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Abstract

Several planning and scheduling problems are involved within rail freight
transportation planning. One of these problems is the demand-to-train
allocation problem, which is the assignment of demands to trains. In
this thesis a method is presented to solve this demand-to-train allo-
cation problem for a hub-and-spoke network. The problem is divided
into two subproblems: the blocking problem and the block-to-train
assignment problem. Hereby, demands are first combined into blocks,
after which these blocks are assigned to trains. A heuristic is presented
to solve the blocking problem, while we also investigate the case where
we do not create blocks and solve the demand-to-train allocation prob-
lem directly. The block-to-train assignment problem is formulated as
an IP model. For this problem a Lagrangian heuristic and a greedy
heuristic are created to solve the problem. The IP model and heuris-
tics were tested on several problem instances with different problem
sizes, in case of blocking and in the case where the demand-to-train
allocation problem is solved directly. For all problem instances it was
better, in terms of both solution value and computation time, to first
create blocks instead of solving the problem at once.
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1 Introduction
Rail freight transportation is an important mode of freight transport. In rail
freight transportation demands are transported from their origin to their
destination, by means of a locomotive and a certain number of wagons, over
a railroad network. Two other very important modes of freight transport
are road transport (small demands and short distance) and sea transport
(large demands and large distances). Rail freight transport is, with regard
to the demand size and travel distance, in between the other two modes.
A major difference between road and/or sea transport and rail transport is
that the physical infrastructure is already there (sea transport) or is mainly
used by cars (road transport), while in rail transport the infrastructure is
especially build for the rail transport itself.

Real-life rail networks are very large, complicated networks where, daily,
a large amount of demands is transported from their origin to their destina-
tion. This makes the planning of the transport of demands very difficult, but
also very important (a good planning can save a lot of money). There are,
due to the size of real-life problems, no efficient techniques to find the optimal
overall rail freight transportation planning for real-life problems. Heuristics
are used to find efficiently very good, near-optimal solutions for the different
planning problems involved with rail freight transportation planning.

Rail freight transportation planning has, in general, three main levels:
strategic, tactical and operational (Assad [3]). The most important dif-
ference between these three main levels is the planning horizon. Strategic
decisions are involved with long term transportation planning. The tacti-
cal level consists of decisions with medium-term planning horizons, and it
focuses especially on the optimal use of resources. Finally, the operational
level is associated with short-term decisions. These three different levels are
related to each other. To put it simply, the strategic decisions are input for
the tactical decisions and the tactical decisions are input for the operational
decisions.

As stated earlier, rail freight transportation planning consists of sev-
eral planning and scheduling problems. The most important planning and
scheduling problems for railroads are: empty car distribution problem, the
blocking problem, train scheduling problem, block-to-train (BTA) assign-
ment problem, locomotive scheduling problem and crew scheduling problem.
The empty car distribution problem ensures that there are always enough
wagons available at each location to transport the demands. In this problem
empty wagon moves are created that restore the balance of empty wagons
at all locations. These empty wagons moves are demands of empty wagons,
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and thus, treated as demands in the rest of the overall problem. A very
important problem for railroads to be solved is the blocking problem. In
this problem individual demands are combined into blocks. A block is a
set of demands which are temporarily joined during their trip between a
common origin (block origin) and destination (block destination) (Camp-
bell [6]). Mathematically, the blocking problem is a multicommodity flow,
network design and routing problem (Ahuja et al. [2]). In multicommodity
network design (MCND) problems, multiple commodities, such as individual
demands, must be routed between different points of origin and destination
on the available arcs (Yaghini and Akhavan [22]). Next, the train scheduling
problem determines the origins, destinations, routes and days of operation
for trains. As the blocks and trains are created, the blocks should be assigned
to the trains, and this is done in the BTA problem. Then, locomotives (lo-
comotive scheduling problem) and crews (crew scheduling problem) should
be assigned to the trains. All these individual problems should be solved in
such a way that the costs related to the problems are minimized.

In some real-life rail networks both freight and passenger transport are
routed over the same network. In these cases, passenger trains are mostly
given priority. This means that the route of a freight train can only be
scheduled in such a way that it does not influence the schedule of passenger
trains. This is a huge restriction for the train scheduling problem.

This thesis is based on a project of Ab Ovo for a European railway
company. The type of the network described in this thesis is based on the
network of this European railway company. Passenger trains are also mov-
ing on the same network as the freight trains, and therefore, a network with
also passenger trains moving on it is considered. It is assumed that a set
with possible train schedules which are not in conflict with the passenger
trains is known beforehand (for example, using historical data). As a set of
trains is known beforehand, the train scheduling problem is not considered
in this thesis. The problem discussed in this thesis is to choose a subset
of the set with possible train schedules and assign the demands to these
trains. This problem is called the demand-to-train allocation problem and
is a combination of two of the problems earlier discussed in this chapter: the
blocking problem and the BTA problem. We present an exact formulation
for the BTA problem and two different heuristics for each of the subprob-
lems. So, first the demands are combined into blocks and then these blocks
are assigned to trains from the set with possible train schedules. Then, auto-
matically a subset of the trains is chosen (all trains with demand(s) assigned
to it).

The thesis is organized as follows: In Chapter 2 the problem is described
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in detail. The first part of this chapter is about the rail network and in the
second part both subproblems are described. Chapter 3 reviews literature
about both subproblems: the blocking problem and the BTA problem. The
mathematical model of the BTA problem is described in Chapter 4. For
both subproblems a heuristic to solve the problem is presented in Chapter
5. In Chapter 6 the results of the IP formulation and the heuristics are
shown and compared. Finally, a conclusion and some points with room for
improvement are given in Chapter 7.
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2 Problem Description
In this chapter the demand-to-train allocation problem is described. The
problem we discuss is based on a project of Ab Ovo for a railway company in
Europe, as stated in Chapter 1. Therefore, some details of the problem are
especially for the problem of this railway company in Europe. The different
types of locations, demands and trains are good examples of details of the
problem that are specifically part of this problem.

In the first three sections of this chapter all the components of the net-
work will be described. The fourth section is about the network itself after
which the demand-to-train allocation problem is described in the last sec-
tion. The first three sections are divided as follows: Section 2.1 describes
the different types of locations that are present in the network, Section 2.2
describes the different types of demands and in Section 2.3 the different
types of trains are described.

2.1 Locations

At locations, wagons can be stored, attached to trains or detached from
trains. We distinguish two different types of locations: service locations
and base locations. The combination of these two locations can be seen
as a hub-and-spoke network. For some types of demands the network is
indeed treated as a hub-and-spoke network. This hub-and-spoke network is
explained in Section 2.4. The two types of locations are described below:

• Service locations
Service locations are small locations where the origins and destinations
of the demands are. Customers are connected via railroad tracks to
service locations. Demands are first shunted from their customers
to the origin (service location), after which the demands are further
transported via the rail network to their destination (service location).
Then, the demands are shunted from the destination to the customer.
Industries with customers of a railroad company are, among others:
mining, logging, iron ore, and paper. Some examples of customer
locations are: paper mills (paper), forests (logging), mines (mining)
and ports (container transport). Every service location belongs to
exactly one base location.
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• Base locations
Base locations are larger, centralized locations which consist of a lot
of railroad tracks next to each other. Base locations are locations
where a lot of operations are performed, such as storing wagons (at
the railroad tracks) and reclassification, which is the reallocation of
demands among trains. This is done at the railroad tracks, where
the demands are attached to and detached from trains. Every base
location is connected with several service locations.

Reclassification at base locations is necessary when, for example, two de-
mands with different destinations are combined on one train. This situation
is shown in Figure 1. In this figure a1 and a2 are service locations of base
location Abase, locations Bbase and Cbase are two other base locations. At
service location a2 two demands with different destinations, b1 and c4, are
both loaded on a train and transported to base location A. At the same
time a demand for location c8 is transported by another train from service
location a1 to base location B. In this simple example, the most easy solu-
tion is via a reallocation of the demand at base location A. At this location
(A) both demands that need to be transported to a service location of C
(demands c4 and c8) are combined and put on a train to base location C.
The demand for service location b1 is put on a train to base location B, as
shown in Figure 1. Now both trains can go immediately to the base location
of the destination of all demands loaded on the train.

Abasea1

a2

Cbase

Bbase

b1, c4

c8 c4, c8

b1

Figure 1: Example of a reallocation of demands among trains at a base
location
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2.2 Demands

Railway companies make transport agreements with their customers. These
agreements consist of one or more subcontracts. In these subcontracts the
demand of a certain product, that the customer wants to transport between
two fixed locations, is stated. This can be a yearly demand, but it is also
possible that in the contract it is stated that the customer wants to transport
a certain amount of a product every Tuesday, for example. Individual daily
demands are a result of these contracts. A single demand is defined by its
origin, its destination, its weight, its length, the number of wagons, a pick
up time-slot, a delivery time-slot and the type of demand. The first five
characteristics of a demand speak for themselves, but the last three should
be explained: A pick-up time slot is a time-slot in which the demand should
be picked up at its origin and a delivery time-slot is a time-slot in which
the demand should be delivered at its destination. The different types of
demand are explained below:

• Customer demand
These demands are very large, single demands of one customer that are
transported directly from their origin to their destination. These de-
mands are so large that, due to costs, they are not combined with other
demands on one train. If the number of wagons needed to transport a
single demand is above a certain number, the demand is indicated as
a customer demand.

• Customer in circular demand
Like the customer demands, the customer in circular demands are very
large, single demands of one customer. The only difference between
those two demands is that for customer in circular demand the wagons
used to transport the demand should also be transported back to their
origin location. The reason that wagons are directly transported back
to their origin is that between some pairs of locations there is only
transport from one location to another, and not vice versa.

• Wood demand
Wood demands are also transported directly from their origin to their
destination, because special handlings are needed for the transport of
wood. Wagons with wood demands are picked up in forests on small,
simple railroad tracks and these wagons are delivered at, and can be
parked in, a wood factory. There, inside the factory, the trunks are
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lifted from the wagons. Due to the special handlings involved with the
transport of wood demand, these are treated as a separate type. At
most two wood demands can be combined on one train, but only if
the origin and destination of both demands is the same.

• Liner demand
In contrast to the other demands, liner demands are not transported
directly from their origin to their destination. A liner demand is
smaller than a customer demand and can therefore be combined to-
gether with other liner demands on one train. This can result in several
stops and a reallocation of demand among trains at base locations. It
is therefore quite normal that a single liner demand is transported via
several trains from its origin to its destination.

• Empty wagons demand
These demands consist of a number of empty wagons that should be
transported from one location to another location. These moves are
needed for the re-positioning of wagons. The flows of incoming and
outgoing wagons at most locations are not equal. Therefore, empty
wagon moves are needed to ensure that locations have enough wagons
available to transport the demands.

In this thesis we mainly focus on the demand-to-train allocation problem
for the liner and empty demands, as for these demand types it is allowed to
assign more than just one or two demands to a single train. This makes the
problem for these two demand types the most difficult, and thus, the most
interesting to investigate.

2.3 Trains

In this thesis a train is a scheduled route where several wagons can be moved
by a locomotive. A railway company should apply for a train schedule to
the infrastructure manager. The infrastructure manager determines whether
the train schedule is assigned to the railway company. Passenger trains are
mostly given priority over freight trains. Railway companies should apply
for train schedules a long time in advance. A company applies for many train
schedules, so that, even if a lot of these requests are refused, all demands
can be transported from their origin to their destination. This will result in
a set of possible time schedules for freight trains that is known beforehand.
Train routes are only performed if at least one demand is assigned to a train.
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Assigning demands to trains is restricted, because trains have a maximum
length, a maximum weight and a maximum number of wagons that can be
assigned. Demands can be assigned to trains as long as these bounds are
not exceeded, and the trains are in the right time window. For a pick up of
a demand at its origin this means that the train should be in the right time
window with respect to the pick up time-slot of the demand.

Another characteristic of a train is its type. There are different types of
trains, and each of them is able to transport one or more types of demand.
The different types of trains are listed and explained below:

• Customer train
A customer train is a train that is able to transport both types of
customer demands. Such a train transports a single customer demand
(as explained in Section 2.2) directly from origin to destination. These
trains consist of only one (customer) demand.

• Wood train
Wood trains are only used for the transport of wood demand. These
trains also transports the demand(s) directly from origin to destina-
tion. In contrast to customer trains, wood trains can consist of more
than one demand. At most two demands can be combined on one
wood train.

