
An Algorithm for Approximating the
Highest Density Region in d-Space

Marijn T. Waltman

Master’s Thesis

Erasmus School of Economics
Erasmus University Rotterdam

Supervisor Dr. Wilco van den Heuvel
Co-reader Dr. H.M. Mulder

Date August, 2014



Abstract

For a given (possibly multivariate) random variable with a known (possibly mul-
timodal) probability density function f(x), the 1 − α Highest Density Region
(HDR) is the smallest possible region (or set of regions) which covers 100(1−α)%
of the probability. Often, however, f(x) is unknown and only a sample of X
(denoted by V ) is known. The algorithm that is discussed in this thesis aims to
find an approximation to the 1−α HDR in these cases, and in a runtime which
is polynomial in |V | (denoted by n). The algorithm makes use of the quantile
approach, which states that given a sample y∗ of f(x), the d(1− α)ne elements
of y∗ with the largest f -values are all in the 1− α HDR. The sample y∗ can be
approximated by taking the reciprocal of w(v), the volume of the Voronoi cell of
v, for all v ∈ V . The problem thus reduces to finding a subset X ⊂ V consisting
of K connected components of the Delaunay triangulation graph of V (where K
is the expected number of modes of f(x)) such that |X| = d(1− α)ne and such
that the sum of w(v) for all v ∈ X is minimal. This problem is denoted as the
connected component and cardinality-constrained Minimum Weight Connected
Subgraph (CC-CC-MWCS) problem and it is an NP-hard problem. The CC-
CC-MWCS problem is solved exactly by two Dynamic Programming approaches
and one Mixed-Integer Programming approach and it is solved approximately
by a heuristic approach. The problem of finding the Delaunay triangulation
graph of V and determining the volumes of the Voronoi cells of all v ∈ V can be
done in polynomial time w.r.t. n. Both the runtime and memory usage of the
DP approaches is exponential in n and they fail to solve the problem even for
low values of n. The MIP approach can be formulated using a linear number
of constraints and decision variables and is able to solve problem instances for
larger values of n. The heuristic approach is polynomial in n and is shown to
find solutions which are very close to optimal. Therefore, using the heuristic
approach to solve the CC-CC-MWCS problem means that the full algorithm to
find an HDR approximation becomes polynomial in n.

Keywords: highest density region, multivariate, multimodal, Voronoi tessela-
tion, Delaunay triangulation, connected subgraph, weighted graph problem
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— 1 —
Introduction

For random variables that have a sample space which is infinitely large, it is
often desirable to have a finite sized region which consists of the values it will
most likely attain. For example: take any normally distributed random variable
and then choose one or more closed, non-overlapping intervals such that, when
combined, they contain 95% of the probability. The combined region of these
intervals is called a 0.95 density region, or in general a 1 − α density region
(where α = 0.05 in this example).

Often, however, more than one 1−α density region can exist (often infinitely
many) with wildly varying shapes and sizes. Therefore it is desirable to know
the 1 − α density region with the smallest possible size, since this will provide
the most compact summary of the probability density function of the random
variable. This region is called the 1− α highest density region [14].

If the probability density function f(x) of a random variable X is known,
then the 1−α highest density region can be computed by finding fα, the value
where ∫

{x:f(x)≥fα}
f(u) du = 1− α.

That is, for any density function f(x) which is strictly positive and differentiable
for all x, any constant c will create a finite sized region R(c) consisting of all
points x where f(x) ≥ c. Since R(c) is finite, it will have a finite volume, and
since R(c) is a subsection of the area beneath f(x) (which has total volume
equal to 1), its volume cannot exceed 1. Therefore the volume of R(c) lies on
the interval [0,1). fα is simply the value of c such that the volume of R(fα) is
equal to 1− α. For a graphical representation, see Figure 1.1.

The value of fα can be determined by a numerical integration approach
if f(x) is known [13, 14], but this approach becomes computationally hard
as the sample space becomes higher-dimensional. Another approach is called
the ‘quantile approach’, where a given sample of f(x) is sorted in descending
order. Then, if we denote n as the sample size, the d(1 − α)ne-th element of
the sorted sample can be seen as an approximation of fα. This approach will
be further explained in Section 2.2. An advantage of this approach is that it
does not become computationally harder as the sample space becomes higher-
dimensional. A disadvantage, however, is that it requires a sample of f(x) to
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Figure 1.1: An example of the 1 − α highest density region for a normally
distributed random variable. The grey area is R(fα) and has a volume equal to
1− α; the 1− α highest density region is thus the interval [x1, x2].

be known.
The central problem in this thesis is determining the 1 − α highest density

region when only a sample of X (which is denoted by V ) is known. This sample
can be from an arbitrarily high dimension. The main question which will be
answered throughout this thesis is whether there exists an algorithm to approx-
imate this HDR in polynomial time w.r.t. the size of V and how good the HDR
approximation is when compared to the real HDR.

The probability density function f(x) (and thus also a sample of f(x)) are
presumed to be unknown, so in order to apply the quantile approach a sample
of f(x) must first be generated. The new algorithm which is proposed in this
thesis makes use of the observation that when the probability density in a point
is high (resp. low), then on average the distance to its closest neighbors will be
small (resp. large). So the Voronoi cell of that point1 will be small (resp. large)
and so its volume will be small (resp. big). Therefore, the inverse of the volume
of the Voronoi cells of all points from V can be used to approximate a sample
of f(x). Then using this sample, a highest density region can be formed out of
the union of the Voronoi cells from a subset of V . The problem of choosing an
appropriate subset of V is a problem which is discussed throughout this thesis.

This approach of using the volume of Voronoi cells to approximate the local
density of a point in a set of points is not new. Villagran et al. [17] discuss a
different method for approximating the posterior probability density function
from a sample where the value of the density function for all points in each
Voronoi cell is equal to the reciprocal of the volume of that cell. Duyckaerts and
Godefroy [9] use this approach to find the density and distribution of neurones
in the central nervous system.

This thesis is structured as follows. In Chapter 2, the concept of the 1 −
1The Voronoi cell of a d-dimensional point v from a set V contains all points in d-space

which are closer to v than to all other points in V . For a more detailed definition, see Section
2.3.
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α highest density regions will be explained in further detail, and the general
idea behind the new algorithm is discussed. The algorithm requires that the
Delaunay triangulation of V is computed, which is discussed in Chapter 3. The
algorithm also requires that the Voronoi cells of all vertices in V are constructed
using the Delaunay triangulation graph, in order to find their volumes. This
is discussed in Chapter 4. In Chapter 5, the problem of choosing the best
subset of V (which is known as the cardinality-constrained Minimum Weight
Connected Subgraph problem) is discussed in detail. In Chapter 6, the runtimes
and performances of all previously discussed algorithms are analysed. Finally,
Chapter 7 concludes the thesis and proposes directions for future research.
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Algorithm Overview

In this chapter the new Highest Density Region (HDR) algorithm is introduced.
First, Section 2.1 provides a definition of the 1− α HDR of a random variable
X. Section 2.2 then discusses the ‘quantile approach’, which can be used for
computing the 1−α HDR from any sample of X. Finally, Section 2.3 discusses
the new algorithm in detail.

2.1 The Highest Density Region

Let X be a random variable with Rd as its sample space. Also let f(x) be its
probability density function and let α be a constant such that 0 < α < 1. A
1− α density region is any region R ⊂ Rd such that

∫
R
f(x) dx = 1− α, or the

probability that X is in R is equal to 1 − α. Then the 1 − α highest density
region is defined as follows by Hyndman [14].

The 1 − α highest density region (HDR) is the subset {x : f(x) ≥ fα},
where fα is the largest constant for which P (X ∈ {x : f(x) ≥ fα}) =
1− α.

Another way of viewing the 1 − α HDR is the 1 − α density region with the
smallest volume of all possible 1− α density regions [14].

The 1− α density region is a special case of the (1− α, γ) tolerance region,
which is any region R such that the probability that R contains exactly 100(1−
α)% of the sample space is equal to γ [7]. The 1− α density region is thus the
(1− α, γ) tolerance region with γ = 1.

In general, the purpose of HDR’s is to provide a summary of a probability
distribution f(x) in the form of one or more closed regions (or clusters) that
contain most of the probability [14]. The number of clusters in the HDR is
bounded by the number of modes of f(x), i.e., if f(x) has K modes then the
HDR will have at most K clusters.

2.2 Quantile approach
Consider a probability density function f(x) of the random variable X with
Rd as its sample space. Let x∗ = {x1, ..., xn} be a sample of independent
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observations of X with xi ∈ Rd. Then the 1 − α HDR can be computed using
the quantile approach [14] as follows.

