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Abstract

In the present psychiatric literature, average Event-Related Potentials (ERPs)
are often linked to psychiatric disorders. After awareness of making an error, the
brain will react. Average ERPs are derived by averaging these brain reactions
over all errors. However, if only a few errors are available, the average ERP
can be unreliable. Recent studies show attention for examining the reliability of
ERPs. These studies try to find the number of errors that makes ERPs reliable,
or, internal consistent. Olvet and Hajcak (2009), Marco-Pallares et al. (2011),
Pontifex et al. (2010), Meyer et al. (2013), Rietdijk et al. (2014) use Cronbach’s
α to measure internal consistency. However, this gives two problems. First, of
all errors made by a participant, only some errors are used to obtain α, while
taking another set of errors could give another value for α. Secondly, one of the
main assumptions underlying Cronbach’s α is violated. This assumption states
that precisely the same trials need to be used over participants. Nevertheless, it
is quite unlikely that participants fail exactly the same trials. The main goal of
this research is to investigate whether these problems bias the number of errors
that these studies find. Furthermore, having reliable average ERPs depends
on whether brain activity is independent of error trials. Therefore, another
goal is to justify averaging over all error trials, that is, to show independency
of brain activity over error trials. To meet the goals, we examine a random
parameter model, empirical distributions of Cronbach’s α, and a simulation
study. Data containing brain activity values of 37 participants in a Eriksen
Flanker experiment is used. It turns out that ERPs are independent of error
trials and that taking a specific set of errors to compute α can significantly bias
the number of errors needed for internal consistency.
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1. Introduction

In the field of psychiatry (Tantam, 2000, Wheaton, 1980), brain activity is
often related to psychiatric disorders. This brain activity is measured in terms
of Event-Related Potentials (ERPs), which consist of Error-Related Negativity
(ERN) and Error Positivity (Pe). The ERN and Pe values are only observed
with consciousness of making an error. For example, consider a simple task
where one needs to press the left arrow on a keyboard if a left arrow is shown
on a screen and the right arrow on a keyboard if a right arrow is shown. Now,
the response can be either correct or false, where a false response results in an
error. If one becomes aware of making an error, the brain will react. It is from
this reaction that the ERN and Pe values are derived. In the present literature,
higher ERN values are, for instance, related to obsessive-compulsive disorder
(Gehring et al., 2000, Johannes et al., 2001), anxiety (Ladouceur et al., 2006)
and depression (Chiu and Deldin, 2007, Holmes and Pizzagalli, 2008).

Usually, these kind of studies consider participants who perform a large
number of simple tasks, to be called trials in the following. Often, participants
fail several of these trials, resulting in a number of error trials per participant
for which ERN and Pe values are available. Then, the average of these ERPs is
derived by averaging ERPs over all error trials. It is this average that is linked to
psychiatric disorders. However, the ERN or Pe value, coming from one specific
error, could be partly subjected to coincidence. Therefore, the average ERP for
a participant with few errors can be unreliable. So, as ERPs are only observed
with errors, there need to be enough error trials to infer reliable conclusions
from the brain activity. Therefore, several studies investigate the reliability of
ERPs (Olvet and Hajcak, 2009, Marco-Pallares et al., 2011, Pontifex et al., 2010,
Meyer et al., 2013, Rietdijk et al., 2014). This reliability is analysed in terms
of internal consistency, where internal consistency is defined as the similarity
of brain activity across error trials (Wöstmann et al., 2013). A well-known
measure for internal consistency, used by all these studies, is Cronbach’s α.
These reliability studies examine the number of errors that result in internal
consistent ERPs. This number of errors is used as a selection criterion. Namely,
participants with too few errors for having a reliable average ERP are eliminated
from the sample. For the remaining participants, average ERPs are derived by
averaging all error trials.

To decide upon the number of errors used for the selection criterion, the
current reliability studies use the following procedure. All participants with less
than fourteen errors are excluded, such that Cronbach’s α can be computed
for the first two, four, six, eight, ten, twelve, and fourteen errors. Now, the
number of errors needed for internal consistent ERPs can be determined from
these values for Cronbach’s α. Namely, if α is high enough, the corresponding
number of errors will be sufficient for internal consistency. In this way, Olvet and
Hajcak (2009) conclude that the number of error trials necessary for a stable
ERN or Pe is between 6 and 10 for ERN and between 2 and 6 for Pe. The
other studies show comparable results. Let us call the approach to compute
Cronbach’s α in these studies the OH-method.
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Unfortunately, the OH-method contains two problems. Firstly, the first four-
teen error trials are used to compute Cronbach’s α, while other errors are ig-
nored. Consequently, only one specific Cronbach’s α is selected out of a whole
set of α’s that can be obtained by choosing different combinations of error tri-
als. Secondly, participants do not necessarily fail the same error trials. However,
computing Cronbach’s α implies that it is assumed that the first error, the sec-
ond error, and so on, are made on the same trial, which is highly unlikely.
Accordingly, this method ignores the definition of Cronbach’s α, namely, the
method ignores that α need to be computed over the same trials. As a conse-
quence, Cronbach’s α cannot be interpreted as a lower bound of the reliability
of the ERPs.

In addition to these problems, averaging over all error trials (instead of a
selection of error trials as, for example, determined by Cronbach’s α) can also
influence reliability of the average ERPs. For the averaging over all errors to be
justified, the ERPs within a participant should be independent over error trials.
For example, suppose that ERPs decrease over time as making the first error
will be more impactful than making the last one and consider two participants
that are exactly the same except for one making many errors and the other
making just a few errors. Then, averaging all error trials will result in a low
average for the participant with many errors and a high average for the one
with only a few errors. In this way, we would conclude different brain activity
values for the participants, while, in fact, brain activity is the same. Therefore,
taking an average over all error trials could be unreliable. Also, it can be the
case that different types of trials will give different brain activity values. Here,
similar problems can arise. Therefore, we examine whether brain activity is
independent across error trials. Investigation of a selection criterion, that is,
examining the OH-method, is useful only if averaging over all error trials is
justified.

The main purpose of this research is to investigate whether the problems aris-
ing from the OH-method bias the number of errors obtained from this method.
The corresponding research question is ‘Is the number of errors needed for inter-
nal consistency of the ERPs coming from the OH-method biased by the problems
arising from this method?’ If there is bias, we try to find other ways to decide
upon the number of errors needed for internal consistent ERPs. An additional
goal, that will be explored first because of reasons described above, is to exam-
ine whether averaging over all error trials is justified. Therefore, questions as
‘Do different types of trials give different brain activity values?’ and ‘Do ERPs
change over time?’ need to be answered.

To answer these research questions, different approaches are used. First, we
will examine the justification of averaging all trials. To do so, we test for a
trend in ERPs and we set up a random parameter model to test whether differ-
ent types of trials give different brain activity values. Secondly, we investigate
whether the number of errors needed for internal consistency is biased by the
OH-method. This is done by creating empirical distributions for Cronbach’s α
and by exploring a simulation study. The empirical distributions are used to
decide whether taking the first fourteen errors, instead of a random selection of
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errors, gives biased results. The simulation study is used to mimic perfect data
and compute Cronbach’s α in the right way, so that it can be compared to α
coming from the OH-method. Finally, other ways for deciding upon the internal
consistency of the ERN or Pe values are considered.

The outline of this research is as follows. We start by explaining important
concepts used in this report. Next, we will explain the research goals in more
detail. Then, the particular data set used for justification of averaging all error
trials and for creating empirical distributions is discussed. Subsequently, we
focus on solving the research questions by using multiple approaches. First, we
will try to justify taking the average over all error trials. For this purpose a ran-
dom parameter model is set up. Then, we compute α following the OH-method
and compare this value with empirical distributions of Cronbach’s α. Finally,
we perform a simulation study to examine violation of the assumptions of Cron-
bach’s α. In addition, we give recommendations about finding the number of
errors needed for internal consistency in future research. Finally, we conclude
and discuss.

2. Concepts

In this section, different concepts necessary for understanding the remainder
of this research will be explained. We discuss EEG, ERPs, the Eriksen Flanker
experiment and Cronbach’s α. In all explanations, we will focus on the details
important for this report.

2.1. Electroencephalography

The context of this research comes from experiments done with electroen-
cephalography (EEG). Using EEG, one can measure the electrical activity along
the scalp in terms of voltage fluctuation. Someone undergoing an EEG exper-
iment has electrodes placed on several spots on the head. The data for this
particular research is based on 32 electrodes placed on the scalp. Figure 1
shows a schematic view of an EEG experiment on the left side. A participant
has a special cap on his or her head. Electrodes are connected with the cap and
with a computer. Now, electrical activity of the outermost layer of the brain is
measured for all shown electrodes in the right part of the figure.

The midline electrodes appear on the line from the nose to the back (coded
as Fz, FCz, Cz, CPz, Pz, see the right panel of Figure 1). These electrodes
give the most accurate proxies of brain activity, and are widely accepted in
the field of cognitive neuroscience (see, for example, Olvet and Hajcak, 2009,
Marco-Pallares et al., 2011, Hajcak, 2012). In fact, to our knowledge, all studies
usually report only data of midline electrodes. In this study, we will focus on
two of these electrodes, namely FCz and Pz.

During an EEG experiment, participants usually perform a large amount
of simple trials, for example, pressing the left arrow on a keyboard if a left
arrow in shown in the screen and the right arrow if the right arrow is shown.
For each participant, EEG measures brain activity for all electrodes during the
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experiment on a continuous time scale. Therefore, EEG experiments create a
lot of data.

Figure 1: A schematic view of an EEG experiment (left). The 32 electrodes placed on
the scalp (right).

As respondents can move while being recorded, brain activity can sometimes
contain measurement errors. The Signal-to-Noise ratio (SNR) measures whether
brain activity is signal or noise. If the SNR is higher than one, there is more
signal, and if it is lower than one, there is more noise.

2.2. Event-Related Potential

As already mentioned, participants in EEG experiments face a large number
of simple trials. They can either do a trial correctly or make an error. When a
participant becomes aware of making an error, his or her particular EEG data
shows different brain activity patterns than when the participant thinks to be
correct. An example of two brain activity patterns for the same person is given
in Figure 2.

The red line corresponds to an error of this participant, and the black line
to a correct answer. This brain activity (in micro Volt) comes from one specific
electrode, namely FCz (see Figure 1). The dotted vertical line indicates the
moment of answering the trial by pressing a button. After this dotted line, the
two brain activity patterns start to differ from each other. The error signal has
a high peak followed by a low trough, while the non-error signal roughly has the
same level over the entire time span. The brain activity is measured from 100
milliseconds before the moment of answering until 600 seconds after answering,
which results in an interval of 700 milliseconds of brain activity.

Using EEG, one obtains brain activity for all electrodes and all trials of
each participant. From the brain activity of the error trials the Error-Related
Negativity (ERN) and the Error Positivity (Pe) can be decided, which are both
examples of an Event-Related Potential (ERP). The ERN can best be measured
from the FCz electrode. We quantify ERN using an area measure of the period
associated with 25 to 75 milliseconds after the error is made (see Figure 2). The
Pe is measured in the same way, but it turns out that the best electrode for
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Figure 2: An example of EEG output, showing an error response (red line) and a
non-error response (black line), for 700 milliseconds (ms) in micro Volt (µV ). The
figure shows brain activity for the FCz electrode for one particular participant.

computing Pe is Pz and that this should be done in 200 till 400 milliseconds
after the error is made. Note that Figure 2 only shows the FCz electrode, so
that the Pe value from this figure will probably be less accurate than the Pe
value from the Pz electrode.

2.3. Eriksen Flanker Task

In the Eriksen Flanker experiment (Eriksen and Eriksen, 1974), participants
react to a large set of simple Eriksen Flanker tasks. In this study, the tasks
consist of identifying characters ‘H’ and ‘S’.

In each task, participants are first shown the upper display in Figure 3.
This allows the participant to focus on this point, as the focal letter will be
represented here. Then, a black screen follows for a short period. After that,
one of the four middle displays in Figure 3 is shown. The middle character
(above the red arrow) is the focal letter. Note that the red arrow is not shown
to the participants. If the letter on the focal point is an ‘S’, the participant
should respond by pressing ‘1’ on a keyboard. If the character is an ‘H’, the
participant should press ‘5’. After the participant pressed the button, a feedback
display is shown. If the participant responded correct, he or she will see ‘OOO’
and if the participant responded incorrect, he or she will see ‘XXX’. Sometimes,
participants do not react, which results in ‘!’. The feedback displays are shown
in the lower part of Figure 3.