• Liner train
These trains are used for the transport of liner demand and empty
wagon demand. They pick up the demands from service locations,
which belong to one base location, and transport these demands to
their base location. Liner trains are also used to deliver the demands,
which arrived at a base location, to its service locations. In short,
liner trains transport demands between a base location and its service
locations. Liner demands that originates from service locations are
always first transported to their base location, after which the demands
can be reclassified at the base location. In contrast to the first two
train types, liner trains can consist of many demands, as long as the
maximum length, weight and number of wagons are not exceeded.
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• Base train
Base trains are used to transport liner demands and empty wagon
demands between base locations. A demand is picked up by a base
train at the base location that belongs to its origin, and then further
transported, possibly via other base locations and by other base trains,
to the base location that belongs to its destination. As with liner
trains, base trains can consist of many demands as long as the upper
bounds on length, weight and number of wagons are not exceeded.

2.4 Network

The transport of liner demands can be seen as a hub-and-spoke network,
where the base locations are the hubs and the service locations as spokes.
Transport between hubs and their spokes is done by liner trains and trans-
port between hubs is done by base trains. The flow of all the other demands
is very simple, just directly from origin to destination, and is therefore not
further explained in this section.

Figure 2 shows the flow of liner demands in a simple hub-and-spoke
network with service and base locations as hubs and spokes, respectively.
The flow of liner demands from service locations of base location B to their
destinations is shown in this example. The liner train starts at service
location b3 and moves via b2 and b1 to base location B while picking up
the demands at all these locations. At base location B the demands are
unloaded and loaded on two different base trains, one base train for the
demands (a1 and a3) for the service locations of base location A and another
for demands c2 and c3 for base location C. When these base trains arrive
at their destination (A and C), the demands are unloaded and loaded on a
liner train that will deliver the demands at their destinations.

10



Abase

Bbase Cbase

a1

a2

a3

b1

b2

b3 c1

c2

c3

c2

c3

a1

a3

demand for a1 at origin b3

a block with demands a1 and a3

base train (with one block
assigned to it)

liner train (with one block
assigned to it)

[a 1,
a 3]

[a
1 , a

3 ]

[a3] [a3 ]

[c2, c3]

[c2, c3]
[a1, a3]

[a1 , a3 ]

[a
1 , a

3 ]

[c3 ]

[c2, c3]

[c 3
]

[c2 ,c3 ]

Figure 2: Example of a flow of liner demands through the hub-and-spoke
network with base and service locations as hubs and spokes, respectively

2.5 Demand-to-Train Allocation Problem

The goal of the demand-to-train allocation problem is to assign demands
to trains in such a way that all demands are transported from their origin
to their destination and the total cost are minimized. Costs involved with
this problem are, on the one hand, all costs with respect to the transport
and handling of demands, and on the other hand, penalty costs if demands
arrive too late at their destination. These penalty costs ensure that most of
the demands are delivered on time.
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As explained in Section 2.2 there are different types of demands, and these
demands have to be assigned to trains to ensure that they are transported
from their origin to their destination. The problem consists of all demands
of an ’average’ week; a week that is representative for all the weeks in a
year. This week is called a modelweek. One week is chosen as the length
of the planning period, because train schedules are usually repeated every
week (Jha et al. [11]).

The decisions that should be taken for the demand-to-train allocation
problem can be divided into two subproblems: (i) combining demands into
blocks (blocking problem) and (ii) choose a subset of all possible trains and
assign blocks to these trains (BTA problem). These two subproblems are
described in the next two subsections.

2.5.1 Blocking Problem

In the blocking problem demands are combined into blocks. The idea behind
combining demands into blocks is that in the second subproblem there will
be less possibilities to assign the demands to the trains. This will decrease
the computation time for the block-to-train assignment problem. On the
other hand, it is likely that the solution is worse as the solution space is
limited. Here it is important to find a good balance between the computation
time and the quality of the solution. This balance will be different for
every problem. For small problems the computation time is no problem and
individual demands can be treated as a block of one demand, while for very
large problems many blocks are needed to ensure that the computation time
is acceptable.

As explained in Section 2.2 the problem we discuss has large demands
(customer demands) that cannot be combined with other demands. This
means that these demands are a block, consisting of one demand. The other
types of demand can be combined into blocks. These demands should be
combined into blocks in such a way that the total block distance, which is the
travel distance from the origin to the destination of a block, and the number
of reclassifications, which is the number of times a demands is changed from
block, is minimized.

It is not possible to assign all demands to one block, as blocks have
a maximum weight, maximum length and a maximum number of wagons
that can be assigned. Demands can be assigned to blocks as long as these
bounds are not exceeded. Each block has an origin and a destination, and
all demands in a block are transported from the origin to the destination of
that block. At the destination of a block the demands can be reclassified
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into new blocks and transported further. In the second subproblem these
blocks will be assigned to trains.

See Figure 2 for an example of a block; demands a1 and a3 are combined
into a block with origin b3 and destination a1. At location a1 demand a1 is
unloaded and demand a3 is reclassified into a new block from a1 to a3, where
it is delivered. The number of reclassifications of demand a1 is zero, as it
is only assigned to one block (from its origin to its destination). Demand
a3 is reclassified once, namely at location a1 where it is reclassified into a
new block. The other two demands shown in the example (c2 and c3) are
together in a block from b1 to c2. Demand c3 is also assigned to a block
from b2 to b1 and to a block from c2 to c3. This demand is reclassified twice,
at b1 and c2.

2.5.2 Block-to-Train Assignment Problem

As the blocks are created, they should be assigned to trains. This is done
in the block-to-train assignment (BTA) problem. As stated in Section 2.3,
the possible schedules of the trains are known beforehand. If all the blocks
are assigned to trains, we know which trains are chosen (the trains with
blocks assigned to it) and which trains are not chosen (the trains without
blocks assigned to it). The blocks should be assigned to trains in such a
way that a certain cost function is minimized. Costs involved with this cost
function are, among others: fixed costs for using a train, variable costs for
the transport of the blocks of demands and (penalty) costs when a demand
arrives too late at its destination.

To illustrate this problem with an example, take again a look at Fig-
ure 2. Five trains (three liner trains and two base trains) are chosen and
blocks [a1, a3], [c3] and [c2, c3] are assigned to the liner train from the service
locations of B to base location B, block [a1, a3] is assigned to the base train
from B to A, etcetera. When solving the BTA problem the blocks are given
(created in the blocking problem), and these should be assigned to trains.
In the example of Figure 2 it was in the BTA problem, for example, also
possible to assign block [a1, a3] to the base train from B to C and to a base
train between C and A. Then, the base train from B to A is not chosen.
These kind of decisions are involved with the BTA problem.
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3 Literature Review
From the previous chapters it has become clear that this thesis deals with
a demand-to-train allocation problem, which consists of two subproblems:
combining demands into blocks and assigning these blocks to trains. In the
literature most papers focuses only on one of the subproblems. Therefore,
the literature of both subproblems is discussed separately. Section 3.1 re-
views literature about blocking problems. In Section 3.2 we discuss some
papers about BTA problems.

3.1 Blocking Problems

One of the first papers with a model for blocking problems was Bodin et al.
[5], in 1980. They formulated the problem as a nonlinear, mixed-integer
programming (MIP) model. The model is a multicommodity flow problem
with additional side constraints, such as yard and block capacity constraints.
In 1986, Van Dyke [21] presented a heuristic to improve an existing blocking
plan. The heuristic is based on an iterative procedure that tries to improve
the current blocking plan by solving a series of shortest-path problems on
a network where the arcs represent blocks. In Keaton [12] and Keaton [13]
a Lagrangian relaxation approach is presented to solve a combined problem
of blocking, train scheduling and block-to-train assignment. The problem
is solved very efficiently when considering no limits on the train size, but
then the solution will consist of overloaded trains. Afterwards, heuristic
adjustments are needed to get a feasible solution. When taking into account
the limits on train size, Keaton found out that it was impossible to find
good lower bounds with their approach. A simulated annealing approach
is presented in Huntley et al. [10], in 1995, to solve the blocking problem.
Newton [18] models the blocking problem as a directed network budget
design problem with constraints on yard and block capacity, and restrictions
on legal blocking paths. He indicates paths as legal paths if the number
of handlings on a path does not exceed a certain upper bound and if the
path is in the set with all possible routings, for a certain commodity. A
branch-and-price algorithm is presented to solve this problem. In Newton
et al. [19] a branch-and-price algorithm is developed to solve the blocking
problem. New paths are generated by solving a shortest path problem.
The model consists of the same type of constraints as in Newton [18]. In
1998, Gorman [8] developed a genetic search algorithm and a tabu-enhanced
genetic search to construct operating plans, including, among others, both
blocking and block-to-train assignment. The tabu-enhanced genetic search
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performed clearly better than the genetic search algorithm. In Kwon et al.
[14] a method is developed to improve an existing blocking plan and block-
to-train assignment. They use a column generation approach to solve the
problem. Barnhart et al. [4] use a Lagrangian heuristic to solve the blocking
problem. The problem is divided into two subproblems, whereby the storage
requirement and computational effort are reduced. In contrast to a lot of
other papers Ahuja et al. [2] presented an arc-based (instead of path-based)
multicommodity network design (MCND) model. The problem is solved
with a very large-scale neighborhood (VLSN) search algorithm. The results
of this algorithm were great when they applied it to data from several major
railroads. In 2011, Yue et al. [25] presented an Ant Colony algorithm to solve
the blocking problem. In the same year, Yaghini et al. [23] also proposed
an Ant Colony algorithm. The objective function of the model of Yaghini
et al. [23] only consists of variable cost for the flow of the demands, while
Yue et al. [25] also takes into account reclassification cost. The difference
between these two models in terms of constraints is that Yaghini et al. [23]
has constraints on the capacity of a block and the number of blocks that
can originate at a location, and Yue et al. [25] not. Yue et al. [25] has
one constraint that is not in the model of Yaghini et al. [23], and this is a
constraint on the capacity, in wagons, of a railroad line. Both models have
a constraint on the reclassification capacity at a location. In 2012, Yaghini
et al. [24] proposed a genetic algorithm to solve the blocking problem. They
used the same model as Yaghini et al. [23].

This review of the literature of blocking problems shows that, since 1980,
researchers presented a lot of different approaches (Lagrangian relaxation,
branch-and-price, genetic search, column generation, VLNS, etcetera) to
solve the blocking problem. It also shows that there are several objectives
(variable flow cost and classification cost) and constraints (block capacity,
yard capacity, maximum number of reclassifications at a location, etcetera)
for this problem, which are mostly not combined altogether in a model.
Most models consist of both objectives and just one, two or three (capacity)
constraints.

3.2 Block-to-Train Assignment Problems

The BTA problem is mostly combined with the train scheduling problem
(determine routing and frequency of trains), often referred to as routing and
makeup models. As one of the tasks of these models is to assign blocks
to trains, these models need the blocking policy as input. First, papers
that consider the problem separately are discussed. Then, also papers that
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consider the BTA problem in a combined problem, are discussed.
One of the papers which discussed the BTA problem separately is Nozick

and Morlok [20]. The objective of the model consists of variable cost for the
movement of the demands and some cost for repositioning. A heuristic was
developed to solve the model. The heuristic is an iterative procedure where
the LP relaxation of the model is solved and thereafter the fractional values
are rounded. Another paper that discussed the BTA problem separately is
Jha et al. [11]. In Jha et al. [11] a space-time network, which was developed
by Ahuja et al. [1] for locomotive scheduling on a train network, is described
over which the BTA is formulated as a flow problem. Two multicommodity
network flow formulations are provided for the BTA problem: an arc-based
and a path-based formulation. Jha et al. [11] stated that the path based
formulation is better than the arc based formulation. They use a planning
period of one single day, and the model consists of only one capacity con-
straint, on the maximum number of wagons that can be assigned to a train.
For the path-based formulation all paths are enumerated beforehand. To
restrict the total number of paths for a block, the length of a valid path
between an origin and destination is limited to a specific percentage of the
shortest path between that origin and destination. A greedy heuristic and
a Lagrangian heuristic are used to solve the path-based formulation of the
problem.