Let f(x) be the known probability density function of the random vari-
able X and define the random variable Y = f(X). Then fα is the α-th
quantile of Y . If y∗ = {y1, ..., ym} is a sample of Y , then fα can be
approximated by the d(1 − α)me-th largest element from y∗, denoted
by f̂α. Then f̂α approaches fα as n approaches ∞. Equivalently, the
d(1− α)me largest elements from y∗ are all in the 1− α HDR.

That is, if f(x) is a known function, then {f(x1), ..., f(xn)} is a known sam-
ple of Y and can be used to compute the HDR using the quantile approach.
However, f(x) is often unknown, as is the case in our problem. In these situa-
tions f(x) must first be estimated from a known sample of Y . However, such a
sample is also presumed to be unknown and must be generated from x∗. This
can be done by e.g. kernel smoothing [18], where the density of a single vertex v
is estimated by some predefined kernel function Khλ(v, V ) with parameter hλ.
Clearly the accuracy of the estimation of f(x) is dependent on the choice of the
kernel function and the choice of the parameter. The approach in this thesis is
non-parametric and does not require such parameters to be chosen.

2.3 HDR Algorithm
The approach in this thesis approximates f(x) by the volumes of the Voronoi
cells of the vertices in V , and it builds the HDR region(s) from the Voronoi cells
of all vertices that are in the HDR. This approach has also been discussed in
Admiraal [1], where only unimodal distributions in R2 are covered. In this thesis
a generalization will be introduced, which covers multimodal distributions (as
well as unimodal) in arbitrarily high dimensions.

To understand some of the ideas behind the approach, first the concept of a
Voronoi cell is defined.

The Voronoi cell of point v (denoted by Rv) consists of all points u
whose distance from v is smaller than or equal to the distance from any
other point in V . That is, if we denote the distance between any two
points u and v as d(u, v), then

Rv = {u ∈ Rd | d(u, v) ≤ d(u,w),∀w ∈ V,w 6= v}.

The union of all Voronoi cells of all points in V is called the Voronoi tesselation
of V . The dual of the Voronoi tesselation is the Delaunay triangulation graph.
That is, the Delaunay triangulation graph denotes the adjacency between the
Voronoi cells and the Voronoi tesselation can be created from the Delaunay
triangulation graph. This duality will be used later on in this thesis to determine
the volumes of the Voronoi cells in Chapter 4.
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The approach in this thesis is based on the observation that for any two
points v1, v2 ∈ V , if v1 has a higher probability density than v2, then v1 will
on average be closer to its closest neighbors than v2 is to its closest neighbors.
This implies that the Voronoi cell of v1 will be on average smaller than that of
v2, and thus Rv1 will have a smaller volume than Rv2 .

2.3.1 HDR approximation details
In the following section the approach will be discussed in more detail. Let w(v)
denote the volume of Rv (the Voronoi cell of vertex v). Then note that w(v)
will be (approximately) proportional to 1/f(v). The HDR algorithm aims to
find a subset X ⊂ V where the total sum of the weights is low so that the total
sum of the probability density is high. Then the union of the Voronoi cells of
X determines the HDR.

Next the concept of the inverse proportionality assumption is introduced.

The inverse proportionality assumption holds when w(v) is exactly pro-
portional to 1/f(v) for all v ∈ V .

If this assumption holds, then {1/w(v1), ..., 1/w(vn)} can be seen as a sam-
ple of f(x). Therefore the HDR can be computed by simply using the quan-
tile approach, i.e., the HDR consists of the d(1 − α)ne largest elements of
{1/w(v1), ..., 1/w(vn)}. However, small random fluctuations in V may distort
the Voronoi cells of some vertices, which can result in w(v) not being inversely
proportional to f(v) for all v. Since f(v) is unknown it is also unknown a priori
whether or not the inverse proportionality assumption holds for V . Therefore
this algorithm aims to find an approximation of the real HDR (i.e., the highest
density region given the actual underlying probability density function) even if
the inverse proportionality assumption does not necessarily hold.

Since it is not known whether the subset consisting of the d(1−α)ne vertices
with the smallest weights is equal to the real HDR, some additional requirements
will be added such that the resulting HDR approximation inhibits some practical
properties of the real HDR.

1. The real HDR contains K clusters for some integer K ≥ 1, so the approx-
imation must also contain K clusters.

2. The clusters of the real HDR contain no holes, since each cluster is es-
sentially a solid d-dimensional shape. Therefore the HDR approximation
must also contain no holes.

Next, the method for computing the HDR approximation (including the
added requirements) will be discussed. The clusters in the HDR of V can
be seen as disjoint connected components in the Delaunay triangulation graph.
Therefore, the subgraph G(X) from all vertices inX (and with all edges between
vertices in X) must consists of K disjoint connected components. Also, holes
in the connected components of G(X) can be viewed as clusters of G(Y ) (the
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Figure 2.1: A random sample of a bivariate normal distribution with n = 20
(denoted by the black dots) and the border of the unknown real HDR with
α = 0.1, which consists of all points in R2 where f(x) = fα (denoted by the
dotted ellipse).

subgraph from all vertices in Y = V \ X and all edges between vertices in
Y ). Therefore, these holes can be avoided by requiring G(Y ) to consist of
exactly 1 connected component. The problem of finding the optimal subset X
with minimum total vertex weight such that G(X) hasK connected components
and G(Y ) has exactly 1 connected component will be discussed in Chapter 5.

2.3.2 Equality between HDR approximation and real HDR
Let X ⊂ V denote the optimal subset from the HDR approximation (i.e. using
Voronoi cell volumes to approximate f(x)) and let X∗ ⊂ V denote the subset
of vertices which lie in the real HDR. See Figure 2.1 for an example of a sample
in R2 with n = 20 and α = 0.1 and the real HDR. The points inside the dotted
ellipse form X∗. In this example it just so happens that |X∗| = d(1−α)ne = 18,
but due to the random nature of the sample this is not always the case. These
are the cases that can occur and the ideal relation between X and X∗ in these
cases.

• If |X∗| = d(1− α)ne, then the ideal approximation is X = X∗.

• If |X∗| < d(1− α)ne, then the ideal approximation is X∗ ⊂ X.

• If |X∗| > d(1− α)ne, then the ideal approximation is X ⊂ X∗.

It is unknown which of these cases holds for any random sample, but if |V |
approaches ∞, then |X∗| = d(1 − α)ne due to the law of large numbers. The
following theorem shows that X = X∗ if the inverse proportionality holds for
the given sample V and if |V | → ∞.
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Theorem 1. Let the number of clusters in G(X∗) be equal to K and let this
number be known. If the inverse proportionality assumption holds for the given
sample V and if |V | → ∞, then X = X∗.

Proof. First, let X ′ denote the set of the d(1− α)ne vertices with the smallest
weights. Second, let X ′′ denote the set of the d(1 − α)ne vertices with the
highest f(x) values. Then, by definition, we know that X ′ = X ′′ if and only
if the inverse proportionality assumption holds for V . Also, if n → ∞, then
X ′′ = X∗, which is the fundamental idea behind the quantile approach. Thus
we have X ′ = X ′′ = X∗ if and only if the inverse proportionality assumption
holds and n → ∞. Next it will be shown that X = X ′ if and only if n → ∞,
which will conclude the proof.

If X∗ meets the requirements that G(X∗) consists of K connected compo-
nents and G(Y ∗) of 1 connected component (where Y ∗ = V \X∗), then X ′ also
meets those requirements, since X ′ = X∗. This then implies that X ′ meets all
two requirements that have been discussed in Section 2.3.1 and has the lowest
possible total vertex weight, so therefore X = X ′. Now it is left to show that
X∗ meets both requirements.

Firstly, the real HDR consists of K clusters, which implies that all vertices
in X∗ are distributed over these clusters. It may be that some clusters contain
no vertices, but since the probability density in a cluster is strictly positive, this
means that if |V | approaches ∞, then all clusters of the real HDR contain at
least one vertex from X∗. Next, take one of the clusters and let C ⊆ X∗ denote
the subset of vertices which are in that cluster. Then G(C) (the subgraph of
G(X∗) from all vertices in C and all edges between vertices in C) is a connected
subgraph if |V | approaches∞. To show this, consider a case where C contains a
connected component C ′ ⊂ C which is not connected to the rest of C in G(C).
Then any added vertex to C which is in the union of the Voronoi cells of C ′
will be connected to C ′ in G(C). Thus one can add vertices to C which are in
the union of the Voronoi cells of C ′ until C ′ is connected to the rest of C in
G(C). This can be repeated for every connected component until G(C) itself is
connected. Since these vertices will always be added with nonzero probability as
n → ∞, this means that G(C) is always connected as n → ∞, and this counts
for all clusters.

