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Abstract

In this thesis, we consider �ow formulations for the Time Window As-
signment Vehicle Routing Problem (TWAVRP), the problem of assigning
time windows for delivery before demand volume becomes known. Using
commercial solver CPLEX as a basis, we develop a branch-and-cut algo-
rithm that is able to solve all test-instances of Spliet and Gabor (2014)
to optimality and is highly competitive with the state of the art solution
methods. Furthermore, we introduce a novel set of TWAVRP speci�c
valid inequalities, the precedence inequalities, and show that applying
them yields a competitive algorithm as well.
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1 Introduction

Distributors have always been interested in decreasing their transport costs by
creating e�cient routes. The literature clearly re�ects this desire with decades
of research into problems like the Traveling Salesman Problem (TSP) and the
Vehicle Routing Problem (VRP), with or without capacity constraints and/or
time constraints.

In this thesis, we consider a variant of the VRP with capacity constraints
and time window constraints in which customer demand is not deterministic,
but randomly drawn from a �nite set of scenarios. Furthermore, we are allowed
to set the time windows we need to adhere to ourselves, but only within �xed
exogenous time windows and only before the demand scenario becomes known.
The problem of setting time windows and creating routes for each of the sce-
narios simultaneously is called the Time Window Assignment Vehicle Routing
Problem (TWAVRP), and was �rst introduced by Spliet and Gabor (2014).

1.1 TWAVRP in practice

The TWAVRP occurs naturally when a distributor serves a �xed set of cus-
tomers on a regular basis. This is for example the case in the distribution
networks of retail chains. The retailers have to be supplied on a regular basis,
though their exact demand is not known until a short time before the actual
delivery takes place.

In practice, especially in retail, it is common to �x the time windows in
which delivery takes place for a longer period, for example a full year. One of
the arguments to do so, is that it is very convenient for the retailer to know when
delivery takes place, so he can make sure there are enough workers available to
process the delivery. Spliet and Gabor (2014) found that current practice in
setting time windows is to replace the stochastic demand of each customer by
its expected demand and then solve a deterministic vehicle routing problem.
Afterwards, it is checked at what time each customer is served and this time is
approximately used as the middle of the time window. For example, we agreed
with store A to set a time window of 2 hours in width. In the optimal planning
based on the expected demand, store A is visited at 12h, which implies a time
windows from 11h to 13h. When all time windows are set, optimal routes are
created for each scenario, adhering to the time windows.

It is important to notice that this procedure in general does not lead to
the minimum costs solution, as minimizing costs for the expected demand is
inherently di�erent from minimizing expected costs for non-deterministic de-
mand. Spliet and Gabor (2014) encountered up to 5% decrease in costs over
the current practice when they solved the TWAVRP for their test instances.

1.2 Related problems

The TWAVRP is related to a large number of problems, including (but not
limited to) the Vehicle Routing Problem (VRP), Capacitated Vehicle Routing
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Problem (CVRP), Vehicle Routing Problem with Time Windows (VRPTW),
Traveling Salesman Problem (TSP), Traveling Salesman Problem with Time
Windows (TSPTW) and Bin Packing Problem (BPP).

VRP is the problem of constructing vehicle routes such that all customers are
visited by exactly one truck, minimizing costs. It is the predecessor of CVRP,
VRPTW and TWAVRP. One limitation of VRP is that is assumes that the
trucks have unlimited capacity, which is often not appropriate for real-life appli-
cations. To include truck capacity, CVRP was introduced. VRPTW generalizes
CVRP by also requiring deliveries to be made in a prespeci�ed time windows.
These time windows are assumed to be �xed.

TWAVRP is concerned with actually setting the (endogenous) time win-
dows, though they must be set within larger exogenous time windows. The
exogenous time windows could be dictated, for example, by the opening hours
of the retailer. When customer demand is known up front, one can simply solve
a VRPTW with the exogenous time windows, and pick arbitrary time windows
that satisfy the solution of the VRPTW. Spliet and Gabor, however, found that
in practice it is often the case that the time windows are set before demand is
known, hence the introduction of the TWAVRP.

The relation between VRP and TSP is a clear one: constructing a schedule
to visit all customers with only one truck is exactly the TSP. This relation has
been exploited for creating solution methods and valid inequalities for variants
of the VRP, as will be discussed later.

The BPP is the problem of packing a number of items in the minimum
number of bins. Each item has a weight, and the total allowed weight per bin is
restricted. This problem can be seen as a special case of the CVRP in which the
travel costs on the arcs leaving the depot are equal to one, and all other costs
are equal to zero, e�ectively minimizing the number of vehicles. Furthermore,
bin packing occurs as a subproblem in some constraints and valid inequalities
that will be discussed later.

1.3 State of the art

VRPs turn out to be di�cult to solve to optimality. By now, TSPs of thousands
of cities have been solved, while VRPs can only be solved to optimality up to
about 100 customers (Laporte, 2009). This number should be used with caution
as test instances vary across authors and performance on random instances is
often worse. It does give a good impression about the complexity of the problems
though.

As the TWAVRP includes determining schedules for all scenarios, it is con-
siderably harder than the VRPTW. It is thus no surprise that only random
instances up to 25 customers and 3 scenarios could be solved within one hour
of computation time (Spliet and Gabor, 2014).

In the next three subsections, I will discuss the methods with which these
state of the art results for CVRP, VRPTW and TWAVRP have been obtained.
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1.3.1 CVRP

In a recent survey, Baldacci et al. (2012) mention there are three formulations
that have been most successful in solving the CVRP. The �rst one is the 2-index
�ow formulation, originally introduced by Laporte et al. (1985). This formula-
tion uses binary variables to indicate �ows on the arcs of the network graph.
To restrict the vehicle capacity, the so called generalized subtour elimination
constraints are introduced. These constraints assure that for each subset of cus-
tomers enough vehicles enter and leave the subset to satisfy demand. Note that
determining a tight lowerbound on the necessary number of vehicles is a bin
packing problem, which is NP-hard. Luckily we do not have to solve a NP-hard
problem for each subset of customers, as the formulation is also valid when the
tight lowerbounds are replaced by not necessarily tight, but easier to calculate
lowerbounds.

The second formulation is the 2-commodity �ow formulation of Baldacci
et al. (2004). Inspired by a 2-commodity �ow formulation for the TSP, this
formulation is a typical example of TSP results being applied to VRP-like prob-
lems. In this formulation, two variables are introduced for each arc of the net-
work graph. The �rst variable represents the current load of the vehicle, while
the second keeps track of the empty space. Truck capacity is then constrained
by making sure the empty space on the truck stays non-negative. An advantage
of this approach is that the number of restrictions is no longer exponential, like
with the 2-index �ow formulation.

The third formulation is the set partitioning formulation, �rst presented by
Balinski and Quandt (1964). In the set partitioning formulation, each binary
variable is associated with a path in the network graph for which the capacity
constraint is met. The formulation itself is a simple one, but requires an expo-
nential number of path parameters to be calculated up front. To overcome this
problem, column generation approaches have been introduced. An advantage of
using the set partitioning formulation is that, when used in a branch-and-bound
framework, such formulations usually yield good lower bounds.

The state of the art results that rely on one of the �ow formulations make
use of branch-and-cut with special branching rules. An overview of valid in-
equalities can be found in the survey of Laporte (2009). A recent successful
branch-and-cut approach can be found in Lysgaard et al. (2004).

As mentioned, the set partitioning approaches rely on column generation
and e�ciently solving the associated pricing problem. Again, there is extensive
use of valid inequalities to strengthen the bounds. Recent succesfull approaches
based on the set partitioning formulation can be found in Fukasawa et al. (2006)
and in Baldacci et al. (2008).

1.3.2 VRPTW

For the CVRP we see successful applications using both the �ow- and the set par-
titioning formulations. The literature regarding the VRPTW, however, seems
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to be much more focused on the set partitioning formulation. Baldacci et al.
(2012) mention that this set partitioning formulation has given the best results
recently.

One study in which a �ow formulation has been applied to solve the VRPTW
is the study of Bard et al. (2002). Bard et al. use a di�erent �ow formulation
from the ones previously discussed. The major di�erence is that the previous
formulations in their basic forms all work on an undirected network graph, while
they use a directed graph to include both the capacity and the time constraints.

1.3.3 TWAVRP

The TWAVRP has only been introduced recently, and to the best of my knowl-
edge the only research on this speci�c problem was conducted by Spliet and
Gabor (2014) on the TWAVRP and by Spliet and Desaulniers (2012) on the
discrete version of the TWAVRP, in which only a �nite number of di�erent time
window assignments are allowed. Guided by the VRPTW literature, Spliet and
Gabor (2014) also made use of the set partitioning formulation to solve the
TWAVRP. This method allows for random instances with up to 25 customers
and 3 demand scenarios to be solved within one hour.

1.4 Thesis contribution

Considering the di�culty of the TWAVRP, solving instances up to 25 customers
and 3 demand scenarios is impressive. From a practical viewpoint, however, 25
customers is not that much. It is thus important to improve on the solution
methods for the TWAVRP so larger instances can also be solved within reason-
able time.

In this thesis, we will solve the TWAVRP by using �ow formulations in a
branch-and-cut framework, opposed to the column generation approach taken
by Spliet and Gabor (2014). While �ow formulations are expected to give worse
lower bounds than when using column generation, the decrease in time necessary
to obtain these bounds might yield a net decrease in solving time.

In Section 2 we will present a general �ow formulation that allows for dif-
ferent ways of modeling time and capacity. The general formulation will be the
basis for our branch-and-cut algorithm. Valid inequalities that may speed up
computation are discussed in Section 3 after which we will discuss the separation
of these cuts in Section 4. In the sections afterwards, we de�ne our branch-and-
cut framework and our experiments. This thesis ends with a discussion of the
results and the conclusion.
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2 General �ow formulation

As we have already seen in the previous section, there are many di�erent ways
to formulate the TWAVRP, even when we restrict ourselves to 2-index �ow for-
mulations. In this section we will set up a general �ow formulation. That is,
we introduce the variables and constraints that all �ow formulations have in
common. Before doing so, we will �rst formally state the TWAVRP.

De�ne the following graph, sets and parameters:

V ′ = {1, . . . , n} set of nodes representing the customers
V = V ′ ∪ {0, n+ 1} V ′ including the starting (0) and ending (n+ 1) depot
G = (V,E) complete, directed graph
cij cost of traveling arc (i, j) ∈ E, cij ≥ 0, satis�es triangle inequality,

symmetric costs (cij = cji)
tij time to travel arc (i, j) ∈ E, tij > 0, satis�es triangle inequality,

symmetric travel times (tij = tji)
Q capacity of a single vehicle, non-negative
si start time exogenous time window of node i ∈ V ′
ei end time exogenous time window of node i ∈ V ′
wi width of endogenous time window of node i ∈ V ′
Ω set of scenarios, |Ω| <∞
pω probability of scenario ω ∈ Ω,

∑
ω∈Ω pω = 1

dωi demand at node i ∈ V under scenario ω ∈ Ω,
0 ≤ dωi ≤ Q, dω0 = dωn+1 = 0

Furthermore, de�ne the decision variables:

yi start of endogenous time window of node i ∈ V ′

xωij

{
1 if arc (i, j) ∈ E is used in scenario ω ∈ Ω
0 otherwise

tωi point in time customer i ∈ V ′ is serviced, under scenario ω ∈ Ω

We de�ne a route for scenario ω ∈ Ω to be a pair (P, t) in which P is an
elementary path in G from 0 to n + 1 and t is a vector containing the values
tωi for all nodes visited by P , in order. A feasible route for scenario ω ∈ Ω is a
route for which all of the following statements hold:

1. the sum of the demands for all nodes visited by P is not larger than Q

2. the exogenous time window constraints are met (si ≤ tωi ≤ ei ∀i ∈ V ′)
3. t is feasible (tωj ≥ tωi + tij ∀{i, j ∈ V |(i, j) ∈ E is used in path P})
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The TWAVRP is the problem of determining time windows (yv) before demand
is known. After the demand scenario has been revealed, a selection of feasible
routes is chosen in which every customer is visited exactly once and within the
previously set time windows. The objective of the TWAVRP is to minimize the
expected traveling costs

∑
ω∈Ω pω

∑
(i,j)∈A cijxij .

This de�nition leads to the following general �ow formulation:

General �ow formulation:

min
∑
ω∈Ω

pω
∑

(i,j)∈E

cijx
ω
ij (1)

subject to ∑
j∈V ′∪{n+1}

xωij = 1 ∀i ∈ V ′, ω ∈ Ω (2)

∑
i∈V ′∪{0}

xωij = 1 ∀j ∈ V ′, ω ∈ Ω (3)

∑
j∈V ′∪{n+1}

xω0j =
∑

j∈V ′∪{0}

xωj,n+1 ∀ω ∈ Ω (4)

Time-of-service constraints (5)

Capacity constraints (6)

s0 ≤ tωj − t0j ∀j ∈ V ′, ω ∈ Ω (7)

e0 ≥ tωi + ti,n+1 ∀i ∈ V ′, ω ∈ Ω (8)

yi ≤ tωi ≤ yi + wi ∀i ∈ V ′, ω ∈ Ω (9)

si ≤ yi ≤ ei − wi ∀i ∈ V ′ (10)

xωn+1,i = 0 ∀i ∈ V, ω ∈ Ω (11)

xω0,n+1 = 0 ∀ω ∈ Ω (12)

xωij ∈ B ∀(i, j) ∈ E,ω ∈ Ω (13)

tωi ≥ 0 ∀i ∈ V ′, ω ∈ Ω (14)

yi ≥ 0, ∀i ∈ V ′ (15)

In the objective (1) we minimize the expected traveling costs over all scenarios.
This is done by multiplying the costs per scenario with the probability that
the scenario occurs. Constraints (2) ensures every customer node has out�ow
one. Combined with (3) this enforces that every customer is visited exactly
once. Constraints (4) make sure that all �ow sent into the network reaches
the destination depot, that is, the number of trucks to leave the depot is the
same as the number of trucks that return to the depot. Note that the previous
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constraints do not eliminate cycles in G. Explicit cycle elimination constraints
are not necessary in the general �ow formulation because all time-of-service
constraints discussed in this thesis will eliminate cycles if all travel times are
strictly positive. I am not aware of any set of time constraints that does not
implicitly eliminate cycles in this case.

Both sets of constraints (5) and (6) have not yet been speci�ed, as there are
multiple possibilities. In the following sections, di�erent options for both the
time-of-service constraints and the capacity constraints will be presented. The
time-of-service constraints, or time constraints for short, ensure that the time
of service at each client is modeled correctly. The capacity constraints ensure
the vehicle capacity is respected. For reader convenience, the actual constraints
they have to be replaced with, are surrounded by boxes. That is, the pragmatic
reader of this thesis can pick a box for both (5) and (6) and end up with a valid
formulation.

Constraints (7)-(10) deal with the time windows. (7) and (8) ensure trucks
only leave and arrive at the depot within its opening hours. Constraint (9) en-
forces each client is served within his endogenous time window, while constraint
(10) makes sure these endogenous time windows are within the exogenous time
windows.

Finally, the constraints (11) and (12) place some natural restrictions on the
�ow variables, which allow more convenient notation in the upcoming sections.
They restrict the use of �ows out of the node representing the destination depot
(11) and �ows between the two depot nodes (12).

2.1 Time-of-service constraints

In this section we discuss various ways to model the time constraints that replace
Equation (5).

2.1.1 MTZ-inequalities

A straightforward way to model time is by linearizing the following statement:

xωij = 1⇒ tωj ≥ tωi + tij ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω (16)

This statement could be paraphrased as: �if a truck drives from i to j, it arrives
at least its travel time later in j�. Linearization of if-statements is generally
done with the big-M method, yielding:

tωj ≥ tωi + tijx
ω
ij −Mij(1− xωij) ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω (17)

in which Mij are large positive values such that when xωij = 0 the constraint
becomes inactive. The inequalities in (17) are often referred to as the MTZ-
inequalities, and have been named after Miller, Tucker, and Zemlin (1960).

If we use the exogenous time windows of tωj and tωi we have tωj − tωi ≥ sj−ei.
In our speci�c case, we can thus use Mij = ei − sj without cutting o� any
feasible solutions. Substituting these values, we have:
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Time constraints: MTZ-inequalities

tωj ≥ tωi + tijx
ω
ij − (ei − sj)(1− xωij) ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω (18)

2.1.2 A�ne combination inequalities

If we combine the logic of the MTZ-inequalities with the fact that every node,
except for the depot nodes, has exactly one predecessor node, we can write the
current time as an a�ne combination of all partial predecessors in the following
way:

tωj ≥
∑

i∈V ′∪{0}

(tωi + tij)x
ω
ij ∀j ∈ V ′, ω ∈ Ω (19)

The correctness of (19) follows from the fact that
∑
i∈V ′∪{0} x

ω
ij = 1 and the

integrality of the x-variables.
The problem in using (19) is that the product of tωi and xωij causes the

constraints to be non-linear. While this is not generally true for any product
of variables, a product involving a binary variable and a bounded continuous
variable can always be linearized (Rubin, 2010). Note that xωij is binary and
si ≤ tωi ≤ ei, and hence linearization is possible.

Let us introduce the continuous variable gωij which will be equal to the prod-
uct of tωi and xωij for every integer solution.

gωij ≥ sixωij (20)

gωij ≥ tωi − ei(1− xωij) (21)

gωij ≤ eixωij (22)

gωij ≤ tωi − si(1− xωij) (23)

Equations (20)-(23) are best explained with the help of Figure 1. Figure 1
visualizes the situation in which the value of tωi is �xed at the value t. The
dotted line corresponds to the product tωi x

ω
ij , which is the non-linear expression

we want to linearize. Equations (20)-(23) are represented by 1©- 4© respectively.
Together they de�ne the feasible region of gωij , the gray area. From the �gure it
is clear why xωij = 0 =⇒ gωij = 0 and xωij = 1 =⇒ gωij = t.