Next, some papers with the BTA problem within a combined overall
problem (mostly makeup and routing problems), are discussed. In 1986,
Crainic and Rousseau [7] proposed a multicommodity service network design
model for the makeup and routing problem. A column generation approach
is proposed to solve the model. Haghani [9] proposed, in 1989, a formulation
and a heuristic for a combined problem, consisting of train routing, makeup
and empty car distribution. As stated in the previous section, Keaton [12]
and Keaton [13] presented a Lagrangian heuristic to solve a combined prob-
lem with, among others, block-to-train assignment. Marin and Salmerón
[15] and Marin and Salmerón [16] proposed and analyzed three heuristics,
including simulated annealing and tabu search, for the routing and makeup
problem. Capacity constraints on both trains and yards were considered.
The simulated annealing heuristic turned out to give the best results, but
required more time to solve the problem than the other heuristics. Gorman
[8] developed a genetic search algorithm and a tabu-enhanced genetic search
for a combined problem with, among others, block-to-train assignment and
Kwon et al. [14] developed a column generation approach to improve an
existing blocking plan and block-to-train assignment, as stated in the previ-
ous section. In the paper of Gorman [8], the tabu-enhanced genetic search
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performed clearly better than the genetic search algorithm. Newman and
Yano [17] proposed a heuristic, based on Lagrangian relaxation and Benders
decomposition, to solve the problem.

The literature of BTA problems consists of two different types of papers:
Papers that consider the problem separately and papers that consider the
BTA problem in a combined problem. Most of the papers in the literature
consider the BTA problem in a combined problem. Mostly the BTA problem
is combined in routing and makeup problems, but sometimes BTA problems
are also combined with, among others, the empty car distribution and the
blocking problem. As with the literature of blocking problems, the literature
of BTA problems also shows several different approaches to solve the prob-
lem. Among others, Lagrangian relaxation, column generation, simulated
annealing, tabu search and genetic search approaches are presented in the
papers.

For the block-to-train assignment problem we decided to base it on the
paper of Jha et al. [11]. One of the reasons to choose for this paper is that
their space-time network is created in an efficient way and makes it easy to
model the problem as an IP formulation. We also choose for a path-based
formulation, as they stated that the path-based is better than the arc-based
formulation. Other reasons to choose for this paper are that the algorithm
of this paper was tested on large problem instances and showed good results,
and it is a clear approach which makes it easier to implement.
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4 Mathematical Model: Block-to-Train Assignment
In this chapter the IP formulation of the BTA problem is presented. First,
in Subsection 4.1, a space-time network is described over which the BTA
problem can be formulated as a flow problem. This space-time network is
based on the space-time network from Ahuja et al. [1] and Jha et al. [11].
Thereafter, an IP formulation, based on the IP formulation of Jha et al.
[11], is presented in Subsection 4.2. This formulation is path-based. In
Subsection 4.3 an algorithm is described to enumerate paths for each block.

4.1 Space-Time Network

The space-time network presented in this subsection is based on the space-
time network from Ahuja et al. [1] and Jha et al. [11]. In this thesis the
same terminology, as used in both papers, is used to describe the space-time
network.

The space-time network is denoted as G = (N,A), where N are the
nodes and A the arcs. All nodes correspond to a combination of a train,
a location on the route of the train and the arrival or departure time of
the train at that location. All arcs correspond to a possible flow of blocks
(blocks can be assigned to arcs). In this network the route of a train consists
of several trips. A trip is the movement of a train between two consecutive
locations at which the train stops and where demands can be loaded and
unloaded. In the space-time network a trip is represented by a directed arc
(train-arc) from a train-departure node, which corresponds to the departure
of the train at the origin location of the trip, to a train-arrival node, which
corresponds to the arrival of the train at the destination location of the trip.
A graphical representation of a trip in the space-time network is shown in
Figure 3. If a block is assigned to a train-arc, this means that the block is
transported by this train from the departure of the trip to the arrival of the
trip. Blocks can be assigned to a train as long as the maximum number of
wagons, weight capacity and length capacity of the train, corresponding to
the train-arc, are not exceeded.

D
A

train 1
train-arc

train-departure node
train-arrival nodetime

Figure 3: Graphical representation of a trip
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So far, only the nodes and arcs of individual trips are explained. A train
route consists of several trips, and therefore, consecutive trips should be
linked to each other. This is done by connection arcs. A connection arc
is a directed arc from the train-arrival node of a certain train at a certain
location to the train-departure node of the same train at the same location.
An example is shown in Figure 4. In this example train 1 departs from
location A, stops at location B and moves further to location C. The arc
between the arrival (Barr) at location B and the departure (Bdep) from
location B is a connection arc, and ensures that both trips (A to B and B
to C) are connected. If a block is assigned to a connection arc, it means
that the block is not unloaded at this location and stays on the train. As
with train-arcs, blocks can be assigned to connection arcs as long as the
three different capacities of the train, corresponding to the connection arc,
are not exceeded.

Adep

Barr

Bdep

Carr

train 1

train 1

connection arc

train-departure node

train-arrival nodetime

Figure 4: Graphical representation of a connection arc

The space-time network is still not complete, because there are no nodes
and arcs for the loading and unloading of blocks. Therefore, a new set of
nodes is used, called ground nodes. For each train-arrival node a ground-
arrival node is created with the same location and train attributes. The time
at this node is the time at which the unloading activities are finished. The
train-arrival node is then connected with a directed arc to the ground-arrival
node. This arc is called an arrival-connection arc. For each train-departure
node a ground-departure node is created with the same location and train
attributes. The time at this node is the time at which the loading activities
start. The ground-departure node is then connected with a directed arc to
the train-departure node. This arc is called a departure-connection arc. A
graphical representation of these nodes and arcs is shown in Figure 5, where
A en D are the train-arrival and train-departure nodes of the same train

19



(and thus also connected with a connection arc).

A

GA

GD

D

ground-arrival node

arrival-connection arc

ground-departure node

departure-connection arc

time

Figure 5: Graphical representation of a ground-arrival and ground-departure
node, and an arrival-connection and a departure-connection arc

With these nodes and arcs explained so far, it is not possible for blocks to
change trains. Therefore, the ground nodes of a certain location should be
connected with each other. These arcs are called ground arcs. A ground
node is connected via a ground arc with the ground node corresponding to
the next arrival or departure, at the same location, in time. So, all ground
nodes of a certain location are ordered on their time attribute and then each
ground node is connected with the next node. The last ground node of a
certain location is connected with the first ground node of that location,
to allow a block to be assigned to a train in the next period. If a block is
assigned to a ground arc, this means that the block stays at the location
during the time between the two ground nodes. In Figure 6 an example of
a part of the space-time network is shown (with the ground arcs included).

In the example in Figure 6 the incoming and outgoing trains of a certain
location are shown. First, train 1 arrives at the location and the blocks
assigned to the train can be unloaded via the arrival-connection arc or stay
on the train via the train-connecting arc. The next three events at this
location are: the departure of train 1, the arrival of train 2 and thereafter
the arrival of train 3. For train 3 this location is its destination, whereby it
has no train-connecting arc at this location. The next event is the departure
of train 2. Blocks that were unloaded from train 1 can be assigned to this
train via the ground arcs between the arrival of train 1 and the departure
of train 2. The last events are the arrival and departure of train 4 and the
departure of train 5. The origin of train 5 is this location, whereby there
is no train-arrival node for train 5 at this location, and thus, also no train-
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arrival/departure nodes
ground nodes

train 1

train 1
train 2

train 2

train 3

train 4

train 4

train 5

train arcs
connection arcs
ground arcs

time

Figure 6: Example of a part of the space-time network

connecting arc of train 5 at this location. The curved ground arc between
the departure of train 5 and the arrival of train 1 allows a block to take a
train in the next period.

As the space-time network is described, the BTA problem with respect
to this space-time network can be defined. The idea of the space-time net-
work with respect to the BTA problem is that in this network the blocks are
transported from an origin-node to a destination-node by means of trains.

21



Therefore, the origin-nodes and destination-nodes of a block should be de-
fined. The ground-departure nodes at the origin location of a block can be
chosen as origin-nodes, as at these nodes the decision is made whether the
block is assigned to that train or not. However, it is not a good idea to take
a ground-departure node, corresponding to a train-departure on Friday, as
an origin-node for a block if the block is released four days earlier on Mon-
day, because this means that the block has to wait at least four days at
the location before it is assigned to the next train. Therefore we introduce
a maximum waiting time. Then, all ground-departure nodes, at the origin
location of a block, that are at most the maximum waiting time later than
the release time of the block, are the origin-nodes for that block. For ex-
ample, if the maximum waiting time is one day and the release time of a
block at a certain location is Monday at 10.00, then all ground-departure
nodes at this location between Monday 10.00 and Tuesday 10.00 are possible
origin-nodes.

The destination-nodes of a block are all ground-arrival nodes at the
destination location of the block, as we do not know beforehand with which
train the block will arrive at its destination. For example, a block has as
destination the location whose part of the space-time network is shown in
Figure 6. Then, the destination-node set of that block are all the ground-
arrival nodes, which are in this example the ground-arrival nodes of trains
1, 2, 3 and 4. The BTA problem is then to find a path from an origin-node
of a block to a destination-node of that block.

4.2 IP Formulation

The BTA problem defined in Subsection 4.1 is formulated as an IP problem
in this section. The formulation is path-based, which means that first for
every block all possible paths from the origin-nodes to the destination-nodes
of that block should be enumerated. The enumeration of these paths is
described in Subsection 4.3. The decision involved with this path-based
formulation is to assign at most one path to each block. As stated above in
the introduction of Chapter 4, the IP formulation is based on Jha et al. [11].
Our IP formulation has the same constraints as in Jha et al. [11] plus some
extra constraints. The extra constraints in our formulation are: a constraint
on the maximum weight of a train, a constraint on the maximum length of a
train, a constraint that ensures that a block can be assigned to a path from
the moment that all demands in the block have arrived at the origin location
of the block and a constraint that determines whether a train is used or not.
The objective function is also slightly different from the objective function
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in Jha et al. [11] as we have, next to the costs of the paths that are chosen,
also fixed costs when a train is used. Besides, we also allow a block to be
not transported as we create an ’empty’-path with high penalty costs for
each block. Our IP formulation is shown below:

Sets:

B set of all the blocks created in the blocking problem, indexed by
b

A set of all arcs (train, connection and ground arcs), indexed by a

Db set of all demands that are in block b ∈ B, indexed by d

T set of all trains, indexed by t

P e
b set of all paths for block b ∈ B including the ’empty’-path (e)

for block b ∈ B, indexed by p.

Pb set of all paths for block b ∈ B excluding the ’empty’-path for
block b ∈ B, indexed by p. Pb ⊂ P e

b

Pba set of all paths for block b ∈ B with arc a ∈ A included, indexed
by p. Pba ⊆ Pb

P e
dpb set of all paths (including the ’empty’-path) for the previous

block (before block b ∈ B) of demand d ∈ Db, with an end time
earlier than (or exactly equal to) the start time of path p ∈ P e

b

Pt set of all paths with at least one trainleg of train t ∈ T included,
indexed by p

Parameters:

fa maximum number of wagons that can be assigned to arc a ∈ A

ga maximum total length of blocks that can be assigned to arc
a ∈ A

ha maximum total weight of blocks that can be assigned to arc
a ∈ A

nb number of wagons in block b ∈ B

lb length of block b ∈ B
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wb weight of block b ∈ B

cp cost of assigning path p ∈ P e
b to the corresponding block

ct fixed cost of train t ∈ T

Decision Variables:

xp 1 if path p ∈ P e
b is assigned to the corresponding block, 0 oth-

erwise

yt 1 if train t ∈ T is used, 0 otherwise

min
∑
b∈B

∑
p∈P e

b

cpxp +
∑
t∈T

ctyt (4.1)

s.t. ∑
p∈P e

b

xp = 1 ∀b ∈ B (4.2)

∑
b∈B

∑
p∈Pba

nbxp ≤ fa ∀a ∈ A (4.3)

∑
b∈B

∑
p∈Pba

lbxp ≤ ga ∀a ∈ A (4.4)

∑
b∈B

∑
p∈Pba

wbxp ≤ ha ∀a ∈ A (4.5)

xp ≤
∑

z∈P e
dpb

xz ∀b ∈ B, ∀p ∈ P e
b , ∀d ∈ Db (4.6)

xp ≤ yt ∀t ∈ T, ∀p ∈ Pt (4.7)

xp ∈ {0, 1} ∀p ∈ P e
b , ∀b ∈ B (4.8)

yt ∈ {0, 1} ∀t ∈ T (4.9)
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Next, we will describe the objective function and each of the constraints:

• The objective function (4.1),

min
∑
b∈B

∑
p∈P e

b

cpxp +
∑
t∈T

ctyt,

minimizes the sum of the costs of all paths that are assigned to a block and
the fixed costs for all trains that are used.

