilk test on i	men	

Variable	Obs	W	v	z	Prob≻z
dt10a018	213	0.96787	5.064	3.744	0.00009
	(b)	Shapiro-Wi	lk test on	women	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht	: (obs	rank sum	expected	
			Male	. :	399	120009.5	122293.5	
Gender	Mean Std. D	ev. Freq.	Female	: :	213	67568.5	65284.5	
Male Female	5.0952381 1.2783 5.2065728 1.4454	282 399 072 213	combined	L O	612	187578	187578	
			unadjusted v	ariance	434141	9.25		
Total	5.1339869 1.3387	178 612	adjustment f	or ties	-35959	8.45		
W0 = 8.351	5292 df(1, 610)	Pr > F = 0.00399	6 adjusted var	iance	398182	20.80		
W50 = 7.026	5826 df(1, 610)	Pr ≻ F = 0.00823	33 Ho: dt10a018	(geslach z = -1	t==Male .145	e) = dt10a0	18(geslacht=	=Female)
W10 = 8.302	0776 df(1, 610)	Pr > F = 0.00409	2 Prob >	z = 0	.2524			
	(c) Levene's tes	st		(d) N	Mann-V	Whitney U	J test	

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	399	5.095238	.0639965	1.278328	4.969425	5.221051
Female	213	5.206573	.0990377	1.445407	5.011348	5.401798
combined	612	5.133987	.0541145	1.338718	5.027714	5.24026
diff		1113347	.1179152		3431641	. 1204948
diff =	= mean(Mal	e) - mean(Fe	male)		t	= -0.9442
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom	= 389.803
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr(T < t)	= 0.1728	Pr(T > t) =	0.3457	Pr(T > t) = 0.8272
			(e) T-test	t		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0865	0.125	
Female:	-0.0185	0.910	
Combined K-S:	0.0865	0.250	0.232
	(f) Ko	olmogorov	-Smirnov test

Figure D.13: Results of all statistical tests done on the variable 'spring-autumn preference', for the questionnaire filled in in June. 113

Shapiro-Wilk	W	test	for	normal	data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z
dt10a019	399	0.95136	13.360	6.167	0.00000
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a019	213	0.94773	8.238	4.867	0.0000
	(b) S	hapiro-Will	test on w	omen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht	obs	rank sum	expected	
				Male	399	117923.5	122293.5	
Gender	Mean Std. Dev.	Freq.		Female	213	69654.5	65284.5	
Male	1.4611529 .71091255 1.5868545 73857075	399	_	combined	612	187578	187578	
	1.0000010		un	adjusted varia	ance 4341	419.25		
Total	1.504902 .72254471	612	ad	justment for t	ties -1.	10e+06		
W0 = 1.320	1040 df(1, 610) Pr > F	= 0.25102369	ad	justed variand	ce 3242	704.68		
W50 = 4.225	1239 df(1, 610) Pr > F	= 0.04025485	Но	: dt10a019(ges z =	slacht==Ma = -2.427	le) = dt10a0	19(geslacht=	=Female)
W10 = 4.593	9471 df(1, 610) Pr > F	= 0.03247988		Prob > z =	= 0.0152			
	(c) Levene's test				(d) Mann	-Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	399 213	1.461153	.0355901	.7109126	1.391185	1.531121
combined	612	1.504902	.0292071	. 7225447	1.447543	1.562261
diff		1257016	.0611535		2457984	0056047
diff = Ho: diff =	= mean(Male = 0	e) - mean(Fem	male)	degrees	t of freedom	= -2.0555 = 610
Ha: di	iff < 0	Dr (Ha: diff !=	0	Ha: d	iff > 0
Pr(1 < t)) = 0.0201	PI((e) T-test	5	Pr(1 > t) = 0.9799

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.1067	0.042	
Female:	0.0000	1.000	
Combined K-S:	0.1067	0.085	0.077
	(f) Ke	olmogorov	-Smirnov test

Figure D.14: Results of all statistical tests done on the variable 'suffering from winter blues', for the questionnaire filled in in June. 114

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z		
dt10a020	399	0.98706	3.554	3.017	0.00128		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z
dt10a020	213	0.98996	1.582	1.059	0.14480
	(b) S	hapiro-Will	k test on w	omen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

					geslacht	obs	rank sum	expected	
					Male	399	120198.5	122293.5	
Gender	Mean	Std. Dev.	Freq.		Female	213	67379.5	65284.5	
Male Female	2.4360902 2.4929577	.64993293 .66318072	399 213		combined	612	187578	187578	
					unadjusted var	iance 4341	1419.25		
Total	2.4558824	. 65459327	612		adjustment for	ties -883	3500.29		
W0 = 0.3539	96887 df(1,	610) Pr	> F = 0.5520	9563	adjusted varia	ince 3457	7918.96		
W50 = 1.2653	32722 df(1,	610) Pr	> F = 0.2610	3754	Ho: dt10a020(g z	eslacht==Ma = -1.127	ale) = dt10a0	20(geslacht=	=Female)
W10 = 0.4033	33652 df(1,	610) Pr	> F = 0.5256	929	Prob ≻ z	= 0.2599	9		
	(c) Lev	vene's test				(d) Manı	n-Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	399	2.43609	.0325373	. 6499329	2.372124	2.500057
Female	213	2.492958	.0454404	.6631807	2.403385	2.582531
combined	612	2.455882	.0264604	. 6545933	2.403918	2.507847
diff		0568675	.0555461		1659524	.0522174
diff =	= mean(Male	e) - mean(Fem	ale)		t	= -1.0238
Ho: diff =	= 0			degrees	of freedom	= 610
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0
$\Pr(T < t)$	= 0.1532	Pr(T > t =	0.3063	Pr(T ≻ t) = 0.8468
			(e) T-test	t		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0503	0.495	
Female:	-0.0003	1.000	
Combined K-S:	0.0503	0.874	0.851
	$(\mathbf{f}) \mathbf{I} \mathbf{Z}$	1	C

