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1 Introduction

Next to maximizing profit, more and more companies try to reduce their CO2

emissions. For transport companies, both goals can be improved by reducing the
number of empty trips. When cargo is delivered, cars, trucks, and trains leave
the receiving party most of the time empty. This would not be a problem if the
vehicle goes to the neighbour to pick up the next cargo. Unfortunately this is
rarely the case. If a vehicle is not repositioned, it needs to travel the complete
way back to the depot, empty. This results in extra costs and emissions, without
any revenues. Although empty repositioning has been studied even before the first
world war by Cavanagh (1907), it became a more practical and popular research
topic after the introduction of the container (Florez, 1986). Even though most
research has been done on empty repositioning within the container business, still
20.5% of the containers handled by ports are empty (Rodrigue, 2013). This might
seem a large percentage, but this is still better than the 53% which is the average
percentage of "empty movements" of a large private rail cargo company (Maltsev,
2014). In this thesis we will develop a new approach to empty repositioning that
takes reclassification costs into account. Our approach models the reclassifications
using a new integer programming problem and multiple heuristics, which all reduce
the number of empty movements for a train cargo company in order to increase
profit while decreasing the CO2 emissions.

In a rail network empty moves are partly caused by the limited parking space at
the facility of end customers. For example, a lumber camp in a forest can most
of the time only be reached using a single track. This means that once a train is
full, it needs to leave. Because no empty train could park at the forest, production
might stall until the next train arrives. At the other end of the process there is
limited parking space as well. At the paper factory, empty wood wagons need
to leave immediately, since it is required to offer room for new arriving wagons.
If the lumber camp is already provided with empty wagons, the wagons at the
paper factory are sent to the depot. From there, after a certain time, they will
be sent back to the forest again. This results in an empty wagons storage at a
depot. In this example, if production time is optimized, three trains are needed.
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This is 1.5 per company, from which 0.5 car is in the depot without generating any
revenue. "If the time that a car is unutilized can be reduced, then the total number
of freight cars can be decreased without reducing the amount of goods which can be
transported, and it follows that the capital costs will decrease" (Holmberg et al.,
1998). When more wood processing companies are involved, this can be achieved
by effectively reassigning and repositioning the empty wagons.

Compared to loaded transports, the planning of empty transports gives more
freedom to the railway company on how to implement the empty movements. A
transportation order of loaded cars has a fixed origin, a fixed destination, and is
often scheduled for a specific day, which means that there are very few alternatives
for implementing the order and the movement. When repositioning empty cars,
there are no origin-destination specific demands that have to be fulfilled, and no
specific time schedule for each empty transport (Joborn et al., 2004). Since most
demands of customers are known beforehand and loaded wagons will lead to empty
wagons, one can schedule empty wagons directly with the loaded wagons. The
wagon scheduling process will then become more complex, but should lead to
more profit. For the empty repositioning problem, specific times are not required.
Knowing which wagons need to go to which place is enough to solve the repositioning
problem.

The process starts with customers. Since these customers ask for train wagons,
they will be located next to a train station. For companies, this station might just
be a private track on their facility. These small stations are called service locations.
Next to service locations, there are base locations. These locations are larger and
are connected to multiple service locations. Base locations are bigger, centralized,
and contain many railway tracks next to each other. At base locations, which
are owned by the railway company, reclassification actions can be performed and
wagons can be stored.

The meaning of reclassification is explained in the article of Bektas et al. (2008)
in section 2.2. "There exist two types of rail terminals in rail networks, flat and
hump yards, depending on how the classification process is carried out. A detailed
description of yard operations can be found in Petersen (1977). In Fig. 1, we depict
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the general structure of a hump yard. A flat yard exhibits a similar structure, except
there is no hump. A train arriving at a yard first enters a receiving area, where
the engines are taken away for inspection and maintenance, blocks are separated
and cars are inspected. The classification operation begins from this point on, and
it can be performed in two ways, depending on the type of the rail yard. In flat
yards, a switching engine is used to push a group of cars out of the receiving tracks
and shove them onto one of the classification tracks. In hump yards, classification
is performed by using an artificially built hill, called the hump, where an engine
pushes a group of cars out of the receiving tracks and up the ramp until it reaches
the top of the hill. Then, with the help of the gravitational force, the cars roll down
the incline, usually one car at a time, and are directed onto one of the classification
tracks. Following this operation, each classification track thus becomes occupied
by a group of cars that form the block. Each block then waits until the departure
time of its outbound train. When the time comes, the blocks are pulled out of
the classification tracks onto the departure tracks and are attached to the train.
Following one last inspection of the whole train, the train and blocks leave the yard.
Classification is not the only operation that is performed at a rail yard. Other types
of operations include inspection, crew change, refuelling the trains, and dropping
and picking up blocks of cars. Among these, however, classification is known to be
the major time-consuming operation." (Bektas et al., 2008)

Figure 1: Classification yard example (Bektas et al., 2008)

In this paper we come up with a solution for empty wagon repositioning with
the aim of reducing the total costs and emissions of railway companies. The
solution is tested on a large real-size problem instance. In order to solve the
empty repositioning problem, the exact problem is described in Section 2. In
Section 3 the literature dealing with similar problems is reviewed. In Subsection
3.4 the conclusion of the literature research is given. In Section 4 the mathematical
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formulation is explained. The integer programming problem can be found in
Subsection 4.2. Next to the IP, three heuristics are proposed in Subsection 4.3.
The performances of the heuristics and the IP are analysed in Section 5. The main
conclusions of this thesis can be found in Section 6. Finally, the main items of this
paper are reflected and discussed in Section 7 where also some recommendations
are given for practical implementation as well as for further research.

2 Problem description

We will solve the empty repositioning problem for a train cargo company in Europe.
Their scheduling is split in an operational, a tactical, and a strategic phase. In
the strategic phase, the so called ‘model week’ is planned. In the model week all
trains are scheduled. Since production in- and output of most customers remains
(almost) constant for a longer period, a model week can be repeated several times.
Repeating such a week reduces the number of scheduling operations which is a
complex, time consuming task. The model week can be planned months ahead.
Based on experience of Ab Ovo, around 30% of the schedule will be adjusted,
cancelled or added on a shorter notice to cope with changes in the demand. Such
adjustments are made in the tactical phase. In the operational phase, day to day
problems are solved. In this thesis we will focus on the optimization of the empty
wagon repositioning for the model week.

The network is considered to be a hub-and-spoke network. Clustered customers are
served from service locations. These are the smallest nodes in the network. They
are linked to a parent node, the so called base locations. These base locations are
then linked to their parent, an Empty Wagon Parking Place (EWPP). Each node
has a limited parking capacity. The EWPPs are locations with a great quantity
of parking capacity, used to store empty wagons. A schematic overview can be
found in Figure 2. In practice there are also physical rail connections between base
locations. For the sake of simplicity we assume a perfect hub-and-spoke network,
like in the schematic overview. Although there might be some rail connections
between two service locations in practice, we assume for each node, that they can
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only be reached via their parent node.

Base Locations

EWPP

Service Locations

Network Overview

physical link

Figure 2: Hub-and-spoke rail network overview

In the model week, there are seven days with demand for empty wagons. All these
demands need to be fulfilled. Every cargo delivery will result within a couple of days
in new empty wagons. These wagons can in our model be viewed as supply which
needs to be reassigned. For each demand, a demand-specific wagon type is required.
Each day, there will be a surplus or deficit on some service locations, which differ
per wagon type. We will restore balance by reassigning wagons on a daily basis. We
do not schedule specific trains, but only send wagons at the beginning of the day
to a new destination, where they will be for sure at the end of the day. Reassigning
locations to each wagon will result in costs that need to be minimized. Besides
the costs, demands, and parking capacity, we take limited capacity within a train
into account. Since the railway network is mainly single-track, the total length of
a train is limited by the length of the shortest side parking place, where a train
can wait and be passed. Although we do not schedule specific trains, we do need
to calculate the amount of trains we need, since an extra train will result in extra
costs. This can be done by dividing all wagons on one track by the maximum
capacity of one train.
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2.1 Repositioning example

In this subsection, an example will show the complexity that planners face when
they try to solve the empty repositioning. In the example, a small network is
used with a limited number of wagon types. Next to the detailed description, the
example is also visualized in Figure 3.
Consider a base location of the network with three connected service locations, an
EWPP, and three different types of wagons. These wagon types are specified by
a colour. At day one, service locations S1 and S2 hold three yellow wagons each.
Service location S3 has two blue wagons and two green ones. The base location
is empty and the EWPP contains ten wagons of each type. On the second day,
there is a demand of two yellow wagons at S3. This demand can be met from three
different locations, S1, S2, and the EWPP. On top of demand that needs to be met,
each location has limited parking space. In this example, S1 and S2 can store three
wagons and S3 can store four wagons. B1 has place for five and the EWPP for 40.
The limitation at S3 forces the decision maker to reassign at least two wagons from
S3. Whether these wagons are sent to B1, the EWPP or another location, is up to
the planner, who has the goal to meet all demands while minimizing the overall
costs. Although neither the blue nor the green wagons are needed on day two, this
is the case for day three. S2 requires two wagons of type green and B1 two blue
ones.
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Initial situation day 1

