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This paper investigates the out-of-sample performance of several models that pre-

dict unobserved conditional variance. The models that are considered are the

HEAVY, RealGARCH(1,1) and the RealEGARCH(1,1) model. These models are

also extended, using the squared daily return as extra regressor and adding an

indicator function for negative returns multiplied with the realized measure. With

these models, forecasts are made and compared with two benchmark models, being

the GARCH(1,1) model and the HAR-3 model. The loss function that is used to

compare these models is the QLIKE loss function, with the squared daily returns,

realized variance and realized kernel as a proxy. The data that are considered,

are the indices of the FTSE100, DAX30, CAC40, AEX, SSMI, IBEX35 and the

EUROSTOXX50 from January 2000 to March 2014. It turns out that the models

using realized measures do not beat the benchmark models out-of-sample for most

of the models. The only models that beat the HAR(3)-RV benchmark model reg-

ularly are the forecast combinations based on the in-sample discounted MSPE, for

the 21-day ahead forecasts. Another major conclusion is that the extension of the

models with the squared daily return and the non-linear models do not perform

better than the standard models out-of-sample.

Keywords: high-frequency volatility, forecasting, HEAVY models, Realized

GARCH models, Realized EGARCH models.
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1 Introduction

One of the most important concepts in finance is the use of volatility. In

all kind of subjects this measure is considered, for example for the use of

derivative pricing and value-at-risk measures. On the other hand, it is also

an important concept for portfolio choice.

The best known model for conditional volatility is the Generalized Au-

toRegressive Conditional Heteroskedacity model, better known as the GARCH

model, which was first proposed by Bollerslev (1986). He considers the

volatility being time different and uses the past (unobserved) volatility and

squared shocks of the returns as explaining variables for today’s volatility.

In the recent years, the topic of volatility has been subject of many

academic papers. There have been several suggestions considering high-

frequency (intra-day) data to estimate daily volatility. Examples of such

predictors are the realized volatility (for example, Andersen and Bollerslev,

1998), realized kernel (Hansen and Lunde, 2006) and daily range (Gallant,

Hsu and Tauchen, 1999). However, many more high-frequency volatility es-

timators exist.

More recent papers have suggested to use the high-frequency data as pre-

dictors in GARCH-like models. Three of those models are the high-frequency

based volatility (HEAVY) models (Shephard and Shephard, 2010) and the

realized GARCH models and realized EGARCH models (Hansen, Huang and

Shek, 2012). This combination has been proven to be fruitful in out-of-sample

volatility estimation.

In these papers, the focus lies especially at the market of the United

States of America. In this research, the focus lies on several (West-)European

markets. Especially, the indices that are considered, are the AEX, CAC40,

DAX, EuroSTOXX, FTSE100, IBEX35 and SSMI indices.
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Another aspect that has not been researched in detail in the existing

literature is the use of more recent proposed high-frequency volatility mea-

sures. These more recent proposed realized measures have in common that

they include effects of jumps in the prices and are therefore more robust to

these jumps. Other measures only look at negative returns that have been

proven to have more influence on the variance by for example Andersen et

al. (2001). In the papers of Shephard and Shephard (2010) and Hansen,

Huang and Shek (2012), the only realized measures that are considered, are

the realized variance, realized kernel and daily range. In this research, the

(5-minute) realized bi-power variation as proposed by Barndoff-Nielson and

Sheppard (2004), the (5-minute) semi-variance proposed by Barndoff-Nielsen,

Kinnebrock and Sheppard (2008) and the median truncated realized variance

proposed by Andersen, Dobrev and Schaumberg (2008) are investigated too.

The used realized measures from Shephard and Shephard (2010) and Hansen,

Huang and Shek (2012) will also be considered. Furthermore, for the realized

variance, realized semi-variance and the realized bi-power variation, 1-minute

sub-sampling will also be considered. Since the daily range is sometimes be-

low 0, this paper uses the squared daily range. This is justifiable by the fact

that the daily range is a return, and the squared returns are a measure for

volatility too.

The realized measures are different from one another in their robustness.

First of all, the daily range, realized measure and realized semivariance are

not robust to noise at all. The difference between the three measures is

the intra-day data that they use. The realized measure uses all the intra-

day data that is available, the realized semivariance is calculated using only

the negative returns on the specific day, while the daily range is calculated

by subtracting the lowest log price of the day from the highest log price of
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the day. The realized kernel is robust to some noise of the data. It uses a

kernel weighting function to weight the different intra-day returns in order

to calculate the realized measure. The median truncated variance and the

realized bipower variation are realized measures that are robust to jumps in

the prices. The difference between those realized measures is the weighting

function that is applied.

A third part that deviates from the existing literature, is by considering

the extensions proposed by Shephard and Shephard (2010) in their section

5. These models consider statistical leverage effects by adding an indicator

function for when daily returns drop below 0. The motivation for this exten-

sion is that it is proven in for example Andersen et al. (2001), that positive

returns have less effect on future volatility than negative returns. Another

proposed extension is to add the squared return to the HEAVY-r part of the

equations in Shephard and Shephard (2010). There are two main reasons

to add this extra regressor to the model. First of all, it is a natural way

of incorporating the standard GARCH model into the HEAVY model. The

second reason is that this extension adds more momentum to the HEAVY

model, according to Shephard and Shephard (2010). The same extensions

can also be used in the realized GARCH model of Hansen, Huang and Shek

(2012).

This paper shows that for the estimation of the HEAVY, RealGARCH(1,1)

and RealEGARCH(1,1) models and their extensions, most of the parameters

are stable over time, with some slight differences over time. An exception to

this is the estimation of the RealEGARCH(1,1) model with the squared daily

return as extra explaining variable. These parameters turn out to become

very unstable, and therefore this model will be disregarded in this paper.

The relation between the realized bi-power variation and the realized
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variance is examined in this paper too. This is of special interest, since the

realized variance is biased due to sudden jumps in the prices. The realized

bi-power variation accounts for these jumps, so in the limit, the average of the

realized bi-power variation will go to the unconditional variance. It turns out

that both the jumps and the realized bi-power variation have equal influence

on the conditional variance.

The rest of the research is based on the out-of-sample forecasts at a

horizon of 1, 5, 10 and 21 days. There are two benchmark models, the

GARCH(1,1) model of Bollerslev(1986) and the HAR(3)-RV model of Corsi

(2009), that are compared to the different models that are estimated. The

models are compared using the QLIKE loss function and are investigated

all individually and combined using the mean and median of the forecasts.

Furthermore, the forecasts are combined using weights based on the in-sample

discounted MSPE.

This paper shows that the benchmark models in general perform better

than the HEAVY, RealGARCH(1,1) and RealEGARCH(1,1) model, with

only minor exceptions. This is in contradiction to the results for the US mar-

kets that were investigated in the papers of Shephard and Shephard (2010)

and Hansen, Huang and Shek (2012). They found that the out-of-sample

performance of these models outperformed the GARCH model. The rea-

son for this difference could be the fact that they use likelihood ratio tests

to compare the models to the benchmark models. Furthermore, the Real-

GARCH and RealEGARCH models are estimated using different lags. It

is also shown that the extensions to the models do not improve the out-of-

sample performance of the standard models, except the non-linear extension

for the HEAVY model.

In order to test whether the differences between the QLIKE results are
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significant, model confidence sets, introduced by Hansen, Lunde and Nason

(2011), are build. This paper shows that for almost all time horizons and

indices, the set only consists out of the best performing model. The only

exceptions to this are the FTSE100, SSMI and EUROSTOXX50 at a 1-day

forecasting horizon.

Combining the models does improve the out-of-sample performance. De-

pending on the way that the forecasts are combined, it even turns out that

for the 21-day ahead forecasting the model combinations based on in-sample

discounted MSPE beats the HAR(3)-RV model in most of the cases.

The rest of this paper is constructed as follows. In ‘Section 2’ the different

models and methods used are explained in detail. ‘Section 3’ reports the data

that is used. Also, it shows some summary statistics and dynamics of the

data that is used. The results are shown in ‘Section 4’. This section is

divided into two parts, one discussing the estimates of the models and the

other discussing the out-of-sample forecasting results. Finally, ‘Section 5’

concludes and discusses possible extensions to this research.

2 Methods

This section introduces the different models that are used in this paper. First

of all, some notation is introduced. The time series of daily return data are

denoted as:

r1, r2, ..., rT .

The daily returns are the standard log daily returns of the index. Besides

the daily returns, the realized measures are denoted in general as:

RM1, RM2, ..., RMT .
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In general, the structure of the models is as given in Equation (1).

rt =
√
htzt,

ht = f(ht−1, RMt−1, zt, rt|Ft−1),

RMt = g(ht, ht−1, RMt−1, zt|Ft−1), (1)

where zt is assumed to be standard normally distributed and independent of

all other measures. Furthermore, zt and zs are independent when t 6= s. The

choice of the functions f(·) and g(·) depends on the model used. The history

of rt and RMt is denoted as Ft.

2.1 HEAVY models

The first model under consideration is the HEAVY model. This model is

developed by Shephard and Shephard (2010). The model is given in Equation

(2).

RMt = ηtµt, where E[ηt|Ft−1] = 1,ht
µt

 =

 ω

ωR

 +

 α

αR

RMt +

β 0

0 βR

ht−1
µt−1

 . (2)

Equation (2) shows that the HEAVY model consists out of two parts. The

first part explains the development of the unobserved conditional variance

and the second part explains the development of the realized measures. Those

two parts are not depending on one another in a direct way. Both parts of

the model are described by their first lag and the lag of the actual realized

measure.

The use of the HEAVY model is motivated by Shephard and Shephard

(2010) by the fact that it is simple to estimate and it is build on the literature

regarding the GARCH models of Bollerslev (1986). The model structure
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is simple and therefore the understanding of the general features is easy.

Furthermore, Shephard and Shephard (2010) have proven that the use of the

realized measures give additional gains in out-of-sample forecasting.

In order to estimate the parameters, we use dimensional reduction for ωR.

We use the unconditional mean of the realized measure and the parameters

αR and βR. This gives ωR = µR(1 − αR − βR), with µR the unconditional

mean of the realized measure. The reason that this is not done for ω, is that

the ratio of the unconditional means between r2t and RMt is high, which

results in unstable results.

2.2 RealGARCH(1,1) models

Another model that is used in this paper, is the RealGARCH(1,1) model.

This model was proposed by Hansen et al. (2012). This model is given in

Equation (3).

ht = ω + αRMt−1 + βht−1,

RMt = ξ + φht + τ1zt + τ2(z
2
t − 1) + ut, (3)

where ut is assumed to be standard normally distributed and independent of

zt. Furthermore, ut and us are independent when t 6= s. The reason to use

zt and z2t − 1 is to include leverage effects of the returns into the equation.

The use of z2t −1 is used in stead of z2t in order to keep the expectation equal

to zero, so ξ is not biased.

At first sight, the RealGARCH(1,1) model does not look different com-

pared to the HEAVY model. Especially, the part explaining the unobserved

conditional variance seems to be the same. However, the main difference

is that today’s conditional variance is also an regressor for today’s realized

measure. This means that the values of α and β are also based on the
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part explaining the realized measure. This second part also differs from the

HEAVY model. The realized measure is explained by today’s conditional

variance and the random variable zt. This zt is not observed directly, so it

is calculated using today’s volatility and return, by using Equation (1). zt

and z2t − 1 are included to add the leverage effect to the model, which is not

done in the HEAVY model.