(f) Kolmogorov-Smirnov test

Figure D.15: Results of all statistical tests done on the variable 'currently feeling (mood)', for the questionnaire filled in in June. 115

Shapiro-Wilk W test for normal data

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Variable	Obs	W	v	z	Prob≻z
dt10a021	399	0.99473	1.447	0.879	0.18971
	(a)	Shapiro-Wi	ilk test on :	men	

Variable	Obs	W	v	z	Prob≻z
dt10a021	213	0.99315	1.080	0.178	0.42944
	(b) S	hapiro-Will	k test on w	romen	

	G	ender		Mean	Std.	Dev.			Freq.	
		Male	2.	6766917	.732	06055			399	
	I	emale	2.	6338028	. 66	38816			213	
		Total	2.	6617647	.708	82362			612	
WO	=	1.213	45108	df(1,	610)	Pr	> F	=	0.271	08418
W50	=	0.733	62723	df(1,	610)	Pr	> F	=	0.392	04633
W10	=	2.212	38631	df(1,	610)	Pr	> F	=	0.137	42346
				(c) Le	vene's	test				

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	399	2.676692	.0366489	.7320605	2.604642	2.748741
Female	213	2.633803	.0454884	.6638816	2.544135	2.72347
combined	612	2.661765	.0286525	.7088236	2.605495	2.718034
diff		.0428889	.0601745		0752854	.1610633
diff =	= mean(Male)	- mean(Fem	ale)		t	= 0.7127
Ho: diff =	= 0			degrees	of freedom	= 610
Ha: diff < 0 Ha: diff != 0 Ha: diff > 0						iff ≻ 0
$\Pr(T < t)$	= 0.7619	Pr()	T > t) = 0	0.4763	$\Pr(T > t$) = 0.2381
(d) T-test						

Figure D.16: Results of all statistical tests done on the variable 'general feeling: optimistic-pessimistic', for the questionnaire filled in in June.

Appendix E

Descriptive analysis tests - total dataset

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z		
dt10a003	318	0.97418	5.793	4.135	0.00002		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z		
dt10a003	98	0.96808	2.591	2.110	0.01744		
(b) Shapiro-Wilk test on women							

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht obs rank sum expect	ed
			Male 318 66935 663	03
Gender	Mean Std. Dev.	Freq.	Female 98 19801 204	33
Male	2.4748428 1.5147006	318	combined 416 86736 867	36
Total	2.4615385 1.5315042	416	unadjusted variance 1082949.00 adjustment for ties -89477.09	
W0 = 1.157	63658 df(1, 414) Pr >	F = 0.28258284	adjusted variance 993471.91	
W50 = 0.7004	40149 df(1, 414) Pr >	F = 0.40313164	Ho: dt10a003(geslacht==Male) = dt10a003(gesla z = 0.634	cht==Female)
W10 = 1.157	63658 df(1, 414) Pr >	F = 0.28258284	Prob > z = 0.5260	
	(c) Levene's test		(d) Mann-Whitney U test	

Two-sample t test with equal variances

_

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
Male	318	2.474843	.0849402	1.514701	2.307725	2.641961	
Female	98	2.418367	.1608176	1.592013	2.099189	2.737546	
combined	416	2.461538	.0750882	1.531504	2.313938	2.609139	
diff		.0564754	.1771368		2917243	. 4046751	
diff =	= mean(Male)	- mean(Fe	male)		t	= 0.3188	
Ho: diff =	= 0			degrees	of freedom :	= 414	
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0	
Pr(T < t)	= 0.6250	Pr(T > t) = 0	0.7500	Pr(T > t) = 0.3750	
(e) T-test							

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.0137	0.972	
Female:	-0.0755	0.425	
Combined K-S:	0.0755	0.786	0.751
	(C) TZ	1	a •

(f) Kolmogorov-Smirnov test

Figure E.1: Results of all statistical tests done on the variable 'past trading', for the total dataset.

