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Abstract

In this thesis we develop methods to incorporate sourcing volume constraints
in vehicle routing problems. These sourcing volume constraints can be useful
when companies have made agreements with depots about the sourced volume
of a specific product or when a depot is running out of stock. The constraints
impose a minimum and maximum value on the volume of a specific product
that can be sourced from a particular depot. The methods that we develop are
designed such that they can be applied to large problem instances of the oil, gas
and chemical industry.

Because it may be very time intensive to change optimisation algorithms of
existing vehicle routing packages, we create methods that assign customers to
depots before the routing algorithm is run (cluster first-route second). As we as-
sume that the routing algorithm can solve multi-depot vehicle routing problems,
we allow every customer to be assigned to multiple depots. In the first stage
of the assignment phase we minimise the approximated cost of assigning every
customer to one depot. We formulate a mixed integer linear program (MILP)
for this problem, develop an urgency-based heuristic, and create a clustering
algorithm to decrease the size of the MILP instances. The second stage of the
assignment phase maximises the utility of assigning customers to additional de-
pots without violating any constraints. To this end we formulate another MILP
and create a greedy heuristic.

We develop various variants of variable neighbourhood search (VNS) heuris-
tics that incorporate the sourcing volume constraints in the optimisation pro-
cess. In the variable neighbourhood search 10 different neighbourhoods are ex-
plored. After an iteration of exploring neighbourhoods, we destruct and repair
part of the solution to provide proper diversification.

The results show that solving the single-depot assignment MILP (although
it is NP-hard) can be done in a matter of seconds for instances of industry size.
The exact method also outperforms the developed heuristics. The multi-depot
assignment phase shows to be a critical step in getting competitive results when
using cluster first-route second. The exact multi-depot assignment problem
can be hard to solve and remarkably the greedy heuristic consistently gives
better routing results. For the VNS heuristics we clearly see different results for
different variants. Finally, the VNS heuristics (integrated approach) generally
perform better than the cluster first-route second approach, but we consider
the latter to still be competitive. From this we can also conclude that the
assignment methods make the right choices.
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Chapter 1

Introduction

Companies in the oil, gas and chemicals industry have to deal with a large
amount of difficult planning and scheduling problems. One of these problems
is the downstream secondary distribution, which consists of transporting prod-
ucts by truck from multiple depots to a large number of customers. Vehicle
routing problems (VRP’s) like these are despite their long history in operations
research still very relevant. One reason is that solving cases of real-world sizes
to optimality often takes very long. As transport costs are a large component
of logistic costs, companies are very eager to implement any improvements in
software that can solve VRP’s. Furthermore, companies are always interested
in increasing the number of constraints that are taken into account in routing
software, as this makes the routing schedules more realistic and decreases the
time needed to manually adapt the schedule to the company’s needs.

In most industries, a realistic vehicle routing problem consists of the trans-
portation of a set of products by a mixed fleet of trucks. Also, customers want
to be serviced within a given time window. In the oil, gas and chemicals in-
dustry there are some industry-specific factors that make vehicle routing even
more complex. Tank trucks, as opposed to other trucks, are compartmented
and can therefore only carry a limited combination of products and volumes.
Trucks generally have between three and six compartments. Furthermore, cus-
tomers may have demand for multiple products and want these to be delivered
within one visit. To be able to serve all customers, drivers have to do multiple
trips per shift, with the loading task separating the trips. The above-mentioned
constraints are accounted for when solving variants of the petrol station replen-
ishment problem described in literature (e.g. Cornillier et al. (2012)).

The additional constraint that we focus on in this thesis is a restriction
on the volume of a specific product sourced from a specific depot. Sourcing
volume constraints have not yet been considered in literature on petrol station
replenishment, but are very relevant in this industry as many companies have
contractual obligations with depots of competitors. Such a contract usually
means that the company cannot source more than a certain volume of a specific
product from the depot of that competitor per month or year. This strategic
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constraint can of course be translated to an operational constraint that has to be
satisfied in the vehicle routing problem. Furthermore, it is not uncommon that
depots almost reach a stock-out. In those cases there is a limited availability of
some product at that depot. It is also possible that a company wants to source
a minimum amount from a certain depot to apply for a discount. Regardless
of the reason, the company decides per day what the minimum and maximum
sourced volume should be for the different products at the various depots.

In this thesis we research how ORTEC1 can implement this additional con-
straint in their routing software ORTEC Route Scheduling (see Appendix B for
some information on the algorithms behind the software). Integrating the ad-
ditional requirement of sourcing volume constraints in their algorithms is very
time intensive because the core of ORTEC Route Scheduling assumes indepen-
dence of vehicles. For example, in the optimisation process the assumption is
made that changing the shift of one vehicle does not influence feasibility or costs
of other shifts. When introducing sourcing volume constraints this no longer
holds. A large part of the software would have to be rewritten to incorporate
that trucks are not completely independent. Therefore, we add a pre-processing
step where customers are assigned to depots. In the pre-processing one can
ensure that the sourcing volume constraints are satisfied. On the other hand,
splitting the optimisation in two separate steps (so-called cluster first-route sec-
ond) is not ideal because in the routing phase it can turn out that different
decisions should have been made in the assignment phase.

We research how we can develop this cluster first-route second approach in
a real-world environment. This means that many different constraints hold and
that the method should work on large cases within short running times. We
analyse the different ways in which we can assign customers to depots. Finally,
we show how competitive the cluster first-route second approach is by designing
variable neighbourhood search heuristics and comparing the results.

In Chapter 2 we discuss literature on this research area. Chapter 3 formally
describes the problem that we address. Then, in Chapter 4 we discuss the
methods that we use to solve the described problem by a cluster first-route
second approach. Following that, Chapter 5 shows our variable neighbourhood
search approach to solve the problem in one step. Then, in Chapter 6 we
describe and evaluate the experiments that we run to compare performance of
the developed methods and subsequently draw conclusions based on that in
Chapter 7.

1“ORTEC is one of the largest providers of advanced planning and optimization solutions
and services. ORTEC’s products and services result in optimized fleet routing and dispatch,
vehicle and pallet loading, workforce scheduling, delivery forecasting, logistics network plan-
ning and warehouse control. ORTEC offers stand-alone, configurable and SAP R© certified
and embedded solutions, supported by strategic partnerships. ORTEC has over 1,800 cus-
tomers worldwide, 700 employees and offices in Europe, North America, South America and
the Pacific Region.” http://www.ortec.com/
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Chapter 2

Literature review

The vehicle routing problem (VRP) was first formulated by Dantzig and Ramser
(1959), although they did not yet call it the VRP at that time. Since then, a
tremendous amount of research has been devoted to this problem. Many exten-
sions of the VRP have been described and for all of them exact and heuristic
methods have been proposed. For a very extensive description of the single-
depot VRP extensions and methods to solve them, both exact and by heuristics,
we refer to Toth and Vigo (2001). For a list of literature devoted to the multi-
depot VRP (MDVRP) and its extensions, see Salhi et al. (2013, Table 1). In the
following sections we will discuss different enhanced variants of the VRP and
how they differ from our problem of vehicle routing to deliver multiple products
with multi-trip shifts and sourcing volume constraints at depots.

2.1 Multi-depot heterogeneous VRP with time
windows

The multi-depot heterogeneous vehicle routing problem with time windows
(MDHVRPTW) is a multi-depot VRP where distribution is done by a fleet
with mixed characteristics. Next to that, customers have to be serviced within
specified time windows. This realistic variant of the multi-depot VRP was first
introduced in literature by Dondo and Cerdá (2007). They formulated the prob-
lem mathematically and proposed a cluster-based optimization heuristic. The
heuristic is a three-phase approach, where in the first phase customers are clus-
tered such that each cluster can be assigned to any vehicle without violating
constraints. In the second phase clusters are assigned to vehicles and vehicles to
depots by solving a mixed integer linear program (MILP). In the third phase the
customer sequence within the clusters is optimised. Dondo and Cerdá (2007)
solved some multi-depot benchmark problems with a running time between 30
and 60 minutes.

A branch-and-cut-and-price method for the MDHVRPTW has been devel-
oped by Bettinelli et al. (2011). They used this approach as an exact method
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and in a heuristic procedure. They only tested the heuristic on single-depot
benchmark problems as they compared the heuristic with methods that have
only been applied to single-depot problems.

Even more recently, Xu et al. (2012) developed a variable neighbourhood
search (VNS) method to solve the MDHVRPTW. The VNS uses the best-
improvement strategy for quick improvement of solutions but they also ap-
plied simulated annealing for diversification. Their heuristic is also only tested
on single-depot benchmark problems. Xu and Jiang (2014) applied the same
method as Xu et al. (2012) on a small multi-depot case with 16 customers.

Although the MDHVRPTW contains a lot of constraints similar to the ones
we consider, there are also many restrictions that are not included. In the pre-
viously listed literature multi-trip shifts are not allowed, hence the requirement
is that a truck visits a depot only at the beginning and end of a shift. For
applications in the oil, gas and chemicals industry this is certainly not common
as generally very few customers can be served with one truckload (in the fuels
industry on average even less than two) and therefore a driver can do multiple
trips per shift. Furthermore, in the MDHVRPTW we talk about the delivery
of just one type of product, whereas most applications that we consider include
multiple products. With this also comes the complication of compartments that
can only carry one product.

2.2 Petrol station replenishment problem

The petrol station replenishment problem (PSRP) considers many constraints
that are specific to the oil, gas and chemicals industry. Included is that trucks
are composed of a number of compartments that can carry just one type of
product each. The problems consider multiple products and allow multiple
trips per shift. Furthermore, in many papers addressing the PSRP, the amount
of a certain product to deliver to a certain customer is not fixed. Only a lower
and upper bound on the amount to deliver is given, which means that the actual
amount to deliver is an additional decision that has to be taken.

The PSRP was formulated for the first time by Cornillier et al. (2008). They
considered the single-depot case with homogeneous vehicles and no time win-
dows, so the focus was on the fact that only lower and upper bounds on the
volumes to deliver are given. Cornillier et al. (2008) decomposed the problem
into the tank truck loading problem, where they also took the decision of how
much to deliver to each customer, and the routing problem. At about the same
time, Ng et al. (2008) did a small-scale case study on petrol station replenish-
ment in Hong Kong. Although they took multiple depots and a heterogeneous
fleet into account, they assumed a fixed demand for every product and every
customer. Their heuristic to assign customers to depots is based on geographic
constraints and expert knowledge. For the assignment of customers to trips
and trucks they solved a MILP. Cornillier et al. (2009) solved the heterogeneous
fleet variant of the single-depot PSRP with time windows. They formulated
the problem as a MILP and proposed to solve it by either removing infeasible
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arcs (pairs of customers that cannot be visited subsequently) or dividing the
problem into geographical regions.

Surjandari et al. (2011) were the first to publish a mathematical formulation
for the multi-depot variant of the PSRP, although they assumed that every
customer has a fixed demand for every product. They also allowed multiple
deliveries to the same customer. A tabu search heuristic was applied on a case
with 208 customers, but details about the tabu search other than the parameter
selection are not reported. Most recently, Cornillier et al. (2012) solved a multi-
depot variant of the PSRP with heterogeneous vehicles and time windows where
the amount to deliver to customers also has to be determined. The assumption
of a fixed distribution of vehicles over the depots allowed them to apply a set
covering approach. They proposed a heuristic that selects a subset of all routes
and then solves the set covering problem. They apply this method to multi-
depot problems with up to 30 customers.

Despite the large number of variants of the PSRP that have been addressed
before, to the best of our knowledge there is no literature that also considers
restrictions on the volume sourced from depots.

2.3 Assignment algorithms

As we are interested in splitting the problem into an assignment phase and a
routing phase, we will now briefly discuss literature devoted to algorithms that
assign customers to depots. Giosa et al. (2002) compared assignment algorithms
that are used in a cluster first-route second environment. Although they solved
the MDVRPTW with limited product availability at depots (maximum sourcing
volume constraints), they did not mention how they incorporated the remain-
ing volume available at depots in their assignment algorithms. The different
heuristic algorithms that Giosa et al. (2002) applied are:

• Algorithms based on assignment through the urgency of a customer to be
assigned to its closest depot (inspired by the insertion algorithm of Potvin
and Rousseau (1993)).

• An assignment algorithm where for each depot the customer closest to the
customer last assigned to the depot is also assigned to that depot.

• Two algorithms that do assignment by clusters, differing in the criteria on
which the assignment of customers to clusters is based.

They compared the algorithms by applying a simple routing heuristic based
on the savings algorithm (Clarke and Wright, 1964), and assumed that the
clustering algorithm that yields the lowest total costs after routing is the best
one. They show that the algorithms that assign by clusters give the best results.

Following on the article discussed above, Tansini and Viera (2006) proposed
assignment algorithms that integrate time windows in the proximity measures
used in the different assignment algorithms. They assumed that customers with
similar time windows are favourable to be served by one vehicle and should
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therefore have an increased probability of being assigned to the same depot.
After comparing the new assignment algorithms with some existing ones, Tansini
and Viera (2006) concluded that incorporating time windows does yield better
results, so it seems promising to include even more details about the problem in
the clustering phase. Therefore, we will develop a heuristic that does this too.
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Chapter 3

Problem definition

The routing network can be represented by a directed graph G = (M∪N∪O,A)
where M is the set of depots, N the set of clients that have demand for at least
one product within the current scheduling horizon, and O is the set of start
and end locations of vehicles. The set A contains the directed edges connecting
node i to node j where i ∈M ∪N ∪O, j ∈M ∪N ∪O, i 6= j. We consider the
distribution of a set of products P by a set of vehicles K. A vehicle is composed
of a unique truck, trailer, and driver.

For every client n ∈ N and product p ∈ P there is a given demand dnp.
Every customer has to be served during a single visit. To this end we assume
that the demand of the requested products fit in one vehicle. Furthermore, the
vehicle k serving customer n has to be compatible with the tools present at the
customer site. For this reason we use binary parameter evc

kn that is 1 if vehicle
k is indeed compatible with customer n and 0 otherwise (where the superscript
‘vc’ stands for vehicle-customer).

Every vehicle k ∈ K has a set of compartments Ck. For every compartment
c ∈ Ck there is a given capacity lc that cannot be exceeded. Products stored in
a compartment can be used to serve multiple customers but different products
cannot be stored in the same compartment. Vehicles should source all products
of a trip at a single compatible depot, where compatibility between vehicle k
and depot m is denoted by value 1 of binary parameter evd

km and 0 otherwise
(where we use ‘vd’ to denote vehicle-depot). Every customer n should also be
compatible with the depot m at which the assigned vehicle has loaded, which is
true if binary parameter edc

mn is 1 and not true if it has value 0 (‘dc’ stands for
depot-customer). In short, every customer n ∈ N has to be served by a vehicle
k ∈ K which has loaded at a depot m ∈ M such that evd

km = evc
kn = edc

mn = 1.
Within the route scheduling horizon not less than q−mp or more than q+

mp of
product p can be sourced from depot m, for all p ∈ P , m ∈ M . To ensure
feasibility we assume that the minimum and maximum amounts of available
products at the depot are such that all demand can be satisfied.

Every vehicle k ∈ K has a time window [uk, vk] in which it can operate for a
maximum of wk hours. The working time of a customer will start with driving
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from the start location to the first depot and end with driving from the last
customer to the end location (identical to the start location). A vehicle can do
multiple trips within one shift, where a trip starts with one loading job followed
by at least one unloading job. The trailer has to be completely empty at the
end of a trip and every vehicle k ∈ K should start and end at its location ok.
Service of customers n ∈ N has to start within a given time window [an, bn] and
service times at customer locations are composed of a fixed service time sfn and
a variable service time svn per unit-volume delivered. Loading times at depots
m ∈M are in the same way composed of a fixed service time sfm and a variable
service time svm per unit-volume loaded. Of every edge (i, j) ∈ A we know the
distance gij and the driving time tij .