This result implies that, if n → ∞, the number of disjoint connected com-
ponents can not be greater than K. To show that it is equal to K, note that
it can only be less than K if the connected subgraphs from two clusters are
connected by an edge. This implies that at least one pair of Voronoi cells of two
vertices x1, x2 ∈ X∗ from different clusters are adjacent. Note that the proba-
bility density between clusters is strictly positive, and also note that an added
vertex from Y ∗ placed in the area between x1 and x2 can remove the adjacency
between x1 and x2. Therefore, if n → ∞, then such a vertex will exist and
G(X∗) consists of exactly K disjoint connected components. This means that
X∗ meets the first requirement.

Next, note that in the real HDR the space outside of the K clusters that
make up the highest density region forms 1 cluster. This means that all vertices
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Figure 2.2: A visual representation of the sets used in this thesis.

Figure 2.3: A visual representation of the full algorithm.

from Y ∗ are distributed over 1 cluster, and so using the same reasoning as
above these vertices will form exactly 1 connected component. Therefore G(Y ∗)
consists of exactly 1 connected component. This means that X∗ meets the
second and last requirement, which means that X = X ′ if n → ∞. Therefor
X = X ′ = X ′′ = X∗ if n → ∞ and if the inverse proportionality assumption
holds for the given sample.

2.3.3 Full algorithm
Now the full algorithm will be discussed. First denote R ⊂ V as the subset
of vertices of V with finite weight. This is a proper subset of V , since there
will always be vertices with infinite weight (namely the vertices which are on
the border of the Delaunay triangulation graph). See Figure 2.2 for a visual
representation of V , R and X.

A problem that may occur is that |R| < d(1−α)ne. In this case the optimal
subset is R plus d(1−α)ne−|R| (randomly chosen) vertices with infinite weight.
This results in a very inaccurate approximation of the real HDR since the HDR
now has infinite size, whereas the original purpose of computing the HDR is to
get a finite sized area. However, it is expected that the size of R relative to
that of V will increase as n gets larger (this will also be discussed in Chapter

9



6). Therefore, this problem may be avoided by simply increasing the size of the
sample.

The entire algorithm is shown graphically in Figure 2.3, and a more detailed
overview is given below.

1. Compute the Delaunay triangulation graph GV = (V,E) of V . This will
be discussed in detail in Chapter 3.

2. Given GV , compute the volumes of the Voronoi cells of each point v ∈ V ,
denoted by w(v). This will be discussed in detail in Chapter 4.

3. Determine R. If |R| < d(1−α)ne, then the solution is R plus d(1−α)ne−
|R| randomly chosen vertices from V \ R. Otherwise, continue with step
4.

4. Given GV and w(v), find the subset X ⊂ V such that
∑
v∈X w(v) is

minimal, G(X) contains at most K disjoint connected components, G(X)
contains no holes and |X| = d(1 − α)ne. This problem is denoted as the
CC-CC-MWCS problem and will be discussed in detail in Chapter 5.

5. Given X, the 1− α HDR is determined by combining all Voronoi cells of
all vertices in X.

10
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Delaunay Triangulations in Rd

In this chapter, the problem of finding the Delaunay triangulation graph of a
set of points in Rd for an arbitrary d ≥ 2 is discussed. Section 3.1 first provides
a definition of the Delaunay triangulation graph of V , and Section 3.2 discusses
a method for computing this graph in detail.

3.1 Definition

Consider the set of points V ∈ Rd for an arbitrary d ≥ 2. A triangulated
graph is a graph which consist solely of d-dimensional simplices1, and every
simplex is joint to at least one other simplex by (d − 1)-dimensional simplices
[3]. For example: a triangulated graph in R2 consists only of triangles which
are joint together by line segments, and a triangulated graph in R3 consists
only of tetrahedrons which are joint together by triangles. A triangulation of V
is equivalent to finding an edge set E such that GV = (V,E) is a triangulated
graph. A Delaunay triangulation is a special type of triangulation and is defined
as follows.

A Delaunay triangulation of V is equivalent to finding a triangulation
of V such that no vertex v ∈ V is in the circumscribed hypersphere2 of
any simplex in the triangulation graph.

The Delaunay triangulation graph of V is also unique (i.e. there exists only
one edge set E and corresponding graph GV = (V,E) for which the Delaunay
triangulation property holds), given that the points are in general position. An
example of the Delaunay triangulation graph in 2-dimensional space is given in
Figure 3.1.

To illustrate the Delaunay triangulation property, consider a convex set of 4
points in R2. For example: consider points 1-4 from Figure 3.1. A triangulation
of these points can be done in exactly 2 ways: T1 = {t1, t2} = {{1, 2, 3}, {2, 3, 4}}
and T2 = {t3, t4} = {{1, 2, 4}, {1, 3, 4}}, where t1, ..., t4 are triangles denoted by
a set of 3 vertices which are its corner points. T1 is a Delaunay triangulation,

1A simplex in d-space is the convex hull of a set of d + 1 points. For example, a simplex in
R2 is a triangle and a simplex in R3 is a tetrahedron.

2The circumscribed hypersphere of a d-dimensional simplex is the d-dimensional sphere
which goes through all vertices of the simplex.
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Figure 3.1: The Delaunay triangulation graph of a set of 8 points in R2. The
dashed circles represent the circumscribed circle of the triangles {1, 2, 3} and
{2, 3, 4}.

since point 4 is not in the circumscribed circle of t1 and point 1 is not in the
circumscribed circle of t2. These circumscribed circles are shown in the figure.
This does not hold, however, for triangulation T2 and so it is not a Delaunay
triangulation.

3.2 Computation
This section discusses computing the Delaunay triangulation of a set of points
V ∈ Rd. Many different methods exist which only work for d = 2 or d = 3,
however fewer methods exist for arbitrary values of d ≥ 2. This thesis uses a
method that works for an arbitrary d ≥ 2 which makes use of a relation between
Delaunay triangulations and convex hulls [3, pp. 104–105, 4, 5]. The method is
described below.

1. For every point v = [v1 ... vd] ∈ V create the point v′ ∈ Rd+1 where
v′ = [v1 ... vd, ||v||2]. Let V ′ be the set of all points v′ for all v ∈ V .

2. Determine the convex hull of V ′. Let F be the set of all faces of the convex
hull.

3. Remove all faces from F that are part of the upper envelope of the convex
hull (i.e all faces which point upwards in the d + 1-th dimension)3. The
remaining faces form the Delaunay triangulation of V .

12



4. To get the edges of the Delaunay triangulation graph, note that each face
is a simplex in Rd and is determined uniquely by d + 1 points. Since all
points in a simplex are connected to each other by definition, all edges can
be determined by connecting every pair of vertices from all faces in F .

The difficulty of computing the Delaunay triangulation in Rd is thus bounded
by the difficulty of computing a convex hull in Rd+1. The Quickhull method
[4] will be used to compute the convex hull in this thesis. This method first
constructs an initial simplex in Rd from a set of d + 1 points (which is called
H ⊆ V ) which results in a set of d+ 1 d-dimensional faces (which is called F ).
It then repeatedly adds new faces to F by joining d points from H and 1 point
from H \V and removes redundant faces from F until H = V . At that point F
will contain all faces of the convex hull. The runtime complexity of this method
is O(n log n) for d ≤ 3 and O

(
nbd/2c/bd/2c!

)
for d ≥ 4. That is, the algorithm

is polynomial in n for all values of d and exponential in d for d ≥ 4.

3Example: take the 2-dimensional graph from Figure 3.1. Its convex hull consists of the
faces (1,6), (6,7), (7,8), (8,5), (5,2) and (2,1). The faces (2,1), (1,6) and (6,7) all point upwards
in the 2nd dimension and thus form the upper envelope of the convex hull, and (7,8), (8,5)
and (5,2) all point downwards and thus form the lower envelope.
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— 4 —
Voronoi Cell Volumes in Rd

In this chapter, the problem of computing the volume of the Voronoi cell of a
d-dimensional point v ∈ V is discussed when the Delaunay triangulation graph
of V is known. Section 4.1 first discusses the general concept of this approach
and Section 4.2 discusses a way of computing the volumes.

4.1 General concept

Consider a set of points V ∈ Rd for d ≥ 2. Each Voronoi cell is a convex
polytope in Rd and is either bounded (with finite volume) or unbounded (with
infinite volume). Because Rv is a convex polytope it can be expressed as an
intersection of half-spaces (or ‘half-space representation’) and can be written
down as a system of linear inequalities Avx ≤ bv. The matrix Av and vector bv
can be determined for any v ∈ V using only the Delaunay triangulation graph
of V (which will be further explained in the next section). Once Av and bv
are known, then one can compute the volume of the polytope by a number of
algorithms. The algorithm which is used in this thesis is by Lasserre [15].