B1

S1

S2

S3

cap: 3

cap: 3

cap: 4

cap: 5 cap: 40

22

3

3

1010 10

Required wagons day 2

B1

S1

S2

S3

2

Required wagons day 3

B1

S1

S2

S3

2 2

EWPP Base Locations Service Locations

different
wagon
types

Figure 3: Repositioning example

To make room for the required two yellow cars at S3 for day two, the blue ones
can be moved to B1. Since the blue ones should be there at day three, this makes
sense. Another logical option is to move the green wagons. They need to be at
S2 on day three, so they can be moved to S2. Unfortunately, there is no parking
space left at S2. This can be solved by reassigning the yellow wagons, or simply
by reassigning the green wagons to B1. B1 is on the route to S2 and B1 has still
parking space left, so the wagons can stay there during day two. Independent of
the planning decision of the green wagons, reassigning two yellow wagons to S3 is
necessary anyway. Since parking space at S2 should be cleared for day three, this
is an efficient way of reassigning the wagons. If the planner does not use a two day
planning horizon, it might be the case that yellow wagons are assigned from the
EWPP or from S1. Such possible solutions for day two are visualized in Figure
4.
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Possible solution A
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21
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Possible solution B

B1

S1

S2

S3

2 2

3

3

2 8 10 10

Base Locations

EWPP

Service Locations

different
wagon
types

Figure 4: Repositioning example - possible solutions to satisfy the demand at S3

In this example, it is optimal to reassign the yellow wagons from S2. Since then
already empty wagons leave S2, we might want to move the third one to B1 as well.
The cost will be negligible compared to a new train, which is needed if the one
wagon left needs to be picked up a few days later. The green and/or blue wagons
can be moved to B1. The green wagons can also be sent directly to S2. With only
the green and blue wagons from S3, already multiple different options are possible.
Combine this with the option of leaving one yellow wagon at S2 and the number
of different scenarios doubles. And these scenarios exclude options where yellow
cars of S1 and the EWPP are reassigned. From all these options, a planner should
pick the best option which is defined as the one with the lowest costs, while still
meeting all demands.

Even with this small example, repositioning is already a challenging task. This
thesis aims to find a method to solve this problem for the planners of railway
companies. Such a method should minimize the overall costs. The different costs
will be discussed in the next section.
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2.2 Costs

In this problem setting there are three different cost types: train setup costs,
travelling costs, and reclassification costs; these will be explained in the following
subsections. We will need a function to calculate the overall costs in such a way,
that we are able to compare different strategies. Therefore it is not required
to calculate the exact total costs. Costs that will occur anyway and cannot be
reduced by any scheduling decision, can be left out in order to reduce the number
of calculations.

2.2.1 Train setup costs

Each train requires a new locomotive with a crew. The crew scheduling costs,
insurance costs, and salary of the crew are used as setup costs.

2.2.2 Travelling costs

Travelling costs are computed per kilometre and per wagon. The costs consist of
wear, fuel, and discounted maintenance costs.

2.2.3 Reclassification costs

Reclassification is an expensive, time consuming activity. Therefore it can have a
major impact on the scheduling decisions. However, to compute such costs during
the decision process, is a challenging and complex task. In this subsection, our
approach is explained.

When a wagon needs to be placed behind a locomotive, it needs to be shunted.
When a group of wagons are in a row and needed to be placed behind the same
locomotive, this action requires only one shunting move. The process of shunting
wagons from arriving trains to departing trains is called reclassification. It is
inevitable that wagons are shunted at their departure. This is independent of the
destination. Therefore we can exclude these first times from our cost function,
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since it will not influence the result. Shunting costs are independent of the location
where it takes place. Each node in the network can be an origin or destination for
some wagons. The fact that wagons can be clustered for a part of their route while
they have different origins and destinations, forces us to calculate the number of
reclassification moves for every part of a route instead of per wagon travelling from
origin to destination. We will illustrate our solution with the example in Figure 5.
This example is constructed to explain the determination of the reclassifications
costs. It is not a realistic example, because the flows are very straightforward and
there is only one solution. In general determining the flows is already difficult.

In the example there is only one EWPP, which has three base locations. Each
base location has at least one service location. The service locations on the left,
have a surplus in wagons, while the locations on the right have a deficit. The
deficits are indicated with negative numbers. The rectangles have different colours
for different wagon types and contain a number corresponding to the number of
wagons. Base location 2 has also a surplus of two green wagons and the EWPP
can supply the missing yellow wagon. For the example, we set the train capacity
to five wagons.

B1

B2

B3

S1

S2

S3

21

2

1

2

1

S4

S5

S6

-6

-1

-2

Base Locations

EWPP

Service Locations

different
wagon
types

Figure 5: Shunting example

We will consider each node where reclassification takes place separately. We first
look at service location S1. There is one blue wagon and two green ones. They all
need to be shunted onto the train to base location B1. Since we do not count the
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start shunting moves, we count zero shunt actions at this location. This is the same
for service locations S2 and S3. The first shunting moves that will be counted take
place at B1, where the trains from S1 and S2 arrive. This can be seen in Figure
6. Although not all wagons have the same destination, the next station is for all
wagons the same. Since the total amount of wagons does not exceed the capacity
of one train, both arriving trains will be shunted to the same train, bringing the
total number of reclassification moves to two.

B1

Figure 6: Shunting at B1

The next node is base location B2. There is only one train with one wagon arriving.
This wagon needs to be shunted to the next departing train. On B2 there are also
two green wagons waiting. These will be shunted onto the same train, but this is
their first shunting, which we will ignore because it will not have influence on the
decision process. Therefore only one shunting move will be counted at B2 bringing
the total number of reclassifications to three. This can be seen in Figure 7.

B2

2

Figure 7: Shunting at B2

Both trains from B1 and B2 will arrive at the EWPP. Since both trains also need
to go to base location B3, they only need to be shunted to the track to B3. This
requires one shunting move per train. Also a yellow wagon is added to the train
originating from B2. This is displayed in Figure 8. Because this is the first shunting
of the wagon, it can be ignored. This brings the total amount of shunting moves to
3 + (1+1) = 5.

In the current example, we assume that there are exactly enough wagons in the
network available to cover the demand. Another option is to assume that the
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EWPP has enough wagons of every type to cover all demand. In that case, the
arriving trains will stay there while other wagons of the same type will be sent to
the destination. In practice this might be even better, since all wagons can depart
at the same time. In that case no shunt actions will be counted at the EWPP,
because all shunting moves are start or end moves and need to be done anyway.
Such decision is up to the planners of railway companies. For now, we continue
assuming that the EWPP only has one yellow wagon and we need to shunt all
incoming trains.

1

Figure 8: Shunting at the EWPP

At B3 both trains need to be split. Train 1, with four green wagons and a blue
one, needs to be split into two trains. One train goes to service location S4 and
one to S5. This requires two reclassification moves. The other train contains two
green and two yellow wagons. The yellow ones will be shunted to a train to service
location S6. The total number of reclassifications is now eight. The other two
green ones, need to go to S4. Since there is already a train going to S4, it would
be beneficial to shunt the two wagons onto that train. Unfortunately, this is not
possible, because there are already four wagons on the train and the capacity is
limited to five. When this train is filled to its maximum, we need to shunt one
wagon to the existing train and one to a new train, which results in two shunting
moves. Since we already need the new train, we can as well put both wagons
on that new train which requires only one shunt move. In both cases two trains
are needed, but costs can be minimized by not splitting the two wagons. This is
visualized in Figure 9, which is the last location of the example.

Our procedure to estimate the reclassification costs considers each incoming train
and counts the number of destinations inside the train. Not the final destinations,
but the next stations. We simply sum this number over all trains arriving on
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a location. This is calculated for each location in the network. Based on the
proposed estimation method, nine reclassification moves were needed for the entire
network.

B3

S4

S5

S6

-6

-1

-2

Figure 9: Shunting at B3

In the case of Figure 9, our solution approach estimates the number of reclassification
moves at B3 (which is four) correctly. Unfortunately, we cannot assume that the
estimation is always correct. A counterexample can be seen in Figure 10.

B3 Or

Figure 10: Shunting dilemma

We have three arriving trains with three wagons each. All wagons need to go to
the same location. Again reclassification costs can be minimized by not splitting
the wagon groups, but in this case this will lead to three trains and three reclassi-
fications. Depending on the difference in costs between one extra train and one
extra reclassification move, a planner might want to split one incoming train and
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dividing the two parts over the remaining two trains, resulting in two trains and
four reclassifications. However, in the last case the total number of reclassification
moves cannot be estimated easily. Finding the optimal reclassification solution for
one location, is equal to solving the bin packing problem. Wagons within the same
train, with the same next station, can be seen as one block. All blocks with the
same next station should be divided over the outgoing trains, while minimizing the
number of trains. This is the bin packing problem. In our case however, blocks
might be cut into smaller ones, but only if this will lead to less trains. Within our
bin packing problem, cuts are allowed, but this results in extra costs. Since the
bin packing problem is proven to be NP hard (Martello and Vigo, 1998), we would
rather estimate the number of reclassifications to simplify the problem. In the
shunting dilemma of Figure 10, our estimation will lead to three reclassifications,
where four might be needed. This depends on whether an extra train is cheaper
than an extra reclassification move. Since the cost function is only used to compare
different options and choose the best of them, we believe that this simplification is
acceptable. Solving the bin packing problem is only possible when the numbers of
incoming trains and wagons are known. Such information is only available when
train schedule is complete. This is not the case in this thesis, since we want to
take the reclassification costs into account during the decision process and not
afterwards. Therefore implementing the bin packing problem is not possible.