The goal is to minimise total costs subject to the mentioned constraints.
The costs are composed of transport costs and supply costs. Transport costs of
vehicle k ∈ K are αk per travelled kilometre and βk per worked hour. Supply
costs of product p ∈ P at depot m ∈M are δmp per unit-volume supplied.

In some applications of this problem the demand for a product p ∈ P of a
customer n ∈ N is not fixed but has to be between a certain minimum demand
d−np and maximum demand d+

np, such that 0 ≤ d−np ≤ d+
np. Supplying a value

of at least the minimum is satisfactory, but it is beneficial to deliver a higher
volume because the next delivery can then be further delayed. This makes the
problem more difficult as the actual supplied volume to a customer becomes an
additional decision that has to be made. In the main text of this thesis we will
assume a fixed demand dnp, for all n ∈ N , p ∈ P . In Appendix A we present
the untested ideas that we develop to deal with demand windows instead of a
fixed demand.

8



Chapter 4

Cluster first-route second
approach

In this chapter we introduce the assignment methods that we use in our clus-
ter first-route second approach. In the traditional cluster first-route second
approach every customer is assigned to a single depot. The reason for this is
that in those cases the cluster first-route second approach is applied because the
routing method cannot solve the multi-depot VRP. By assigning every customer
to just one depot, the problem can be split up into |M | single-depot VRP’s.

In this thesis, on the other hand, we assume that the available routing
method can solve multi-depot VRP’s but not handle constraints on the sourced
volume. Therefore, instead of assigning every customer to a single depot we
can assign every customer to multiple depots, as long as no sourcing volume
constraints are violated when a depot serves any subset of the customers that
are assigned to it.

To illustrate the advantage of assigning customers to multiple depots, we
make use of Figure 4.1. The example contains two depots (squares) and six
customers (circles). For simplicity we consider the delivery of only one product.
Next to the shown parameter values the minimum sourcing volumes are zero.
When assigning every customer to just one depot, the optimal solution (if we
take distance as expected costs of serving a customer from that depot) is to
assign customers 1, 2, and 3 to depot 1 and customers 4, 5, and 6 to depot 2.
The result is that still one unit-volume is available at depot 1 and two units at
depot 2. If we allow for the assignment of customers to multiple depots we can
give the routing heuristic more possibilities. In Figure 4.1 this is done by also
assigning customer 5 to depot 1 and customer 3 to depot 2, as illustrated by
the dashed ‘territories’.

The increased freedom that the routing heuristic has can be of great value
when factors that are not considered in the assignment phase turn out to be
restricting. An example of this in Figure 4.1 would be that near depot 2 there
are only vehicles with a capacity of 3 units. Now that customer 5 can also be

9



d1

q+
1 = 8

d2

q+
2 = 9

c1

d1 = 3

c2

d2 = 2

c3

d3 = 2

c4

d4 = 3

c5

d5 = 1
c6

d6 = 3

Figure 4.1: Example of advantage when allowing customers to be assigned to
multiple depots. Minimum sourcing volumes q−1 and q−2 are both zero.

served from depot 1, there may be no need to have three trips from depot 2 but
serve customer 5 on the trips from depot 1.

If we approximate a certain cost of serving a specific customer from a specific
depot and minimise total costs of assigning every customer to depots, we will
never assign a customer to multiple depots as that comes with increased costs.
One of the ways to obtain an assignment to multiple depots is to maximise
the total number of times customers are assigned to a depot (the number of
depots to which a customer is assigned, summed over the customers). Focussing
completely on the number of assignments is not beneficial though. This is
illustrated by Figure 4.2, where one would normally assign customers 1 and 2
to depot 1 and customer 3 and 4 to depot 2 and leave one unit-volume of depot
2 unassigned. If we maximise the number of assignments we get the assignment
shown in the example. In this case the total number of assignments has risen
from four to five but this assignment will most likely lead to bad solutions as
customer 3 is only assigned to depot 1.

To avoid situations as described in the previous paragraph, we split the
assignment phase in two steps. In the first step we minimise total costs of
assigning every customer to a single depot. Methods to do this are described
in Section 4.1. The second step consists of expanding the solution by assigning
every customer to other depots. The methods that we develop for that are
discussed in Section 4.2.

4.1 Single-depot assignment stage

The classical assignment in a cluster first-route second approach results in the
assignment to a single depot for every customer. In this section we first introduce
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Figure 4.2: Example of when only maximising the number of assignments leads
to strange optimal solutions. Minimum sourcing volumes q−1 and q−2 are both
zero.

an exact method to do the assignment, by extending the well-known generalised
assignment problem. Because the problem is NP-hard (Fisher et al., 1986) and
the practical application requires short running times, we also develop a heuristic
based on an urgency ordering of customers. However, the urgency heuristic only
uses a small amount of the available operational data. Because we want to see
if using more data increases the quality of the solutions we also describe a
clustering heuristic that takes into account vehicle capacities, time windows,
and customer service times.

Note that it is very well possible that for a problem instance the heuristics
cannot find a feasible single-depot assignment whereas solving the exact formu-
lation does yield a feasible result. As this has not happened in our experiments
and is unlikely when using the methods in practice (because sourcing volume
constraints will not be very strict for many depots) we have not developed
methods to handle such a possible infeasibility.

4.1.1 Extended generalised assignment problem

The generalised assignment problem (Cattrysee and Van Wassenhove, 1992) is
the problem of creating the least-cost assignment of a set of tasks to a set of
agents who have limited resources available. Costs and resource requirements of
having a certain agent perform a certain task are given for all agents and tasks.

We can simply adapt this problem to our assignment problem when we relax
all constraints related to vehicles and time windows. We use γmn to denote the
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approximated cost of serving customer n from depot m, for all m ∈M , n ∈ N .
In the following formulation, the binary decision variable xmn is 1 if customer
n is being served from depot m and 0 otherwise, for all m ∈M , n ∈ N .

min
∑
m∈M

∑
n∈N

γmnxmn, (4.1)

s.t. q−mp ≤
∑
n∈N

xmndnp ≤ q+
mp, ∀m ∈M,p ∈ P, (4.2)∑

m∈M
xmn = 1, ∀n ∈ N, (4.3)

xmn ≤ edc
mn, ∀m ∈ N,n ∈ N, (4.4)

xmn ∈ {0, 1}, ∀m ∈M,n ∈ N. (4.5)

The objective function (4.1) that we minimise is the total approximated
cost of serving customers from the assigned depots. Constraints (4.2) make
sure that for every depot and product the supplied volume is between the given
minimum and maximum when all customers are supplied the fixed demand
volume. Restrictions (4.3) enforce that every customer is supplied from exactly
one depot, and set (4.4) ensures that a customer is not assigned to a depot with
which it is not compatible. Constraints (4.5) enforce the assignment variables
to only take binary values.

It can easily be seen that our extended generalised assignment problem
(GAP) with minimum sourcing constraints is NP-hard as the GAP is reducible
to our problem by setting q−mp = 0 for all m ∈M , p ∈ P , and the GAP is proven
to be NP-hard (Fisher et al., 1986). Because we want to be sure that we can
find solutions quickly we will discuss various heuristics after we propose how to
approximate the costs of assigning a customer to a depot.

Approximated costs of serving a customer from a specific depot

The value of γmn can be decomposed into estimations of supply costs and trans-
port costs. The supply costs are

∑
p∈P δmpdnp.

To estimate the transport costs we first need to introduce some additional no-
tation. We denote the average transport cost per kilometre by ᾱ =

∑
k∈K αk/|K|

and the average cost per worked hour by β̄ =
∑

k∈K βk/|K|. For the average
capacity of a vehicle we take l̄tot =

∑
k∈K

∑
c∈Ck

lc/|K| and the total volume
supplied to customer n is dn,tot =

∑
p∈P dnp. In the following paragraphs we

use ATU to denote the average truck utilisation of a truck. This is the fraction
of the capacity of a vehicle that is used on average.

We propose to estimate the transport costs by summing the following com-
ponents:

• Travelling costs to the customer and back to the depot: 2ᾱgmn
dn,tot

ATU ·l̄tot
.

• Costs for fixed loading time at the depot: β̄sfm
dn,tot

ATU ·l̄tot
.
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• Costs for variable loading time at the depot: β̄svmdn,tot.

• Costs for driving time to the customer and back to the depot: 2β̄tmn
dn,tot

ATU ·l̄tot
.

• Costs for fixed unloading time at the customer: β̄sfn .

• Costs for variable unloading time at the customer: β̄svndn,tot.

For the costs of serving customer n from depot m this yields

γmn =
∑
p∈P

δmpdnp +
dn,tot

ATU · l̄tot
(2ᾱgmn + β̄sfm + 2β̄tmn)

+ β̄(sfn + dn,tot(svm + svn)). (4.6)

Note that only a share of the travelling costs, costs for fixed loading time,
and costs for driving time are seen as costs for customer n. This is done as
more than one customer may be served by the same vehicle and therefore those
costs are split over several customers. The proportion accounted to customer
n is the fraction that the demand of customer n will fill of an average vehicle
with average truck utilisation. Thus, the full costs are passed on to a customer
if the customer’s total demand is exactly the capacity of an average vehicle with
average truck utilisation.

We completely ignore the costs related to the vehicle driving from its start
location to the first depot and from the end depot to the end location. The
same holds for the costs made for travelling from customer to customer within
a trip. By doing this we assume that those costs are only a small fraction of the
total costs related to serving a particular customer.

The costs of serving a customer from a specific depot are well approximated
by this approach when a customer is closely surrounded by many other cus-
tomers. When customers are further apart and still served in the same trip, this
approach will underestimate the costs. We hypothesise that this does not have
a large influence on the assignment results as the underestimation for a specific
customer will happen for all depots. Thus, the only effect of underestimating
the assignment costs for all depots is that a difference in cost factors that are
taken into account (e.g. different product prices at different depots) is less im-
portant than assumed. Therefore, the relative attractiveness of specific depots
will lead to roughly the same result as long as the omitted cost factors are not
a large fraction of the total costs.

4.1.2 Urgency-based heuristic

Our urgency-based assignment heuristic is inspired by the parallel assignment
through urgencies of Giosa et al. (2002). The general idea is to measure an
urgency for each customer. Urgency resembles the need to assign that customer
based on the approximated costs of assigning customers to depots. There are
two (competing) urgency measurements that we use.
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The first urgency measure is the average cost of assigning a customer to a
feasible depot minus the cost of assigning the customer to the cheapest feasible
depot. Hence, the customer with the highest urgency has the highest need to be
assigned to the cheapest feasible depot and is therefore subsequently assigned
to it. This urgency measure fully focusses on assignment costs and does not
take into account the minimum sourcing volume constraints.

The second urgency measure focusses on satisfying the minimum sourcing
volume constraints as quickly as possible. It is calculated by taking the cost of
assigning a customer to the cheapest feasible depot minus the cost of assigning
the customer to the depot that currently delivers the least volume above the min-
imum sourcing volume of the product for which the customer has most demand.
In mathematical terms, let fmp denote the volume by which the minimum sourc-
ing constraint of product p at depot m is exceeded. Initially fmp = −q−mp for all
m ∈M , p ∈ P . Then, the depot that sources the least volume above the mini-
mum sourcing volume is mmin = arg minm∈M fm,p∗ , where p∗ = maxp∈P dnp is
the product that customer n has most demand for. The cheapest feasible depot
is m∗ = arg minm∈Mn

γmn. Therefore, the urgency calculated with the second
measurement is µn = γm∗,n − γmmin,n. As a result, all urgencies are smaller or
equal to zero and the customer with the highest urgency will induce the small-
est cost increase when assigned to the depot with the least volume above the
minimum sourcing volume assigned. For that reason the customer is assigned
to that depot (mmin).

The algorithm of the urgency-based heuristic is shown in Algorithm 1. Until
all customers are assigned to a depot (line 9), the urgency-based heuristic de-
termines for every unassigned customer by which depots it can be served (lines
11–16) and what the urgency of that customer is (line 17). Subsequently, the
customer with the highest urgency is assigned to a depot (which depot depends
on the urgency measure) (lines 19–21).

After every customer is assigned, a procedure is started to ensure all mini-
mum sourcing volume constraints are satisfied. A description of this procedure
can be found in Algorithm 2. The procedure iteratively focuses on the depot m
which has the ‘least satisfied minimum sourcing constraint’ (the value by which
the minimum sourcing constraint is violated). Then, customers are ordered in
non-increasing order of costs of assigning that customer to depot m. Starting
with the cheapest customer, we check whether the customer n is compatible
with the depot m, has demand for the product with least satisfied volume at
depot m, whether no maximum sourcing volume constraints at depot m are vio-
lated if it also has to serve customer n, and if not serving the customer from the
depot to which it was previously assigned does not violate any minimum sourc-
ing volume constraints at that depot. If all checks are passed, the assignment
of the customer is moved to depot m.

We hypothesise that the urgency-based heuristic works best when the max-
imum sourcing volume constraints are most restricting, because the procedure
that makes sure minimum sourcing volume constraints are satisfied is relatively
simple. The main simplification is made by switching the assignment of a cus-
tomer if it has at least some demand for the product of which the minimum
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Algorithm 1 Assignment through urgencies.

1: for all m ∈M do
2: for all p ∈ P do
3: remaining capacity rmp = q+

mp

4: capacity above minimum assigned fmp = −q−mp

5: end for
6: end for
7: assignment variable xmn = 0 for all m ∈M , n ∈ N
8: list of unassigned customers N ′ = N
9: while N ′ 6= ∅ do

10: for all n ∈ N ′ do
11: list of depots to which customer n can be assigned Mn = ∅
12: for all m ∈M do
13: if edc

mn == 1 and rmp ≥ dnp ∀p ∈ P then
14: Mn = Mn ∪ {m}
15: end if
16: end for
17: determine urgency µn based on chosen measurement
18: end for
19: most urgent customer n∗ = arg maxn∈N ′ µn

20: determine depot m∗ to which n∗ will be assigned
21: xm∗,n∗ = 1
22: for all p ∈ P do
23: rm∗,p = rm∗,p − dn∗,p
24: fm∗,p = fm∗,p + dn∗,p
25: end for
26: end while
27: (f, r, x) = fixMinimumViolations(f, r, x) (see Algorithm 2 on page 16)

sourcing constraint is not yet satisfied. Therefore, the procedure may reassign
many customers with small demand for that product to satisfy the minimum
sourcing volume constraints, whereas switching the assignment of one customer
with large demand may be better.