• Constraints 4.2,

∑
p∈P e

b

xp = 1 ∀b ∈ B,

ensure that each block is assigned to exactly one path.

• The next three constraints (4.3, 4.4 and 4.5),

∑
b∈B

∑
p∈Pba

nbxp ≤ fa ∀a ∈ A

∑
b∈B

∑
p∈Pba

lbxp ≤ ga ∀a ∈ A

∑
b∈B

∑
p∈Pba

wbxp ≤ ha ∀a ∈ A,

ensure that the total number of wagons, total length and total weight, re-
spectively, of all blocks assigned to an arc do not exceed the maximum
number of wagons, length and weight of that arc.
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• Constraints 4.6,

xp ≤
∑

z∈P e
dpb

xz ∀b ∈ B, ∀p ∈ P e
b , ∀d ∈ Db,

ensure that a block can only be assigned to a path if all demands in the
block have arrived at the origin location of the block before the start time
of the path.

• The next constraints (4.7),

xp ≤ yt ∀t ∈ T, ∀p ∈ Pt,

ensure that a train (t ∈ T ) is used (yt is set to 1) if there exists a path
which is assigned to its block and which includes at least one trainleg of
train t ∈ T .

• Constraints 4.8,

xp ∈ {0, 1} ∀p ∈ P e
b , ∀b ∈ B,

ensure that a path is either assigned to its corresponding block or not.

• Finally, constraints 4.9,

yt ∈ {0, 1} ∀t ∈ T,

ensure that a train is either used or not.
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As mentioned earlier in this section, an ’empty’-path with high penalty
costs is created for each block. An ’empty’-path has no arcs and it indicates
that the block is not transported. So, if a block is assigned to an ’empty’-
path it means that the block is not transported and the high penalty costs
associated with the ’empty’-path are incurred. The start and end time of
these ’empty’-paths should be set to a date earlier than the start of the
planning period. This is needed for constraints 4.6. In these constraints a
block can be assigned to a path if all demands have arrived at the origin
location of the block before the start time of the path. If the previous block
(before this block), of one of the demands in this block, was assigned to an
’empty-path’, it means that the demand will never arrive at this location,
and thus this block can not be assigned to a path. Therefore, we set the
start and end time of the ’empty’-paths to a date earlier than the start of the
planning period, as the constraint will then recognize the ’empty’-path as a
path that finishes earlier than the start time of the current path. Hereby,
the block has not to wait on demands that will never arrive at the origin
location of the block. These constraints are only created for all paths p ∈ Pb

and not for the ’empty’-paths, as it is always possible to assign a block to its
’empty’-path, independent of the previous and next blocks of the demands
in this block.

The cost of a path, cp, is the summation of the cost of all arcs (travel
costs) included in the path plus train-switching costs for each demand in
the block if the block has to switch to another train during the path. As the
formulation is path-based and the paths are created for each block separately
(Pb), penalty costs for demands that arrive too late can also be assigned to
a path, if the destination of the block is the same as the destination of at
least one of the demands in the block. If then, for these demands, the end
time of the path is later than the end time of the time-slot of the demand,
penalty costs for delivering these demands too late are assigned to the path.

The formulation can be extended with more constraints. For example,
constraints on the capacities at locations. We did not include such con-
straints, as we assume that locations have very large capacities which will
not be exceeded. Adding location capacity constraints to this formulation,
can be done by observing which arcs correspond to the demands present
at a location at a certain time and restrict that these arcs together may
not exceed the maximum location capacity of that location. This should be
done for every location at any time (try to find time-periods in which no
demands depart or arrive from a location and create one constraint for the
whole time-period).
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4.3 Path Enumeration

Before the IP model can be used, the possible paths for each block should
be created. A path enumeration algorithm is described in this subsection.
As the number of paths that can be created for a block between its origin-
nodes and its destination-nodes can become very large, we only consider
paths with a duration which is less than or equal to the duration of the
shortest path multiplied with a certain value.

The algorithm starts with creating all paths for the latest origin node of
a block. Thereafter the paths for all other origin nodes (in descending order
of time) are created. To ensure that we can create a path from the origin
node to one single other node, a unique destination-node is created. This
unique destination-node has incoming arcs from all destination-nodes of the
block. Below the algorithm is shown and thereafter explained:
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for each origin node (descending ordered on time) do
create a label with null predecessor at the origin-node (say oi(b));
make a set S = {oi(b)};
while S 6= ∅ do

remove a label l from S;
for each outgoing arc a of the node associated with label l do

if total duration to reach head node of arc a, via the path
represented by l and a, does not exceed the maximum
allowed duration of a path for block b then

if head node of arc a has at least one label of the
previous origin node then

create a special label at the head node of a
else

create a new label at the head node of a;
if head node of arc a is not the unique
destination-node of block b then

add the new label to S;
end

end
end

end
end
Create the paths for this origin node (oi(b))

end

Algorithm 1: Enumerate all valid paths for a block

The algorithm makes use of labels. A label is assigned to every node visited
in a path. The information kept by a label consists of: the node to which
it is assigned, the label of the predecessor, the time that it takes to reach
this node from the origin-node, the origin node of the path and whether the
label is a special label. A special label is a label at a node which has also at
least one label of the next origin-node in time assigned to it. The algorithm
is performed for every origin node of every block. The origin nodes of a
block are ordered in descending order of time, which means that paths for
origin nodes later in time are earlier created.
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It starts with assigning a label to an origin-node with no predecessor. There-
after, this label is added to a set S. Then, in the while-loop one of the labels
(l) from set S is chosen to be explored further (label l is removed from set
S). Then, new labels are created at the head nodes of the outgoing arcs
of the node associated with label l, if the total duration constraint is not
exceeded. Such a label is a special label if the node has also at least one
label of the previous origin node oi−1(b) (i.e. the next origin node in time)
assigned to it. In this case the new label is not added to set S, because it
does not need to be explored further as we know all paths from this node
to the unique destination-node through the previous origin node. If, on the
other hand, the node has not a label of the previous origin node assigned
to it, a normal label is created at this node. Thereafter, the label is added
to set S if the node is not the unique destination-node (as the path is then
finished). The while-loop is repeated until set S is empty, which means that
no labels should be explored further.

The last step for an origin node is to create the paths. All labels of
the current origin node at the unique destination-node correspond to a path
from the origin node to a destination node. As each label is connected with
its previous label, we can find the exact path corresponding to the label.
Besides, all special labels of the current origin node correspond to at least
one path. To create paths from this special label we need to find all paths
from the previous origin node that consists of one of the outgoing arcs of the
node corresponding to the special label. Then, for all these paths the first
part of the path, until the special label node is reached, is replaced by the
path corresponding to the special label. In this way, we create paths from
the current origin node whose last part is exactly the same as the last part
of a path of the next origin node in time. As this can result in paths with a
total duration that exceeds the maximum allowed duration, we only create
the paths that do not exceed this duration.

Using the special labels makes the algorithm faster. If we did not use
these special labels, we should continue labeling until all paths exceeds the
maximum duration or have arrived at the destination. Hereby, a lot of
’duplicate’ labels are created. When using the special labels we reuse the
information about previous created paths, and we do not create these ’du-
plicate’ labels.

Figure 7 shows an example of the algorithm. In this network we need to
create all the paths for a block from the location at the left to the location
at the right. The red and blue ground-node at the left correspond to two
possible origin nodes of the block. The algorithm starts with the latest
origin node in time (blue). The first label (l1) is created at this node with
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null predecessor and is added to set S. Then a label from set S is chosen
(l1) to explore further. From this label we will create a new label l2 at the
train-departure node. Then l1 is removed from set S and label l2 is added
to set S. Hereafter, in the next three iterations we create labels l3, l4 and
l5. Then, from l5 we have two possible outgoing arcs and we create both
labels l6 and l7 and add them to set S. Hereafter, the algorithm will find
labels l8, l9 and l10. Labels l10 is not explored further as it corresponds to
the unique destination-node. Then, from label l7 the other labels (l11 - l14)
are found. After label l14 is found set S becomes empty and this means
that all paths are found for the current origin node. Two labels reached the
unique destination-node, which means that two paths were found. Label
L10 corresponds to the path l9 → l8 → l6 → l5 → l4 → l3 → l2 → l1, which
is the path via train 2 and train 4. In the same way, the other label (l14)
corresponds to the path via train 2 and train 5.

After the algorithm found the paths for the blue node, it starts with the
red origin node. In the same way, labels la − le are found for the red node.
Then, label le has two outgoing arcs: one arc to the train-departure node
of train 3 (where label lf is created) and another arc to the ground-arrival
node of train 2. This last node has a label (l4) from the previous (blue)
origin node assigned to it, and thus a special label (Lg) is created at this
node. The special label is not explored further. Hereafter, labels lh, li and
lj are created. Then, set S is empty, which means that all paths are found.
For the red node, one label (lj) reached the unique destination-node. This
label corresponds to the path li → lh → lf → le → ld → lc → lb → la
(train 1 and train 3). For this red node one special label (Lg) is created,
so there may be more valid paths for this origin node. Lg is created at
the ground-arrival node of train 2. This node has one outgoing arc, namely
the ground-arc to the ground-departure node of train 4. Then, all paths
of the previous origin node which contain this arc correspond to possible
paths for this origin node. In this example, both the path corresponding
to l10 and the path corresponding to l14 contain this arc. As this special
label reached its node via another way (Lg → le → ld → lc → lb → la)
than the paths corresponding to l10 and l14, we are only interested in the
last part of the path starting at the node of the special label. For l10 this
means the path l9 → l8 → l6 → l5 → l4 and for l14 this means the path
l13 → l12 → l11 → l7 → l6 → l5 → l4. If we then add these paths to the
path from the origin node to the node of the special label, we get the paths:
l9 → l8 → l6 → l5 → lG → le → ld → lc → lb → la (train 1 and train 4) and
l13 → l12 → l11 → l7 → l6 → l5 → lG → le → ld → lc → lb → la (train 1
and train 5). Finally, we check if the paths created via the special label are
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valid with respect to the maximum allowed duration. If this is not the case,
these paths should be removed. Assume that in this example the duration
of both paths is below the maximum allowed duration.

Now, the algorithm is finished as we have found all the paths. For the
blue origin node paths [train 2 → train 4] and [train 2 → train 5] were
found. For the red origin node path [train 1 → train 3] was found directly
and paths [train 1 → train 4] and [train 1 → train 5] were found using the
paths of the blue origin node (i.e. via a special label).

lb lc

l2 l3

ld

le

l4

Lg
lf lh

l5

l7

l6 l8

l11 l12

li: label i of a blue colored origin node
Li: special label i of a red colored origin node
: unique destination-node

la

l1

li

l9

l13

lj

l10
l14

train 1

train 2

train 3

train 4

train 5

: train-arcs

: connection-arcs
: ground-arcs

Figure 7: Example of the path enumeration algorithm
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5 Heuristics
In this chapter we present several heuristics for each subproblem. A heuris-
tic, based on the characteristics of a hub-and-spoke network, for the blocking
problem is described in Section 5.1. In Section 5.2 a Lagrangian heuristic,
based on Jha et al. [11], and a greedy heuristic are described to solve the
BTA problem.

5.1 Blocking Heuristics

In this section we will describe some heuristics to solve the blocking problem.
As stated in Subsection 2.5.1, the amount of blocks created in the block-
ing problem has an influence on the computation time and quality of the
solution for the block-to-train assignment problem. It is important to find
a good balance between the computation time and the quality of the solu-
tion. Therefore, we propose several heuristics to solve the blocking problem,
which will differ in the amounts of blocks created.

5.1.1 No Blocking

This is the most easiest heuristic as it will create for each demand a separate
block. Actually, it is not even a heuristic, as it just means that the demand-
to-train allocation is solved directly. If the computation time of this demand-
to-train allocation problem is acceptable and the enumeration of the paths
is not restricted that much (i.e. a high multiplier for the maximum allowed
path duration), this method will likely give the best solution.