We can now replace (19) by its linear counterpart:

tωj ≥
∑

i∈V ′∪{0}

(
gωij + tijx

ω
ij

)
∀j ∈ V ′, ω ∈ Ω (24)

Note that the g-variables only occur in (20)-(23) and (24). It follows that in the
LP relaxation, it is optimal to pick gωij as small as possible, to maximizes the
slack of (24); picking a larger value for the g-variable only restricts the range of
tωj . Hence, it is not necessary to bound g

ω
ij from above ((22) and (23)). The full

linearization of (19) is then given by:
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Figure 1: Visualization of (20)-(23)

Time constraints: a�ne combination predecessors

tωj ≥
∑

i∈V ′∪{0}

(
gωij + tijx

ω
ij

)
∀j ∈ V ′, ω ∈ Ω (24)

gωij ≥ sixωij ∀i ∈ V ′ ∪ {0},∀j ∈ V ′, ω ∈ Ω (20)

gωij ≥ tωi − ei(1− xωij) ∀i ∈ V ′ ∪ {0},∀j ∈ V ′, ω ∈ Ω (21)

Instead of using an a�ne combination of the predecessors, we could also use an
a�ne combination of the successors in the following way:

tωi ≤
∑

j∈V ′∪{n+1}

(tωj − tij)xωij ∀i ∈ V ′, ω ∈ Ω (25)

Analogously, we introduce the variable hωij and we get:

Time constraints: a�ne combination successors

tωi ≤
∑

j∈V ′∪{n+1}

(
hωij − tijxωij

)
∀i ∈ V ′, ω ∈ Ω (26)

hωij ≤ ejxωij ∀i ∈ V ′,∀j ∈ V ′ ∪ {n+ 1}, ω ∈ Ω (27)

hωij ≤ tωj − sj(1− xωij) ∀i ∈ V ′,∀j ∈ V ′ ∪ {n+ 1}, ω ∈ Ω (28)

Note that gωij di�ers from hωij as g
ω
ij represents t

ω
i x

ω
ij and h

ω
ij represents t

ω
j x

ω
ij .
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Both the a�ne combinations of predecessors and the a�ne combinations of
successors can thus be used at the same time to strengthen the LP relaxation.

2.1.3 Convex hull formulation

Time constraints are naturally linked to logical constraints. We have already
seen this in the previous time constraints: the MTZ-inequalities are lineariza-
tions of if-conditions and the a�ne combination inequalities use the logic that
every node has exactly one predecessor or successor. Instead of formulating
linear constraints directly, it may prove valueble to state the time constraints
as logical constraints and apply the theory of disjunctive programming.

That is, we will interpret the �ow variables as Boolean variables and model
the time constraints as a logical conjunction (logical AND, ∧) of disjunctions
(logical OR, ∨). There are multiple ways to do so. For example, we can use the
fact that every node has one predecessor to get:∨

i∈V ′∪{0}

[
Xω
ij

tωj − tωi ≥ tij

]
= true ∀j ∈ V ′, ω ∈ Ω (29)

Xω
ij ∈ {true, false} ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω (30)

In Equation (29), the block is a conjunction with Xω
ij , which represents the arc

from i to j in scenario ω, and the associated time constraint. A block thus
only has value true when the arc is chosen AND the time constraint is met.
The OR condition ensures that at least one block is true, and thus at least one
predecessor is chosen.

When a linear program contains constraints in this form, the program is
known as a linear generalized disjunctive program (LGDP) (Sawaya and Gross-
mann, 2008). Solution methods for LGDPs vary, but often include reformulation
to a mixed integer linear problem. Raman and Grossmann proposed a big-M
reformulation for this purpose (Raman and Grossmann, 1994). If this reformu-
lation is applied to (29) and (30), the MTZ-inequalities (18) appear.

Later, Lee and Grossmann (2000) presented a formulation which gives tighter
LP bounds, known as the convex hull relaxation. The di�erence in LP bounds
between the big-M formulation and the convex hull formulation is easily un-
derstood by examining Figure 2. If we convert a LGDP to a MIP, then each
disjunct (a block in (29)) is represented by a feasible region in the MIP. In Fig-
ure 2, two such regions are represented by the areas `Disjunct 1' and `Disjunct
2'. As a MIP requires a connected feasible region, the disjuncts are `connected'
by additional variables and constraints. The convex hull reformulation does this
by constructing a convex hull of the disjuncts as the feasible region of the MIP,
as shown by the dark grey area. The big-M approach is simpler, but results in
a larger feasible region: the light gray area and the dark gray area combined.

We apply the Lee and Grossmann reformulation of (29) by rewriting our
problem in the same way as the general LGDP is rewritten in by Sawaya and

10



Disjunct 1

Disjunct 2

Big−M

Convex hull

Figure 2: Visualization of the di�erence between the big-M and the convex hull
formulation

Grossmann (2008):

tωl =
∑

i∈V ′∪{0}

vωijl ∀j ∈ V ′, l ∈ V ′ ∪ {0}, ω ∈ Ω (31)

vωijj − vωiji ≥ tijxωij ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω (32)

slx
ω
ij ≤ vωijl ≤ elxωij ∀i ∈ V ′ ∪ {0}, j ∈ V ′, l ∈ V ′ ∪ {0}, ω ∈ Ω (33)

vωijl ≥ 0 ∀i ∈ V ′ ∪ {0}, j ∈ V ′, l ∈ V ′ ∪ {0}, ω ∈ Ω (34)

While the above is a correct way to model time for the TWAVRP, it still lacks
a proper interpretation of why it is correct. By close inspection it can be seen
that vωijl allows for the following interpretation: if xωij = 1, vωijl is equal to the

service time of client l in scenario ω. If xωij = 0, vωijl is also 0.
In other words, for every integer solution, in scenario ω, each subscript l

de�nes a graph in which all arcs used by the vehicles correspond to a v-variable
with value tωl . An example is given by Figure 3.

The convex hull formulation allows for a reduction in the number of variables
by aggregation, without changing the feasible region in terms of the x- and
t-variables. The resulting formulation is presented in Appendix A. The formu-
lation in the appendix is the one that will be implemented.

For now, we will not look further into reformulations based on the LGDP
representation, as they are more di�cult to apply and do not have a clear inter-
pretation. It has to be mentioned though, there are multiple solution methods
available which may also be of use for the TWAVRP. An interesting paper in
this respect could be Grossmann and Ruiz (2012).
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2.1.4 Improved convex hull formulation

In the previous section, we have introduced the convex hull formulation. When
inspecting Figure 3, however, it seems the convex hull formulation is somehow
ine�cient, as there are multiple v-variables which attain the same non-zero
value. For example: there are n v-variables that attain the value tωi . This can
be overcome by removing one dimension from the v-variables (the one given by
subscript l) and de�ning the v-variables such that we get the network of Fig-
ure 4. That is, we de�ne vωij to equal t

ω
j when xωij = 1 and 0 otherwise.

Formally, we use the variables

vωij

{
tωj if xωij = 1, for (i, j) ∈ E and ω ∈ Ω
0 otherwise

This leads to the following formulation:

Time constraints: improved convex hull formulation

tωj =
∑

i∈V ′∪{0}

vωij ∀j ∈ V ′, ω ∈ Ω (35)

∑
j∈V ′∪{n+1}

vωij −
∑

k∈V ′∪{0}

vωki ≥
∑

j∈V ′∪{n+1}

tijx
ω
ij ∀i ∈ V ′, ω ∈ Ω (36)

sjx
ω
ij ≤ vωij ≤ ejxωij ∀i ∈ V ′ ∪ {0}, j ∈ V ′ ∪ {n+ 1}, ω ∈ Ω (37)

vωij ≥ 0 ∀i ∈ V ′ ∪ {0}, j ∈ V ′ ∪ {n+ 1}, ω ∈ Ω (38)

Constraint (36) di�ers from (32) by the summations, which are necessary to
determine, respectively, the time of service of the successor of client i, the value
of tωi and the travel time from i to its successor. The other constraints are
similar to the constraints in the convex hull formulation.

The formulation presented above is not new: it also appears (with slightly
di�erent variables) in the literature on the asymmetric traveling salesman prob-
lem with time windows (Ascheuer et al., 2001).

2.1.5 Comparison

In the previous sections, we have discussed four distinct ways to model time
in the general formulation. The MTZ-inequalities are the simplest in multiple
ways. First, the underlying logic is simple. Second, the number of constraints is
relatively small compared to the other time constraints (see Table 4). Usually,
however, this also results in relatively bad LP bounds.

The a�ne combination inequalities are based on the stronger logical result
that the time of service of a client is later than the a�ne combination of the times
of service of all predecessors or successors. Based on this, one would expect the
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Figure 3: Example of (31)-(34) in scenario ω for a feasible solution of the
TWAVRP. The values on the arcs note the values of the associated v-variables.
All arcs that are not drawn have a value of 0 for the corresponding v-variables.
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Figure 4: Example of (35)-(38) in scenario ω for a feasible solution of the
TWAVRP. The values on the arcs note the values of the associated v-variables.
All arcs that are not drawn have a value of 0 for the corresponding v-variables.

13



a�ne combination inequalities to be stronger than the MTZ-inequalities. How-
ever, the applied linearization may diminish the e�ect of the stronger logical
result. Combined with the slowdown because of the larger number of variables
and constraints, it is not certain which formulation will allow for the best solu-
tion time when used in a branch-and-cut algorithm.

Taking a detour through disjunctive programming, we also constructed the
convex hull formulation to model time. This formulation has the largest number
of variables and constraints, but is also assumed to be relatively strong because
we use the convex hull of the disjunctions that naturally appear in the TWAVRP.
Its e�ect in a branch-and-cut framework cannot be stated up front, and has to be
tested empirically. The improved convex hull formulation reduces the number
of variables and constraints of the convex hull formulation considerably, but it
is yet uncertain how this a�ects the strength of the formulation.

Method Additional variables Additional constraints
MTZ-inequalities 0 (n2 + n)|Ω|
A�ne combination inequalities (n2 + n)|Ω| (2n2 + 3n)|Ω|
Convex hull formulation (3n2 + 2n)|Ω| (8n2 + 6n)|Ω|
Improved convex hull (n2 + 2n+ 1)|Ω| (n2 + 4n+ 1)|Ω|

Table 4: Number of variables and constraints that have to be added to the
general �ow formulation to model time using one of the discussed methods
(excluding ≥ 0 variable bounds)

2.2 Capacity constraints

In this section, we will discuss the various ways to model capacity, that is, to
�ll in (6) in the general �ow formulation. We will start by brie�y revisiting the
methods of the previous section, and adapt them to model capacity.

2.2.1 MTZ-inequalities

Bard et al. (2002) use the MTZ-inequalities to not only model time, but also
truck load. This can be accomplished by de�ning:

qωi su�cient truck load to serve up to client i ∈ V ′ (inclusive) under
scenario ω

For example, if a truck �rst visits client A and then client B, both with demand
3, then qA ≥ 3 and qB ≥ 6.

Analogous to Section 2.1.1 we arrive at the following MTZ-inequalities:

14



Capacity constraints: MTZ-inequalities

qωj ≥ qωi +dωj x
ω
ij+(dωj −Q)(1−xωij) ∀i ∈ V ′∪{0}, j ∈ V ′∪{n+1}, ω ∈ Ω (39)

dωi ≤ qωi ≤ Q ∀i ∈ V ′, ω ∈ Ω (40)

In which (39) can be seen as the capacity equivalent of the time constraint (17),
in which (dωj −Q) serves as the `big-M '. Equation (40) ensures truck load never
exceeds the capacity.

2.2.2 A�ne combination inequalities

Using the same truck load variables, we can construct a�ne combination in-
equalities analogous to Section 2.1.2. Because of the similarities, we will not
discuss the application of the a�ne combination inequalities to capacity.

The resulting equations for a�ne combinations of the predecessors can be
found in Appendix B.

2.2.3 (Improved) convex hull formulation

Also both the convex hull formulation and the improved convex hull formulation
of Sections 2.1.3 and 2.1.4 can be applied to capacity in an analogous way. We
do not present the full formulations.

2.2.4 Generalized subtour elimination constraints

A totally di�erent way of ensuring that the capacity of the trucks is not vio-
lated, is by using the generalized subtour elimination constraints. With these
constraints, we require for each subset S ⊂ V that the total number of trucks
leaving S is enough to satisfy all demand in S. That is, we add inequali-
ties:

Capacity constraints: generalized subtour elimination constraints∑
(i,j)∈(S,V \S)

xωij ≥ λωS ∀S ⊂ V, ω ∈ Ω (41)

with λωS the minimum number of trucks required to satisfy all demand in S.

There are two disadvantages to these constraints. First, determining λωS re-
quires solving a bin packing problem, and is thus NP-hard. This problem can be
overcome by replacing λωS by a suitable lower bound, like d

(∑
i∈S d

ω
i

)
/Qe (Bal-

dacci et al., 2012). The second disadvantage is that the number of constraints
is exponential in the number of customers. Simply adding all constraints is not
e�cient, but when used in a branch-and-cut procedure, the generalized subtour
elimination constraints can be very e�ective (Baldacci et al. (2012), Spliet and
Gabor (2014)).
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2.2.5 2-commodity �ow

The 2-commodity �ow formulation of Baldacci et al. (2004) was already men-
tioned in the introduction as one of the most successful formulations for solving
the CVRP. This makes it interesting to apply the capacity constraints to our
model as well. We can directly copy the part of their formulation that handles
the capacity constraint, after making two changes:

First, Baldacci et al. (2004) use a �xed number of vehicles. We replace this
number by a variable number of vehicles

∑
j∈V ′ xω0j for each scenario ω ∈ Ω.

Second, Baldacci et al. make use of a binary variable, indicating whether an
arc in the undirected graph is used or not. We replace this variable by xωij +xωji.
That is, an arc is used in the undirected graph when either arc between the same
nodes in the directed graph is used. Note that when xωij and xωji are integer,
they can not both be 1, as this would create a subtour, which would have been
eliminated by the time constraints.

To explain their formulation, Baldacci et al. make use of Figure 5 (adjusted
for notation di�erences). This �gure shows a path in scenario ω from the start-
ing depot to the ending depot, visiting clients 8, 2 and 9. This path is shown in
the �gure by the solid arrows. The reverse path is given by the dashed arrows.

We introduce variables zωij for all (i, j) ∈ E, ω ∈ Ω. zωij thus corresponds to
an arc (i, j) ∈ E in scenario ω. Its meaning, however, depends on whether the
arc follows a path from starting depot to ending depot (solid arrow), follows a
reverse path (dashed arrow), or is not used by any path (no arrow). In the �rst
case, zωij models the total truck load when traveling from i to j. In the second
case, zωij models the empty space on the truck, when traveling from i to j. If
the arc (i, j) is not being used, zωij is simply zero. The trick of this formulation
is that we can now restrict capacity by simply requiring the empty space on the
trucks to be non-negative at all times.

In Figure 5, the vehicle with capacity 15 leaves the starting depot with a
total load of 14, which is the total demand of the clients that he will be visiting.
This leaves 1 unit of empty space. Client 8 demands 3 units product (dω8 = 3).
During its travel to client 2, the vehicle has a total load of 11 units product and
4 units of empty space. At the end of its trip, the vehicle is empty, so the empty
space equals its capacity.

The formulation is given by:

Capacity constraints: 2-commodity �ow∑
j∈V

(zωji − zωij) = 2dωi ∀i ∈ V ′, ω ∈ Ω (42)

∑
j∈V ′

zω0j =
∑
i∈V ′

dωi ∀ω ∈ Ω (43)
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∑
j∈V ′

zωj0 =

∑
j∈V ′

xω0j

Q−
∑
i∈V ′

dωi ∀ω ∈ Ω (44)

∑
j∈V ′

zωn+1,j =

∑
j∈V ′

xω0j

Q ∀ω ∈ Ω (45)

zωij + zωji =
(
xωij + xωji

)
Q ∀i ∈ V, j ∈ V, ω ∈ Ω (46)

zωij ≥ 0 ∀i ∈ V, j ∈ V, i ≤ j, ω ∈ Ω (47)

Figure 5: Example for (42)-(47), adapted from Baldacci et al. (2004)

Equation (42) ensures the total load of the vehicle is decreased by the demand
of the visited client. The amount of empty space is controlled through (46),
which states that if an arc is being used (xωij + xωji = 1), the sum of the total
load and the empty space is equal to the vehicle capacity. Equation (43) sets
the total starting load of all vehicles equal to the total demand of all clients.
In a similar way, (45) sets the total capacity `leaving the depot': the number
of vehicles multiplied by the vehicle capacity. Constraints (44) ensures the
amount of capacity that `arrives' at the starting depot, is equal to the total
capacity minus total demand.

Now that we have modeled the truck load and we have de�ned variables
indicating the amount of empty space, we can restrict capacity by forcing the
z-variables to be non-negative; Equation (47).
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2.2.6 Comparison

There is one very important di�erence between modeling time and capacity:
when we model time, we require to know if the time of service at each client is
within the endogenous time windows. When we model capacity, we only need
to assert that the total demand of the clients we visit does not exceed capacity.
We do not need to know the total number of units already delivered.

This is also the reason our four methods to model time in Section 2.1 can be
applied to capacity as well by introducing the q-variables, which keep track of
the number of units already delivered. In general, every set of time constraints
that sets the time of service at each client can be rewritten to a set of capacity
constraints by using the q-variables.

The advantages and disadvantages of the four time models have already
been discussed in Section 2.1.5. It is likely though, that when applied to ca-
pacity, they perform worse than speci�c capacity models. Take for example
the 2-commodity �ow formulation: there are no big-M terms necessary and the
number of variables and constraints is reasonable. This can not be said for
the MTZ-inequalities and the a�ne combination inequalities, which use big-M
terms. The convex hull formulation does not require a big-M, but at the cost of
a big increase in the number of variables and constraints. The only time model
that seems to be able to compete with the 2-commodity �ow formulation is the
improved convex hull formulation. If the 2-commodity �ow formulation is able
to exploit some capacity speci�c property, however, it may very well be better
than the improved convex hull formulation.