The RealGARCH model is a logical model that is easily derived from the

standard GARCH model. One could say that the regular GARCH model is

nested in these more general RealGARCH models, with the squared daily

return as ‘realized measure’. Its advantage over the RealEGARCH model

that will be explained below is the simpleness. It is easier to interpret the

results from RealGARCH than from the RealEGARCH model.

2.3 RealEGARCH(1,1) models

The third model of the standard models that is used, is the RealEGARCH(1,1)

model. This model is referred to in the same paper as the RealGARCH(1,1)

model (Hansen et al., 2012). The model is similar to the RealGARCH(1,1)

model, only now the log transformations are considered. This results into

the model of Equation (4).

ht = exp(ω + α log(RMt) + β log(ht) + τ1zt + τ2(z
2
t − 1))

log(RMt) = ξ + φlog(ht) + ut, (4)

where ut is again assumed to be standard normally distributed, independent

of zt and independent of us when t 6= s.

This model is almost similar to the RealGARCH(1,1) model, now taking

a look at explaining log(ht), using log(RMt). The only difference is that the
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leverage effect is now taken into the conditional variance part in stead of the

realized measure part.

The volatility of the indices can never become lower than 0. The RealE-

GARCH model naturally provides this restriction, since in practice the log-

arithmic transformation of the conditional variance is estimated. Therefore

the model does not depend on the estimates of the parameters for the regres-

sors in order to have positive conditional variances.

2.4 Models with r2
t

Besides the standard models as given above, some extensions to the models

are examined too. The first extension uses the squared return as an addi-

tional regressor. The reason for using this regressor comes from the standard

GARCH(1,1) model, where this squared residual is used to estimate the

volatility. Thereby, the GARCH models are general accepted models that

provide good results. It therefore follows naturally to add the squared daily

returns as additional regressor to the models. This results in the models of

Equations (5) and (6) for the HEAVY, RealizedGARCH(1,1) model, respec-

tively.

ht = ω + αRMt + βht + γr2t ,

µt = ωR + αRRMt + βRµt. (5)

ht = ω + αRMt + βht + γr2t ,

RMt = ξ + φht + τ1zt + τ2(z
2
t − 1) + ut. (6)

The parameter γ explains what the additional information is of the squared

daily return. These models are also useful in comparing the influence of the

realized measures and the squared daily return to the conditional variance.
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When the value of α is higher than γ, this implies that the realized measure

is a better regressor for explaining the conditional variance and vice versa.

The RealizedEGARCH(1,1) is not extended with the squared daily re-

turn, since it’s value can be 0 at some times. This results in the fact that

some observations should be disregarded, which would mean a loss of infor-

mation. Another problem with estimating the RealizedEGARCH(1,1) model

with log(r2t ), is the instability of the parameters. Therefore, this model will

be not further investigated.

2.5 Non-linear models

Another set of models to extend the standard models, is to use non-linear

models. There exist lots of non-linear models to use. However, in this paper

only the use of an indicator function is considered. This indicator function is

used, since it is generally accepted that conditional volatility reacts stronger

to negative returns than to positive returns (see for example Andersen et al.,

2001). To the standard models of Equation (2) up to including (4) the part

γI{rt<0}RMt is added, with I{·} being the indicator function giving 1 if {·}

is true and 0 otherwise. This results into the models of Equation (7), (8)

and (9) for the HEAVY, RealizedGARCH(1,1) and RealizedEGARCH(1,1),

respectively.

ht = ω + αRMt + βht + γI{rt}RMt,

µt = ωR + αRRMt + βRµt. (7)

ht = ω + αRMt + βht + γI{rt}RMt,

RMt = ξ + φht + τ1zt + τ2(z
2
t − 1) + ut. (8)

ht = exp(ω + α log(RMt) + β log(ht) + τ1zt + τ2(z
2
t − 1)

+γI{rt} log(RMt)),
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log(RMt) = ξ + φlog(ht) + ut. (9)

The parameter α can be interpreted as the factor of the realized measure

when the returns are positive. When the returns are negative, the param-

eter γ explains how much the influence of the realized measure increases.

Furthermore, the model also gives a distinction in the volatility when the

market is in crisis or expansion. In periods of extension one sees often that

the volatility is low, while in periods of crises the volatility is high. This

non-linear model accounts for this distinction too.

2.6 Combination of realized bi-power variation and re-

alized variance

In general, it would be irrelevant to estimate combinations of realized mea-

sures into one model. All the realized measures are based on the same data

set, so it is assumable that their correlations are very high, and therefore

there is no significant improvement in the models.

One combination, however, is relevant to research. Not from a forecasting

point-of-view, but from a theoretical view. This is the combination between

the realized bi-power variation and realized variance. From the theory, the

realized bi-power variation adjusts to jumps in the volatility, while the real-

ized variance ignores those jumps. This leads to limT→∞
1
T

∑T
t=1BV 5t = σ̄2

and limT→∞
1
T

∑T
t=1RVt = σ̄2 + J̄ , with σ̄2 the asymptotic unconditional

variance, J̄ the average variance caused by jumps in the prices, BV 5t the

5-minute bi-power variation and RV 5t the 5-minute realized variance.

This means that if we would estimate the models with the realized bi-

power variation as one realized measure and the difference between the re-

alized variance and realized bi-power variation as another measure, we can
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see how much influence the jumps have on the models. I.e., Equation (10)

shows how this would result in the HEAVY-model.

ht = ω + α1BV 5t + α2 max(0, RV 5t −BV 5t) + βht, (10)

where BV 5t is the realized bi-power variation and RV 5t is the 5-minute real-

ized variance, both without subsampling. The maximization of the difference

and 0 is taken, since there should not be negative variances. The implication

of the maximization is that negative jumps are not taken into account, since

these are set to 0 by the maximization function.

However, most simple alternatives would make it harder to examine the

difference between the effect of the jumps in prices. Examples of these al-

ternatives include adding the minimum of the difference and 0, the squared

difference and the absolute difference. In the first case, this would eventually

imply estimating ht = ω + α1BV 5t + α2RV 5t, which does not give explana-

tion on the effect of the jumps on the variance. The latter two would not

add in the explanation of positive and negative jumps, since negative and

positive jumps are considered as positive jumps.

The maximum of (RV 5t − BV 5t) and 0 is a significant amount of times

equal to 0, due to the fact that the difference is negative at some periods. This

would mean that the log of this value is equal to −∞. If this combination

would be applied for the RealizedEGARCH(1,1) model, this would mean that

a lot of observations have to be disregarded. Therefore, these combinations

are not done for the RealizedEGARCH(1,1) model.

2.7 Out-of-sample forecasts

In order to check whether the models are good at predicting the conditional

variance, there has to be made a comparison out-of-sample. In order to do
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this, there will be made use of a loss function that uses some of the realized

measures as proxies. The proxies will be the squared daily return, the realized

variance based on 5-minute intervals, without subsampling, and the realized

kernel. There will be used several measures as proxy to test the robustness

of the forecasts. The loss function that will be used to compare the models

to is the quasi likelihood (QLIKE), which is given in Equation (11)

QLIKEj =
1

P

T+P−j∑
t=T

log(ĥt+j|T ) +
pt+j

ĥt+j|T
, (11)

where P is the number of observations, pt is the proxy measure of the vari-

ance, j the forecasting horizon and ĥt+j|T the forecast from the model. The

forecasting horizon will be taken at 1 day, 5 days (1 trading week), 10 days (2

trading weeks; also the horizon that financial institutions have to use when

reporting their Value-at-Risk and other downside risk measures under Basel

regulations) and 21 days (1 trading month). A longer horizon is not consid-

ered, since the overall consensus, as given by e.g. Christoffersen and Diebold

(2000), is that volatility is predictable, but only up to a limited number of

periods ahead.

The choice for the QLIKE loss function is made, since it is proven to

be a loss function that is robust to noise in the volatility proxy (Patton,

2011). The advantage of this loss function is that the conditional variance of

the standardized forecasting error is approximately 2. This means that the

loss function is less affected by the most extreme observations. This is an

advantage above the MSPE loss function, which gives variable conditional

variances, depending on the forecasting errors (Patton, 2011), which can

become very large when there are a lot of ‘extreme’ observations.

For the estimation of the h days ahead forecast, there will be made use

of the integrated volatility. This means that all the volatilities of the past h
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days are being summed up together. In order to do this, the approximation

of Shephard and Shephard (2010) will be used. They use the assumption

that var(rt+1 + rt+2 + · · ·+ rt+h) =
∑h

j=1 var(rt+j). The individual variances

can be easily computed from the models. In order to have QLIKE results in

the same order, the total variance will be divided by the horizon length, i.e.

1
h

∑h
j=1 var(rt+h).

In order to forecast the extended models over more than 1 day ahead, a

model for rt has to be chosen. There are a lot of different models that would

apply for the forecasting of rt. However, since the emphasis in this paper lies

on the forecasting of volatility and not on rt, the assumption is made that

the returns are constant with a shock, as is shown in Equation (12).

rt = µ+ εt, (12)

with εt normally distributed, independent to all previous mentioned vari-

ables, and independent to εs when t 6= s. The constant is estimated as the

mean over the window that the parameters of the volatility are estimated.

Besides the comparison between the above mentioned models, there will

also be some benchmark models. These models will be the standard GARCH(1,1)

model by Bollerslev (1986) and the HAR(3)-RV model proposed by Corsi

(2009). This last model is a regression model using the realized volatility

and is described in Equation (13).

RV 5
(d)
t = c+ βdRV 5

(d)
t + βwRV 5

(w)
t + βmRV 5

(m)
t + εt, (13)

where the superscripts d, w, and m stand for daily, weekly and monthly

realized volatility, respectively. The weekly realized volatility is calculated

as RV 5
(w)
t = 1

5

∑4
i=0RV 5

(d)
i,t−i. The monthly realized volatility is calculated

in a similar way, but with 21 days.
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The HAR(3)-RV model uses the realized variance to construct three fac-

tors. This implies that the conditional variance of today is not only based

on the realized variance of the day before, but also by the variance of the

past week and past month. This means that the estimate of the conditional

variance is affected less by extreme observations. The model also accounts

for some long-run memory in the model, since the volatility of 21 days ago

is still explaining, albeit only a little, today’s conditional variance.

2.7.1 Combination of forecasts

Besides using the single forecasts, the forecasts themselves will be combined

with each other. This is done in three different ways.

The first two ways of combining the forecasts is by taking the mean or by

taking the median of the forecasts. It has been proven in the literature that

these non-parametric weighting combinations are hard to beat in practice,

see for example Bunn (1985), Clemen and Winkler (1986), and Timmermann

(2006).

The third forecast combination method is based on the in-sample Mean

Squared Prediction Error (MSPE) and is proposed by Timmermann (2006).

Even though the P in MSPE assumes that prediction errors are taken, this

is not the case in this paper. The errors that are taken are the estimation

errors. In this way, the term in-sample is justified. The weight is taken by

calculating a deviant of the in-sample MSPE, exponentially discounted by

the time. The weights are taken in such an order, that they are time-varying.

Since the estimation periods are taken over the past 5 years, the same is done

with the weights. This results in the calculation of the in-sample discounted
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MSPE as in Equation (14) at time t.