In the problem we discuss, the customer (and customer in circular) de-
mands cannot be combined into blocks, and thus, these demands are always
treated as separate blocks. As wood demands can be combined into blocks
of at most two demands, combining them into blocks will not decrease the
amount of blocks very much with respect to this method. Therefore, this
method is also very suitable for wood demands. Liner and empty-wagon
demands can be combined into blocks of several demands, whereby deriving
a heuristic that will create less blocks is very interesting for these demands.
In the next subsection a heuristic is presented where demands are combined
into blocks.
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5.1.2 ’Hub-and-Spoke’-heuristic

This heuristic makes use of the characteristics of the hub-and-spoke net-
work (Section 2.4). It is especially created for the liner and empty-wagon
demands, as these make use of the hub-and-spoke network. In such a hub-
and-spoke network all demands will pass the hubs corresponding to its ori-
gin and destination. The idea of this heuristic is that a demand is assigned
to: a block from its origin to the base location corresponding to the origin
(spoke → hub), a block from the base location corresponding to the origin
to the base location corresponding to the destination (hub → hub) and to a
block from the base location corresponding to the destination to its destina-
tion (hub → spoke). Then, demands with the same origin can be combined
in blocks from that origin to its base location. Demands with the same ori-
gin hub and destination hub can be combined on these blocks and demands
with the same destination can be combined from the destination hub to the
destination.

Figure 8 shows an example of demands that are combined into blocks
according to the three different block types as used in this heuristic. All
demands at a service location are combined in a block to its base location.
In Figure 8, for example, demands a1, a2 and c3 at service location b1 are
combined in a block to the corresponding base location B. All demands at
base locations are combined in a block to the base location corresponding to
the destination. In Figure 8, for example, demand a1 and both demands for
location a2 at base location B, are combined in a block to base location A.
In the last part of the route of demands, demands are combined in a block
from the base location, corresponding to the destination, to the destination.
For example, all demands for c3 at location C are combined in a block from
C to c3.

When combining demands into blocks we should also take into account
that the release times of demands in one block should be relatively close to
each other. Combining a demand that originates on a Monday in one block
with a demand that originates four days later on Friday is not a good idea,
as the Monday demand has to wait four days until it is transported. To
indicate which demands can, and which demands can not, be combined into
a block there is a limit on the time between the earliest and the latest earliest
arrival-time of the demands in one block. This limit is called earliest arrival-
time difference limit (EAT-limit). For the spoke → hub blocks the earliest
arrival-time is just the release time of the demand. For the hub → hub and
hub → spoke blocks the earliest arrival-time is the earliest possible time
that the demand can arrive at the origin of the block. Hereby, the previous
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All lines between two nodes correspond to blocks between these nodes. The arrow next to
a block indicates the direction of the block.

Figure 8: An example of blocks in the ’Hub-and-Spoke’-heuristic

blocks should be taken into account as these affect the earliest arrival-time.
Besides, all paths of the previous blocks should be known as the earliest
arrival time of a demand at a base location is obtained from the earliest
path of its previous block to this base location.
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The order of the steps of this heuristic is as follows:

1. Create all spoke → hub blocks

2. Create all paths (see section 4.3) for the spoke → blocks

3. Create all hub → hub blocks

4. Create all paths for the hub → hub blocks

5. Create all hub → spoke blocks

6. Create all paths for the hub → spoke blocks

In Figure 9 an example is shown where the earliest arrival-time of a demand
depends on the block it is assigned to. In the first case in the figure both
demands are a separate block and the earliest arrival-time of the red demand
at base location A is 13.00 (first possible train). The earliest-arrival time
of the red demand at base location B is 18.00, as the earliest arrival-time
at base location A is 13.00 and the first train from A to B after 13.00 is
the train from 14.00 until 18.00. In the second example both demands are
combined in one block from a1 to A (recognize that this is only possible if
the EAT-limit is at least two hours). The earliest arrival-time of the red
demand at base location A is 15.00, as it can be assigned to a train from a1
to A after the release of the second demand (at 12.00). Then, the first train
is the train from 13.00 until 15.00. The first train from A to B after 15.00 is
the train from 16.00 until 20.00, whereby the earliest arrival-time of the red
demand at B is 20.00. So, this example shows that the earliest arrival-times
of the red demand are different when it is combined in one block together
with the green demand.
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Abase Bbasea1 b1

12.00
10.00

Both demands as a separate block:

15.00
13.00

20.00
18.00

Abase Bbasea1 b1
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15.00
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20.00
20.00

11.00 - 13.00 14.00 - 18.00
13.00 - 15.00 16.00 - 20.00

11.00 - 13.00 14.00 - 18.00
13.00 - 15.00 16.00 - 20.00

The two colored rectangles above the locations are a red demand and a green demand. The
times next to the demands indicate the earliest-arrival time of the demand at that location.
The times above and below the lines indicate the departure and arrival times of trains. A
colored train time indicates that the demand with that color is assigned to the train.

Figure 9: An example of earliest-arrival times of demands

The goal of the heuristic is to create as few as possible blocks, while not
exceeding the capacities of a block (weight, length and number of wag-
ons) and the EAT-limit. The heuristic creates all blocks for a pair of loca-
tions. It should be applied to each spoke → hub, each hub → hub and each
hub → spoke pair to create all blocks. Below the heuristic is described:
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Steps of the ’Hub-and-Spoke’-heuristic:

1. Order all the demands at the origin of this pair of locations
on earliest arrival-time.

2. Pick the first demand, from the ordered list, that is not
assigned to a block and create a new block for it. If all
demands have already been assigned to a block, skip the
third step and GO TO STEP 4.

3. Find, among all demands not assigned to a block and whose
release is not too long (EAT-limit) after the release of the
first demand in the block, the largest demand that fits into
the current block and assign it to the block. If a demand has
been found and added in this step, REPEAT STEP 3. If no
demand has been found in this step, RETURN TO STEP 2.

4. The heuristic is finished, as all demands are assigned to a
block.

The first step of the heuristic is to order all demands at the origin according
to the earliest arrival-time. Hereby, it is easy to find the earliest non-assigned
demand (step 2) and to see which demands can, according to the EAT-limit,
be assigned to the current block (step 3) as all these demands will be next to
each other in the list. In the second step a new block is created for the first
non-assigned demand in the list. Then, in the third step the largest demand,
which fits in the block and can be combined with the other demands in the
block, is added to the block. This step is repeated until no more demands can
be added to the block. Hereafter, we return to the second step and create
a new block for the first non-assigned demand. Then again demands are
assigned to this block in the third step, etcetera. The heuristic is finished
when all demands are assigned to a block. In the third step we add the
largest possible demand to a block, because the goal is to create as few as
possible blocks and this means that the blocks should be as full as possible.
If we want to get the blocks as full as possible it seems a good idea to assign
in each step the largest possible demand to the block.
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time limit for 1

All nodes in this example correspond to a demand. The number in the node is the
weight of the demand, and the time above the node is the earliest arrival-time of
the demand. Here, in this example, the EAT-limit is two hours and the capacity
of a block is ten.

Figure 10: Example of the ’Hub-and-Spoke’-heuristic
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Figure 10 shows the steps of the heuristic with an example. The example
consists of ten demands with each a corresponding earliest arrival-time and
weight. The maximum weight of a block is ten and the EAT-limit is two
hours. In the first step the demands are ordered with respect to their earliest
arrival-time. Hereafter, a new block is created for the first demand in the
order. Then, in the third step we first investigate which demands can be
added to the current block. The earliest-arrival time of the first demand
is 08.00 and, as the EAT-limit is two hours, all demands with an earliest
arrival-time no later than 10.00 can be assigned to the current block. The
maximum capacity of a block is ten and the weight of the first demands
is five which results in a remaining capacity of five. The three demands
that are within the EAT-limit have weights six, three and one. The demand
with weight three is the largest demand that fits into the block and is thus
assigned to this first block. Hereafter, the third step is again repeated and
we will find that the demand with weight one can also be added to the block.
Then, no more demands can be added to this first block and the heuristic
returns to the second step and creates a new block for the first demand in
the order that is not assigned so far (in Figure 10 the yellow demand with
weight six). Then the third step is performed for the second block, etcetera.
The final solution of the example is also shown in Figure 10. The heuristic
creates for this example five blocks with total weights: nine, nine, eight, ten
and two.

In our problem the blocks have a maximum number of wagons, maximum
weight and maximum length. Hereby, we need a rule to find the largest
demand, because if, for example, one demand has more wagons than another,
but the other demand is heavier, it is not very clear which demand is the
’largest’ demand. Many different rules can be created for finding the largest
demand. The most obvious rules are enumerated below.

Some rules for finding the largest demand:

1. Pick the demand with the most number of wagons

2. Pick the heaviest demand

3. Pick the longest demand

4. Largest demand = max
∀ demands

{ nr of wagons
max nr of wagons + weight

max weight +
length

max length }
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The first three rules just choose one of the three capacity categories to
determine the largest demand. The last rule combines all three capacity
categories. The number of wagons, weight and length of a demand are
divided by the maximum number of wagons, weight and length of a block.
Each of these three expressions represent the percentage of the total capacity
(of the corresponding category) in a block that will be used by this demand.
These three expressions are summed up, and then the largest demand is the
demand with the largest value for this expression.

These are the four most obvious rules. For each individual problem it is
the best to investigate which of the capacities is the most restricting, and use
that capacity to determine whether a demand is larger than another demand.
This is also what we did in Chapter 6. For the problem instances discussed
in Chapter 6, the weight was the most restricting capacity. Therefore, we
have chosen rule 2 (take the heaviest demand as largest demand) for the
’Hub-and-Spoke’-heuristic for these problem instances.

5.2 Block-to-Train Assignment Heuristics

This section present heuristics to solve the IP formulation of the BTA prob-
lem as described in Chapter 4. The first heuristic is a Lagrangian heuristic
and is, like the BTA model, also based on Jha et al. [11]. In this approach
all the capacity constraints are relaxed and for each capacity constraint a
penalty is assigned for each unit capacity violation on an arc. The relaxed
problem is then solved. If the solution of the relaxed problem contains
arcs with violated capacity, the corresponding Lagrangian multipliers are
increased and the problem is solved again. In each iteration a lower bound
and an upper bound on the solution of the BTA problem are calculated. The
solution value of the relaxed problem with violated arc capacities provides
a lower bound on the optimal solution. An upper bound is created via a
heuristic which creates a feasible solution for the BTA problem from the
solution of the relaxed problem. The heuristic terminates if for a certain
number of consecutive iterations the solution does not improve.

The second heuristic is a greedy heuristic. This heuristic is created
to get a good solution within minimal computation time. The Lagrangian
heuristic is described in subsection 5.2.1 and the greedy heuristic is described
in subsection 5.2.2.
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5.2.1 Lagrangian Heuristic

In this section the Lagrangian heuristic is explained. The heuristic consists
of three steps, which are explained in the next three subsections. First, the
procedure to create a lower bound is described, then the procedure to get an
upper bound (i.e. feasible solution) is described and in the last subsection
the procedure of updating the Lagrangian multipliers, at the end of each
iteration, is described.

Obtaining a Lower Bound

In each iteration of the heuristic a lower bound is obtained by solving the
relaxed problem. In the relaxed problem all capacity constraints (loca-
tion capacity, maximum number of wagons, maximum length and maxi-
mum weight ) are relaxed and penalties are assigned for capacity violation.
The decision to relax all capacity constraints is based on the Lagrangian
relaxation approach of Jha et al. [11]. We also tested the case where we
also relax constraints (5.4), but this gave worse results than our current ap-
proach. Therefore, we decided to only relax the capacity constraints. For
the constraints on the number of wagons (4.3) a penalty qa ≥ 0 is assigned
to each unit capacity violation on every arc a ∈ A. For the length (4.4) and
weight (4.5) capacity constraints a penalty ra ≥ 0 and sa ≥ 0, respectively, is
assigned to each unit capacity violation on every arc a ∈ A. These capacity
constraints are then integrated into the objective function with their corre-
sponding Lagrangian multipliers. The formulation of the relaxed problem is
shown below:

min
∑
b∈B

∑
p∈P e

b

cpxp +
∑
t∈T

ctyt +
∑
a∈A

(
qa(
∑
b∈B

∑
p∈Pba

nbxp − cna)

+ ra(
∑
b∈B

∑
p∈Pba

lbxp − cla) + sa(
∑
b∈B

∑
p∈Pba

wbxp − cwa)
) (5.1)

∑
p∈P e

b

xp = 1 ∀b ∈ B (5.2)

xp ≤
∑

z∈P e
dpb

xz ∀b ∈ B, ∀p ∈ P e
b , ∀d ∈ Db

(5.3)
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xp ≤ yt ∀t ∈ T, ∀p ∈ Pt (5.4)

xp ∈ {0, 1} ∀p ∈ P e
b , ∀b ∈ B (5.5)

yt ∈ {0, 1} ∀t ∈ T (5.6)

The above IP model is solved to optimality (using CPLEX) in each iteration
for given Lagrangian multipliers q, r and s to obtain a lower bound on the
BTA problem. After each iteration the Lagrangian multipliers are updated
in order to obtain a less violated solution in the next iteration. This process
of updating the Lagrangian multipliers is described in Subsection 5.2.1.