Overall, the capacity speci�c constraints thus seem more useful than the
capacity constraints adapted from time constraints. This is also true for the
generalized subtour elimination constraints, which have proven very e�ective
(Baldacci et al. (2012), Spliet and Gabor (2014)). The obvious downside of
using the generalized subtour elimination constraints is the exponential number
of constraints. Often, the generalized subtour elimination constraints are added
during the process of branch-and-cut, so only violated constraints are added.

2.3 Path inequalities

Another way to handle both time and capacity constraints, is by using path
inequalities. These inequalities have �rst been proposed by Ascheuer et al.
(2001) to solve the TSP with time windows, and have later been used by others
to solve the VRPTW (see for example Kallehauge (2008)).

The idea is to add one constraint for each infeasible path, to make sure
only feasible paths are chosen. This can be accomplished by using the following
constraints:∑

(k,l)∈Ep

xωkl ≤ |Ep| − 1 ∀ paths P = (Vp, Ep) ⊂ G,P infeasible, ω ∈ Ω (48)

An advantage of this method is that it is relatively easy to place additional
constraints on the paths, as infeasible paths are simply disallowed. The dis-
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advantage this brings is that the number of constraints is exponentially large,
hence �nding and adding cuts during branch-and-cut will be necessary. Another
disadvantage is that infeasible path inequalities can be very weak in the current
form, and would require problem speci�c strengthening to be really e�ective
(Ascheuer et al., 2001).
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3 Valid inequalities

In the previous section, we have discussed the various options to model time
and capacity in the general �ow formulation. When combined with a set of time
constraints and a set of capacity constraints, the general �ow formulation allows
for solving the TWAVRP to optimality by applying a typical branch-and-bound
algorithm. It is, however, generally very slow to solve VRP-like problems in this
way, as the LP relaxations give weak lower bounds.

To overcome this problem we introduce various classes of valid inequalities,
which can be used in a branch-and-cut algorithm to strengthen the general
�ow formulation. As the literature provides us with a large amount of di�erent
classes of valid inequalities that are applicable to the TWAVRP, we will make a
selection of high potential classes and discuss those only. Also, novel inequalities,
speci�cally for the TWAVRP, will be introduced.

3.1 Generalized subtour elimination constraints

The generalized subtour elimination constraints have already been mentioned
as a way of modeling capacity in Section 2.2.4. As mentioned before, it is
hard to model capacity using the generalized subtour elimination constraints,
as there is an exponential number of constraints to be added. Say we model
capacity by the generalized subtour elimination constraints, and these are the
only capacity constraints we use. We are then at one point required to add
all violated constraints, or the formulation becomes invalid. Exact separation,
however, can be very time consuming.

We get the best of both worlds when we use a di�erent method of modeling
capacity, and only separate the generalized subtour elimination constraints by a
heuristic. That is, the added inequalities do no longer guarantee that the vehicle
capacity is respected, but do add strength to the already correct formulation.

Though it is possible to use heuristics to �nd violations of the generalized
subtour elimination constraints (41), it is common in the literature to use heuris-
tic separation on the easier variant in which λωS is replaced by d

(∑
i∈S d

ω
i

)
/Qe

(Toth and Vigo, 2001). This yields:

∑
(i,j)∈(S,V \S)

xωij ≥
⌈(∑

i∈S
dωi

)
/Q

⌉
∀S ⊂ V, ω ∈ Ω (49)

The inequalities of Equation (49) are known as the rounded capacity inequalities.
For notational convenience, we will refer to them as capacity cuts during the
remainder of this thesis.

Note that the same inequalities have been used by Spliet and Gabor (2014)
and have been found very e�ective for the TWAVRP. Furthermore, adding the
capacity cuts diminished the e�ect of all other valid inequalities they tested.
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3.2 One-way arc constraints

Consider a feasible solution to the TWAVRP, which contains two nodes i and
j. In a single scenario, there are only three cases possible: j is visited after i,
i is visited after j or i and j are not visited consecutively. In other words, all
arcs can only be traveled in one direction.

We can turn this fact into the following set of valid inequalities, which we
will call the one-way arc constraints:

xωij + xωji <= 1 ∀i ∈ V,∀j ∈ V, ω ∈ Ω (50)

The big advantage of the one-way arc constraints is that the number of inequal-
ities is small enough to just add them all to the general formulation, without
the need of separation.

3.3 Precedence inequalities

The previously discussed valid inequalities were applicable to each scenario sep-
arately, but we have not yet seen cuts that take multiple scenarios into account
at once. To the best of my knowledge, such valid inequalities have not yet been
proposed in the literature. In this section, I will present the precedence inequal-
ities, a novel set of inequalities speci�cally for the TWAVRP.

First, we will need to de�ne the following:

Ep set of arcs of path p in G
Pij set of all elementary paths p in G from i ∈ V , to j ∈ V
δij(F, S) shortest distance from i ∈ V to j ∈ V using only arcs from set

F ∈ E and visiting all nodes in S ⊆ V ′\{i, j}

Now we present the main theorem necessary to de�ne the precedence inequali-
ties:

Theorem 1. For given nodes i, j ∈ V ′ (i 6= j), for any feasible solution to
the TWAVRP in which both path p ∈ Pij is used in scenario ω ∈ Ω and path
q ∈Pji is used in scenario ω′ ∈ Ω the following holds:∑

(k,l)∈Ep

tkl +
∑

(k,l)∈Eq

tkl ≤ wi + wj (51)

Proof. A necessary condition for both p ∈ Pij to be chosen in scenario ω ∈ Ω
and q ∈Pji to be chosen in scenario ω′ ∈ Ω is the following:

∃ yi ∈ [si, ei − wi], yj ∈ [sj , ej − wj ] such that (52) and (53) hold.

yi +
∑

(k,l)∈Ep

tkl ≤ yj + wj (52)
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yj +
∑

(k,l)∈Eq

tkl ≤ yi + wi (53)

The interpretation is clear: the left hand side is the earliest arrival time at the
destination node, as it is the sum of the earliest departure time and the travel
times over the path. The right hand side is the latest possible arrival time at
the destination according to the time windows. If both paths p and q are being
used, it is required for both paths that it is possible to arrive before the end of
the time window.

Adding (52) to (53) results in

yi + yj +
∑

(k,l)∈Ep

tkl +
∑

(k,l)∈Eq

tkl ≤ yi + yj + wi + wj (54)

which directly implies (51) as the yi and yj cancel. It follows that (51) is a
necessary condition for using both path p in scenario ω and path q in scenario ω′.

Theorem 1 tells us what the consequences for the other scenarios are when we
choose a path in one scenario. For example: say there is a single truck that
visits �rst i and later j somewhere on the same day. Between i and j, it has
driven a total of 5 hours. Furthermore, say both i and j have an endogenous
time window width of 3 hours. We can then deduce that if we want to plan
any path from j to i in another scenario, we can only use paths with at most
3 + 3− 5 = 1 hour of travel time between j and i.

Now that we have established which paths exclude each other, we will develop
a simple test to see whether a set of nodes contains a path visiting all nodes of
the set. This test will later be used to de�ne valid inequalities.

To this end, we state Theorem 2 and Theorem 3 without proof. The cor-
rectness of these theorems follows directly from the correctness of the subtour
elimination constraints for the traveling salesman problem (see for example Pad-
berg and Rinaldi (1991)).

Theorem 2. For any feasible solution to the TWAVRP the following holds:∑
k∈S

∑
l∈S

xωkl ≤ |S| − 1 ∀ω ∈ Ω, S ⊆ V ′, S 6= ∅ (55)

Theorem 3. For a feasible TWAVRP solution, a non-empty set of customers
S ⊆ V ′ is consecutively served by a single truck in scenario ω ∈ Ω if and only
if: ∑

k∈S

∑
l∈S

xωkl = |S| − 1 (56)

Figure 6 gives an example of a situation where (56) holds.

22



ω

S

i j

Figure 6: Example where (56) holds. As |S| = 3 the number of arcs contained
within S is at most |S| − 1 = 2

Theorem 4. For a feasible TWAVRP solution, a set of customers S ⊆ V ′ and
two nodes i, j ∈ V ′\S (i 6= j) a single truck visits �rst i, then all customers in
S and then j consecutively in scenario ω ∈ Ω if and only if:∑

l∈S

xωil +
∑
k∈S

∑
l∈S

xωkl +
∑
k∈S

xωkj + xωij = |S|+ 1 (57)

Proof. =⇒: the described path requires both a single arc from i to a node in S
and a single arc from a node in S to j in case S 6= ∅. These arcs force xωij to
be zero due to the �ow constraints. Combining this with Theorem 3 proves the
implication. If S = ∅ we have xωij = 1 and the implication still holds.

⇐=: assume S 6= ∅. By Theorem 2,
∑
k∈S

∑
l∈S x

ω
kl ≤ |S| − 1. Due to the

�ow constraints
∑
l∈S x

ω
il+

∑
k∈S x

ω
kj +xωij ≤ 2. It thus follows from Theorem 2

that both inequalities hold with equality. This implies the customers in S are
all connected by a single path (Theorem 3). Because of the �ow constraints,
xωij = 0 and hence

∑
l∈S x

ω
il = 1 and

∑
k∈S x

ω
kj = 1. Again using the �ow con-

straints, it is necessary that there is a path visiting i, all nodes in S and then
j, in that order. Note that S = ∅ implies xωij = 1 so the theorem still holds.

Theorem 4 gives us a simple way to test whether there is a path visiting i, then
visiting a subset of customers, and then visiting j. Combining this theorem with
Theorem 1 allows us to �nd invalid combinations of a path from i to j in one
scenario, and a path from j to i in another scenario. Let us use the notation
(A : B) to indicate the set of arcs in E that start in A and end in B, for A and
B being nodes or sets of nodes. We then get the following theorem:

Theorem 5. For given scenarios ω, ω′ ∈ Ω (ω 6= ω′), given nodes i, j ∈ V ′

(i 6= j), given node sets S ⊆ V ′\{i, j}, S′ ⊆ V ′\{i, j} and given arc sets
F ⊆ (i : S) ∪ (S : S) ∪ (S : j) ∪ (i : j), F ′ ⊆ (j : S′) ∪ (S′ : S′) ∪ (S′ : i) ∪ (j : i)
such that δij(F, S) + δji(F

′, S′) > wi + wj, the following are valid inequalities:∑
(k,l)∈F

xωkl +
∑

(k,l)∈F ′

xω
′

kl ≤ |S|+ |S′|+ 1 (58)
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Proof. A direct application of Theorem 1 and Theorem 4 shows that Theorem 1
is violated if and only if the left hand side of (58) is equal to |S|+ |S′|+ 2. By
integrality of the x-variables, the theorem follows.

ω

ω’

S

S’

i j

ji

Figure 7: Example showing all arcs in F and F ′, for |S| = 3 and |S′| = 2.
If there are two arcs between two points, this is depicted by a double-headed
arrow. Any path over F and F ′ visiting all clients in S and S′ requires exactly
|S|+ |S′|+ 2 = 7 arcs.

Figure 7 gives an example of the sets F , F ′, S and S′.
It is possible to state a slightly stronger result by rede�ning δij(F, S) to be

the minimum distance to visit i, all clients in S and then j using only arcs of F ,
but only using paths that can be feasible when considering the exogenous time
windows. In practice, the exogenous time windows are generally very large.
Doing so is thus unlikely to add much value. For this reason, we use this likely
less complicated inequality.

We have thus found an exponential number of valid inequalities that can
be added. Again, it is not e�cient to add all these valid inequalities from the
start. If we can (heuristicly) separate the violated inequalities fast, it may prove
bene�cial to add some during branch-and-cut.

3.4 Sub-optimal path inequalities

Besides the precedence inequalities, we will introduce another class of inequali-
ties, speci�cally for the TWAVRP.

Consider an optimal TWAVRP solution in which a set of clients S ⊆ V ′

is being served by a single vehicle in scenario ω ∈ Ω, and no other clients are
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served by the same vehicle. Clearly, the vehicle uses the cheapest path visiting
all clients in S and adhering to the time window constraints. If it would not be
the cheapest path, the solution would not be optimal.

As the vehicle uses the cheapest path, there can not be any path which is
strictly cheaper. If the same situation occurs in another scenario, it is optimal
to travel the exact same path. This is always possible, because the time win-
dow constraints do not change between scenarios. Hence we can conclude the
following: if two vehicles serve the same set of clients, and no other clients, in
di�erent scenarios, there exists an optimal solution in which both vehicles drive
the same route. We can capture this by the following theorem:

Theorem 6. For given scenarios ω, ω′ ∈ Ω (ω 6= ω′), given paths p, q ∈P0,n+1

such that Vp = Vq and Ep 6= Eq, the following are valid inequalities:∑
(k,l)∈Ep

xωkl +
∑

(k,l)∈Eq

xω
′

kl ≤ |Ep|+ |Eq| − 1 (59)

Proof. Paths p and q visit the same clients (Vp = Vq), but in a di�erent order
(Ep 6= Eq). As explained above, there always exists an optimal solution for
which in each scenario the same path is taken if all the same clients are being
served by a single vehicle (and no other clients). We can thus state only path
p or path q can be used. Because p and q are both used if and only if the left
hand side equals |Ep|+ |Eq| (see Section 2.3), the inequality follows.

Note that the sub-optimal path inequalities can cut o� feasible and even optimal
solutions. In the literature, such inequalities are often referred to as optimality
cuts. Feasible solutions are cut o� when two routes visiting the same set of clients
in a di�erent order have the same costs. The sub-optimal path inequalities do
not alter the optimal objective value.

3.4.1 Relation to precedence inequalities

The precedence inequalities and the sub-optimal path inequalities are disjunct
sets, as the precedence inequalities never involve the depot while the sub-optimal
path inequalities always involve the depot. It is possible, however, for a prece-
dence inequality to dominate a sub-optimal path inequality.

For example, the precedence inequality

xωij + xω
′

ji <= 1 (60)

dominates the sub-optimal path inequality

xω0i + xωij + xωj,n+1 + xω
′

0j + xω
′

ji + xω
′

i,n+1 <= 5 (61)

There do exist sub-optimal path inequalities that are not dominated by prece-
dence inequalities. For example, if tij + tji ≤ wi + wj , inequality (60) becomes
invalid, while (61) can still be used.
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4 Cut separation

In Section 3, we have discussed multiple classes of valid inequalities. Though
in theory we could add all valid inequalities to the general �ow formulation
from the beginning, this is often not possible in practice as the number of
valid inequalities can be very big. To solve this problem, we will add the valid
inequalities only when they are violated. This way, valid inequalities that have
no e�ect, do not have to be added.

We will refer to the process of �nding violated valid inequalities as cut sepa-
ration. In this section we will discuss the separation algorithms to separate the
classes of valid inequalities as discussed in the previous section.

4.1 Capacity cuts

The problem of separating the generalized subtour elimination constraints is
known to be strongly NP-hard (Lysgaard et al., 2004). Lysgaard et al. do not
state whether this is also true for the rounded capacity cuts. Regardless of its
classi�cation, the separation problem is di�cult, and the use of heuristics is
justi�ed (Toth and Vigo, 2001).

To separate the capacity cuts, we use the CVRPSEP package of Lysgaard
(2003), which uses a variety of heuristics to �nd cut violations. The details can
be found in the paper of Lysgaard et al. (2004).

As the package of Lysgaard requires an upper bound on the number of ca-
pacity cuts to be separated per iteration, we set the maximum to 1000, which
after some preliminary testing seems to be non restrictive.

We found that the package of Lysgaard can end up in an in�nite loop when, for
any ω ∈ Ω ∑

j∈V ′

xω0j =
∑
i∈V ′

xωi,n+1 = 0 (62)

To overcome this problem, we add a similar constraint to make sure the number
of vehicles leaving the depot is nonzero. That is, we add∑

j∈V ′

xω0j ≥
⌈∑

i∈V ′ dωi
Q

⌉
(63)

4.2 Precedence inequalities

The complexity of the separation problem of the precedence inequalities is not
known, as the precedence inequalities have only been introduced in this thesis.
We will �rst discuss exact separation of the precedence inequalities, and discuss
two heuristics afterwards.

4.2.1 Exact separation

To �nd a violated precedence inequality with certainty (if one exists) we can use
another MIP, in which the x-values are �xed parameters corresponding to the
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(fractional) values of the LP relaxation. Whether exact separation speeds up
the optimization is questionable, as it may be rather time consuming to solve
the separation problem. It can, however, be a good starting point for a heuris-
tic. Exact separation is also useful to analyze how the precedence inequalities
a�ect the lowerbounds and the size of the branch-and-cut tree.