4.2 Computation

4.2.1 Computing Av and bv

In this section the process of finding the matrix Av and vector bv, which defines
the Voronoi cell of v, is discussed in detail. First, denote the Delaunay triangu-
lation graph of V as GV . Let N(v) denote the set of neighbors of v in GV . Take
any neighbor u ∈ N(v) with corresponding edge euv and define puv = 1

2 (u+ v)
as the point in the middle of euv. Next, create the vector wuv = u − v such
that euv is a line segment on wuv. Then consider the d-dimensional hyperplane
Huv which goes through puv and which has wuv as its normal vector. This hy-
perplane divides Rd into two half-spaces: Huv

v which contains v and Huv
u which

contains u. For a graphical example in R2, see Figure 4.1. Now note that Huv
v

contains all points which are closer to v than to u. Therefore the Voronoi cell
Rv can also be defined as [3]:
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Figure 4.1: Two points u, v ∈ R2 and the hyperplane Huv (or line in 2D) which
splits the plane into the two half-spaces Huv

u and Huv
v .

Rv =
⋂

u∈N(v)

Huv
v .

The hyperplane Huv can be written as the set of all solutions x = [x1 ... xd]′
to the equation

fuv(x) = auv1 x1 + ...+ auvd xd = buv. (4.1)

The values of auv1 , ..., auvd and buv can be determined by noting that any vector
x− puv on Huv must be orthogonal to the normal vector wuv, and so Huv can
also be written as the set of all solutions x to the equation

wuv • (x− puv) = 0, (4.2)

where • is the dot product operator. After rearranging the terms in (4.2) to
match the notation used in (4.1), the values of auv1 , ..., auvd and b can be found:

auvi = wuvi for i = 1, ..., d and
buv = wuv • puv.

The half-space Huv
v can then be defined as

auv1 x1 + ...+ auvd xd ≤ buv.

However, this only holds if fuv(v) < buv, so therefore auv1 , ..., auvd and buv must
be multiplied by -1 if fuv(v) > buv.

Now Av and bv can be determined as follows. Denote the degree of v in GV
as deg(v) = |N(v)| and denote N(v) as {nv1, ..., nvdeg(v)}. Also, define the row
vector a(u, v) = [auv1 ... auvd ] and the scalar b(u, v) = buv. Then:

15



Av =


a(nv1, v)
a(nv2, v)

...
a(nvdeg(v), v)

 and bv =


b(nv1, v)
b(nv2, v)

...
b(nvdeg(v), v)

 ,
where Av is a deg(v)× d matrix and bv a deg(v)× 1 vector.

4.2.2 Computing the volume
The volume of the Voronoi cell can now be computed by any method which takes
only the halfspace-representation of the polyhedron as its input1. Examples of
these methods include Lasserre’s method [6, 15] and Lawrence’s method [16].
In this thesis Lasserre’s method will be applied. This method computes the
volume recursively by making use of the following recursion:

V ol(d,Av, bv) = 1
d

n∑
i=1

bi
aij

V ol(d− 1, Ãv, b̃v),

where aij and bi denote elements of Av and bv, respectively, j is chosen such
that aij 6= 0, and Ãv and b̃v are Av and bv, respectively, after substituting xj =
(bi−

∑
k 6=j aikxik)/aij . At the end of the recursion tree V ol(1, Av, bv) needs to be

computed, which is simply the length of a 1-dimensional line segment. Lasserre’s
method has a runtime complexity of O(nd), i.e., the runtime is polynomial in n
and exponential in d.

1There also exists a vertex-representation of a polyhedron, where the polyhedron is defined
by a set of vertices. Methods for computing the volume of a polyhedron given only the vertex-
representation also exist, as well as methods which take both representations as inputs.
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— 5 —
Cardinality-constrained

Minimum Weight Connected
Subgraph problem

In this chapter, the cardinality-constrained Minimum Weight Connected Sub-
graph problem (CC-MWCS) and several new variants of this problem will be
discussed in detail. Section 5.1 first provides a definition of the problem. Then
several methods for solving the problem will be discussed: two dynamic pro-
gramming approaches in Section 5.2, a mixed-integer programming approach in
Section 5.3 and a heuristic approach in Section 5.4.

5.1 Problem definition
Consider a connected graph G = (V,E), a node weight function w : V → R+

and the subset R ⊂ V of all vertices with finite weight. Then the cardinality-
constrained Minimum Weight Connected Subgraph (CC-MWCS) problem is de-
fined as follows.

The CC-MWCS problem is the problem of finding the connected sub-
graph G(X) = (X,E(X))1 of G with minimum total node weight∑
v∈X w(v) such that |X| = m for some integer m where 1 ≤ m < |V |.

This problem is a variant of the MaximumWeight Connected Subgraph problem,
which is reviewed in Álvarez–Miranda et al. [2]. It has been shown to be an
NP-hard problem in general, however a polynomial algorithm exists if the input
graph is a tree [10]. In our case the input graph is a triangulated graph, which
is clearly not a tree, and thus this is an NP-hard problem.

This problem only applies for problem instances where |R| ≥ d(1 − α)ne,
since if this is not the case, then the solution to this problem is trivial (see
Section 2.3.3).

In this thesis a new variation of the CC-MWCS problem is introduced:
the connected component and cardinality-constrained MWCS (CC-CC-MWCS)
problem. This variant is defined as follows.

1Where X ⊂ R and E(X) ⊂ E is the set of all edges between vertices in X.
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The CC-CC-MWCS problem is the problem of finding the subgraph
G(X) of G with minimum total node weight such that |X| = m for
some 1 ≤ m < |R|, G(X) consists of K connected components for
some 1 ≤ K ≤ m, and G(Y ) consists of 1 connected component (where
Y = V \X and G(Y ) = (Y,E(Y ))).

This thesis will focus only on the CC-CC-MWCS problem, and more specifically
on the following two variants of this problem.

1. The constrained variant: the number of connected components in X must
be exactly equal to K.

2. The bounded variant: the number of connected components in X can be
at most K.

5.2 Dynamic Programming approach
The CC-CC-MWCS problem can be solved by a Dynamic Programming (DP)
approach. A DP approach can be applied in two ways: a bottom-up approach,
which starts from X = ∅ and repeatedly adds vertices to X until |X| = m, or a
top-down approach, which starts from X = R and repeatedly removes vertices
from X until |X| = m. These approaches will be discussed in Sections 5.2.1 and
5.2.2, respectively.

Next some of the notation for both DP approaches will be introduced. A
state s = (sX , sk, sw) denotes the current state of the DP algorithm, where sX
is the set of vertices which are currently in X, sk is the number of clusters in
sX and sw is the sum of the weights of the vertices in sX . Both DP approaches
use a breadth first search, i.e. for all states s that are visited during stage j
of the DP algorithm the cardinality of sX will be equal to j. The algorithms
store two sets of states which are updated before and after each stage: Scurrent,
which contains all states that are visited in the current stage, and Snext, which
contains all states that have to be visited in the next stage.

The possible number of states is bounded by the possible number of subsets
of V , so both DP algorithms run in O (n2n) time. The factor n is added since
all operations for each state can be done in O(n) time. Also, since at stage j
the number of possible states is

(
n
j

)
, which can be bounded by

(
n
n/2
)
, both DP

algorithms use O
((

n
n/2
))

memory.

5.2.1 Bottom-up DP approach
The bottom-up DP approach starts from the initial state s0 = (∅, 0, 0), i.e. X
contains no vertices (and thus it has no clusters) and it starts with a weight
equal to 0. An outline of the constrained variant is given in Algorithm 1. If the
number of clusters in a given state is less than K, then the vertex to be added
to X must increase the number of clusters by one (lines 6-8). Otherwise the
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Algorithm 1: Bottom-up DP algorithm (constrained)
Input: A set of points V ∈ Rd, a node weight function w : V → R+, the

subset R ⊂ V with all vertices that have finite weight, the
number of clusters K and the number of vertices m to include in
the subgraph

1 s0 = (∅, 0, 0)
2 Scurrent ← {s0}
3 for j ← 0 to m− 1 do
4 Snext ← ∅
5 for s ∈ Scurrent do
6 if sk < K then
7 for v ∈ R \ sX : adding v to sX creates a new cluster and

does not create a new hole do
8 Snext ← Snext ∪ (sX ∪ v, sk + 1, sw + w(v))
9 else

10 for v ∈ R \ sX : adding v to sX does not create a new cluster
or merge two or more clusters and does not create a new hole
do

11 Snext ← Snext ∪ (sX ∪ v, sk, sw + w(v))

12 Scurrent ← Snext

13 sopt ← argmins∈Scurrent{sw}
14 return soptX

number of clusters is equal to K and the addition of a new vertex to X must
keep the number of clusters equal to K (lines 9-11). This ensures that, at the
final stage, Scurrent contains all possible states with exactly K clusters.