Obtaining an Upper Bound

The next step in an iteration is to create a feasible solution (upper bound)
from the infeasible solution of the relaxed problem. As the infeasible solution
of an iteration is known, the violated arcs can be identified and all the blocks
assigned to these violated arcs are unassigned. Hereafter, no arc capacities
are violated, but there are some blocks that are not assigned to any arc.
Finally, the blocks that are not assigned to any arc, are assigned to arcs.
This is done in the following way: The blocks are first ordered in descending
order with respect to the weight of a block. Then, the first block in the order
is assigned to the least-cost path (including fixed train costs) with enough
spare capacity for this block and such that the order of the blocks is not
violated. The fixed train costs are only added to a path for trains that are
in the path and not used so far. In this way, we try to assign these blocks
to trains that have already been used so far. Hereafter, the second block in
the order is assigned to the least-cost path with enough spare capacity for
that block and such that the order of blocks is not violated. Then the third
block in order is assigned, etcetera (see Algorithm 2 for a description of the
algorithm).

When all blocks are assigned to a path, we have created a feasible so-
lution. As a block can only be assigned to a path if it does not violate the
order of the blocks of all demands in the current block, we might get a lot
of non-assigned blocks (i.e. blocks which are assigned to its ’empty’-path).
Therefore, we want to improve this feasible solution. As we might get a lot
of non-assigned blocks, we first try to assign these paths to another, cheaper
path. To assign such a block to another path, we need to assign the previous
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and/or next blocks of demands in the current block to other paths such that
the current block is able to start earlier and/or finish later. Thereby, there
may be ’new’ paths available for the current block that do not violate the
order of blocks of demands in the current block anymore. Then, the cur-
rent block is assigned to one of its possible paths, and all previous and next
blocks of demands in the current block can be rescheduled again to their
cheapest possible path. This might result in a cheaper schedule in which
the current block is assigned to a path. If it was not possible to improve the
schedule, we keep the current schedule. This is done for each path to which
the current block can be assigned after the rescheduling of the previous and
next blocks of demands in the current block. Hereafter, we repeat the same
steps, as we did for these non-assigned blocks, but now for all blocks, to
try to achieve an even better schedule. The resulting solution is the upper
bound of the current iteration. The best (lowest) upper bound found in all
iterations is kept as upper bound on the BTA problem. The global idea of
creating a feasible solution from the infeasible solution is described above.
Below, the algorithm is described in detail:
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obtain the infeasible solution of the relaxed problem;
for all violated arcs in the infeasible solution do

Unassign blocks on an overcapacitated arc (see Algorithm 3 below)

end
order all blocks b ∈ B in descending order w.r.t. their weight;
for each block b in the above order do

order the paths p ∈ P e
b in ascending order w.r.t. their costs plus fixed

costs for all non-used trains in the path;
for each path p in the above order do

if the capacities and the order of the blocks of all demands in block
b are not violated when assigning block b to path p then

assign block b to path p;
update the available train capacity of train arcs on path p;
exit for

end
end

end
for all non-assigned blocks b ∈ B do

Create the largest possible gap for b (see Algorithm 4 below)

for all paths p ∈ Pb to which block b can be assigned do

Create the largest possible gap for b (see Algorithm 4 below)

assign block b to path p;
assign the previous and next blocks of demands in b to their
cheapest possible paths;
if this solution is better than the best solution so far then

keep this solution;
else

set solution back to the best solution;
end

end
end
Repeat the above for-loop again, but now for all blocks;

Algorithm 2: Obtain a feasible solution from the infeasible solution of
the relaxed problem
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if there exists a block b such that the capacities are met if b is removed from
the current arc then

Remove the smallest block b from the current arc such that the
capacities are met;

else
Remove the largest block b from the current arc

end
Algorithm 3: Unassign blocks on an overcapacitated arc

for all demands d in block b do
if block b is not the first block of demand d then

assign the previous block (before b) of demand d to the earliest
possible path

end
if block b is not the last block of demand d then

assign the next block (after b) of demand d to the latest possible
path

end
end

Algorithm 4: Create the largest gap for a block

Updating the Lagrangian Multipliers

At the end of each iteration the Lagrangian multipliers are updated in order
to obtain a less violated solution for the relaxed problem in the next itera-
tion. We use Subgradient Optimization to update the Lagrangian multipli-
ers. The Lagrangian multipliers for the three different capacity constraints
at iteration i are indicated as qi

a, r
i
a and si

a. The idea is that the Lagrangian
multipliers for arcs whose capacities are violated are increased to make these
arcs more unattractive and that Lagrangian multipliers for arcs whose ca-
pacities are not violated decrease to make these arcs more attractive. For
example, in iteration i we have, among others, multiplier ri

a. If the total
length of all blocks assigned to arc a is larger than the capacity (i.e. the
constraint is violated), the Lagrangian multiplier is increased to make this
arc more unattractive in the next iteration. So, ri+1

a > ri
a. If the total length

of all blocks assigned to arc a is not larger than the capacity (i.e. the con-
straint is not violated) and ri

a > 0, the Lagrangian multiplier is decreased
to make this arc more attractive. So, ri+1

a < ri
a. The following formulas are

used to update the Lagrangian multipliers at iteration i:
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qi+1
a = qi

a + θi
q

∑
b∈B

∑
p∈Pba

nbxp − cna

 (5.7)

ri+1
a = ri

a + θi
r

∑
b∈B

∑
p∈Pba

lbxp − cla

 (5.8)

si+1
a = si

a + θi
s

∑
b∈B

∑
p∈Pba

wbxp − cwa

 (5.9)

where θi
q, θ

i
r and θi

s are the step lengths at iteration i. These step lengths
are updated using the following formulas:

θi
q =

λi
q(UB − LBi)

||
∑

a∈A

∑
b∈B

∑
p∈Pba

nbxp − cna||2
(5.10)

θi
r = λi

r(UB − LBi)
||
∑

a∈A

∑
b∈B

∑
p∈Pba

lbxp − cla||2
(5.11)

θi
s = λi

s(UB − LBi)
||
∑

a∈A

∑
b∈B

∑
p∈Pba

wbxp − cwa||2
(5.12)

where λi
q, λ

i
r and λi

s are scalars used to adjust the size of the change in the
step length. A common way to update these scalars is to multiply them
with a half, if, for a certain number of iterations, the best solution did not
change. In these formulas for updating the step length UB is the best upper
bound found in all iterations so far, while LBi is the lower bound found in
iteration i.

5.2.2 Greedy Heuristic

In this section a greedy heuristic to solve the BTA problem is presented. The
heuristic starts with the creation of a good feasible solution. Thereafter, it
tries to improve the initial feasible solution.

The initial feasible solution is obtained by assigning each block to a
possible path with the earliest end time, starting with the block with the
earliest possible departure time, then the block with the second earliest
possible departure time, etcetera. If it is not possible to assign a block to
a path, it is assigned to the ’empty’-path. We have ordered the blocks on
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earliest possible departure time, because in that way it is ensured that the
blocks of a demand are planned in the right order (the first block before the
second block, the second block before the third block, etcetera). Otherwise,
if we first assign the third block of a demand to its earliest possible path,
it is possible that due to capacity reasons the second and/or first block can
not be assigned to a path that finishes before the starting time of this third
block. Ordering the blocks will results in less non-assigned blocks, and thus,
a better initial solution.

Hereafter, we try to assign the blocks to cheaper paths. When creating
the initial solution we only focused on time and not on costs, while we want
to get the cheapest possible schedule. In this step, each block is assigned
to the cheapest possible path, and this is done in the reverse order as when
creating the initial solution. Now, we start with the block with the latest,
earliest possible starting time, than the second latest, etcetera. This is done,
because as we first assigned the blocks to a possible path with the earliest
possible departure time, all blocks before the last block are enclosed by its
next block, and thus, have not many other paths to which it can be assigned
given the current schedule. The last block of a demand has many paths to
which it can be assigned as all blocks are assigned to the earliest possible
path (so the previous blocks will end early) and the possible paths of the last
block are not restricted by the starting time of a next block (as there is no
next block). If we have then assigned the last block to a later, cheaper path,
the previous block of the demand has also more possible paths to assign
to, as it is allowed to end later as the next block starts later. This will, if
this step is done for each block, result in a cheaper (and thus better) initial
solution.

In the previous steps we did not change the paths of previous and/or
next blocks when trying to assign a certain block to a path. In this step we
will assign the previous and/or next blocks of demands in a certain block
to other paths. This is done, because assigning a block to a slightly more
expensive path can have as a result, that it is now possible for other blocks
to be assigned to much cheaper paths. This step is exactly the same as the
last step of Algorithm 2 (which creates an upper bound from the infeasible
solution of the Lagrangian relaxation). For each block we try to get as much
as possible paths to which the block is able to be assigned, by assigning the
previous blocks of demands in the current block to the earliest possible path
and the next blocks of demands in the current block to the latest possible
path. If we assign the current block to one of these available paths, we
should assign the previous and next blocks of demands in the current block
to their cheapest possible path. As in Algorithm 2, this is first done for all
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paths that are not-assigned to a path, and thereafter for all blocks.
If we have to solve the BTA problem with one block for each demand (i.e.

without blocks), the last part of the heuristic is not necessary as none of the
blocks has a previous or next block. The heuristic then boils down to the first
two for-loops, there we first assign the blocks to the earliest possible path
(in the right order) after which we assign them to the cheapest possible path
(in the right order). The algorithm of this greedy heuristic (Algorithm 5) is
shown below:
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order all blocks b ∈ B in ascending order w.r.t. its earliest possible
departure time;
for each block b in the above order do

assign block b to the earliest possible path;
end
order all blocks b ∈ B in descending order w.r.t. its earliest possible
departure time;
for each block b in the above order do

assign block b to the cheapest possible path;
end
for all non-assigned blocks b ∈ B do

Create the largest possible gap for b (see the appendix)

for all paths p ∈ Pb to which block b can be assigned do

Create the largest possible gap for b (see the appendix)

assign path p to block b;
assign the previous and next blocks of demands in b to their
cheapest possible paths;
if this solution is better than the best solution so far then

keep this solution;
else

set solution back to the best solution;
end

end
end
Repeat the above for-loop again, but now for all blocks;

Algorithm 5: Greedy heuristic algorithm
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6 Computational Results
In this chapter we evaluate the IP model and the heuristics on several in-
stances with different sizes. The different instances are described in Sec-
tion 6.1. Hereafter, in Section 6.2, the results and the computation times
of the IP model and the heuristics are compared with each other. Besides,
the results of the BTA problem without blocks and with blocks, created via
the blocking heuristic described in this thesis, are compared in this section.
Finally, in Section 6.3, we perform a sensitivity analysis. We investigate the
effect of the EAT-limit, the effect of the maximum path duration multiplier
and the effect if we limit the number of paths per origin node of a block.

All tests are performed on a laptop with 8 GB RAM memory and an
Intel(R) Core(TM) i7-4800MQ cpu @2.7GHz. The IP model and all heuristic
are programmed in the Quintiq software package and we use CPLEX 12.5
to solve the IP formulation to optimality.

6.1 Data

In this section we will describe the four different instances. As the liner and
empty demands are the most difficult to plan (hub-and-spoke network) and
these demands can be combined into blocks, we investigate only instances
with liner and/or empty demands. For the other two demand types, solving
the problem is slightly different (and easier). For customer demands we only
have to solve the demand-to-train allocation directly, as it is not allowed to
combine these demands into blocks. Wood demands can be combined into
blocks with at most two demands per block, and each wood demand can be
in at most one block. This is because, wood demands can only be combined
in a block together with another wood demand with the same origin and
destination. Table 1 below shows the properties of the instances.