The MIP formulation requires two scenarios to be chosen in advance, ω and
ω′ (ω, ω′ ∈ Ω, ω 6= ω). We de�ne the following binary variables:

ai

{
1 if i ∈ V ′ represents the `starting node' in scenario ω
0 otherwise

bj

{
1 if j ∈ V ′ represents the `ending node' in scenario ω
0 otherwise

sωi

{
1 if node i ∈ S or ai = 1 or bi = 1
0 otherwise

sω
′

i

{
1 if node i ∈ S′ or ai = 1 or bi = 1
0 otherwise

fωij

{
1 if arc (i, j) ∈ (V ′, V ′) is selected in scenario ω
0 otherwise

fω
′

ij

{
1 if arc (i, j) ∈ (V ′, V ′) is selected in scenario ω′

0 otherwise

The formulation is then given by:

Precedence inequalities: exact separation

max
∑
i∈V ′

∑
j∈V ′

(fωijx
ω
ij + fω

′

ij x
ω′

ij )−
∑
i∈V ′

(sωi + sω
′

i ) + 3 (64)

∑
i∈V ′

ai = 1 (65)

∑
j∈V ′

bj = 1 (66)

ai + bi ≤ 1 ∀i ∈ V ′ (67)

sωi , s
ω′

i ≥ ai, bi ∀i ∈ V ′ (68)

fωij ≤ sωi , sωj ∀i, j ∈ V ′ (69)

fω
′

ij ≤ sω
′

i , s
ω′

j ∀i, j ∈ V ′ (70)

fωji ≤ 1− ai ∀i, j ∈ V ′ (71)

fωji ≤ 1− bj ∀i, j ∈ V ′ (72)
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fω
′

ij ≤ 1− ai ∀i, j ∈ V ′ (73)

fω
′

ij ≤ 1− bj ∀i, j ∈ V ′ (74)∑
(i,j)∈Ep

fωij +
∑

(i,j)∈Eq

fω
′

ij ≤
∑
i∈V ′

(sωi + sω
′

i )− 3

∀k, l ∈ V ′, k 6= l, p ∈Pkl, q ∈Plk,
∑

(i,j)∈Ep

tij +
∑

(i,j)∈Eq

tij ≤ wk + wl (75)

ai, bi, s
ω
i , s

ω′

i ∈ B ∀i ∈ V ′ (76)

fωij , f
ω′

ij ∈ B ∀i, j ∈ V ′ (77)

This formulation is best explained by comparing it to Theorem 5. Note that the
sω-variables are equal to one if and only if the corresponding node is an element
of {i} ∪ S ∪ {j} in Theorem 5, and hence

∑
i∈V ′ sωi = |S|+ 2. The fω variables

are equal to one if and only if the corresponding arc is a member of set F in
Theorem 5. The a-variables indicate which node is used as the `starting node' (i
in Theorem 5) and the b-variables indicate the `ending node' (j in Theorem 5).

The objective of the separation problem (64) is to maximize the amount the
precedence inequality is violated. That is, the objective is equal to:∑

(k,l)∈F

xωkl +
∑

(k,l)∈F ′

xω
′

kl − (|S|+ |S′|+ 1) (78)

Constraints (65)-(67) ensure exactly one `starting node' and one `ending
node' are chosen, and they are not the same. These nodes are then added to
the set S and S′ (in terms of Theorem 5) by constraint (68). To ensure we
only select arcs as speci�ed in Theorem 5, we add constraints (69)-(74). The
�rst two constraints force all chosen arcs to be between the `starting node', the
`ending node' and the set S or S′. This is not restrictive enough, as for example
arcs from S to i are not allowed in Theorem 5. Constraints (71)-(74) deal with
these restrictions.

Constraint (75) handles the �nal premise of Theorem 5, which states that
the shortest path visiting all nodes in S and S′ must be longer than the sum of
the endogenous time window widths of the starting node and the ending node.
Such a path visiting all nodes consists of |S|+ |S′|+2 edges. The right hand side
of (75) restricts the number of edges for such paths to |S|+ |S′|+1. This implies
that when a path does not visit all nodes in S and S′, (75) is not restrictive. It
is important to mention that (75) introduces a large number of constraints, so
it may be bene�cial to only add them if they are violated. This can be achieved
by checking for violated constraints at each integer solution, and adding cuts
if necessary. A violated constraint can be found by a simple depth-�rst search.
That is, we follow an arbitrary path for which the f -variables of all arcs are
equal to 1, and backtrack if we do not �nd a violation of (75).

Thus, to perform exact separation, we solve the MIP given by (64)-(77) for
each combination of scenarios ω and ω′ (ω 6= ω′). If the objective (64) is strictly
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positive, we have found a violated precedence inequality.
Combined with the fact that we need another separation algorithm to add the

constraints (75), renders it unlikely that exact separation will be fast. Further-
more, it turns out that under certain assumptions, exact separation is NP-hard
(see Appendix C for a proof). This justi�es exploring heuristics to solve the
separation problem of the precedence inequalities.

4.2.2 Separation by paths

Exact separation of the precedence inequalities may be too time consuming to
be useful in a branch-and-cut framework. To this end, we also consider a subset
of the precedence inequalities, which are easier to separate. We �rst introduce
the following theorem:

Theorem 7. For any feasible solution to the TWAVRP:∑
(k,l)∈Ep

tkl +
∑

(k,l)∈Eq

tkl > wi +wj =⇒
∑

(k,l)∈Ep

xωkl +
∑

(k,l)∈Eq

xω
′

kl ≤ |Ep|+ |Eq| − 1

∀(i, j) ∈ E, p ∈Pij , q ∈Pji, ω ∈ Ω, ω′ ∈ Ω (79)

Proof. Direct application of Theorem 5 with F = Ep and F
′ = Eq. Note that

|S| = |Ep|− 1 and |S′| = |Eq|− 1, and hence |S|+ |S′|+ 1 = |Ep|+ |Eq|− 1.

Theorem 7 de�nes valid inequalities for paths only, instead of for arbitrary
sets of nodes and arcs. Recall that Theorem 5 requires δij(F, S) + δji(F

′, S′) >
wi+wj to hold. That is, the shortest path visiting all nodes has to have a mini-
mum length. By only considering paths, checking whether this condition is met
becomes trivial. We will now show that this subset of precedence inequalities
can be separated in polynomial time.

Formally, we need to �nd some combination of nodes i, j ∈ V ′, paths p ∈
Pij , q ∈ Pji and scenarios ω, ω′ ∈ Ω (ω 6= ω′) such that the following two
conditions are met: ∑

(k,l)∈Ep

tkl +
∑

(k,l)∈Eq

tkl > wi + wj (80)

∑
(k,l)∈Ep

xωkl +
∑

(k,l)∈Eq

xω
′

kl > |Ep|+ |Eq| − 1 (81)

Finding all such paths can be done in polynomial time. We will �rst prove
three necessary lemmas, after which we will show how to solve the separation
problem in O(|Ω|2n6) time.

Lemma 1. All solutions to the separation problem adhere to the following two
equations: ∑

(k,l)∈Ep

xωkl > |Ep| − 1 (82)
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∑
(k,l)∈Eq

xω
′

kl > |Eq| − 1 (83)

Proof. The x variables are constrained to be between 0 and 1. This implies
that

∑
(k,l)∈Ep

xωkl ≤ |Ep|. For (81) to hold, it is thus necessary that (82) holds.

Analogously it can be shown (83) is necessary.

Lemma 2. Path p in graph G can contain at most one arc (k, l) for which
xwkl ≤ 1

2 and path q can contain at most one arc (k′, l′) for which xω
′

k′l′ ≤ 1
2 .

Proof. Say p has m ≥ 2 arcs for which xωkl ≤ 1
2 . This implies

∑
(k,l)∈Ep

xωkl ≤
1
2m+

∑
(k,l)∈Ep,xω

kl>
1
2
xωkl ≤ 1

2m+ |Ep| −m = |Ep| − 1
2m ≤ |Ep| − 1. Hence the

conditions in Lemma 1 are not satis�ed. It follows p has at most one arc for
which xωkl ≤ 1

2 . The proof for path q is analogous.

Lemma 3. For each scenario ω ∈ Ω, node k ∈ V ′ has at most one outgoing
arc (k, l) such that xωk,l >

1
2 and at most one incoming arc (m, k) such that

xωm,k >
1
2 .

Proof. The sum of the x variables on the outgoing arcs is restricted to 1. As the
x variables are positive, this restriction can only be met when there is at most
one outgoing arc xωk,l >

1
2 . The proof for the incoming arcs is analogous.

Theorem 8. The separation problem can be solved in O(|Ω|2n6) time.

Proof. To solve the separation problem, we will generate a list of candidate
paths from i to j which meet the necessary conditions given by the lemmas.
If we do the same for all candidate paths from j to i, we can check for all
combinations of the candidates if (80) and (81) are met.

To generate a list of candidates, we �rst use Lemma 2, which states that for
scenario ω ∈ Ω a candidate uses at most one arc for which xωkl ≤ 1

2 . Starting at
i, the path thus �rst uses a (possibly zero) number of arcs for which xωkl >

1
2 ,

followed by zero or one arcs for which xωkl ≤ 1
2 . After that, we visit another

(possibly zero) number of arcs for which xωkl >
1
2 before we reach j.

From Lemma 3 we know that at each node, there can be at most one incoming
arc and one outgoing arc for which xωkl >

1
2 . This implies there is at most one

elementary path leaving i for which all arcs have an x value larger than 1
2 .

Analogously there is at most one elementary path entering j for which all x
values are larger than 1

2 .
All candidate paths from i to j can thus be constructed by starting in i,

following the arcs with x values larger than 1
2 up to a certain point after which

an arc with x value less or equal to 1
2 is taken to arrive at the path of arcs with

x values larger than 1
2 that arrives at j, which is followed until we reach j.

For each scenario, we can do this in O(n2) ways. We thus �nd O(|Ω|n2)
candidates from i to j. Checking all combinations of the candidates from i to
j and the candidates from j to i then involves O((|Ω|n2)2) time. As we repeat
the procedure for all combinations of two nodes, the total time complexity is
O(|Ω|2n6).
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4.2.3 Separation by DAGs

In the previous section, we have separated the precedence inequalities by simple
paths. That is, we only separated precedence inequalities for which, using the
notation of Theorem 5, arc sets F and F ′ belonged to simple paths. The bene�t
of doing so, is that it is immediately clear whether combinations of paths are
long enough to form a precedence inequality.

Simple paths are not the only subset for which this is true: we can also
separate by directed acyclic graphs (DAGs). That is, we restrict F and F ′ to
belong to DAGs. DAGs have the property that there is at most one path visiting
all nodes in the subgraph, and hence, the minimum time to visit all nodes is
easy to calculate: we simply follow the unique path through the DAG that visits
all nodes, and keep track of the necessary time to do so.

Figures 8 and 9 show the di�erence between a precedence inequality made
from paths and one made from DAGs, respectively. It can be seen that the prece-
dence inequality constructed from the DAGs contains more arcs, and hence is a
stronger inequality. The downside of separating by DAGs, is that the separation
itself becomes more di�cult.

To construct precedence inequalities from DAGs, we �rst produce a list of
candidate DAGs, just like we made a list of candidate paths in Section 4.2.2.
We can generate this list by using Algorithm 1, which in turn makes use of
Algorithm 2.

Algorithm 1 FIND_CANDIDATE_DAGS

1: Initialize empty list of candidates
2: for all ω ∈ Ω do
3: for all StartNode ∈ V ′ do
4: Vp ← {StartNode}
5: Ep ← ∅
6: EXTEND(ω, Vp, Ep, 0, 0, StartNode)
7: end for
8: end for
9: return candidate list

Algorithm 1 uses Algorithm 2 to generate candidate DAGs, for each starting
node in each scenario. This is shown by the call to EXTEND on line 6. Algo-
rithm 2 then generates all candidate DAGs starting from this node.

Algorithm 2 is a recursive algorithm that extends the current DAG given by
(Vp, Ep) in all possible ways. While extending, the algorithm keeps track of the
sum of all x-variables contained in Ep (SumX) and the total time necessary to
visit all nodes by following the DAG (SumTime). As soon as a candidate DAG
is found, it is added to the candidate list.

Lines 1-2 ensure the path is only further extended when the necessary con-
dition

∑
(k,l)∈Ep

xωkl > |Ep| − 1 is met. This necessary condition follows from
Lemma 1 and the fact that in each iteration of EXTEND, SumX increases by
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Figure 8: Precedence inequality given by two paths, one in scenario ω and one
in scenario ω′
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Figure 9: Precedence inequality given by two DAGs, one in scenario ω and one
in scenario ω′
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Algorithm 2 EXTEND(Scenario, Vp, Ep, SumX, SumTime, CurrentNode)

1: if SumX ≤ |Ep| − 1 then
2: Do not continue recursion
3: else
4: if |Ep| ≥ 1 then
5: Add path candidate (Vp,Ep,SumX,SumTime) to candidate list
6: end if
7: for all NextNode ∈ V ′\Vp do
8: SumTime←− SumTime+ tCurrentNode,NextNode
9: for all PreviousNode ∈ Vp do

10: Ep ←− Ep ∪ {(PreviousNode,NextNode)}
11: SumX ←− SumX + xScenarioPreviousNode,NextNode

12: end for
13: Vp ←− Vp ∪ {NextNode}
14: EXTEND(Scenario, Vp, Ep, SumX, SumTime, CurrentNode)
15: end for
16: end if

at most 1 (due to constraint (3) in the general �ow formulation). If the necce-
sary condition is met, and the generated DAG is not empty, it is added to the
candidate list. This is stated in lines 4-6. Lines 7-15 extend the DAG by a
single node (line 13) and adds all directed arcs from the previous DAG to this
new node (lines 9-12). The total travel time and the sum of the x-variables
on the DAG are updated accordingly (lines 8 and 11 respectively). Finally we
recursively call for further extension of the DAG on line 14.

4.2.4 Additional strategies

We have discussed three di�erent methods for separating precedence inequali-
ties: the exact method, separation by paths and separation by DAGs.

There are, however, some additional strategies that can be utilized. For
example, one can use separation by paths to �nd candidate paths, and then
turn each path into a DAG before constructing the precedence inequalities.
This yields stronger valid inequalities than using separation by paths alone.

Do note that by using separation by paths, less violations will be found then
when using separation by DAGs. Figure 10 shows an example in which the
DAG violates the precedence inequality, but the associated path does not. In
this case, the path precedence inequality corresponds to the path i→ k → l→ j
in scenario ω and path j → i in scenario ω′, yielding the non-violated inequality:

xωik + xωkl + xωlj + xω
′

ji ≤ 3 (84)

The inequality corresponding to the shown DAGs, however, is violated:

xωik + xωil + xωkl + xωkj + xωlj + xω
′

ji ≤ 3 (85)
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Figure 10: Precedence inequality given by two DAGs, one in scenario ω and one
in scenario ω′. The values on the arcs correspond to the values of the x-variables.

Another strategy could be to add even more arcs. Consider a candidate path
or DAG from i to j, visiting all nodes in S ⊆ V ′\{i, j}. We can then also turn
the subgraph implied by S into a complete graph. That is, we add all arcs with
both nodes in S to the candidate. Note that in contrast to transforming a path
into a DAG, adding a complete subgraph does alter the minimum time required
to visit all nodes only using the chosen arcs. To be able to use the candidate to
form precedence inequalities, we use a lowerbound on this minimum time. An
easy to calculate lower bound is given in Theorem 9.

Theorem 9. Consider the problem of �nding the minimum time to visit i,
then all nodes of S ⊆ V ′\{i, j} and then j consecutively. A lowerbound on the
minimum time is given by:

min
k∈S
{tik}+ MST(S) + min

k∈S
{tkj} (86)

In which MST(S) depicts the weight of the minimum weight spanning tree of
the complete graph implied by S, using the time distances as weights.

Proof. To visit i, all nodes of S then and j, it is necessary that all nodes in S
are (indirectly) connected, and that both i and j are connected to one of the
nodes in S. The best way to ful�ll this necessary condition, is to calculate the
MST of S and connect i and j in the best possible way.

As we meet one of the necessary conditions in the best possible way, we have
determined a lower bound on the actual value.

To summarize, if we �nd candidate paths, we can always turn them into a
candidate DAGs to increase their strength. When we �nd candidate paths or
DAGs, we can turn them into candidates containing a complete subgraph. If
we do so, we do need to calculate a lower bound on the minimum time to
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visit all nodes, for example by using (86). This allows for stronger precedence
inequalities to be found. If no precedence inequality containing a complete
subgraph can be constructed, due to the calculated lower bound on the minimum
time to visit all nodes, we can still use the original path or DAG precedence
inequality.

4.3 Sub-optimal path inequalities

The sub-optimal path inequalities can be separated in way analogous to the
separation by paths for precedence inequalities (Section 4.2.2), and can also be
separated in polynomial time.

First, we create partial candidate paths, by creating candidates without the
depot. We can do so in the same way as we did in Section 4.2.2. That is, we
construct all partial candidate paths from i to j by starting in i, following the
arcs with x values larger than 1

2 up to a certain point after which an arc with
x value less or equal to 1

2 is taken to arrive at the path of arcs with x values
larger than 1

2 that arrives at j, which is followed until we reach j. This way,
only partial candidates that meet the necessary condition stated in Lemma 1
are found.

Then, we add the depot nodes at the beginning and at the end of the found
partial candidates. The candidate paths for the sub-optimal path inequalities
are given by all paths that still meet the necessary condition stated in Lemma 1.

Then, all combinations of candidates are checked to see if they form a sub-
optimal path inequality. That is, the premises of Theorem 6 are met. This
procedure �nds all violated sub-optimal path inequalities in polynomial time.
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5 Branch-and-cut framework

In the previous sections, we have prepared all ingredients to build a success-
ful branch-and-cut algorithm. In Section 2, we have discussed the general �ow
formulation, the basis of our algorithm. In Section 3 we introduced valid inequal-
ities to strengthen the formulation and in Section 4 we discussed the separation
of these valid inequalities.

In this section, we will de�ne our branch-and-cut framework. We specify
�ve things: our branching strategy, our method of determining lower bounds
for each node of the tree, our method of determining upper bounds, which cuts
to apply and our stopping criteria. As a basis, we use the well-known commer-
cial solver CPLEX, version 12.5. CPLEX provides default settings for all �ve
choices.

We will use the default settings for determining the upper- and lower bounds.
By default, upper bounds are found by applying a variety of heuristics, and of
course, when the solution is integral. Lowerbounds are found by solving the
LP relaxation of the problem with the dual simplex method and adding valid
inequalities.

We will not use the default dynamic branching algorithm, but the build in
`traditional branch-and-cut', which is closer to standard branch-and-cut.

CPLEX provides a large variety of cuts, which are all enabled by default.
We disable all build in valid inequalities, so we can exclusively test the e�ect of
the valid inequalities discussed in this thesis.