The bounded variant is outlined in Algorithm 2. In contrast to the con-
strained variant, this approach adds vertices to X that do not increase or de-
crease the number of clusters even when the number of clusters is less than
K (lines 9-10). This increases the number of states that are visited and so in
general the bounded variant will be slower than the constrained variant of the
bottom-up DP approach.

5.2.2 Top-down DP approach
The top-down DP approach starts from the initial state s0 = (R,L,

∑
v∈R w(v))

where L is the number of clusters in R. That is, X = R and the starting weight
is equal to the sum of all weights which are not infinity (because those vertices
will not be in the final solution). The bounded variant is outlined in Algorithm
3. If the number of clusters in a given state is less than K, then the vertex to
be removed from V ′ must increase the number of clusters without exceeding K
(lines 6-8). Otherwise, a new state is created with the same number of clusters
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Algorithm 2: Bottom-up DP algorithm (bounded)
Input: A set of points V ∈ Rd, a node weight function w : V → R+, the

subset R ⊂ V with all vertices that have finite weight, the
number of clusters K and the number of vertices m to include in
the subgraph

1 s0 = (∅, 0, 0)
2 Scurrent ← {s0}
3 for j ← 0 to m− 1 do
4 Snext ← ∅
5 for s ∈ Scurrent do
6 if sk < K then
7 for v ∈ R \ sX : adding v to sX creates a new cluster and

does not create a new hole do
8 Snext ← Snext ∪ (sX ∪ v, sk + 1, sw + w(v))

9 for v ∈ R \ sX : adding v to sX does not create a new cluster or
merge two or more clusters and does not create a new hole do

10 Snext ← Snext ∪ (sX ∪ v, sk, sw + w(v))

11 Scurrent ← Snext

12 sopt ← argmins∈Scurrent{sw}
13 return soptX

as the old state (lines 9-10).
The constrained variant is essentially the same as the bounded variant, but

line 12 is replaced by

sopt ← argmin
s∈Scurrent : sk=K

{sw}.

The removal of any vertex from X may create more than one new cluster. Since
this implies that a state with sk = K clusters can be achieved at the final stage
even if a state in the stage before it has less than K − 1 clusters, this limits the
opportunities to prune a state (i.e. to stop branching from that state) early on
in the DP process (which can be done in the constrained variant of the bottom-
up approach). Therefore the constrained variant will be as fast as the bounded
variant of the top-down DP approach.

5.2.3 Creating and avoiding new clusters
In the above DP algorithms vertices need to be added and removed fromX while
creating new clusters or avoiding new clusters from being created in G(X). This
may be accomplished in the following ways.

• If adding a vertex v to X must create a new cluster, then v must not be
adjacent to any vertex in X.
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Algorithm 3: Top-down DP algorithm (bounded)
Input: A set of points V ∈ Rd, a node weight function w : V → R+, the

subset R ⊂ V with all vertices that have finite weight (which has
L clusters), the desired number of vertices m in X and the
desired number of clusters K

1 s0 =
(
R,L,

∑
v∈R w(v)

)
2 Scurrent ← {s0}
3 for j ← |R| to |V | −m+ 1 do
4 Snext ← ∅
5 for s ∈ Scurrent do
6 if sk < K then
7 for v ∈ sX : removing v from sX creates one or more new

clusters and the total number of clusters ≤ K and it does not
create a new hole do

8 Snext ← Snext ∪ (sX \ v, sk+the number of new clusters
that are created after removing v, sw − w(v))

9 for v ∈ sX : removing v from sX does not create a new cluster
and does not create a new hole do

10 Snext ← Snext ∪ (sX \ v, sk, sw − w(v))

11 Scurrent ← Snext

12 sopt ← argmins∈Scurrent{sw}
13 return soptX

• If adding a vertex v to X must avoid a new cluster from being created,
then v must be adjacent to at least one vertex in X.

• If adding a vertex v to X must avoid two or more clusters from being
merged into one cluster, then v must be adjacent to only vertices in X
that are from the same cluster.

• If removing a vertex v from X must create a new cluster, then v must be
a cut vertex (or articulation vertex) of X. The cut vertices of X can be
determined in linear time by a depth first search algorithm [11, 12].

• If removing a vertex v fromX must avoid a new cluster from being created,
then v must not be a cut vertex of X.

Holes in G(X) can be avoided by avoiding new clusters from being created in
G(Y ).

5.2.4 Completion Bound
Both DP approaches make use of the so called reaching method, which means
that new solution states are created from previous solution states. This means

21



that applying pruning methods2 can have a big impact on the runtime, since
entire subtrees of the Dynamic Programming state tree can be removed at once
[8]. One such pruning method is the Completion Bound method, which works
as follows.

First find a feasible solution to the problem by using some heuristic
method. Then for the current state in the DP approach, find a lower
bound to the solution value if the solution of the current state were
to be completed. If this lower bound is higher than the value of the
heuristic method, then this means that any continuation of the current
state would not lead to a better solution than the current best solution,
which is the heuristic solution. Therefore the current state does not
have to be continued any further, and so it can be pruned.

To apply the Completion Bound method to the DP approaches, a polynomial
heuristic approach is needed. This will be discussed in Section 5.4. The methods
for computing the lower bounds for the bottom-up and top-down DP approaches
are given below. Note that the solutions for the lower bounds do not have to be
feasible, they are merely the best possible continuations of the current solution
state.

• Bottom-up: for a given state s, the lower bound is equal to sw plus the
sum of the (m−|sX |) vertices from the set R\sX with the lowest weights.

• Top-down: for a given state s, the lower bound is equal to sw minus the
sum of the (|sX | −m) vertices from the set sX with the highest weights.

5.3 Mixed-Integer Programming approach
The CC-CC-MWCS can also be solved by a Mixed-Integer Programming (MIP)
approach. The MIP approach proposed in this thesis is based on the following
definition of a feasible solution of the bounded CC-MWCS.

Let s be a supernode connected to all vertices in X and let t be a
supernode connected to all vertices in Y . Then X is a feasible solution
to the bounded variant if |X| = m, there exists a spanning tree TX of
X ∪ s with s as the root node such that the outdegree of s is equal to
K and there exists a spanning tree TY of Y ∪ t with t as the root node
such that the outdegree of t is equal to 1.

Since the connected components of X (or Y ) can only be connected through
s (or t), this is equivalent to X consisting of K connected components and Y
consisting of 1 connected component, which is consistent with the definition
of the CC-CC-MWCS. However, the spanning tree of a connected graph can

2Any method which determines whether a new state can be omitted if the optimal solution
cannot be reached from that state

22



Figure 5.1: An example of a spanning tree of the graph in Figure 3.1 with an
added supernode s which has two subtrees. The thick edges are the edges which
are in the spanning tree, and the thin edges are the edges which are in the
graph, but not in the spanning tree.

contain more than one subtree of the supernode, such that each subtree is con-
nected to at least one other subtree by an edge which is not in the spanning tree
(for example, see Figure 5.1). Thus a graph with less than K connected com-
ponents can also be constructed using the above definition, and the solutions
that are consistent with the definition are only feasible for the bounded vari-
ant. A feasible solution of the constrained variant, therefore, requires additional
constraints. These constraints are discussed in Section 5.3.2.

Note also that for both the constrained and bounded variants it is possi-
ble to use a heuristic solution (see Section 5.4) as a starting solution for the
MIP approach, which reduces the runtimes. The reduction of the runtimes is
dependent on how close the heuristic solution is to the optimal solution.

5.3.1 Bounded variant
In this section the MIP formulation of the bounded variant for a given graph
G = (V,E) is discussed. The decision variables that are used throughout this
formulation are given below.
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• xi: A binary decision variable, which is 1 if vertex i is in X and 0 if it is
in Y .

• yXij , yYij : The flow going through edge (i, j) which comes from s (resp. t).
Only edges in TX (resp. TY ) will have strictly positive flow, otherwise the
flow is equal to 0.

• zXij , zYij : A binary decision variable, which is 1 if yXij > 0 (resp. yYij > 0)
and 0 otherwise.