2.3 Objective

The objective of this thesis is to find a method which solves the repositioning
problem in reasonable time, while minimizing the total costs. In the railway
network, companies supply or demand empty freight wagons. Repositioning these
wagons to other companies instead of to the depot saves time and effort. A solution
for this problem contains information about which wagons need to be repositioned,
to which location and on which day. Planners should be able to run the optimization
overnight. For realsize problem instances containing seven days to plan, within
reasonable time means within at most twelve hours.
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3 Literature study

Within the transport business, the repositioning problem has been tackled in various
ways. In this chapter, different approaches are reviewed. First we will look at
articles that contain a more general approach to the problem. This means that they
contribute to the empty repositioning research, but not solve empty train wagons
repositioning problems, or empty container repositioning problems. After that, we
will look at the problem within shipping and within empty container repositioning
problems. Next to that, empty repositioning in the rail environment is reviewed.
Finally a conclusion is given which summarizes how the reviewed literature can be
used within this thesis.

3.1 General approaches

An extensive overview of optimization models for freight transportation is done by
Crainic (2002). He mentions empty movement problems but it is not the main topic
of the paper. He shows a solution method which solves the empty repositioning on
an operational level with a dynamic network representation for a certain horizon.
The used multi-commodity flow approach schedules multiple network problems
which in some cases contain empty wagons. Although we have a static network and
we do not schedule normal demands, the use of a multi-commodity flow approach
can also be applied to our problem.

A capacitated network flow model is used by Olivo et al. (2005). They focus on
empty container repositioning instead. This model has a rolling horizon and also
considers road and water transport options. They solved it for small and medium
sized problem instances, because large problems took too much computation time.
Shintani et al. (2005) use a similar network flow model, but solve it with a genetic
algorithm heuristic. Their method converges within a minute for a medium problem
size. Their algorithm was not tested on large problem instances, but the authors
stated that computation time will increase consequently. From both articles it can
be learned that for large problems, a heuristic is required to solve the network flow
problem.
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Godfrey and Powell (2002) use an adaptive dynamic programming algorithm that
uses non-linear functional approximations for dynamic fleet management. Their
functional approximations are piecewise-linear and provide integer solutions. They
assume that random scenarios arise over time and solve it with a stochastic version
of a dynamic resource allocation method. Because we plan the model week which
does not contain any uncertainty, this model does not apply for us.

Zhang and Facanha (2014) consider a model which incorporates the possibility to
transport empty containers from one port to another using rail transport. They
used a network flow problem, which they split into smaller regions. They use
regional, inter-regional, and national levels. This reduces computation times and
does not lead to infeasibility. This approach of splitting the overall country into
smaller regions can also be used in our problem.

3.2 Shipping approaches

A substantial amount of repositioning research on empty repositioning is done within
the container liner shipping service. Because such networks have less locations
and commodities compared to rail networks, the models cannot be used directly.
But since the models are similar, the computation time and performance of the
heuristics are interesting.

Dong et al. (2013) reviewed multiple articles about the mathematical modelling
in maritime empty container repositioning solutions. They state that there are
two groups of repositioning policies; state-feedback control policies and origin-
destination matrix solutions. Because they only compare shipping networks subject
to uncertainty with just three shipping service routes, the only contribution to
this research is that computation times for optimal models are huge for realistic
problem sizes. Again, this implies that a heuristic approach is required.

Dong and Song (2009) present a simulation based optimization tool to seek the
optimal number of containers and the optimal threshold parameters which are
used for empty repositioning. Combined with the simulation, they developed an
evolutionary optimization algorithm based on Genetic Algorithms and Evolutionary
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Strategy. They achieve cost reductions of more than 15% in computation times
less than half an hour.

In the article of Erera et al. (2009), empty repositioning is optimized for a homoge-
neous fleet. They used a time-space network flow problem to solve the dynamic
empty repositioning. A set of uncertainty is included in the model to forecast
future supplies and demands. The main focus is to deal with uncertainty in an
optimal way. This is also done by Francesco et al. (2009). They use stochastic
programming for a similar problem. A sample average approximation method is
applied by Long et al. (2012). They formulate a two-stage stochastic program
model with random demand to incorporate uncertainties. In all three mentioned
articles the focus is on dealing with the uncertainties within an operational week,
while optimizing the empty repositioning for containers.

Song and Carter (2009) counter the repositioning problem by proposing four different
strategies and solving each strategy with a mathematical program. They focus
on possible cooperation between corporations within the liner shipping industry.
According to them, sharing containers can reduce costs with 12 to 18%. But to
solve the problem within the different liner companies, more research is required.
Brouer et al. (2011) approach the empty repositioning problem for a liner shipping
company with an arc-flow formulation which is decomposed using the Dantzig-Wolfe
principle to a path-flow formulation. A linear relaxation is used with a delayed
column generation algorithm. A feasible integer solution is found by rounding the
fractional solution and adjusting flow balance constraints with leased containers.
The proposed algorithm maximizes profit and is able to solve instances with 234
ports, 16,278 demands over 9 time periods in 34 minutes. The integer solutions
found by rounding down are computed in less than 5 seconds and the gap is within
0.01% from the upper bound of the linear relaxation.

Meng and Wang (2011) consider a conventional hub-and-spoke network design in
which the transfer costs at hub nodes are not accounted for. Transfer costs could
be similar to reclassification cost, but in this paper such cost are neglected. They
solved the empty repositioning problem with a mixed-integer linear programming
model, without any heuristic. They solved the problem for only one shipping line
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and state that some meta-heuristic can be applied if the problem size increases.
This optimal model for a smaller problem size is quite the same approach as the
standard multi-commodity network approach of Chao and Yu (2012). Both give
optimal results, but are not usable for larger problem sizes.

Song and Dong (2012) consider joint cargo routing and empty container reposi-
tioning at the operational level for a shipping network with multiple service routes.
They propose two solution methods. The first is a two-stage shortest-path based
integer programming method, which combines a cargo routing algorithm with an
integer programming model of the dynamic system. The second is a two-stage
heuristic rules-based integer programming method, which combines an integer
programming model of the static system with a heuristic implementation algorithm
in a dynamic system. They conclude that for a small case the heuristic method is
3.3% worse than the optimal method. For a realistic large case, the optimal method
was not able to produce the solution due to computational complexity.

Choong et al. (2002) present an integer programming problem for empty container
repositioning. They use an underlying space-time network to optimize the container
flow between nodes. They do not redirect containers, but minimize the transports
by planning the empty containers on passing barges which have some capacity
left. Although this model cannot be applied in our case, it is interesting to see
that doubling the horizon from 15 to 30 days, does not lead to extensive solution
times.

3.3 Rail approaches

Although empty wagon repositioning is also studied within the railway environment,
our specific situation has not been studied before. Reclassification costs are most
of the time not included and a hub-and-spoke network has never been used for
empty repositioning in the rail industry. Nevertheless, the used approaches can be
useful for this thesis.

Evdokia et al. (1993) use game theory to approach the problem. They state
that like an oligopolistic equilibrium system, the multi-commodity multi-railroad
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problem could fit within the frameworks of the Nash-Cournot non-cooperative
game; a leader-follower Stackelberg game. They model the n-player game with a
mathematical formulation. Although empirical tests have shown that the algorithm
converges within reasonable computational time, a theoretical study has shown
that the conditions for existence and uniqueness of an equilibrium solution are
very strong and cannot be satisfied in a general class of problem instances. It is
interesting to see that a problem similar to ours, is solved using Game Theory.
However, the fact that theoretically the equilibrium solution might not exist, makes
this approach unusable for practical implementation. Railway companies can only
use a model which will always return a solution.

Sherali and Tuncbilek (1997) compare static and dynamic models for calibration
of strategic planning models for the multi-level rail-car fleet management. The
dynamic model uses time-space networks, which might be interesting for this thesis,
because they state that their decomposition heuristic recovers optimal solutions with
a reasonable effort. But Sherali and Tuncbilek (1997) use the models to determine
the rail-car fleet size, not the allocations. The fleet sizing problem is contained
within our problem, so the success of a decomposition heuristic can be questioned,
since their computation time was already around 700 to 1000 seconds.

The model of Holmberg et al. (1998) can be characterized as a time-expanded
multi-commodity network flow problem with integer requirements, in which each
commodity corresponds to one type of freight car. It also includes common
restrictions on the train capacities for cars of different types; one of the key
properties of this model. Next to that, the railway system is divided into 13 car
distribution areas. They solve the multi-commodity flow problem with time and
capacity constraints with a Lagrangian heuristic. They take exact time tables
explicitly into account. This model shows that it is solvable in reasonable time for
problems of realistic size. The model generates operationally implementable plans.
They suggest the following possible extensions: group substitutable wagons, split
capacity in weight and length, inventory costs in objective function and movements
of loaded freight cars are optimized simultaneously as the empty freight car. Since
we would like to group substitutable wagons and we are not interested in operational
implementable plans, this model cannot be used directly. Splitting the railway
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system into different areas might be a useful solution.