The default stopping criterion is to stop when the relative gap between
upper- and lower bound reaches 0.0001. To be consistent with the tests of
Spliet and Gabor (2014), we stop only when the relative gap becomes 0.000001.
Also, we stop after one hour of runtime.

Our own valid inequalities will be generated in a so-called user cut callback.
The code in this callback is called each time that the LP relaxation has been
solved, or re-solved after adding valid inequalities. Pseudocode for determining
the lower bounds is given by Algorithm 3.

See Appendix D for an overview of all parameter settings.
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Algorithm 3 Pseudocode lower bounds branch-and-cut algorithm

Initialize problem
Add one-way arc constraints to general �ow formulation
Set the root node to be the current node
while relative gap > 0.00001 and runtime < 3600 seconds do

Solve LP relaxation current node
while Violated valid inequalities may be found do

Add violated capacity cuts
Add violated precedence inequalities
Add violated sub-optimal path inequalities
Solve LP relaxation current node

end while
Determine new current node (CPLEX)

end while
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6 Experiments

In this section, we describe the experiments. First we describe our test setting.
Then we decide on the scope of the experiments, as there are too many combi-
nations of formulations and valid inequalities to try them all. In Section 6.3 we
will describe the experiments within this scope.

6.1 Test setting

To allow for a fair comparison with their results, Spliet and Gabor (2014) pro-
vided both the 40 test-instances they have used themselves, plus an additional
20 harder instances, generated by the same instance generation algorithm. Fur-
thermore, they generously shared the C++ code they used to achieve their
results.

The test-instances are randomly generated instances, inspired by Dutch re-
tail chains. The 60 instances contain 10 instances of 10, 15, 20, 25, 30 and 35
customers respectively, each with 3 demand scenarios. The demand scenarios
correspond to high, medium and low demand, each with equal probability of oc-
currence. The average demand is about 1/6 truck load. Over 95% of the clients
has demand between 1/15 and 1/3 truck load. The exogenous time windows
are rather wide: on average the exogenous time window of the client has width
10.8, compared to an endogenous time window width of 2. See Spliet and Gabor
(2014) for a detailed description.

All results are run on an Intel i7 3.5GHz computer with 16GB of RAM.
Windows 7 is started in safe mode, running on a single thread on a single core.
This removes the option to run code in parallel, yielding a fair comparison.

For the experiments, we only use the �rst 40 instances, which is the same set
of instances used by Spliet and Gabor (2014). This allows us to use the 32 bit
version of CPLEX, which is generally (slightly) faster than the 64 bit version
but only allows up to 2GB of internal memory to be used. When we �nd the
best possible settings for our branch-and-cut algorithm, we test its performance
on the 20 new instances. Doing so does require the 64 bit version of CPLEX,
which allows for the full 16GB of memory to be used.

6.2 Scope

To determine which experiments require an extensive analysis, we tried a variety
of settings before conducting the actual analysis. It seems the following can be
concluded:

Capacity cuts are required
Without adding the capacity cuts, even the smallest instances become virtually
unsolvable, even when adding all other valid inequalities we discussed as well.
This is consistent with the �ndings of the paper of Spliet and Gabor (2014),
where the capacity cuts were also of major importance.
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It is bene�cial to add one-way arc constraints
As discussed earlier, the number of one-way arc constraints is su�ciently small
such that all constraints can be added to the program at once. Adding these con-
straints strengthens the formulation and thereby reduces the number of nodes
to be explored. Testing suggests this clearly compensates for the e�ect of the
increase in the number of constraints. It is thus bene�cial to add all one-way
arc constraints at the beginning.

Preliminary testing was not decisive in which time constraints and capacity
constraints to use, hence we will perform experiments to determine the best
choices. Whatever choice we make regarding time and capacity constraints,
when using branch-and-cut we will add the one-way arc constraints from the
beginning and the capacity cuts at each node. The e�ect of the other two classes
of inequalities, precedence inequalities and sub-optimal path inequalities, will
also be subject to analysis.

In our branch-and-cut, we will always search for violated valid inequalities at
each node of the branch-and-cut tree, until no more inequalities can be added.
All classes of inequalities are added at once.

6.3 Experiments

We will do experiments to answers the following questions:

• Which combination of time and capacity constraints gives the best per-
formance on the LP relaxation?

• Which combination of time and capacity constraints gives the best per-
formance in branch-and-cut?

• How do these results compare to the results of Spliet and Gabor (2014)?

• Can precedence inequalities be used to speed up branch-and-cut?

• Can sub-optimal path inequalities be used to speed up branch-and-cut?

• Can we also solve larger instances?

The �rst question can be answered by considering the LP relaxation of the
general �ow formulation, for di�erent choices of time and capacity constraints.
If we compare LP objective values and runtime, combined with the theoretical
comparisons in Sections 2.1.5 and 2.2.6, we can make statements regarding the
performance of the di�erent constraints on the LP relaxation.

Using these statements, we narrow down our options to be able to run
branch-and-cut for the remaining options. We will do so without precedence
inequalities and sub-optimal path inequalities, which will be tested later. This
experiment will result in a de�nitive choice for both time and capacity con-
straints.

After deciding on the time and capacity constraints, we can compare our
branch-and-cut results to the results of Spliet and Gabor (2014). Their code
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will be run on the same computer used to generate all other results, hence
yielding a fair comparison.

Then, we will test whether our novel valid inequalities, the precedence in-
equalities and the sub-optimal path inequalities, speed up the branch-and-cut
algorithm. We will do so by running our branch-and-cut algorithm for di�erent
settings.

The �nal question is whether our branch-and-cut algorithm is able to solve
larger instances than what was previously possible. To this end, we run branch-
and-cut on the 20 new instances and analyze the results.
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7 Results

In this section, we will discuss the results obtained from the experiments laid
out in the previous section. We will start with the analysis of the time and
capacity constraints.

7.1 Analysis LP relaxation

To answer the question of which combination of time and capacity constraints
gives the best performance on the LP relaxation, we solve the LP relaxation
of the general �ow formulation for di�erent combinations of time and capacity
constraint and present the objective values and the solution times.

We have implemented all the sets of time constraints that were discussed in
Section 2.1. That is, MTZ inequalities (MTZ), a�ne combination predecessors
(AC pred.), a�ne combination successors (AC succ.), a�ne combinations of
both predecessors and succesors (AC both), the convex hull formulation (CH)
and the improved convex hull formulation (ICH).

All time constraints are applicable to capacity as well. Furthermore, we have
introduced capacity speci�c formulations in Section 2.2. To limit the number of
possible combinations, we will only consider the two-commodity �ow formula-
tion (2CF), MTZ and ICH to model capacity. The advantages of 2CF have been
explained in Section 2.2.6. MTZ was chosen to be applied to capacity because
it requires only a small number of variables and constraints, potentially making
it very fast. ICH was chosen because it is similar to the potentially strong CH,
but requires less variables and constraints.

Table 8 shows the average objective value of the LP relaxation over the 40
test-instances for di�erent combinations of constraints. `None' indicates that no
time constraints or capacity constraints were added to the general �ow formu-
lation. The non-aggregated data can be found in Tables 16-19 in the appendix.

Table 9 presents the average runtime in ms for the same combinations of
constraints, over the same instances. The non-aggregated data on which Ta-
ble 9 is based can be found in Tables 20-23 in the appendix.

If we consider the cases where the capacity constraints have been disabled (bot-
tom row of Table 8 and Table 9), we can compare the strength of the di�erent
time constraints. The found objective values can be compared to each other,
but not to the other objective values, as leaving out the capacity constraints
yields a linear program that no longer corresponds to the TWAVRP.

The �rst �ve constraints seem pretty similar in terms of objective value, but
the improved convex hull formulation clearly stands out with a better average
objective value than the other time constraints. Furthermore, ICH gives the
highest objective value for 39 of the 40 instances. This comes at a cost though:
ICH is more than 20 times slower than MTZ.

The objective values can also be used to determine empirically between which
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Time constraints
Objective MTZ AC pred. AC succ. AC both CH ICH None

C
a
p
a
c
it
y MTZ 15.17 15.18 15.17 15.19 15.18 16.26 15.17

2CF 20.92 20.92 20.92 20.92 20.92 20.92 20.92
ICH 21.12 21.12 21.12 21.12 21.12 21.12 21.12
None 14.61 14.64 14.63 14.71 14.65 15.81 14.22

Table 8: Average objective value for the LP relaxation of the general �ow for-
mulation, for various time and capacity constraints, instances 1-40

Time constraints
Runtime MTZ AC pred. AC succ. AC both CH ICH None

C
a
p
a
c
it
y MTZ 6 11 45 51 39 139 3

2CF 25 56 83 126 120 101 21
ICH 45 62 94 132 133 105 35
None 3 11 36 54 43 78 2

Table 9: Average runtime in ms for the LP relaxation of the general �ow for-
mulation, for various time and capacity constraints, instances 1-40

time constraints there does not exist a dominance relationship. E.g. if MTZ
has a lower objective value than ICH for one instance, but a higher objective
value for another instance, than MTZ and ICH clearly do not have a dominance
relationship. The results are presented in Table 10.

Most of the relationships for which we could not make empirical statements,
have already been proven to be dominant: convex hull is stronger than MTZ,
and combining a�ne combinations predecessors with successors results in a for-
mulation that is stronger than either predecessors or successors alone. Only one
relation is yet unaccounted for: the LP results suggest that ICH always gives
better objective values than AC successors. It could be interesting to prove or
disprove this statement, but in this thesis, we will not consider this further.

The question is whether the di�erences in stength for the di�erent time con-
straints persist when we consider the capacity constraints as well. The impor-
tant role of the capacity cuts already suggests that the capacity constraints are
more important for the strength of the general �ow formulation than the time
constraints. This can also be seen from Table 8: when 2CF or ICH are chosen
to model capacity, the choice of time constraints is almost irrelevant for the LP
objective value. Even removing the time constraints completely (last column)
only yields a minimal decrease in objective value.

If we choose to model capacity by 2CF or ICH, we are thus best o� by
choosing the time constraints that allows for the quickest LP solution. Table 9
shows that this is clearly MTZ (time) in the average case, and Tables 20-23
support this conclusion per instance.

If we choose to model capacity by MTZ (capacity), the objective values for

42



MTZ
AC
pred.

AC
succ.

AC
both

CH ICH

MTZ X X X X

AC pred. X X X

AC succ. X

AC both X X

CH X

ICH

Table 10: Combinations of time constraints for which it could be shown empir-
ically that there does not exist a dominance relationship, indicated by X

di�erent time constraints are also similar, execpt for ICH (time) which gives a
higher objective value. The combination of MTZ (capacity) and ICH (time) is
not likely to be e�ective though, as it is slower than the combination of 2CF
and MTZ (time), and also has a lower objective value. The only combination
with MTZ (capacity) worth considering is the combination with MTZ (time):
the objective value may be relatively bad, but the speed of this combination
might make up for that in branch-and-cut.

We can conclude that in a branch-and-cut framework, modeling time with the
MTZ inequalities is likely to be the most successful. We have access to stronger
time constraints, but the di�erence in strength disappears when capacity con-
straints are added. For this reason, it is only logical to use the fastest constraints.

Regarding the capacity constraints we can not yet make a decision, as MTZ,
2CF and ICH have both di�erences in LP objective values and in solution time.
From Tables 8 and 9 alone, it is impossible to say which capacity constraints will
be best in branch-and-cut. We will thus have to use all three sets of capacity
constraints in branch-and-cut to determine which one is best.

7.2 Capacity constraints in branch-and-cut

In the previous sections we have analyzed the time and capacity constraints
with experiments on the LP relaxation of the general �ow formulation. We
concluded that we would use the MTZ inequalities to model time. To model
capacity, however, we could not make a decision between the MTZ inequalities,
the 2-commodity �ow formulation and the improved convex hull formulation.
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In this section, we will compare these three di�erent ways to model capacity
in a branch-and-cut algorithm. Time will be modeled by MTZ. As explained in
Section 6.2 we will add all one-way arcs constraints from the beginning and add
capacity cuts during the optimization. For this experiment, no precedence cuts
or sub-optimal path inequalities will be added.

The results of this experiment are presented in Table 11. `Runtime' refers
to the total time necessary to solve the instance of the TWAVRP to optimal-
ity. `Processed nodes' is the number of nodes in the branch-and-cut tree that
were explored. `Root gap' indicates the percentual di�erence between the lower
bound in the root node (after adding cuts) and the best found upper bound. If
CPLEX processes the root node multiple times, the lower bound is used from
the �rst time the root node was processed.

It can be seen that MTZ is pretty competitive for certain instances, though
2CF and ICH seems to perform better overall. MTZ is characterized by a large
number of processed nodes: over 60% more than necessary for 2CF. Frankly,
the root gaps of MTZ, 2CF and ICH are similar. This implies that in the root
node, the capacity cuts make up for the weakness of MTZ, though this does not
happen in the rest of the tree, as still a lot of branching is required.

Choosing between 2CF and ICH is di�cult: both use a similar amount of
time (807 seconds versus 931 seconds) and nodes (160,000 versus 180,000) to
solve all instances to optimality. Figure 11 shows a logaritmic plot of the runtime
of MTZ, 2CF and ICH over the instances. From this plot it becomes clear that
though ICH is often faster than 2CF, 2CF is usually faster when instances take
long to solve, most notably instances 12, 33 and 36. If we consider solving even
harder instances, this is certainly an advantage.

We thus choose to use the 2-commodity �ow formulation in our branch-and-
cut algorithm. 2CF gives good bounds and yields lower computation times for
larger instances.

7.3 Comparison with previous results

Now that we have decided both on which time constraints and on which capac-
ity constraints to use, we will compare the performance of our branch-and-cut
algorithm with capacity cuts and one-way arc inequalities to the performance
of the branch-price-and-cut algorithm of Spliet and Gabor (2014).

To this end, we run the same computer program on the same set of instances,
both provided by Spliet and Gabor, on the same computer that is used to create
all other results in this thesis. The results are thus directly comparable. The
results we present are based on the so called branch-price-and-cut with 2-cycle
elimination, which is the solution method of Spliet and Gabor (2014) yielding
best average time performance on the test set.

The results per instance can be found in Table 12 and a plot comparing the
solution times can be found in Figure 12.

What immediately stands out is the enormous decrease in total runtime.
With their approach, Spliet and Gabor require over 10 hours of runtime to pro-
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Runtime Processed nodes Root gap
Inst. MTZ 2CF ICH MTZ 2CF ICH MTZ 2CF ICH

1 0.0 0.1 0.0 1 1 1 0 0 0
2 0.3 0.4 0.1 87 193 29 0.28 0.28 0.28
3 0.0 0.1 0.1 1 1 1 0 0 0
4 0.1 0.3 0.3 78 141 95 0.14 0.14 0.14
5 0.1 0.5 0.1 35 163 1 0.34 0.34 0.34
6 0.0 0.1 0.0 1 1 1 0 0 0
7 0.0 0.0 0.0 1 1 1 0 0 0
8 0.2 0.4 0.2 149 201 14 0.96 0.96 0.96
9 0.0 0.0 0.1 1 1 1 0 0 0
10 0.0 0.3 0.1 1 105 1 0 0 0
11 0.1 0.1 0.1 1 1 1 0 0 0
12 211.6 114.7 155.3 128278 67606 89143 2.36 2.36 2.36
13 8.5 20.7 12.7 5847 12450 6662 1.78 1.78 1.78
14 1.1 1.9 1.1 291 332 196 0.03 0.03 0.03
15 0.2 2.0 1.1 18 302 151 0.17 0.17 0.17
16 1.3 0.7 0.4 350 144 5 0.17 0.17 0.17
17 0.1 0.2 0.2 1 1 1 0 0 0
18 0.3 5.1 1.7 66 2078 542 0.47 0.47 0.47
19 1.6 2.7 0.7 728 756 66 0.97 0.97 0.97
20 1.0 0.2 0.3 178 1 1 0 0 0
21 14.3 1.4 1.5 2655 121 77 1.11 1.11 1.11
22 3.6 8.3 8.5 601 813 978 0.19 0.19 0.19
23 3.6 0.5 0.5 605 1 1 0.15 0.12 0.12
24 3.4 4.5 5.1 605 810 662 0.86 0.86 0.86
25 10.5 17.9 20.4 3336 4947 4520 1.07 1.08 1.08
26 0.4 0.4 0.5 17 1 1 0 0 0
27 3.7 1.3 0.7 411 19 1 0 0 0
28 0.7 1.0 1.6 33 34 24 0.08 0.08 0.08
29 0.6 0.7 0.7 22 7 7 0.05 0.05 0.05
30 0.2 0.3 0.4 1 1 1 0 0 0
31 24.1 27.5 13.5 2796 2398 1172 0.57 0.57 0.57
32 1.3 6.3 3.9 34 591 161 0.27 0.27 0.27
33 100.8 97.1 135.1 16539 9704 16067 1.03 1.03 1.03
34 13.2 6.8 29.4 1553 467 2567 0.33 0.33 0.33
35 35.4 62.7 25.8 5693 6460 2753 0.83 0.82 0.83
36 624.5 265.3 334.3 70041 31407 32984 1.49 1.51 1.58
37 58.9 15.8 23.7 10378 5906 6495 0.43 0.43 0.46
38 58.3 73.4 107.1 7079 9085 7671 0.59 0.59 0.59
39 20.0 24.0 36.2 2163 2191 3641 0.94 0.94 0.94
40 6.7 41.1 7.3 1595 2516 610 0.62 0.63 0.62

Total 1211.0 806.9 930.8 262270 161958 177306 18.3 18.3 18.4

Table 11: Branch-and-cut results for various capacity constraints
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Figure 11: Logaritmic plot comparing the total solution time of branch-and-cut
for three sets of capacity constraints

cess all instances, while the current branch-and-cut algorithm manages to do so
in under 15 minutes. That is a decrease in runtime of almost 98%. Furthermore,
all eight instances that previously could not be solved within one hour of com-
putation time, have now been solved. The di�erence in runtime is also clearly
visible in Figure 12: for all instances, branch-and-cut is magnitudes faster than
branch-price-and cut.