The focal letter is flanked by other letters to distract the participant. In this
way, as we already saw in Figure 3, we obtain four different stimuli. These can
either be congruent, meaning that the distraction letters are the same as the
focal letter, or be incongruent, meaning that distraction letters differ from the
focal letter. Table 1 represents the four stimuli with their characteristics, that
is, the correct key to press on the keyboard and whether the task is congruent
or incongruent.
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Figure 3: The upper display shows the focal point display. The four middle displays
show the stimuli that are shown to participants. The three lower ones show feedback
displays.

Table 1: The four different stimuli in the Eriksen Flanker experiment with their char-
acteristics.

Stimuli Correct Category
SSSSS 1 Congruent
HHSHH 1 Incongruent
HHHHH 5 Congruent
SSHSS 5 Incongruent

In Eriksen Flanker experiment for this research, interest lies in the EEG
response of individuals. EEG participants are settled as in Figure 1. Then, a
screen shows them one of the four stimuli and the participant can respond using
the keyboard. The ERN and Pe are measured directly after a respondent presses
a key. So, for measuring ERN and Pe values, we do not wait for the feedback
displays. The reason for this is that participants will already feel whether they
pressed the correct or wrong key and thus the brain will react directly. Remark
that we can only quantify ERN or Pe if an error is made.

2.4. Cronbach’s α

Cronbach’s α (Cronbach, 1951) is a measure of internal consistency for a
number of items. It measures to what extent those items measure the same
phenomena. For example, if we consider a questionnaire, α gives an idea to
what extend the questions measure the same concept. Cronbach’s α is a lower
bound of the reliability of the items (see Appendix A for a derivation). The
reliability of the items represents whether measurement errors influence the
answers to the items. The higher the reliability, the less answers are influenced
by measurement error. The problem with this reliability is that it is based on
theoretical quantities, so that we cannot compute it. However, one can calculate
Cronbach’s α, such that we have a lower bound for this reliability.
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Suppose that we have values, on e.g. a questionnaire, yij , where i = 1, ..., N
denotes a participant and j = 1, ...,K denotes a question. Furthermore, define
ti as the sum of the measures over the questions of participant i, that is, ti =∑K
j=1 yij . Now, Cronbach’s α is computed (see Cronbach, 1951) as

α =
K

K − 1

(
1−

∑K
j=1 s

2
j

s2t

)
, (1)

where s2j is the sample variance of the jth question over all respondents and s2t
is the sample variance of the total scores (ti) over all respondents.

Cronbach’s α is defined such that the values used to compute the variance
of the jth item, all actually correspond to that item. Consequently, the variance
s2j does not allow to use values yil with l 6= j as is done in Olvet and Hajcak
(2009). Therefore, a main assumption of Cronbach’s α is that it is computed
over the same items.

Cronbach’s α can take values from −∞ till 1 (see Appendix A). To associate
Cronbach’s α with internal consistency, the relation in Table 2 can be used.

Table 2: The relation between internal consistency and Cronbach’s α.

Internal consistency Cronbach’s α
Excellent α > 0.9
High 0.7 < α ≤ 0.9
Moderate 0.5 < α ≤ 0.7
Low α ≤ 0.5

3. Problem Definition

This section is meant to clarify the research goals. First, we will exactly
explain the OH-method, which is used to find the number of errors needed to
have internal consistent ERPs. Then, the problems arising from this method will
be set out. Next, we explain how averaging over all error trials can also influence
the reliability of average ERPs. Finally, we will focus on possible approaches to
examine justification of averaging over all errors and to investigate whether the
OH-method gives bias in the number of errors needed for internal consistency.

3.1. OH-method

Let yij be the ERN or Pe for participant i and trial j, where i = 1, ..., N
and j = 1, ...,K. As we are only interested in the error responses, define

xij =

{
yij if the response is false,
0 if the response is correct.

Furthermore, define X as the N ×K matrix for either ERN or Pe, containing
the values xij . Usually, K is high and participants do not make many errors,
such that these matrices will be very sparse.
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The left matrix of Table 3 shows a hypothetical example of a matrix X,
where we have N = 5 participants and K = 6 trials. This matrix thus contains
ERN or Pe values on error trials. The first participant, corresponding to the
first row, made errors in trials 1, 2, and 5, with brain activity values x11, x12,
and x15, respectively. Furthermore, the left matrix of Table 4 shows the same
matrix, but now with the corresponding stimuli instead of the ERN or Pe value.
Thus, the first participant failed on stimulus 3, 4, and 2, which correspond to
‘HHHHH’, ‘SSHSS’, and ‘HHSHH’, respectively. Note that, the order of the
stimuli is randomised over the respondents, such that each participant faces a
different ordering of stimuli. In sum, the left matrices of Tables 3 and 4 form
the raw data coming from the Eriksen Flanker experiment.

Table 3: An example of the matrix X in the raw version (left) and as used by the
OH-method (right).

x11 x12 0 0 x15 0

x21 0 x23 x24 0 0

0 x32 0 x34 x35 x36

0 0 x43 0 x45 0

0 0 x53 0 x55 x56





x11 x12 x15 0 0 0

x21 x23 x24 0 0 0

x32 x34 x35 x36 0 0

x43 x45 0 0 0 0

x53 x55 x56 0 0 0





Table 4: The stimuli corresponding to the matrices in Table 3. Note that, 1 = ‘SSSSS’,
2 = ‘HHSHH’, 3 = ‘HHHHH’ and 4 = ‘SSHSS’.

3 4 0 0 2 0

1 0 3 3 0 0

0 4 0 4 1 4

0 0 3 0 4 0

0 0 1 0 3 2




3 4 2 0 0 0

1 3 3 0 0 0

4 4 1 4 0 0

3 4 0 0 0 0

1 3 2 0 0 0




Using these matrices, the OH-method can be explained. Remember that

computation of Cronbach’s α is defined over the same trials, so in order to
compute Cronbach’s α, the N ×K matrix X needs to have columns which do
not contain any missings, that is, correct answers, or, zeros. Hence, as can
be seen from the example, the raw matrices for ERN and Pe are not sufficient
as they contain many missings. The OH-method creates usable matrices from
those raw matrices so that Cronbach’s α still can be computed. To do so, all
participants with less than Km errors are excluded from the data matrix. Then,
the ERN or Pe values in the raw matrices (all nonzeros) are pushed to the left.
In this way, there is at least a N × Km matrix containing columns without
zeros. From this matrix, the OH-method computes Cronbach’s α over the first
k columns, or, over the first k error trials, where k ∈ {2, 4, ...,Km}. Note that,
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Olvet and Hajcak (2009) uses Km = 14. Now, α can be compared over the
different values for k. The number of errors (k∗) that makes α high enough
(following Table 2) is needed to have a reliable measure of the ERPs.

To show the OH-method in the example, consider the right matrices in Tables
3 and 4. Transformation from the left matrices to the right matrices includes
pushing the values in the rows to the left as much as possible. Now, Cronbach’s
α can be computed from the black square, because the columns in this black
square do not contain zeros. Note that, in this hypothetical example, Km = 2.

3.2. Problems Arising from the OH-method

Although the OH-method creates a matrix from which Cronbach’s α can be
computed, it also has some complications. The first problem is that the OH-
method violates the main assumption of Cronbach’s α as explained in Section
2.4, namely, α should be computed over the same trials. We can define three
(sub)assumptions that constitute to being the same trials:

� A.1: Having the same stimulus: brain activity values in the same column
should have the same stimulus.

� A.2: Having the same trial number (j): brain activity values in the same
column should be the same trial, for example, they are both the tenth
trial.

� A.3: Having the same error number: brain activity values in the same
column should be the same error, for example, they are both the second
error that was made.

From those assumptions, the first two, A.1 and A.2, are violated by the OH-
method. To show why, consider again the example of Tables 3 and 4. The fact
that the first assumption (A.1) is not met has to do with the randomisation
of the stimuli (red square) and the matrix transformation as explained above
(green squares). From the red square, we see that although both the first and
second participant failed the first trial, they still failed a different stimulus due to
randomisation of the stimuli. Namely, the first participant failed on ‘HHHHH’,
while the second failed on ‘SSSSS’. From the green squares, we see that in the
raw matrices those values are both in the second trial and that they have the
same stimulus (‘SSHSS’). However, in the transformed matrices, the value for
the first participant is still in the second column, while the value for the third
participant is placed in the first column. Therefore, those values were correctly
placed, but because of transformation they do not match anymore.

The violation of A.2 can be seen from the blue squares. It can, by accidence,
happen that the transformed matrix results in the same stimuli in a column.
However, those trials are actually different in the left matrix as the third partic-
ipant made an error in the fourth trial (so trial number (j) is 4) and the fourth
participant failed the fifth trial (trial number (j) is 5). However, both trials
were ‘SSHSS’ and both were the second error for the participant. In this way,

12



those trials came in the same column, but actually do not have the same trial
number.

Note that, A.3 is met for the transformed matrix. Namely, the first column
contains all errors that are first made by students, the second column contains
errors that are made secondly, and so on.

The consequence of violating A.1 and A.2 can be seen very clearly from the
hypothetical example. In the right matrices of Tables 3 and 4, the black squares
show that the trials in the columns do not match at all, that is, not on stimulus
and not on trial number. This will also be the case in the N ×K data matrix
X. In this way, Cronbach’s α is not computed over the same trials, such that it
violates its main assumption and thus cannot be interpreted as the lower bound
of the reliability of the ERPs. Therefore, the number of errors coming from this
α, that is, k∗, can be biased.

The second problem of the OH-method is that only the first Km errors are
considered, such that, speaking in terms of the example, brain activity values
x15, x24, x35, x36 and x56 are fully ignored. However, Olvet and Hajcak (2009)
have three reasons for considering the first Km error trials. Firstly, taking the
first Km errors compensates violation of the assumption. Namely, taking the
first Km errors will ensure that A.3 is fulfilled. Secondly, Olvet and Hajcak
(2009) included different randomisations of error trials in computing α, but did
not find other values for α, so that taking the first Km errors would be justified.
A third reason for taking the first Km errors is that the Signal-To-Noise ratio can
only be computed from consecutive errors. Nevertheless, much data is thrown
away by only computing the first Km errors. It is well possible that computing
α over the another set of errors gives a totally different value of α.

3.3. Another Problem Regarding the Reliability of Average ERPs

From the OH-method a number of errors needed to have internal consistency
(k∗) is determined. Therefore, it is known that exactly the first k∗ error trials
give internal consistent ERPs, such that average ERPs should be computed
as average over the first k∗ brain activity values. However, in practice, often
the average ERPs are decided by averaging all error trials of a participant.
Averaging over all trials only gives reliable average ERPs if indeed adding an
error trial to the set of k∗ errors does not significantly change the average ERP.
This means that ERN and Pe values for the error trials of a participant should
be independent over the error trials. There are two issues that determine this
independency.

First, suppose that brain activity is higher when making the first error than
when making the last error, because one gets accustomed to making errors.
Then, ERPs are dependent over time, such that the average based on the first
k∗ errors can be substantially different from the average based on all errors. If
this is the case, averages are not reliable as adding more trials can result in more
errors and thus, in lower averages.

Secondly, suppose that different stimuli can give different brain activity val-
ues. Reliability is decided on the stimuli included in the first k∗ errors. Including
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all errors will probably change the share of different stimuli. Therefore, reliabil-
ity of all errors can differ from reliability of the first k∗ errors. In the same way,
average ERPs can differ.

These issues show that it needs to be justified that the average includes all
error trials. If this would be justified, the present procedure in the literature is
correct. That is, first, the number of errors (k∗) needed for internal consistent
ERPs is found. Then, this number of errors is used as a selection criterion
to exclude all participants with less than k∗ errors. After that, the average
ERPs over all error trials are computed and finally, these averages are related
to psychological disorders. However, if averaging all error trials do not give
reliable average ERPs, finding a selection criterion is useless and thus additional
research on the number of errors to include in the average should be done.