Shapiro-Wilk	W	test	for	normal	data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z		
dt10a004	235	0.97681	3.983	3.206	0.00067		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z
dt10a004	60	0.97897	1.143	0.288	0.38672
	(b) S	hapiro-Will	k test on w	romen	

geslacht	obs	rank	sum	expected
Male Female	235	i 3407 958	7.5	34780 8880
combined	295	j 43	660	43660
unadjusted variance		47800.00		
adjusted varia	ance 3	21637.53		

Ho: dt10a004(geslacht==Male) = dt10a004(geslacht==Female) z = -1.239Prob > |z| = 0.2155

(d) Mann-Whitney U test

Gender Mean Std. Dev. Freq. Male 2.387234 1.4318742 235 2.7333333 1.676019 Female 60 Total 2.4576271 1.4882994 295 W0 = 7.7269121 df(1, 293) Pr > F = 0.00579231 W50 = 5.9452168 df(1, 293) Pr > F = 0.0153514W10 = 7.7269121 df(1, 293)Pr > F = 0.00579231(c) Levene's test

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	235	2.387234	.0934052	1.431874	2.203212	2.571257
Female	60	2.733333	.2163731	1.676019	2.300372	3.166295
combined	295	2.457627	.0866521	1.488299	2.28709	2.628164
diff		3460993	.2356732		8149012	.1227027
diff :	= mean(Male	e) - mean(Fe	male)		t	= -1.4686
Ho: diff :	= 0		Satterthwai	te's degrees	of freedom	= 82.3177
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
$\Pr(T < t)$) = 0.0729	Pr(T > t) =	0.1458	Pr(T > t) = 0.9271
			(e) T-test	5		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Exact
Male:	0.1305	0.196	
Female:	0.0000	1.000	
Combined K-S:	0.1305	0.390	0.352

(f) Kolmogorov-Smirnov test

Figure E.2: Results of all statistical tests done on the variable 'future trading', for the total dataset.

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z		
dt10a005	1105	0.98303	11.724	6.121	0.00000		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z		
dt10a005	453	0.97536	7.583	4.848	0.00000		
(b) Shapiro-Wilk test on women							

			geslacht	obs	rank sum	expected	
Gender	Mean Std. Dev.	Freq.	Male Female	1105 453	876634.5 337826.5	861347.5 353113.5	
Male Female	4.0162896 1.0536801 3.9072848 1.0434223	1105 453	combined	1558	1214461	1214461	
Total	3.9845956 1.0515396	1558	unadjusted va adjustment fo	riance 65 r ties -863	031736 85233.5		
W0 = 0.000	64762 df(1, 1556) Pr :	F = 0.97970061	adjusted vari	ance 56	396503		
W50 = 0.768	36540 df(1, 1556) Pr :	≻ F = 0.38085851	Ho: dt10a005(geslacht==Ma	ale) = dt10a0	05(geslacht==	Female)
W10 = 2.406	49747 df(1, 1556) Pr :	≻ F = 0.12103581	Prob > z	= 0.0418)		
	(c) Levene's test			(d) Mani	n-Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	1105	4.01629	.0316977	1.05368	3.954095	4.078484
Female	453	3.907285	.0490243	1.043422	3.810941	4.003629
combined	1558	3.984596	.0266405	1.05154	3.932341	4.036851
diff		.1090048	.0586188		0059753	. 2239849
diff =	= mean(Male)	- mean(Fer	nale)		t	= 1.8596
Ho: diff =	= 0			degrees	of freedom :	= 1556
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr(T < t)	= 0.9684	Pr(T > t) = 0	0.0631	Pr(T > t) = 0.0316
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected
Male:	0.0000	1.000	0.171
Female:	-0.0605	0.095	
Combined K-S:	0.0605	0.190	

(f) Kolmogorov-Smirnov test

Figure E.3: Results of all statistical tests done on the variable 'next month return expectations AEX', for the total dataset. 120

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z			
dt10a006	1128	0.97465	17.844	7.171	0.00000			
(a) Shapiro-Wilk test on men								

Variable	Obs	W	v	z	Prob>z
dt10a006	461	0.95681	13.505	6.234	0.0000
	(b) S	hapiro-Wil	k test on w	romen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht obs	rank sum expected
			Male 1128	941026.5 896760
Gender	Mean Std. Dev.	Freq.	Female 461	322228.5 366495
Male Female	5.3102837 .89234182 5.0455531 .78024994	1128 461	combined 1589	1263255 1263255
			unadjusted variance 6	8901060
Total	5.2334802 .86942859	1589	adjustment for ties -1	4655895
W0 = 52.043	3717 df(1, 1587) Pr	> F = 0.000000	0 adjusted variance 5	4245165
W50 = 20.30	1177 df(1, 1587) Pr	> F = 0.0000071	0 Ho: dt10a006(geslacht==M z = 6.010	ale) = dt10a006(geslacht==Female)
W10 = 32.684	4417 df(1, 1587) Pr	> F = 0.000000	1 Prob > z = 0.000	0
	(c) Levene's test		(d) Man	n-Whitney U test

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	1128	5.310284	.0265691	.8923418	5.258153	5.362414
Female	461	5.045553	.0363399	.7802499	4.97414	5.116966
combined	1589	5.23348	.0218108	.8694286	5.190699	5.276261
diff		.2647305	.0450167		.1763892	.3530719
diff =	= mean(Male)	- mean(Fem	ale)		t	= 5.8807
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom	= 970.085
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0
$\Pr(T < t)$) = 1.0000	Pr(T > t) = (0.0000	Pr(T ≻ t) = 0.0000
			(e) T-test	- ,		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Cor	rected
Male:	0.0000	1.000		
Female:	-0.1624	0.000		
Combined K-S:	0.1624	0.000		0.000
	(C) TZ	1	a	