DMSPEt =
T∑
t=1

λte2t , (14)

where et is the forecasting error ĥt|T − pt and λ is the discount factor. One

can easily see that if λ = 1, the discounted MSPE is equal to the regular

MSPE. However, it is more likely to use a factor of λ between 1.05 and

1.10 (Timmermann, 2006). Since the in-sample time-series has about 1500

observations (depending on the index and time-frame), a λ of 1.05 will be

used in this paper.

The time-varying weights are calculated using the inverse of the dis-

counted MSPE. This is done, since the MSPE is a penalty function and a

high discounted MSPE indicates poor forecasting power. It can be done since

the MSPE is always bigger than 0, while for example the QLIKE function is

not. Therefore, the weights are calculated using Equation (15).

θt =
DMSPE−1t∑N
i=1DMSPE−1t

, (15)

where N is the number of models that are taken into account. In this way

the weights all add up to 1. Since the discounted MSPE cannot take a value

less than 0, we thereby have that the weights are all between 0 and 1.

The reason to base weights on the discounted MSPE and not on a loss

function similar to the QLIKE function, comes from the fact that the dis-

counted MSPE is always bigger than 0, while the QLIKE might not be bigger

than 0. This makes it easier to use the inverse of the discounted MSPE, while

with the QLIKE several adjustments for the negative values have to be made.

There are 15 different combinations that are used. First of all, for the

8 different models the forecasts of all the realized measures are combined.

Next, we will combine all the forecasts from the HEAVY (standard, with r2t
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and non-linear), the RealizedGARCH(1,1) and the RealizedEGARCH(1,1)

models. Also, all the standard models, non-linear models and models with

r2t are combined. Finally, all available forecasts are combined with each other.

2.7.2 Comparison of forecasts

There exist many methods to compare the forecasts to one another and test

if their significantly different. Most of these tests have to compare every set

of two forecast time series separately. Since in this paper, many models with

different realized measures are taken, this would result in a lot of results,

from which only a small part are important. Therefore, the choice is made

to use the model confidence set by Hansen, Lunde and Nason (2011).

The model confidence set is the equivalent of a confidence interval for

parameters. It takes all the different results and test which results fall into

a (1 − α) confidence set, where α is a user pre-defined significance level. It

selects iteratively which model, where the word model can be used in the

broadest sense, performs the worse and throws this out of the confidence set,

until the p-value is below α. In order to implement the model confidence set

procedure, bootstrapping is used. Next, the algorithm is explained together

with the choices made in this paper. For a detailed explanation, one is

referred to the paper of Hansen, Lunde and Nason (2011) 1.

The algorithm for selecting the models that perform the best consists

out of three steps. First of all, a choice should be made for the number of

bootstrap (B) results and a block length (l). The value of B should not be

taken too small, to avoid depending on extreme observations. The value of l

1For background information, made assumptions and consequences of using this

method, one is referred to the paper itself. One who wants to apply the model confi-

dence set can go directly to the web appendix, where the bootstrap procedure is explained

as algorithm.

17



does not matter too much, however, when a large l is chosen, it results into

adding more models to the model confidence set. This paper uses B = 1000

and l = 5. With the choice of these values, a sample size of n (the number of

forecasts) discrete values is selected. First of all, νb1 is selected randomly from

a discrete uniform distribution between 1 and the number of observations.

Next, (λb1 , . . . , λbl) = (νb1 , νb1 + 1, . . . , νb1 + l − 1). This is repeated until a

sample size of n is created and repeated for all samples b = 1, . . . , B.

The second step constructs the results of the loss function for every single

model and point forecast. For each different model, the average of these loss

function values (L̄i, i = 1, . . . ,m) are taken. The corresponding bootstrap

variables are given by Li,b,t = Li,λb,t for b = 1, . . . , B, i = 1, . . . ,m and

t = 1, . . . , n, with the sample averages L̄b,i. Finally in this step, the values

νb,i = L̄b,i − L̄i are constructed.

The final step iteratively removes the worst performing model. At first, all

models are considered. For all these models, the average point differences be-

tween the models are calculated. For all models i = 1, ...,m, the averages per

model are calculated and used to calculate T-statistics. The model with the

maximum T-statistic (Tmax) is nominated to be eliminated from the model

confidence set. The p-value is than calculated as p = 1
B

∑B
b=1 I{Tmax>Tb,max},

with Tb,max the maximum T-statistic of the b-th bootstrap statistics. If this

p-value is higher than α, the set is rejected and the model with the maxi-

mum T-statistic is removed from the set. The third step is repeated until

the p-value is below α. The models that are left over are the models of the

model confidence set at a 1− α significance level.
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2.8 Implementation Issues

In order to estimate the different models, two implementation issues have to

be resolved. Since the different models are estimated dynamically, a choice

has to be made whether an expanding or a moving window is used. The

choice has been made to use an moving window of 5 years. Since conditional

volatility is estimated, it is more logical to dismiss results from older periods,

since these do not influence today’s volatility anymore. Due to the excessive

time it takes to estimate the models, the window is not moved on a daily

basis, but on a monthly basis. This results into 72 time windows per model

that are estimated.

The other implementation issue to resolve is the way to estimate the

different models. Since the conditional volatility is unobserved, standard es-

timation techniques cannot be used. However, in accordance with Shephard

and Shephard (2010) and Hansen, Huang and Shek (2012), Quasi-Likelihood

estimation is used. This estimation technique is similar to the estimation

technique used for the standard GARCH models and therefore is not dis-

cussed in detail. For a detailed reading on the estimation of the parameters,

one is referred to the papers of Shephard and Shephard (2010) or Hansen,

Huang and Shek (2012).

3 Data

This paper uses the database ‘Oxford-Man Institute’s realized library’ version

0.2, which has been produced by Heber et al. (2009) 2.

The data that is used from the database are the indices of the FTSE100,

DAX30, CAC40, AEX, SSMI, IBEX35 and the EUROSTOXX50. These data

2Available at http://realized.oxford-man.ox.ac.uk
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are available from January 3 2000 up to including the current day. In this

paper the data available from January 2000 up to including March 2014 is

used.

The database contains a lot of different realized measures. The measures

that will be used to research the models are the realized variance (at 5 and 10-

minute intervals) (for example, Andersen and Bollerslev, 1998), the realized

kernel (Hansen and Lunde, 2006), the (5-minute) realized bi-power variation

(Barndoff-Nielsen et al., 2004), the median truncated realized variance (An-

dersen et al., 2008), the 5-minute realized semivariance (Barndoff-Nielsen et

al., 2008) and the daily range (Gallant et al., 1999). The realized variance,

bi-power variation and semivariance will be taken with and without subsam-

pling. Instead of considering the daily range (which sometimes is below 0),

the squared daily range is used.

The estimation will be done initially from the period of January 2000 up

to including December 2005. With these estimates, the forecasts will be made

for the next month. For the rest of the period up to including March 2014, a

moving window will be applied to update the estimates. This is done, since

it is likely that the parameters will change over time. Furthermore, since

volatility is time-dependent, the data from the period of 2000 is not likely to

be relevant for the estimates in, for example 2011.

3.1 Summary statistics

Table 1 gives summary statistics for the realized measures and the (squared)

log daily returns for each index. The table shows that for all measures, the

mean values of the realized measures are almost the same for each index, with

exceptions for the realized semivariances and the squared daily range. The

means of the realized semivariances are all approximately half of the other
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realized measures. This can be explained by the fact that for the realized

semivariance only a look is taken at the downside risk. Therefore, to be an

unbiased estimator for the variance, the measure has to be scaled by 2. The

means of the squared daily range are significantly larger than of the other

realized measures. This is caused by the fact that according to Parkinson

(1980) the squared daily range has to be scaled by 1
4 log(2)

≈ 1
2.772

. If this

scaling is performed on the mean, this results into a mean of 0.94, which lies

in the same range as the other realized measures.

When the standard deviations for the realized measures are considered,

we see the same features as for the means. The standard deviations of the

realized semivariances are all about half of the other realized measures. The

standard deviations of the squared daily range is again significantly higher

than of the other realized measures. When the scaling is applied again, this

results in a standard deviation of 1.74, which again lies in the same range

as of the other realized measures. A difference with the means, is that the

standard deviations of the squared daily returns are quite higher than of the

realized variance. This implies that the realized variance is a better estimator

for the volatility than the squared daily returns.

When a look is taken at the daily returns, we see that the mean value is a

little below 0. However, since the standard deviation of the returns is about

100 times larger than of the mean, we can assume that the mean return is

equal to 0. This justifies the model of Equation (1), where the mean value

is disregarded.
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Table 1

Summary Statistics

This table reports summary statistics for the different realized measures, the daily

returns and the squared daily returns. All values have to be multiplied by 10−4,

except for the standard deviation of the returns (which should be multiplied by

10−2). Panel A reports the means of the measures and returns, while Panel B

reports the standard deviations of the measures and returns. In the panels, RV5

is the 5-minute realized variance, RK the realized kernel, RV5ss the 5-minute re-

alized variance with subsampling, RV10 the 10-minute realized variance, RV10ss

the 10-minute realized variance with subsampling, BV5 the 5-minute bi-variate

power variation, BV5ss the 5-minute bi-variate power variation with subsampling,

MEDRV the median truncated realized variance, RS5 the 5-minute realized semi-

variance, RS5ss the 5-minute realized semivariance with subsampling and DR the

squared daily range.

Panel A

FTSE100 DAX30 CAC40 AEX SSMI IBEX35 STOXX50

RV5 0.96 1.95 1.55 1.34 0.95 1.56 1.81

RK 0.95 1.93 1.55 1.36 0.90 1.54 1.77

RV5ss 0.89 1.82 1.52 1.31 0.91 1.51 1.62

RV10 1.00 1.93 1.56 1.37 0.94 1.60 1.82

RV10ss 0.90 1.73 1.51 1.33 0.90 1.53 1.58

BV5 0.85 1.68 1.44 1.25 0.87 1.44 1.50

BV5ss 0.83 1.66 1.43 1.25 0.86 1.40 1.46

MEDRV 0.65 1.49 1.19 1.04 0.85 1.22 1.22

RS5 0.49 1.01 0.80 0.69 0.48 0.80 0.94

RS5ss 0.46 0.94 0.78 0.68 0.46 0.78 0.84

DR 2.62 4.83 4.04 3.72 2.64 4.40 4.60

rt -3.81 -3.60 -4.48 -4.78 -2.11 -4.79 -3.20

r2t 0.98 1.88 1.60 1.49 1.03 1.73 1.94
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Panel B

FTSE100 DAX30 CAC40 AEX SSMI IBEX35 STOXX50

RV5 1.79 3.29 2.52 2.21 1.65 2.13 3.48

RK 1.65 3.40 2.48 2.33 1.50 2.13 3.36

RV5ss 1.58 3.05 2.43 2.18 1.56 2.09 2.86

RV10 1.82 3.30 2.66 2.35 1.66 2.49 3.59

RV10ss 1.59 2.89 2.43 2.30 1.61 2.22 2.60

BV5 1.68 2.81 2.31 2.05 1.55 2.03 2.52

BV5ss 1.50 2.85 2.27 2.12 1.51 1.95 2.42

MEDRV 1.23 2.59 1.81 1.62 1.21 1.44 2.01

RS5 0.95 1.86 1.37 1.20 0.86 1.14 2.27

RS5ss 0.82 1.68 1.29 1.17 0.81 1.12 1.76

DR 4.83 8.64 6.78 7.39 5.37 6.96 8.08

rt 0.99 1.37 1.27 1.22 1.02 1.32 1.39

r2t 2.42 4.92 3.98 4.36 3.02 4.71 4.92

Table 2 reports the correlation matrix for the different realized measures

for the FTSE100. The upper diagonal shows the Pearson’s autocorrelations,

while the lower diagonal shows the Spearman’s rank correlations. As we

can see in Table 2, the Pearson’s correlations between the different measures

are very high, with 0.79 being the lowest value. This is caused by the fact

that the underlying data that determines the measure are the same for every

measure, only calculated into a different way.