3.4. Research Goals

The OH-method is used to compute Cronbach’s α. From this α the number
of errors needed for internal consistency, k∗, is concluded. For example, if the
α based on k = 4 errors, that is, computed using the first four columns of X,
is high enough following Table 2, we need k∗ = 4 errors for each person to get
reliable results. However, as Cronbach’s α is computed in the wrong way, this
number of errors could possibly be biased. The main purpose of this research
is to investigate whether the two problems mentioned in Section 3.2 bias the
number of errors (k∗) needed for internal consistency.

Furthermore, k∗ will be used to decide upon which participants to include
in the ultimate sample. Then, averages over all errors are considered. However,
averaging all errors does not necessarily give reliable average ERPs. Therefore,
another research goal is to justify that taking the average of all error trials give
reliable estimates.

This justification will be examined first. Then, if it is justified to average
over all error trials, the average ERPs are reliable, and thus, it becomes useful
to investigate the selection procedure (the main goal).

3.5. Approaches to Investigate Research Goals

This section gives an overview of approaches that we will use to investigate
the research goals. We will start focusing on whether it is justified to average
over all error trials. This justification is done using an empirical data set, which
will be considered first. Then, we will examine the two issues discussed in
Section 3.3. For the time dependency issue, we will test whether ERPs contain
significant trends over time. For the other issue, we will use a random parameter
model to test whether different stimuli give different brain activity values.

If averaging over all error trials is justified, the selection procedure can be
considered. Previous section showed the two problems arising from the OH-
method. Namely, assumptions A.1 and A.2 are violated and only one specific
set of error trials is considered. To examine whether these problems bias the
number of errors coming from the OH-method, we consider some approaches.

First, the empirical data set is used to obtain empirical distributions for
Cronbach’s α. Using these distributions, we can determine whether taking one
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specific set of errors gives a reliable estimate of α. However, empirical data,
which looks like the matrices of Tables 3 and 4, cannot fulfil the assumptions
A.1, A.2, and A.3 simultaneously. Therefore, different combinations of A.1,
A.2, and A.3 are assumed to obtain the empirical distributions.

Further, to investigate whether violating A.1 and A.2 gives bias, ‘complete’
data, that fulfils A.1, A.2, and A.3, is needed. Using this ‘complete’ data set, a
‘true’ Cronbach’s α, say αT , can be computed. Then, αT can be compared to α
coming from the OH-method, say αOH , to examine whether αOH is a reliable
estimate of αT .

A ‘complete’ N ×K data matrix Y should meet assumptions A.1, A.2, and
A.3. To fulfil these assumptions, two issues need to be ensured. First, matrix
Y should not contain missings. A missing in the empirical data corresponds
to a correct trial. To avoid these missings, participants need to fail all trials.
Additionally, participants should face the same randomisations over the trials,
such that each participant faces the same order of stimuli. Having this matrix Y
ensures that Cronbach’s α can be computed without doing any transformations
at beforehand, such that the problems of the OH-method do not occur. However,
we cannot ensure participants to fail all trials. Besides, most empirical data sets
assign the type of stimulus randomly for each participant. Hence, empirical data
usually lacks both essential requirements for computing αT .

It will be impossible to ever get data matrix Y in practice, as there will
always be participants that respond correct on some trials. Therefore, a simu-
lation study will be explored. The simulation can generate a matrix Y , where
respondents fail in each trial and where randomisations will be the same for
everyone. From such simulated data, αT can be computed. Then, an accord-
ingly constructed αOH can be calculated and αT can be compared with αOH to
investigate possible bias.

4. Data

In this section, we will introduce the empirical data set that will be used for
justification and for the empirical distributions. We will first show the particular
experiment set up used for this data. Then, we give some insightful details of
the data.

The data consists of N = 51 healthy students of the Erasmus University Rot-
terdam, collected in September 2013 by Wim Rietdijk, PhD student at Erasmus
University, and prepared by myself. The graduate students participated in an
electroencephalographic (EEG) experiment in the Erasmus Behavioural Lab.
To be specific, they participated in an Eriksen Flanker experiment. Each stu-
dent considers 408 Eriksen Flanker tasks. From these tasks, the first 8 are
burn-in trials and thus excluded from the analysis. This leaves K = 400 trials
per participant, each taking no more than two seconds. During a trial one of
the four stimuli as explained in Section 2.3 is shown and participants need to
respond by pressing a ‘1’ or a ‘5’. Brain activity is recorded for 32 electrodes
placed along the scalp. From those recordings, ERN and Pe values are created
for each student in each error trial. However, as these measures are associated
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with errors, we are only interested in wrong responses. Therefore, values for
correct responses are considered as missing. In terms of the data, this means
that they are set equal to zero. This procedure gives two N ×K matrices, one
for ERN and one for Pe values, each containing many zeros and some brain
activity values for those trials that resulted in an error. The sparsity of these
matrices is 8.14 percent, meaning that the matrices contain many zeros. To
visualize the matrices, consider the example matrices in Tables 3 and 4.

In order to reconstruct the OH-method, the number of errors made by a
participant should at least be equal to Km = 14. Because some participants
made fewer than Km errors, we deleted those from our data resulting in N = 37
participants. As each participant faces different randomisations of the trials,
there is never a participant that considers exactly the same order of stimuli as
one another. Nevertheless, every participant has 100 trials of each of the four
possible stimuli from Table 1. Also, it happens that students neither press ‘1’
nor ‘5’. For those observations, the resulting ERN or Pe values will be treated
as correct responses, such that they are set equal to zero. Further, the Signal-
to-Noise ratios for electrode averages for all trials of a participant for FCz and
Pz are 0.30 and 0.28, respectively. This is in line with previously reported stud-
ies. For details, review Olvet and Hajcak (2009), Meyer et al. (2013), Rietdijk
et al. (2014). Finally, in the empirical data, we have N individuals, R different
stimuli, and K measurements of each individual. Therefore, we can consider
the empirical data as panel data.
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Figure 4: Total number of errors.

Now, we will consider some characteristics of the data. Figure 4 shows
a histogram of the number of errors for the participants and a graph of the
number of errors over time. The histogram in Figure 4a shows the number
of errors made by included participants (black) and the excluded ones (red).
There is one extreme outlier, namely, a student with 119 errors. Furthermore,
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the minimum number of errors made in the black part of the histogram is equal
to Km = 14, as, of course, everyone with less errors is excluded from the data.
Also, the median of the errors for the included participants is equal to 28.
Figure 4b shows the number of errors made for each trial, or, the number of
errors as a function of time. From this figure, it can be inferred that, although
participants had eight burn-in trials, they still make more errors in the beginning
of the experiment than at the end of the experiment. The red line in Figure 4b
shows a moving average with a window of 11 trials to provide a smoother trend.
This line shows that the number of errors decreases over time and eventually

stabilizes. The green line is defined by y =
a

x+ b
+ c with a = 253.20, b = 60.69

and c = 2.38. The parameters of this function are decided by minimizing the
sum of the squared differences between the moving average and the function.
The function models the moving average quite well. We will use this function
to model the number of errors over the trials in the simulation study later on.

Table 5: The total number of errors and their proportions corresponding to the differ-
ent stimuli.

Stimuli Number of errors Proportion(%)
SSSSS 138 11.5
HHSHH 434 36.0
HHHHH 145 12.0
SSHSS 488 40.5

Table 5 shows the total number of errors made in each stimulus, together
with their proportions. There is a clear difference in the number of errors made
in incongruent and congruent stimuli. The incongruent stimuli contain many
more errors than the congruent ones. However, there are minor differences
within the two congruent stimuli and the two incongruent stimuli.

Figure 5 shows the error pattern for each participant. In this figure, each
value on the y-axis represents one student. The dots corresponding to each
student, that is, between two black lines, show error trials. Note that there is
a distinction between the four stimuli. This figure suggests that errors come in
groups. Therefore, considering each participant separately, the probability of
making an error is dependent of the current past.

17



0 100 200 300 400

0
10

20
30

40

Trials

P
ar

tic
ip

an
t I

D

SSSSS HHSHH HHHHH SSHSS

Figure 5: The error trials for each participant.

5. Justification of Independency of ERPs Within Participants

In this section, justification of averaging over all trials will be considered. For
averaging all trials to be justified, ERN and Pe values should be independent
over the error trials of a participant. There are two issues that constitute this
independency. Namely, the ERPs should not be time dependent and different
stimuli should not give different ERPs. We start considering whether ERPs are
time dependent. Then, we set up a random parameter model to test whether
different stimuli result in different ERPs.

5.1. Determining Time Dependency of ERPs

In this section, we will consider whether ERPs are time dependent, where
time dependency means that ERPs in the beginning of the experiment differ
from ERPs in the end of the experiment. To do so, consider Figure 6, where the
average ERN and Pe values are plotted against 40 blocks of 10 trials. The figures
show that there is not much difference between ERN or Pe values. Furthermore,
note that some values are missing because no errors of a specific stimuli hap-
pened in a block. This causes some lines in the figures to be interrupted.
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Figure 6: The average value for ERN or Pe over 40 blocks of 10 trials.

To find whether there is a trend in the averages in Figures 6a and 6b, we
will explore a regression analysis. The regression analysis is explained for one
stimulus for ERN values. That is, it is explained for one line in Figure 6a.
Define the average ERN value for one stimulus per 10 trials as x̄b, b = 1, ..., 40,
where b denotes the particular block over which the average is computed, and,
thus, indicates time. If a particular block do not contain errors of the stimulus
that is considered, an average cannot be computed, resulting in a missing value.
This missing value for block b, will be estimated as the average of block b − 1

and b+ 1 (x̄b =
x̄b−1 + x̄b+1

2
). Then, x̄b is regressed on a constant and a trend

(b). This gives the following model

x̄b = τ0 + τ1b+ ε, (2)

where the error term is assumed have a normal distribution. Now, preforming
a regression analysis results in p-values of the trend parameter (τ1), which are
shown in Table 6. Most results are insignificant based on a five percent signif-
icance level, except for the average Pe value for ‘SSHSS’. However, there is an
outlier in the 38th block, which can cause this significant result.

Table 6: The p-values for the significance of the trend parameter (τ1) in Equation (2).

Stimuli ERN Pe
SSSSS 0.57 0.18
HHSHH 0.71 0.83
HHHHH 0.47 0.64
SSHSS 0.36 0.00

As most trend parameters are insignificant, average ERN and Pe values do,
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on average, not change over time. This means that an average of the ERN or
Pe is not influenced by time, or, the average ERPs are not time dependent.

5.2. Testing Differences in Brain Activity Across Different Stimuli

As Section 4 showed that the number of errors for incongruent and congruent
stimuli differ substantially, it can be asked whether this is also visible in the
corresponding ERN and Pe values. So, we will examine whether different stimuli
do give different ERPs. Therefore, we first consider Figure 7a (7b), which shows
the average ERN (Pe) value per participant for the different stimuli. Again,
figures for ERN and Pe do not differ that much. Also, lines can be interrupted
because some participants do not fail a specific stimulus.

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

Participant ID

M
ea

n 
E

R
N

 v
al

ue

SSSSS
HHSHH

HHHHH
SSHSS

(a) ERN

0 5 10 15 20 25 30 35

0
5

10
15

20
25

30
35

Participant ID

M
ea

n 
P

e 
va

lu
e

SSSSS
HHSHH

HHHHH
SSHSS

(b) Pe

Figure 7: The average ERN or Pe value for each participant sorted on ‘HHSHH’.

The ERN and Pe values in those figures are sorted on ‘HHSHH’, such that a
slightly upward trends becomes visible in the stimuli other than ‘HHSHH’. To
test whether there is association in the four averages in the figures, Spearman’s
correlation is used. The correlations and corresponding p-values are shown in
Table 7. Many correlations are significant based on a five percent significance
level. Especially incongruent trials show significant results. The significant
results mean that a participant with high ERN or Pe values on one stimulus
also has a higher ERN or Pe value on the other stimulus. Therefore, ERPs are
individual specific.
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Table 7: The correlation matrix (lower triangle) with corresponding p-values (upper
triangle) for ERN and Pe.