Table 12 also provides an explanation for the speedup: the number of pro-
cessed nodes of branch-and-cut is almost 15 times that of branch-price-and-cut.
Furthermore, on average the root gap for branch-and-cut is almost twice as big
as the root gap for branch-price-and-cut. In other words: branch-price-and-cut
gives very strong bounds, but requires a relatively slow pricing algorithm to
be executed at each node. It turns out that using branch-and-cut with a �ow
formulation makes up for the weaker bounds by processing nodes faster.

7.4 Analysis precedence inequalities

In this section, we will test how well the precedence inequalities perform in the
branch-and-cut algorithm. We have discussed three ways to separate precedence
inequalities: separation by paths, separation by DAGs and exact separation.

When we �nd precedence inequalities using separation by paths, we also test
two additional strategies. The �rst one is to convert both candidates making up
the inequality to DAGs, as explained in Section 4.2.4 and visualized by Figures
8 and 9. The second strategy is to convert candidates to candidates containing
a complete subgraph, as explained in Section 4.2.4. To do so, we use Theorem 9
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Runtime Processed nodes Optimality gap Root gap
Inst. BP&C B&C BP&C B&C BP&C B&C BP&C B&C

1 0.7 0.1 1 1 0 0 0 0
2 121.9 0.4 483 193 0 0 0.17 0.28
3 3.7 0.1 1 1 0 0 0 0
4 28.5 0.3 193 141 0 0 0.14 0.14
5 2.3 0.5 2 163 0 0 0 0.34
6 1.5 0.1 2 1 0 0 0 0
7 4.9 0.0 4 1 0 0 0 0
8 3.5 0.4 29 201 0 0 0.65 0.96
9 3.0 0.0 7 1 0 0 0 0
10 5.9 0.3 5 105 0 0 0 0
11 87.4 0.1 22 1 0 0 0 0
12 3600.0 114.7 889 67606 0.15* 0 0.67* 2.36
13 3600.0 20.7 684 12450 0.59* 0 1.10* 1.78
14 58.0 1.9 45 332 0 0 0 0.03
15 29.4 2.0 36 302 0 0 0 0.17
16 92.4 0.7 98 144 0 0 0.10 0.17
17 22.9 0.2 15 1 0 0 0 0
18 105.3 5.1 98 2078 0 0 0.20 0.47
19 133.3 2.7 133 756 0 0 0.56 0.97
20 41.6 0.2 28 1 0 0 0 0
21 3600.0 1.4 864 121 0.02* 0 0.57* 1.11
22 152.3 8.3 62 813 0 0 0.03 0.19
23 99.6 0.5 40 1 0 0 0 0.12
24 112.2 4.5 27 810 0 0 0.03 0.86
25 3600.0 17.9 712 4947 0.08* 0 0.61* 1.08
26 65.4 0.4 16 1 0 0 0 0
27 85.5 1.3 24 19 0 0 0 0
28 106.5 1.0 36 34 0 0 0 0.08
29 65.5 0.7 17 7 0 0 0 0.05
30 45.1 0.3 4 1 0 0 0 0
31 610.9 27.5 121 2398 0 0 0.13 0.57
32 840.0 6.3 164 591 0 0 0.07 0.27
33 3600.0 97.1 413 9704 0.33* 0 0.45* 1.03
34 193.2 6.8 36 467 0 0 0 0.33
35 640.0 62.7 119 6460 0 0 0 0.82
36 3600.0 265.3 1662 31407 0.13* 0 0.43* 1.51
37 3600.0 15.8 278 5906 0.29* 0 0.29* 0.43
38 3600.0 73.4 1259 9085 0.12* 0 0.30* 0.59
39 3600.0 24.0 2294 2191 0 0 0.50 0.94
40 1093.2 41.1 521 2516 0 0 0.30 0.63

Total 37255.3 806.9 11444 161958 1.72 0 7.33 18.28

Table 12: Branch-price-and-cut with 2-cycle elimination (BP&C) of Spliet and Gabor
(2014) compared to our branch-and-cut (B&C) using MTZ to model time and 2CF
to model capacity. Runtimes are in seconds. An * indicates the value is calculated
using the optimal solution of B&C
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Figure 12: Plot showing the di�erences in solution time between branch-and-cut
and branch-price-and-cut as implemented by Spliet and Gabor (2014). `Total
solution time' shows the result for the aggregated solution times.

to calculate a lower bound on the time necessary to visit all nodes. If the new
lower bound does not allow for a stronger precedence inequality to be found,
conversion to DAGs is used.

After �nding precedence inequalities using separation by DAGs, we also
apply this second strategy. That is, the candidates are converted to contain
complete subgraphs, if possible.

Note that there exist more sophisticated acceleration strategies. One could,
for example, adjust the algorithm for separation by paths to perform the conver-
sion to DAGs as a part of the separation algorithm. When done correctly, this
can increase the number of found inequalities. We will, however, not consider
additional acceleration strategies in this thesis. The advantage of the accelera-
tion strategies we use for the experiments, is that they are independent of the
separation algorithm. That is, when a better separation algorithm is found,
they can still be used.

The result of the experiments can be found in Table 13. `Path', `DAG' and
`Compl.' indicate the inequalities are not converted, converted to DAGs, or
converted to contain complete subgraphs, respectively. Note that exact sepa-
ration is not included in the table, as it turned out to be too slow to use in
branch-and-cut.

The table shows that using precedence inequalities is a competitive alterna-
tive to branch-and-cut without precedence inequalities. It is di�cult to draw
conclusions based on the total runtimes, as they are largely in�uenced by the
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Figure 13: Plot comparing the number of processed nodes without precedence
inequalities, and when using separation by paths and conversion to DAGs

di�cult instances. For example, the di�erences in total runtime are mainly
caused by instance 36, which is relatively hard to solve.

A good argument for using the precedence inequalities is the reduction in
the number of processed nodes. For each tested setting, the total number of
processed nodes was less than the total number of processed nodes when no
precedence inequalities were added. Furthermore, separation by paths and con-
version to DAGs yielded a total number of processed nodes almost half of the
total number of processed nodes necessary when no precedence inequalities are
being used. This is shown graphically in Figure 13.

If we consider the di�erent acceleration strategies, we would expect that they
would cause a decrease in the number of processed nodes. After all, precedence
inequalities get replaced by stronger precedence inequalities. We indeed see this
e�ect for separation by paths with conversion to DAGs and for separation by
DAGs with conversion to complete graphs. In both cases, the total number
of processed nodes and the total runtime is lower than in the case where the
precedence inequalities are not converted.

Separation by paths with conversion to complete graphs, however, is an ex-
ception: instead of the expected decrease we see an enormous increase in the
total runtime and the total number of processed nodes. A possible explanation
could be bad luck: each constraint can change the order in which the branch-
and-cut tree is traversed, which can have a big e�ect on both runtime and the
number of processed nodes, causing an outlier. Instance 36 could be such an
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outlier, as the number of nodes (79,739) is very big when compared to that of
the run without conversion of inequalities (37,639 nodes).

Using the exact separation algorithm we could not run the branch-and-cut algo-
rithm to completion, as it was too slow. Instead we performed branch-and-cut
on the root node only. That is, we iterate between solving the LP relaxation
and adding capacity and precedence cuts, but we do not branch. We did so for
the same settings as in Table 13, plus exact separation.

The experiment resulted in lower bounds for the objective value that were
almost equal for all settings. The maximum di�erence per instance over di�erent
settings was only 0.03% of the objective value. Further testing revealed that the
lower bounds do not even change when the precedence inequalities are disabled.
This is surprising: from Table 13 we know that the precedence inequalities have
e�ect, but in the root node we do not see an increase in lower bound when they
are added. Apparently, the precedence inequalities become more important
deeper in the tree.

This could be explained by the nature of the precedence inequalities: they
disallow certain combinations of paths. If a solution is very fractional, not many
paths can be detected, and hence the precedence inequalities are of little use.
Deeper in the tree, where many variables are �xed, they become more e�ective.

We conclude by stating there is a big potential in the precedence inequalities.
They are able to reduce the number processed nodes considerably, while still
being competitive. This implies further speedups may be achieved by consider-
ing di�erent (heuristic) separation algorithms and acceleration strategies. Also
adding only a subset of the precedence inequalities, e.g. only cuts with at least
a violation of 0.5, could yield results. Though we will not consider this further
in this thesis, it is certainly an interesting path for further research.

7.5 Analysis sub-optimal path inequalities

In the previous section, we have seen that the fastest way to solve all 40 test-
instances, is by adding precedence inequalities separated by paths and converted
to DAGs.

To test the e�ect of the sub-optimal path inequalities, we run two experi-
ments: one with the precedence inequalities as mentioned above, and one with-
out precedence inequalities. The results are presented in Table 14.

The sub-optimal path inequalities do not seem very e�ective: we do not see
a decrease in the total runtime, nor a decrease in the total number of processed
nodes when compared to the previous experiments. Still, adding sub-optimal
path inequalities is competitive on certain instances, most notably instance 36,
which allows for a reasonably fast solution when no precedence cuts are added.

A possible explanation for the bad performance of the sub-optimal path
inequalities has to do with the settings of CPLEX. The sub-optimal path in-
equalities allow for feasible solutions to the TWAVRP to be cut o�. CPLEX
classi�es such optimality cuts as `lazy constraints', as opposed to valid inequal-
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ities that do not cut o� feasible solutions, which are called `user cuts'. Lazy
constraints require some CPLEX presolve reductions to be turned o�, which
may be hindering the performance of the sub-optimal path inequalities.

7.6 Larger instances

In the previous experiments, we have found that branch-and-cut with precedence
inequalities separated by paths and converted to DAGs but without sub-optimal-
path inequalities is our fastest method to solve the �rst 40 test-instances. We
are now able to solve all 40 test-instances to optimality, in under 10 minutes
total.

The �rst 40 test-instances contained at most 25 customers and 3 scenarios.
To �nd out the maximum size of the instances we can solve, we test our fastest
branch-and-cut algorithm on 20 additional instances with 30 and 35 customers,
generated by the same algorithm that was used to create the original 40 test-
instances. The results are presented in Table 15.

It is no surprise that the larger instances are much harder to solve; run-
time is expected to increase exponentially in the number of customers. What is
surprising is that we can solve almost half of the new instances to optimality:
9 of the 20 instances were solved to optimality within one hour of computation
time. The solutions for the other instances are all close to optimality, the largest
optimality gap being just over 3%. With such a small optimality gap, even the
sub-optimal solution of the TWAVRP potentially outperforms current practice.

For even larger instances, heuristics are still required. Note that in Table 15
the root gaps are all below 4%, indicating that processing only the root node
could be a good starting point for a heuristic.
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Runtime Processed nodes
Sep. by paths Sep. by DAGs Sep. by paths Sep. by DAGs

Inst. Path DAG Compl. DAG Path Path DAG Compl. DAG Compl.
1 0.2 0.0 0.0 0.0 0.0 1 1 1 1 1
2 0.2 0.2 0.2 0.2 0.1 35 21 18 11 13
3 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1
4 0.2 0.1 0.1 0.1 0.1 15 5 5 5 5
5 0.2 0.5 0.1 0.5 0.3 22 124 3 86 39
6 0.0 0.1 0.0 0.0 0.0 1 1 1 1 1
7 0.0 0.0 0.0 0.0 0.0 1 1 1 1 1
8 0.3 0.3 0.3 0.3 0.3 38 38 38 38 38
9 0.0 0.0 0.0 0.0 0.0 1 1 1 1 1
10 0.1 0.0 0.1 0.1 0.0 1 1 1 1 1
11 0.1 0.1 0.1 0.1 0.1 1 1 1 1 1
12 169.2 126.3 170.9 131.3 190.3 57314 37813 54681 39830 53590
13 5.8 5.1 9.3 5.8 5.8 2407 2001 3694 2126 2248
14 0.4 0.3 0.3 0.3 0.5 9 7 7 12 38
15 0.6 0.6 0.3 0.5 0.3 57 60 15 42 15
16 0.8 0.5 1.3 0.5 1.3 73 37 158 37 155
17 0.2 0.2 0.2 0.2 0.2 1 1 1 1 1
18 3.0 1.1 1.5 1.4 1.4 450 92 156 240 181
19 1.1 1.1 1.3 1.1 1.2 196 196 235 196 216
20 0.3 0.3 0.2 0.3 0.2 14 17 1 17 1
21 2.1 1.3 8.0 1.7 2.2 305 169 579 224 237
22 2.6 8.1 4.0 8.3 4.8 91 552 154 528 246
23 0.6 0.6 0.5 0.6 0.5 1 1 1 1 1
24 2.4 2.7 1.6 3.7 1.8 339 409 178 477 186
25 12.4 13.5 13.0 18.1 21.2 1687 2517 2006 2921 3749
26 0.3 0.3 0.3 0.3 0.3 1 1 1 1 1
27 1.4 2.6 1.4 2.3 1.3 11 207 20 137 18
28 2.2 1.4 6.6 2.1 1.9 122 30 540 124 122
29 1.0 1.1 1.1 1.3 1.5 14 36 21 51 91
30 0.3 0.4 0.3 0.4 0.3 1 1 1 1 1
31 13.2 10.9 16.0 11.3 13.7 762 512 1086 741 1097
32 2.0 6.8 3.3 3.2 2.2 81 390 111 64 28
33 64.1 85.5 83.7 101.9 59.0 7286 8210 7753 8824 5170
34 7.7 7.0 8.0 24.2 18.2 520 421 423 1471 1248
35 51.8 75.9 38.6 57.2 34.0 4841 7474 4069 5865 3262
36 331.6 173.4 1036.3 946.6 525.9 37639 17523 79739 74661 35975
37 7.1 16.4 5.6 7.8 4.8 816 2504 774 1275 627
38 45.7 36.9 19.2 31.6 12.9 2274 2341 1188 1252 755
39 10.6 8.0 11.9 63.5 26.3 862 536 885 5164 1548
40 13.7 10.0 7.1 27.1 8.1 860 711 748 1734 794

Total 755.7 599.7 1453.0 1455.9 943.2 119151 84964 159296 148164 111703

Table 13: Runtime (in seconds) and number of processed nodes for branch-
and-cut with precedence inequalities, for two separation algorithms and various
acceleration strategies.
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Runtime Processed nodes Optimality gap
Inst. No prec. Prec. No prec. Prec. No prec. Prec.

1 0.0 0.0 1 1 0 0
2 0.5 0.2 355 41 0.28 0.28
3 0.0 0.0 1 1 0 0
4 1.7 0.3 1254 19 0.14 0.14
5 0.6 0.3 176 46 0.34 0.34
6 0.1 0.0 1 1 0 0
7 0.0 0.0 1 1 0 0
8 0.1 0.2 21 42 0.96 0.96
9 0.1 0.0 1 1 0 0
10 0.4 0.1 118 1 0 0
11 3.0 0.1 605 1 0 0
12 667.1 116.0 263771 36826 2.36 2.36
13 31.3 10.4 15531 3628 1.78 1.78
14 3.0 0.4 603 10 0.03 0.03
15 3.0 0.3 587 15 0.17 0.17
16 0.3 0.5 19 46 0.17 0.17
17 0.2 0.2 1 1 0 0
18 3.5 3.4 1013 408 0.47 0.47
19 2.7 2.3 820 556 0.97 0.97
20 1.7 0.2 262 1 0 0
21 1.4 1.2 157 114 1.11 1.11
22 14.2 3.6 1004 151 0.19 0.19
23 8.2 0.9 1001 15 0.15 0.12
24 10.2 3.1 1916 242 0.86 0.86
25 16.2 9.9 3055 1543 1.07 1.07
26 3.0 0.2 201 1 0 0
27 0.5 6.3 11 411 0 0
28 1.0 1.0 28 27 0.08 0.08
29 8.2 5.1 878 296 0.05 0.05
30 0.3 0.9 1 25 0 0
31 96.9 36.1 9681 2965 0.57 0.57
32 3.5 2.8 137 141 0.27 0.27
33 155.4 55.3 17496 6182 1.03 1.03
34 36.3 35.4 2230 1643 0.33 0.33
35 93.3 166.6 7180 11888 0.82 0.82
36 196.0 576.3 19516 54735 1.49 1.49
37 253.2 11.2 26772 962 0.43 0.43
38 69.9 88.5 6727 4599 0.59 0.59
39 41.4 54.8 3739 3889 0.94 0.94
40 18.8 9.5 1497 861 0.63 0.62

Total 1747.3 1203.7 388368 132336 18.28 18.24

Table 14: Result for branch-and-cut with sub-optimal path inequalities. `No
prec.' indicates no precedence inequalities are added. `Prec.' indicates prece-
dence inequalities were separated by paths and converted to DAGs.
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Inst. Runtime Processed nodes Optimality gap Root gap
41 3600.0 124301 0.81 2.00
42 3600.0 92361 2.62 3.56
43 3600.0 77101 1.20 2.01
44 263.4 11253 0 1.46
45 3600.0 151501 0.59 1.82
46 31.7 2186 0 0.57
47 188.7 10063 0 0.68
48 3600.0 85201 0.42 1.86
49 3600.0 90701 1.08 2.42
50 300.7 14160 0 0.71
51 168.8 4695 0 0.76
52 10.7 79 0 0.06
53 3600.0 45393 2.98 3.30
54 3600.0 50100 2.69 3.42
55 231.3 3557 0 0.67
56 3600.0 51370 3.01 3.69
57 3600.0 41976 2.63 3.10
58 152.5 8729 0 0.88
59 1480.8 54357 0 0.93
60 3601.0 83501 0.18 1.32

Total 42430.3 1002585 18.22 35.23

Table 15: Results for branch-and-cut with precedence inequalities separated by
paths and converted to DAGs, without sub-optimal path inequalities.
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8 Conclusion

In this thesis, we have taken a branch-and-cut approach to solving the TWAVRP,
using �ow formulations. Testing di�erent combinations of both known and novel
time constraints and capacity constraints, we have determined that we get the
best results when modeling time with the Miller-Tucker-Zemlin inequalities, and
capacity with the 2-commodity �ow formulation of Baldacci et al. (2004).