(f) Kolmogorov-Smirnov test

Figure E.4: Results of all statistical tests done on the variable 'next year return expectations AEX', for the total dataset. 121

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z
dt10a007	925	0.99211	4.635	3.786	0.00008
	(a)	Shapiro-W	ilk test on r	nen	

Variable	Obs	W	v	z	Prob≻z
dt10a007	362	0.99364	1.601	1.115	0.13241
	(b) S	hapiro-Wil	k test on w	omen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

			geslacht	obs	rank sum	expected
Gender	Mean Std. Dev. F	req.	Male Female	925 362	616466 212362	595700 233128
Male Female	4.0454054 .99353591 3.8121547 1.0489759	925 362	combined	1287	828828	828828
			unadjusted var	iance 359	940567	
Total	3.979798 1.0144656	1287	adjustment for	ties -4253	3346.4	
W0 = 5.7560	0392 df(1, 1285) Pr > F = 0	.0165738	adjusted varia	ince 310	587220	
W50 = 1.7411	1228 df(1, 1285) $Pr > F = 0$.18723167	Ho: dt10a007(g z	eslacht==Ma: = 3.689	le) = dt10a00	07(geslacht==Female)
W10 = 1.7732	2634 df(1, 1285) Pr > F = 0	.18321488	Prob ≻ z	= 0.0002		
	(c) Levene's test			(d) Mann	-Whitney U	test

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	925	4.045405	.0326673	. 9935359	3.981295	4.109516
Female	362	3.812155	.055133	1.048976	3.703733	3.920577
combined	1287	3.979798	.028278	1.014466	3.924322	4.035274
diff		.2332507	.0640843		.1074056	. 3590958
diff :	= mean(Male)	- mean(Fer	male)		t	= 3.6398
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom :	= 628.698
Ha: d:	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0
$\Pr(T < t)$) = 0.9999	Pr(T > t) = 0	0.0003	Pr(T ≻ t) = 0.0001
			(e) T-test	,		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Cor	rected	
Male:	0.0000	1.000			
Female:	-0.0969	0.008			
Combined K-S:	0.0969	0.015		0.012	
	(C) TZ	1	C		

(f) Kolmogorov-Smirnov test

Figure E.5: Results of all statistical tests done on the variable 'next month return expectations S&P 500', for the total dataset. 122

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z		
dt10a008	920	0.98302	9.926	5.664	0.00000		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z
dt10a008	356	0.97220	6.897	4.570	0.0000
	(b) S	hapiro-Will	test on w	omen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht	obs	rank sum	expected	
				Male	920	613758	587420	
Gender	Mean	Std. Dev.	Freq.	Female	356	200968	227306	
Male Female	5.1695652 4.8932584	.94779271	920 356	combined	1276	814726	814726	
				unadjusted v	ariance 3	4853587		
Total	5.0924765	.91996921	1276	adjustment f	or ties -62	66410.5		
W0 = 11.5730	0458 df(1, 1	274) Pr	> F = 0.000689	adjusted var	iance 2	8587176		
W50 = 8.1948	3648 df(1, 1	274) Pr	> F = 0.00426	Ho: dt10a008	(geslacht==M z = 4.926	(ale) = dt10a	008 (geslacht=	==Female)
W10 = 13.1908	8863 df(1, 1	274) Pr	> F = 0.000292	Prob >	z = 0.000	0		
	(c) Lev	ene's test			(d) Man	n-Whitney	U test	

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	920	5.169565	.0312478	. 9477927	5.10824	5.230891
Female	356	4.893258	.0430246	.8117861	4.808643	4.977874
combined	1276	5.092476	.0257542	.9199692	5.041951	5.143002
diff		.2763068	.0531746		.1719175	. 380696
diff =	= mean(Male)	- mean(Fem	ale)		t	= 5.1962
Ho: diff =	= 0		Satterthwai	te's degrees	of freedom	= 747.9
Ha: d:	iff ≺ 0		Ha: diff !=	0	Ha: d	iff ≻ 0
$\Pr(T < t)$) = 1.0000	Pr(T > t =	0.0000	Pr(T ≻ t) = 0.0000
			(e) T-test	-		

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected
Male:	0.0000	1.000	
Female:	-0.1364	0.000	
Combined K-S:	0.1364	0.000	0.000
	(f) IZ	. 1	

(f) Kolmogorov-Smirnov test

Figure E.6: Results of all statistical tests done on the variable 'next year return expectations S&P 500', for the total dataset. 123

Shapiro-Wilk W	test	for	normal	data
----------------	------	-----	--------	------

Variable	Obs	W	v	z	Prob>z
dt10a009	1094	0.99824	1.206	0.465	0.32084
	(a)	Shapiro-W	ilk test on	men	

(a)	Shapho-	VV IIK	test	on	mer

Variable	Obs	W	v	z	Prob>z
dt10a009	468	0.99539	1.462	0.911	0.18113
	(b)	Shapiro-Wi	ilk test on	women	