For the Spearman’s rank correlations, Table 2 shows that the correlations

are even higher, with a minimum of 0.83. This shows that when there is

accounted for extreme values, it shows that the realized measures are even

more correlated with one another.

For the correlation matrices of the other indices, the same results hold as

for the FTSE100. This means that it not useful to combine realized measures

in estimating the above mentioned models, since they would not add a lot of
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extra information to the model.

Figure 1 shows some summary results for the 5-minute realized variance

of the FTSE100. In subfigure a), one can see the development of the 5-

minute realized variance over the entire period that is considered. It shows

that between 2000 and 2003 and 2008 to 2012 the index is very volatile, with

high peaks around 2003, late 2008 and late 2011. The latter two peaks mark

different time periods in the most recent financial crisis, caused by the global

bank crisis. The first peak marks a period during the collapse of the internet

bubble. In these periods, stock markets globally were very volatile. For the

other indices, the same features can be seen. One striking difference with

other realized measures for the FTSE100 is that the peak around 2003 is

the highest for the realized variance. For the realized kernel, the peak is the

highest during the start of the most recent financial crisis, starting at the

end of 2008. This fact is peculiar and the only explanation that could be

given to this is the way that the realized measure is calculated gives these

differences.

Subfigure b) and c) of Figure 1 tell something about the distribution

of the realized variance. In this paper, it is sometimes implicitly assumed

that the realized measures follow a (mixed) normal distribution or lognor-

mal distribution. Subfigure b) and c) show that the realized variance most

definitely does not follow a normal distribution. This can already be con-

cluded from the fact that the values of the realized measures can never take

a negative value. Subfigure b) likes to show that the realized variance follows

a lognormal distribution. The red line (the density function of a lognormal

distribution) follows the bars of the histogram quite good. When the natu-

ral logarithmic transformation is taken, the results seem to follow a normal

distribution that is not completely symmetric. This follows also from the

24



Table 2

Correlation Matrix Realized Measures FTSE100

This table reports the correlations between the different realized measures of the

FTSE100 index. The upper diagonal shows the Pearson autocorrelations, while

the lower diagonal shows the Spearman’s rank correlations. In this table, RV5

is the 5-minute realized variance, RK the realized kernel, RV5ss the 5-minute re-

alized variance with subsampling, RV10 the 10-minute realized variance, RV10ss

the 10-minute realized variance with subsampling, BV5 the 5-minute bi-variate

power variation, BV5ss the 5-minute bi-variate power variation with subsampling,

MEDRV the median truncated realized variance, RS5 the 5-minute realized semi-

variance, RS5ss the 5-minute realized semivariance with subsampling and DR the

squared daily range.

RV5 RK RV5ss RV10 RV10ss BV5 BV5ss MEDRV RS5 RS5ss DR

RV5 1.00 0.95 0.97 0.94 0.93 0.96 0.96 0.91 0.94 0.93 0.85

RK 0.99 1.00 0.97 0.98 0.97 0.90 0.95 0.89 0.90 0.95 0.87

RV5ss 0.99 0.99 1.00 0.95 0.98 0.96 0.99 0.94 0.91 0.96 0.87

RV10 0.98 0.98 0.98 1.00 0.95 0.88 0.92 0.86 0.89 0.92 0.86

RV10ss 0.98 0.98 0.99 0.98 1.00 0.91 0.98 0.91 0.87 0.95 0.88

BV5 0.98 0.98 0.99 0.97 0.98 1.00 0.97 0.91 0.89 0.91 0.82

BV5ss 0.98 0.98 1.00 0.97 0.99 0.99 1.00 0.94 0.89 0.95 0.86

MEDRV 0.96 0.97 0.98 0.94 0.97 0.97 0.98 1.00 0.83 0.89 0.79

RS5 0.95 0.94 0.95 0.94 0.94 0.95 0.95 0.93 1.00 0.94 0.81

RS5ss 0.95 0.95 0.96 0.94 0.96 0.95 0.96 0.95 0.99 1.00 0.85

DR 0.88 0.88 0.89 0.89 0.90 0.87 0.88 0.85 0.83 0.84 1.00
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skewness and the kurtosis of the realized variance, which are 0.42 and 3.05

respectively. The skewness of 0.42 shows that the distribution of log(RV 5t)

is not symmetric and can therefore not be normally distributed. The kurtosis

of 3.05 lies very close to 3, meaning that the tails are as fat as of a normal dis-

tribution. The Jarque-Bèra test statistic is 105.4, meaning that the realized

variance is most definitely not lognormally distributed. For the other real-

ized measures, the skewness of their log transformations lies between 0.21

(DR) and 0.66 (MEDRV ), while the kurtosis lies between 2.81(DR) and

3.49 (MEDRV ). Therefore, for none of the realized measures it holds that

they are lognormally distributed.

Finally, the autocorrelations of the realized measures, shown in subfigure

d) of Figure 1, are pretty high and only slowly declining. For the normal

realized variance, the value starts at 0.56 and only declines slowly over the

100 lags towards 0.11. For the log transformation, the autocorrelation at

1 lag is about 0.82 and declines to 0.43. The models that are used in this

papers implicitly already assumed this persistence. The graph of Figure 1 d)

now shows that this assumption is legit.

4 Results

4.1 Estimates

First of all, the estimates of the models are examined. Not all the models

are shown, since this does not contribute to the understanding of the article.

Moreover, the emphasis of this paper lies in the forecasting of the models.

Therefore, the estimates are only discussed briefly and only for the realized

variance of the FTSE100.
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Figure 1

Summary Graphs

This figure reports graphs for the 5-minute realized variance of the FTSE100 and

its log transformation. Subfigure a) shows the realized variance over time from

January 2000 - March 2014. Subfigure b) shows a histogram of the 5-minute real-

ized variance. The red line is a density function of the lognormal distribution, with

the mean and variance of the log transform of the realized variance as parameters.

Subfigure c) shows a histogram of the natural logarithm of the realized variance.

The red line is the density function of a normal distribution with the mean and

variance of the log realized variance as parameters. Finally, Subfigure d) shows

the autocorrelation function of the first 100 lags of the realized variance (blue) and

its log transformation (red).

(a) RV 5t plot

2000 2005 2010

0.
00
0

0.
00
2

0.
00
4

Date

vo
la
til
ity

(b) RV 5t histogram

0.000 0.002 0.004

0
40
00

10
00
0

(c) log(RV 5t) histogram

-12 -10 -9 -8 -7 -6

0.
0

0.
2

0.
4

(d) Autocorrelations

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
ut

oc
or

re
la

tio
n

27



4.1.1 Standard models

At first, the estimates of the standard models are examined. Figure 2 reports

the estimates of the three standard models that are explained in Equations

(2) - (4).

Figure 2 shows that for the HEAVY model, ω is approximately constant

over time and the sum of α and β is constant over time. This means that the

unconditional variance is approximately constant over time. The fact that the

sum of the α and β is approximately 1 for the entire period implies that the

persistence of the variance is very high. This is one of the assumptions and

features that GARCH models are based on. Figure 2 shows that this feature

also holds for the realized variance of the FTSE100 in the HEAVY model.

Figure 2 also shows that α and β are tending more towards each other over

time. This means that in the beginning the conditional unobserved variance

plays a bigger role in explaining the conditional variance a day later than the

realized measure. However, at the end the contribution to the conditional

variance is approximately the same.

For the µt part, we see that the parameters of αR and βR are very close

together and cross each other two times over time. This means that for

the realized measure, the past unobserved value and the realized value are

explaining approximately the same part of the prediction of the next value

for the realized measure. The sum of the two parameters is again constant

over time and a little below 1. This means that the sum of the parameters

is robust over time, and also for the µt part the persistence is high.

Figure 2 shows that for the RealGARCH(1,1) model, there is a strange

jump around time window 28, which complies with adding August 2008 to

the sample. This was around the beginning of the latest financial crisis, so it

seems reasonable that the parameters would change around this period, since
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Figure 2

Estimates of the standard models

This figure reports the estimates of the parameters of the standard models. The

lines correspond to the following parameters: green is ω, blue is α, red is β, yellow

is γ, orange is α+ β + 0.5γ, purple is ξ, brown is φ, black is τ1 and grey is τ2.
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Figure 2 continued

(e) RealGARCH(1,1) model (small parame-

ters)
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the volatility got higher from this moment on. This indicates that there is

a break in the constancy of the parameters. However, the sum of α and β

is only altered in a small way, which makes it seems like this sum is robust

over time and the persistence of the RealGARCH(1,1) model is high.

For display reasons, the parameters of the RealGARCH(1,1) model are

divided into a figure for the large parameters and the small parameters. The

small parameters are the parameters that are in the order of 10−5. These

parameters include ω, ξ, τ1 and τ2. The large parameters are all in the order

of 0.1 to 1. These parameters include α, β, α + β and φ.

For the large parameters, figure 2 shows that before and after the jump

around August 2008, the parameters α and β are approximately constant.

This indicates that these parameters are robust over time and depend only

little on the window that is chosen to estimate the parameter. For φ, almost

the same holds, only around the sudden jump for the other parameters, φ
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goes gradually to a new level. For the rest of the time it only differs a little,

meaning that it is likely that φ is robust too. This means that throughout

the complete sample, both ht is a good (unobserved) measure to explain the

realized variance and vice versa.

For the small parameters, Figure 2 shows that most of the parameters

are approximately constant. The only parameter that deviates from this

trend is ξ. This parameter starts relatively big and declines over time. This,

together with the fact that φ is almost constant over time, indicates that the

unconditional mean of the realized variance declines over time and after the

sudden jump, it levels out to be approximately the same for the rest of the

period.

Finally, Figure 2 shows that for the RealEGARCH(1,1) model, the pa-

rameters τ1 and τ2 seem to be constant over time, albeit that they are very

close to 0, in comparison with the other parameters. This means that the

leverage effect of the model is only small, but constant. Another observation

is that the τ1 parameter is constantly below 0 and the τ2 parameters is con-

stantly above 0. This means that zt has a negative impact on the conditional

variance and z2t −1 a positive effect on the conditional variance. Furthermore,

we see that for the conditional variance, the effects for α, β and α + β are

similar to the trend for these parameters in the HEAVY model, and there-

fore the persistence is also harboured into the RealEGARCH model. For ω,

we see that the value starts of just below 0 and that over time this value

gradually declines to around -0.4. This means that the other parameters

overestimate the conditional variance and a factor smaller than 1 has to be

applied to correct for this overestimation.

Figure 2 shows at last that for the estimating part of RMt, φ is a param-

eter that constantly lies around 1. This suggests that log(RMt) and log(ht)
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have the same relation and trends, and only differ by a constant. This con-

stant ξ, however, is very unstable, since it has a lot of peaks, as can be seen

in Figure 2. It starts around -0.5 and than goes gradually, though be it un-

steady, to 0.5, before it declines again to 0.25. This means that it is probably

hard to predict RMt and therefore hard to predict ht a couple of days ahead.