Instance Demands Trains Base locations Service locations
1 10 20 3 5
2 30 50 3 7
3 100 100 4 11
4 500 250 7 25
5 1000 400 7 25

Table 1: Properties of the different problem instances

As the table shows, the sizes vary from ten demands and twenty trains to
1000 demands and 400 trains. In the smaller instances all base locations
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have approximately the same number of service locations and there is no
big difference in the incoming and outgoing flow of demands between all lo-
cations. In instances four and five we varied the number of service locations
per base location and we created large differences in the incoming and out-
going flow of demands per location. In real-life there may be locations with
only incoming or outgoing flow. For example, forests with only outgoing
flow of wood. To imitate these properties of real-life problems we created,
in the largest problem instance, some locations with only an outgoing flow
of demands and some locations with only an incoming flow of demands.
The network of the fourth and fifth instance are exactly the same, only the
number of demands and trains are different. For all instances, the maxi-
mum allowed duration of a path for a block is 1.5 times the duration of the
shortest path of the block, and we use an EAT-limit of eight hours (when
creating the blocks).

The penalty costs for blocks which are not delivered are set very high
with respect to the traveling and fixed train costs such that a solution with
i non-delivered demands is always cheaper than a solution with i + 1 non-
delivered demands. The most important task for the algorithm is thus to
minimize the amount of non-delivered demands. Also, the penalty costs for
demands which arrive too late are set very high (but lower than the penalty
costs for a non-delivered block) with respect to the traveling and fixed train
costs, such that it is always better to ensure that a demand arrives on
time, even if that means that the demand has to travel a longer distance.
The second most important task for the algorithms is thus to minimize the
number of demands which arrive too late. The sum of the traveling costs and
fixed train costs is the least important task of the three for the algorithm to
minimize. Therefore, the tables with results in the next section have three
columns: a column for the number of non-delivered demands, a column for
the number of demands which arrive too late and a column with the sum of
the traveling costs and fixed train costs.

6.2 Results

This section will evaluate and compare the results of the BTA problem for
the IP model (with and without blocking) and the heuristics on several
instances with different sizes. First, we compare the results of the IP model
and the heuristics if no blocks are created. These results are shown below
in Table 2.
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Explanation of the column names:
Time: total computation time,

ND: number of blocks which are not delivered,
Late: number of demands which are delivered too late,

Costs: sum of traveling costs and fixed train costs

Instance # Paths # Blocks Time ND Late Costs
1 190 10 1sec 1 0 11,645
2 684 30 5sec 0 0 29,168
3 2078 100 58sec 2 0 77,927

(a) IP model

Instance # Paths # Blocks Time ND Late Costs
1 190 10 1sec 1 0 11,650
2 684 30 5sec 0 0 29,168
3 2078 100 64sec 4 0 81,076

(b) Lagrangian heuristic

Instance # Paths # Blocks Time ND Late Costs
1 190 10 1sec 1 0 11,685
2 684 30 3sec 0 0 31,011
3 2078 100 57sec 4 0 79,530

(c) Greedy heuristic

Table 2: Results of the IP model and heuristics without blocking

Only the results of the first three instances, and thus not of the fourth and
fifth instance, are shown in Table 2. This is, because we were not able
to solve the largest two instances with the model without blocking within
reasonable amount of time (it takes at least fifteen hours to create all the
paths for these instances). As both heuristics also need to have all the paths
before the algorithm can start, we have also no solution of both heuristics
for the largest problem instance.

From the results of the three instances shown in Table 2 we can see that
the computation time of the IP model and both heuristics are about the
same. For the first two problem instances the results of the heuristics did
not differ that much from the result of the IP model, while the results of
both heuristics for the third problem instance are (much) worse than the
result of the IP model for the third problem instance. Via the IP model
we found a solution with two demands which are not delivered, while both
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heuristics come up with a solution with four demands not delivered. On the
other hand, the sum of the travelling and fixed train costs for both heuristics
do not differ that much from the costs of the IP model.

Next, we compare the results of the IP model and heuristics without
blocking, which we discussed in the previous paragraph (see Table 2 for
these results), with the results of the IP model and heuristics when we
create blocks via the ’Hub-and-Spoke’-heuristic (see Table 3 below for these
results).

Explanation of the column names:
Time: total computation time,

ND: number of blocks which are not delivered,
Late: number of demands which are delivered too late,

Costs: sum of traveling costs and fixed train costs

Instance # Paths # Blocks Time ND Late Costs
1 59 18 <1sec 0 0 10,874
2 306 62 1sec 0 0 24,979
3 1,182 181 26sec 0 0 69,132
4 11,882 672 176sec 0 0 248,601
5 23,842 941 483sec 1 0 361,494

(a) IP model

Instance # Paths # Blocks Time ND Late Costs
1 59 18 <1sec 0 0 10,874
2 306 62 1sec 0 0 25,039
3 1,182 181 23sec 1 0 72,395
4 11,882 672 3206sec 1 0 250,647
5 23,842 941 11459sec 5 0 368,595

(b) Lagrangian heuristic

Instance # Paths # Blocks Time ND Late Costs
1 59 18 <1sec 0 0 11,870
2 306 62 <1sec 0 0 27,972
3 1,182 181 13sec 0 0 81,205
4 11,882 672 475sec 0 0 259,225
5 23,842 941 1966sec 2 0 384,067

(c) Greedy heuristic

Table 3: Results of the IP model and heuristics when blocks are created
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First, we observe that we are able to solve the largest two problem instances
when we create blocks, and that the computation time of the IP model is
very low (less than three minutes for the fourth instance and approximately
eight minutes for the fifth instance), if we keep in mind that it was not able
to solve these instances when we do not create blocks. When we observe
the results of both tables, we see that we get much better results for the IP
model as well as for both heuristics in case of blocking. For all instances the
costs are lower when blocks are created, while in most instances there are
even less demands not delivered than in the case where no blocks are created.
The fact that it is better to create blocks seems, first and foremost, strange,
but can be explained by the fact that we restricted the maximum allowed
path duration. This was in the first place done to restrain the duration of
the path-enumeration, and also to restrain the duration of the IP model and
the heuristics. A consequence of this is that paths with a long waiting time
between two different trainlegs may not be considered as these may exceed
the maximum allowed path duration. In the case where blocks are created,
it is possible to have a long waiting time between two consecutive blocks
of a demand. This gives more flexibility and is the reason that in our case
creating blocks gives better results. When we do not consider the maximum
allowed path duration for the problem without blocking, its results will be
at least as good as in the case where we do create blocks. This is, because
then the solution space of the problem with blocking is a subset of the
solution space of the problem without blocking. However, the results of
both tables shows that, even if we restrict the maximum duration of a path,
the problem without blocking can not be solved within reasonable amount
of time. Therefore, for our approach, it is better to first create blocks.

An unexpected observation from Table 3 is that the computation time of
the IP model is much shorter than the computation time of both heuristics,
for the fourth and fifth instance. This is strange, as the main reason to create
a heuristic is to get good results within less computation time than the IP
model. The IP model gives the best results and has the shortest computation
time for these instances, whereby it is the best to solve instances of these
sizes with the IP model. However, we do not know the behavior of the IP
formulation for much larger problems, so it is still useful to investigate the
results of the heuristics as they might be needed if we want to solve much
larger problems.

If we compare the results of the different methods when creating blocks
(Table 3) we see that the costs of the solutions of the Lagrangian heuristic are
in all instances relative close to the costs of the solution of the IP model, but
for the larger instances one extra block (with respect to the solution of the IP
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model) was not delivered. The costs of the solutions of the greedy heuristic
are always higher than the costs of the solutions of the Lagrangian heuristic,
but for the larger instances the solutions of the Lagrangian heuristic have
one extra block which is not delivered. If the penalty costs for not delivering
a block are very high, the greedy heuristic seems to give the best results, but
if these penalty costs are relative low the Lagrangian heuristic seems to give
the best results. If we compare the computation times of both heuristics,
we see that for the larger instances the greedy heuristic is much faster than
the Lagrangian heuristic. Therefore, we prefer the greedy heuristic over the
Lagrangian heuristic.

To take a further look into the computation times of the methods, we
have splitted them up in the computation time of the path enumeration algo-
rithm and the computation time of the method itself. Figure 11 shows these
computation times for the IP model and both heuristics, for the largest two
instances. This figure shows that the IP formulation is solved within very lit-
tle time: seven seconds for the fourth instance and just nineteen seconds for
the largest instance. These computation times are much shorter than we had
expected for the IP formulation to solve instances of these sizes. Compared
to the time needed to solve the IP formulation, the computation times of the
methods itself, of both heuristics, are very long. The Lagrangian heuristic
itself is approximately 434 (579) times slower than solving the IP model of
the fourth (fifth) instance. The greedy heuristic itself is approximately 44
(79) times slower than solving the IP model of the fourth (fifth) instance.
So, the methods of the heuristics take way too long. We investigated the
reason for these large computation times and found out that most of the
time is spend with checking whether a block can be assigned to a path or
not. In both heuristics this action is done very often, as we repeatedly try
to assign blocks to other paths to get a cheaper schedule. Every time we
want to try to assign a block to another path we have to check whether that
is possible with respect to all capacities and with respect to the order of the
blocks of a demand. This is an essential part of the method as it ensures
that we end up with a feasible solution. Therefore, it is not possible to leave
this part out of the method or to adjust it, to achieve less computation time.
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Figure 11: Splitted computation times

6.3 Sensitivity Analysis

In this section we check how sensitive the model reacts to changes in different
parameters. In Subsection 6.3.1 we investigate the effect of the EAT-limit.
As creating blocks with different EAT-limits will result in different blocks
and a different total amount of blocks, this may have an effect on the solu-
tion of the BTA problem. Next, in Subsection 6.3.2 we investigate the effect
of different maximum allowed path duration multipliers. As creating paths
with different multipliers will result in different amount of paths, this may
also have an effect on the solution of the BTA problem. Finally, we investi-
gate how the solution and the computation time of the IP model change, if
we only select the ten cheapest paths at each origin node of a block.
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6.3.1 Effect of Earliest Arrival Time limit

In this section the effect of different EAT-limits on the BTA problem is
investigated. In Section 6.2 the blocks were created with an EAT-limit of
eight hours. In this section we compare these results with the results of the
IP model when the blocks are created with EAT-limits of four and twelve
hours. The results are shown below in Table 4.

Explanation of the column names:
Time: total computation time,

ND: number of blocks which are not delivered,
Late: number of demands which are delivered too late,

Costs: sum of traveling costs and fixed train costs

Instance # Paths # Blocks Time ND Late Costs
1 68 20 <1sec 0 0 10,874
2 341 71 1sec 0 0 24,979
3 1,367 207 100sec 0 0 69,082
4 12,010 697 188sec 0 0 248,594
5 24,211 988 462sec 1 0 361,470

(a) EAT-limit of 4 hours

Instance # Paths # Blocks Time ND Late Costs
1 59 18 <1sec 0 0 10,874
2 306 62 2sec 0 0 24,979
3 1,182 181 26sec 0 0 69,132
4 11,882 672 176sec 0 0 248,601
5 23,842 941 483sec 1 0 361,494

(b) EAT-limit of 8 hours

Instance # Paths # Blocks Time ND Late Costs
1 56 17 <1sec 0 0 10,874
2 303 61 1sec 0 0 24,979
3 1,115 168 130sec 1 0 67,968
4 11,870 669 178sec 0 0 248,601
5 23,805 936 448sec 1 0 361,532

(c) EAT-limit of 12 hours

Table 4: Results of the IP model when creating blocks with different EAT-
limits
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From Table 4 we can see that, in most cases, different EAT-limits do not
give very different results for the IP model. As expected, we get more blocks
(and thus more paths) if we decrease the EAT-limit, but, as said earlier, this
do not result in big changes in the solution value.

This table shows two unexpected observations. The first unexpected
observation is that for the third problem instance, in case of an EAT-limit
of twelve hours, one demand was not delivered, while in case of both other
EAT-limits all demands were delivered. This can be explained by the fact
that in case of a large EAT-limit (twelve hours) it is possible that demands
are combined in one block which have a relative big difference in release time.
This can result in demands which cannot be delivered on time, or, as in this
case, blocks that cannot be delivered. The other unexpected observation
is that it took the IP model for the third instance in case of an EAT-limit
of eight hours just 26 seconds to solve the problem, while in case of both
other EAT-limits (four and twelve hours) it took the IP model 100 and 130
seconds to solve the problem. We have no clear reason for this and it seems
like a coincidence.

6.3.2 Effect of Maximum Path Duration

In this section the effect of different multipliers, for the maximum allowed
path duration, on the BTA problem is investigated. In Section 6.2 the
instances where solved with a maximum allowed duration of a path for a
block of 1.5 times the shortest path duration. In this section we compare
these results with the results of the IP model when using multipliers 1.25,
1.75 and 2. We use for all different multipliers the IP model with blocks
created with an EAT-limit of eight hours, as Section 6.2 showed that it is
better to create blocks than not to create blocks. The results are shown
below in Table 5.