	G	ender		Mear	n Std.	Dev.		Freq.	
		Male	2.8	3848263	3.81	02094		1094	
	F	emale	2.8	8547009	9.740	56472		468	
		Total	2.8	3758003	3.789	87233		1562	
WO	=	3.6665	5018	df(1,	1560)	Pr	> F	= 0.055	69931
W50	=	4.9796	5852	df(1,	1560)	Pr	> F	= 0.025	78824
W10	=	3.6037	7098	df(1,	1560)	Pr	> F	= 0.057	83519
				(c) L	evene's	test			

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	1094 468	2.884826 2.854701	.0244956 .0342326	.8102094 .7405647	2.836763 2.787432	2.93289 2.92197
combined	1562	2.8758	.0199856	.7898723	2.836599	2.915002
diff		.0301255	.0436354		0554647	.1157156
diff = Ho: diff =	= mean(Male) = 0	- mean(Fem	ale)	degrees	t : of freedom :	= 0.6904 = 1560
Ha: d: Pr(T < t)	iff < 0) = 0.7550	Pr (Ha: diff != T > t) = (0). 4901	Ha: d Pr(T > t	iff ≻ 0) = 0.2450
			(d) T-test			

Figure E.7: Results of all statistical tests done on the variable 'next month risk expectations AEX', for the total dataset.

Shapiro-Wilk	W	test	for	normal	data
--------------	---	------	-----	--------	------

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z	Va
dt10a010	1108	0.99436	3.904	3.387	0.00035	dt
	(a)	Shapiro-Wi	ilk test on 1	men		

Variable	Obs	W	v	z	Prob>z
dt10a010	474	0.99558	1.418	0.837	0.20135
	(b) S	hapiro-Will	k test on w	vomen	

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

				geslacht obs rank sum expected	
	I			Male 1108 892055.5 876982	
Gender	Mean	Std. Dev.	Freq.	Female 474 360097.5 375171	
Male Female	2.9783394 2.9008439	.91434426 .81000569	1108 474	combined 1582 1252153 1252153	
				unadjusted variance 69281578	
Total	2.9551201	.88483375	1582	adjustment for ties -7356126.2	
WO = 6.345	9722 df(1, 1	580) Pr	> F = 0.011862	1 adjusted variance 61925452	
W50 = 11.277	9536 df(1, 1	580) Pr	> F = 0.000802	8 Ho: dt10a010(geslacht==Male) = dt10a010(geslacht==Femal z = 1.915	e)
W10 = 13.098	1241 df(1, 1	580) Pr	> F = 0.000304	1 Prob > z = 0.0554	
	(c) Lev	rene's test		(d) Mann-Whitney U test	

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	1108	2.978339	.0274688	.9143443	2.924443	3.032236
Female	474	2.900844	.0372048	.8100057	2.827737	2.973951
combined	1582	2.95512	.0222463	.8848337	2.911485	2.998756
diff		.0774955	.0462464		0132555	.1682464
diff = Ho: diff =	= mean(Male) = 0	- mean(Fem	ale) Satterthwait	te's degrees	t : of freedom :	= 1.6757 = 1002
Ha: d: Pr(T < t)	iff < 0) = 0.9529	Pr(Ha: diff != T > t) = (0 0.0941	Ha: d: Pr(T > t	iff > 0) = 0.0471
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected
Male:	0.0210	0.746	
Female:	-0.0841	0.009	
Combined K-S:	0.0841	0.018	0.015
	(f) Ko	olmogoro	v-Smirnov test

Figure E.8: Results of all statistical tests done on the variable 'next year risk expectations AEX', for the total dataset. 125

Shapiro-Wilk W t	test for	normal	data
------------------	----------	--------	------

Variable	Obs	W	v	z	Prob≻z
dt10a011	938	0.99713	1.710	1.325	0.09254
	(a)	Shapiro-W	ilk test on	men	

Variable	Obs	W	v	z	Prob≻z
dt10a011	377	0.99671	0.860	-0.358	0.63986
	(b) S	hapiro-Will	k test on v	vomen	

	G	ender		Mean	Std.	Dev.	Freq.	
		Male	2.7	377399	. 827	41449	938	
	F	emale	2.7	771883	. 82	23982	377	
		Total	2.7	490494	. 82	53112	1315	
WO	=	0.586	57541	df(1,	1313)	Pr >	F = 0.443	84527
W50	=	0.406	52375	df(1,	1313)	₽r ≻	F = 0.523	379933
W10	=	0.4654	4830	df(1,	1313)	₽r ≻	F = 0.495	20898
				(c) Le	vene's	test		

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male	938	2.73774	.027016	.8274145	2.684721	2.790759
Female	377	2.777188	.0424372	.823982	2.693744	2.860632
combined	1315	2.749049	.0227867	.8263112	2.704347	2.793752
diff		0394485	.0503963		1383145	.0594176
diff	= mean(Male	a) - mean(Fem	ale)		t	= -0.7828
Ho: diff :	= 0			degrees	of freedom	= 1313
Ha: d	iff < 0		Ha: diff !=	0	Ha: d	iff > 0
Pr(T < t) = 0.2170	Pr()	T > t =	0.4339	Pr(T > t) = 0.7830
			(d) T-test	t		

Figure E.9: Results of all statistical tests done on the variable 'next month risk expectations S&P 500', for the total dataset.