4.1.2 Models with r2t

Next, the estimates of the models with the squared daily return as an addi-

tional regressor are considered. It should be recalled that this expansion is

done only for the HEAVY and RealGARCH(1,1) model, since the estimates

of the RealEGARCH(1,1) model are very unstable. Figure 3 reports the es-

timates for these models. The figure does not show the estimates for the µt

part of the HEAVY model, since those are the same as in Figure 2.

For the HEAVY model, Figure 3 shows that for ω, α and β, we have the same

pattern as for the standard model. Therefore, these parameters will not be

discussed again. An interesting parameter to look at, is the γ parameter,

since it tells what the extra value of r2t is. We see that the value of γ lies

around 0 for the complete part, meaning that the regressor adds, relatively

to the realized variance, little value in explaining the unconditional variance.

This means that the realized variance is a better proxy for the conditional

variance than the squared daily return. We do again see that the sum of

α, β and γ constantly lies around 1, meaning that the persistence is still

harboured into the model, even after adding an additional regressor. One

significant detail is that the value of the sum of these parameters is some-

times larger than 1. This is something that is not allowed into the regular

GARCH models. However, since the mean of the realized variance and of

the squared daily return are not the same, this means that for checking if the
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Figure 3

Estimates of the standard models

This figure reports the estimates of the parameters of the HEAVY and Real-

GARCH(1,1) models with r2t as additional regressor. The lines correspond to the

following parameters: green is ω, blue is α, red is β, yellow is γ, orange is α+β+γ,

purple is ξ, brown is φ, black is τ1 and grey is τ2.

(a) HEAVY model (ht)
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model is stationary, there has to be made an adjustment for the difference

in means. After this adjustment is made, the model is still stationary.

For the large parameters of the RealGARCH(1,1) model, Figure 3 shows

that all the parameters show the same trend as in the standard models.

The parameter of γ lies around 0.1 for almost the complete time, except

around the time window that includes August 2008. The same jump as for

the other parameters is show in γ, which goes to just above 0. Figure 3

shows that γ has a higher value in the RealGARCH(1,1) model than in the

HEAVY model. This means that the influence of the squared daily return

is of bigger importance in the RealGARCH(1,1) model than in the HEAVY

model. However, since α is bigger than γ, the realized variance explains the

conditional variance better than the squared daily return.

For the small parameters of the RealGARCH(1,1) model, Figure 3 shows,

in contradiction to the large parameters, some difference with the estimates

of the standard RealGARCH(1,1) model. We see that ξ is more constant

than in the standard RealGARCH(1,1) model.

4.1.3 Non-linear models

The third set of models that are estimated are the non-linear models. The

estimates are presented in Figure 4. In Figure 4, the µt part of the HEAVY

model is not taken into account, since this is the same as in Figure 2.

Figure 4 shows that for the HEAVY model, the parameter of α is a lot

smaller than in the standard models. This is due to the fact that part of

the explanatory power of the realized variance lies now in γ. Figure 4 shows

that γ lies around 0.1 for all the time windows, which is approximately the

difference between the α of Figure 2 and Figure 4. This means that when

the returns are negative, the realized variance contributes big to the value of
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Figure 4

Estimates of the standard models

This figure reports the estimates of the parameters of the three models with

I{rt<0}RMt as additional regressor. The lines correspond to the following pa-

rameters: green is ω, blue is α, red is β, yellow is γ, orange is α+ β + γ/2, purple

is ξ, brown is φ, black is τ1 and grey is τ2.

(a) HEAVY model (ht)
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Figure 4 continued

(d) RealGARCH(1,1) model (small parame-

ters)
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the conditional variance. This suggests that the assumption that volatility is

higher when returns are negative are underlined by the non-linear HEAVY

model. For β, Figure 4 shows that it follows the same pattern as in the

standard model. Also the sum of the parameters α, β and 1
2
γ lies around

1. Only the half of γ is taken, since I{rt<0} is 0 (approximately) half of the

time. This indicates that the persistence in the non-linear HEAVY model is

still present.

Figure 4 shows that for the large parameters of the RealGARCH(1,1)

model, α has declined approximately 0.2 for the entire period in comparison

to α in the standard RealGARCH(1,1) model. One would expect that this

would result in a large γ. However, this is not the case. Figure 4 shows

that γ does not deviate much from 0. This is peculiar and no explanation

for this can be given. What can be said about γ is that the effect of the

realized measure when rt < 0 is not much more than when rt > 0. This
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means that the assumption that the volatility is higher when returns are

negative is not underlined by the RealGARCH(1,1) model. The rest of the

parameters are developing in approximately the same way as in the standard

RealGARCH(1,1) model.

Figure 4 shows, for the small parameters of the RealGARCH(1,1) model,

that they are all approximately the same as for the RealGARCH(1,1) model

with the daily squared return as additional regressor. Again, we see that in

comparison with the parameters of the standard RealGARCH(1,1) model,

the parameters change all smoother over time and that ξ is more constant

over time.

Figure 4 shows that for the conditional variance part of the RealEGARCH(1,1)

model, that γ is almost 0 for every time frame. The parameter for α has

not changed a lot in comparison to the standard RealEGARCH(1,1) model.

This means that the effect of the negative realized measure is not very big.

The suggestion that the volatility is higher when the returns are negative is

therefore not underlined by the RealEGARCH(1,1) model. Since the effect

of splitting up the model for positive and negative returns is not very big,

the other parameters have not changed a lot too.

Finally, Figure 4 shows that for the realized measure part of the RealE-

GARCH(1,1) model, the parameters of φ and ξ have not noticeably changed

in comparison to the standard RealEGARCH(1,1) model. This is due to the

fact that the value of γ lies very close to 0, while the other parameters did

not change much too. This means that the unconditional variance has not

changed a lot, which results in approximately the same parameters ξ and φ

as in the standard RealEGARCH model.

37



4.1.4 Combination of realized bi-power and realized variance

As explained in the section ‘Methods’, estimating models with combinations

of realized measures is not fruitful. As the ‘Data’ section shows, the correla-

tions are in general quite high between the realized measures. However, the

estimates for the combination of the realized bi-power and realized variance

are interesting from a theoretical point-of-view. Figure 5 reports the values of

α1 and α2 of Equation (10) over time for the HEAVY and RealGARCH(1,1)

model for the FTSE100.

Figure 5

Estimates of combination of RV 5t and BV 5t

This figures show the parameters α1 and α2 of Equation (10) for the HEAVY and

RealGARCH(1,1) models. The results are for the FTSE100, taken over the 72 time

windows. The blue line represents α1 and the red line represents α2. Subfigure

a) shows this for the HEAVY model and subfigure b) for the RealGARCH(1,1)

model.

(a) HEAVY model
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Figure 5 shows that for both the HEAVY as the RealGARCH(1,1) model,
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the jumps have a great contribution to the volatility. For the RealGARCH(1,1)

model, the jumps even have a bigger influence on the conditional variance

than the realized bi-power variation in the first 20 time frames. For both

models it holds though, that the contribution of the different regressors dif-

fers quite a lot and are most likely not robust over time. Also, Figure 5 shows

that there are sudden jumps in the parameters for the difference regressor.

A significant detail is that for both models the parameters differ a lot

between the models. As for the RealGARCH(1,1) model, the jump parameter

is almost always above 0, the parameter of the HEAVY model jumps below

0 after about time window 35, which is around March 2009. This shows that

the influence of the model is also a big part of the contribution on how well

the realized measures predict the conditional variance.

4.2 Forecasts

4.2.1 Standard models

At first, the out-of-sample forecast performance of the standard models, as

described in Equations (2) - (4), are discussed. Table 3 reports the values

that are obtained using the QLIKE loss function as described in Equation

(11). The proxies that are used are the squared daily return, the 5-minute

realized variance and the realized kernel.

Table 3 and Table 9 in the appendix show that almost all of the used

models, with all the different realized measures, do not perform better out-

of-sample than the benchmark models. The regular GARCH(1,1) model is

not beaten by any of the models, while the HAR(3)-RV model is only beaten

by a few models with only a few realized measures. However, we will discuss

for the realized variance as proxy and each model separate the results in the
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remainder of this section.

For the HEAVY models, we see that in general the best performing mod-

els, are the models that use the ‘classic’ realized measures as realized mea-

sure, being the 5-minute realized variance (with and without subsampling)

and the realized kernel. For the forecasting at a horizon of 21 days, we

even see that the realized variance is the measure that forecasts the best for

the HEAVY model, with exception of the Eurostoxx50, where the 10-minute

realized variance forecasts the best.

For the RealGARCH(1,1) model, it is difficult to say something general

about which realized measure performs best. The best performing realized

measures, looking at the out-of-sample results, differs per index. However,

almost never the best performing realized measures are the realized variance

(with and without subsampling, 5- and 10-minute), and the realized kernel.

The other realized measures have at least at one of the horizons and indices

that they are the best performing. For the IBEX35, for example, the realized

semivariance with subsampling performs best at all time horizons, while for

the SSMI this is the squared daily range.

For the RealEGARCH(1,1) model, Table 3 reports that when using the

realized variance as proxy, the best realized measure to use is the squared

daily range. The only index that this is not the best realized measure to fore-

cast out-of-sample, is the AEX at a 1-day forecasting horizon. For the AEX,

the best realized measure to use is the median truncated realized variance

or 5-minute realized variance with subsampling. A remark for the RealE-

GARCH(1,1) model is that it beats the HAR(3)-RV model with some in-

dices. For example, for the Eurostoxx50, the RealEGARCH(1,1) model with

the squared daily range performs the same as the HAR(3)-RV model at a

5-day and 21-day horizon and even beats the model at a 1-day and 10-day
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horizon.

Between the models, the results are mixed, but the best model is for

almost all indices and horizons a trade-off between the RealGARCH(1,1)

and RealEGARCH(1,1) model. Only for the 21-day ahead forecasts of the

AEX index, the HEAVY model outperforms the other two models. For the

AEX, SSMI and IBEX35, the RealGARCH(1,1) model outperforms the other

models, with exception of the 21-day ahead forecasts of the AEX (HEAVY)

and the SSMI (RealEGARCH(1,1)). For the FTSE100, DAX30 and EU-

ROSTOXX50, the RealEGARCH(1,1) model outperforms the other mod-

els, with exception of the 1-day ahead forecasts of the FTSE100 (Real-

GARCH(1,1)). For the CAC40, the best model is for the 1-day and 5-day

ahead forecasts the RealGARCH(1,1) model and for the 10-day and 21-day

ahead forecast the RealEGARCH(1,1) model. In general, the results show

that for the shorter horizons the RealGARCH(1,1) model is the best, while

for the longer horizons the RealEGARCH(1,1) model is the best.

Table 9 in the appendix shows that when the realized kernel or the squared

daily return is used as a proxy, the results do not differ a lot from the results

with the realized variance as a proxy. We see that for all indices at all time

horizons, the same models turn out to be the best. The only difference is

that at some indices and time horizons the best performing realized measure

differs. However, the general trend stays the same, and therefore the QLIKE

results are robust to the chosen proxy.

4.2.2 Models with r2t

For the HEAVY and RealGARCH(1,1) model, the out-of-sample performance

is also examined with the squared daily return as an extra regressor. The

values of the QLIKE loss function are given in Table 4. Since the results
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of the standard models show that there are not many differences between

the proxies, only the results that use the realized variance as a proxy are

discussed in detail. The results for the other proxies can be found in the

‘Appendix’, but are not discussed.