The methods discussed up to now have not made use of operational data like
time windows and vehicle information. This is probably not a problem when
there is a very large number of customers (|N | → ∞) because at every depot
there will still be a sufficient variety of time windows and demand volumes to
form ‘efficient’ trips. It becomes increasingly problematic though when there are
fewer customers, because one risks assigning a set of customers to a depot just
based on estimated costs, while those customers cannot be efficiently planned
together. In the next section we describe a heuristic method that overcomes
this disadvantage.
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Algorithm 2 (f, r, x) = fixMinimumViolations(f, r, x)

1: least satisfied minimum sourcing constraint lsmc = minm∈M minp∈P fmp

2: while lsmc < 0 do
3: depot with least satisfied constraint m1 = arg minm∈M (minp∈P fmp)
4: product that is least satisfied p1 = arg minp∈P fm1,p

5: sort customers n ∈ N by non-decreasing value of γm1,n

6: current customer n = 1
7: boolean customerFound=false
8: while customerFound==false and n ≤ |N | do
9: determine depot m2 that currently serves customer n

10: if (edc
m1,n == 1 and dn,p1 > 0 and

@ p ∈ P : rm1,p < dnp and @ p ∈ P : fm2,p < dnp) then
11: customerFound=true
12: xm1,n = 1
13: xm2,n = 0
14: for all p ∈ P do
15: rm1,p = rm1,p − dnp and rm2,p = rm2,p + dnp
16: fm1,p = fm1,p + dnp and fm2,p = fm2,p − dnp
17: end for
18: end if
19: n = n+ 1
20: end while
21: if customerFound=false then
22: no feasible solution found, terminate heuristic
23: end if
24: least satisfied minimum sourcing constraint lsmc = minm∈M minp∈P fmp

25: end while

4.1.3 Clustering customers

To include an increased number of operational data in the assignment process we
create clusters of customers. The idea is to cluster customers who are favourable
to be served in the same trip. The advantage of doing so is that any type of
constraint can be taken into account when deciding whether to cluster certain
subsets of customers or not. Examples of these constraints are time window
constraints and compatibility with depots and vehicles.

After clusters of customers are created they can be assigned to depots by
means of a slightly adapted version of the extended GAP described in Sec-
tion 4.1.1. We hypothesise that the exact assignment algorithm will always
terminate within reasonable time when using clusters, because assigning clus-
ters of customers decreases the size of the problem. We denote the set of clusters
by Y , the set of customers who are part of cluster y by Ny, and the binary deci-
sion variable that is 1 if cluster y served by depot m and 0 otherwise by xcluster

my .
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Equation (4.3) then has to be replaced by∑
m∈M

xcluster
my = 1, ∀y ∈ Y, (4.7)

and we have to add

xmn ≥ xcluster
my , ∀y ∈ Y, n ∈ Ny. (4.8)

The two above sets of constraints ensure that every cluster is served by exactly
one depot, and that serving a cluster from a certain depot implies that every
customer in that cluster has to be served from that depot. In the latter set an
inequality is enough because xmn will always be chosen as low as possible since
costs are minimised.

We hypothesise that introducing the additional constraints is recognized by
the MILP solver as a decrease of the problem size. The alternative would be
to accumulate parameter values of customers in a cluster and use the original
formulation of Section 4.1.1 to assign clusters to depots.

The general clustering algorithm is described in Algorithm 3. Details like the
stopping criterion, selection method, and merging requirements are discussed in
the next paragraph. The clustering procedure starts with a separate cluster for
every customer. In every iteration two clusters are selected based on a certain
selection criterion. Next, the clusters are either merged or not, based on one or
multiple acceptance criteria. If the clusters are merged, cluster characteristics
that are important in the selection process have to be recalculated. If two
clusters are not merged, the pair will be omitted from the selection procedure
from that point onwards. One of the two clusters can of course be selected for
merging again, but only if it may be merged with a cluster with which it has
not yet been considered for merging. The clustering will stop when a stopping
criterion has been reached, or if no pairs of clusters satisfy the merging criteria.

We select two clusters based on the inter-cluster distance. The two closest
clusters are always considered first. The philosophy behind this strategy is that
it is most interesting to assign a number of nearby customers to the same depot
because they are generally most attractive to be served on the same trip. Two
selected clusters are merged into one cluster if they satisfy the following three
criteria:

1. There is at least one depot that is compatible with every customer and
has enough volume available of the products required by the customers.

2. There is at least one vehicle that is compatible with every customer, is
compatible with at least one of the depots that satisfies the requirement
mentioned above, and has enough compartments and compartment capac-
ity to carry the demand volumes of all customers.

3. Customer time windows, service times, and driving times allow all cus-
tomers to be serviced within one trip.
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Algorithm 3 General clustering algorithm.

1: start with every customer in a separate trip cluster yn, 1 ≤ n ≤ |N |
2: create list of cluster pairs Y p

3: sort list Y p by non-decreasing inter-cluster distance
4: index i = 1
5: while stopping criterion not reached and Y p 6= ∅ do
6: select top cluster pair in Y p, denoted by (ya, yb) for some a, b > 0, a 6= b
7: if (ya, yb) satisfies merging requirements then
8: merge ya and yb into one cluster y|N |+i

9: remove all entries related to ya or yb from Y p

10: calculate characteristics of cluster y|N |+i

11: calculate inter-cluster distances to y|N |+i

12: add all cluster pairs related to y|N |+i to Y p

13: re-sort Y p

14: i = i+ 1
15: else
16: remove entry related to the pair (ya,yb) from Y p

17: end if
18: end while

Note that the third requirement actually involves solving a travelling salesman
problem with time windows, which is a well known NP-hard problem. While
this may be time consuming when merging large clusters we do not expect this
to be a problem as the second criterion is strict enough to limit cluster sizes.
Furthermore, if running times increase because of the third requirement we may
decide to only test a limited number of permutations and reject the merge if
none of those allow all customers to be serviced within one trip. For example,
in the tests the run in Chapter 6 we have set a maximum of 1000 permutations,
which means that for six customers we can still check all permutations.

If two selected clusters are merged, we have to update the inter-cluster dis-
tance to every other cluster. To this end, we simply take the average distance
of any pair of customers where one customer is part of the first cluster and the
other customer is part of the second cluster. This technique is known as group
average and is a compromise between single link clustering (taking the mini-
mum distance) and complete link clustering (taking the maximum distance).
The advantage of group average clustering is that it is less sensitive to outliers
than single link clustering (caused by what is called the chaining phenomenon)
and does not break large clusters as much as complete link clustering.

We do not specify a stopping criterion other than continuing until no more
cluster pairs satisfy the merging criteria, as our merging criteria are very strict.
Especially the second condition will ensure that running times will not be large
if we let the clustering algorithm run until no pair of clusters satisfies the re-
quirements.
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4.2 Multi-depot assignment stage

As our routing heuristic can solve the multi-depot VRP, we can also assign
customers to multiple depots as long as no sourcing volume constraints are
violated if a depot serves any subset of the customers assigned to it. We first
describe a mathematical formulation where we maximise the total utility of
assigning more depots to customers. Then we also introduce a greedy heuristic
that guarantees short running times.

4.2.1 Extended multi-dimensional knapsack problem

The multi-dimensional knapsack problem (MKP) is the problem of maximising
the utility of selected items such that the capacity constraints of a number of
resources are respected. Every item has a given utility and takes up a given
amount of every resource considered. For a detailed overview of the problem
and proposed methods to solve it, see Fréville (2004). We can extend the idea of
the MKP to maximise utility of assigning additional customers to every depot
with the remaining capacity.

The utility θmn of assigning a customer n ∈ N to a depot m ∈ M will be
specified later. We also make use of the additional decision variable zmn which
can only be 1 if customer n is not assigned to any depot other than depot m
and has to be 0 otherwise, for all m ∈M , n ∈ N .

max
∑
m∈M

∑
n∈N

θmnxmn, (4.9)

s.t.
∑
n∈N

dnpxmn ≤ q+
mp, ∀m ∈M,p ∈ P, (4.10)

zm1n ≤ 1− xm2n, ∀m1 ∈M,m2 ∈M \ {m1}, n ∈ N, (4.11)∑
n∈N

dnpzmn ≥ q−mp, ∀m ∈M,p ∈ P, (4.12)

xmn = 1, ∀m ∈M,n ∈ Nm, (4.13)

xmn ≤ edc
mn, ∀m ∈M,n ∈ N \Nm, (4.14)

xmn ∈ {0, 1}, ∀m ∈M,n ∈ N \Nm, (4.15)

zmn ∈ {0, 1}, ∀m ∈M,n ∈ N. (4.16)

The objective function (4.9) is the total utility of made assignments. With
constraint set (4.10) we make sure that the maximum capacity of the depot is
not exceeded. Restrictions (4.11) enforce zmn to be zero if there is at least one
depot other than m to which customer n is also assigned. Because of the way
we define zmn we can use constraints (4.12) to ensure that at least q−mp of a
product p ∈ P is sourced from a depot m ∈M .

The set Nm ⊆ N contains all customers that are assigned to depot m in
the first phase, and therefore have to stay assigned in the second phase. This is
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ensured by restrictions (4.13). All other customers can be assigned if the depot
is compatible, mathematically represented by set (4.14), and their assignment
variable has to be zero or one, as stated by (4.15). Constraints (4.16) ensure
binary values for all zmn variables.

For the utility of assigning a customer n ∈ N to a depot m ∈ M we use
θmn = γm1n/γmn, where m1 is the depot to which customer n was assigned in
the single-depot assignment step. We use this value because it is most interesting
to assign a customer n to depot m if the assignment costs are low and if the
assignment costs of customer n to depot m1 are high. Therefore, the utility
function has to be non-increasing in γmn and non-decreasing in γm1n. The
utility function also has to be strictly positive to ensure that there is always an
incentive to add assignments.

The regular MKP can be solved with our formulation by setting |M | = 1
and q−mp = 0 for all p ∈ P . Because the MKP is NP-hard, as briefly described
in Fréville (2004, Section 3.1), our problem is NP-hard too.

Limitations on the number of assigned depots

In some routing software packages there may be a limit on the number of depots
to which a customer can be assigned if the customer is not assigned to all depots.
Such constraints are easily added to the optimisation problem presented above.
If a customer either has to be assigned to all depots or to at most L depots, we
add constraints (4.17)–(4.19) to (4.9)–(4.16).

hn|M | ≤
∑
m∈M

xmn, ∀n ∈ N, (4.17)

∑
m∈M

xmn ≤ L+ hn(|M | − L), ∀n ∈ N, (4.18)

hn ∈ {0, 1}, ∀n ∈ N. (4.19)

Restriction set (4.17) ensures that customer n is assigned to all depots if
binary decision variable hn is 1, for all n ∈ N . Furthermore, constraints (4.18)
make sure that customer n is assigned to at most L depots if binary decision
variable hn is 0, for all n ∈ N . Because hn has to be either 0 or 1, as defined
in (4.19), every customer n ∈ N will be assigned to at most L depots or to all
depots. Note that |M | does not stand for the notorious ‘Big M’ but the number
of depots.

Introducing the above set of constraints in the extended MKP will not only
decrease the number of depots to which a customer is assigned from at most
|M | − 1 to L, for customers who are not assigned to all depots. It may also
increase the number of customers who are assigned to all depots as assigning a
customer to more than L and less than |M | depots is not allowed and therefore
the probability that there is enough capacity to assign a customer to all depots
is higher.

In addition, we propose to change (4.10) to only hold for all products p ∈ Pm

where Pm is the set of products that depot m offers. This is useful when for
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example all depots offer three products except for one depot that offers only
two products. If there are no sourcing volume constraints and the assignment
methods were run, that would result in all customers with demand for the
product not available at the latter depot to be assigned to every depot but that
one, while we can also assign the customer to that depot as the routing heuristic
will never choose to serve the customer from that depot anyway. If limitations
on the number of assigned depots would apply, the number of assigned depots
would even further decrease. By setting (4.10) only for the products offered by
a depot, this problem is solved and every customer will be assigned to every
depot if no sourcing volume constraints are considered.

4.2.2 Greedy heuristic

The heuristic that we use in case the extended MKP cannot be solved within
acceptable time is a greedy heuristic based on the utility defined in the previous
section. The heuristic is described in Algorithm 4.

We sort customer-depot pairs that are not yet assigned based on the utility
(non-increasing) (lines 9–10). Then we go through the list of pairs and check
for every pair whether the customer n could also be assigned to the considered
depot m without violating any constraints (lines 11–28). To this end we first
assert that the depot is compatible with the customer and no maximum sourcing
volume constraints are violated if depot m also serves customer n (lines 13–16).
After that, we also check if the customer is currently only assigned to one depot
(line 17). If the latter is true, we ensure that all minimum sourcing volume
constraints are still satisfied if customer n is not served from that depot (lines
18–21). When there is no mentioned test that fails, it is possible to assign
customer n to depot m too and the assignment is made (lines 23–27 and 30–
34).

Limitations on the number of assigned depots

If the number of assigned depots has to be limited by L for customers who are
not assigned to all depots, this is no problem with the greedy heuristic. After
the greedy heuristic terminates one can identify which customers are assigned
to more than L but not all depots. By keeping track of the order in which the
depots are assigned to the customer, we remove the last added depots such that
exactly L remain. The removed depots will not have a higher assignment utility
than the depots that remain assigned to the customer.

It is important to note that we cannot simply stop assigning a customer to
depots once it is already assigned to L depots. After all, at that point it is still
possible that a customer will eventually be assigned to every depot and this is
also satisfactory.

To ensure all customers can be served from any depot if no sourcing volume
constraints are considered, we can change P in line 14 to Pm where again Pm

is the set of products that depot m offers.
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Algorithm 4 Heuristic to assign customers to multiple depots.

1: list of customers who are assigned to a single depot N1 = N
2: for all m ∈M do
3: list of customers n depot m does not serve Nm,− = {n|xmn = 0}
4: for all p ∈ P do
5: remaining capacity rmp = q+

mp −
∑

n∈N xmndnp
6: capacity above minimum assigned fmp =

∑
n∈N xmndnp − q−mp

7: end for
8: end for
9: create list A of customer-depot pairs (m,n) for which xmn = 0

10: sort list by non-increasing values of θmn

11: for every entry in A do
12: current depot is m and current customer is n
13: boolean that depot m can serve customer n is canServe = (edc

mn == 1)
14: if ∃ p ∈ P : rmp < dnp then
15: canServe=false
16: end if
17: if canServe==true and n ∈ N1 then
18: determine m1, the only depot for which xm1n = 1
19: if ∃ p ∈ P : fm1p < dnp then
20: canServe=false
21: end if
22: if canServe==true then
23: N1 = N1 \ {n}
24: for all p ∈ P do
25: fm1p = fm1p − dnp
26: end for
27: end if
28: end if
29: if canServe==true then
30: xmn = 1
31: for all p ∈ P do
32: rmp = rmp − dnp
33: end for
34: end if
35: end for
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Chapter 5

Variable neighbourhood
search heuristics

To be able to judge how competitive our developed cluster first-route second
approach is, we develop variable neighbourhood search (VNS) heuristics. The
idea of a VNS heuristic was first proposed by Mladenović and Hansen (1997)
to overcome issues of traditional local search methods. The latter methods ex-
plore only one neighbourhood (i.e. solutions that differ in the same way from
the previous solution) and therefore cannot escape from local optima found by
searching in that neighbourhood. Contrary to those methods, VNS searches
through multiple neighbourhoods which are ordered such that they contain in-
creasingly different solutions.

The neighbourhoods that are most commonly explored for solving vehicle
routing problems can be found through the k-opt exchange operators (first men-
tioned in the form of 2-opt by Croes (1958)). A k-opt exchange is the replace-
ment of k arcs (links indicating that two specific locations are visited subse-
quently) by k different ones with the requirement that no disjoint sub-tours are
formed. This approach is most often applied with k = 2 or k = 3, because
higher values of k require much computation time while they do not yield many
further improvements.