59



Explanation of the column names:
Time: total computation time,

ND: number of blocks which are not delivered,
Late: number of demands which are delivered too late,

Costs: sum of traveling costs and fixed train costs

Instance # Paths # Blocks Time Not Late Costs
1 51 19 <1sec 4 0 11,409
2 282 66 <1sec 0 0 26,950
3 1,087 181 13sec 0 0 70,292
4 7,460 672 155sec 2 0 252,694
5 18,076 941 388sec 1 0 367,364

(a) Multiplier = 1.25

Instance # Paths # Blocks Time Not Late Costs
1 59 18 <1sec 0 0 10,874
2 306 62 1sec 0 0 24,979
3 1,182 181 26sec 0 0 69,132
4 11,882 672 176sec 0 0 248,601
5 23,842 941 483sec 1 0 361,494

(b) Multiplier = 1.5

Instance # Paths # Blocks Time Not Late Costs
1 59 18 <1sec 0 0 10,874
2 308 62 1sec 0 0 24,979
3 1,241 181 89sec 0 0 67,231
4 12,221 672 185sec 0 0 242,722
5 28,353 941 496sec 1 0 360,037

(c) Multiplier = 1.75

Instance # Paths # Blocks Time Not Late Costs
1 61 18 <1sec 0 0 10,874
2 320 62 1sec 0 0 24,979
3 1,273 181 206sec 0 0 66,568
4 13,742 672 203sec 0 0 240,843
5 32,901 941 546sec 1 0 358,350

(d) Multiplier = 2

Table 5: Results of the IP model with blocking, for different maximum
allowed path duration multipliers
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In Table 5, as expected, the number of paths increases if the maximum
allowed path duration multiplier increases. The biggest difference in the
number of paths is the step from a multiplier of 1.25 to a multiplier of 1.5.
Thereafter, from 1.5 to 1.75 and from 1.75 to 2, the differences between the
number of paths created are smaller.

If we compare the results of the models with different multipliers, we
see that the model with multiplier 1.25 gives much worse results than the
other multipliers. For instance one and four the solution has more blocks
not delivered than the solutions of the other multipliers. Besides, using
multiplier 1.25 gives for most instances relatively much higher costs than
the other multipliers. This shows that we should not take a too low value
for the multiplier. The results of the other three multipliers (1.5, 1.75 and
2) are not very different from each other with respect to computation time
and costs. There are just two relative large differences between the results of
these three multipliers. The first difference is in the computation time of the
third instance. For the other instances the computation times are relative
close to each other, but for this third instance the computation time is 26
seconds for multiplier 1.5, 89 seconds for multiplier 1.75 and 206 seconds for
multiplier 2, which are relative large differences. The other relative large
difference is in the result of the fourth instance. The model with multiplier
1.5 has one more demand not delivered than the models with multipliers
1.75 and 2. There is also a clear difference in costs: 248,601 (1.5) versus
242,722 (1.75) and 240,843 (2).

As the results of multipliers 1.75 and 2 are not much different and the
computation time of multiplier 1.75 is for the third instance and also for the
fifth instance relatively much shorter than the computation time of multi-
plier 2, we conclude from these results that 1.75 is a good choice for the
maximum allowed path duration multiplier.

6.3.3 Effect of Maximum Number of Paths

In this section we investigate, especially, the effect on the solution value of
the IP model if we limit the number of paths per origin node of a block. As
we showed in Section 6.2, the computation time to solve the IP formulation is
very low for all our instances, whereby we can not decrease this computation
time that much for these instances. The idea behind this section is to
investigate how (and if) the solution value changes when we limit the number
of paths per origin node of a block, as this may be important if we want to
solve larger problems which have much larger computation times for the IP
formulation.
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We decided to select for each origin node of each block only the ten cheapest
paths. This is done after we have first created all the paths. The IP model
is then solved with the selected paths. We expect that the solution is not
much worse than the solution of the IP model with all paths, because we
expect that a block is mostly assigned to one of the cheapest paths of one
of its origin nodes. We have restricted the maximum number of paths for
an origin node of a block for both the IP problem without blocking and
with blocking. The results of the IP model, without blocking, with all paths
and with at most ten paths per origin node of a block are shown below in
Table 6. Again, only the first three instances are shown, as creating all the
paths for the fourth and fifth instance can not be done in reasonable amount
of time (more than fifteen hours).

Explanation of the column names:
Time: total computation time,

ND: number of blocks which are not delivered,
Late: number of demands which are delivered too late,

Costs: sum of traveling costs and fixed train costs

Instance # Paths # Blocks Time Not Late Costs
1 190 10 1sec 1 0 11,645
2 684 30 5sec 0 0 29,168
3 2078 100 58sec 2 0 77,927

(a) All paths

Instance # Paths # Blocks Time Not Late Costs
1 95 10 1sec 1 0 11,645
2 363 30 5sec 0 0 29,168
3 1370 100 56sec 2 0 77,927
(b) Maximum ten paths per origin node of a block

Again we have chosen to compare the results for the model with a maximum allowed path
duration multiplier of 1.5.

Table 6: Results of the IP model without blocking with a maximum number
(10) of paths per origin node of a block

The results in both cases are exactly the same. As we expected, only se-
lecting the ten cheapest paths for each origin node of a block do not result
in a (much) worse solution, while the number of paths was decreased with
approximately 50%. On the other hand, as expected, the computation time
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for all problem instances is approximately the same as solving the IP for-
mulation is, in terms of computation time, just a very small part of the
method.

Next, we compare the results of the IP model with blocking when we
select only the ten cheapest paths per origin node of a block with the results
of the IP model with blocking with all paths. Table 7 below shows these
results:

Explanation of the column names:
Time: total computation time,

ND: number of blocks which are not delivered,
Late: number of demands which are delivered too late,

Costs: sum of traveling costs and fixed train costs

Instance # Paths # Blocks Time Not Late Costs
1 59 18 <1sec 0 0 10,874
2 306 62 1sec 0 0 24,979
3 1,182 181 26sec 0 0 69,132
4 11,882 672 176sec 0 0 248,601
5 23,842 941 483sec 1 0 361,494

(a) All paths

Instance # Paths # Blocks Time Not Late Costs
1 59 18 <1sec 0 0 10,874
2 306 62 1sec 0 0 24,979
3 1,182 181 26sec 0 0 69,132
4 11,882 672 172sec 0 0 248,601
5 23,842 941 472sec 1 0 361,494

(b) Maximum ten paths per origin node of a block

Again we have chosen to compare the results for the model with a maximum allowed path
duration multiplier of 1.5 and an EAT-limit of eight hours.

Table 7: Results of the IP model with blocking with a maximum number
(10) of paths per origin node of a block

First, we observe from Table 7 that the results do not change when we only
select the ten cheapest paths of each origin node of every block. For the
first three instances this is not a surprise, as for these instances there is no
origin node of a block with more than ten paths. Therefore, no paths can
be removed and the instances are thus solved with all paths. For the fourth
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and fifth instance a lot of paths were removed, such that, for both instances,
just slightly more than 40% of all the paths remains. Though, this has no
influence on the solution.

As we mentioned beforehand, the decrease in computation time is not
that much, as the IP formulation was already solved very fast with all the
paths. However, this section has showed that if we have to solve larger
problems with a much longer computation time for the IP formulation, only
selecting the ten cheapest paths per origin node of a block is a good idea to
decrease the computation time.
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7 Conclusion and Discussion
In the first section of this chapter we will give our conclusion. Thereafter,
in Section 7.2 we will mention some points with room for improvement.

7.1 Conclusion

This thesis presented a way to solve demand-to-train allocation problems
in rail freight transportation. This problem is divided in two subproblems:
the blocking problem and the block-to-train assignment (BTA) problem.
The BTA problem is defined on a space-time network, after which the BTA
problem was formulated as an IP model. In addition, heuristics were created
to solve both subproblems.

For the blocking problem a heuristic has been created, which creates
blocks based on the characteristics of the hub-and-spoke network. This
heuristic has been compared with the case where one block is created for
each demand from its origin to its destination (which actually means that
no blocks are created and the demand-to-train allocation problem is solved
directly). When comparing the results of the BTA problem with and without
blocks, we saw that the results of the BTA problem with blocks were better.
This is explained by the fact that we restricted the maximum path duration.
Also, the computation time of BTA problems with blocking was much better.
Especially, the time of creating all paths was much better when blocks were
created. This was also the reason that, if we do not create blocks, it was
not possible to create all paths for the largest two instances. This is caused
by the fact that the length of the paths of blocks is much shorter than the
length of the paths for a demand. Therefore, we concluded that it is much
better to create blocks, and thus to divide the demand-to-train allocation
problem into a blocking problem and a block-to-train assignment problem.

We also compared the results of the IP model with the results of the
heuristics. Surprisingly, the computation time of the IP model was much
shorter than the computation time of both heuristics. This was on one hand
due to a very short computation time for solving the IP formulation and, on
the other hand, checking whether a block can be assigned to a train (which is
done often in the heuristics) turned out to be a time-consuming task, as both
the capacities of a train and the right order of the blocks of a demand should
be checked. As it turned out that the IP model can be solved very efficiently
in little computation time, even for our largest instances, we conclude that
it is best to solve the block-to-train assignment problem, which are of a size
similar to the size of our instances, with the IP model. As we do not know the
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behavior of the IP formulation for much larger problems, it is possible that
we need a heuristic when we want to solve much larger problems. Therefore,
we compared the results of both heuristic and concluded that we prefer the
greedy heuristic over the Lagrangian heuristic as the results are better and
its computation time is much shorter.

7.2 Discussion

One of the points of this thesis with room for improvement is the creation
of the paths for each block. Our path enumeration algorithm enumerates all
possible paths for a block which do not exceed the duration of the shortest
path times a certain multiplier. This resulted in the fact that, when we do
not create blocks, it was not possible (due to computation time) to create
all the paths for each demand for our largest two instances. Besides, if we
do create blocks, the biggest part of the computation time of the IP model
was spend by the path enumeration algorithm and just a very small part by
solving the IP formulation itself. If we want to decrease the computation
time in the case where we do create blocks and if we want to solve larger
instances in case of no blocks, the path enumeration algorithm should be
made more efficient. It may be possible to speed up the current path enu-
meration algorithm with some smart tricks, but the most obvious way to
make the path enumeration algorithm more efficient is to create a method
which does not create all the paths for a block. As Section 6.3.3 showed,
we create a lot of useless paths, and it might therefore be an idea to create
a method which creates just a subset of the paths for a block, including
the most important paths for the block. A possible approach for creating a
subset of all the paths is a K-shortest path algorithm. Another possibility
to create the paths more efficiently is via column generation.

Another point to focus on is the greedy heuristic. We preferred this
heuristic over the Lagrangian heuristic and, therefore, we might try to adjust
the heuristic a little bit to improve the solutions. Its computation time is
much shorter than the computation time of the Lagrangian heuristic and for
some instances it found a solution with less demands not delivered than the
Lagrangian heuristic. Only the sum of the fixed train costs and traveling
costs was, for all instances, worse (higher costs) than the costs of the solution
of the Lagrangian heuristic. These costs were also the biggest difference
between the solution of the greedy heuristic and the optimal solution. We
found out that, for all instances, the costs were mainly higher due to higher
fixed train costs. This can be explained by the fact that we focused mainly
on delivering as much as possible demands (we did this because we assume
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that the penalty costs for non-delivered blocks are very high). The last step
of the greedy heuristic tries to assign blocks to other paths to get a cheaper
schedule. Hereby, some blocks are assigned to another path such that one
of the trains from its previous path is not used anymore, whereby we get a
cheaper schedule, but it might be worth to try to extend the heuristic with
a step that focuses especially on decreasing the number of trains used.

Finally, we spoke in this thesis about blocks which are not delivered,
but actually it is important to know if demands are not delivered. The
problem is then that if we count the number of demands in a non-delivered
block and assign costs to it, it is possible that some demands are in multiple
blocks which are not delivered. So, then it is possible that the costs for not
delivering a demand are counted more than once. Therefore, it is better
that, when a demand is in a non-delivered block, the demand is not taken
into account in its other blocks. Besides, it should be nice that, when a
block can not be delivered because of one of its demands, it is possible to
delete that demand from its blocks, whereby the other demands in the block
can be delivered. In our approach all demands in a block are not delivered,
when it is not possible to transport the block to its destination. However,
focusing more on the individual demands in blocks is not so easy.
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