Table 4 shows that for the HEAVY models with the realized variance

as proxy, in general the ‘classic’ realized measures deliver the best results,

which is also the case for the standard HEAVY model. The only exception to

this pattern, is for the IBEX35 and for the 5-day, 10-day and 21-day ahead

forecasts of the EUROSTOXX50. For these indices and time horizons, the

squared daily range is the best realized measure to use for the HEAVY model.

However, none of these models is better than the benchmark models.

For the RealGARCH(1,1) model, Table 4 shows that the best realized

measure to use is in general the squared daily range. The only exceptions

are the 10-day and 21-day ahead forecasts of the FTSE100 and the 21-day

ahead forecasts of the AEX and SSMI. For the FTSE100 exceptions, the

best realized measure to use is the realized semivariance with subsampling.

For the AEX exception, the best realized measure is the 10-minute realized

variance without subsampling and for the SSMI, the best realized measure

is the 5-minute bipower variation. This is different from the case with the

standard RealGARCH(1,1) model, where it is shown that it depends per

index and time horizon which realized measure performs best. None of the

realized measures defeats any of the benchmark models.

Comparing the RealGARCH(1,1) model and HEAVY model with r2t as

an extra regressor, we see that both models do not defeat the benchmark

models with r2t as proxy. Also, the standard models are not defeated when

r2t is considered as proxy. This means that the extension of r2t is not suitable

for predicting the conditional variance, when one believes that a proxy for
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the conditional variance is the realized variance.

4.2.3 Non-linear models

At last, the out-of-sample performance of the non-linear models is discussed.

The values of the QLIKE loss function are given in Table 5. As with the

previous models, Table 5 only shows the results with the realized variance

as proxy. The results for the squared daily return and realized kernel as a

proxy, can be found in the ‘Appendix’, but are not discussed.

Table 5 shows for the HEAVY models with the realized variance as a

proxy, that it differs per index and time horizon what the best realized mea-

sure is. This is in contradiction with the results of the standard models and

the model with the squared daily returns as an extra regressor, where it is

mostly the ‘classic’ realized measures that perform best. For example, for

the IBEX35 and the EUROSTOXX50, the best realized measure is the daily

range, while for the SSMI, the best realized measure is the median trun-

cated realized variance. The performance of the non-linear model, however,

is not better than of the standard HEAVY model. In comparison with the

model with the squared daily return as extra regressor, the non-linear model

performs better, albeit not with large differences (between 0 and 100).

For the RealGARCH(1,1) models, Table 5 shows, when the realized vari-

ance is used as a proxy, there are differences between the index and time

horizon which realized measure performs best. For example, for the SSMI

and the EUROSTOXX50, Table 5 shows that the best realized measure is

the squared daily range. However, for the FTSE100, the best realized mea-

sures are the realized bi-power variation with subsampling and 10-minute

realized variance. In general, the non-linear RealGARCH(1,1) model does

not outperform the standard RealGARCH(1,1) model. In comparison with

49
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the RealGARCH(1,1) model with the squared daily return, it performs a bit

worse, with not very big difference (between 0 and 150).

With the realized variance as a proxy, Table 5 shows for the RealE-

GARCH(1,1) that the results are more or less the same as with the standard

models. An exception to this is for the CAC40 index, with 1-day and 5-day

ahead forecasts. Where in the standard model the squared daily range is the

best realized measure, it is for the non-linear RealEGARCH(1,1) model the

5-minute realized variance. For all the other indices and time horizons, the

daily range is the best realized measure for the non-linear RealEGARCH(1,1).

This model also outperforms the HAR(3)-RV model at some time horizons

and indices. For example, for the EUROSTOXX50, the non-linear RealE-

GARCH(1,1) model is better than the HAR(3)-RV model for all time hori-

zons.

In general, the non-linear models do not outperform the standard models

out-of-sample, except for the HEAVY model. Between the three non-linear

models, for almost all indices and time horizons, the RealEGARCH(1,1)

model performs better than the other two models. The only exceptions

are the 1-day ahead forecast of the AEX and the SSMI, where the Real-

GARCH(1,1) model is the best of the three models. Another exception is

the 21-day ahead forecasts of the AEX, where the HEAVY model is the best

model of the three non-linear models.

4.2.4 Stability of the QLIKE results

Besides investigating the QLIKE loss function results for the complete sam-

ple, the stability of the QLIKE results are considered too. However, this is

only done for the realized variance of the FTSE100 of the standard models,

with the realized kernel as a proxy. The QLIKE loss function results are

53



taken with a moving window of 2 years and updated every day until the end

of the period. The dates on the x-axis mark the ending of the period the

QLIKE is calculated. This results in Figure 6.

Figure 6

QLIKE loss function over time

This figure shows the results of the QLIKE loss function values (subfigure a)) for

the standard models of the HEAVY (black), RealGARCH(1,1) (red) and RealE-

GARCH(1,1) (blue) models and the difference to the lowest value possible (subfig-

ure b)). The QLIKE results are taken for two years and updated every day until

the end of the period. The forecasting period that is taken is from January 2006

- March 2014. The dates on the x-axis mark the ending date of the period that

the QLIKE is calculated. The orange line shows the minimum value that the loss

function can take.

(a) HEAVY model (ht)

2008 2009 2010 2011 2012 2013 2014

-4
80
0

-4
20
0

-3
60
0

(b) HEAVY model (ht)

2008 2009 2010 2011 2012 2013 2014

15
0

25
0

35
0

The results in Figure 6 show that the resulting values of the loss function

vary over time. However, when the values are compared with one another,

subfigure a) of Figure 6 shows that the pattern is more or less the same over

time.

However, subfigure b) shows that for the model, the differences between
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the results of the QLIKE values of the models and the lowest value possible

differs over time and has some sudden jumps. These jumps are marked at

the beginning of 2008, at the end of 2008, at the beginning, halfway and

at the end of 2010, and halfway 2011, 2012 and 2013. These jumps can be

explained by the fact that the volatility is not homogeneous over the period

2006-2014. As subfigure a) of Figure 1 has already shown, there are also

shocks in the realized variance over this period. Especially the shocks of

2008, beginning of 2010 and halfway 2011 can be clearly seen in the graph

of the realized variance over time. These periods mark times in the financial

crisis that started halfway 2008.

Even though it is clear that the performance of the results of the QLIKE

vary over time, this will not be further examined for the other horizons,

proxies, indices and models, since it is expected that the observations will

not change too much from the observations of Figure 6.

4.2.5 Model confidence set

For all the models presented before (standard, with squared daily returns and

non-linear), a model confidence set is made. The results are that for almost all

the indices and time horizons, the set only consists out of the best performing

model, at a significance level of 95%. The only exceptions are at a forecasting

horizon of 1 day for the FTSE100, SSMI and the EUROSTOXX50. The

models that are in these model confidence sets are given in Table 6, together

with the corresponding p-value.

Table 6 shows that in order to be included into the model confidence set,

the QLIKE results have to be more or less the same, with only a maximum

difference of about 10 between the QLIKE values. The fact that for only

those three indices a model confidence set can be build, means that for the
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other indices the QLIKE results are significantly different from one another.

As already stated in Section 2.7.2., a higher value of l changes the results

slightly, by the fact that more models are included into the model confidence

set. In order to test the robustness of the choice of B, also several other

values for B (5000 and 10000) are chosen and the lengths of the different

model confidence sets are examined. It turns out that there are no changes

with the amount of models that are included into the model confidence set.

Therefore, we can say that this method of comparing the forecasting results

is robust to the choice of B, when B is at least chosen sufficiently large.

4.2.6 Combination of Forecasts

Besides considering every model with every realized measure apart, the com-

binations of the forecasts are considered too. The forecasts are combined

using their mean, their median and their in-sample discounted MSPE. Since

the combinations using the median always performs worse than using the

mean, the median combinations are not discussed. The results for these

combinations can be found in the ‘Appendix’.

First of all, the mean combinations are discussed. Only the results for

the 1-day ahead and the 21-day ahead forecasts are discussed. For the 5-day

ahead and 10-day ahead, the results are given in the ‘Appendix’, though they

are not discussed. Table 7 reports the values of the QLIKE loss function.

Table 7 shows that when the squared daily return is taken as a proxy,

none of the mean combination models beat the GARCH(1,1) model. At a

1-day ahead forecast horizon, the best combination model is the model that

combines the standard RealGARCH(1,1) models. The only exception is for

the DAX30, where the combination of all the standard models is the best

model. Table 7 shows also that for some of the indices the mean models out-
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perform the HAR(3)-RV model. For example, for the AEX, the combination

of all standard HEAVY models, of all standard RealGARCH(1,1) models, all

RealGARCH(1,1) models and all standard models, the HAR(3)-RV model

is outperformed out-of-sample. In comparison with the standard models of

Equations (2) - (4), only for the FTSE100 and AEX the mean combination

outperforms those models.

For the 21-day ahead forecasts, Table 7 shows that with the squared daily

return as proxy, the combination of the standard HEAVY models is the best

of the combination models. However, these combinations do not outperform

any of the benchmark models or the standard models from Equation (2) -

(4). Only for the AEX, the mean combination outperforms the standard

models.

Table 7 shows that when the realized variance or the realized kernel is

used as a proxy, the results are more or less the same, with a few differences.

For example, the best model is the same as the best model with the squared

daily return as a proxy. However, when the realized variance or kernel is used

as a proxy, the combinations of all standard HEAVY models do not beat the

HAR(3)-RV benchmark model anymore.

Besides the mean combinations, the combinations using the in-sample

discounted MSPE are considered too. The discounted MSPE is calculated

according to Equation (14). The results for the QLIKE loss function using

this combination are given in Table 8. Again, only the 1-day and 21-day

ahead forecasts are considered.

Table 8 shows that when the squared daily return is used as a proxy, the

best combination model is the combination of all standard models. Only

for the FTSE100 and the DAX30, the combination of the standard Real-

GARCH(1,1) models is better than the other models. Table 8 also shows

61



T
a
b

le
8

Q
L

IK
E

re
su

lt
s

fo
r

c
o
m

b
in

a
ti

o
n

m
o
d

e
ls

(M
S

P
E

)

T
h

is
ta

b
le

re
p

o
rt

s
th

e
Q

L
IK

E
re

su
lt

s
fo

r
th

e
co

m
b

in
at

io
n

s
m

o
d

el
s,

b
as

ed
on

th
e

in
-s

am
p

le
d

is
co

u
n
te

d
M

S
P

E
as

g
iv

en
in

E
q
u

a
ti

o
n

s
(1

4
)

an
d

(1
5)

,
fo

r
1
-d

ay
an

d
2
1-

d
ay

ah
ea

d
fo

re
ca

st
s.

T
h

e
re

su
lt

s
ar

e
re

p
or

te
d

fo
r

th
e

co
m

b
in

a
ti

on
o
f

al
l

st
an

d
a
rd

H
E

A
V

Y
(H

),
al

l
H

E
A

V
Y

m
o
d

el
s

w
it

h
th

e
sq

u
ar

ed
d

ai
ly

re
tu

rn
(H

+
r2 t

),
al

l
n

on
-l

in
ea

r
H

E
A

V
Y

m
o
d

el
s

(H
+
I {
r t
<
0
}

a
n

d
a
ll

H
E

A
V

Y
m

o
d

el
s

(A
ll

H
).