For k = 2 the move can be seen as inverting the order of a consecutive
sequence of customers (Lin, 1965, Theorem 2) as shown in Figure 5.1. The
orientation of the trip is preserved except for the sequence of locations b and
c. In that sequence customers are served exactly the other way around than
before. Note that in a 2-opt move removing two edges that have one endpoint
in common will inevitably result in the same solution and therefore those moves
are not considered. An example of a 2-opt exchange can be found in Figure 5.2.
The trip goes from location 0 (the depot) to locations 1, 4, 3, 2, 5, and back
to location 0. After the 2-opt exchange has been made the trip is 0 → 1 →
2→ 3→ 4→ 5→ 0. The order of visits of locations 4, 3, 2 has been inverted.
Considering that |N | customers have to be planned there are O(|N |2) 2-opt
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a b c d

a c b d

Figure 5.1: Clarification of how we define the inversion of the order of a consec-
utive sequence of customers.

moves for a given solution.
Furthermore, the 3-opt exchange operator is equivalent to relocating a con-

secutive sequence of customers and either inverting the order of customer visits
of the sequence or not (Lin, 1965, Theorem 6). Individual customers are relo-
cated by applying a 3-opt exchange where exactly two edges share an endpoint
with another removed edge. Again, moves where every removed edge shares an
endpoint with another removed edge are not useful 3-opt moves, because they
result in either the same solution or a 2-opt move. A 3-opt move can also be
applied to two trips, resulting in the relocation of a sequence of customers to a
different trip (possibly in inverted order). For any solution there are O(|N |3)
3-opt moves.

When customer time windows are very tight it may not be useful to search
the complete neighbourhood of 3-opt exchanged solutions because inversion of
the order of customer visits will cause time window violations. In such cases,
it may be wise to use the Or-opt exchange operator (Or, 1976). This opera-
tor also relocates a sequence of customers, but does not invert the sequence.
Therefore, the Or-opt neighbourhood is approximately half as large as the 3-
opt neighbourhood (not exactly, as sequences of only one customer cannot be
inverted).

Figure 5.3 shows an example of a 3-opt move. The original trip is 0→ 1→
4 → 5 → 2 → 3 → 0. After the 3-opt move is made the trip is 0 → 1 → 2 →
3 → 4 → 5 → 0. The sequence of nodes 4 and 5 is relocated from between
nodes 1 and 2 to between nodes 3 and 0. This is also an example of an Or-opt
exchange of length two, because in this particular example the order in which
nodes 4 and 5 are visited is maintained.

Although 4-opt moves applied to two trips are not used a lot, some of them
are very interesting because those involve the exchange of two sequences of
customers. The latter moves are actually the same as what is called the CROSS
exchange operator, proposed by Taillard et al. (1997). The order in which
customers contained in the sequences are visited stays the same and helps keep
the size of the neighbourhood limited. Figure 5.4 gives an example of a CROSS
exchange. Originally, the first trip is 0 → 1 → 2 → 3 → 6 → 0 and the second
trip 5 → 4 → 7 → 8 → 9 → 5. After the CROSS exchange the first trip is
0 → 1 → 2 → 3 → 4 → 0 and the second trip is 5 → 6 → 7 → 8 → 9 → 0.
If the exchanged sequences can be of different lengths there are O(|N |4) moves
possible for any solution. When only sequences of equal length are exchanged
the number of moves is reduced to O(|N |3).
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Figure 5.2: Example of a 2-opt exchange.
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Figure 5.3: Example of a 3-opt and Or-opt exchange resulting in the relocation
of a sequence of length two.
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Figure 5.4: Example of a CROSS exchange of a sequence of length one.
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We apply two types of variable neighbourhood search approaches. The first
type is a repetitive version of a variable neighbourhood descent (VND), on
which more can be read in Hansen and Mladenović (2001), and a destruct and
repair procedure. The outline of this algorithm can be found in Algorithm 5
(page 27). In every iteration of the optimisation process we move through the
neighbourhoods until an improvement is found. If one is found, we return to the
first neighbourhood and repeat the same process. The iteration finishes when
all neighbourhoods have been explored without finding an improvement. The
second type is a regular variable neighbourhood search with the same destruct
and repair procedure. The outline of that algorithm is described in Algorithm 6.
The difference between a VND and a classic VNS is that a VND stays in a
neighbourhood until all neighbours are evaluated or an improvement has been
found, whereas a classic VNS only evaluates one random neighbour in every
neighbourhood.

In the VND we check whether a solution-improving neighbour exists by
iteratively going over all neighbours in the neighbourhood and calculating the
costs of the solution if we move to that neighbour. In variable neighbourhood
descent one traditionally moves to the best neighbour in the neighbourhood
(best improvement) but because it can be very time consuming to calculate the
costs of all solutions before making a choice we also generate results by moving
to the first neighbour that decreases the costs (first improvement).

For how many iterations we let this algorithm run depends mostly on the
running times. Therefore, we experiment with different values and choose a
number of iterations that we think gives a good trade-off between speed and
solution quality.

We describe our variable neighbourhood search approaches in four sections.
First we describe how the initial solution is created. Then, we discuss the
neighbourhoods that we explore. After that, we propose the destruct and repair
method. Finally, we describe how we decide whether we accept a solution or not.
In the section that discusses the neighbourhoods we will sometimes refer to a
solution being better or worse than another. How we actually define that, made
more complicated by the fact that we allow infeasible solutions, is described in
Section 5.4. In short, when both solutions are feasible we compare by costs.
When only one of a pair of solutions is feasible, it is better than the infeasible
solution. When both solutions are infeasible we look at the value by which
certain constraints are violated.

5.1 Building initial solution

When building the initial solution we aim to find a solution structure that has
a high probability of being feasible or becoming feasible within a low number
of moves to neighbouring solutions. To this end we follow the steps described
below.
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Algorithm 5 Global outline of our VND

1: build initial best solution Xbest

2: make copy X ′ = Xbest

3: while stopping criterion not met do
4: set current neighbourhood κ = 1
5: while κ ≤ κmax do
6: if ∃ neighbour in κ-th neighbourhood of X ′ that yields cost decrease

then
7: move to that neighbour with X ′

8: κ = 1
9: else

10: κ = κ+ 1
11: end if
12: end while
13: if costs of X ′ are lower than of Xbest then
14: update best solution Xbest = X ′

15: end if
16: destruct and repair Xbest and save it to X ′

17: end while

Algorithm 6 Global outline of our VNS

1: build initial best solution Xbest

2: make copy X = Xbest

3: while stopping criterion not met do
4: set κ = 1
5: while κ ≤ κmax do
6: generate random solution X ′ from κ-th neighbourhood of X
7: apply local search to find locally optimal solution X ′′ from X ′

8: if costs of solution X ′′ are lower than of solution X then
9: update best solution in current iteration X = X ′′

10: κ = 1
11: else
12: κ = κ+ 1
13: end if
14: end while
15: if destruct and repair criterion applies then
16: destruct and repair Xbest and save it to X
17: end if
18: end while
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Step 1: Assignment of customers to depots

To assign customers to depots we make use of the urgency-based heuristic with
urgency measure 1 described in Section 4.1.2, because that method ensures that
the constraints on the sourced volume are satisfied and has a short running time
for real-world problem sizes.

Step 2: Assignment of vehicles to depots

We cannot easily judge what vehicle should serve which customers, so we let
every vehicle start at a compatible depot while trying to keep the distance
between the start location and the assigned depot short. First, to ensure that
at every used depot a compatible vehicle starts, we iteratively assign to a used
depot the closest (in terms of distance) compatible unassigned vehicle. This is
done in non-decreasing order of the number of compatible unassigned vehicles.
By a used depot we mean a depot to which at least one customer is assigned
in the assignment procedure. To assign the remaining vehicles, we assign every
vehicle one-by-one to the closest compatible used depot. For assignment to a
depot, we arbitrarily order the vehicles lexicographically.

Step 3: Ordering of customers

We order customers by non-decreasing values of start of the serving time window
an (for customer n). Customers with equal values of an are sorted by non-
decreasing values of end of the serving time window bn. For customers that also
have equal values of bn we break ties by total demand value

∑
p∈P dnp where

customers with a lower total demand should be listed higher. By assigning
customers in this order we try to be able to solve time window violations with a
small amount of neighbourhood moves. In case customers break ties for all the
given ordering rules we arbitrarily order them lexicographically by name.

Step 4: Assignment of customers to vehicles

Until all customers are assigned to a trip, we select the next customer (from the
list as ordered in Step 3) and assign it to a vehicle as follows. For all compatible
vehicles assigned to the same depot as the customer, we calculate the total
volume that it already has to deliver and divide this by the total capacity of
the vehicle. This metric represents approximately how many trips the vehicle
already has to drive. By choosing for this approach we do not keep track of the
time windows and maximum time the vehicle can operate, but in the exploration
of neighbourhoods we partly focus on solving such potential violations. If there
is no compatible vehicle that is assigned to the same depot, we assign customers
to an incompatible vehicle using the same metric. Again, in the exploration of
neighbourhoods such violations may be solved quickly.
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Step 5: Creation of trips

We add the depot visits to the vehicles to form trips. A sequence of customers is
served in the same trip as long as the vehicle can carry all requested products.
To this end we add customers to the trip under consideration until adding
another customer violates the capacity constraints of the vehicle. From that
customer onwards the next trip starts and the same process is repeated. This
is equivalent to minimising the number of depot visits, but is not necessarily
optimal in terms of travel time and distance.

5.2 Description of neighbourhoods

In every iteration of the VNS we explore a number of neighbourhoods. For
a solution, each neighbourhood contains a set of solutions that can be found
by applying the same type of change to the solution. The ordering of neigh-
bourhoods is important because we explore the first neighbourhood each time
an improvement is found and the last neighbourhood only if no improvements
could be found in the other neighbourhoods. Therefore, the chosen neighbour-
hoods are ordered by increasing size and improvement they could make to the
solution. We use the neighbourhoods described in the list below. When iter-
ating over trips of a vehicle we always do this in the order of execution by the
vehicle. We arbitrarily order the vehicles lexicographically.

Note that the ordering of neighbours within a neighbourhood can be impor-
tant in the variants of our heuristic that apply first improvement. Therefore
we explicitly describe the order for every neighbourhood. For the variants that
use best improvement the ordering of neighbours within a neighbourhood is not
important because all neighbours will always be evaluated before potentially
making a move to one of those neighbours.

1. Changing the depot visit of a trip into another depot. For every depot
visit that is selected we try to change it into the visit of any other depot
(sorted lexicographically as this is arbitrary).

2. Interchanging the depot visited in one trip with the depot visited in an-
other trip (also across vehicles). First we check for the interchange of the
first depot visit of the first vehicle with every other depot visit of all ve-
hicles. Then we do the same for the second depot visit of the first vehicle
(or the first depot visit of the second vehicle if the first vehicle only visits
a depot once), and so on.

3. Making an Or-opt exchange within the trip. We first try to relocate single
customers to different places in the trip, starting with the first customer.
New locations for the sequences are always tried from the front of the trip
to the end of the trip. Then we continue with consecutive sequences of
two customers, and so on, until the relocation of sequences that contain
all but one customer of the trip.
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4. Making an Or-opt exchange covering different trips of the same vehicle.
Again, we first try to relocate single customers to different locations of
other trips and if every single customer of a trip has been tried, we check
for moves containing two customers. Only after all moves from a certain
trip have been tried we try to relocate customers of the next trip. Note
that we also consider relocation of complete trips. When a complete trip
is relocated to a place in a different trip the depot visit of the original trip
disappears.

5. Making an Or-opt exchange covering trips of different vehicles. Again, we
first try to move single customers and only after all moves with a single
customer have been tried we increase the length of the sequences moved.
The sequences are moved from a given trip to all other locations of all
trips of different vehicles before moving sequences from the second trip.
The order of moves with the same sequence size is the same as in the first
and fourth neighbourhood.

6. Making a CROSS exchange covering trips of different vehicles. The order
of moves is the same as in the previous neighbourhood but now we swap
two sequences of customers instead of moving a sequence from one place
to another. We only exchange sequences of equal length to limit the size
of this neighbourhood and speed up the heuristic.

7. Moving a trip to a different place in the same shift. For every vehicle we
try to relocate trips to other places in the same trip. After all places have
been tried, the next trip is selected for moving. This is done for all trips
of a vehicle before moving trips of the next vehicle.

8. Moving a trip to another vehicle. Trips are ordered based on the vehicle
that executes them and the order in which the trips are done. All places
are tried for a trip before selecting the next trip to be relocated.

9. Swapping two trips (also of different vehicles). We first try to swap the
first trip with any other trip and then move to the second trip.

10. Swapping two shifts. The vehicle pairs to swap shifts of are ordered by
the first vehicle, breaking ties by the second vehicles.

The reason for this ordering is that the first and second neighbourhood are
very small (when T is the set of trips they have O(|T ||M |) and O(|T |2) neigh-
bours respectively). Changing the visited depot for a trip can prove to be very
useful especially because in the initial solution a vehicle visits the same depot
for all trips. The third neighbourhood is larger but still concerns neighbours
that only differ by the sequence of customers within one trip.

From the fourth neighbourhood onwards we consider relocating or exchang-
ing customer sequences between trips and vehicles. Note that when we move
sequences of customers to other trips by means of an Or-opt exchange we also
allow the relocation of the sequence into a new trip at the end of the shift. The
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reason for doing this is that moving sequences into existing trips will often result
in an infeasible trip in terms of vehicle capacity. When a sequence is moved to
the new trip at the end of the shift, the visited depot of that trip will be the
depot to which the first customer of that trip was assigned in Step 1 of the
initial solution build (see Section 5.1).

We do not invert the order of relocated sequences to limit the sizes of the
neighbourhoods and exclude many moves that are unlikely to yield cost im-
provements (due to customer time window limitations). Furthermore, the sizes
of most neighbourhoods heavily depend on the size that trips can generally have.
In case the running times are too large it is possible to decrease the running time
by limiting the size of the relocated sequences in the different neighbourhoods.

Although in general we are sure that the ordering of the neighbourhoods is
correct, there are two things that we will test in the experiments of Chapter 6.
Firstly, we check whether it may be better to optimise the order of customers
within trips before changing the depot visit of trips (in terms of the current
neighbourhood numbers that means that the neighbourhoods are ordered 3 →
1 → 2 → 4 → 5 → 6 → 7 → 8 → 9 → 10). Secondly, we evaluate whether
we get better results when we swap two neighbourhoods if the first and the
second only differ in the fact that the first contains neighbours where part of
a trip or shift has been moved and the second contains neighbours where the
same part of a trip or shift has been swapped. This holds for neighbourhoods
5 and 6, and for 8 and 9. We consider swapping to be a bigger change to
the solution, but neighbourhoods with neighbours where something is swapped
are approximately half the size of the neighbourhoods with neighbours where
something is moved. To test what is best we use the neighbourhood ordering
1→ 2→ 3→ 4→ 6→ 5→ 7→ 9→ 8→ 10.

When moving to a neighbour we recalculate costs and violations of the sched-
ule. The start and end times of a trip and the arrival times at customers are
calculated from the end of the shift to the start. For the last customer we as-
sume that service starts as early as possible. Then we go backwards through
the shift and if service of a customer has to start before the start of the time
window we delay all later visits (if needed). This means that in any solution we
will never see that service of customers starts too early. Finally, if the calculated
start of the shift is before the start of the operating window of the vehicle we
delay the complete schedule as much as needed or possible without violating
customer time window constraints.

In the classic variable neighbourhood search variants a local search procedure
is run before a neighbour is compared to the best known solution. This is done
because otherwise it is very unlikely that the neighbour is better than the best
known solution. The local search that we apply is the third neighbourhood
shown above. We choose this neighbourhood because it optimises most locally
(within trips). For this reason the classic VNS has 9 neighbourhoods. When
applying the local search procedure by a local search within neighbourhood 3,
we both evaluate first improvement and best improvement variants.
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5.3 Destruct and repair procedure

Once an iteration of the variable neighbourhood search terminates we have a
locally optimal solution, but that solution may not be the global optimum. For
that reason we destruct part of the solution and rebuild it before moving to
the next iteration of the VNS. We apply this destruct and repair procedure to
the currently best-known solution and not to the solution that came out of the
current iteration, because the destruct and repair run of the previous iteration
may have caused the solution to shift to a region with only solutions of very bad
quality. The disadvantage of using the best solution is that we cannot use a fully
deterministic destruct and repair procedure as that may cause our heuristic to
cycle.