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z		
dt10a012	928	0.99663	1.985	1.693	0.04525		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z
dt10a012	367	0.98954	2.667	2.325	0.01004
	(b) S	hapiro-Wilł	k test on w	omen	

				geslac	ht	obs	rank sum	expected	
				Ma	le	928	605922	601344	
Gender	Mean	Std. Dev.	Freq.	Fema	le	367	233238	237816	
Male Female	2.7898707 2.7384196	.92899174	928 367	combin	led 1	1295	839160	839160	
				unadjusted	variance	3678	32208		
Total	2.7752896	.9159455	1295	adjustment	for ties	-36890	91.9		
W0 = 0.526	60507 df(1,	1293) Pr >	F = 0.46816899	adjusted v	ariance	3309	93116		
W50 = 0.6258	59861 df(1,	1293) Pr >	F = 0.42911944	Ho: dt10a0	12 (geslach	ht==Male	e) = dt10a0	12 (geslacht=	=Female)
W10 = 0.5622	27870 df(1,	1293) Pr >	F = 0.45347999	Prob >	$ \mathbf{z} = 0$	D.4261			
	(c) Lev	vene's test			(d)	Mann-	Whitney U	J test	

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
Male	928	2.789871	.0304956	.9289917	2.730022	2.849719	
Female	367	2.73842	.0460536	.8822603	2.647857	2.828983	
combined	1295	2.77529	.0254528	.9159455	2.725356	2.825223	
diff		.0514511	.0564841		0593594	.1622616	
diff =	= mean(Male)	- mean(Fem	ale)		t	= 0.9109	
Ho: diff =	= 0			degrees	of freedom	= 1293	
Ha: d:	iff ≺ 0		Ha: diff !=	0	Ha: d	iff ≻ 0	
$\Pr(T < t)$) = 0.8187	Pr($\mathbb{T} > t) = 0$	0.3625	$\Pr(T > t$) = 0.1813	
(e) T-test							

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected	
Male:	0.0007	1.000	0.990	
Female:	-0.0268	0.685		
Combined K-S:	0.0268	0.992		

(f) Kolmogorov-Smirnov test

Figure E.10: Results of all statistical tests done on the variable 'next year risk expectations S&P 500', for the total dataset. 127

Shapiro-Wilk W test for normal data

Shapiro-Wilk W test for normal data

riable	Obs	W	v	z	Prob≻z		
10a016	299	0.99008	2.107	1.750	0.04010		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z
dt10a016	67	0.96362	2.161	1.672	0.04731
	(b)	Shapiro-Wil	k test on w	romen	

		geslacht		obs 1	cank sum	expected	
Gender	Mean Std. Dev. Freq.	Male Female		299 67	56142 11019	54866.5 12294.5	
Male Female	2.7458194 1.6102464 299 2.3731343 1.4856467 67	combined		366	67161	67161	
		unadjusted v	ariance	612675	5.92		
Total	2.6775956 1.5927544 366	adjustment f	or ties	-45285	5.17		
W0 = 1.6492	2814 df(1, 364) Pr > F = 0.19987	adjusted var	iance	567390	0.75		
W50 = 2.6353	3544 df(1, 364) Pr > F = 0.10537	Ho: dt10a016	(geslach	nt==Male)	= dt10a0	16(geslacht==	Female)
			z = 1	1.693			
W10 = 1.6492	2814 df(1, 364) Pr > F = 0.19987	Prob >	z = 0	0.0904			
	(c) Levene's test		(d) 1	Mann-W	Whitney U	J test	

Two-sample t test with equal variances

Va:

dt

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
Male	299	2.745819	.093123	1.610246	2.562557	2.929081	
Female	67	2.373134	.1815006	1.485647	2.010757	2.735512	
combined	366	2.677596	.0832546	1.592754	2.513877	2.841315	
diff		.3726851	.214695		0495132	. 7948833	
diff =	= mean(Male)	- mean(Fem	ale)		t	= 1.7359	
Ho: diff =	= 0			degrees	of freedom	= 364	
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff > 0	
Pr (T < t)	= 0.9583	Pr(T > t = 0	0.0834	Pr(T > t) = 0.0417	
(e) T-test							

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected
Male:	0.0000	1.000	
Female:	-0.1116	0.256	
Combined K-S:	0.1116	0.503	0.439

(f) Kolmogorov-Smirnov test

Figure E.11: Results of all statistical tests done on the variable 'Favorite sports team's performance', for the total dataset.