T
h

e
sa

m
e

ap
p

li
es

fo
r

th
e

R
ea

lG
A

R
C

H
(1

,1
)

(R
G

)
an

d
R

ea
lE

G
A

R
C

H
(1

,1
)

m
o
d

el
s.

F
in

al
ly

,
th

e

re
su

lt
s

fo
r

th
e

G
A

R
C

H
(1

,1
)

(G
)

an
d

H
A

R
(3

)-
R

V
(H

A
R

)
m

o
d

el
s

ar
e

al
so

p
re

se
n
te

d
.

P
an

el
A

u
se

s
th

e
sq

u
ar

ed
d

ai
ly

re
tu

rn

a
s

a
p

ro
x
y,

P
a
n

el
B

th
e

re
al

iz
ed

va
ri

a
n

ce
a
n

d
P

an
el

C
th

e
re

al
iz

ed
ke

rn
el

as
a

p
ro

x
y.

P
an

el
A

h
=

1
h
=

21

F
T

S
E

10
0

D
A

X
30

C
A

C
40

A
E

X
S
S
M

I
IB

E
X

35
E

U
R

O
S
T

O
X

X
50

F
T

S
E

10
0

D
A

X
30

C
A

C
40

A
E

X
S
S
M

I
IB

E
X

35
E

U
R

O
S
T

O
X

X
50

H
-1

.7
35

-1
.6

08
-1

.6
47

-1
.6

95
-1

.6
96

-1
.5

47
-1

.5
47

-1
.7

30
-1

.6
02

-1
.6

27
-1

.6
74

-1
.6

95
-1

.5
39

-1
.5

49

H
+
r2 t

-1
.7

04
-1

.5
64

-1
.6

21
-1

.6
73

-1
.6

60
-1

.5
05

-1
.4

92
-1

.7
01

-1
.5

60
-1

.5
91

-1
.6

39
-1

.6
60

-1
.4

92
-1

.5
00

H
+
I {
r t
<
0
}

-1
.6

89
-1

.5
43

-1
.5

99
-1

.6
48

-1
.6

49
-1

.4
74

-1
.4

71
-1

.6
84

-1
.5

41
-1

.5
68

-1
.6

08
-1

.6
45

-1
.4

67
-1

.4
78

A
ll

H
-1

.7
19

-1
.6

11
-1

.6
56

-1
.7

10
-1

.6
95

-1
.5

80
-1

.5
38

-1
.7

14
-1

.5
98

-1
.6

30
-1

.6
88

-1
.6

98
-1

.5
64

-1
.5

37

R
G

-1
.7

49
-1

.6
32

-1
.6

61
-1

.7
16

-1
.7

06
-1

.5
89

-1
.5

80
-1

.7
42

-1
.6

24
-1

.6
44

-1
.7

04
-1

.7
06

-1
.5

84
-1

.5
77

R
G

+
r2 t

-1
.7

28
-1

.6
22

-1
.6

50
-1

.6
99

-1
.7

03
-1

.5
34

-1
.5

64
-1

.7
19

-1
.6

12
-1

.6
30

-1
.6

81
-1

.7
03

-1
.5

27
-1

.5
61

R
G

+
I {
r t
<
0
}

-1
.7

10
-1

.5
98

-1
.6

24
-1

.6
87

-1
.6

65
-1

.5
31

-1
.5

08
-1

.6
94

-1
.5

91
-1

.6
02

-1
.6

69
-1

.6
66

-1
.5

23
-1

.5
04

A
ll

R
G

-1
.7

36
-1

.6
29

-1
.6

59
-1

.7
23

-1
.7

16
-1

.6
12

-1
.5

69
-1

.7
34

-1
.6

17
-1

.6
38

-1
.7

07
-1

.7
16

-1
.6

03
-1

.5
64

R
E

G
-1

.7
45

-1
.6

27
-1

.6
48

-1
.6

88
-1

.7
03

-1
.5

70
-1

.5
68

-1
.7

39
-1

.6
17

-1
.6

36
-1

.6
78

-1
.7

02
-1

.5
65

-1
.5

70

R
E

G
+
I {
r t
<
0
}

-1
.7

45
-1

.6
27

-1
.6

43
-1

.6
89

-1
.7

06
-1

.5
72

-1
.5

64
-1

.7
40

-1
.6

17
-1

.6
31

-1
.6

79
-1

.7
05

-1
.5

67
-1

.5
65

A
ll

R
E

G
-1

.7
42

-1
.6

31
-1

.6
56

-1
.7

10
-1

.7
17

-1
.6

10
-1

.5
65

-1
.7

42
-1

.6
18

-1
.6

38
-1

.6
95

-1
.7

17
-1

.6
02

-1
.5

64

A
ll

st
an

d
ar

d
-1

.7
48

-1
.6

41
-1

.6
72

-1
.7

29
-1

.7
21

-1
.6

19
-1

.5
85

-1
.7

47
-1

.6
29

-1
.6

53
-1

.7
15

-1
.7

21
-1

.6
11

-1
.5

81

A
ll
r2 t

-1
.6

79
-1

.5
95

-1
.6

32
-1

.6
97

-1
.5

13
-1

.5
02

-1
.5

06
-1

.6
72

-1
.5

81
-1

.6
03

-1
.6

74
-1

.5
15

-1
.4

78
-1

.5
01

A
ll
I {
r t
<
0
}

-1
.7

37
-1

.6
28

-1
.6

59
-1

.7
18

-1
.7

11
-1

.6
06

-1
.5

58
-1

.7
35

-1
.6

15
-1

.6
36

-1
.6

99
-1

.7
11

-1
.5

97
-1

.5
55

A
ll

m
o
d
el

s
-1

.7
33

-1
.6

25
-1

.6
57

-1
.7

16
-1

.7
09

-1
.6

01
-1

.5
53

-1
.7

31
-1

.6
08

-1
.6

34
-1

.6
96

-1
.7

07
-1

.5
89

-1
.5

48

G
-1

.8
09

-1
.7

20
-1

.7
34

-1
.7

86
-1

.7
89

-1
.6

73
-1

.6
87

-1
.7

82
-1

.6
89

-1
.6

98
-1

.7
49

-1
.7

62
-1

.6
41

-1
.6

56

H
A

R
-1

.7
55

-1
.6

36
-1

.6
67

-1
.7

11
-1

.7
14

-1
.5

74
-1

.5
83

-1
.7

23
-1

.6
10

-1
.6

38
-1

.6
80

-1
.6

97
-1

.5
58

-1
.5

67

62



P
an

el
B

h
=

1
h
=

21

F
T

S
E

10
0

D
A

X
30

C
A

C
40

A
E

X
S
S
M

I
IB

E
X

35
E

U
R

O
S
T

O
X

X
50

F
T

S
E

10
0

D
A

X
30

C
A

C
40

A
E

X
S
S
M

I
IB

E
X

35
E

U
R

O
S
T

O
X

X
50

H
-1

.7
39

-1
.6

26
-1

.6
65

-1
.7

20
-1

.7
13

-1
.5

99
-1

.5
61

-1
.7

36
-1

.6
13

-1
.6

43
-1

.7
01

-1
.7

13
-1

.5
90

-1
.5

58

H
+
r2 t

-1
.7

18
-1

.6
00

-1
.6

49
-1

.7
01

-1
.6

96
-1

.5
77

-1
.5

25
-1

.7
16

-1
.5

85
-1

.6
20

-1
.6

78
-1

.6
95

-1
.5

65
-1

.5
24

H
+
I {
r t
<
0
}

-1
.7

10
-1

.5
88

-1
.6

41
-1

.6
93

-1
.6

85
-1

.5
68

-1
.5

06
-1

.7
07

-1
.5

75
-1

.6
09

-1
.6

67
-1

.6
87

-1
.5

56
-1

.5
10

A
ll

H
-1

.7
21

-1
.6

08
-1

.6
54

-1
.7

09
-1

.6
94

-1
.5

81
-1

.5
33

-1
.7

17
-1

.5
95

-1
.6

28
-1

.6
86

-1
.6

95
-1

.5
68

-1
.5

33

R
G

-1
.7

46
-1

.6
36

-1
.6

67
-1

.7
29

-1
.7

16
-1

.6
22

-1
.5

80
-1

.7
44

-1
.6

24
-1

.6
47

-1
.7

15
-1

.7
16

-1
.6

14
-1

.5
74

R
G

+
r2 t

-1
.7

26
-1

.6
26

-1
.6

57
-1

.7
17

-1
.7

13
-1

.5
92

-1
.5

66
-1

.7
22

-1
.6

12
-1

.6
35

-1
.6

99
-1

.7
14

-1
.5

79
-1

.5
59

R
G

+
I {
r t
<
0
}

-1
.7

10
-1

.6
04

-1
.6

30
-1

.7
07

-1
.6

74
-1

.5
86

-1
.5

09
-1

.7
00

-1
.5

91
-1

.6
05

-1
.6

88
-1

.6
74

-1
.5

74
-1

.5
01

A
ll

R
G

-1
.7

37
-1

.6
31

-1
.6

61
-1

.7
24

-1
.7

15
-1

.6
10

-1
.5

70
-1

.7
34

-1
.6

19
-1

.6
39

-1
.7

08
-1

.7
15

-1
.6

01
-1

.5
64

R
E

G
-1

.7
42

-1
.6

31
-1

.6
58

-1
.7

09
-1

.7
15

-1
.6

10
-1

.5
67

-1
.7

41
-1

.6
18

-1
.6

40
-1

.6
95

-1
.7

15
-1

.6
02

-1
.5

67

R
E

G
+
I {
r t
<
0
}

-1
.7

42
-1

.6
31

-1
.6

53
-1

.7
10

-1
.7

18
-1

.6
11

-1
.5

63
-1

.7
42

-1
.6

18
-1

.6
35

-1
.6

96
-1

.7
18

-1
.6

03
-1

.5
61

A
ll

R
E

G
-1

.7
39

-1
.6

28
-1

.6
55

-1
.7

08
-1

.7
15

-1
.6

07
-1

.5
62

-1
.7

39
-1

.6
15

-1
.6

37
-1

.6
94

-1
.7

15
-1

.5
98

-1
.5

61

A
ll

st
an

d
ar

d
-1

.7
43

-1
.6

33
-1

.6
67

-1
.7

25
-1

.7
12

-1
.6

13
-1

.5
74

-1
.7

40
-1

.6
20

-1
.6

46
-1

.7
09

-1
.7

13
-1

.6
04

-1
.5

69

A
ll
r2 t

-1
.7

32
-1

.6
14

-1
.6

46
-1

.7
06

-1
.6

96
-1

.5
92

-1
.5

35
-1

.7
29

-1
.6

00
-1

.6
21

-1
.6

87
-1

.6
96

-1
.5

80
-1

.5
32

A
ll
I {
r t
<
0
}

-1
.7

22
-1

.6
12

-1
.6

46
-1

.7
06

-1
.6

84
-1

.5
79

-1
.5

35
-1

.7
18

-1
.5

99
-1

.6
20

-1
.6

86
-1

.6
86

-1
.5

65
-1

.5
31

A
ll

M
o
d
el

s
-1

.7
37

-1
.6

26
-1

.6
60

-1
.7

18
-1

.7
10

-1
.6

05
-1

.5
61

-1
.7

34
-1

.6
12

-1
.6

37
-1

.6
99

-1
.7

10
-1

.5
94

-1
.5

57

G
-1

.7
71

-1
.6

59
-1

.6
82

-1
.7

43
-1

.7
38

-1
.6

30
-1

.6
22

-1
.7

78
-1

.6
82

-1
.6

92
-1

.7
48

-1
.7

59
-1

.6
46

-1
.6

49

H
A

R
-1

.7
51

-1
.6

39
-1

.6
73

-1
.7

27
-1

.7
23

-1
.6

13
-1

.5
79

-1
.7

21
-1

.6
10

-1
.6

38
-1

.6
93

-1
.7

01
-1

.5
89

-1
.5

65

63



P
an

el
C

h
=

1
h
=

21

F
T

S
E

10
0

D
A

X
30

C
A

C
40

A
E

X
S
S
M

I
IB

E
X

35
E

U
R

O
S
T

O
X

X
50

F
T

S
E

10
0

D
A

X
30

C
A

C
40

A
E

X
S
S
M

I
IB

E
X

35
E

U
R

O
S
T

O
X

X
50

H
-1

.7
50

-1
.6

20
-1

.6
66

-1
.7

18
-1

.7
22

-1
.6

01
-1

.5
76

-1
.7

47
-1

.6
07

-1
.6

45
-1

.6
99

-1
.7

21
-1

.5
91

-1
.5

75

H
+
r2 t

-1
.7

31
-1

.5
93

-1
.6

50
-1

.6
99

-1
.7

05
-1

.5
79

-1
.5

42
-1

.7
28

-1
.5

79
-1

.6
23

-1
.6

76
-1

.7
04

-1
.5

67
-1

.5
44

H
+
I {
r t
<
0
}

-1
.7

24
-1

.5
80

-1
.6

42
-1

.6
91

-1
.6

96
-1

.5
70

-1
.5

24
-1

.7
20

-1
.5

69
-1

.6
11

-1
.6

65
-1

.6
96

-1
.5

57
-1

.5
31

A
ll

H
-1

.7
19

-1
.6

09
-1

.6
22

-1
.7

09
-1

.7
01

-1
.5

76
-1

.4
72

-1
.7

17
-1

.5
89

-1
.5

93
-1

.6
80

-1
.6

99
-1

.5
55

-1
.4

69

R
G

-1
.7

57
-1

.6
30

-1
.6

69
-1

.7
27

-1
.7

24
-1

.6
23

-1
.5

94
-1

.7
54

-1
.6

19
-1

.6
50

-1
.7

12
-1

.7
23

-1
.6

15
-1

.5
90

R
G

+
r2 t

-1
.7

39
-1

.6
20

-1
.6

58
-1

.7
15

-1
.7

22
-1

.5
93

-1
.5

82
-1

.7
33

-1
.6

07
-1

.6
37

-1
.6

97
-1

.7
22

-1
.5

81
-1

.5
78

R
G

+
I {
r t
<
0
}

-1
.7

20
-1

.5
96

-1
.6

32
-1

.7
05

-1
.6

85
-1

.5
88

-1
.5

29
-1

.7
09

-1
.5

84
-1

.6
08

-1
.6

86
-1

.6
84

-1
.5

76
-1

.5
23

A
ll

R
G

-1
.7

37
-1

.6
31

-1
.6

60
-1

.7
25

-1
.7

15
-1

.6
09

-1
.5

70
-1

.7
34

-1
.6

18
-1

.6
39

-1
.7

09
-1

.7
15

-1
.5

99
-1

.5
64

R
E

G
-1

.7
54

-1
.6

25
-1

.6
59

-1
.7

07
-1

.7
24

-1
.6

12
-1

.5
84

-1
.7

53
-1

.6
12

-1
.6

43
-1

.6
93

-1
.7

23
-1

.6
03

-1
.5

86

R
E

G
+
I {
r t
<
0
}

-1
.7

54
-1

.6
25

-1
.6

55
-1

.7
08

-1
.7

26
-1

.6
13

-1
.5

80
-1

.7
53

-1
.6

12
-1

.6
38

-1
.6

94
-1

.7
25

-1
.6

04
-1

.5
81

A
ll

R
E

G
-1

.7
39

-1
.6

28
-1

.6
55

-1
.7

08
-1

.7