To improve the schedule we want to relocate all trips of a vehicle that adds
a large proportion to the total costs. Let Γk(X) denote the costs that vehicle k
adds to the total costs of solution X and let Γ(X) denote its total:

Γ(X) =
∑
k∈K

Γk(X). (5.1)

To introduce some randomness in the process, the vehicle of which we relocate
all its trips is chosen by weighted random selection where the probability that
vehicle k is selected is Γk(X)/Γ(X). We destruct the solution by removing all
trips from the selected vehicle, say k∗. The solution is repaired by iteratively
assigning a trip (including the visited depot) to a different vehicle that has the
lowest cost increase of doing that trip at the end of its shift. Reassigning is done
in the order in which the trips were planned to be executed by vehicle k∗.

We create two versions of the destruct and repair procedure. One version of
our destruct and repair procedure repeats the above only once. The advantage
of doing so is that part of the solution is retained, but the disadvantage is that
the perturbation of the solution may not be large enough to escape from the
local optimum.

The other version repeats the procedure above the number of times the best
solution has not been updated plus one. This means that if the best solution
has just been updated we relocate the trips of one vehicle, because we have to
disturb the solution at least by a small part before the next iteration. When
vehicles have been selected for the relocation of all their trips they are no longer
considered in further iterations of the current destruct and repair run. The
following steps are repeated a given number of times:

1. Choose vehicle to relocate trips of.

2. Relocate all trips.

3. Do not consider chosen vehicle for remaining iterations of the current
destruct and repair run.

We bound the number of iterations of this version of the destruct and repair
procedure by 20% of the number of vehicles (found by preliminary testing),
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because otherwise the solution is disturbed too much when for a large number
of iterations the best solution has not been updated.

In the classic VNS we apply the first version of our destruct and repair proce-
dure once every 200 iterations. The reason for this low number of disturbances
is that the classic VNS makes much less moves to neighbours per iteration and
therefore takes more iterations before getting close to a local optimum.

5.4 Solution acceptance

In the previous sections we have discussed better or worse neighbours and in-
crease or decrease of costs of a solution. Comparing solutions is not trivial
though, because solutions may be infeasible. This forces us to develop rules for
ranking solutions.

Two feasible solutions are easily ranked by their objective value. Also, a
feasible solution is obviously better than an infeasible solution. When two solu-
tions are infeasible, several different ranking methods have been used in earlier
work. Penalty functions (of which many kinds are described in Coello Coello
(2002, Chapter 2)) are most used, but we decide not to use those because the
appropriate penalty weights for different type of violations can be very instance-
specific.

Furthermore, Pareto dominance is sometimes used. This implies that a solu-
tion X1 is better than solution X2 if solution X1 violates at least one constraint
by a smaller value than solution X2 and solution X1 violates no constraints
by a larger value than solution X2. This corresponds to a decrease of at least
one violation and no worsening of other violations. Although this seems attrac-
tive, we may favour a solution that has a slight increase in the violation of one
constraint compared to a large decrease on other violations.

Therefore, we define a rule that accepts slightly more solutions than Pareto
dominance. Of all types of constraints listed in Table 5.1, we check for the old
and the new solution by what value the constraints are violated. Then, if in
more constraint types there is a decline of the violation than an increase in the
violation, the solution is accepted. That means that if the old solution had a
violation on just one constraint type, this rule always yields the same result
as Pareto dominance. If there were violations on more constraint types, all
solutions that would have been accepted by Pareto dominance are also accepted
with this rule, but this does not hold the other way around.

Preliminary tests show that Pareto dominance performs better than the
new rule that we defined. This is probably caused by the fact that solutions are
accepted when violation types increase as long as there are more violation types
that decrease. The result is that the algorithm does not always move in the
direction of a feasible solution. For this reason, we use Pareto dominance, with
the violation types discussed above, in the experiments of the next chapter.
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Type # Violation description (quantification)
1 Minimum sourced volume (liters)
2 Maximum sourced volume (liters)
3 Compatibility between vehicles and depots (number)
4 Compatibility between depots and customers (number)
5 Compatibility between vehicles and customers (number)
6 Customer time windows (hours)
7 Vehicle time windows (hours)
8 Vehicle maximum usage time (hours)
9 Vehicle capacity (liters)

Table 5.1: List of different violation types on which we base solution acceptance.
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Chapter 6

Experiments

In this chapter we discuss the experiments that we conduct to test how good
the methods developed in Chapter 4 perform relative to each other and how a
cluster first-route second (CFRS) approach performs compared to a one-stage
optimisation approach. We also compare the different VNS heuristics that we
developed. Finally, we study how the developed assignment algorithms perform
when ORTEC Route Scheduling (Appendix B briefly describes the algorithms
behind the software) is the routing heuristic used in the cluster first-route second
approach.

6.1 Setup

The routing method that we use in the CFRS approach for the results in Sec-
tion 6.2 is the first improvement VND with basic destruct and repair procedure
where depots are only compatible for a customer if they have been chosen in the
assignment phase. We choose the first improvement VND with basic destruct
and repair because that is the basic variant from which we derived all other
VNS heuristics.

We run all the experiments on an Intel R© CoreTM i7-640M CPU. All self-
written methods are programmed in C++ and to solve MILP’s we make use of
the open-source SYMPHONY solver of COIN-OR1.

6.1.1 Data

The test cases that we use to test the previously discussed methods are derived
from real-world cases of a global oil company. All cases consider the distribution
of three products. Some general statistics that indicate the size of the cases are
shown in Table 6.1. The cases vary widely in the number of orders, depots,
and vehicles. This allows us to perfectly analyse the effects of problem size on
relative performance of methods described in previous chapters.

1For more information see https://projects.coin-or.org/SYMPHONY.

35



Case no. No. customers No. depots No. vehicles
1 27 5 11
2 35 5 11
3 43 11 19
4 74 11 23
5 78 11 22
6 140 9 35
7 155 9 36

Table 6.1: General statistics of test cases.

Of every described case we make three additional variants for our experi-
ments. The base case (denoted by x.0 for case x) is the case without restrictions
on sourced volumes, as it was supplied. In that way, we can analyse what depots
are relatively much used. In the first variant (for case x referred to as x.1) we
impose maximum sourcing volume constraints on the two depots that are used
most in the base case. These depots generally have low product prices or are
at a geographically attractive location. The value of the maxima are chosen
by trial and error such that it does result in a change of the best solution but
we are sure that a feasible solution exists. For the second variant (named x.2)
we do the same, but then with minimum sourcing volume constraints on two
depots that are least used in the base case. The third variant (x.3) is the most
restrictive, with both maximum sourcing volume constraints on two much used
depots and minimum sourcing volume constraints on two little used depots.

6.1.2 Parameters

During the experiments we will not allow customers to be assigned to more than
five depots if they are not assigned to all depots. We do this because ORTEC
Route Scheduling only gives the option, for every customer, to allow sourcing
from all depots or list at most five depots that the customer may be supplied
from. Because we want to include the effect of such a restriction, we make use of
the additional procedures in Section 4.2 that enable us to work with limitations
on the number of assigned depots.

Some preliminary tests, of which we do not show the results here, show that
50 iterations of the VND gives a good trade-off between solution quality and
speed. We see that frequently there are still substantial improvements after
40 iterations, but running the VND for longer generally does not yield large
improvements any more. Furthermore, 50 iterations approaches the upper limit
on the running time that we consider acceptable for practical use (around ten
minutes). The same evaluation for the classic VNS inspires us to generate
the results in this chapter with 6000 iterations. Because we noted during the
experiments that the running times of the VND increased tremendously with
instance size we decreased the number of iterations for case 6 and 7 from 50
iterations to 10.

The average truck utilisation that we use to calculate approximated cost of
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assigning customers to depots is set to 1.0. We set it to this value because
preliminary tests showed that during most trips the complete truck capacity is
utilised.

6.1.3 Order of VNS neighbourhoods

As briefly discussed in Section 5.2, we want to do a quick check on the correct-
ness of the order of the neighbourhoods for the VNS variants. Therefore, we
run the first improvement VND with basic destruct and repair procedure with
three different neighbourhood orderings. The results can be found in Table 6.2.
The first column is the regular order that we hypothesise is the best one. The
order of the second column has neighbourhoods 5 and 6 and neighbourhoods 8
and 9 swapped, such that smaller neighbourhoods are visited first. The order of
neighbourhoods to which the objective values in the third column belong, en-
sures that the order of customers in a trip is optimised before possibly changing
the visited depot of that trip.

It is clear from the table that the original order that we proposed gives the
most consistent results. Although the original order only once gives the best
result, it is also only once the worst whereas the other two orderings gave four
and three times the worst results, respectively. Furthermore, the original order is
the only one that finds a feasible solution in all seven base cases. Running times
with the different orders are all similar, although not reported here. Because
the original order give the least amount of bad results, we use that order of
neighbourhoods in the experiments.

1-2-3-4-5-6-7-8-9-10 1-2-3-4-6-5-7-9-8-10 2-3-1-4-5-6-7-8-9-10
1.0 15610 15624 15610
2.0 17439 17440 17303
3.0 27205 27065 27205
4.0 40634 infeasible 40763
5.0 37200 36908 infeasible
6.0 61613 61365 61638
7.0 68259 68647 68160

Table 6.2: Objective values of all cases without sourcing volume constraints
solved with three different neighbourhood orders.

6.2 Results

For every problem instance with constraints on the sourced volume we create a
routing solution by the methods listed in Table 6.3. The abbreviations shown
in the last column are also used when we present the results of a method. By
applying this collection of methods we can analyse many different aspects of
the developed methods. We highlight the most important results in the subsec-
tions beneath. First, we compare the quality of routing solutions after single-
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depot assignment versus multi-depot assignment. Then, we analyse the different
single-depot assignment algorithms and multi-depot assignment algorithms. Af-
ter that, we discuss the performance of the different VNS heuristics. Finally,
we discuss the difference in deterioration of the objective value after introduc-
ing sourcing volume constraints between the cluster first-route second (CFRS)
approach and the VNS heuristics used as one-stage optimisation approach.

Single-depot assignment Multiple depot assignment Abbreviation
clustering + extended GAP - c+eGAP
clustering + extended GAP greedy heuristic c+eGAP+gre
extended GAP - eGAP
extended GAP greedy heuristic eGAP+gre
extended GAP extended MKP eGAP+eMKP
urgency heuristic (measure 1) - u1
urgency heuristic (measure 1) greedy heuristic u1+gre
urgency heuristic (measure 1) extended MKP u1+MKP
urgency heuristic (measure 2) - u2
urgency heuristic (measure 2) greedy heuristic u2+gre

first improvement VND with basic destruct and repair fi VND bas
best improvement VND with basic destruct and repair bi VND bas

first improvement VND with extended destruct and repair fi VND ext
best improvement VND with extended destruct and repair bi VND ext

classic VNS with first improvement local search fi VNS
classic VNS with best improvement local search bi VNS

Table 6.3: Different methods by which the routing solution is created for every
problem instance.

Next to the main set of experiments described above, we perform a number
of additional smaller experiments to analyse the following:

• How well we approximate the costs of assigning a certain customer to a
specific depot and the influence of the number of customers per trip on
the accuracy of the approximation.

• The influence of the number of customers per trip on the performance of
the single-depot clustering heuristic.

• Comparison of the total utility found by the exact multi-depot assignment
method and the greedy heuristic.

• The influence of the number of allowed depots per customer (if a customer
is not assigned to all depots) on the relative performance of the exact
multi-depot assignment method and the greedy heuristic.

• The influence of the number of iterations on the performance of the classic
VNS.
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• The influence of the number of allowed depots per customer (if a customer
is not assigned to all depots) on the relative performance of the cluster
first-route second approach and the one-stage optimisation.

The description of the small experiments can be found in the relevant subsections
with results.

The objective values of the main set of experiments are reported in Table 6.4.
The objective values (in euros) are rounded to the nearest integer. Infeasible
solutions are denoted by ‘inf’. In Table 6.5 we show the running times of the
different methods for all the test cases. The table consists of two separate
parts: the running times of the assignment algorithms when the cluster first-
route second approach is used and the running times of the VNS heuristics when
the one-stage optimisation is used.

For the methods that are cluster first-route second approaches we only show
the running time of the assignment phase. Our routing heuristic is not optimised
to run faster when a depot assignment is already made and therefore all running
times are similar to the one-stage optimisation approach. Assignment running
times rounded to complete seconds to overcome most irregularities that may be
caused by other machine processes.

39



Cluster first-route second One-stage optimisation
c+eGAP eGAP u1 u2 VND bas VND ext VNS

gre gre eMKP gre eMKP gre fi bi fi bi fi bi
1.0 15610 15574 15565 15562 15631 15631
1.1 16322 16250 16322 16250 16250 16322 16250 16250 inf 16287 16194 16091 16084 16032 16206 16206
1.2 16342 15979 16342 15979 15979 16401 15979 15979 inf 15979 16114 16104 15986 16065 16175 16175
1.3 16450 16244 16450 16244 16387 16401 16387 16387 inf 16344 16244 16097 16095 16110 16113 16113
2.0 17439 17381 17304 17344 17384 17452
2.1 18598 17726 18498 17710 17710 inf inf inf inf inf inf inf 17630 17613 inf inf
2.2 18154 17544 18154 17544 17544 18197 17662 17660 inf 17486 17647 17757 17463 17402 17627 17627
2.3 18475 18243 18646 18243 18243 18890 17729 17729 inf 17750 17649 17574 17439 17488 17510 17510
3.0 27205 27194 27138 27134 27246 27246
3.1 27858 27900 27858 27900 27900 27978 27789 27789 30243 27807 27838 27807 27806 27767 28142 28142
3.2 28329 28119 28329 28119 28119 28467 28160 28160 30708 28103 28104 27951 28002 27916 28901 28901
3.3 28137 28395 28137 28395 28395 28441 28499 28542 30708 28381 28213 28077 28198 28263 28307 28307
4.0 40634 inf 41326 inf inf inf
4.1 41231 40926 41060 inf inf inf inf inf inf inf 41084 inf 41329 inf inf inf
4.2 inf 41931 inf 41931 41931 inf inf inf inf inf 42051 inf 41829 inf inf inf
4.3 inf inf 41063 41598 inf inf inf 41907 inf inf inf inf 41899 41856 inf inf
5.0 37200 36767 36926 36798 inf inf
5.1 37215 37102 37643 37090 37022 37300 37408 37592 inf 37547 37355 37344 37505 37045 inf inf
5.2 inf 37282 inf 37417 37417 inf 37433 inf inf inf 37263 inf 37773 inf inf inf
5.3 37304 36856 37489 37069 37391 37635 37454 37905 inf inf 37399 inf 37647 inf inf inf
6.0 61613 61566 61448 61238 inf inf
6.1 inf 61867 inf 61457 61721 inf 61531 61743 inf 61573 61248 inf 61428 inf inf inf
6.2 inf 61897 inf 62001 62001 inf 64290 64290 inf 61917 62238 62790 inf inf inf inf
6.3 inf 61892 inf 62038 62116 inf 63010 63010 inf 62326 61987 62419 inf 62131 inf inf
7.0 68259 68981 inf inf inf inf
7.1 inf inf inf inf inf inf inf inf inf inf 71153 inf 68329 inf inf inf
7.2 inf inf inf 69050 69050 inf inf inf inf 68079 inf inf inf inf inf inf
7.3 inf inf inf inf inf inf inf inf inf inf 69342 inf 69342 inf inf inf