We have used the package of Lysgaard (2003) to add capacity cuts, which
was of major importance for the speed of the branch-and-cut algorithm. Fur-
thermore, we have added one-way arc constraints. After adding both valid in-
equalities, the branch-and-cut algorithm outperforms the branch-price-and-cut
algorithm of Spliet and Gabor (2014) by solving all test-instances to optimaly
in only 2.2% of the time required by the branch-price-and-cut algorithm.

Testing two novel valid inequalities: the precedence inequalities and the sub-
optimal path inequalities, we found the former to be e�ective and the latter to
be une�ective. The precedence inequalities allow for a vast reduction in the
number of nodes that have to be processed. Using the `separation by paths'
separation algorithm, and applying the `convert to DAGs' acceleration strategy,
we were able to boost performance even further. Solving all instances of the
test set now only requires just under 10 minutes.

Having solved all test-instances, we generated 20 harder test-instances and
tried to solve them as well. We were able to solve 9 instances to optimality
within one hour of computation time per instance. For the other 11 instances,
the branch-and-cut algorithm generated feasible solutions with objectives at
most 3% from the optimal objective.

8.1 Explanation of performance di�erence

The big di�erence in performance between the branch-and-cut algorithm of this
thesis and the branch-price-and-cut algorithm of Spliet and Gabor (2014) is
rather surprising. Recently, column generation has been applied to many VRP
like problems, and it is to be expected that branch-price-and-cut and branch-
and-cut are competitive.

One explanation for the di�erences in solution time is in the implementation
of both algorithms. For the branch-and-cut algorithm, we have used commercial
solver CPLEX as the basis, while Spliet and Gabor (2014) have programmed the
branch-price-and-cut algorithm themselves, and rely on CPLEX solely to solve
the LP relaxations. Using CPLEX to manage the branch-and-cut brings many
advantages, including advanced branching strategies, upper bound heuristics,
e�cient tree management, e�cient cut pools and presolver reductions. Their
combined e�ect could explain the di�erences in speed between the two algo-
rithms.

A major di�erence between branch-price-and-cut and branch-and-cut, is that
branch-price-and-cut uses a relatively large amount of time per node to calculate
a strong lower bound, while the branch-and-cut algorithm calculates a weaker
lower bound very fast. This could explain the di�erences as well: if branch-
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and-cut can explore more nodes in the same time, it can still be faster than
branch-price-and-cut.

8.2 Further research

The TWAVRP is a problem that has only been introduced recently and has
plenty of opportunities for research, both motivated by practice and by theory.

In this thesis, we have only considered solving the TWAVRP to optimality.
We succeed in doing so for up to about 35 customers and 3 scenarios. Though
impressive considering the complexity of the TWAVRP, planning up to 35 cus-
tomers may not be su�cient in practice. Hence, it may be necessary to look into
heuristics that can solve large instances of the TWAVRP to near-optimality in
reasonable time. This could be either heuristics based on the VRP literature,
meta-heuristics, or heuristics designed speci�cally for the TWAVRP.

Another way to make the TWAVRP better suitable for practical use, is to
relax some of the assumptions of the TWAVRP. Examples could be including
truck-unloading times, planning non-homogeneous �eets or considering time-
dependent travel times to model busy tra�c.

From a theoretical viewpoint, it is interesting to further develop the exact meth-
ods to solve the TWAVRP. Just as in the TSP and VRP literature, this is likely
to increase the size of the problems that are solvable in reasonable time.

At the moment of writing, the branch-and-cut algorithm as described in this
thesis is the fastest algorithm to solve the TWAVRP test-instances. We have
explained that possibly an important part of the speed-up is caused by features
of CPLEX. It would thus be interesting to see which features exactly cause
this speed-up, and if we can use this information to improve the exact solution
methods for the TWAVRP.

Another interesting research topic concerns the precedence inequalities. We
have shown that adding precedence inequalities yield a big reduction in the
number of nodes that have to be processed. If we can improve upon the separa-
tion algorithms, we might improve on performance. Another interesting tactic
would be to only add precedence cuts that are violated by a minimum amount.

The precedence inequalities can be applied to branch-price-and-cut as well,
potentially improving performance. A direct application of Theorem 1 could
be even more successful: Theorem 1 explains which paths directly exclude each
other. In this thesis, we have used Theorem 1 to derive the precedence inequal-
ities, but when using the branch-price-and-cut algorithm we can directly add
constraints on paths to exclude each other. Such a branch-price-and-cut speci�c
valid inequality might prove very e�ctive.
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A Simpli�ed convex hull formulation

Note that in (31)-(34) multiple sets of v-variables only occur as a sum. These
variables can thus be aggregated to reduce the number of variables and con-
straints. Aggregating

∑
i∈V ′∪{0},i6=l v

ωij
l to φωlj ∀j ∈ V ′, j 6= l, l ∈ V ′∪{0}, ω ∈ Ω

yields:

Time constraints: convex hull formulation

tωl =

{ ∑
i∈V ′∪{0} v

ωil
l if l = j

vωljl + φωlj if l 6= j
∀j ∈ V ′, l ∈ V ′ ∪ {0}, ω ∈ Ω (87)

vωijj − vωiji ≥ tijxωij ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω (88)

slx
ω
ij ≤ vωijl ≤ elxωij ∀i ∈ V ′ ∪ {0}, j ∈ V ′, l ∈ {i, j}, ω ∈ Ω (89)∑

i∈V ′∪{0},i6=l

slx
ω
ij ≤ φωlj ≤

∑
i∈V ′∪{0},i6=l

elx
ω
ij ∀j ∈ V ′, l ∈ V ′ ∪{0}, l 6= j, ω ∈ Ω

(90)
vωijl ≥ 0 ∀i ∈ V ′ ∪ {0}, j ∈ V ′, l ∈ {i, j}, ω ∈ Ω (91)

φωlj ≥ 0 ∀j ∈ V ′, l ∈ V ′ ∪ {0}, l 6= j, ω ∈ Ω (92)

B Additional capacity constraints

Capacity constraints: a�ne combination predecessors

qωj ≥
∑

i∈V ′∪{0}

(qx)ωij + djω ∀j ∈ V ′, ω ∈ Ω (93)

(qx)ωij ≥ dωi xωij ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω (94)

(qx)ωij ≥ qωi −Q(1− xωij) ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω (95)

dωi ≤ qωi ≤ Q ∀i ∈ V ′, ω ∈ Ω (96)

qωi ≥ 0 ∀i ∈ V ′, ω ∈ Ω (97)

In which (qx)ωij is a single variable ∀i ∈ V ′ ∪ {0}, j ∈ V ′, ω ∈ Ω.
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C Complexity separation precedence inequalities

when using MTZ time constraints

The problem of �nding the most violated precedence inequality with certainty,
if one exists, is NP-hard for a general optimal solution to the general �ow for-
mulation in which the integrality constraints are omitted and time is modeled
with the MTZ-inequalities. We will prove this result with a polynomial-time
reduction from the decision version of TSP, which is known to be NP-complete.

The outline is as follows: based on any given TSP with at least four cities
and strictly positive travel times, we will de�ne an instance of the TWAVRP.
Then, we will de�ne a set of optimal solutions to the LP relaxation of the general
�ow formulation in which time is modeled by the MTZ-inequalities. Next, we
will de�ne a set of instances of the corresponding separation problems, I(i, j),
in which i and j are parameters. Finally we show that the TSP allows for an
objective ≤ α if and only if minij {v(I(i, j))} < 1, in which v(.) indicates the
objective value of I(i, j).

Consider a TSP with n ≥ 4 cities and strict positive distances between all
cities. We would like to answer the question "does there exist a feasible solution
to the TSP with objective ≤ α". First, we will turn this TSP into an instance
of the TWAVRP. Let V ′ denote the set of nodes corresponding to the cities.
Add two depot nodes 0 and n+ 1 and de�ne V = V ′ ∪ {0, n+ 1}.

Naturally we de�ne tkl to be the distance between cities k and l, ∀k, l ∈ V ′.
The distances from and to the depot nodes can be chosen arbitrarily.

For this instance, we pick the exogenous time windows as large as possible.
We can do so by setting sk = 0 and ek = ∞ ∀k ∈ V ′ ∪ {0}. The endogenous
time window width is set to wk = α

2 ∀k ∈ V ′.
Demand can be made non restrictive, regardless of the formulation. We

de�ne two scenarios Ω = {ω, ω′}. In both scenarios, demand can be chosen
arbitrarily. To make the capacity constraints non restrictive, we pick a large
truck capacity of Q =

∑
k∈V ′(dωk + dω

′

k ).

Now we can de�ne the instances of the separation problem, I(i, j)∀i, j ∈ V ′

(i 6= j). These instances have to be feasible for the LP relaxation of the general
�ow formulation, in which time is modeled by the MTZ-inequalities.

Finally, we set all costs to zero ckl = 0 ∀k, l ∈ V . This causes every feasible
solution of the LP relaxation to be optimal as well.

Next, we de�ne an optimal solution for each combination of i and j, i, j ∈ V ′
(i 6= j). Scenario ω′ has an integral solution, in which each customer is served
by a single truck, except for i and j which are served by a truck that leaves the
depot, visits i, then visits j and then returns to the depot.

Scenario ω has a very fractional solution:

• xω0i = 1
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• xωj(n+1) = 1

• xωkl = 1
n−2 ∀k, l ∈ V ′\{i, j}, k 6= l

• xωil = 1
n−2 ∀l ∈ V ′\{i, j}

• xωkj = 1
n−2 ∀k ∈ V ′\{i, j}

• all other x-values are equal to 0

This fractional solution is feasible for the LP relaxation of the general �ow
formulation with MTZ-inequalities for time. The �ows are easily veri�ed to be
feasible. Note that the MTZ-inequalities (17) use a `big-M' of ek−sl =∞ in our
case. This implies that if for any arc the x-variable has a value less than 1, the
associated MTZ-inequality becomes useless, thus allowing the instances I(i, j)
to be feasible. Because all costs are zero, the described feasible solution is op-
timal as well.

Now we will answer the following question, for each instance I(i, j): "does
instance I(i, j) contain a cut that is violated by ≥ 1". To do so, we will use the
notation of the MIP for exact separation in Section 4.2.1.

First, let us ignore constraint (75) in Section 4.2.1. Note that in scenario ω′,
the only strictly positive weight, selectable arc, is arc (i, j). It is thus optimal
to pick aj = 1 and bi = 1, so j is the `starting node' and i is the `ending node'.

If we set sωk = 1 and sωl = 1 for any k, l ∈ V ′, k 6= l, it is optimal to activate all
arcs between k and l by setting fωkl = 1 and fωlk = 1 if possible. Because many of
the x-variables have the same values, we can state the following: the maximum
violation when exactly m nodes from V ′\{i, j} are activated, is 1

n (m+m2)−m,
using the number edges in a complete graph. By the convexity of this function
inm, it follows that the optimum is found when eitherm = 0 orm = n. Clearly,
the optimum is 1 for m = n.

Now we reconsider constraint (75). The optimal violation of 1 can only be
found if no sets of arcs are selected (f -variables) such that a cycle i to j (in
scenario ω′) to all other nodes to j (in scenario ω) is shorter than wi +wj = α.

In other words: v(I(i, j)) < 1 if and only if the best TSP solution in which
j succeeds i has objective ≤ α. By varying i and j we get the following state-
ment: the TSP has a solution of length ≤ α if and only if minij {v(I(i, j))} < 1,
which is a polynomial time reduction from TSP to the exact separation problem.
This proves that �nding the most violated precedence inequality, given an opti-
mal solution to the general �ow formulation in which the integrality constraints
are omitted and time is modeled by the MTZ-inequalities, is NP-hard.
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D CPLEX 12.5 parameter settings

Parameter Setting E�ect
IloCplex::Threads 1 Disable parallel optimization
IloCplex::MIPSearch 1 Use traditional branch-and-cut search
IloCplex::EpGap 0.000001 Set relative mipgap tolerance
IloCplex::TiLim 3600 Stop after one hour of computation
IloCplex::Cliques -1 Do not generate clique cuts
IloCplex::Covers -1 Do not generate cover cuts
IloCplex::DisjCuts -1 Do not generate disjunctive cuts
IloCplex::FlowCovers -1 Do not generate �ow cover cuts
IloCplex::FlowPaths -1 Do not generate �ow path cuts
IloCplex::FracCuts -1 Do not generate Gomory fractional cuts
IloCplex::GUBCovers -1 Do not generate GUB cuts
IloCplex::ImplBd -1 Do not generate implied bound cuts
IloCplex::MIRCuts -1 Do not generate MIR cuts
IloCplex::MCFCuts -1 Do not generate MCF cuts
IloCplex::ZeroHalfCuts -1 Do not generate zero-half cuts
IloCplex::NumericalEmphasis 1 Exercise extreme caution in computation

(only used when reporting LP bounds)
LazyConstraintCallback Add empty Allows for optimality cuts

(only for sub-optimal-path inequalities)

E Tables

The next pages contain additional tables.
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No capacity constraints
Inst. None MTZ AC pred. AC succ. AC both CH ICH

1 8.4800 9.5288 9.5957 9.5530 9.8945 9.6073 9.7858
2 10.0600 10.2764 10.2910 10.2549 10.3056 10.2910 11.0131
3 11.4600 12.4053 12.4905 12.4907 12.7504 12.5614 12.9334
4 13.1200 13.5025 13.5510 13.4974 13.5817 13.5510 13.8317
5 10.6600 10.8752 10.9098 10.9102 10.9102 10.9098 11.6665
6 13.7900 14.3349 14.3084 14.2247 14.3084 14.3381 15.1500
7 9.0700 9.5350 9.5270 9.5225 9.6265 9.5592 9.7605
8 13.1100 14.2837 14.4581 14.2215 14.5079 14.4581 15.0210
9 10.9400 11.8349 11.9914 12.0043 12.1223 12.0003 12.9067
10 9.1200 9.3889 9.3914 9.3953 9.4253 9.3995 10.9643
11 9.2300 9.8071 9.8206 9.8375 10.0335 9.8501 10.5557
12 15.0200 15.2331 15.2258 15.2181 15.2623 15.2370 16.7632
13 15.8400 16.7570 16.8411 16.7450 16.9877 16.8499 18.9959
14 11.4900 11.8484 11.8845 11.9092 11.9903 11.8887 12.5565
15 14.4800 14.6090 14.6179 14.6150 14.6457 14.6179 16.0284
16 13.2400 13.3975 13.3941 13.3965 13.4210 13.4010 14.2779
17 12.1000 12.4756 12.4971 12.4760 12.5199 12.4971 13.1449
18 14.1900 14.3071 14.3021 14.2874 14.3047 14.3087 15.3842
19 15.4000 15.8562 15.9754 16.0036 16.0272 15.9754 17.8713
20 15.1900 15.3091 15.3084 15.3129 15.3733 15.3104 16.1098
21 15.8200 16.1804 16.2023 16.1822 16.2513 16.2143 17.2864
22 17.9400 18.7033 18.9014 18.8728 18.9654 18.9014 19.5172
23 15.6600 15.8319 15.8523 15.8642 15.8686 15.8548 18.5607
24 16.3400 16.4987 16.5155 16.5146 16.5384 16.5157 17.5003
25 15.3900 16.0251 16.0213 15.9770 16.0420 16.0520 18.2292
26 18.0400 18.4541 18.4640 18.4820 18.5898 18.4731 20.8095
27 14.4300 14.7727 14.7896 14.7469 14.7904 14.7897 15.1070
28 15.4700 15.6208 15.6255 15.6160 15.6401 15.6300 17.1373
29 15.6400 15.8519 15.8595 15.8520 15.8755 15.8675 16.3578
30 16.9300 17.1089 17.0997 17.0879 17.1109 17.1169 17.9222
31 15.3900 16.0762 16.0669 16.0981 16.4062 16.0880 17.6881
32 16.4600 16.7092 16.7087 16.6992 16.7497 16.7177 18.0832
33 18.0800 18.5184 18.5425 18.5418 18.6249 18.5532 20.3222
34 18.2900 18.4266 18.4205 18.4223 18.4491 18.4301 20.1627
35 14.9100 14.9452 14.9525 14.9523 14.9545 14.9526 15.8546
36 17.9300 18.1697 18.2003 18.2379 18.2551 18.2031 19.2876
37 15.0700 15.3436 15.3467 15.3267 15.3586 15.3553 16.5253
38 15.0600 15.4291 15.4524 15.4931 15.5513 15.4612 18.1776
39 14.2500 14.6201 14.6590 14.6456 14.6970 14.6611 15.9824
40 15.6700 15.7226 15.7249 15.7245 15.7410 15.7268 17.0238

Table 16: Objective for the LP relaxation of the general �ow formulation, for
various time constraints and no capacity constraints, instances 1-40