Additional notation is as follows: E+
s = E ∪ s and E+

t = E ∪ t (i.e. E+
s

and E+
t are the set of edges of the graph plus s or t, respectively). The entire

formulation is given below.

min
∑
i∈V

w(i)xi (5.1)

s.t.∑
i∈V

xi = m (5.2)∑
j∈V

yXsj = m (5.3a)

∑
j∈V +

s :(i,j)∈E+
s

yXji −
∑

j∈V :(i,j)∈E+
s

yXij = xi ∀i ∈ V (5.3b)

yXij ≤ mzXij ∀(i, j) ∈ E+
s (5.3c)

zXij + zXji ≤ xi ∀(i, j) ∈ E (5.3d)∑
i∈V

zXsj = K (5.3e)∑
j∈V

yYtj = n−m (5.4a)

∑
j∈V +

t :(i,j)∈E+
t

yYji −
∑

j∈V :(i,j)∈E+
t

yYij = 1− xi ∀i ∈ V (5.4b)

yYij ≤ (n−m)zYij ∀(i, j) ∈ E+
t (5.4c)

zYij + zYji ≤ 1− xi ∀(i, j) ∈ E (5.4d)∑
j∈V

zYtj = 1 (5.4e)

xi ∈ {0, 1} ∀i ∈ V (5.5a)
yXij ∈ {0, 1, ...,m} ∀(i, j) ∈ E+

s (5.5b)
zXij ∈ {0, 1} ∀(i, j) ∈ E+

s (5.5c)
yYij ∈ {0, 1, ..., n−m} ∀(i, j) ∈ E+

t (5.5d)
zYij ∈ {0, 1} ∀(i, j) ∈ E+

t (5.5e)
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The objective function (5.1) minimizes the sum of the weights of all vertices
in X. (5.2) sets |X| = m. Constraints (5.3a)–(5.3e) define TX (the spanning
tree of X) as follows. The tree is represented by a directed flow through the
graph which starts at s, where the flow is equal to m (enforced by (5.3a)),
and the total outflow of a vertex i is always 1 less than its inflow, if i is in X
(enforced by (5.3b)). This ensures that TX is a directed tree without cycles and
with s as its root node. Constraint (5.3c) defines zXij based on the value of yXij .
Constraint (5.3d) ensures that an edge (i, j) is a directed edge and so (i, j) and
(j, i) cannot both appear in TX . Lastly, (5.3e) ensures that the outdegree of s
is equal to K. Constraints (5.4a)–(5.4e) define TY (the spanning tree of Y ) in
a similar way as TX has been defined with some differences: TY contains n−m
vertices, it has t as its root node and the outdegree of t must be equal to 1.
Finally, constraints (5.5a)–(5.5e) define the decision variables.

This formulation has a linear number of constraints (4|V |+ 4|E|+ 5) and a
linear number of decision variables (5|V |+ 4|E|).

5.3.2 Constrained variant
Next the additional constraints to formulate the constrained variant are dis-
cussed. These additional constraints label every vertex in each subtree of s in
TX by the index of the root node of the subtree. This will give each subtree
of s its own distinct label. The constraints then prohibit any edge (i, j) where
xi = xj = 1 and the label of i is not equal to the label of j, since this implies
that (i, j) connects two subtrees of s, which is exactly what a feasible solution
to the constrained variant must not contain. The additional decision variables
are given below.

• li: The label given to vertex i.

• hij : A binary decision variable, which is 1 if |li− lj | > 0 and 0 if li− lj = 0.

The additional constraints are given below.

li ≤ nxi ∀i ∈ V (5.6)
li ≥ (i+ 1)zXsi ∀i ∈ V (5.7)
li ≤ n− (n− (i+ 1))zXsi ∀i ∈ V (5.8)
li − lj ≤ n− nzXij ∀(i, j) ∈ E (5.9)
nhij ≥ li − lj ∀(i, j) ∈ E (5.10)
nhij ≥ lj − li ∀(i, j) ∈ E (5.11)
hij + xi + xj ≤ 2 ∀(i, j) ∈ E (5.12)
li ∈ {0, 1, ..., n} ∀i ∈ V (5.13)
hij ∈ {0, 1} ∀(i, j) ∈ E (5.14)

The next paragraph will provide a brief explanation to the above constraints.
Constraint (5.6) sets li = 0 for all i ∈ Y while keeping li ≤ n for all i ∈ X.
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Algorithm 4: Heuristic solution to the constrained and bounded variant
Input: A graph G = (V,E), a node weight function w(v), the desired

size m of X and the desired number of clusters K, and the subset
R ⊂ V with all vertices that have finite weight. Let R consist of
L disjoint connected components.

1 X ← ∅
2 Randomly choose min{L,K} vertices from R, such that each vertex is in
a different cluster of R, and add these vertices to X

3 if K > L then randomly choose K − L vertices from R \X such that
each vertex forms a new cluster in X, and add these vertices to X

4 Add the remaining m−K vertices by repeatedly choosing the lowest
weighted vertex from R \X which is adjacent to exactly one cluster of X

Constraints (5.7) and (5.8) set li = i + 1 if i ∈ X and i is directly connected
to s, and keep 0 ≤ li ≤ n for all other vertices3. The labels of all remaining
vertices (i.e. all i ∈ X that are not directly connected to s) are set to the label
of the vertex that it is connected to by (5.9). Constraints (5.10) and (5.11) force
hij to be equal to 1 if |li − lj | > 0; if |li − lj | = 0 then hij can be 0 or 1, but if
necessary it will be forced to 0 by (5.12). Constraint (5.12) ensures that edges
where hij = xi = xj = 1 (or hij + xi + xj = 3), which connect two subtrees
of s, are not allowed. Finally, constraints (5.13) and (5.14) define the decision
variables.

The total number of constraints for the constrained variant is again linear
(7|V |+8|E|+5) and the number of decision variables is also linear (6|V |+5|E|).

5.4 Heuristic approach
A polynomial heuristic approach (i.e. an approximation algorithm in polynomial
time) for finding a feasible solution to the CC-CC-MWCS problem is outlined
in Algorithm 4. This algorithm forces X to consist of exactly K clusters, so
it returns a feasible solution to both the constrained and the bounded variant.
The heuristic starts by randomly choosing the first K vertices for each of the K
clusters. Then it continues by repeatedly adding the lowest weighted vertex to
X such that no new cluster is created and no two or more clusters are merged,
until X consists of m vertices.

Since the algorithm starts by selecting K vertices randomly, the heuristic
can return any of at most

(|R|
K

)
different solutions. To improve the value of

the heuristic, this algorithm will be executed multiple times, after which the
solution with the lowest value will be selected.

Since the last m−K vertices are chosen deterministically, the algorithm can
not in general reach every possible solution, and thus in some cases it can not

3The label is set to i + 1 because the vertices are indexed from 0 to n − 1. If vertices are
indexed from 1 to n, then the label must be set to i.
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reach the optimal solution. Another heuristic approach where the last m −K
vertices are chosen randomly (such that no added vertex creates a new cluster or
merges two or more clusters) could be implemented, but a metaheuristic (such
as simulated annealing) would be required in order to improve the solution value
of this approach.

27



— 6 —
Computational Experiments

In this chapter, all algorithms which have been discussed in this thesis are ap-
plied to several randomly generated datasets in order to analyze the differences
in the runtimes for different parameter values. These parameters are: d (the
dimension of the data), n (the number of observations), K (the number of
clusters) and α (the fraction of vertices to be included in the HDR). Also the
performance of the heuristic approach will be evaluated.

All algorithms in this thesis have been implemented in Java and they were
run on a Windows 7 PC with a 3.10 GHz Intel Core i5-2400 64-bit quad core
processor with 4.00 GB of RAM. The MIP formulations have been implemented
using the CPLEX API for Java. Multithreading had been enabled during the
execution process and up to 4 threads have been used at a time.

6.1 Problem instances
The problem instances are random samples consisting of n independent ob-
servations from a d-variate normal distribution with the d × 1 means vector
µ = [0, ..., 0]′ and the d × d covariance matrix Σ = Id. If K = 2, then the
sample is split up over two d-variate normal distributions where one has means
µ = [0, ..., 0]′ and the other has means µ = [10, 0, ..., 0]′. The value of 10 is
chosen so as to create sufficient separation between both clusters.

Tables 6.1 and 6.2 show some general statistics of the resulting problem
instances. Table 6.1 shows the fraction of vertices with finite weight, averaged
over 50 instances. It shows that this fraction gets higher as n increases and as d
decreases. This is because a graph will contain relatively more border points if
the number of points is low and if the number of dimensions is high. Therefore,
in order for the set R of vertices with finite weights to be large, it is important
that n is also large.

Table 6.2 shows the fraction of 500 datasets where the heuristic could not
find a feasible solution for the input values of α and K and for low values of
n. Low values of n are examined since complications may arise in these cases,
and since the heuristic is used for the DP approaches, which will be tested for
low values of n. There may be no feasible solution for K = 1 if R contains
multiple clusters and no one cluster is larger than m, and for K = 2 this may
be possible if the structure of R does not permit a solution with 2 connected
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n
100 200 400 800

d
2 0.9068 0.9503 0.9733 0.9857
3 0.7776 0.8703 0.9226 0.9574
4 0.6104 0.7458 0.8295 0.8993

Table 6.1: Average fraction of vertices with finite weights for different values of
n and d.