Table 6.4: Objective value of all problem instances with all described methods.
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Cluster first-route second One-stage optimisation
c+eGAP eGAP u1 u2 VND bas VND ext VNS

gre gre eMKP gre eMKP gre fi bi fi bi fi bi
1.0 12 16 27 17 8 8
1.1 0 0 0 0 0 0 0 0 0 0 15 9 24 20 8 8
1.2 0 0 0 0 0 0 0 0 0 0 10 11 25 27 7 8
1.3 0 0 0 0 0 0 0 0 0 0 11 15 25 26 8 8
2.0 24 19 54 44 17 22
2.1 0 0 0 0 0 0 0 0 0 0 10 10 65 48 17 19
2.2 0 0 0 0 0 0 0 0 0 0 18 13 73 44 16 18
2.3 0 0 0 0 1 0 0 0 0 0 22 20 49 49 19 19
3.0 49 42 164 112 8 9
3.1 1 0 0 0 1 0 0 1 0 0 56 41 125 138 9 9
3.2 1 1 1 1 2 0 0 1 0 0 41 59 160 163 8 9
3.3 1 1 0 0 1 0 0 1 0 0 69 56 212 143 9 9
4.0 327 243 865 542 42 44
4.1 3 3 1 0 2 0 0 1 0 0 342 200 864 784 39 41
4.2 1 0 0 0 2 0 0 2 0 0 329 261 912 976 36 47
4.3 2 2 0 0 2 0 0 1 0 0 304 195 912 683 39 41
5.0 520 350 1377 934 96 103
5.1 0 0 0 0 5 0 0 2 0 0 509 424 928 848 63 66
5.2 1 1 0 0 2 0 0 2 0 0 442 242 1003 792 71 78
5.3 1 1 1 1 3 0 0 16 0 0 390 224 1035 788 64 68
6.0 1197 951 1989 1129 122 127
6.1 3 3 1 1 3 0 0 2 0 0 1728 594 1979 758 153 163
6.2 0 1 1 1 6 0 0 4 0 0 1462 1013 951 1066 111 114
6.3 1 1 3 3 8 0 0 5 0 0 1590 1088 1917 1200 137 148
7.0 2275 1748 2887 1439 195 201
7.1 1 1 0 0 4 0 0 3 0 0 2104 966 2746 1936 164 174
7.2 1 1 0 1 4 0 0 3 0 0 1808 1053 3015 1766 168 161
7.3 2 2 1 1 3 0 0 3 0 0 1838 974 1879 1343 177 182

Table 6.5: Running times of assignment algorithms for the part that is cluster first-route second and running times of the VNS
variants for the part that is one-stage optimisation.
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6.2.1 Single-depot versus multi-depot assignment

In the results it is clearly visible that the multi-depot assignment has a positive
effect. For example, when we compare the results of ‘eGAP’ with ‘eGAP+gre’
we see that in 15 out of 21 problem instances with sourcing volume constraints
the multi-depot assignment results in decreased costs. In 6 out of those 15
cases the routing heuristic could not find a feasible solution with the single-
depot assignment, whereas it could with the multi-depot assignment. Over the
other 9 cases the multi-depot assignment resulted in a cost decrease of 1.9% on
average.

Furthermore, we see that a very bad single-depot assignment can still result
in good results after the multi-depot assignment. This is particularly well illus-
trated by ‘u2’ compared with ‘u2+gre’. Out of the 21 instances, routing after
‘u2’ only gives a feasible solution 3 times while routing after ‘u2+gre’ yields a
feasible solution 13 times. Remarkable, and an even stronger result, is that out
of those 13 times the routing solution found by ‘u2+gre’ is in 4 cases the best
routing solution of all CFRS methods.

Despite that, we sometimes see that the routing solution found after the
single-depot assignment is better than when also applying the multi-depot as-
signment (4 out of 21 cases when comparing ‘eGAP’ with ‘eGAP+gre’). This
perfectly shows that given an assignment, the solutions of the routing method
may not always be optimal, because after the multi-depot assignment every
customer can still be served from the depot to which it was assigned in the
single-assignment step. Therefore, solutions after the multi-depot assignment
should not be worse. When solutions with the multi-depot assignment are worse
it means that the routing method got stuck in a local optimum.

6.2.2 Comparison of single-depot assignment algorithms

In this section we discuss how the various single-depot assignment methods
perform in terms of objective value (after routing) and running time.

Approximation of assignment costs

Before comparing the assignment algorithms, we evaluate how well we approx-
imate the assignment costs of assigning a specific customer to a depot (see
Section 4.1.1 for the used approximation function). To this end, we create a
routing solution with case 1.0, determine the costs every vehicle makes, and
compare this with the approximated costs by looking up from which depot ev-
ery customer is served. We use the first test case because this analysis is done
manually and therefore we need to have a limited instance size. Because sourc-
ing volume constraints are not important in this analysis we arbitrarily choose
for the base case. The results are shown in Table 6.6. To analyse the effect of
the number of customers per trip on the accuracy of the approximation method,
we do the same analysis for case 1.0 where all order sizes have been divided by
three. Those results can be found in Table 6.7.
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Vehicle No. trips No. orders Real costs Approx. costs Percentage
1 3 3 1904 1914 101
2 3 3 2031 2043 101
3 3 3 1892 1882 99
4 3 3 1769 1845 104
5 3 3 1853 1801 97
6 4 4 2376 2369 100
7 4 4 2033 1841 91
8 3 4 1848 1873 101

Table 6.6: Real and approximated costs in case 1.0 for every vehicle.

Vehicle No. trips No. orders Real costs Approx. costs Percentage
1 2 7 1380 1358 98
2 1 3 634 593 94
3 3 10 1951 1915 98
4 3 7 1480 1436 97

Table 6.7: Real and approximated costs in case 1.0 for every vehicle when order
volumes are divided by three.

The results in Table 6.6 indicate that the approximated costs are generally
close to the actual costs. On average, the approximated costs of a trip are 99%
of the real trip costs. This is not very surprising though, because there is only 1
trip out of 27 in which multiple customers are served. This is caused by the fact
that our test cases, originating from the fuels industry, mainly contain orders
of such a size that they cannot be combined with other orders. Table 6.7 shows
that the number of customers per trip indeed has influence on the accuracy
of the cost approximation. In that instance we never over-approximate costs
and the average approximated costs as a percentage of the real costs are 97%.
As described earlier (see Section 4.1.1), although the cost approximation of
assigning a customer to a specific depot may generally be slightly too low if
multiple customers are visited per trip, this may not be a problem as this holds
for every depot.

Costs that are lower than approximated can be justified by the differing costs
per hour, costs per kilometre, and vehicle capacities. For example, if a vehicle
is used which is cheaper per hour and kilometre than the average costs per hour
and kilometre, costs can easily be lower than approximated.

When costs are higher than approximated, this is mainly caused by the
vehicle having to drive from the start location to the depot and back to the end
location or because the vehicle travels a considerable time and distance between
customers in the same trip.

Finally, the average truck utility may result in under-approximated as well
as over-approximated costs. For example, the trips of vehicle 7 have a very
low truck utilisation and this is immediately visible in the accuracy of the ap-
proximated costs. Furthermore, if a customer is served from a specific depot
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we assume that it returns to the same depot. When this does not hold, the
costs may as well be under-approximated or over-approximated depending on
the depot to which it returns.

Exact versus urgency-based assignment

From the test results we see that when we only run a single-depot assignment
method the exact method outperforms the urgency-based heuristics in solving
most problem instances. Especially the urgency-based heuristic with urgency
measure 2 (‘u2’) performs very bad with 18 infeasible routing solutions compared
to 8 with ‘eGAP’. This is probably caused by the fact that urgency measure 2
focuses very much on the degree by which minimum sourcing volume constraints
are satisfied. The downside of this is that when all minimum sourcing volume
constraints are satisfied the heuristic will still not start assigning customers to
cheap depots.

The urgency-based heuristic with urgency measure 1 (‘u1’) performs only
slightly worse than the exact method. In 10 out of 13 instances where ‘eGAP’
found a feasible solution ‘u1’ performs worse. Out of those 10 instances there are
3 instances for which a feasible solution could not be found whereas a feasible
solution was found by routing after ‘eGAP’. Over the other 7 instances where
‘eGAP’ outperformed ‘u1’, the average cost decrease was just 0.6%. Routing
after ‘u1’ never yields a feasible solution when ‘eGAP’ does not. The perfor-
mance decrease of the urgency-based heuristic with urgency measure 1 that
we expected when minimum sourcing volume constraints are included is not
well visible. This may be caused, though, by the high amount of orders with
large volumes due to which the procedure that fixes minimum sourcing volume
constraints does not reveal its weakness.

Note that, although this did not happen in any of the problem instances of
this chapter, it is possible that ‘eGAP’ finds a feasible solution whereas a heuris-
tic approximation (including ‘u1’) does not. For ‘u1’ this happens particularly
often when minimum sourcing volume constraints become more restrictive, be-
cause in the main part of the urgency-based heuristic with urgency measure
1 there is completely no focus on satisfying minimum sourcing volume con-
straints. When minimum sourcing volume constraints are violated after the
urgency-based heuristic terminates the fixing procedure tries to solve this, but
in some cases (especially with high minimum sourcing volumes) it may not be
able to do this.

With respect to the running times of the exact method we see that although
the problem that we solve is NP-hard, the running times are still very acceptable
for test cases of real-world sizes. For only one problem instance the computa-
tion time of the exact method is more than a second. The two urgency-based
heuristics never have running times of a second or longer, so this shows that in
terms of speed they are a good alternative if the exact method had been slow
or becomes slow for even larger instance sizes.
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Effect of clustering customers

To analyse the influence of the number of customers per trip on the performance
of the clustering method, we divide all order sizes of case 6 by three and run all
the variants again (with minimum and maximum sourcing volume constraints
adjusted to the small volumes). We do this for only one case because of the
limited research time and the requirement to set new minimum and maximum
sourcing volume constraints for every case that we run. The choice for case
6 is based on the fact that in the main set of experiments we see remarkable
running times for ‘c+eGAP’. Therefore, we would like to see what the influence
of the number of customers per trip is on those running times and the associated
objective values. The resulting objective values are shown in Table 6.8 and the
running times (rounded to seconds) can be found in Table 6.9.

eGAP c+eGAP
6.1 20915 21425
6.2 21319 22826
6.3 21977 22826

Table 6.8: Objective values for cases 6.1–6.3 with order volumes divided by
three.

eGAP c+eGAP
6.1 2 0
6.2 1 1
6.3 7 2

Table 6.9: Running times (in seconds) of the single-assignment MILP when
using clusters and when using customers, for cases 6.1–6.3 with order volumes
divided by three.

The clustering method is created to ensure short running times but still
yield good results by taking into account more operational information than
the urgency-based heuristics. The main test results indicate that clustering
does still give good results (only 3 out of 21 times the results are worse than
with ‘eGAP’ and 3 times even better than ‘eGAP’) but running times are not
significantly lower than when not clustering customers. This may again be
caused by the large order sizes. They offer very little possibility for clustering
and therefore the size of the MILP’s may not decrease enough to show lower
running times.

In the additional experiment we see that the amount of clusters generated
from 140 customers decreases from 114 (before decreasing order sizes) to 42.
This shows that the order sizes were indeed preventing customers from being
clustered. Table 6.9 also shows that in those cases there is a reasonable change
in running times. Still, for one case the running time was the same as when not
clustering. We are not sure whether this is incidental or indicates that the solver
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does not always recognise the simplification of the problem (in Section 4.1.3 we
did not replace customers by clusters but introduced additional constraints to
make sure complete clusters are assigned).

Note that the fact that larger clusters can be created when customers have
smaller order sizes also has an influence on the objective values. In Table 6.8
we see that the difference between objective values is larger than in our regular
problem instances. In these three instances the clustering of customers increases
costs by 4.5% on average.

6.2.3 Comparison of multi-depot assignment algorithms

The comparison of the total utility found by the exact multi-depot assignment
method and the greedy heuristic is reported in Table 6.10 for the three variants
of case 5. In those results the single-depot assignment method is the urgency-
based heuristic with urgency measure 1. We focus on comparing these values
because in the main test results we see that the objective values after the greedy
heuristic are lower than after the exact method for this single-depot assignment
method applied to the variants of case 5.

u1+gre u1+eMKP
5.1 263 358
5.2 416 447
5.3 207 292

Table 6.10: Total utility of assigning customers to additional depots.

The influence of the number of allowed depots (if a customer is not assigned
to all depots) on the relative performance of multi-depot assignment algorithms
can be found in Table 6.11. There we compare the objective values of ‘u1+gre’
and ‘u1+eMKP’ for the variants of cases 3 and 5 when a customer may only be
assigned to two depots if it is not assigned to all depots. We only do this for
cases 3 and 5 because in the main test results in those particular cases ‘u1+gre’
gives better objective values than ‘u1+eMKP’.

u1+gre u1+eMKP
3.1 28051 28051
3.2 28160 28160
3.3 28546 28749
5.1 37376 37568
5.2 37433 inf
5.3 37439 37762

Table 6.11: Objective values of a number of problem instances for ‘u1+gre’ and
‘u1+eMKP’ when a customer may only be assigned to two depots if it is not
assigned to all depots.
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When we compare the objective values of ‘eGAP+gre’ with ‘eGAP+MKP’
and ‘u1+gre’ with ‘u1+MKP’ we see in the main test results that the exact
multi-depot assignment method is actually not giving consistently better results
than the greedy multi-depot assignment. For example, ‘eGAP+MKP’ only
performs better than ‘eGAP+gre’ in 1 out of 21 cases. On the other hand,
‘eGAP+gre’ gives better results than ‘eGAP+MKP’ in 5 out of 21 cases. In 1
instance a feasible solution was found after ‘eGAP+gre’ where one could not
be found after assigning with ‘eGAP+MKP’. In the other 4 cases, assignment
by ‘eGAP+gre’ resulted in an average cost decrease of 0.6%. An analysis of the
objective values of ‘u1+gre’ versus ‘u1+MKP’ yields approximately the same
results.

Table 6.11 shows that although in cases 5.1–5.3 the results with the greedy
heuristic are better than with the exact multi-depot assignment method, the
total utility that the exact method finds in the multi-depot assignment phase
is higher than that found by the greedy heuristic. This is as expected because
otherwise at least one of our methods would be incorrect. We still see that the
greedy heuristic gives better results in 5 out of 6 selected instances when we only
allow a customer to be assigned to two depots if not assigned to all depots. This
indicates that the number of allowed depots per customer (if not assigned to all
depots) does not change the relative performance of the multi-depot assignment
methods.

The running times of the extended MKP tend to be a couple of seconds for
the larger cases. This is well illustrated by the running times of ‘u1+MKP’
because the urgency-based heuristic takes very little time. Remarkable is the
running time of 16 seconds for problem instance 5.3. Apparently, in that par-
ticular case the solver has a lot of problems with the structure of the problem.
We consider that to be a very incidental observation, though. As expected, the
greedy multi-depot assignment heuristic is very quick (less than one second) for
all problem instances.

The superior performance of the greedy heuristic, as discussed above, may
have two causes. Firstly, it indicates that our utility calculation of assigning a
certain customer to a specific depot (described in Section 4.2.1) may not cor-
rectly represent the real utility of making that additional assignment. Secondly,
in the formulation of our multi-depot assignment problem, the utility of making
an additional assignment does not depend on the number of depots to which a
customer is already assigned. Including this, although we could not find a linear
formulation for this, may ensure that an exact multi-depot assignment method
gives better routing results than a heuristic.