Shapiro-Wilk W test for normal data

(b) Shapiro-Wilk test on women

v

0.261

z

-3.280

Prob>z

0.99948

W

0.99945

Variable	Obs	W	v	z	Prob>z
dt10a017	1324	0.99877	1.000	0.001	0.49967
	(a)	Shapiro-W	ilk test on	men	

	G	ender		Mean	n Std.	Dev.		Freq.	
		Male	2.	827794	6 .833	32751		1324	
	F	emale	2.	869209	8 .898	326583		734	
		Total	2.	842565	6 .857	06514		2058	
WO	=	1.640	1579	df(1,	2056)	Pr	> F :	= 0.200	44825
W50	=	2.3428	5477	df(1,	2056)	Pr	> F :	= 0.126	03736
W10	=	2.307	9824	df(1,	2056)	Pr	> F :	= 0.128	86478
				(c) L	evene's	test			

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]	
Male	1324	2.827795	.0229019	.8333275	2.782867	2.872723	
remare	/34	2.00921	.0331556	. 0 9 0 2 0 3 0	2.004119	2.934301	
combined	2058	2.842566	.0188926	.8570651	2.805515	2.879616	
diff		0414152	.0394397		1187612	.0359307	
diff =	= mean(Male	e) - mean(Fem	ale)		t	= -1.0501	
Ho: diff =	= 0			degrees	of freedom	= 2056	
Ha: di	iff < 0		Ha: diff !=	0	Ha: d	iff ≻ 0	
Pr(T < t)	= 0.1469	Pr()	T > t) =	0.2938	Pr(T > t) = 0.8531	
(d) T-test							

Figure E.12: Results of all statistical tests done on the variable 'Current weather perception', for the total dataset.

Variable

dt10a017

Obs

734

Shapiro-Wilk W test for normal

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob>z				
dt10a018	1324	0.98677	10.774	5.953	0.00000				
(a) Shapiro-Wilk test on men									

Variable	Obs	W	v	z	Prob≻z				
dt10a018	734	0.98308	8.054	5.100	0.00000				
(b) Shapiro-Wilk test on women									

geslacht	0]	os ran	k sum	expected
Male Female	13:	24 13 34 7	47835 70876	1363058 755653
combined	20	58 21	18711	2118711
unadjusted van adjustment for	riance r ties	1.667e+08 -11400301		
adjusted varia	ance	1.553e+0	8	

Ho: dt10a018(geslacht==Male) = dt10a018(geslacht==Female) z = -1.221

Prob > |z| = 0.2219

(d) Mann-Whitney U test

Mean Std. Dev. Gender Freq. Male 5.2454683 1.2366361 1324 Female 5.2956403 1.381443 734 5.2633625 1.2900384 2058 Total W0 = 19.172494 df(1, 2056) Pr > F = 0.00001254W50 = 16.471282 df(1, 2056) Pr > F = 0.00005124W10 = 19.815807 df(1, 2056) Pr > F = 0.0000898(c) Levene's test

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	1324 734	5.245468 5.29564	.0339858 .05099	1.236636 1.381443	5.178796 5.195536	5.31214 5.395744
combined	2058	5.263362	.0284367	1.290038	5.207595	5.31913
diff		050172	.0612782		1703807	.0700366
diff : Ho: diff :	= mean(Male) = 0	- mean(Fe	male) Satterthwait	te's degrees	t = of freedom =	= -0.8188 = 1378.23
Ha: d: Pr(T < t)	iff < 0) = 0.2065	Pr(Ha: diff != T > t) = ((e) T-test	0 0.4131	Ha: di Pr(T > t)	iff > 0) = 0.7935

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected				
Male:	0.0664	0.015					
Female:	-0.0120	0.874					
Combined K-S:	0.0664	0.031	0.027				
	(f) Kolmogorov-Smirnov tes						

Figure E.13: Results of all statistical tests done on the variable 'spring-autumn preference', for the total dataset.

	Shapiro-Wilk	W	test	for	normal	data
--	--------------	---	------	-----	--------	------

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z				
dt10a019	1324	0.97039	24.120	7.971	0.00000				
(a) Shapiro-Wilk test on men									

Variable	Obs	W	v	z	Prob>z			
dt10a019	734	0.97490	11.952	6.065	0.00000			
(b) Shapiro-Wilk test on women								

geslacht o		ra ra	nk sum	expected
Male Female	1324 734	131 80	6235.5 2475.5	1363058 755653
combined	2058	2	118711	2118711
unadjusted van adjustment for	riance 1 c ties -	667e+ 407665	08 01	
adjusted varia	ance 1	.260e+	08	

Ho: dt10a019(geslacht==Male) = dt10a019(geslacht==Female) z = -4.172Prob > |z| = 0.0000

(d) Mann-Whitney U test

	Gender		Mear	n Std.	Dev.		Freq.	
	Male	1.4	690332	2 .701	86576		1324	
	Female	1.5	899183	3.736	46532		734	
	Total	1.5	5121477	7 .716	56432		2058	
WO	= 5.048	3381	df(1,	2056)	Pr	> F =	0.0243	74815
W50	= 13.5210	0017	df(1,	2056)	Pr	> F =	0.000	24196
W10	= 10.058	3597	df(1,	2056)	Pr	> F =	0.001	53853
			(c) L	evene's	test			

Two-sample t test with unequal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	1324 734	1.469033 1.589918	.019289 .0271834	.7018658 .7364653	1.431193 1.536552	1.506874 1.643285
combined	2058	1.512148	.0157955	.7165643	1.481171	1.543124
diff		120885	.0333317		1862685	0555015
diff Ho: diff	= mean(Male) = 0	- mean(Fen	ale) Satterthwai	te's degrees	t of freedom	= -3.6267 = 1452.9
Ha: d Pr(T < t	iff < 0) = 0.0001	Pr(Ha: diff != T > t) = 1	0 D.0003	Ha: d Pr(T > t	iff > 0) = 0.9999
			(e) T-test			

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected			
Male:	0.0958	0.000				
Female:	0.0000	1.000				
Combined K-S:	0.0958	0.000	0.000			
	(f) Kolmogorov-Smirnov					

Figure E.14: Results of all statistical tests done on the variable 'suffering from winter blues', for the total dataset.