K 1 2
α 0.1 0.3 0.5 0.1 0.3 0.5

n
25 0.050 0.065 0.000 0.830 0.045 0.025
50 0.030 0.010 0.000 0.340 0.010 0.005
100 0.000 0.000 0.000 0.000 0.000 0.000

Table 6.2: Fraction of datasets where the heuristic could not find a feasible
solution for low values of n, where d = 2 and n, α and K can vary.

components and m vertices. The results show that this fraction decreases as n
increases. This may be the result of R increasing in size as n increases, which
would increase the number of feasible graphs and thus increase the likelihood
of the heuristic finding a feasible solution. It can also be seen that as soon as
n increases to a larger value such as 100, then the heuristic can almost always
find a feasible solution.

6.2 Delaunay and Voronoi method analysis
The results of the Delaunay triangulation method can be seen in Table 6.3a.
The Quickhull algorithm, which was used to compute the Delaunay triangulation
graphs, has been implemented manually in Java. The average runtimes seem to
increase linearly as n increases and they increase exponentially as d increases,
which is consistent with the Quickhull algorithms runtime complexity. Also note
that the algorithm runs very quickly even for very high values of n.

Table 6.3b shows the results of the Voronoi cell volume computation algo-
rithm. Lasserre’s method, which was used to compute the volumes, has been
implemented by making use of the open-source Mines Java Toolkit. Similar
to the Delaunay triangulation method, the runtimes of Lasserre’s method also
seem to increase linearly as n increases and exponentially as d increases, which
is consistent with the runtime complexity of Lasserre’s method. The runtimes
are again very low even for very high values of n.
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n
100 200 400 800

d
2 0.0267 0.0421 0.0807 0.1874
3 0.0849 0.1981 0.5420 1.5060
4 0.4777 1.5992 5.5895 25.150

(a) Delaunay triangulation

n
100 200 400 800

d
2 0.0005 0.0011 0.0022 0.0045
3 0.0050 0.0129 0.0314 0.0780
4 0.5410 2.1469 6.9159 18.702

(b) Voronoi cell volumes

Table 6.3: Average runtimes (in seconds) of the Delaunay triangulation algo-
rithm and the Voronoi cell volume algorithm for different values of n and d.

6.3 Exact CC-CC-MWCS method analysis
The average runtimes over 50 runs of the six described CC-CC-MWCS algo-
rithms can be seen in Table 6.4. These algorithms are the (bounded and con-
strained) bottom-up and top-down dynamic programming (DP) approaches and
the (bounded and constrained) mixed-integer programming (MIP) approaches.
The DP approaches all make use of the Completion Bound pruning algorithm.

The runtime differences for changes in the parameter values are given below.

• n: For both DP algorithms the runtimes seem to increase exponentially
as n increases, as expected. For the MIP approaches this increase does
not seem to grow exponentially, but rather polynomially.

• α: The runtime for the bottom-up approach increases for lower values of
α and the runtime for the top-down approach seem to increase for higher
values of α. This is clear as lower values of α mean higher values of m
for the bottom-up approach (which increases the number of stages the
bottom-up approach has to visit) and lower values of m for the top-down
approach (which decreases the number of stages the top-down approach
has to visit). The runtime of the MIP approaches seems to decrease for
lower values of α, which can be attributed to a decrease in the number of
feasible solutions if α is low.

• K: The runtimes for the DP approaches does not seem to differ signifi-
cantly for different values ofK. Only if n and α are large does this increase
become apparent. This may be because the larger α gets, the lowerm gets.
In general it is expected that the number of feasible solutions increases as
K gets larger and as m gets smaller, however this only becomes apparent
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K 1 2
α 0.05 0.25 0.5 0.05 0.25 0.5

n
10 0.0135 0.0241 0.0150 * * *
20 0.1509 0.0659 0.0653 0.1128 0.0738 0.0562
40 ** ** 4.0071 ** ** 10.368

(a) Bottom-up DP (constrained)

K 1 2
α 0.05 0.25 0.5 0.05 0.25 0.5

n
10 0.0015 0.0006 0.0009 0.0014 0.0008 0.0010
20 0.1197 0.0132 0.0026 0.1160 0.0338 0.0036
40 ** ** 3.8349 ** ** 10.245

(b) Bottom-up DP (bounded)

K 1 2
α 0.05 0.25 0.5 0.05 0.25 0.5

n
10 0.0006 0.0022 0.0006 * * *
20 0.0009 0.0006 0.0043 0.0002 0.0009 0.0031
40 0.1075 0.1529 7.3471 0.1653 0.1585 14.090

(c) Top-down DP (constrained)

K 1 2
α 0.05 0.25 0.5 0.05 0.25 0.5

n
10 0.0016 0.0004 0.0009 0.0021 0.0005 0.0018
20 0.0003 0.0019 0.0028 0.0007 0.0008 0.0032
40 0.0015 0.0160 7.3342 0.0035 0.0090 14.022

(d) Top-down DP (bounded)

K 1 2
α 0.05 0.25 0.5 0.05 0.25 0.5

n
10 0.0322 0.0327 0.0231 * * *
20 0.0662 0.0759 0.0831 0.2158 0.1188 0.0932
40 0.1696 0.1733 0.2257 1.6720 0.1921 0.2886

(e) MIP (constrained)

K 1 2
α 0.05 0.25 0.5 0.05 0.25 0.5

n
10 0.0116 0.0232 0.0144 0.0231 0.0303 0.0324
20 0.0244 0.0506 0.0622 0.0316 0.0478 0.0506
40 0.1059 0.1348 0.1500 0.1624 0.1481 0.1546

(f) MIP (bounded)

Table 6.4: Runtimes (in seconds) of the various MWCS algorithms for different
values of K, α and n.
* n is too low so a feasible solution where K = 2 almost always does not exist.
** m is too high so a memory error occurred while running the method.

31



n Runtime (in seconds) Log difference
1000 0.003 -
2000 0.012 0.602
4000 0.051 0.628
8000 0.245 0.682

16000 1.061 0.637

Table 6.5: Runtimes of the heuristic for increasing values of n.

for larger values of n. The runtime of the MIP approach seems unaffected
by an increasing K, which is as expected, since the number of constraints
and decision variables do not depend on K.

It also appears that there is no significant difference between the constrained
and the bounded variant for both DP approaches. Only for the MIP approach
does the bounded variant show a significant decrease in the runtimes compared
to the constrained variant. This decrease might be the result of the added
constraints which results in a tighter formulation and thus a decrease in the
runtimes.

Note that the bottom-up DP approach fails to find a solution due to memory
problems even at values of n as low as 40 and values of α < 0.5. To compare
the DP approaches in terms of memory usage: for α = 0.25, d = 2 and K = 1
the bottom-up DP approach fails to find a solution at n ≥ 29, while the top-
down DP approach fails at n ≥ 96. Because of this issue, it appears that both
DP algorithms are not very suitable for any practical problem instances. The
top-down algorithm appears to perform well for instance where α is low, but
this can be mostly attributed to the instances where the heuristic finds the
optimal solution, since in these cases a lot of states can be pruned very early
on in the DP process. If the heuristic does not find the optimal solution, then
the runtime is substantially higher. For example: if n = 40, K = 1, d = 2 and
α = 0.25, then the average runtime of the constrained top-down approach when
the heuristic solution does not equal the optimal solution increases from 0.1529
to 0.7410 seconds.

6.4 Heuristic analysis
In this section the performance of the heuristic will be discussed. The runtime
of one run of the heuristic is shown in Table 6.5 for values of n that increase
by a factor of 2 each time. This runtime is very low even for values as high as
16000. For a given n, ‘Log difference’ denotes log(runtime for n) − log(runtime
for 1

2n). Since this is very similar for all n, it confirms that the runtime of the
heuristic approach is indeed polynomial in the input size n.

Table 6.6 shows data about the performance of the heuristic solution. In all
cases the heuristic algorithm is executed 50 times and the best solution from
those trials is taken as the final solution. It can be seen that the heuristic is able
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K 1 2
α 0.1 0.3 0.5 0.1 0.3 0.5

n
25 1.000 0.990 0.965 * 0.965 0.882
50 1.000 0.989 0.830 0.967 0.953 0.744

Table 6.6: Fraction of problem instances where the heuristic solution is equal
to the optimal solution, where d = 2 and n, α and K can vary.
* The number of non-feasible solutions is too high.

to find the optimal solution very often, in some instance this was true for 100%
(or close to 100%) of all randomly generated datasets. This fraction seems to
increase as α gets lower and it seems to decrease as K and n get larger. The
effect of n can be attributed to there being more than one solution which are
very close to optimal if n gets large.

Also, when the heuristic solution is not equal to the optimal solution, then
the average relative deviation from optimality is in general low; for K = 1,
α = 0.5 and n = 50 this is approximately 3%, however for K = 2, α = 0.5
and n = 50, this increases to 22%. Overall the heuristic performs very well
and could be used as a substitute for the exact CC-CC-MWCS methods in a
practical application of this algorithm.