6.2.4 Analysis of variable neighbourhood search heuristics

The first thing that we can conclude from the test results is that there is no
variant of our variable neighbourhood search heuristics that always performs
best. Despite that, there do appear to be some general differences for which we
can try to find an explanation.
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Firstly, the classic VNS performs very poorly compared to the VND heuris-
tics. Especially for the larger cases we see that the classic VNS has more prob-
lems in finding a feasible solution, because for cases 4, 5, 6, and 7 a feasible
solution is never found whereas one of the VND variants always finds a feasible
solution for all but one problem instance (7.2). By looking at the running times
we see that the classic VNS heuristics are always very quick. Especially for
the larger cases in which they do not perform well they are a lot quicker than
the VND heuristics. This is caused by the fact that the classic VNS only tries
the move to one neighbour every time it visits a neighbourhood (so a constant
number) whereas the VND heuristics may try all neighbours in a neighbourhood
(size-dependent). The result is that for larger cases the classic VNS does not
visit enough random neighbours to find one that leads to a feasible solution.

For a better comparison we would therefore increase the number of iterations
of the VNS roughly by five for cases 4 and 5 and by ten for cases 6 and 7. When
we do this we see that running times have increased to values that are on average
equal to the running times of the first improvement VND with basic destruct
and repair procedure, but the classic VNS variants still do not find feasible
solutions for any of the last four test cases. Apparently, even more iterations
are needed to find solutions to problems of larger sizes.

Secondly, we see that generally best improvement VND variants are faster
than first improvement, but also give worse results. For the variants with basic
destruct and repair procedures, first improvement yields 4 infeasible problems
versus 11 infeasible problems when using best improvement. Apparently, despite
the fact that in every neighbourhood all neighbours are evaluated in the best
improvement variants, this is faster as less moves have to be made to achieve
a certain amount of improvement. That best improvement variants give worse
results has been observed by others. Hansen and Mladenović (2006) did more
research on this for the case of solving a TSP with 2-opt moves. They concluded
that the order of neighbours in a neighbourhood plays an important role in this
phenomenon, as well as the type of neighbourhoods.

Lastly, an analysis of the difference between the basic and the extended
destruct and repair procedure shows that the extended destruct and repair pro-
cedure increases running times considerably (running time of ‘fi VND bas’ is on
average 53% of running time of ‘fi VND ext’). The higher running times are a
logical result of the more disrupted solution after running the extended destruct
and repair procedure. The extended destruct and repair procedure results in
slightly better solutions, but in some cases it has a large negative effect on the
costs or results in an infeasible solution. Out of 28 cases ‘fi VND ext’ performs
better than ‘fi VND bas’ in 17 cases with an average cost decrease of 0.8% if
‘fi VND bas’ found a feasible solution (15 cases). On the other hand, ‘fi VND
bas’ found a better solution than ‘fi VND ext’ in 9 cases, consisting of 3 cases
where ‘fi VND ext’ could not find a feasible solution. In the other 6 cases the
cost decrease was on average 0.8%. This behaviour is as expected and shows
that although disrupting the solution more can give better results, it can also
cause too much disruption to be able to find good solutions.
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6.2.5 Deterioration of solution with sourcing volume con-
straints

We can simply combine two previously shown tables to analyse the influence of
the number of depots that a customer can be assigned to if it is not assigned to
all depots on the performance of the cluster first-route second (CFRS) approach.
Table 6.12 shows the objective values of a CFRS approach with ‘u1+gre’. In
the left column a customer is assigned to at most two depots if not assigned to
all depots and in the right column a customer is assigned to at most five depots
if not assigned to all depots.

2 depots 5 depots
3.1 28051 27789
3.2 28160 28160
3.3 28546 28499
5.1 37376 37408
5.2 37433 37433
5.3 37439 37454

Table 6.12: Objective values of CFRS with ‘u1+gre’ when a customer is assigned
to at most two versus five depots when not assigned to all depots.

During this analysis we will compare ‘eGAP+gre’ with ‘fi VND bas’. We
choose for ‘eGAP+gre’ because it finds a feasible solution for 18 out of 21
problem instances and is the best CFRS solution 6 times. The reason for using
‘fi VND bas’ in the comparison is that of all VNS variants it provides the best
trade-off between solution quality and running times and finds feasible solutions
most often.

Of the 21 cases with sourcing volume constraints the one-stage optimisation
approach performs better than the CFRS approach 11 times. Included are
the 3 cases where the CFRS could not find a feasible solution and the one-stage
approach did. In the other 8 cases an average cost decrease of 0.7% was achieved
by using the one-stage approach.

On the other hand, it is noteworthy that in 9 instances the CFRS approach
performed better than the one-stage optimisation. This includes 3 problem
instances for which the one-stage approach could not find a feasible solution
and 6 problem instances in which the CFRS approach found a solution that
is 0.6% cheaper on average. That the CFRS approach outperforms the one-
stage optimisation in those cases is surprising because the one-stage optimisation
should be able to find any solution that the CFRS approach finds. That the
one-stage optimisation procedure does not find a solution equal to or better
than the CFRS approach is probably caused by the one-stage procedure getting
stuck in a local optimum.

Furthermore, from Table 6.12 we can see that only a small deterioration
of the objective value is visible when decreasing the number of allowed depots
that a customer can be assigned to if not assigned to all depots. The objective
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value with at most two depots is on average 100.16% of the objective value with
at most five depots. In 2 of the 6 cases there is even a slight improvement in
objective value when customers can be only be assigned to at most 2 depots
instead of 5 (when not assigned to all depots). Again, this unexpected behaviour
is probably caused by the routing heuristic getting stuck in a local optimum
when customers can be assigned to at most 5 depots if they are not assigned to
all depots.

6.3 Routing with ORTEC Route Scheduling

When we use ORTEC Route Scheduling as routing heuristic in the cluster first-
route second approach, we get the results shown in Table 6.14. If ORTEC
Route Scheduling cannot find a feasible solution it serves as many customers as
possible without violating any constraints. The number of customers that can
be served can be found between parentheses if no feasible solution was found
where all customers are served.

A comparison of the running times of ORTEC Route Scheduling and the
VNS (‘fi VND bas’) for solving base cases can be found in Table 6.13. We
only supply the running times for base cases because we just want to give an
indication of the relative speed.

ORTEC RS VNS Fraction VNS/ORTEC RS
1.0 9 12 1.3
2.0 11 24 2.2
3.0 19 49 2.6
4.0 60 327 5.5
5.0 47 520 11.1
6.0 203 1197 5.9
7.0 324 2275 7.0

Table 6.13: Running times (in seconds) of ORTEC Route Scheduling (ORTEC
RS) and VNS (‘fi VND bas’) when solving base cases.

The results in Table 6.14 (page 52) show similar relative performance of
single-depot and multi-depot assignment methods to that highlighted in the
various subsections of Section 6.2. When we roughly compare the objective
values of ORTEC Route Scheduling and the VNS (‘fi VND bas’) as routing
heuristic in the cluster first-route second approach, we see that the VNS is
competitive with our installation of ORTEC Route Scheduling. The VNS finds
slightly more feasible solutions (131 versus 116). Furthermore, when both rout-
ing heuristics found a feasible solution, the VNS found lower costs in 84 cases
(average cost decrease of 0.9%). On the other hand, in 28 other cases ORTEC
Route Scheduling found lower costs (average cost decrease 0.8%).

That objective values of the VNS are slightly better than ORTEC Route
Scheduling is probably caused by the fact that our installation of ORTEC Route
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Scheduling is not tuned to the structure of the problem instances (as hypoth-
esised in the description in Appendix B). Comparing the running times of
solving the base cases, as shown in Table 6.13, also shows that ORTEC Route
Scheduling is on average five times quicker than the VNS.
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Cluster first-route second
c+eGAP eGAP u1 u2

gre gre eMKP gre eMKP gre
1.1 16511 16194 16511 16194 16194 16515 16190 16190 inf (21) 16125
1.2 16524 16065 16524 16065 16065 16593 16065 16065 inf (22) 16065
1.3 16598 16321 16598 16321 16262 16593 16262 16262 inf (21) 16277
2.1 18738 17642 18626 17701 17701 inf (33) inf (33) inf (33) inf (26) inf (31)
2.2 18487 17618 18487 17618 17618 18506 17645 17567 inf (30) 17511
2.3 18589 17596 18669 17596 17596 18963 17687 17808 inf (28) 17797
3.1 28105 28135 28105 28135 28135 28213 28323 28323 inf (42) 28092
3.2 28342 28633 28342 28633 28633 28458 28530 28530 31088 28325
3.3 28551 28539 28551 28539 28539 28784 28429 28506 31088 28826
4.1 inf (73) inf (71) inf (72) inf (73) inf (73) inf (72) inf (71) inf (71) inf (60) inf (71)
4.2 inf (62) inf (71) inf (63) inf (71) inf (71) inf (62) inf (72) inf (72) inf (62) inf (71)
4.3 inf (72) 41452 inf (70) inf (72) inf (73) inf (70) 41350 inf (69) inf (55) inf (71)
5.1 inf (75) inf (77) 37675 37227 inf (76) inf (74) 37676 38033 inf (67) inf (77)
5.2 inf (66) 37709 inf (65) 37366 37366 inf (65) inf (76) inf (76) inf (65) 37322
5.3 37551 37612 inf (77) 37314 inf (77) inf (76) 37616 38140 inf (65) inf (77)
6.1 inf (132) 62387 inf (133) 61829 61903 inf (130) 62005 62267 inf (130) 62247
6.2 inf (130) 63012 inf (131) 62789 62789 inf (131) 63173 63173 inf (131) 62579
6.3 inf (132) 62653 inf (134) 63026 63081 inf (131) 63275 63659 inf (127) 63156
7.1 inf (147) inf (151) inf (146) inf (149) inf (149) inf (140) inf (151) inf (151) inf (142) inf (152)
7.2 inf (143) 68311 inf (139) 68375 68375 inf (136) inf (149) inf (149) inf (136) 68529
7.3 inf (146) inf (146) inf (147) inf (152) inf (152) inf (144) inf (152) inf (151) inf (142) inf (152)

Table 6.14: Objective value of all problem instances with ORTEC Route Scheduling as routing heuristic.
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Chapter 7

Conclusions

In this chapter we discuss the conclusions that we can draw from our thesis and
describe what can be focussed on in future research. We also give a recommen-
dation to ORTEC about the methods to employ in their routing software.

7.1 Main findings

In this thesis we have come up with methods that enable us to introduce sourcing
volume constraints without adapting a multi-depot vehicle routing heuristic.
To leave as much possibilities as possible open for the routing heuristic, we
have developed a two-stage assignment process in Chapter 4. The first stage
minimises the total approximated cost of assigning every customer to one depot.
The second stage maximises the total utility of assigning customers to additional
depots. The results show that the addition of the second stage in the process
indeed has a positive effect on the routing schedules, because the results with
the second stage included are better in 15 out of 21 cases that we looked at. In
6 of those 15 cases the multi-depot assignment stage even made the difference
between finding a feasible solution by cluster first-route second or not.

7.1.1 Single-depot assignment stage

To minimise the total approximated cost of assigning every customer to one
depot, we have created an exact method that solves a MILP and three heuristics.
Two of the heuristics are urgency-based procedures with different measures of
urgency and the other heuristic clusters customers before solving the MILP
of the exact method. We can conclude from the results that for the quality
of the solutions of the urgency-based heuristic the chosen urgency measure is
very important. The urgency measure that measures the urgency of assigning a
customer to its cheapest depot relative to an average cost depot performs much
better than the measure that looks at the urgency of assigning a customer to
the depot that has the least satisfied minimum sourcing volume constraint for
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the product of which the customer has most demand relative to its cheapest
depot.

Still, routing with the results of the exact method gives a better result than
routing with the results of the urgency-based heuristic with the best urgency
measure in 10 out of 13 instances where a feasible solution was found after
assignment with the exact method. A feasible solution was never found af-
ter assignment by the urgency-based heuristic when one was not found after
assignment with the exact method.

The clustering method approximately gives equivalent results for our prob-
lem instances but does not consistently run quicker than the exact method for
our problem instances. Further research on the clustering method is needed to
effectively use it in practice, because in instances where clustering yields quicker
solutions than the exact method we also see a sharp increase in objective values.
The additional research needed includes evaluation of different clustering crite-
ria and how they perform on problem instances that have smaller order sizes.
For example, we have included in the third merging criterion that customer win-
dows must be such that customers can be helped subsequently, but we do not
check whether there is a vehicle that has enough working time to subsequently
serve the customers.

Critical in the analysis of our single-depot assignment procedures, is that
for our problem instances we do not see running times of the exact method
increase so much that the NP-hard problem could not be solved to optimality
for practical use.

The approximated cost of assigning a customer to a depot that we use in
the heuristics is simple but accurate in our problem instances. Despite that, we
understand that we have made many assumptions in the approximation while
accuracy of the values has influence on both assignment stages. Therefore, when
our methods are applied to another industry (especially if many customers are
visited per trip) we recommend to verify the accuracy and possibly extend the
calculation to include more cost components.

7.1.2 Multi-depot assignment stage

For the maximisation of the total utility of assigning customers to additional
depots, we have developed an exact method that solves a MILP and a heuristic
that orders pairs of customers and depots based on the utility of assigning them
and does the assignment of pairs in a greedy manner. From the test results
we conclude that the heuristic yields better results than the exact method. For
example, when assigning every customer to one depot by means of the exact
single-depot assignment method, the greedy heuristic outperforms the exact
method 5 times whereas the exact method outperforms the greedy heuristic
only 1 time. Furthermore, running times of the exact method clearly grow
as the problem size increases (up to a couple of seconds for our largest cases)
whereas the greedy heuristic practically terminates instantly.

The explanation for the remarkable relative performance can possibly be
found in two places. The first reason is that the the utility of assigning a
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certain customer to a specific depot may need to be calculated differently. After
all, with the exact method we find a much higher total utility than the heuristic
but this is not reflected in the quality of the routing schedules. Secondly, the
multi-depot assignment problem that we solve to assign customers to additional
depots does not take into account the number of depots a customer is assigned
to. Logically, when one customer is assigned to only one depot and the other
is already assigned to a number of depots it is more interesting to assign the
former customer to additional depots than the latter. That we do not include
this consideration in our problem may result in solutions with a lower total
utility finding cheaper routing schedules. To draw any conclusions on what
exactly causes the remarkable behaviour further research is needed especially
on the two above mentioned reasons.

7.1.3 Variable neighbourhood search heuristics

We have constructed six variants of variable neighbourhood search heuristics
to judge how first assigning customers to depots and then solving the vehicle
routing problem performs relative to an approach that does vehicle routing with
the consideration of the sourcing volume constraints integrated. We have cre-
ated a procedure that focusses on finding a feasible initial solution or one that
can be found by a low number of moves to neighbours. Ten neighbourhoods
have been defined to evaluate neighbours that are increasingly different from
the current solution for enough intensification in one iteration. Next to that,
we have proposed a destruct and repair procedure after every iteration to of-
fer diversification in the optimisation procedure. The variants differ in three
aspects:

1. Drawing one random neighbour for every neighbourhood explored (classic
VNS) or possibly exploring a complete neighbourhood before moving to
the next neighbourhood (VND).

2. Choosing the first improvement found or exploring a complete neighbour-
hood and choosing the best improvement.

3. Destructing a fixed share of the solution after every iteration or destructing
an increasing share depending on how long no improving solution has been
found.