Ireland et al. (2004) have developed a five step iterative process. They start
with a traffic forecast, after which they design a blocking plan. The blocking
plan is the foundation for the operating plan, determining the car routings, yard
workloads, and contribution to customer service. This blocking plan creation is also
an iterative process. After the blocking plan design, the train schedules are built.
Again, an iterative procedure is used. Step four of the overall iterative process is
a day-of-week simulation. Based on the results of this simulation, the blocking
plan and/or the train schedule is adjusted. Finally, they finish the process with
a crew and locomotive plan. This model does not focus on empty repositioning,
but the iterative approach using simulation is an interesting way of tackling large
problems.

Joborn et al. (2004) encounter the same cost structure as we do. They identify
three different costs. Costs that do not depend on the transportation pattern
design are excluded. They declare train costs as the combination of engine costs,
driver costs, and energy costs. The paper aims at an operational planning and
can therefore ignore the fixed train costs. For the transportation costs, a certain
amount per mile is used. It is interesting to see that they cannot find an exact
solution for the reclassification costs, which they call yard costs. A set covering
method is used where paths are selected. A path is a possible route for a group
of wagons with the same origin and destination. At each station in between, yard
costs are counted. This approach neglects the fact that some paths share parts
of their route. On the shared parts of their routes, all wagons can be handled as
one block. Neglecting this fact makes the computation easier but less accurate.
Although their approach is less accurate, the article states that this simplification
is verified in Joborn (2001). The problem is solved using a tabu search heuristic on
a capacitated network flow model. For the reclassification, a similar assumption is
made by Narisetty et al. (2008), they state that fixing reclassification costs based
on the number of stations between an origin and destination will not compromise
the outcome of the model. In our hub-and-spoke network, lots of traffic can be
expected between EWPPs. Neglecting the fact that most of the wagons can be
handled as one block, does not seem to be logic in our case.
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A Lagrangian based heuristic is used by Holmberg et al. (2007). They study a
multi-commodity network flow problem with fixed costs on paths, not on arcs.
Their case study is an empty freight car distribution on a rail network. Although
the heuristic generates fairly good primal feasible solutions and lower bounds on
the optimal objective function value, the computation times are quite long already
for small problem sizes. They test with 25 nodes and 10 commodities. When the
number of commodities is increased to 15, while the number of nodes remains 25,
the computation time increases from 200 to 300 seconds. Real size problems on rail
networks are much larger facing at least 200 nodes and at least 25 commodities.
Although the optimality gap of this heuristic is below 25%, the computation time
for our problem would probably be too long.

Narisetty et al. (2008) use an LP relaxation and state that it will return optimal
integer solutions. Their approach is used on the Union Pacific rail road, the largest
rail road in the United States. The total computation time is only a few minutes.
They fix all costs on beforehand based on the origin and destination of the wagons
and then solve the classical transportation problem of satisfying the demand of m
customers from n supply points while minimizing the associated transportation
costs. They do this for a short planning horizon of 10 days of demand and 1 day of
supply. The main difference with our problem is that they fix the costs per wagon
on beforehand, while in reality the costs depend also on movements of other wagons
on nearby stations. Since they state that neglecting the reduction in reclassification
costs does not lead to other results, we should take that into consideration as
well.

3.4 Conclusions

Empty repositioning has been studied in different fields with many different ap-
proaches. Most articles conclude that an exact formulation will not produce the
optimal solution within reasonable time for realsize problem instances. Splitting
the total problem into smaller regions was successful for Holmberg et al. (1998) and
Zhang and Facanha (2014). Therefore it seems to be a good solution approach for a
heuristic. For the smaller region based problems, different approaches can be tried.
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Where some articles state that for smaller problems the network flow problem will
return optimal results within reasonable time, Narisetty et al. (2008) and Brouer
et al. (2011) state that the LP relaxation will also return integer solutions. This
needs to be verified for problems which are split into different regions.

Other heuristics which are used are based on: Lagrange relaxation, tabu search,
game theory, sample average approximation, genetic mutation, iterative procedures
or simulation. In some cases some techniques were combined. These approaches
might be an option if an exact formulation and splitting regions will not return the
required results. In multiple articles, simulations are used to test the solution for
uncertainties. This will not be necessary for this thesis since we will plan a model
week, which does not contain uncertainties.

4 Solution methods

In this section the integer programming formulation and heuristics are explained.
The section starts with the introduction of the sets and variables which are needed
for the IP formulation. After the introduction an overview of all sets, parameters
and variables is given. Then the IP is explained. Finally three different heuristics
are presented.

The integer programming formulation of the problem is based on a multi-commodity
flow model. We consider a directed graph G = (V,A) where all vertices v ∈ V
are locations in the hub-and-spoke network. The locations are connected with
bidirectional arcs a ∈ A. We define the set W (i, j) as the set of locations that
can be reached directly after location j, when starting in location i. This comes
down to all neighbours of location j and j itself, but excluding location i. This set
is needed in order to calculate the number of reclassification moves. In a normal
multi-commodity flow model, the decision variable has one index for the commodity
and two for the location resulting most of the time in xk

ij. In our model this will
not do, due to the reclassifications. This is shown with an example. In Figure 11
node 1 and 2 will supply node 3 and 4.
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Figure 11: Explanation three indices

When using the normal notation, this will lead to x12 = 2, x23 = 2, and x24 = 2 for
the left example and x12 = 3, x23 = 2, and x24 = 2 for the right one. In the left
example there is one reclassification move, while the right one contains two. This
cannot be derived from the standard decision variables. Therefore we introduce
xijl which stands for the flow from i to l via j. In the left example this will lead to
x122 = 0, x123 = 2, x124 = 0, x233 = 2, and x244 = 2. In the right example the values
are x122 = 0, x123 = 2, x124 = 1, x233 = 2, and x244 = 2. j = l implies that there
are no reclassifications, since we do not count reclassifications at beginning and
end nodes. The number of reclassifications can now be derived from the variables
for which j 6= l and are larger than zero. For the left one, this is 1 and for the right
one this is 2. In this example only counting the non-zero variables for which j 6= l

is enough to determine the number of reclassification moves. When flows contain
more than the capacity of one train, this need to be taken into account as well.
This approach will be discussed in Subsection 4.2.

For each day in the model week it is decided which wagons will flow from one
location to another. At the end of each day, most empty wagons will be used
by customers and therefore disappear from the network. The unused wagons
can be reassigned the next day. On the other hand, when a customer unloads
cargo cars, the empty ones will (re)appear in the network. Where the standard
multi-commodity flow has capacity on the arcs, our problem has no constraints on
the arcs, but does have capacity constraints on each vertex. For each commodity,
each day, there is a different minimum in the number of cars, which is equal to the
demand. The maximum parking capacity is restricted by its length in metres.

24



4.1 Notation

First, the sets that are required to solve the model are described. Next the
parameters are given, that should be known before solving the problem. Finally,
the decision variables are listed and explained.

Sets
V All locations in the network
A All arcs in the network
W (i, j) All possible locations which can be reached directly after travelling

from location i to j, including j (which implies staying at j)
K All commodities/wagon types in the network
T All periods (1, 2, ..., τ) in the planning horizon
Parameters
csij

Setup costs per extra train starting in location i and travelling to
location j with (i, j) ∈ A

ctij
Costs of travelling between location i and j which occur per wagon,
with (i, j) ∈ A

cr Costs per reclassification
Uk

dem(i,t)
The minimum required number of wagons of type k at location i at
the end of period t

Upark(i,t) The maximum parking space for empty wagons in metres at location
i in period t. Loaded wagons can also use parking capacity. Therefore
the maximum parking space can change per time period

Ucap(ij) The maximum capacity of one train on the track from location i to
location j with (i, j) ∈ A

Lk The length of the car type k in metres
zk

i,t The number of empty wagons of type k that will become available and
(re)appear in the problem at the beginning of period t on location i

ε A number which is smaller than the smallest cost parameter of the
problem, but significantly larger than 0.

τ The last period considered in the planning horizon
Decision variables, all in N
xk

ijl,t The number of cars of type k travelling from location i to l via j in
period t, with (i, j) ∈ A, and l ∈ W (i, j)

yk
i,t The number of wagons of type k, at location i ∈ V at the beginning

of period t
γij,t An auxiliary variable used to determine the setup costs
δijl,t An auxiliary variable used to determine the reclassification costs
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4.2 Integer programming problem

The objective of the formulation is to minimize the overall costs of the problem.
The overall costs are the sum of the setup, travelling, and reclassification costs. The
setup costs occur when a new train is needed. This can be calculated by summing
all departing wagons of one location in a specific direction at a specific day, divide
the sum by the capacity of one train and rounding the answer up to the integer
above. This integer is the number of leaving trains and is multiplied by the setup
costs per train. This can be seen in Equation (1).

min
∑
t∈T

∑
(i,j)∈A

csij

⌈∑
k∈K

∑
l∈W (i,j) x

k
ijl,t

Ucap(ij)

⌉
(1)

s.t.

xk
ijl,t ∈ N ∀ k ∈ K, (i, j) ∈ A, l ∈ W (i, j) and t ∈ T

Unfortunately, this formulation is not linear. To linearise this part of the ob-
jective function, we use an additional decision variable γij,t. This variable can be
interpreted as the number of trains leaving from location i to j at time t. γij,t is
minimized, while we add a restriction to the model that forces γij,t × Ucap(ij) to be
at least as large as the sum of the leaving wagons. This results in Equation (2)
and Equation (3).

min
∑
t∈T

∑
(i,j)∈A

csij
γij,t (2)

s.t.