15

-1
.6

07
-1

.5
61

-1
.7

39
-1

.6
15

-1
.6

37
-1

.6
94

-1
.7

15
-1

.5
99

-1
.5

60

A
ll

st
an

d
ar

d
-1

.7
42

-1
.6

35
-1

.6
69

-1
.7

27
-1

.7
19

-1
.6

13
-1

.5
78

-1
.7

40
-1

.6
23

-1
.6

49
-1

.7
12

-1
.7

17
-1

.6
01

-1
.5

74

A
ll
r2 t

-1
.7

29
-1

.6
12

-1
.6

46
-1

.7
07

-1
.6

93
-1

.5
92

-1
.5

34
-1

.7
23

-1
.5

98
-1

.6
20

-1
.6

87
-1

.6
93

-1
.5

82
-1

.5
29

A
ll
I {
r t
<
0
}

-1
.7

21
-1

.6
13

-1
.6

46
-1

.7
06

-1
.6

81
-1

.5
81

-1
.5

40
-1

.7
14

-1
.5

99
-1

.6
21

-1
.6

86
-1

.6
82

-1
.5

69
-1

.5
36

A
ll

M
o
d
el

s
-1

.7
37

-1
.6

26
-1

.6
60

-1
.7

18
-1

.7
10

-1
.6

05
-1

.5
60

-1
.7

34
-1

.6
12

-1
.6

37
-1

.7
00

-1
.7

10
-1

.5
94

-1
.5

56

G
-1

.7
78

-1
.6

55
-1

.6
84

-1
.7

42
-1

.7
44

-1
.6

31
-1

.6
34

-1
.7

84
-1

.6
79

-1
.6

93
-1

.7
46

-1
.7

63
-1

.6
48

-1
.6

58

H
A

R
-1

.7
59

-1
.6

34
-1

.6
74

-1
.7

25
-1

.7
31

-1
.6

14
-1

.5
94

-1
.7

27
-1

.6
06

-1
.6

40
-1

.6
90

-1
.7

06
-1

.5
90

-1
.5

80

64



that for the CAC40, AEX, SSMI, IBEX35 and EUROSTOXX50, there are

multiple combination models that outperform the HAR(3)-RV model. How-

ever, the GARCH(1,1) model is not outperformed by any of the combination

models. In comparison to the mean combination models, the results are

more or less the same. For some of the indices the mean combination model

is better, while for other indices the combination models using the discounted

MSPE performs better.

For the 21-day ahead forecasts, Table 8 shows that with the squared

daily return as a proxy, the best combination model to use is for all indices

the combination of all standard models. Even though, none of the models

outperforms the GARCH(1,1) model, most of the combination models using

the discounted MSPE outperform the HAR(3)-RV model. In comparison to

the other models discussed in this paper, the best combination model using

the discounted MSPE outperforms all of these models.

Table 8 shows that when the realized kernel and the realized variance

are used as a proxy, the same results hold for the 21-day ahead forecasts.

However, for the 1-day ahead forecasts there are some differences in results.

Table 8 shows that for the realized variance and realized kernel as a proxy,

there are not many combination models anymore that beat the HAR(3)-RV

benchmark model. However, the combination model that is the best under

the squared daily return as a proxy, is still the best when the realized variance

or kernel is used as a proxy.

Since the model confidence sets for the non-combined forecasts show that

two results are already significantly different from one another when the

difference is more than 10, the model confidence sets are not constructed for

the forecast combinations. In stead, it is assumed that all the results from

Tables 7 and 8 are significantly different from each other. To be completely
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sure about this, the model confidence sets should be build, but that is left

for further research.

5 Conclusion and Discussion

In this paper, different models that use realized measures as an explain-

ing variable have been considered and their performance out-of-sample to

estimate and predict the conditional variance. This has been done using

the data of the FTSE100, DAX30, CAC40, AEX, SSMI, IBEX35 and EU-

ROSTOXX50 data from January 2000 up to including March 2014.

First of all, the estimates of these models have been discussed for the

realized variance as the explaining variable in the HEAVY, RealGARCH(1,1)

and RealEGARCH(1,1) model for the FTSE100. In the standard model,

model with the squared daily return as extra regressor and the non-linear

models, it has been shown that most of the parameters are robust over time.

An exception to this is the RealEGARCH(1,1) model with the squared daily

return as an extra regressor, which has very unstable parameters. Therefore

this model has not been discussed. Furthermore, there were some parameters

that did change a lot over time for the other RealEGARCH(1,1) models.

The RealGARCH(1,1) and HEAVY model have also been estimated us-

ing both the realized bi-power variation and the realized variance. These

estimates showed what the effect is of the jumps in the variance, which is

taken into account with the realized bi-power variation, but not with the

realized variance. It turns out that in the HEAVY model, the effect of the

jumps explains approximately the same as the realized bi-power variation,

but as time goes by this effect declines. For the RealGARCH(1,1) model,

this effect stays the same throughout the entire period and explains almost
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an equal part as the realized bi-power variation.

Regarding the out-of-sample forecasts, the results showed that the models

using a realized measure as an explaining variable do not beat the benchmark

GARCH(1,1) model. For most of the standard models, non-linear models and

models with the squared daily return as an extra regressor, the HAR(3)-RV

model cannot be beaten too, however, there are a few exceptions for the

RealEGARCH(1,1) model.

The results between the different models have been put together using a

model confidence set. However, it turns out that this set is only filled with

the best performing model. The only exceptions to this are the FTSE100,

SSMI and EUROSTOXX50 at a 1-day forecasting horizon. For these three

models, it turns out that they have respectively 10, 9 and 14 models in the

model confidence set, at a significance level of 95%.

The models have also been used to combine the forecasts using the mean

and median of the forecasts and weighting according to the models in-sample

performance. This in-sample performance has been measured using the dis-

counted MSPE. For the combination models using the mean, the models did

slightly improve in some cases, however, the best models still did not beat

the benchmark models. For the combinations using the in-sample discounted

MSPE as a weighting, the models did not beat the HAR(3)-RV model with

the 1-day ahead forecasts. However, for the 21-day ahead forecasts, many

of the combination models did beat the HAR(3)-RV model. The results of

the median forecast combinations were always worse than the results of the

mean forecast combinations, and were therefore not discussed.

All in all, the best way to forecast the conditional variance stays the

GARCH(1,1) model by Bollerslev (1986). However, when one wants to use

realized measures in order to forecast the conditional variance, the best way
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is to do this for long-term forecasting. As this paper has shown, the best

model for this is to use a combination model between all the three stan-

dard models and realized measures, weighted according to their in-sample

discounted MSPE.

Even though the best effort is done to make this research as complete as

possible, there are always questions for further research in this topic. One

of the possible extensions that could be made to this research is by investi-

gating more general RealGARCH(p,q) and RealEGARCH(p,q) models. In

this research, only models with p=q=1 are considered. Hansen, Huang and

Shek (2012) have shown that models with a second lag for either the realized

measure as the lagged conditional variance give good results out-of-sample

too. Similarly, there could be more lags included into the HEAVY model.

Another extension of the models could be to use a model for rt too. Even

though the emphasis in this paper does not lay on predicting rt, it is used in

a number of models too (for instance via zt). In this paper, the simple choice

of using a random walk model has been used. In stead of the random walk

model, there have been a lot of suggestions that turn out well to forecast rt.

This might lead to even better results out-of-sample. However, the risk of

using too many parameters rises, which could lead to high estimation errors

and therefore poor forecasts.
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