Shapiro-Wilk	W	test	for	normal	data

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z		
dt10a020	1324	0.99188	6.618	4.733	0.00000		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z		
dt10a020	734	0.99146	4.066	3.429	0.00030		
(b) Shapiro-Wilk test on women							

geslacht	ol	os	rank	sum	expected
Male Female	132 73	24 34	1355382 763329		1363058 755653
combined	205	58	211	8711	2118711
unadjusted variance adjustment for ties		1.667 -3298	7e+08 38596		
adjusted variance		1.338	8e+08		

Ho: dtl0a020(geslacht==Male) = dtl0a020(geslacht==Female) z = -0.664Prob > |z| = 0.5069

0.0000

(d) Mann-Whitney U test

	G	ender		Mear	n Std	l. Dev.		Freq.	
	F	Male emale	2.	487160: 514986	1.63 4.67	933883 838902		1324 734	
		Total	2.	497084	5.65	350575		2058	
WO	=	2.6291	7856	df(1,	2056)	Pr	> F =	0.1050	292
W50	=	1.2960	0660	df(1,	2056)	Pr	> F =	0.2550	6571
W10	=	2.461	7068	df(1,	2056)	Pr	> F =	0.1168	0584
				(c) L	evene's	s test			

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	1324 734	2.48716 2.514986	.0175706 .0250398	.6393388 .678389	2.452691 2.465828	2.521629 2.564145
combined	2058	2.497085	.0144054	. 6535058	2.468834	2.525335
diff		0278263	.0300743		0868055	.031153
diff = Ho: diff =	= mean(Male = 0	e) - mean(Fe	male)	degrees	t : of freedom :	= -0.9253 = 2056
Ha: d: Pr(T < t)	iff < 0) = 0.1775	Pr(Ha: diff != T > t) = (e) T-test	0 0.3549 t	Ha: d Pr(T > t	iff > 0) = 0.8225

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected			
Male:	0.0131	0.850				
Female:	-0.0019	0.997				
Combined K-S:	0.0131	1.000	1.000			
(f) Kolmogorov-Smirnov te						

Figure E.15: Results of all statistical tests done on the variable 'currently feeling (mood)', for the total dataset.

Shapiro-Wilk W test for normal data

Variable	Obs	W	v	z	Prob≻z		
dt10a021	1324	0.99686	2.556	2.350	0.00938		
(a) Shapiro-Wilk test on men							

Variable	Obs	W	v	z	Prob>z	
dt10a021	734	0.99489	2.432	2.173	0.01490	
(b) Shapiro-Wilk test on women						

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

geslacht	ob	s ran)	c sum	expected
Male Female	132 73	4 138 4 73	34059 34652	1363058 755653
combined	205	8 211	18711	2118711
unadjusted van adjustment for	ciance c ties	1.667e+08 -29957343	3	
adjusted variance		1.368e+08	3	

$$> |z| = 0.0726$$

(d) Mann-Whitney U test

Std. Dev. Gender Mean Freq. .71269464 Male 2.6759819 1324 Female 2.6103542 .67357176 734 Total 2.6525753 . 699535 2058 = 0.75525298 df(1, 2056) Pr > F = 0.38491962WO W50 = 0.05838213 df(1, 2056) Pr > F = 0.80909566 W10 = 0.01244448 df(1, 2056) Pr > F = 0.91118727(c) Levene's test

Two-sample t test with equal variances

Group	Obs	Mean	Std. Err.	Std. Dev.	[95% Conf.	Interval]
Male Female	1324 734	2.675982 2.610354	.0195866	.7126946 .6735718	2.637558 2.561545	2.714406
combined	2058	2.652575	.0154201	. 699535	2.622335	2.682816
diff		.0656276	.0321667		.0025449	.1287104
diff = Ho: diff =	= mean(Male) = 0	- mean(Fer	nale)	degrees	t : of freedom :	= 2.0402 = 2056
Ha: diff < 0 Pr(T < t) = 0.9793		Ha: diff != 0 Pr(T > t) = 0.0415 (e) T-test			Ha: d: Pr(T > t)	iff > 0) = 0.0207

Two-sample Kolmogorov-Smirnov test for equality of distribution functions

Smaller group	D	P-value	Corrected
Male:	0.0000	1.000	
Female:	-0.0317	0.387	
Combined K-S:	0.0317	0.729	0.709

(f) Kolmogorov-Smirnov test

Figure E.16: Results of all statistical tests done on the variable 'general feeling: optimistic-pessimistic', for the total dataset. 133