∑
k∈K

∑
l∈W (i,j)

xk
ijl,t ≤ Ucap(ij)γij,t ∀t ∈ T,∀(i, j) ∈ A (3)

xk
ijl,t ∈ N ∀ k ∈ K, (i, j) ∈ A, l ∈ W (i, j), t ∈ T
γij,t ∈ N ∀ (i, j) ∈ A, t ∈ T
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The travelling costs are more straightforward. This is the flow per arc multiplied
by the costs for that arc, for every arc and every period in the planning horizon.
This results in Equation (4):

min
∑
t∈T

∑
(i,j)∈A

ctij
×

∑
l∈W (i,j)

∑
k∈K

xk
ijl,t. (4)

The modelling of the reclassification costs is similar to the setup costs. For the
setup costs, we were only interested in the flow from location i to j, no matter
where the wagons were going after j. This is different for the reclassification
costs. In this thesis the number of reclassifications is determined with a simplified
approach. For each incoming train the number of different destinations for all
wagons of the train is counted. To determine the number of reclassification moves
at j, information about the next location is required. Compared to the setup costs,
a similar formulation is used. Auxiliary variable δijl,t is used, which is the number
of reclassification moves that takes place at location j for wagons coming from
location i and travelling to location l at period t. δijl,t × cr is minimized in the
objective function. The sum of all leaving wagons with the same destination and
the same destination afterwards, should be smaller than the capacity of one train
times the number of reclassification moves. If the number of wagons exceeds the
capacity an extra reclassification move is necessary. The restriction of Equation (5)
is added to the model for all t ∈ T , (i, j) ∈ A, and l ∈ W (i, j)\j.

∑
k∈K

xk
ijl,t ≤ Ucap(ij)δijl,t (5)

When l = j, xijj implies staying at location j. Since we do not count start and
end reclassifications, element j is removed from set W (i, j). This removal could
lead to a more accurate estimation of the number of reclassification moves, but this
requires an additional cost parameter. This is explained with an example. Again we
look at the left example of Figure 11. All relevant decision variables are x122, x123,
x124, x233, and x244. We assume that all setup costs and travelling costs are equal.
When we solve the example, a possible solution is: x122 = 0, x123 = 2, x124 = 0,
x233 = 2, and x244 = 2, which will lead to overall costs of 3× cs + 6× ct + 1× cr.
However, x122 stands like x123 for the flow from location 1 to location 2. We would
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like to use x122 for flow staying at location 2, but this is not explicitly defined.
The solutions: x122 = 2, x123 = 0, x124 = 0, x233 = 2, and x244 = 2, will lead to
costs of 3× cs + 6× ct + 0× cr. Because we do not count end reclassifications, we
do now count zero of them, which makes this solution cheaper than the correct
one. In this example we can count end reclassifications as well to deal with this
problem. However, this is not a valid solution in general. When the costs of regular
reclassifications are exactly the same as end reclassifications, a solution might
only contain the end reclassifications. In that case, the exact reclassification costs,
cannot be estimated any more. This will result in a problem neglecting the fact
that reclassifications take place. Our solution is to force ∑

k∈K xk
ijj,t to be only

nonzero if there is no other option (i.e. if j is the final location) by assigning costs
of cr + ε to all xk

ijj,t. The incorrect solution of x122 = 2, x123 = 0, x124 = 0, x233 = 2,
and x244 = 2, will now lead to 2 × ε more costs than the correct solution. This
approach is realized by adding ∑

t∈T

∑
(i,j)∈A(cr + ε)×∑

k∈K xk
ijj,t to the objective

function. This brings the objective function with corresponding constraints to
Equation (6).

min
∑
t∈T

∑
(i,j)∈A

(csijγij,t + (cr + ε)× xk
ijj,t + ctij ×

∑
l∈W (i,j)

∑
k∈K

xk
ijl,t + cr ×

∑
l∈W (i,j)\j

δijl,t)

(6)

s.t.∑
k∈K

∑
l∈W (i,j) x

k
ijl,t ≤ Ucap(ij)γij,t ∀ (i, j) ∈ A, t ∈ T∑

k∈K xk
ijl,t ≤ Ucap(ij)δijl,t ∀ (i, j) ∈ A, l ∈ W (i, j), t ∈ T

xk
ijl,t ∈ N ∀ k ∈ K, (i, j) ∈ A, l ∈ W (i, j), t ∈ T
γij,t ∈ N ∀ (i, j) ∈ A, t ∈ T
δijl,t ∈ N ∀ (i, j) ∈ A, l ∈ W (i, j)\j, t ∈ T

To ensure that all variables behave as they should, another constraint is needed.
This is shown with the right example of Figure 11. A possible solution is to relocate
two wagons of location 1 to location 3, one wagon from location 1 to location 4
and one from location 2 to location 4. This should lead to the following values:
x122 = 0, x123 = 2, x124 = 1, x233 = 2, and x244 = 2, which will lead to overall costs

28



of 3× cs + 6× ct + 2× cr. Unfortunately, setting the variables to x122 = 0, x123 = 3,
x124 = 0, x233 = 2, and x244 = 2, will lead to overall costs of 3× cs + 6× ct + 1× cr.
The variable x123 = 3 should mean that there are three wagons from location 1 are
going to location 2, because they will go to location 3 after that. However, this is
not strictly stated in the model. The flow from location i, via j to l, should be
continued as flow from location j, via l to m, with m ∈ W (j, l). Therefore the
restriction of Equation (7) is added. This will force the flow x123 to be continued
to x23m where m can be location 3 or further locations.

xk
ijl,t ≤

∑
m∈W (j,l)

xk
jlm,t ∀(i, j) ∈ A, k ∈ K, l ∈ W (i, j)\j (7)

To set the correct stock level (yk
i,t) for each location, commodity and each time

period, the current stock of each commodity is updated with new available wagons
(zk

i,t), the demanded wagons which will become unavailable as empty wagons
(Uk

dem(i,t)
), the wagons entering the location and leaving the location. This results

for every location h ∈ V in Equation (8). Because wagons can be stored at each
location, the constraints of Equation (8) can be seen as flow conservation constraints
as well as inventory constraints.

yk
h,t+zk

h,t−Uk
dem(h,t)

+
∑

(i,h)∈A

∑
l∈W (i,h)

xk
ihl,t−

∑
(h,j)∈A

∑
l∈W (h,j)

xk
hjl,t = yk

h,t+1∀h ∈ V, k ∈ K, t ∈ T\τ

(8)

In the first period, all stocks are set to zero. If there are wagons available, they
will be added using the zk

h,t parameter. This adds the following constraints to the
problem.

yk
h,1 = 0 ∀h ∈ V, k ∈ K (9)

At the end of each day, demand should be met. Again we add new available wagons,
incoming wagons, and leaving ones to the stock of each location, but now it should
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be larger or equal to the demand. This gives Equation (10)

yk
h,t + zk

h,t +
∑

(i,h)∈A

∑
l∈W (i,h)

xk
ihl,t −

∑
(h,j)∈A

∑
l∈W (h,j)

xk
hjl,t ≥ Uk

dem(h,t)
∀h ∈ V, k ∈ K, t ∈ T

(10)

Although Equation (10) is equal to yk
h,t+1 ≥ 0, this is not defined for the last period.

Therefore we will not use the shorter notation.

On each location the parking space is limited. The sum over all wagons multiplied
by their length(Lk) should be smaller than or equal to the maximum parking
space(Upark(h,t)). This adds Equation (11) to the model.