ERN Pe
Stimuli 1 2 3 4 1 2 3 4
1 (SSSSS) - 0.04 0.09 0.03 - 0.06 0.42 0.00
2 (HHSHH) 0.36 - 0.09 0.00 0.32 - 0.52 0.00
3 (HHHHH) 0.34 0.31 - 0.02 0.16 0.12 - 0.02
4 (SSHSS) 0.38 0.58 0.42 - 0.54 0.51 0.42 -

To test whether different stimuli give different brain activity values, we will
set up a model for brain activity. So, the outcome of this model should be an
ERN or Pe value. This ERN or Pe value should be declared with the available
information, that is, the type of stimulus that is considered in a particular trial.
As Figure 7 and Table 7 showed, there are significant trends in ERN and Pe
values over the participants. This means that if a particular respondent has a
high ERN or Pe value on one stimulus, he or she will also have higher ERN or Pe
values on other stimuli. Therefore, a model with individual-specific coefficients
is appropriate. Let xij be defined as in Section 3.1 and consider the random
parameter model

log(xij) = d′jβi + εij , (3)

where dj is a R × 1 vector, with R the number of different stimuli. Note that
we take dj1 = 1 ∀ j, so that the first term in d′jβi is an intercept. The elements
djr for r = 2, 3, 4 are defined as

djr =

{
1 if trial j is of stimulus type r,
0 otherwise.

We need to let out one stimulus to prevent multicollinearity and we choose
to let ‘SSSSS’ out as this stimulus contains the fewest errors (see Table 5).
Furthermore, we assume βi ∼ NID(β,Σβ) with Σβ an R×R covariance matrix
and εij ∼ NID(0, σ2

ε).
To be able to test whether different stimuli give different brain activity val-

ues, we will estimate the parameter of Equation (3) using the empirical data of
Section 4. To estimate the parameters, rewrite Equation (3) as

log(xij) = d′jβ + d′j(βi − β) + εij

= d′jβ + uij ,

with uij = d′j(βi−β)+εij , such that E[uij ] = 0 ∀ i, j and E[uijuis] = d′jΣβds+

σ2
εI[j = s]. In this setting, β can be estimated with a Feasible Generalized

Least-Squares (FGLS) estimator, see Swamy (1970). For this purpose, we write
the model in matrix notation as

log(Xi) = Diβ + ui.
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Here, Xi is a Ki× 1 vector with brain activity, where Ki is the number of error
trials for participant i, Di is a Ki × R matrix with the values dj in it, and
ui ∼ N(0,Ωui

) with Ωui
= DiΣβD

′
i + σ2

εI.
The FGLS estimator is given by

β̂ =

(
N∑
i=1

D′iΩ̂
−1
ui
Di

)−1( N∑
i=1

D′iΩ̂
−1
ui

log(Xi)

)
,

for which an estimate of Ωui is necessary. To obtain Ω̂ui , we use the fact that
ui ∼ N(0,Ωui

) together with a concentrated log likelihood function. That is,
we only need to get estimates for Σβ and σ2

ε . For this purpose, starting values

for Σβ and σ2
ε are taken, such that Ω̂ui

can be obtained. Then, we can find β̂.
Now, we can estimate Σβ and σ2

ε using the following concentrated log likelihood
function (apart from a constant) where we use log(Xi) ∼ N(Diβ,Ωui)

log(f(log(X)|Σβ , σ2
ε)) = log

(
N∏
i=1

f(log(Xi)|Di, β̂,Σβ , σ
2
ε)

)

= −1

2

N∑
i=1

log (|Ωui
|)

− 1

2

N∑
i=1

(log(Xi)−Diβ̂)′Ω−1ui
(log(Xi)−Diβ̂).

Maximizing this log likelihood function gives again estimates for Σβ and σ2
ε ,

such that the procedure can be repeated. We iterate until the estimates of β
converge.

Applying this procedure to the empirical data of Section 4 gives the param-
eter estimates as below. From these estimates, it can be inferred that there is
some mean value for the logarithm of ERN (β̂1 = 2.44) and for the logarithm

of Pe (β̂1 = 2.37) and that switching stimuli will probably not influence the
this mean value as the estimates for β2, β3, and β4 are close to zero. Besides,
σ̂2
ε = 0.40 for ERN and σ̂2

ε = 0.27 for Pe.

β̂ERN =


2.44
0.10
0.09
−0.10

 , Σ̂ERNβ =


1.04 0.19 −0.17 1.55
0.03 0.20 −0.12 0.54
−0.36 0.14 0.44 0.18

0.21 0.17 0.09 0.75



β̂Pe =


2.37
0.08
−0.14

0.13

 , Σ̂Peβ =


0.74 0.36 −0.26 0.31
−0.21 1.23 0.09 0.44
−0.63 0.47 0.55 0.43

0.46 0.22 0.28 0.71


To test whether indeed the intercept for the logarithm of ERN or Pe differs

significantly from zero and to test whether different stimuli give different brain

22



activity values, we use the Hoteling’s T 2 statistic (Johnson et al., 1992, pp.
210-216). Therefore, we first use the fact that transformations Aβ are also

normally distributed with mean Aβ̂ and variance AΣ̂βA
′. For example, β1 ∼

N(β̂1, Σ̂β [1, 1]), where Σ̂β [1, 1] is the element of Σ̂β in the first column and

in the first row. In the same way, using A = [03

...I3], we obtain [β2, β3, β4]′ ∼
N([β̂2, β̂3, β̂4]′, Σ̂β [−1,−1]), where Σ̂β [−1,−1] is the block matrix of Σ̂β in which
the first row and the first column are deleted.

Now, testing significance for the intercept (β1) boils down to the univariate
case, where we can just use the t-test. The t-statistic for testing the null hy-
pothesis of β1 = 0 is equal to 5.92 for ERN and 6.80 for Pe. Using a five percent
significance level, the critical value is 2.02 meaning that both null hypotheses
can be rejected. Therefore, on average, the logarithm of the mean ERN (Pe)
value differs significantly from zero.

Next, we will test the null hypothesis of [β2, β3, β4]′ = 03 using the Hotelling’s
T 2 statistic. It turns out that the statistic for ERN equals 0.23 and the statistic
for Pe 0.13. The corresponding critical value, coming from the F-distribution

and with a five percent significance level equals
(N − 1)p

N − p
Fp,n−p = 9.02, where

p = 3 is the number of parameters to test. From this we conclude that both
null hypotheses are not rejected. Therefore, the impact of different stimuli on
the brain activity value is not significantly different from zero, meaning that it
is plausible that different stimuli do not generate different brain activity val-
ues. Therefore, ERPs are independent of the type of stimulus. Consequently,
averaging ERPs over all error trials gives reliable averages.

5.3. Conclusions

From this section it can be concluded that ERPs are not time dependent.
Also, different stimuli will not constitute to different brain activity values.
Therefore, it is plausible that the ERN and Pe values within a participant are
independent over the error trials of this participant. Consequently, considering
the average over all error trials, instead of a selection of error trials, is justified.
As a result, it is necessary to decide upon the number of errors needed for inter-
nal consistency, such that a selection criterion can be used to decide for which
participants reliable averages can be obtained.

6. Empirical Distributions

In this section, we will consider ways to use the empirical data of Section
4 for computing Cronbach’s α. As it will be impossible to construct a ‘true’ α
from this data, we will compute different variants of α. We start by computing
αOH . Then, the focus will be on taking a random set of errors (instead of
the first Km errors) for computing α. However, considering a single random
draw of errors will not give information about possible bias. Therefore, we
would like to consider all possible random draws such that we get an exact
empirical distribution of α. However, as obtaining α for all permutations is
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computationally prohibitive, only W = 10000 random draws are performed.
The empirical distributions, coming from these draws, will be based on different
combinations of the assumptions A.1, A.2, and A.3 of Section 3.2.

6.1. Methods

In this section, the methods will be discussed, starting with the OH-method.
Then, we will explain how we choose a random draw of errors to obtain dif-
ferent values of Cronbach’s α. Finally, we consider different methods to obtain
empirical distributions.

6.1.1. Cronbach’s α for the OH-method

We start with computing Cronbach’s α using the OH-method that was ex-
plained in Section 3.1. In short, the first k error trials of each participant are
taken, where k ∈ {2, 4, ...,Km = 14}. This is possible as participants with less
than 14 errors were excluded from the empirical data. Then, we compute αOH
for each k and for both ERN and Pe.

6.1.2. A Single Random Draw of Error Trials

In the OH-method, the first k errors are used to compute Cronbach’s α.
However, as the median number of errors made by respondents is equal to
28, many error trials are ignored. Therefore, we will consider αR, based on
a random draw out of the errors for each participant. In this way, each error of
a participant can be used with equal probability.

We will explain the procedure for getting a random draw very carefully as it
will be important for explaining the methods for creating empirical distributions
later on. In the OH-method, αOH is obtained for each k and for both ERN and
Pe. This gives a total of 14 values of α. Therefore, considering a single random
draw of error trials should also give 14 values of α, or, a random value for
α is needed for each value of k and for both ERN and Pe. Comparison over
these different values for k and over ERN and Pe values is desirable because of
the following reasons. First, having comparable values for different values of k
makes it possible to draw conclusions over the number of errors needed for an α
that is high enough. Secondly, ERN and Pe values are jointly recorded, so that
they naturally belong to each other such that α for ERN and Pe values should
be based on the same error trials.

To create comparable values for α, there has to be one specificN×Km matrix
with random error trials for each participant. From this matrix, matrices with
ERN and Pe values can be found by translating the random error trials to the
brain activity values. Then, considering the matrix for ERN (Pe), the first k = 2
columns, or, error trials, are taken to compute αR for k = 2. After that, the
first k = 4 errors of the same matrix are taken to compute αR for k = 4. This
is done for all k ∈ {2, 4, ...,Km} and for both the ERN and Pe matrix.

To get the N × Km matrix with random error trials for each participant,
the following is done. All error trials for one participant are taken. From those
error trials, we take a random draw of size Km without replacement. Doing

24



this for each participant results in a N ×Km matrix with random error trials.
Note that the random draw is not sorted, such that errors in this matrix are
not necessarily chronological.

Note that αR is not valid in the sense that assumption A.1 and A.2 of
Cronbach’s α are still violated. In contrast to the OH-method, assumption A.3
is also violated here as the error numbers do not necessary have to correspond
to each other. By creating the empirical distributions, which are all based
on W random draws of errors, or, on W values of αR, we will fulfil different
combinations of A.1, A.2, and A.3.

6.1.3. Empirical Distributions: Method A

The first way to create a distribution for Cronbach’s α is based on trying to
be as liberal as possible. Namely, we assume that Cronbach’s α is robust for
violation of assumptions A.1, A.2, and A.3. Actually, Method A violates even
more assumptions than the OH-method, where at least A.3 is fulfilled. To make
these distributions possible, we perform repeatedly the random draw procedure
as explained in Section 6.1.2.

6.1.4. Empirical Distributions: Method B

To come one step closer to the OH-method, while still trying to be as liberal
as possible, consider method A again. Method B is the same as Method A
except for that only the first Km error trials (instead of all error trials) are
permuted.

6.1.5. Empirical Distributions: Method C

Methods A and B assume that Cronbach’s α is robust for violation of as-
sumptions A.1, A.2, and A.3. However, in the OH-method, the assumption A.3
is fulfilled. Therefore, Method C will also try to fulfil this assumption. Remem-
ber from Section 3.2 that assumption A.3 is fulfilled as the first column of the
transformed matrix contains errors that were made first by the participants,
the second columns of the transformed matrix contains errors that were made
secondly by the participants, and so on. To meet this assumption, there is only
one possibility for the selection of errors, namely the errors as used in the OH-
method. Therefore, to get multiple draws instead of just one, we cannot exactly
meet assumption A.3, but we try to approximate it. To do so, the procedure for
getting a random draw as described in Section 6.1.2 is slightly changed. Namely,
the order of the errors is maintained while selecting Km errors out of all errors
for each participant, such that there is at least a natural ordering of the errors
in computing α.

6.1.6. Empirical Distributions: Method D

Another way to create an empirical distribution for Cronbach’s α includes
controlling for the type of stimuli (A.1) and taking into account the order of
the errors (A.3). Method C shows that we only can approximate assumption
A.3. In Method D, assumption A.1 is fully met and A.3 partially, such that this
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Method satisfies most assumptions of Section 3.2. To meet assumption A.1, we
will only distinguish between congruent and incongruent stimuli to avoid losing
too many observations. Here, the procedure of Section 6.1.2 is again slightly
changed. To get a random draw of error trials for a participant, two random

draws are taken, that is, a random draw of
Km

2
congruent and a random draw

of
Km

2
incongruent error trials. Both random draws are sorted to obtain the

natural order (A.3). Then, we create the N ×Km random draw matrix, where
we have congruent trials in the first column, incongruent trials in the second
one, again congruent trials in the third column, and so on. The reason for
alternating congruent and incongruent stimuli is that, in this way, computing
Cronbach’s α based on k < Km will include as many congruent as incongruent
stimuli. This makes comparison over the number of errors (k) more fair. Note

that, because every participant needs to have at least
Km

2
congruent and

Km

2
incongruent errors, the number of usable students decreases to Nm = 17, such
that our random matrix is of size Nm ×Km.