6.5 Real HDR vs. HDR Approximation
In order to make a comparison between the real HDR and the HDR approxima-
tion, the volume of the real HDR must first be determined. In our example of
the unimodal multivariate normal distribution with Σ = Id, this can be done as
follows. The 100(1−α)% highest density region in this case is the hyper-ellipsoid
denoted by

(x− µ)′Σ−1(x− µ) ≤ χ2(α, d),

where χ2(α, d) is defined as the number such that P [Z > χ2(α, d)] = α where
Z is a χ2(d)-distributed random variable [7, pp. 608–609]. Or, in other words:

Fd
(
χ2(α, d)

)
= 1− α,

where Fd(x) is the cumulative density function of the χ2(d)-distribution. Then
the volume Vd(α) of this ellipsoid can be determined by

Vd(α) = 2
d

πd/2

Γ(d/2)
(
χ2(α, d)

)d/2 det(Σ1/2). (6.1)

This expression is derived from the volume of a d-dimensional hypersphere with
radius

(
χ2(α, d)

)1/2 which has been transformed by the linear transformation
matrix Σ1/2. Therefore the volume increases by a factor det(Σ1/2).
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α
0.1 0.3 0.5

n

10 * * 7.6972
20 * 14.452 0.1907
40 * 0.3704 -0.0510
80 1.3677 0.0303 -0.1168
160 0.1196 -0.0390 -0.1235

Table 6.7: Relative difference between volume of approximate HDR (averaged
over 50 problem instances) and the theoretical volume.
* The number of problem instances where |R| ≥ d(1− α)ne is too low.

If K = 1 and d = 2, then the χ2(2)-distribution can be simplified to an
exponential distribution with λ = 1

2 , which results in χ2(α, d) = −2 ln(α) [1, 7].
Then, since det(Σ1/2) = det(I1/2

d ) = 1, equation (6.1) reduces to

V2(α) = −2 ln(α)π.

For higher values of d it becomes increasingly difficult to determine χ2(α, d),
and subsequently also Vd(α). Therefore only the case where K = 1 and d = 2
will be examined.

Table 6.7 shows the relative difference between the volume of the approx-
imate HDR (averaged over 50 problem instances) and the theoretical volume
as computed by V2(α). Only problem instances where |R| ≥ d(1 − α)ne are
considered. It can be seen that in general the total volume of the HDR approx-
imation decreases as n increases. This is as expected, since with more vertices
the Voronoi cell around each individual vertex decreases and thus the total vol-
ume of the solutions will also decrease. The very large differences for very small
n may be the result of very oddly shaped Voronoi cells if n is small.

Interestingly, the relative difference becomes negative after n becomes suf-
ficiently large. This implies that the volume of the resulting HDR is smaller
than the volume of the theoretical HDR. However, this exact problem can also
be seen in the results of Admiraal [1, pp. 13–14], where the combined area of
the approximate HDR decreases as n increases and eventually gets smaller than
the real HDR volume. Figure 6.1 shows this difference for larger values of n.
Because of the high values of n the heuristic approach has been applied. It
shows that the relative difference stabilizes around -0.04 for α = 0.1, -0.08 for
α = 0.3 and -0.13 for α = 0.5. Thus it seems that, for the bivariate normal
distribution, the volume of the approximation is lower than the volume of the
real HDR, but this difference decreases as α decreases.

This result may be caused by the problem that occurs when putting straight
edged polyhedrons in a curved shape: there will always be some space left over.
For an example, see Figure 6.2. Note the large leftover space within the ellipse
(real HDR) which is not in the grey area (HDR approximation). This leftover
space may decrease for smaller values of α because then the HDR approximation
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Figure 6.1: Relative difference between volume of heuristic solution and volume
of real HDR.

Figure 6.2: An example of a sample in R2 with α = 0.5 and n = 18. The grey
area is the area of the HDR approximation and the dotted ellipse denotes the
border of the real HDR.
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consists of more polyhedrons and thus it has more edges on its border. And the
more edges the border of the HDR approximation has, the better it will be able
to fit the curved shape of the real HDR.
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— 7 —
Conclusions

In this thesis the problem of finding the 1−α highest density region for a given
sample V has been reduced to finding a subset X ⊂ V such that the subgraph
G(X) of the Delaunay triangulation graph of V (with all vertices in X and all
edges between vertices inX) has the lowest possible total vertex weight and such
that it meets certain requirements. These requirements are: |X| = d(1− α)ne,
G(X) consists of K disjoint connected components, where K is a user defined
constant, and G(Y ) consists of 1 connected component, where Y = V \X. This
problem is denoted as the connected component and cardinality-constrained
MinimumWeight Connected Subgraph (CC-CC-MWCS) problem. Two variants
of this problem are introduced: the constrained variant (where the number of
connected components must be equal to K) and the bounded variant (where
the number of connected components can be lower than or equal to K).

The problem of finding the Delaunay triangulation graph of V can be done
in polynomial time w.r.t. n and in exponential time w.r.t. d. The problem of
constructing the Voronoi cells of all vertices in V and then finding their volumes
can also be done in polynomial time w.r.t. n and in exponential time w.r.t. d.
The CC-CC-MWCS problem can be solved exactly by two dynamic program-
ming approaches: a bottom-up and a top-down approach. Both approaches run
in exponential time w.r.t. n, however the top-down approach still performs rea-
sonably well if α is low and if the heuristic solution can find a solution which is
very close to optimal. The problem can also be solved by a mixed-integer pro-
gramming approach, where both the constrained and bounded variants can be
formulated using a polynomial number of constraints and a polynomial number
of decision variables.

It has been shown by Theorem 1 that if n approaches ∞ and if the inverse
proportionality assumption holds, then the resulting subset X will be the same
as the subset of nodes X∗ which are in the real HDR. However, the total volume
of the HDR approximation has been shown to be less than the total volume of
the theoretical HDR for a unimodal bivariate normal distribution if n = |V | is
large. However without further testing or a formal proof, it is not clear whether
this is true for all distributions (where the 1− α HDR is unique).

A randomized, polynomial heuristic approach has been discussed. It has
shown to be able to find the optimal solution very often and if it did not find
the optimal solution then its value is still reasonably close to the optimal solution
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value. Using the heuristic to solve the CC-CC-MWCS problem results in the
full algorithm being polynomial w.r.t. n. Therefore to answer the main question
of this thesis: a polynomial algorithm to find an approximation of the real 1−α
HDR does exist if the heuristic method is applied instead of an exact method to
solve the CC-CC-MWCS problem. Using a heuristic may even prove to be a ne-
cessity in practice, since the solution of this algorithm improves as n gets larger,
and thus large initial samples will be required. For future implementations of
this algorithm, it is therefore recommended to either use the mixed-integer pro-
gramming approach for an exact solution of the CC-CC-MWCS problem or the
heuristic approach for an approximate solution.

7.1 Future research
Several paths for future research exist on this topic. A better heuristic than
the one described in this thesis may be created for the CC-CC-MWCS problem
for the bounded variant and also for the constrained variant. For example, the
current heuristic uses a bottom-up approach, but a heuristic may also be created
using a top-down approach. The current heuristic may also be improved upon
by letting both the initial vertices of the clusters and the vertices which are
added to the clusters be chosen randomly. This way all possible solutions of
the problem can be reached with nonzero probability. A metaheuristic such as
simulated annealing or a genetic algorithm can also be applied in this case to
improve the performance of the heuristic.

Currently the case where |R| < d(1 − α)ne results in a solution where at
least one infinitely large Voronoi cell is added to the HDR. This results in a
solution with infinite size, which goes against the original goal of computing
the HDR: to obtain a finite sized region to summarize a random variable or
a sample. Multiple ways of fixing this problem can be tested. For example,
observations can be added to V a priori, which will increase |R|. This can be
repeated until |R| ≥ d(1 − α)ne. The infinite sized Voronoi cells can also be
truncated afterwards, such that they end up being finite sized.

Finally, the algorithm can be tested with samples from other distributions
than the unimodal bivariate normal distribution to see whether the volume of
the HDR approximation is again lower than the volume of the real HDR. A
formal proof can also be given to show that this result applies in general. If
this result does turn out to be generalizable, then some method needs to be
created which would increase the volume of the HDR approximation enough
so that it is closer to the volume of the real HDR. An idea for such a method
could be to express the Voronoi cells of the HDR by their corner points and to
take the convex hull of these points as the HDR approximation. This will have
a larger volume than just the total volume of the Voronoi cells and its shape
will be much rounder and thus closer to the real HDR. If the real HDR has a
non-convex shape, then one could express it as a union of several convex shapes
and determine the convex hulls separately.
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