V



MTZ (capacity)
Inst. None MTZ AC pred. AC succ. AC both CH ICH

1 10.8882 10.8882 10.8882 10.8882 10.8902 10.8882 11.3064
2 10.3902 10.3925 10.3933 10.3902 10.3936 10.3933 11.0131
3 12.5343 12.5583 12.5965 12.5935 12.7804 12.6342 13.0889
4 14.0608 14.0608 14.0608 14.0608 14.0608 14.0608 14.3099
5 11.1890 11.1890 11.1890 11.1890 11.1890 11.1890 11.6941
6 14.3269 14.3649 14.3587 14.3312 14.3593 14.3785 15.2778
7 10.3267 10.3267 10.3267 10.3267 10.3267 10.3267 10.8237
8 15.2517 15.2517 15.2517 15.2517 15.2517 15.2517 16.0458
9 12.8712 12.8778 12.8802 12.8743 12.8802 12.8802 13.5733
10 9.5333 9.5377 9.5386 9.5353 9.5419 9.5386 11.0328
11 10.3719 10.3838 10.3941 10.3941 10.4764 10.3973 11.1330
12 15.3069 15.3082 15.3113 15.3088 15.3113 15.3113 16.7889
13 17.2066 17.2126 17.2078 17.2066 17.2764 17.2132 19.4363
14 13.2220 13.2220 13.2220 13.2220 13.2220 13.2220 13.5967
15 14.7878 14.7878 14.7878 14.7878 14.7890 14.7878 16.1024
16 13.6125 13.6125 13.6125 13.6125 13.6125 13.6125 14.3423
17 12.9525 12.9525 12.9525 12.9525 12.9525 12.9525 13.5968
18 14.3961 14.3985 14.3964 14.3961 14.3964 14.3985 15.4747
19 16.0704 16.0737 16.1036 16.1270 16.1270 16.1036 18.2363
20 15.4324 15.4324 15.4324 15.4324 15.4399 15.4324 16.2417
21 16.9306 16.9306 16.9306 16.9306 16.9306 16.9306 17.6963
22 19.8103 19.8103 19.8103 19.8103 19.8103 19.8103 20.3821
23 16.0935 16.0935 16.0935 16.0935 16.0935 16.0935 18.6760
24 16.8110 16.8110 16.8110 16.8110 16.8110 16.8110 17.6459
25 16.6587 16.6587 16.6599 16.6587 16.6637 16.6599 18.5748
26 18.9565 18.9565 18.9565 18.9565 18.9565 18.9565 21.1227
27 15.3044 15.3044 15.3044 15.3044 15.3044 15.3044 15.7933
28 16.1927 16.1927 16.1927 16.1927 16.1927 16.1927 17.2790
29 16.3388 16.3388 16.3388 16.3388 16.3388 16.3388 16.8033
30 17.4866 17.4866 17.4866 17.4866 17.4873 17.4866 18.2617
31 17.2827 17.2827 17.2827 17.2827 17.2859 17.2827 18.4856
32 17.3098 17.3098 17.3098 17.3098 17.3098 17.3098 18.4310
33 19.3881 19.3881 19.3907 19.3907 19.4124 19.3907 20.8768
34 18.8639 18.8639 18.8639 18.8639 18.8639 18.8639 20.4680
35 15.0673 15.0673 15.0673 15.0673 15.0673 15.0673 15.8900
36 18.5848 18.5848 18.5848 18.5848 18.5848 18.5848 19.5293
37 15.9524 15.9524 15.9524 15.9524 15.9524 15.9524 17.1223
38 16.8416 16.8416 16.8416 16.8416 16.8416 16.8416 19.5477
39 16.3758 16.3783 16.3806 16.3778 16.3821 16.3806 17.5591
40 15.8464 15.8464 15.8464 15.8464 15.8464 15.8464 17.0864

Table 17: Objective for the LP relaxation of the general �ow formulation, for
various time constraints and MTZ capacity constraints, instances 1-40

VI



2CF
Inst. None MTZ AC pred. AC succ. AC both CH ICH

1 12.5667 12.5955 12.5667 12.5667 12.6005 12.5955 12.5667
2 12.6944 12.6944 12.6944 12.6944 12.6944 12.6944 12.6944
3 13.9121 13.9232 13.9121 13.9121 13.9128 13.9232 13.9121
4 15.1504 15.1504 15.1527 15.1515 15.1527 15.1527 15.1515
5 13.2729 13.2729 13.2729 13.2729 13.2729 13.2729 13.2729
6 16.8022 16.8022 16.8022 16.8022 16.8022 16.8022 16.8022
7 11.9782 11.9782 11.9782 11.9782 11.9782 11.9782 11.9782
8 18.3313 18.3313 18.3313 18.3313 18.3313 18.3313 18.3313
9 16.2204 16.2394 16.2463 16.2293 16.2463 16.2463 16.2293
10 13.9905 14.0026 14.0024 13.9947 14.0024 14.0026 13.9947
11 13.9703 13.9703 13.9703 13.9703 13.9703 13.9703 13.9703
12 21.2695 21.2695 21.2695 21.2695 21.2695 21.2695 21.2695
13 24.6412 24.6429 24.6412 24.6412 24.6412 24.6429 24.6412
14 17.1932 17.1932 17.1932 17.1932 17.1932 17.1932 17.1932
15 20.1415 20.1415 20.1415 20.1415 20.1415 20.1415 20.1415
16 18.2286 18.2286 18.2286 18.2286 18.2286 18.2286 18.2286
17 17.7015 17.7015 17.7015 17.7015 17.7015 17.7015 17.7015
18 18.5841 18.5841 18.5841 18.5841 18.5841 18.5841 18.5841
19 23.3988 23.4009 23.4034 23.4028 23.4037 23.4034 23.4028
20 19.1005 19.1005 19.1005 19.1005 19.1005 19.1005 19.1005
21 24.1658 24.1658 24.1658 24.1658 24.1658 24.1658 24.1658
22 24.6123 24.6123 24.6123 24.6123 24.6123 24.6123 24.6123
23 24.9950 24.9950 24.9950 24.9950 24.9950 24.9950 24.9950
24 20.6391 20.6391 20.6391 20.6391 20.6391 20.6391 20.6391
25 25.6145 25.6145 25.6166 25.6145 25.6179 25.6166 25.6145
26 25.6296 25.6296 25.6296 25.6296 25.6296 25.6296 25.6296
27 21.2204 21.2204 21.2204 21.2204 21.2204 21.2204 21.2204
28 22.8260 22.8260 22.8260 22.8260 22.8260 22.8260 22.8260
29 21.2340 21.2340 21.2340 21.2340 21.2340 21.2340 21.2340
30 22.1863 22.1863 22.1863 22.1863 22.1863 22.1863 22.1863
31 25.3040 25.3040 25.3040 25.3040 25.3040 25.3040 25.3040
32 25.5265 25.5265 25.5265 25.5265 25.5265 25.5265 25.5265
33 28.6516 28.6516 28.6516 28.6516 28.6724 28.6516 28.6516
34 29.3650 29.3650 29.3650 29.3650 29.3650 29.3650 29.3650
35 24.2436 24.2436 24.2436 24.2436 24.2436 24.2436 24.2436
36 25.7502 25.7502 25.7502 25.7502 25.7502 25.7502 25.7502
37 23.3144 23.3144 23.3144 23.3144 23.3144 23.3144 23.3144
38 29.5874 29.5874 29.5874 29.5874 29.5874 29.5874 29.5874
39 26.4926 26.4947 26.4952 26.4926 26.4978 26.4952 26.4926
40 26.2951 26.2951 26.2951 26.2951 26.2952 26.2951 26.2951

Table 18: Objective for the LP relaxation of the general �ow formulation, for
various time constraints and 2CF capacity constraints, instances 1-40
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ICH
Inst. None MTZ AC pred. AC succ. AC both CH ICH

1 12.8520 12.8690 12.8952 12.8520 12.9280 12.9067 12.8520
2 12.7587 12.7587 12.7587 12.7587 12.7587 12.7587 12.7587
3 13.9872 13.9983 13.9872 13.9872 13.9880 13.9983 13.9872
4 15.3298 15.3298 15.3298 15.3298 15.3298 15.3298 15.3298
5 13.2898 13.2898 13.2898 13.2898 13.2898 13.2898 13.2898
6 16.8623 16.8623 16.8623 16.8623 16.8623 16.8623 16.8623
7 12.2351 12.2351 12.2351 12.2351 12.2351 12.2351 12.2351
8 18.4673 18.4673 18.4673 18.4673 18.4673 18.4673 18.4673
9 16.3232 16.3311 16.3342 16.3277 16.3342 16.3342 16.3277
10 14.0506 14.0547 14.0546 14.0506 14.0546 14.0547 14.0506
11 14.1364 14.1364 14.1364 14.1364 14.1364 14.1364 14.1364
12 21.4871 21.4871 21.4871 21.4871 21.4871 21.4871 21.4871
13 24.7080 24.7097 24.7080 24.7080 24.7080 24.7097 24.7080
14 17.4216 17.4216 17.4216 17.4216 17.4216 17.4216 17.4216
15 20.3070 20.3070 20.3070 20.3070 20.3070 20.3070 20.3070
16 18.3527 18.3527 18.3527 18.3527 18.3527 18.3527 18.3527
17 17.8123 17.8123 17.8123 17.8123 17.8123 17.8123 17.8123
18 18.7081 18.7081 18.7081 18.7081 18.7081 18.7081 18.7081
19 23.4552 23.4573 23.4598 23.4601 23.4605 23.4598 23.4601
20 19.2914 19.2914 19.2914 19.2914 19.2914 19.2914 19.2914
21 24.4120 24.4120 24.4120 24.4120 24.4120 24.4120 24.4120
22 24.9648 24.9648 24.9648 24.9648 24.9648 24.9648 24.9648
23 25.1704 25.1704 25.1704 25.1704 25.1704 25.1704 25.1704
24 20.8698 20.8698 20.8698 20.8698 20.8698 20.8698 20.8698
25 25.8809 25.8809 25.8809 25.8809 25.8809 25.8809 25.8809
26 25.7725 25.7725 25.7725 25.7725 25.7725 25.7725 25.7725
27 21.5033 21.5033 21.5033 21.5033 21.5033 21.5033 21.5033
28 22.9417 22.9417 22.9417 22.9417 22.9417 22.9417 22.9417
29 21.5805 21.5805 21.5805 21.5805 21.5805 21.5805 21.5805
30 22.4773 22.4773 22.4773 22.4773 22.4773 22.4773 22.4773
31 25.7765 25.7765 25.7765 25.7765 25.7765 25.7765 25.7765
32 25.8228 25.8228 25.8228 25.8228 25.8228 25.8228 25.8228
33 28.8654 28.8654 28.8682 28.8666 28.8731 28.8682 28.8666
34 29.5215 29.5215 29.5215 29.5215 29.5215 29.5215 29.5215
35 24.5038 24.5038 24.5038 24.5038 24.5038 24.5038 24.5038
36 26.1470 26.1470 26.1470 26.1470 26.1470 26.1470 26.1470
37 23.5087 23.5087 23.5087 23.5087 23.5087 23.5087 23.5087
38 29.9059 29.9059 29.9059 29.9059 29.9059 29.9059 29.9059
39 26.7758 26.7768 26.7794 26.7758 26.7794 26.7794 26.7758
40 26.6217 26.6217 26.6217 26.6217 26.6217 26.6217 26.6217

Table 19: Objective for the LP relaxation of the general �ow formulation, for
various time constraints and ICH capacity constraints, instances 1-40
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No capacity constraints
Inst. None MTZ AC pred. AC succ. AC both CH ICH

1 78 0 0 16 15 16 0
2 0 0 0 0 15 15 0
3 0 0 0 0 15 0 0
4 0 0 0 15 31 16 0
5 0 0 0 0 16 16 15
6 0 0 16 0 15 16 0
7 0 0 15 0 15 0 16
8 0 16 0 15 16 31 0
9 0 0 0 0 16 15 0
10 0 0 0 0 15 16 0
11 0 0 0 15 31 31 32
12 0 0 15 16 32 31 31
13 0 0 16 16 31 31 46
14 0 0 15 16 32 31 15
15 0 0 15 16 31 15 31
16 0 0 15 16 31 32 31
17 0 0 0 15 31 31 31
18 0 15 0 31 15 16 31
19 0 0 16 16 32 31 47
20 0 0 0 31 31 31 31
21 0 0 16 47 63 47 109
22 0 0 15 31 78 62 109
23 0 0 16 31 47 31 78
24 0 0 0 47 78 47 62
25 0 0 0 31 47 62 94
26 15 0 16 47 62 62 124
27 0 16 16 47 47 31 63
28 0 0 15 47 62 47 63
29 0 0 15 46 63 47 94
30 0 0 16 47 62 47 62
31 0 0 15 78 172 94 141
32 0 0 15 62 109 78 249
33 0 16 15 94 140 94 171
34 0 16 16 94 94 78 219
35 0 0 15 78 94 62 188
36 0 16 16 94 94 78 250
37 0 0 31 62 94 78 156
38 0 0 16 78 78 94 140
39 0 15 31 78 141 109 140
40 0 0 16 63 78 62 250

Table 20: Runtime in ms for the LP relaxation of the general �ow formulation,
for various time constraints and no capacity constraints, instances 1-40
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MTZ (capacity)
Inst. None MTZ AC pred. AC succ. AC both CH ICH

1 0 15 0 0 16 15 0
2 0 0 15 0 16 16 0
3 0 0 0 16 16 15 16
4 0 0 15 16 15 16 16
5 0 0 16 0 16 0 16
6 0 15 0 0 16 16 16
7 0 0 0 16 16 0 15
8 0 0 0 16 0 15 16
9 0 0 0 15 15 0 31
10 0 0 0 0 16 16 16
11 0 0 0 15 32 31 16
12 0 0 16 15 16 31 31
13 0 0 15 31 32 32 47
14 0 16 16 15 31 31 31
15 0 0 16 16 31 31 47
16 0 16 16 16 31 16 31
17 0 16 0 31 31 31 16
18 15 0 0 16 31 32 32
19 0 0 15 31 63 32 63
20 0 0 0 15 32 16 47
21 0 0 16 62 78 46 219
22 0 0 0 62 62 47 156
23 0 15 15 47 47 32 124
24 0 0 16 47 78 31 109
25 16 0 16 47 63 46 188
26 0 16 0 47 62 47 219
27 15 0 0 47 63 32 141
28 16 0 16 47 46 47 93
29 0 0 16 47 78 47 172
30 16 0 15 62 62 31 109
31 0 16 31 125 125 78 328
32 0 16 15 94 78 78 312
33 0 0 31 124 125 94 515
34 0 15 16 124 78 78 437
35 0 15 15 94 78 63 390
36 0 16 16 141 110 78 405
37 0 16 15 94 93 78 250
38 16 0 15 62 63 62 234
39 0 16 15 93 109 78 390
40 16 16 16 63 78 78 250

Table 21: Runtime in ms for the LP relaxation of the general �ow formulation,
for various time constraints and MTZ capacity constraints, instances 1-40

X



2CF
Inst. None MTZ AC pred. AC succ. AC both CH ICH

1 0 0 16 0 31 31 0
2 16 16 16 0 16 15 15
3 16 0 16 15 15 32 16
4 0 0 16 15 32 16 16
5 0 16 15 16 31 15 15
6 0 0 0 0 31 16 16
7 0 0 0 15 15 16 16
8 0 15 16 15 15 32 16
9 16 0 0 0 16 15 16
10 0 0 16 15 15 31 15
11 15 16 16 31 47 46 32
12 15 16 31 47 47 78 47
13 15 16 31 31 63 63 31
14 15 16 31 31 47 62 31
15 15 16 31 32 78 78 31
16 15 16 31 47 62 63 32
17 16 15 31 47 47 62 31
18 16 15 31 31 47 63 46
19 16 16 16 31 63 47 62
20 0 16 31 31 78 78 32
21 32 31 62 78 156 140 110
22 16 16 78 110 140 125 125
23 15 32 62 63 109 109 78
24 32 31 63 109 140 109 109
25 31 31 47 109 219 124 109
26 16 31 78 93 140 110 125
27 31 32 62 94 125 93 109
28 15 31 63 109 125 109 125
29 16 32 78 94 125 124 110
30 31 32 62 93 156 172 125
31 47 47 109 219 343 390 297
32 46 62 109 172 296 203 218
33 47 47 109 234 328 328 266
34 47 47 125 187 266 281 265
35 47 47 140 202 296 234 234
36 47 47 141 219 281 390 281
37 31 47 109 156 234 234 172
38 31 47 140 188 234 187 219
39 47 47 94 156 265 202 218
40 47 46 109 188 249 281 218

Table 22: Runtime in ms for the LP relaxation of the general �ow formulation,
for various time constraints and 2CF capacity constraints, instances 1-40

XI



ICH
Inst. None MTZ AC pred. AC succ. AC both CH ICH

1 16 0 15 16 15 16 16
2 0 16 15 16 16 31 16
3 0 16 0 16 16 15 15
4 16 0 16 16 16 16 31
5 0 0 16 15 31 32 16
6 16 0 0 16 16 16 15
7 16 16 0 0 16 15 16
8 0 16 16 16 16 15 0
9 0 15 0 15 15 15 15
10 0 0 15 16 16 32 16
11 16 15 16 31 62 62 31
12 15 16 15 46 62 63 78
13 16 16 16 31 47 63 31
14 16 31 31 31 47 62 47
15 15 16 31 47 78 47 47
16 16 16 31 47 47 63 31
17 15 16 31 47 62 47 32
18 16 16 31 47 78 63 47
19 16 15 31 31 62 46 78
20 15 16 31 47 62 47 62
21 46 47 78 94 140 141 141
22 31 47 78 124 202 203 171
23 31 31 62 78 109 124 78
24 46 63 78 125 172 187 203
25 47 63 62 125 125 109 172
26 31 47 62 109 171 125 172
27 47 47 62 125 156 124 124
28 31 47 63 109 125 109 141
29 47 47 78 109 188 124 156
30 32 46 78 93 171 125 140
31 62 109 125 234 296 328 188
32 78 109 156 172 312 343 187
33 78 94 141 202 296 344 203
34 93 109 156 234 296 359 218
35 78 125 171 280 343 343 234
36 93 124 156 203 327 375 203
37 78 93 124 218 296 250 219
38 78 109 125 187 265 234 234
39 94 93 125 219 281 265 202
40 78 94 141 172 234 328 171

Table 23: Runtime in ms for the LP relaxation of the general �ow formulation,
for various time constraints and ICH capacity constraints, instances 1-40
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