6.2. Results

In this section, we consider the results, starting with αOH . We do not give
results of αR as having α based on just one random draw of errors will not
give insightful results. Then, the empirical distributions are discussed. All
figures containing histograms, also contain the corresponding value of αOH , the
median of the histogram, αM , and the confidence interval of the histogram.
These empirical confidence intervals are decided by taking 95 percent of the
middle values of the histograms.

6.2.1. Cronbach’s α for the OH-method

Table 8 shows the values for Cronbach’s α using the OH-method for ERN
and Pe and based on different values for the number of errors (k). The table
demonstrates that αOH mostly increases with the number of errors. Also, αOH
for ERN is substantially larger than αOH for Pe. Olvet and Hajcak (2009) find
a moderate α (see Table 2) for ERN with k = 6 and for Pe with k = 2 with a
total of 53 participants. Considering the results of the empirical data for ERN
in Table 8, we find a moderate α of 0.58 with k = 8, but for Pe, even with k = 14
we do not have enough error trials to have at least a moderate α (α > 0.50).
However, the empirical data used here has fewer participants than the data used
in Olvet and Hajcak (2009), which can cause these differences.
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Table 8: Cronbach’s α using the OH-method, αOH , for the empirical data for ERN
and Pe based on a different number of errors (k).

αOH
k ERN Pe
2 0.37 0.02
4 0.15 -0.17
6 0.25 0.12
8 0.58 0.31
10 0.57 0.28
12 0.58 0.38
14 0.59 0.45

Furthermore, in practice, it is often recommended that α should at least
be higher than 0.70. However, considering, for example, ERN values and tak-
ing 0.70 as a threshold, gives 26 errors. Note that, to obtain this result, Km

should be equal to 26, such that all participants with less than 26 errors need
to be excluded from analysis. This leaves N = 22 participants, such that many
participants are ignored.

6.2.2. Empirical Distributions: Method A

In Figure 8, we see the histograms coming from Method A, where we tried
to be as liberal as possible, corresponding to ERN in the upper row for the
values k ∈ {2, 6, 10, 14}. We see that with increasing the number of errors,
k, the histograms become smaller. This shrinkage is caused by an increasing
lower bound. This is not surprisingly as α cannot exceed one. However, the
histograms are very wide, also with higher values of k, indicating that different
random draws of errors can differ the value of α a lot. Comparable results are
found for Pe.

Also, αOH is, in most cases, substantially lower than αM . This effect indi-
cates that αOH mostly underestimates Cronbach’s α in Method A, which can
also be seen in Table 9. Note that a positive difference (αM − αOH) indicates
an underestimation of αM . The differences for ERN and Pe are large in most
cases, so that αOH clearly underestimates the median of the distribution. Also,
the upper bound of the histograms does not increase that much if k increases.
Nevertheless, the lower bound does increase, but we would still have completely
different conclusions in lower bound or upper bound cases. For instance, if we
would like to have a moderate value of α (0.5 < α ≤ 0.7) and if we consider
the results for Pe, we conclude that, considering the lower bound, 14 errors are
still not enough for a moderate α (as α = 0.45 ≤ 0.50) while, considering the
upper bound, having k = 2 errors will already be enough for a moderate α (as
α = 0.59 ≥ 0.50).
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Table 9: The differences αM − αOH for different values of k, together with the lower
bound (L-bound) and upper bound (U-bound) of the confidence intervals for Method
A.

ERN Pe
k αM − αOH L-bound U-bound αM − αOH L-bound U-bound
2 -0.16 -0.49 0.65 0.13 -0.52 0.59
4 0.22 -0.08 0.63 0.45 -0.17 0.56
6 0.22 0.15 0.67 0.25 0.04 0.60
8 -0.03 0.30 0.70 0.14 0.18 0.62
10 0.03 0.42 0.72 0.22 0.29 0.65
12 0.07 0.51 0.74 0.17 0.38 0.67
14 0.09 0.58 0.76 0.14 0.45 0.69

So, assuming that Cronbach’s α is robust for the violation of assumptions
A.1, A.2, and A.3, there is an underestimation of the median of the empirical
distributions relative to the OH-method. Also, histograms are still wide with 14
errors such that we would have different conclusions about the number of errors
needed for internal consistency in the lower bound case and in the upper bound
case.

6.2.3. Empirical Distributions: Method B

In Method B, the first Km errors were permuted W times. The conclusions
for k < Km are roughly the same as in Method A. However, for k = Km = 14
errors, we get a very small histogram for ERN (see Figure 9) as the confidence
interval is [0.58, 0.60]. The same result holds for Pe.

−2.12 −1.72 −1.32 −0.92 −0.52 −0.12 0.28 0.68

0
5

11
18

25
32

39
46

53
60

67
74

OH−method
Median
Confidence interval

Figure 9: The distribution of Cronbach’s α for the ERN value for Method B and
k = Km, together with αOH , αM , and the corresponding confidence intervals.

This fact means that permuting the first Km errors and taking k equal to
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Km will not differ α substantially. However, taking k smaller than Km does.
To be clear, in the special case of k = Km (thus permuting exactly the first
14 errors of the empirical data), the values in the matrix for computing α are
exactly the same in each random draw, but they are placed in a different order.
In this case, the sum scores are the same in each repetition. Also, the sum of
the variances of the columns does not differ that much (range = [980, 1040]),
such that, considering one participant, the magnitude of ERPs will probably be
roughly the same over the errors. This is in line with the fact that ERPs are
independent of the error trials as concluded in Section 5.3. The results of Method
B suggest that violation of the assumptions does not influence Cronbach’s α,
but the particular set of errors that is included does.

6.2.4. Empirical Distributions: Method C

The histograms for Method C are comparable with those of Method A (where
we tried to be as liberal as possible), such that we roughly get the same con-
clusions. In Table 10, we see the differences between αM and αOH together
with the lower and upper bound of our confidence intervals. In comparison with
Method A, the confidence intervals for this method are in a lower range for
lower values of k, but when k increases, the intervals become more and more
the same. Therefore, intervals are again substantially such that having another
set of errors for computing α can give totally different conclusions about the
number of errors needed.

Table 10: The differences αM − αOH for different values of k, together with the lower
bound (L-bound) and upper bound (U-bound) of the confidence intervals for Method
C.

ERN Pe
k αM − αOH L-bound U-bound αM − αOH L-bound U-bound
2 0.01 -0.38 0.67 -0.10 -0.71 0.37
4 -0.01 -0.31 0.44 0.28 -0.37 0.43
6 0.08 -0.01 0.57 0.11 -0.12 0.47
8 -0.06 0.32 0.66 0.01 0.06 0.51
10 0.00 0.40 0.68 0.14 0.21 0.57
12 0.05 0.50 0.71 0.13 0.35 0.63
14 0.09 0.58 0.75 0.14 0.46 0.68

6.2.5. Empirical Distributions: Method D

In the lower part of Figure 8, the histograms for the most correctly created
values of α are shown. Again, αOH underestimates αM in most cases. Further,
if we compare Methods A and D, the lower bounds of Method D are much lower
than those of Method A, while the upper bounds are roughly the same. This
would indicate that α becomes less accurate if the assumption A.1 and A.3 are
(partially) met. However, we need to note here that method D is based on
fewer observations than the other methods, so that this can also be the reason
for wider distributions.
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6.3. Conclusions

Results in this section suggest that violation of the main assumption of
Cronbach’s α does not influence the value of α, but the specific set of error
trials that is used for computation does.

First, when permuting the error trials in the rows of one specific random ma-
trix, values for α will not differ substantially. Therefore, it can be suggested that
the three assumptions mentioned in Section 3.2 are not important for getting a
reliable α.

However, empirical distributions for Cronbach’s α are very wide, such that
there is much difference in lower bound and upper bound of the corresponding
confidence intervals. Therefore, the specific set of errors taken to compute α,
can influence the value of α, and thus, k∗, a lot. Namely, when considering
the lower bound of the distributions as a reliable estimate of α, we would need
many more errors (often more than 14 for Pe) to have a moderate α, than when
considering the upper bound of the distributions, where a moderate α can often
be concluded for k = 2.

7. Simulation

Section 3.1 discusses the violation of the sub assumptions A.1 and A.2 of
Cronbach’s α. This violation causes possible bias in the number of errors needed
for internal consistency in the ERPs. Section 3.5 shows that one approach to
investigate this bias, is comparing αT to αOH . However, it is impossible to
compute αT from empirical data, such that a simulation study is necessary.

The data generating process (DGP) of this simulation should contain two
models. The first model should create the ‘complete’ matrix Y (see Section 3.5).
This matrix permits that αT can be computed. The second model should create
errors to obtain the N × K matrix X (see Section 3.1). From this matrix X,
one can compute an accordingly constructed αOH . Comparing αT and αOH will
enable us to find possible bias in the value of Cronbach’s α computed with the
OH-method, and thus, in the number of errors needed for internal consistent
ERPs.

In the simulation study, different experimental conditions, that is, different
ways to set the parameters of the DGP, can be considered. Simulating data
for different experimental conditions enables to investigate whether the varying
parameters significantly affect Cronbach’s α.

Next to examining the bias in the number of errors needed for internal consis-
tency in the ERPs and investigating the influential parameters, the simulation
study can also be used to find other methods for establishing the reliability
of ERPs. Therefore, we will consider another measure of internal consistency,
namely, test-retest reliability and we propose a method based on the empirical
distributions in Section 6.

In sum, the simulation study has three purposes. First, the possible bias
coming from the OH-method is examined. Then, it is used to find the impact
of several parameters on Cronbach’s α, and finally, other methods for finding
the number of errors needed for internal consistency are considered.
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We will first define the DGP. The models used in this DGP are the same for
ERN and Pe values. However, as parameter estimates from Section 5.2 differ
between ERN and Pe, we allow parameters in these models to differ for ERN
and Pe. Then, we specify experimental conditions. After that, we will consider
outcomes of the simulation. Next, we consider the simulation study itself and
we show simulation results. Finally, we draw conclusions from the simulation
results.

7.1. Data Generating Process

To be able to compute both αT and αOH , the matrices Y and X are needed.
In order to get those matrices, the data generating process should combine two
models.

First, there needs to be a model to create ‘complete’ data Y . This model
should generate brain activity values and meet the requirements to get the
matrix Y , that is, participants should fail each trial and the same order of
stimuli should be imposed on each student. This ‘complete’ matrix Y is obtained
using the model for brain activity in Section 5.2. Running this model for all
participants and all trials will lead to the matrix Y .

To create errors in the matrix Y , there needs to be a second model. The
outcome of this model needs to be binary, as a trial can either be correct or it
can be incorrect. So, to ultimately get the matrix X, a model that creates a
binary matrix, say P ∗, that indicates error trials with the value 1, is needed.
Element wise multiplying this matrix P ∗ with Y will give X.

To achieve this, we will make a probability process which can be translated
to this binary outcome. To get the probability process, we take several issues
into account. First, students make more errors in incongruent trials than in
congruent ones, see Table 5. As a result, a distinction in probability has to
be made for different stimuli. However, the parameters for different stimuli
do not have to be individual specific as we did for the model in Equation (3)
because every student fails more incongruent trials than congruent ones. Then,
as suggested by the histogram in Figure 4a, it should be allowed that participants
differ in the number of errors that they make. Further, considering Figure 4b,
we see that the total number of errors made slowly decreases over time. So,
the probability of making an error in the beginning of the experiment should be
somewhat higher than the probability of failing later on. Finally, as can be seen
from Figure 5, errors occur mostly in groups. Therefore, the current history of
the errors for a participant should be taken into account.