Firstly, the classic VNS does not work well for large instances. Apparently,
the intensification in the classic VNS is not good enough to come to a feasible
solution before the destruct and repair procedure disrupts the solution. Sec-
ondly, VND variants that move to the first improving neighbour found in a
neighbourhood generally take longer but find more feasible solutions than the
variants that evaluate all neighbours in a neighbourhood and then move to the
best neighbour (if it is an improvement). Especially the relative quality of the
solutions is remarkable, but as we shortly discussed in Section 6.2 this is proba-
bly caused by both the type of neighbourhoods and the order of the neighbours
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within a neighbourhood. Lastly, the extended destruct and repair procedure
results in longer running times because it destructs a larger part of the solution
and therefore more moves to neighbours will be made within iterations. As hy-
pothesised, the extended destruct and repair procedure also results in cheaper
solutions in 17 cases (average cost decrease 0.8%) but with the basic destruct
and repair procedure a feasible solution was found in 26 out of 28 cases whereas
the extended destruct and repair procedure found a feasible solution in 24 out
of 28 cases. This is probably caused by the destruction of a too large share of
the solution.

Generally, we see that our variable neighbourhood search heuristics perform
fairly well compared to ORTEC Route Scheduling when it is not tuned for
industry-specific characteristics. The objective values are competitive although
running times of our VNS heuristics are much larger. When comparing the
running times of our VNS heuristics with a professional software package, we
of course have to keep in mind a certain factor by which our methods can run
faster if programmed more efficiently.

7.1.4 Performance of cluster first-route second approach

Surprising is how well a cluster first-route second (CFRS) approach performs
compared to a one-stage optimisation approach. In a CFRS approach the rout-
ing possibilities are restricted by the choices made in the phase that assigns a
selected set of customers to depots. In our results we see that in 11 out of 21
problem instances our VND heuristic as one-stage optimisation procedure per-
forms better than CFRS, but in 9 out of 21 problem instances CFRS gives better
results than using our VND heuristics as a one-stage optimisation procedure.

On one hand, the superior performance of the CFRS approach in almost
half the problem instances can be justified by the fact that we use heuristics
to do vehicle routing. When one only uses exact approaches that find the
optimal solution, it is impossible that the CFRS approach finds better solutions.
On the other hand, we can also argue that the competitiveness of the CFRS
approach shows that our assignment algorithms make good choices and highlight
interesting regions of the total feasible region that the one-stage optimisation
procedure has to explore.

7.2 Advice to ORTEC

With the results of this thesis we can assure ORTEC that their software will still
be as competitive as it is now when creating the ability to introduce sourcing
volume constraints by a cluster first-route second approach. Our assignment
methods make sure that in many cases feasible solutions of high quality will
still be found and alternative methods with guaranteed short running times
are available. We especially recommend using the exact single-depot assign-
ment method in combination with the greedy multi-depot assignment heuristic.
Optionally, one can run the urgency-based single-depot assignment heuristic if
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the running time of the exact single-depot method exceeds a certain threshold.
This ensures that the complete assignment approach is applicable in a real-world
environment.

Furthermore, most of the methods that we have developed can still be used if
changes are made to the problem definition. This can be particularly important
for ORTEC because their routing software offers many possible variants to the
problem that we have described. For a list of possible complications that we
could think of and consequences for the methods developed in this thesis we
refer to Appendix C.
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P. Hansen and N. Mladenović. Variable neighborhood search: Principles and
applications. European Journal of Operational Research, 130:449–467, 2001.
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Appendix A

Demand windows

In some applications customers define a demand window [d−np, d
+
np] instead of

a fixed demand dnp, for every product p ∈ P . As the total delivered volume
is not part of the objective function and supplying more leads to longer shifts,
theoretically there is no cost incentive to deviate from the minimum demand
volume d−np for any customer and product.

On the other hand, it is beneficial to deliver a higher volume because the
next delivery can then be further delayed. Therefore, after the routing method
terminates it increases the delivered volumes as much as possible without violat-
ing any time window or vehicle capacity constraints. This makes the assignment
phase more complicated as in that phase we do not yet know what the delivered
volume will be, while that is critical to know if sourcing volume constraints are
satisfied.

A.1 Strategies

How we handle the demand windows has a large influence on the quality of the
solution that we get. When assigning customers to depots we can deal with the
demand windows in two different ways.

The first strategy is to assign customers to depots without narrowing the
demand window [d−np, d

+
np] of any product p ∈ P for any customer n ∈ N . Then,

having found an assignment solution that satisfies the supply windows [q−mp, q
+
mp]

for every product p ∈ P of every depot m ∈ M , the routing heuristic is given
the maximum possible freedom with respect to choosing the actual delivered
volume. Although this approach seems attractive, the demand windows may
reduce the number of possible assignment solutions so much that a very bad
assignment is chosen.

The second strategy is to narrow the demand windows (either slightly or by
choosing exact volumes to deliver). The result will be that more assignment
solutions are feasible and a cheaper one may be chosen. The downside of this
strategy is that the routing heuristic will have to work with the narrower demand

61



windows.
To illustrate the difference, we make use of Figure A.1. There is only one

feasible solution if we want to create an assignment such that supplied volumes
are within the required ranges [q−1 , q

+
1 ] and [q−2 , q

+
2 ] if the maximum possible

volume is supplied to all customers. That solution is to assign customers 1 and
4 to depot 1, and customers 2 and 3 to depot 2. If the distance in the figure
represents the assignment cost, this is one of the worst assignments possible. On
the other hand, many more assignment solutions are feasible if we only require
that the minimum demand values are within the required supply range. The
optimal solution of assigning customers 1 and 2 to depot 1 and customers 3 and
4 to depot 2 is then also possible. In any case where we do not narrow demand
windows, almost all solutions will be infeasible because a solution will either
not be feasible if minimum demand volumes are supplied to all customers or
a solution will not be feasible if maximum demand volumes are supplied to all
customers. For this reason we propose to apply the second strategy and narrow
down demand windows.

d1 d2

c1

c2

c3

c4

q+
1 = 5
q−1 = 1

d+ = 4
d− = 2

d+ = 2
d− = 2

d+ = 2
d− = 1

d+ = 1
d− = 1

q+
2 = 4
q−2 = 1

Figure A.1: Example of how narrowing the demand windows can result in a
much more efficient assignment solution.

When we narrow down the demand windows to get cheaper solutions in the
assignment phase, there are two more decisions to make. First we have to decide
on the fixed demand value that we will temporarily assume to hold for every
customer and product. Secondly, we have to decide on a way to narrow down
the demand windows.

A.2 Temporarily assumed demand

In the discussed example of Figure A.1 the best assignment solution is feasible
if we temporarily assume that every customer is supplied the minimum demand
volume, but not if we assume that every customer is supplied the maximum
allowed demand volume. This is caused by the fact that in the example of
Figure A.1 the maximum supply quantities of depots are the most restricting
aspects. For this reason we recommend to do the assignment based on min-
imum demand volumes in applications where the maximum sourcing volume
constraints of depots are very tight. The other way around, in applications
where the minimum supply quantities of depots heavily restrict the possibili-
ties, we recommend to do the assignment based on maximum demand volumes.
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When running times are not an issue it is of course best to apply both meth-
ods and choose the cheapest solution overall. This is also an option when it is
unclear to the user what constraints are most restricting.

It may be possible that neither using d−np for all n ∈ N , p ∈ P , nor d+
np for all

n ∈ N , p ∈ P will yield feasible solutions, while there may be feasible solution
when choosing values between d−np and d+

np for all n ∈ N , p ∈ P . In such cases
one can solve a decision problem to find out if a problem is feasible at all.

A problem is proved to be infeasible if there does not exist a solution to the
following framed decision problem. All parameters and decision variables other
than dmnp have been described in Section 4.1.1 on page 11. Decision variable
dmnp indicates what volume of product p is delivered to customer n from depot
m, for all m ∈M , n ∈ N , p ∈ P .

Are there values of xmn for all m ∈ M , n ∈ N and dmnp for all m ∈ M ,
n ∈ N , p ∈ P such that

d−npxmn ≤ dmnp ≤ d+
npxmn, ∀m ∈M,p ∈ P, (A.1)

q−mp ≤
∑
n∈N

dmnp ≤ q+
mp, ∀m ∈M,p ∈ P, (A.2)∑

m∈M
xmn = 1, ∀n ∈ N, (A.3)

xmn ≤ edc
mn, ∀m ∈M,n ∈ N, (A.4)

xmn ∈ {0, 1}, ∀m ∈M,n ∈ N. (A.5)

Constraints (A.1) ensure that dmnp = 0 if xmn = 0 and d−np ≤ dmnp ≤ d+
np

otherwise. Set (A.2) forces the total supplied volume of every product at every
depot to be between the given minimum and maximum values. Constraint
sets (A.3)–(A.5) make sure that every customer is assigned to one depot that is
compatible with that customer.

We expect that finding a feasible solution is no problem in practical cases
as the minimum and maximum sourcing volume constraints will not both be
very restricting. Therefore, we only develop algorithms to narrow the demand
windows when either the extreme minimum or extreme maximum demand has
temporarily been assumed.

A.3 Demand window narrowing algorithms

In this section we will assume that we are doing assignment based on mini-
mum demand volumes. After having found an assignment solution with the
assumption that minimum demand will be supplied to all customers, the de-
mand windows may have to be narrowed down to make sure that the routing
heuristic does not generate solutions where maximum sourcing capacities are ex-
ceeded. To this end we develop two examples of ways to do this. Algorithms 7
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and 8 show these examples. On line 5 of both algorithms we sort the assigned
customers based on non-increasing difference between the maximum demand
volume and minimum demand volume, because we first want to narrow down
demand windows of customers with wide windows.

Algorithm 7 Narrowing widest windows first.

Require: Feasible assignment solution based on assumption of minimum de-
mand volume delivered to every customer.

Ensure: New maximum demand volumes d+,new
np ∀n ∈ N to ensure feasible

routing solution.
1: d+,new

np = d+
np for all n ∈ N

2: for all m ∈M do
3: for all p ∈ P do
4: Nm = {n ∈ N |xmn = 1}
5: sort Nm based on non-increasing values of d+

np − d−np
6: while

∑
n∈Nm

d+,new
np > q+

mp do
7: select top customer nc from list Nm

8: set d+,new
np = max(d−np, q

+
mp −

∑
n∈Nm\nc

d+,new
np )

9: put nc on bottom of Nm

10: end while
11: end for
12: end for

Algorithms 7 and 8 differ in that Algorithm 7 narrows individual customer
demand windows to a fixed volume one by one, whereas Algorithm 8 gradually
shrinks the demand windows of all customers simultaneously. Both algorithms
will never shrink demand windows more than needed. In Algorithm 7 this is
ensured by not setting d+,new

np = d−np on line 8 if a higher value already makes
sure maximum supply volumes are never violated. In Algorithm 8 the first
condition on line 9 ensures that decreasing demand window sizes never continues
when it is already impossible to violate maximum supply volumes. Trivially,
the described algorithms can easily be adapted to work for cases where not
maximum demand volumes have to be decreased but minimum demand volumes
have to be increased.
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Algorithm 8 Narrowing demand windows equally.

Require: Feasible assignment solution based on assumption of minimum de-
mand volume delivered to every customer.

Ensure: New maximum demand volumes d+,new
np ∀n ∈ N to ensure feasible

routing solution.
1: d+,new

np = d+
np for all n ∈ N

2: for all m ∈M do
3: for all p ∈ P do
4: Nm = {n ∈ N |xmn = 1}
5: sort Nm based on non-increasing values of d+

np − d−np
6: while

∑
n∈Nm

d+,new
np > q+

mp do
7: index i = 1
8: select i-th customer from Nm

9: while
∑

n∈Nm
d+,new
np > q+

mp and customer has been selected and
d+,new
np − d−np > 0 do

10: d+,new
np = d+,new

np − 1
11: i = i+ 1
12: if i > size(Nm) then
13: no customer can be selected
14: else
15: select i-th customer from Nm

16: end if
17: end while
18: end while
19: end for
20: end for
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Appendix B

ORTEC Route Scheduling

ORTEC Route Scheduling1 is the routing package of ORTEC that is used for
vehicle routing problems in the oil, gas and chemicals industry. The routing
method consists of a part that creates a basic feasible solution and a part that
contains a set of optimisation routines.

The basic feasible solution is built by a construction heuristic. Although
the package allows for the use of a couple of different construction heuristics we
use the well-known insertion heuristic. In every iteration it chooses the most
‘difficult-to-plan’ unassigned customer (based on for example the customer’s
location) as the seed of the new trip. Then it orders all customers based on
non-decreasing distance from the seed and places them one-by-one at the best
location in the trip, until the trip is full.

The second part of the routing method contains a set of optimisation routines
through which is cycled. The optimisation routines includes local search through
a number of different neighbourhoods, a tabu search heuristic, and several other
algorithms. The user can choose which routines have to be included in a cycle
and for how long the algorithm may run. Because there are so many ways to
configure the optimiser, it is possible to carefully tune it to company-specific
problems. This can lead to large improvements in both solution quality and
running time compared to the default configuration.

Because tuning of the optimiser settings is time-intensive and requires the
knowledge of experienced implementation consultants we use a configuration
that only slightly deviates from the default configuration. When evaluating
the results of the experiments, we therefore do not focus on a straightforward
comparison of objective values between the cluster first-route second approach
and the variable neighbourhood search heuristics, but are more interested in
the degradation of the objective values when introducing sourcing volume con-
straints.

1For general information visit the page with ORTEC Transport solutions at http://www.

ortec.com/.
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Appendix C

Variants to problem
definition

In the table below we show a list of possible ways that we could think of to
make the vehicle routing problem that we have considered more complicated.
For every such complication we show the respective consequence for the methods
that we have developed in Chapter 4. Every complication would require a change
to the variable neighbourhood search heuristics developed in Chapter 5.

Complication Consequence
Begin and end location of a vehicle
are different.

No consequence for the developed
methods.

Next to order line volumes and vol-
ume capacity on compartments, the
weight has to be taken into account.

Only invalidates the third merging
criterion of the clustering method
(Section 4.1.3).

Besides a capacity per compartment
every vehicle also has a total capac-
ity that may be lower than the sum
of the compartments.

The approximation of the assign-
ment costs may have to be changed
because it includes average truck ca-
pacity. Furthermore, again it invali-
dates the third merging criterion of
the clustering method.

A vehicle can load at multiple de-
pots per trip or load again before it
is empty.

A detailed description of how this
works with the compatibility be-
tween customers and depots is
needed to know the consequences.

A vehicle can already be loaded at
the start of a shift (preloaded).

Can be modelled by a depot located
at the start location of the vehi-
cle with a minimum and maximum
sourcing constraint of the volume in
the vehicle. That vehicle has to be
the only vehicle that is compatible
with the virtual depot.
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A vehicle has to load for the next
shift.

Can be modelled by an order with
wanted product volumes located at
the end location of the vehicle.

Orders are already manually
planned on a trip before the
optimisation is executed.

In the assignment phase the orders
can be set to only be compatible
with the depot that they are being
served from in the manually created
schedule.

Overtime is allowed. No consequence for the developed
methods.

Loading or unloading times are com-
posed of components that have not
been discussed.

The approximation of the assign-
ment costs has to be changed. Fur-
thermore, this invalidates the third
merging criterion of the clustering
method.

Complete unloading activity should
be between start and end of time
window.

Only affects the third merging crite-
rion of the clustering method.

Costs include components that are
not discussed.

Because of the large variety of pos-
sibilities for cost settings we can-
not define a common consequence.
Generally, it would be preferred to
include the additional cost compo-
nents in the approximation of as-
signment costs, but for fixed costs
for the use of a vehicle this is for
example not possible. This is no
problem as long as those costs are
not a big part of the total solution
costs. If they are a big part of to-
tal costs and are not included in the
cost approximation, the assignment
methods will overvalue the impor-
tance of a difference in other cost
components (e.g. product prices at
depots).
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