∑
k∈K

(yk
h,t+zk

h,t−Uk
dem(h,t)

+
∑

(i,h)∈A

∑
l∈W (i,h)

xk
ihl,t−

∑
(h,j)∈A

∑
l∈W (h,j)

xk
hjl,t)×Lk ≤ Upark(h,t)∀h ∈ V, t ∈ T

(11)

A complete overview of the model can be found on the next page.
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Model overview

min ∑
t∈T

∑
(i,j)∈A(csij

γij,t+(cr+ε)×xk
ijj,t+ctij

×∑
l∈W (i,j)

∑
k∈K xk

ijl,t+
∑

l∈W (i,j)\j cr×
δijl,t)
s.t. ∑

k∈K

∑
l∈W (i,j) x

k
ijl,t ≤ Ucap(ij) × γij,t ∀ (i, j) ∈ A, t ∈ T∑

k∈K xk
ijl,t ≤ Ucap(ij) × δijl,t ∀ (i, j) ∈ A, l ∈ W (i, j), t ∈ T

yk
h,t + zk

h,t − Uk
dem(h,t)

+ ∑
(i,h)∈A

∑
l∈W (i,h) x

k
ihl,t

−∑
(h,j)∈A

∑
l∈W (h,j) x

k
hjl,t

= yk
h,t+1 ∀ h ∈ V, k ∈ K, t ∈ {1, 2, ..., τ − 1}

yk
h,t + zk

h,t − Uk
dem(h,t)

+ ∑
(i,h)∈A

∑
l∈W (i,h) x

k
ihl,t

−∑
(h,j)∈A

∑
l∈W (h,j) x

k
hjl,t

≥ 0 ∀ h ∈ V, k ∈ K, t ∈ T

∑
k∈K(yk

h,t + zk
h,t − Uk

dem(h,t)

+ ∑
(i,h)∈A

∑
l∈W (i,h) x

k
ihl,t

−∑
(h,j)∈A

∑
l∈W (h,j) x

k
hjl,t)
×Lk

≤ Upark(h,t) ∀ h ∈ V, t ∈ T

xk
ijl,t ≤ ∑

m∈W (j,l) x
k
jlm,t ∀ (i, j) ∈ A, k ∈ K,

l ∈ W (i, j)\j, t ∈ T
yk

h,1 = 0 ∀ h ∈ V, k ∈ K
xk

ijl,t ∈ N ∀ k ∈ K, (i, j) ∈ A,
l ∈ W (i, j), t ∈ T

yk
i,t ∈ N ∀ k ∈ K, i ∈ V , t ∈ T

γij,t ∈ N ∀ (i, j) ∈ A, t ∈ T
δijl,t ∈ N ∀ (i, j) ∈ A, l ∈ W (i, j), t ∈ T
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4.3 Heuristics

In this section, the three heuristics are explained. All three split the problem
and solve it day by day. This approach will reduce the complexity of the overall
problem, but will also lead to sub optimal solutions. When the planning horizon
is only one day, the lack of information about other days makes the problem less
complex and easier to solve. This will lead to faster computation times. However,
the lack of information makes it impossible to combine trips of multiple days. This
will lead to extra trips and to sub optimal solutions.

For each subproblem, the IP will find moves. A move contains information about
the wagon type, the number of wagons, the start location and the next location. If
4 wagons of the same type are repositioned from A to D, via B and C, will this
result in 3 moves (AB, BC, and CD).

4.3.1 Heuristic 1

Heuristic 1 solves the problem for each day separately, using the IP as described
in Section 4.2. The heuristic starts with the available wagons of day 1 and the
demanded wagons of day 2. Once the IP has solved the problem for day 1, the
obtained moves are updated by setting the wagon inventories of all locations.
The next iteration, day 2 has inventory as well as new available wagons. This
combination is used to satisfy the demand of day 3. This iterative process continues
until the demands of all days are satisfied.

4.3.2 Heuristic 2

Like heuristic 1, heuristic 2 splits the problem per day. On top of that, heuristic 2
uses a divide-and-conquer method and splits the network into regions. In the hub-
and-spoke network, base locations can only be reached from their parent EWPP,
or from their child service locations. Heuristic 2 uses these facts to speed up the
calculations. Instead of solving the problem for the entire network, the problem is
first solved using only EWPP-regions. These regions contain all demand, supply,
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and parking capacity of all underlying nodes of one EWPP. With the regions, a
new network is created containing only a few nodes (the same amount as there are
EWPPs). This is visualised in Figure 12.

Figure 12: EWPP region overview

The new network is solved with the exact formulation. When this sub problem is
solved, wagons are supplied and delivered at and from the EWPPs. After their
stock is updated, the problem is solved locally. This will be explained with an
example.

When in a region, say 1, wagons of type A are available on a service location, the
region can supply these to another region, say 2. In region 2 there is a service
location which needs wagons of type A. This can be seen in Figure 13.
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Figure 13: Example Heuristic 2 - overall problem

The first step is to create regions which supply and require all the wagons inside
the region. This problem is visualised in Figure 14.

EWPP-Region 1 EWPP-Region 2

EWPP-Region 32

-2

EWPP Region

Wagon type A

Figure 14: Example Heuristic 2 - region problem

After the region problem is solved, EWPP region 1 has supplied wagons of type A,
while it is not available at the EWPP location itself. The next step of the heuristic,
is to solve each region individually, again using the exact formulation. Now, the
EWPP location of region 1, requires wagons of type A instead of supplying it. This
is drawn in Figure 15.
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Figure 15: Example Heuristic 2 - problem region 1

When region 1 is solved, wagon type A is moved from the service location, to
the EWPP of region 1. Now the heuristic solves the second region individually.
The EWPP of region 2 supplies now wagons of type A, which are moved to their
destination. This problem is displayed in Figure 16.

B3
.

2

S3

-2

Base Locations

EWPP

Service Locations

Wagon type A

Figure 16: Example Heuristic 2 - problem region 2

4.3.3 Heuristic 3

Heuristic 3 also splits the problem per day and also uses the divide-and-conquer
approach of heuristic 2. The difference is the way of solving the individual EWPP
region problems. Where heuristic 2 uses the exact formulation to solve the individual
EWPP regions, heuristic 3 uses again a divide-and-conquer method. When solving
the same example as discussed with heuristic 2 in the previous section, heuristic
3 solves the problem of Figure 15 by creating new regions for each base location.
These regions contain all demand, supply, and parking capacity of all connected
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service locations. The heuristic solves the EWPP region then as displayed in
Figure 17 with the exact formulation.

Base region 1

Base region 2

2
-2 Base Locations

EWPP

Service Locations

Wagon type A

Figure 17: Example Heuristic 3 - problem EWPP region 1

After solving the EWPP region, all base regions are solved using the same principle.
All the wagons that the region supplied or demanded, are placed on the base
location. If they are not available there, it becomes demand for the new sub
problem. If they are not needed at the base location, the wagons become supply.
Such sub problem contains now only one base location and its corresponding service
locations. This can be seen in Figure 18. Like all sub problems, this one is also
solved using the exact formulation.

B1

S1

S2

2
-2

Base Locations

EWPP

Service Locations

Wagon type A

Figure 18: Example Heuristic 3 - problem Base region 1
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5 Performance analysis

In this section the performance of the IP formulation and the heuristics are analysed.
In Section 5.1 the data that is used to analyse the performance is discussed. The
performance of the IP is analysed in Section 5.2. In Section 5.3 the different
heuristics are tested and discussed. All tests are performed on a laptop with 8
GB RAM memory and an Intel(R) Core(TM) i7-4800MQ cpu @2.7GHz. The IP
and heuristics are programmed in the Quintiq software package and solved with
CPLEX 12.5.

5.1 Data

Ab Ovo has made customer data available for this thesis. The network can be
interpreted as a perfect hub-and-spoke network. There are 3 EWPPs, 23 base
locations, and 199 service locations. Similar wagon types are combined in a wagon
type replacement group (WTRG). For the data only WTRGs should be used from
which there are 29. In all the available demands and supplies of empty wagons,
12% of the locations requires wagons, 11% has empty wagons available, and around
4% of the locations has demand as well as supply. The parking spaces are for an
EWPP 50.000 metre, for a base location 2500m, and for a service location 1000m.
The length of the WTRGs lies between 11 and 26 metres. Other given parameters
are the costs which are e 1 per wagon per kilometre, e 1000 per reclassification,
and e 500 per new locomotive used. This might seem counter intuitive, but it can
be assumed that there are enough locomotives. Hiring a crew for a locomotive is
much cheaper than for a reclassification yard, since shunting requires more people.
Reclassification is also more time consuming than driving from one station to the
next one. All the costs are equal for all datasets. The train capacity is set to 40
wagons, which is also used for all arcs in the network. ε is set to e 5.
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5.1.1 Data Case generation

To analyse the performance of the exact IP formulation and the different heuristics,
data cases smaller than the real size case are needed. These cases are generated
using the following guidelines:

• The EWPPs are all connected to each other

• The EWPPs all have the same number of base locations

• Each base location has the same number of service locations

• All distances between the EWPPs are equal

• All other distances are generated

• A pseudo random generator is used to make sure a dataset can easily be
reproduced. For each data case a seed number is required, which can be used
to create different datasets with the same parameters

• There are at least two days of which the first day only has supply and the
last day only has demand.

5.2 Integer programming approach

Since the IP is used to solve sub problems of the heuristics, it is interesting to
know the influence of the parameters on the runtime of the IP. A small network is
used to research the influence on the computation time of the number of WTRGs,
the number of days, the number of locations with demand, and the number of
locations with supply. Next to the runtime, total costs and the number of moves
are compared. A move means that a number of wagons of the same WTRG are
transported from location A to location B. Travelling along multiple locations
requires also multiple moves.
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The standard network uses 3 EWPPs, 3 base locations per EWPP, and 3 service
locations per base, bringing the total number of locations on 39 locations.

5.2.1 Effect of the number of days

The increase of the number of days, implies also an increase in the number of
locations with demand and supply. If a specific location requires wagons every other
day, the increase of the number of days will increase the number of demand locations
in the network. A location which requires wagons as well today as tomorrow, is
counted as two demand locations. In Table 1, it can be seen that the number of
days can be increased to 4, while keeping the run time acceptable. The difference
between 3 or 4 days, is not that different when one looks at the number of locations
with supply/demand. This results in just a little bit more computation time. When
the number of days becomes 5, again more locations with demand/supply are
added to the network, which leads to another increase in computation time. Six
days will lead to that many options, that the runtime exceeds one hour. Since
this proves that the problem becomes to complex to solve within reasonable time,
runs exceeding one hour were terminated. One can conclude that increasing the
number of days leads to more complex problems because the number of locations
with demand and/or supply will increase as well.