We first focus on a model for getting a probability of failing. That is, we
consider one participant and try to find a probability of failing for each trial.
Define the probability of failing trial j for participant i as pij . Then, we propose
the following model

pij =
exp

(
γzj + d′jδ + ρ

∑j−1
l=j−4 pil + εij

)
1 + exp

(
γzj + d′jδ + ρ

∑j−1
l=j−4 pil + εij

) , (4)
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where zj is the function of Figure 4b to ensure more errors in the beginning of
the experiment, dj is a R × 1 vector containing dummies for the stimuli, and∑j−1
l=j−4 pil ensures that the current past is taken into account. Furthermore,

we assume εij ∼ NID(0, σ2
ε ). To simulate from this model, there is a sequential

procedure over the trials because of
∑j−1
l=j−4 pil. To start this procedure, there

are four probabilities in the past needed. To get these probabilities, a random
draw of a uniform distribution is taken for the probabilities of the first trial.
Then, for the second, third and fourth probability, probabilities are generated
with the available probabilities. So, to get the second probability, only the first
probability is used and so on.

To get the final error process, it is required that the probability process just
described is translated to a binary process. The black part of the histogram in
Figure 4a is used to sample the number of errors that each participant makes.
Note that we sample with replacement. This gives the number of errors (K̂i)
for each simulated participant i. Note that K̂i ≥ Km. Each respondent has
a 1 × K vector pi with probabilities from Equation (4). To decide upon the
binary process, the K̂i highest probabilities in pi will be the errors in the binary
process. To be precise, we define the binary outcome process p∗ij as

p∗ij =

{
1 if pij belongs to the highest K̂i probabilities of pi,
0 otherwise.

From all values p∗ij we obtain the binary N ×K matrix P ∗. Now, this matrix
is multiplied element wise with Y to obtain X. To set the parameters of this
model in the simulation study, we would like to have an idea of the estimates of
these parameters. Therefore, Appendix B explains the estimation method and
shows the estimated parameters.

7.2. Experimental Conditions

In this section, we will consider experimental conditions. In the data gen-
erating process, there are many parameters to specify. The parameters can be
divided into three groups. First, the parameters of the panel data, that is, the
number of individuals (N), the number of trials (K), and the number of dif-
ferent stimuli (R) can be varied. Then, the parameters of the model for brain
activity of Section 5.2 can be different. Those parameters are β, Σβ , and σε for
both ERN and Pe. At last, the parameters of Equation (4), that is, γ, δ, ρ, and
σε, can be changed.

Varying all parameters would lead to a very large simulation study, too large
for the present study. Therefore, we will choose some parameters to have the
same value during the simulations. To make the simulation study as realistic as
possible, the parameters that will not vary in the simulation, are set as close as
possible to (estimates of) parameters of the empirical data.

First, the number of trials and the number of different stimuli will be the
same as in the empirical data, so K = 400 and R = 4. Further, the covariance
matrices for β (for ERN and Pe) will be set roughly the same as the estimates
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in Section 5.2. Also, the parameters γ, δ, and ρ, of the model in Equation (4)
will not vary in the simulation. All those parameters will be based on estimates
in Appendix B, such that γ = 0.3, δ = [−3,−1.5,−3,−1.5]′, and ρ = −1.2.
Finally, setting σε = 1 ensures that the probability process has sufficient errors
in trials in the end.

The remaining parameters are N , β, and σε. We will explain why those
parameters are valuable to change and which values they will have.

7.2.1. Parameter N

It is interesting to consider multiple values for N , as papers in the present
literature also have different sizes of data sets. Besides, if the simulation study
shows that changing the number of participants will not differ the value of Cron-
bach’s α, money can be saved in future research by using fewer participants. We
consider a low number of observations (N = 25), a normal number of observa-
tions (N = 50), and a, in the field of psychiatry, large number of observations
(N = 100).

7.2.2. Parameter β

The main research goal is to find out whether the OH-method gives bias
in the value of Cronbach’s α, and, thus, in the number of errors needed for
internal consistency. The assumption of Cronbach’s α is that it is computed
over the same items. Now, if the ERN and Pe values across different stimuli
differ from each other, the items over which α is computed are clearly not the
same. However, if those brain activity values do not differ for different stimuli,
they can be interpreted as constituting the same item. Hence, different values
for β are considered. However, the constant, that is, the first element in β, will
be the same in each case. We set this constant roughly equal to the estimates
of the logarithm of ERN and Pe values in Section 5.2. Now, in the first case,
we will assume no difference in the ERN or Pe values over the different stimuli,
so β = [2, 0, 0, 0]′. In the second case, we will assume that all stimuli give
different brain activity values, or, β = [2, 2, 4, 6]′. The last case will take into
account different ERN and Pe values for congruent and incongruent stimuli, but
within congruent or incongruent stimuli there will be no difference, such that
β = [2, 2, 0, 2]′. Note that, Section 5.2 shows that estimate of β for the empirical
data mostly matches β = [2, 0, 0, 0]′.

7.2.3. Parameter σε
In Section 4, it is described that the Signal-to-Noise ratio for the empirical

data is low, such that there is much noise. However, improving technology in
the future can increase this Signal-to-Noise ratio. Therefore, we choose a high
value for the variance (σε = 0.75) and a low value (σε = 0.05).
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All combinations of different parameters will give 3× 3× 2 = 18 parameter
sets. Those different parameter sets are shown in Table 11.

Table 11: All parameter sets with the corresponding varying parameters.

Parameter set N β σε
1 25 [2, 0, 0, 0]′ 0.05
2 25 [2, 0, 0, 0]′ 0.75
3 25 [2, 2, 4, 6]′ 0.05
4 25 [2, 2, 4, 6]′ 0.75
5 25 [2, 2, 0, 2]′ 0.05
6 25 [2, 2, 0, 2]′ 0.75
7 50 [2, 0, 0, 0]′ 0.05
8 50 [2, 0, 0, 0]′ 0.75
9 50 [2, 2, 4, 6]′ 0.05
10 50 [2, 2, 4, 6]′ 0.75
11 50 [2, 2, 0, 2]′ 0.05
12 50 [2, 2, 0, 2]′ 0.75
13 100 [2, 0, 0, 0]′ 0.05
14 100 [2, 0, 0, 0]′ 0.75
15 100 [2, 2, 4, 6]′ 0.05
16 100 [2, 2, 4, 6]′ 0.75
17 100 [2, 2, 0, 2]′ 0.05
18 100 [2, 2, 0, 2]′ 0.75

7.3. Simulation Outcomes

The simulation study gives two matrices for both ERN and Pe, namely, Y
and X. Below, we will discuss results that can be obtained using these matrices.
Note that we have those results for each parameter set of Table 11.

7.3.1. Simulation: Outcome A

To get an idea of αT , Y can be used. However, computing αT over all trials
will probably result in an α that is close to one (Eggen and Sanders, 1993, p.
44). Therefore, it will be more interesting to consider αT for a part of the trials,
namely, for k ∈ {2, 3, ..., 28}

7.3.2. Simulation: Outcome B

Next to αT , we also consider αOH using matrix X. The value of αOH will
be computed based on k errors, with k ∈ {2, 3, ..., 14}.

7.3.3. Simulation: Outcome C

The most important goal of this paper is to investigate possible bias in the
OH-method. Therefore, we will also compare αT with αOH . The differences
for those values (αT − αOH), computed in each run of the simulation, can be
used to obtain the summary statistics of the histograms for this difference for
different values of k.
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7.3.4. Simulation: Outcome D

Next to the actual values of α and the results for the main goal of this paper,
influences of the varying parameters on Cronbach’s α can be considered. To find
influential parameters, all values of α, coming from different parameter sets, are
regressed on a constant and dummies for the varying parameters, such that we
explore an analysis of variance, that is,

α = θ0 + θ1DN=25 + θ2DN=50 + θ3Dβ=[2,0,0,0]′ + θ4Dβ=[2,2,4,6]′ + θ5Dσε=0.05 + η,
(5)

where D indicates a dummy, and where η is assumed to be normally distributed.
Here, α can refer to αT or αOH and α can be based on different values for k.

7.3.5. Simulation: Outcome E

Another way to decide upon internally consistent ERN and Pe values is
using test-retest reliability. This estimate of reliability does not bring the same
problems with it as Cronbach’s α does, as there is no need to have the same
items. There is a possibility that this way of computing reliability will give
better results. Test-retest reliability is computed as follows if the ‘complete’

matrix Y is considered. The matrix is divided in two N × K

2
matrices. For

both matrices, the mean over the rows is computed. Then, the correlation
of those mean vectors is computed. This correlation is called the test-retest
reliability. If this reliability value is high, the measurements in the two matrices
are comparable and thus reliable. Computing the test-retest reliability from
matrix Y gives the ‘true’ test-retest reliability.

However, for computing test-retest reliability from the empirical data, we
need to take into account that the matrix X contains missings. To compute

test-retest reliability for X, we again divide the matrix in two N × K
2

matrices.

Then, we can also consider the mean of the rows, but now, we should not take
into account the zeros. Correlating the mean vectors gives test-retest reliability.

7.3.6. Simulation: Outcome F

To find a variant on the OH-method that can be more reliable, we use lower
bounds of the distributions in Method C, where we (partly) assumed A.3, of
Section 6. To do so, Method C is repeated for the simulated data and the lower
bound of the confidence interval is computed in each run. If these lower bounds
come close to αT , they can be a good estimate of α in future research.
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7.4. Simulation Set Up

Now, we will shortly explain the simulation set up and some details. There
are 18 possible parameter sets. The steps in the simulation for one such a
parameter set are shown below.

1. Set the parameters.

2. Create the exploratory variables.

3. Run the model for brain activity to obtain Y .

4. Run the model for finding the correct trials to obtain P ∗.

5. Obtain X by element wise multiplying Y with P ∗.

6. Use matrices X and Y to obtain the different outcomes as described above.

We will iterate S times through steps 3 till 6, where S is equal to 100. There are
some details to note. First, next to random error processes (ε and ε), we also
take a draw for Ki in each run based on the histogram in Figure 4a. Also, pi1
will be drawn of a uniform distribution (U(0,1)) in each run of the simulation.
We will also change the randomisation of the stimuli (matrix D in the DGP) in
each run.

7.5. Results

In this section, we consider results of the simulation study. Only results for
the ERN values are considered, as outcomes for ERN and Pe are similar. As
parameter estimation in Section 5.2 shows that parameter set 1 and 2 are most
closely to the empirical data, we will mainly show results for those parameter
sets. Therefore results for some parameter sets are not shown. Confidence
intervals shown in this section are empirical, that is, decided by sorting a certain
vector and taking a predefined percentage of the middle values to be confident.
We discuss the results for each of the outcomes above.

7.5.1. Simulation: Outcome A

In Figure 10, αT is shown for parameter set 1, 2, 3, and 4 for k ∈ {2, 3, ..., 28}.
The figures show that the value of β and the value of σε have impact. Taking
β = [2, 2, 4, 6]′ gives much more uncertainty around αT and changing σε from
0.05 to 0.75 shows that Cronbach’s α increases more slowly.

The uncertainty shown in the figures is cannot be due to violation of as-
sumptions A.1, A.2, and A.3 of Cronbach’s α because it is ensured that, for
αT , trials in the same columns corresponds to each other. Therefore, the uncer-
tainty comes from having different sets of errors, that is, different runs in the
simulation. This implies that taking one particular set of errors (for example,
taking the first fourteen errors) influences the results. Note that there is more
uncertainty in case of different stimuli causing different brain activity values
(β = [2, 2, 4, 6]′). Nevertheless, this could also not be due to violation of the
assumption.
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(c) N = 25, β = [2, 2, 4, 6]′, σε = 0.05
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(d) N = 25, β = [2, 2, 4, 6]′, σε = 0.75

Figure 10: αT , ERN

7.5.2. Simulation: Outcome B

In Figure 11, αOH is shown for parameter set 1, 2, 3, and 4 for k ∈
{2, 3, ..., 14}. These figures show comparable results as the figures in Figure
10.

As violation of assumption A.1, A.2, and A.3 of Cronbach’s α could not
be the reason for the uncertainty in αT , it is probably also not the reason for
the uncertainty in αOH . Nevertheless, it can have little influence as there is
somewhat more uncertainty for lower k. But generally, the fact that figures of
αT and αOH are comparable shows that the uncertainty is probably not due to
the violation of the assumptions of Cronbach’s α, but due to the specific set of
errors that is considered.
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(d) N = 25, β = [2, 2, 4, 6]′, σε = 0.75

Figure 11: αOH , ERN

7.5.3. Simulation: Outcome C

In Table 12, the median, lower bound, and upper bound of the histograms
for the differences αT − αOH are shown for k = 2, k = 8 and k = 14 error
trials. Histograms are not shown, but they are bell shaped. The table is based
on N = 25, but including more participants ensures in most histograms that
differences are slightly smaller.

Now, it can be decided whether there is bias in the value of α. There are
two ways to look at this issue. First, the table shows that the medians of all
histograms are close to zero, meaning that in most cases, αT and αOH do not
differ substantially. So, considering the median, we could say that there is no
bias in the values for Cronbach’s α, and thus there is no bias in the value of
k∗. However, as a second way to look at this issue, confidence intervals can be
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considered. We see that confidence intervals are generally wide, such that there
are significant differences between αT and αOH . The size of this bias depends on
the value of k and the parameter set that is considered. For example, confidence
intervals become much wider if we change β from [2, 0, 0, 0]′, to [2, 2, 4, 6]′. More
important to note is that, if k increases, the confidence intervals become smaller.

Table 12: The median, lower bound and upper bound of the simulated histograms for
αT − αOH for ERN.

N β σε k Median Lower bound Upper bound
25 [2, 0, 0, 0]′ 0.05 2 0.00 -0.76 0.50
25 [2, 0, 0, 0]′ 0.75 2 -0.04 -0.52 0.43
25 [2, 2, 4, 6]′ 0.05 2 0.16 -0.88 1.14
25 [2, 2, 4, 6]′ 0.75 2 0.07 -0.69 0.90
25 [2, 0, 0, 0]′ 0.05 8 -0.04 -0.14 0.05
25 [2, 0, 0, 0]′ 0.75 8 -0.02 -0.19 0.17
25 [2, 2, 4, 6]′ 0.05 8 -0.08 -0.75 0.25
25 [2, 2, 4, 6]′ 0.75 8 -0.12 -0.70 0.33
25 [2, 0, 0, 0]′ 0.05 14 -0.03 -0.07 0.01
25 [2, 0, 0, 0]′ 0.75 14 -0.02 -0.10 0.07
25 [2, 2, 4, 6]′ 0.05 14 -0.08 -0.72 0.08
25 [2, 2, 4, 6]′ 0.75 14 -0.10 -0.70 0.17

Wide confidence intervals show that αOH is an unreliable estimate for αT .
Large differences between αT and αOH , (e.g. αT − αOH = −0.80) mean that
αT can be very small (e.g. 0.1), indicating that the corresponding value of k is
far too low, while αOH can, for the same value of k, be close to one (e.g. 0.9),
indicating that this value of k is perfect. In this case, using αOH as an estimate
of αT can seriously bias in the number of errors needed for internal consistency.

To decide upon the number of error trials, one could simulate those his-
tograms for the parameter set that corresponds to their empirical data. Then,
they could decide the width of the confidence intervals for different values of
k. If intervals are small enough, αOH is a good estimate for αT , so that the
number of errors coming from the OH-method is reliable.

Remark that, if k increases, the upper bounds of the confidence intervals de-
crease fast towards zero, while lower bounds increase slowly to zero. This means
that, for higher values of k, the difference αT −αOH is very low on the positive
side, but can be high on the negative side. Therefore, overestimation of αT can
be large, but underestimation is often very small, so overestimation happens
more extreme than underestimation. If αT is overestimated by αOH , the num-
ber of errors taken to have internal consistency is underestimated. Therefore,
an underestimation of k will happen more often, especially when k increases.

In sum, considering the median, αOH is a reliable estimate of αT , such that
there is no bias in the number of errors concluded. However, looking at the
confidence intervals, there can be significant bias. The size of the bias depends
on the parameters set and the value of k. If k increases, αOH becomes a more
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reliable estimate of αT , such that bias will be lower. Finally, αOH more often
overestimates αT .

7.5.4. Simulation: Outcome D

To find the factors influencing Cronbach’s α, the regression of Equation (5)
is performed. Table 13 shows the estimates of the coefficients and the corre-
sponding p-values. To decide which factors significantly contributes to values
of α, a one percent significance level is used. First, the constants (θ0) are in-
creasing with the value of k and the value of αOH is, on average, larger than
that of αT , indicating an overestimation. Furthermore, most p-values for θ1 and
θ2 are not significant. This indicates that the number of observations N does
not significantly influence the value of α. Therefore, having 25 participants will
give, on average, the same value of α as having 50 or 100 participants. This
means that, if one is only interested in Cronbach’s α, money can be saved by
taking less observations. In addition, θ3 and θ4 are significant for every case.
With β = [2, 2, 0, 2]′ as baseline, α increases if we change β to [2, 0, 0, 0]′ and α
decreases if we change β to [2, 2, 4, 6]′. Therefore, if we want to use a simulation
study to decide upon the number of errors needed for internal consistency, it
is important to know whether different stimuli causes brain activity values to
differ. We can test this with the method of Section 5.2. At last, all coefficients
θ5 are significant with positive coefficients. This means that, on average, α
increases if we decrease σε.

Table 13: The estimates of the coefficients (Est) and the corresponding p-values (p)
for Equation (5).

N β σε
constant 25 50 [2, 0, 0, 0]′ [2, 2, 4, 6]′ 0.05

(θ0) (θ1) (θ2) (θ3) (θ4) (θ5)
αT , Est 0.313 -0.003 0.007 0.201 -0.122 0.201
k = 2 p 0.000 0.862 0.661 0.000 0.000 0.000
αT , Est 0.664 0.000 0.024 0.111 -0.217 0.150
k = 8 p 0.000 0.959 0.055 0.000 0.000 0.000
αT , Est 0.769 0.002 0.016 0.075 -0.141 0.121
k = 14 p 0.000 0.710 0.014 0.000 0.000 0.000
αOH , Est 0.389 -0.032 0.011 0.164 -0.299 0.213
k = 2 p 0.000 0.042 0.505 0.000 0.000 0.000
αOH , Est 0.778 -0.012 0.003 0.035 -0.164 0.143
k = 8 p 0.000 0.014 0.618 0.000 0.000 0.000
αOH , Est 0.863 -0.006 -0.001 0.021 -0.101 0.097
k = 14 p 0.000 0.031 0.604 0.000 0.000 0.000

7.5.5. Simulation: Outcome E

Outcomes of test-retest reliability are comparable with outcomes of Cron-
bach’s α. Therefore, the results are not shown here. Also in test-retest reliabil-
ity confidence intervals are wide. However, comparing test-retest reliability with
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Cronbach’s α over the parameter sets shows that test-retest reliability is most
of the times somewhat higher. Nevertheless, it is important that results coming
from the empirical data (matrix X) look like results from the simulated ‘com-
plete’ data (Y ) so that the ‘empirical data’ method gives a good estimate of the
true reliability. Still, this is not the case as results for the empirical data show
much larger confidence intervals than results for the ‘true’ method. Therefore,
using test-retest reliability will not improve upon using Cronbach’s α.

7.5.6. Simulation: Outcome F

Section 7.5.3 showed that αOH mostly overestimates αT . However, Sec-
tion 6 showed that αOH often underestimates αM . Therefore, the relation
αT ≤ αOH ≤ αM approximately holds. Consequently, to get an estimate of
αT using the empirical data, we can consider lower bounds of the empirical
distributions. Table 14 shows the percentages that αT is higher than the lower
bound of the simulated distributions using Method C (where we partially as-
sumed A.3) of Section 6. We see that those percentages are quite high if k is
small. Therefore, taking the lower bound of the empirical distribution makes
sure that we, with small values for k, at least underestimate αT instead of over-
estimating it. Underestimating the truth ensures that more errors are taken to
achieve internal consistency. So, underestimation makes the number of errors
that are reported too safe instead of not safe enough as is the case with overes-
timating. As we mostly overestimated αT using αOH and as we underestimate
it with those lower bounds, we recommend to use lower bounds of the empirical
distributions of Cronbach’s α to estimate αT . This can give us too many error
trials, but having too many is less worse than having not enough errors. Note
that the empirical distributions of Method C is based on violation of assump-
tions A.1 and A.2 of Cronbach’s α. However, results show that this violation
has probably no influence on the value of α, such that the lower bounds are
reliable estimates.

Table 14: The percentage of times that the lower bound of the simulated empirical
distributions using Method C of Section 6 is lower than αT for different values of k
and for parameter sets 1 to 6.

Parameter k
set 2 3 4 5 6 7 8 9 10 11 12 13 14
1 85 77 68 65 57 45 45 43 34 37 34 25 21
2 87 91 88 85 83 82 81 79 74 70 71 68 70
3 95 85 79 76 62 63 62 51 52 51 47 47 47
4 100 97 95 88 81 78 73 66 62 60 58 59 61
5 70 54 44 41 33 25 24 13 15 9 9 5 5
6 97 81 80 75 69 65 61 54 49 49 51 43 40

7.6. Conclusions

The goal of the simulation study was to consider whether the problems as
defined in Section 3.2 really cause bias in Cronbach’s α computed using the OH-
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method. The simulation is also used to find which factors influences Cronbach’s
α and to consider other methods for computing internal consistency. The most
important conclusions are summarised below.

First, αT gives sizable confidence intervals. Therefore, αT itself already
contains a lot of uncertainty. However, in the computation of αT , assumptions
A.1, A.2, and A.3 are fulfilled. Therefore, the uncertainty needs to come from
the fact that different sets of errors are taken in each run of the simulation.

Secondly, αOH shows results comparable with the results of αT . This would
suggest that violating A.1 and A.2 does not really influence the results of the
OH-method. However, it suggests again that, the particular set of errors has
influence.

Furthermore, considering the median of αT − αOH , there is no bias in the
values of α. However, confidence intervals are wide, showing that, especially
when k is small, αOH is not a reliable estimate for αT . However, as k increases,
the estimate αOH becomes more reliable. Additionally, if αOH is an unreliable
estimate of αT it is often the case that αOH overestimates αT such that the
number of errors needed for internal consistency is underestimated. Therefore,
in general, it can be the case that αOH gives an underestimated number of errors
(k∗). However, the higher this number of errors, the smaller the bias in αOH .

Finally, as for small k confidence intervals are wide, we cannot use αOH as
a reliable estimate for αT for smaller values of k. Nevertheless, for small val-
ues of k the lower bound for the empirical distributions of α is almost always
underestimating αT . Underestimating is safer than overestimating (αOH over-
estimates αT ). Therefore, we can use this lower bound as an estimate for αT
for small values of k and we can use αOH as estimate for αT if k increases (and
confidence intervals become smaller). Note that, to infer conclusions from the
confidence intervals, they need to be computed using parameter estimates from
the empirical data in the simulation.

8. Recommendation

Using the conclusions of Sections 6 and 7, we could consider which number
of errors (k∗) would be decided for the empirical data of Section 4. The con-
clusions give the following procedure to find k∗. First, we need to estimate the
parameters of the DGP based on the empirical data, so that we can create an
appropriate parameter set. For this parameter set, the parameter estimates of
Section 5.2 and Appendix B are used. Using this parameter set, we can simu-
late lower and upper bounds of the difference αT −αOH . From these confidence
intervals, we can decide the value of k for which αOH becomes a reliable esti-
mate of αT . Then, the lower bounds (for smaller values of k) of the empirical
distribution of Cronbach’s α of Method C (see Table 10) can be used to at least
underestimate αT . If these lower bounds already show high values of α, we can
find the corresponding number of errors to obtain k∗. If not, we consider αOH
for values above the k coming from the confidence intervals. As those values for
αOH are reliable, we can simply find an α that is high enough. We will only
give a recommendation for ERN values as we mostly discussed those values.
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First, the plots for αT and αOH for the simulated version of the empirical
data are shown in Figure 12. Figure 12b shows that the simulated versions of
αOH are higher than the actual αOH . Therefore, simulation of the empirical
data gives an overestimated Cronbach’s α in the OH-method. Accordingly, there
is a high probability that αT is also overestimated. Therefore, we cannot use
αT of Figure 12a to find the number of errors. However, as both αT and αOH
are being overestimated, the differences αT − αOH do probably give accurate
results.
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Figure 12: The values for Cronbach’s α when using the simulated version of the empir-
ical data together with Cronbach’s α coming from the OH-method from the empirical
data.