Nr. of Nr. of Nr. of locations Nr. of locations Build Run Total Nr. of
days WTRG with demand with supply time time costs(e) moves
3 3 12 11 0:00:00 0:00:48 157,406 16
4 3 13 12 0:00:01 0:01:09 234,579 22
5 3 21 22 0:00:01 0:19:17 438,724 37
6 3 25 26 0:00:01 >1:00:00 - -

Table 1: Influence of number of days
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5.2.2 Effect of the number of wagon types

Adding more WTRGs to a network only makes the problem more complex, if the
number of locations with demand/supply increases. If the number of WTRGs
increases, but the number of locations with demand/supply remains equal, the
problem becomes easier. This can be seen in Table 2, when the number of WTRGs
is increased from 3 to 4. This can be explained by comparing two scenarios. In
scenario 1 there are three locations with ten wagons of type A and three locations
which all need five wagons of type A. In scenario 2, there are also three locations,
but only one with ten wagons of type A. The others are one with ten wagons of
type B and one with ten wagons of type C. On the demand side, for each wagon
type, there is only one location which requires five wagons of that type. Clearly, the
second scenario is easier to solve, because there is only one possible solution instead
of multiple ones. It can be concluded that increasing the number of WTRGs does
not need to lead to more complex problems in theory. In practice however, more
wagon types will attract new and more customers which will result in a larger and
more complex problem.

Nr. of Nr. of Nr. of locations Nr. of locations Build Run Total Nr. of
days WTRG with demand with supply time time costs(e) moves
3 1 8 6 0:00:01 0:00:04 138,370 15
3 2 9 8 0:00:00 0:00:06 114,203 13
3 3 12 11 0:00:00 0:00:48 157,406 16
3 4 12 10 0:00:00 0:00:18 119,211 15
3 5 7 11 0:00:00 0:00:09 120,906 12
3 6 12 17 0:00:01 0:01:30 229,085 27
3 7 16 17 0:00:01 0:01:24 222,663 38
3 8 18 20 0:00:01 0:01:44 322,632 50

Table 2: Influence of the number of WTRGs
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5.2.3 Effect of the number of supply locations

If more locations with supply are added, there will be more options to choose from.
On the other hand, the probability that a few supply locations are much closer
than the rest increases. When this occurs, the decision becomes easier, because
it is cheaper to supply a demand location from a location in the neighbourhood.
This effect has impact on the runtime. In Table 3 the run times are quite volatile.
When a new dataset is generated, demand and supply locations are randomly
distributed over the network. The different distances and possibilities for each
WTRG determine whether a problem is hard or relatively easy to solve. This results
in different solving times for quite similar problems. The conclusion that can be
drawn from these results, is that the number of supply locations, does not lead to
longer computation times, as long as the other parameters remain the same.

Nr. of Nr. of Nr. of locations Nr. of locations Build Run Total Nr. of
days WTRG with demand with supply time time costs(e) moves
3 3 11 12 0:00:00 0:02:28 207,283 21
3 3 11 13 0:00:00 0:00:14 191,503 20
3 3 11 16 0:00:01 0:06:31 255,569 36
3 3 11 17 0:00:01 0:08:23 295,828 32
3 3 12 18 0:00:00 0:02:59 292,749 28
3 3 12 21 0:00:01 0:03:56 276,162 27
3 3 12 23 0:00:00 0:06:09 274,777 28
3 3 12 24 0:00:00 0:03:06 191,376 17
3 3 12 25 0:00:00 0:02:30 284,713 22

Table 3: Influence of the number of locations with supply

5.2.4 Effect of the number of demand locations

All extra demand locations need to be met as well, unlike the supply locations,
where extra options are not necessarily needed to be used. So by adding demand
locations, the problem size does increase. This should lead to more complex
problems and longer computation times. This conclusion is supported by the
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results in Table 4. When the number of locations with supply and the locations
with demand both increase, the problem becomes more complex. The results can
be found in Table 5.

Nr. of Nr. of Nr. of locations Nr. of locations build run total Nr. of
days WTRG with demand with supply time time costs(e) moves
3 3 14 11 0:00:00 0:00:36 233,147 34
3 3 15 11 0:00:00 0:00:23 241,813 35
3 3 16 11 0:00:00 0:00:35 247,251 37
3 3 17 11 0:00:00 0:00:41 255,504 38
3 3 18 11 0:00:00 0:01:04 252,768 41
3 3 19 11 0:00:00 0:02:08 256,531 44
3 3 20 11 0:00:00 0:04:27 259,175 45

Table 4: Influence of the number of locations with demand

Nr. of Nr. of Nr. of locations Nr. of locations build run total Nr. of
days WTRG with demand with supply time time costs(e) moves
3 3 13 12 0:00:00 0:00:15 164,857 29
3 3 12 14 0:00:00 0:01:05 257,543 37
3 3 15 16 0:00:01 0:03:14 354,565 41
3 3 16 18 0:00:01 0:06:11 409,176 46
3 3 17 17 0:00:00 0:23:13 415,843 49
3 3 23 20 0:00:01 1:01:42 490,794 56

Table 5: Influence of locations with demand and locations with supply

5.2.5 Effect of reclassification costs

In the Section 2.2.3 an approach to estimate the number of reclassifications is
proposed. Given the data from a railway company, reclassification costs are e 1000
and the setup costs are e 500. To verify if the use of reclassification costs in the
decision process is needed, the effect of the costs is researched. To do so, the
reclassification costs are lowered in steps and the effect on the number of moves in
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analysed. It is not usefull to compare the number of reclassifications. Due to the
cost structure, moving with a reclassification is always ε cheaper then moving to
a final destination. The number of reclassification moves will therefore always be
correlated with the number of moves.

It can be expected, that the total number of moves decreases when the reclas-
sification costs decrease. Take for example a location which requires WTRG A
and B on the same day. When WTRG A needs to be moved from the other side
of the network and reclassification costs are high, it is cheaper to add WTRG
B along the route. Even if this is also at the other side of the network. Since
the reclassification costs already occur because of WTRG A, they are ‘free’ for
WTRG B. Although WTRG B might also be available at a location closer to the
destination, the reclassification costs makes it more expensive to use the closer
wagons. The final and cheapest solution will be the one where both WTRGs are
delivered from the other end of the network, which results in more moves than the
solution where WTRG B is delivered from a closer location.

In Table 6 can be seen that the optimal solution changes when the ratio between
the reclassification costs and the setup costs change. However, the total number of
moves does not change. To make sure that the costs do have such an effect, a bigger
dataset is needed. We use a medium dataset, of which the exact size will be further
explained in Table 8 in Section 5.3. Unfortunately, the IP cannot solve the medium
dataset within reasonable time, so heuristic 2 is used. As will be explained later,
heuristic 2 solves the problem with the medium dataset the fastest. The results are
displayed in Table 7 from which can be concluded that indeed the reclassification
costs do affect the outcome of the solution and should therefore be used in the model.
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Reclassification Moves Moves Total Total reclassification
costs day 1 day 2 moves moves
e1000 0 12 12 8
e750 2 10 12 8
e600 2 10 12 8
e500 6 6 12 8
e400 6 6 12 8
e0 6 6 12 8

Table 6: Effect reclassification costs on small dataset with IP

Reclassification costs Moves day 1 Moves day 2 Total moves
e1000 161 136 297
e750 160 137 297
e600 155 126 281
e500 155 103 258
e250 132 97 229
e0 97 83 180

Table 7: Effect reclassification costs on medium dataset with heuristic 2

5.2.6 Conclusion

Based on the results of this section, it turned out that the parameters do not
influence the computation time, as long as the problem size remains equal. As soon
as the problem size increases, computation time also increases. Next to that can
be concluded that the reclassification cost do have an impact on the solution and
should therefore be taken into account.
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5.3 Heuristics

The three different heuristics will be compared based on runtime, total costs, and
the number of moves they need to solve the problem. To compare the performance,
multiple test cases are used. In Table 8 the sizes are given. All heuristics were also
compared to the optimal IP solution, if that was available.

size of Nr. of Nr. of base Nr. of service Nr. of locations Nr. of Nr. of
dataset EWPPs per EWPP per base with demand days WTRGs
small A 3 3 3 7 3 5
small B 3 3 3 8 3 5
small C 3 3 3 7 3 5
medium A 3 4 15 46 3 10
medium B 3 4 15 40 3 10
medium C 3 4 15 50 3 10
large A 3 4 20 5 141 20
large B 3 4 20 5 117 20
large C 3 4 20 5 117 20
realsize 3 n/a n/a 402 7 29

Table 8: The sizes of the data cases

There are 4 types of datasets that differ in size: small, medium, large, and realsize.
The small, medium, and large datasets were generated with an equal amount of
locations per parent location. This network remains the same for the three versions
(A, B, and C), where supply and demand is different. Since the number of locations
with demand has the most influence on the complexness of the problem, this
informations was also given in Table 8. Large B and C do have the same amount
of demand locations, but they were differently distributed over the network. The
realsize dataset was not symmetric generated like the other datasets. Its layout was
based on customer data and has 23 base locations divided over 3 EWPPS and 199
service locations. This could be approximated with 7 base locations per EWPP and
11 service locations per base. In practice however, the number of service locations
differ per base location. The minimum is one service location per base and the
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maximum 20. The results of the optimal solution and the three heuristics can be
found in Table 9.
For the small data cases the results were similar. The IP formulation and heuristic
1 were both much slower than heuristic 2 and 3. The big difference between the IP
and heuristic 1 is the number of moves. The optimal solution over all three days,
had the least moves. Heuristic 1 splits the problem per day, which leads to almost
the double number of moves. This was different for heuristic 2 and 3. Their results
were the same as the result of heuristic 1, but their computation time was much
lower. But that was just for the small datasets.