To find k∗, the first step is to find the value of k for which the confidence
intervals of αT − αOH are small, such that αOH is a reliable estimate of αT .
Table 15 shows the lower and upper bounds for the histograms of αT −αOH for
different values of k. Suppose that we assume that estimates of αT are reliable
if uncertainty is smaller than 0.10. Then, the number of errors needed for αOH
to be a reliable estimate of αT , based on a 95 percent confidence interval, is
equal to ten (see Table 15). So, from k = 10 onwards, αOH can be used to find
the number of errors necessary to have internal consistency.

For all values of k smaller than ten, the lower bounds of the empirical distri-
bution of α in Method C do probably give an underestimation of αT , which is
more safe than an overestimation. Table 10 shows that for values of k smaller
than ten, the lower bound is smaller than 0.50. Therefore, we consider the val-
ues for αOH in Table 8 for k ≥ 10. We see that αOH ≥ 0.50 when k = 10,
indicating that ten errors will be enough to have internal consistency, or, that
k∗ = 10. However, note that, αT can still be equal to 0.48 as the lower bound in
Table 15 with k = 10 is -0.09. Furthermore, note that taking α equal to 0.50 is
low. Many studies consider α to be high enough when it is at least 0.70. Doing
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the procedure for this value of α would suggest that we need more than fourteen
errors.

Table 15: The lower and upper bounds of the simulated histograms for αT − αOH for
ERN for the simulated version of the empirical data.

k 2 3 4 5 6 7 8
Lower bound -0.54 -0.29 -0.21 -0.23 -0.16 -0.18 -0.14
Upper bound 0.30 0.14 0.12 0.14 0.12 0.10 0.06
k 9 10 11 12 13 14
Lower bound -0.14 -0.09 -0.10 -0.09 -0.08 -0.08
Upper bound 0.07 0.08 0.08 0.07 0.06 0.05

The number of errors needed to have internal consistent ERPs is equal to
ten if we assume a maximum uncertainty of 0.10. This is more than eight errors
which was concluded in the OH-method. Therefore, considering the particular
empirical data set of Section 4, this recommended method suggest more errors
needed for internal consistency than the OH-method does.

9. Conclusion and Discussion

Present studies relate average ERPs to psychological disorders. In those
studies, average ERPS are often derived as the average ERPs over all error
trials. However, if a participant only made a few errors, this average can be
unreliable. Therefore, Olvet and Hajcak (2009), Marco-Pallares et al. (2011),
Pontifex et al. (2010), Meyer et al. (2013), Rietdijk et al. (2014) used the OH-
method to find the number of errors that makes ERPs internal consistent. This
number of errors (k∗) is used as a selection criterion and average ERPs are only
derived for participants that failed more than k∗ times.

The main purpose of this research was to examine the OH-method. Namely,
the OH-method ignores many error trials and it violates the assumptions of
Cronbach’s α. Therefore, it is possible that the number of errors (k∗) coming
from the OH-method is biased. Secondly, in the derivation of average ERPs,
many studies use all error trials to compute an average. However, including all
error trials only gives reliable ERPs if the brain activity values within a person
are independent over the error trials. Therefore, another goal of this research
was to justify averaging over all error trials.

We started with examining independency across brain activity within par-
ticipants, as finding a selection criterion is useless if averaging all error trials
is not justified. For this purpose, we divided independency in two issues. We
considered whether ERPs change over time by testing for a trend and we de-
cided whether different stimuli give different ERPs. For this last purpose, we
modelled the ERPs using a random parameter model. We concluded no dif-
ferences in brain activity values over time and for different stimuli. Therefore,
brain activity within a participant is independent over the error trials, so that
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averaging all error trials is justified. Thus, research on the selection criterion,
or, on the OH-method, is useful.

To examine the OH-method, we first considered empirical distributions of
Cronbach’s α. It turned out that taking different sets of error trials can give
completely different values of α. However, permuting the same set of error trials
did not change the value of α in case that k = Km, indicating that the specific
set of errors matters but violation of the assumptions does not.

We also considered a simulation study, where we generated data for 18 dif-
ferent parameter sets. From this simulation, the following can be concluded.
The violation the assumptions of Cronbach’s α does not give bias in the values
of α. However, the fact that specific sets of errors are considered does give bias.
Furthermore, confidence intervals for small values of k, show that αOH is an
uncertain estimator of αT . The size of this uncertainty can cause serious bias in
the number of errors that is needed to have internal consistent ERPs. However,
when increasing k, the confidence intervals become smaller, indicating less bias,
or, in other words, showing that αOH becomes a more reliable estimate for αT .

In sum, deriving ERPs by averaging all error trials is justified. Therefore,
it is important to find the number of errors that makes this ERPs internal
consistent. For finding this number of errors, the OH-method can be used if the
two problems arising from this method do not bias the results. First, violation
of the assumptions of Cronbach’s α does not give much bias. However, the
particular selection of errors used to compute Cronbach’s α can bias the value
of α. Therefore, the number of errors coming from the OH-method can be biased
because of a selection of errors is used to compute Cronbach’s α. Nevertheless,
this bias only occurs for smaller values of k.

The simulation study also gave another method to find the number of errors
that is needed for internal consistency. Applying this method to the empirical
data shows that 10 errors are needed for internal consistency, instead of 8 as
decided in the OH-method. However, this result is based on the fact that having
α ≥ 0.50 would be high enough.

This research contains some doubts that can be thought of. First, ERPs are
measured when it is observed that participants make errors. Now, it can well be
the case that a participant is not aware of making an error. Then, the brain of
this participant do not show ERPs. However, we will use these errors as if they
showed real ERPs. This can create bias in the average ERP. Therefore, it can be
interesting for future research to also ask participants about the consciousness
of making an error. Secondly, we saw in Section 8 that αOH based on simulated
data (using parameter estimates of the model of Section 5.2) overestimates αOH
based on empirical data. This would suggest that the model of Section 5.2 does
not exactly generate the empirical data. This can be due to the fact that the
assumptions underlying this model are not correct. More research on correct
models is preferable. Also, in practice, most researchers advise at least a value
of α that is higher than 0.70. In this case, the empirical data showed that
k∗ = 26 for the OH-method. However, to obtain this k∗, many participants
were excluded because of not having at least 26 errors. Therefore, to decide
whether αOH is reliable in this case, simulated data based on a parameter set
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with correct parameters can be performed. Further, as the main purpose of
most studies is to derive reliable ERPs, future research can be developing an
EEG system where average ERPs are directly measured. Then, when averages
do not differ anymore, the participant can exit the experiment. In this way,
all participants give usable average ERPs and none of the errors is ignored.
Besides, problems coming from using Cronbach’s α are avoided.
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Appendix A. Derivation of Cronbach’s α Being the Lower Bound of
Reliability

In this appendix, we will derive the fact that Cronbach’s α is the lower
bound of the reliability following Eggen and Sanders (1993). Note that nota-
tion differs from notation used throughout the paper. Cronbach’s α measures
internal consistency of items. Items can be, for example, questions in surveys.
Usually, there are multiple respondents for those items. That is, we measure an
item score xij for respondent i in item j. However, mostly there is noise in the
measurements. Therefore, the observed score can be decomposed as

xij = tij + eij ,

where tij is the true item score and eij is the measurement error which is un-
correlated with itself and the true scores and which has expectation zero. In
repeated measures, a constant value of tij is expected within a respondent. To
measure the reliability of the observed values, the following measure is used

ρ2xt =
σ2
t

σ2
t + σ2

e

. (A.1)

Now, the observed values are reliable when ρ2xt is close to one, or, in other words,
when there is no measurement error (σ2

e ≈ 0). The problem is that Equation
(A.1) contains unknowns. Therefore, the reliability needs to be estimated. For
this purpose, we use the following fact

ρ2xt ≥
K

K − 1

(
1−

∑K
j=1 σ

2
x.j

σ2
x

)
,

where σ2
x.j

is the variance of the jth question over all respondents and σ2
x is the

variance of the total scores for each participant. The sample version of the right
hand side is exactly Cronbach’s α and this is a lower bound for the reliability
of the observed scores. To obtain this inequality, we start with considering the
variance of the difference between two true scores (for two items a and b)

σ2
t.a−t.b = σ2

t.a + σ2
t.b
− 2cov(t.a, t.b) ≥ 0,

where, for example, t.a can be seen as true scores for item a over all respondents.
Now, we rewrite this as∑

a6=b

(
σ2
t.a + σ2

t.b

)
≥ 2

∑
a6=b

cov(t.a, t.b). (A.2)

We also consider the sum, where the same pairs of items are allowed, or,∑
a

∑
b

(
σ2
t.a + σ2

t.b

)
= 2K

∑
a

σ2
t.a

= 2
∑
a

σ2
t.a +

∑
a6=b

(
σ2
t.a + σ2

t.b

)
≥ 2

∑
a

σ2
t.a + 2

∑
a6=b

cov(t.a, t.b),
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where the inequality comes from Equation (A.2). Looking at those equations,
we can write

(K − 1)
∑
a

σ2
t.a ≥

∑
a6=b

cov(t.a, t.b).

Furthermore, we can write the ‘true’ variance as

σ2
t = σ2(

∑
a

t.a)

=
∑
a

σ2
t.a +

∑
a 6=b

cov(t.a, t.b)

≥ K

K − 1

∑
a 6=b

cov(t.a, t.b),

where, using the fact that the measurement error is uncorrelated with itself and
the true score, the last term can be written as∑

a 6=b

cov(t.a, t.b) =
∑
a6=b

cov(x.a, x.b) = σ2
x −

∑
a

σ2
x.a
.

Now, we have

ρ2xt =
σ2
t

σ2
x

≥ K

K − 1

σ2
x −

∑
a σ

2
x.a

σ2
x

=
K

K − 1

(
1−

∑
a σ

2
x.a

σ2
x

)
,

such that we have a lower bound for the reliability. The sample version of
this lower bound is called Cronbach’s α, which contains quantities that can be
estimated.

Furthermore, using this derivation, the range of Cronbach’s α can be decided.
Combining Equation (A.1) with the fact that variances are always non negative
results in the fact that ρ2xt cannot exceed one. Now, as ρ2xt ≥ α, it is impossible
that α will exceed one. Therefore, the upper bound of Cronbach’s α is equal
to one. However, Cronbach’s α cannot be bounded from below such that α ∈
(−∞, 1].
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Appendix B. Estimation of the Parameters in the Model for Correct
Trials

This section gives an impression of the parameters in Equation (4). First,
we will focus on how to estimate the parameters in Equation (4). This is not

straight forward as the variable
∑j−1
l=j−4 pil is in the model. Therefore, we need

to estimate sequential, so that we can update this term each trial. For estimating
the parameters, a Maximum Likelihood procedure is used. The probability of
failure depends on a number of variables as described in Equation (4). To ensure
probabilities as the outcome of the model, a logistic transformation is suitable.
The log likelihood function is given by

log

 N∏
i=1

J∏
j=1

g

γ, δ, ρ|p∗ij , dj , j−1∑
l=j−4

pil


=

N∑
i=1

J∑
j=1

p∗ij log

F
γzj + d′jδ + ρ

j−1∑
l=j−4

pil


+

N∑
i=1

J∑
j=1

(
1− p∗ij

)
log

1− F

γzj + d′jδ + ρ

j−1∑
l=j−4

pil

 ,

with J the number of trials that are used for estimation. Parameter estimates
are obtained by maximizing this log likelihood function. The estimates for γ, δ
and ρ are

γ̂ = 0.32 , δ̂ =


−2.89
−1.65
−2.84
−1.52

 , ρ̂ = −1.21

First, γ̂ is positive, indicating a higher probability of failing in the beginning
of the experiment. Further, all values in δ̂ are negative. They correspond to the
stimuli in the same order as in Table 1. From the values of δ̂ it can be seen that
incongruent stimuli have a higher chance, that is, higher estimate, to become
an error than the congruent stimuli. At last, ρ̂ is negative, which implies that
more errors in the current past, will give a smaller chance of making an error
in the next iteration. This is not what we expected. However, in the empirical
data, having an error followed by a correct response also occurs many times,
such that ρ can be estimated negative.

Furthermore, the error process for the first participant is shown in Figure
B.13. The line indicates whether a probability is high enough to be translated
to a real error, so that, everything above the line is translated to an error. We
see that many errors occur in the beginning. Those results change if an error
term is added to the probability in the simulation. Then, errors also occur in
the end of the experiment.
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Figure B.13: The error process for the first participant.
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