On the Medium data case, the exact formulation caused memory problems on the
laptop. Both methods were also tested on a server of Ab Obo, but even 25GB of
RAM was not enough. In order to be able to still compare the solutions, the solver
was cut after 50 minutes to prevent system failure. The fact that some runtimes
were higher then 50 minutes for the IP solutions can be addressed to the buildtime
of the model. For heuristics the 50 minutes could be exceeded because they used
the solver multiple times.

For the realsize dataset, the solver was unable to find any solution within these
minutes, not even for Heuristic 1, where the network was split per day. Therefore
only heuristic 2 and 3 are suitable for practical use. From the medium and large
dataset can be learned that solutions found by the heuristics are around 30% higher
than the best found costs. In most datasets, heuristic 2 is takes more time, but
finds a better solution. However, when solving the medium datasets, heuristic 2 is
quicker. This can be addressed to the form of the dataset. Solving a few problems
of a certain size can in some cases be quicker than solving much more smaller
problems.

For practical purposes, heuristic 2 and 3 are the only options. Realsize problems
cannot be solved with the IP or with heuristic 1. Since heuristic 2 finds the same
solution or a better one compared to heuristic 3 and the sum of both heuristics is
still a very reasonable runtime, it is recommended to use heuristic 2.
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Dataset Heuristic Runtime Optimality Nr. of Total % from IP
gap moves costs(e) solution

Small A 1 0:00:06 - 20 126,380 4.5%
Small A 2 0:00:01 - 21 127,380 5.4%
Small A 3 0:00:01 - 23 127,906 5.8%
Small A IP 0:00:08 0.0% 12 120,906 0.0%
Small B 1 0:00:17 - 35 130,255 6.6%
Small B 2 0:00:01 - 29 131,647 7.8%
Small B 3 0:00:01 - 39 140,525 15.1%
Small B IP 0:00:07 0.0% 21 122,139 0.0%
Small C 1 0:00:07 - 20 126,772 4.4%
Small C 2 0:00:01 - 21 127,772 5.2%
Small C 3 0:00:01 - 23 128,406 5.8%
Small C IP 0:00:07 0.0% 12 121,406 0.0%
Medium A 1 1:56:28 - 187 1,638,615 2.8%
Medium A 2 0:02:33 - 324 1,919,603 20.4%
Medium A 3 0:06:11 - 412 2,124,521 33.3%
Medium A IP 0:55:16 1.5% 124 1,593,697 0.0%
Medium B 1 1:42:55 - 200 1,648,630 0.6%
Medium B 2 0:02:11 - 388 1,919,930 17.2%
Medium B 3 0:00:23 - 479 2,038,507 24.4%
Medium B IP 0:56:42 1.8% 167 1,638,630 0.0%
Medium C 1 1:48:35 - 230 2,073,280 1.1%
Medium C 2 0:01:58 - 438 2,345,080 14.4%
Medium C 3 1:40:29 - 580 2,787,373 36.0%
Medium C IP 1:02:21 1.4% 195 2,050,280 0.0%
Large A 1 4:00:11 - 695 5,473,880 2.9%
Large A 2 0:29:29 - 1298 6,709,666 26.2%
Large A 3 0:02:58 - 1441 6,930,849 30.4%
Large A IP 1:06:38 1.2% 473 5,317,035 0.0%
Large B 1 3:56:27 - 582 5,020,390 2.1%
Large B 2 0:38:03 - 1127 6,322,369 28.6%
Large B 3 0:02:29 - 1327 6,601,223 34.2%
Large B IP 1:06:17 1.2% 440 4,917,824 0.0%
Large C 1 3:48:10 - 592 4,964,181 2.0%
Large C 2 0:19:02 - 1165 6,261,195 28.7%
Large C 3 0:02:32 - 1320 6,498,023 33.6%
Large C IP 1:05:12 1.4% 420 4,865,020 0.0%
Realsize 1 - - - - -
Realsize 2 1:07:13 - 3475 21,590,848 -
Realsize 3 0:04:02 - 4192 22,458,708 -
Realsize IP - - - - -

Table 9: Results IP and heuristics
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6 Conclusion

The main focus of this thesis was to find a method which solves the empty wagon
repositioning problem in reasonable time, while minimizing the total costs, given
that the network is a hub-and-spoke network.

The first challenge was to take the reclassification costs into account. In literature
such costs are neglected or estimated. In this thesis the proposed approach is
also an estimation. This estimation is most of the cases exactly correct. The
extra information about reclassification leads to better solutions than without
reclassification costs, because more moves can be combined.

To solve problem instances exactly, an integer programming formulation was
introduced. The IP can only solve small problem instances. This makes the IP not
directly usable to solve practical realsize problems. However, the impact of different
parameters on the runtime was determined with the IP. Increasing the planning
horizon automatically increases the number of demand and supply locations. This
effect makes the problem more complex as the number of days increases.

The number of wagon types will not necessarily lead to more complex problems.
This is similar with the number of supply locations, as long as all the other
parameters remain the same. Increasing the number of demand locations will lead
to more complex problems. When the number of locations with demand and the
number of locations with supply both increase, the problem becomes quickly more
complex.

To solve the larger complex problem three heuristics are tested. All three split
the problem into smaller regions. The regions of heuristic 1 are still too big to
solve. Heuristic 2 and 3 however, are able to solve a realsize problem within
reasonable time. For the tested datasets, heuristic 2 found better solutions. Since
the computation time of heuristic 2 is still reasonable, this solution method is
recommended.
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7 Discussion and recommendations

In this section the strengths and weaknesses of this research are discussed as well
as the recommendations for practical implementation and further research.

In the literature different heuristics are applied on similar problems. Other papers
use the actual rail networks, instead of a hub-and-spoke network. In this thesis
only heuristics based on the divide-and-conquer technique were used and other
known heuristics were neglected. These other types might be interesting for further
research.

In this thesis the reclassification costs were implemented in the IP formulation.
Some papers also included those costs, but their estimation approaches were not as
sophisticated as ours. Other articles stated that neglecting reclassification costs
does not lead to other results. Although implementing makes the decision problem
more complex, it was proven in this thesis that those costs could not be neglected
in our cases. Therefore the implementation leads to more realistic results.

The divide-and-conquer heuristics made an excellent use of the hub-and-spoke
network. The network layout lent itself perfectly for the creation of sub problems.
Results showed that splitting in regions is an appropriate way of tackling the
problem, but splitting on days will have a negative effect on the solution. For
further research and implementation, it is very interesting to see what the results will
be if the region approach is applied while also multiple days are considered.

Because the available data was limited, test cases were generated. The generation
has been done with great care and as realistically as possible, but still an enormous
amount of possible scenarios are not generated and tested. It is recommended for
further research to extend the current research with more test cases in order to
make sure more scenarios can be tested.

For practical implementation there are a few recommendations as well. First of all,
the grouping of wagon types might be unnecessary. An increase in wagon types
does not lead to more complex problems as long as no other parameters increase.
Secondly, it is optimal for a solver or heuristic to leave empty wagons at service
locations if they are not needed elsewhere. When new empty wagons will become
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available at the same location, available parking place can become an issue. For
an optimizer, it is cheaper and therefore better to send the wagons to the closest
available space. In the case of a service location, this will be the base location.
A planner probably wants the empty wagons back at the Empty Wagon Parking
Place. Such imbalance needs to be detected, or planned manually.

To prevent infeasibility and imbalances, it is recommended to check for all demand
to determine whether it is possible to solve the problem at all. Next to that, it
can be an idea to neglect the inventories at the EWPPs at first, then check the
infeasibility and only add the needed wagons to the problem. With this approach,
one prevents that the solver supplies all demands from EWPPs and creates an
imbalanced flow in the network. If wagons are repositioned via an EWPP which
has similar wagons available, a planner can still split the route into two, one from
the origin to the EWPP and one from the EWPP to the destination. This has the
advantage that both trains can leave at the same time.

When the heuristics are used to create a model week, which is repeated several
times, it is recommended to start one day before the start of the week. This day
will be different next week, because a new model week implies other demand and/or
supply than the week(s) before. Since the planning horizon with the heuristics of
these thesis is at most one day, one day is enough to initialize the model week.
After the initial-day, the found moves can be repeated each week, until the demand
changes again. Implementing these recommendations will enable one to effectively
reposition the empty wagons.
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