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Introduction 

 

This empirical analysis focuses on capacity issues in the aviation sector. Concerning Wittenberg et 

al. (2001), air traffic has been growing tremendously since the 1990’s and is expected to grow at 

even higher rates in the following decades. Not only airports face enormous capacity problems 

which aggravate airport and airspace congestion, also airlines see themselves in a situation where 

they are forced to optimize their airplane capacity due to an increasing number of passengers or 

increasing demand for efficient high-capacity airplanes. At the same time, airplane manufacturers 

like Airbus or Boeing offer an ever-growing airplane capacity. This opens the question, to what 

extent airlines tackle their capacity problem and, if they do, how incumbent airlines react to the 

competitors’ strategy. In particular, this master’s thesis investigates the impact of high capacity 

market entries on the incumbents’ strategy.  

Recent literature points out three key determinants which airlines use to create market power: (1) 

airplane capacity, (2) frequency of flights and (3) airfare. Incumbent airlines are therefore expected 

to adjust these determinants to stabilize their market power when an airline enters the market. 

However, economic theory and evidence from previous research does not indicate a clear 

direction: In response to high capacity market entries, airlines might either decrease their capacity 

due to a possible oversupply of seats, or increase capacity to adapt their strategy to the growing 

market. The direction of an airline’s frequency adjustments remains unclear, as well. Depending on 

capacity choices, airlines might either increase their frequency with lower capacity airplanes or 

decrease frequency using high capacity ones. Whereas some evidence indicates that a high 

frequency of flights results in a crucial market advantage, the increasing need for efficiency through 

high capacity airplanes should as well be taken into consideration. In terms of airfare, airlines might 

on the one hand follow economic theory and enter a price competition when an additional airline 

enters the market. On the other hand, previous literature finds that reductions in airfare might 

lead to profit cannibalization with an overall negative outcome for the airline. The impact on these 

three determinants will here be investigated in three separate hypotheses.  
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This study is based on an empirical analysis using a dynamic panel data model, the Arellano-Bond 

estimation. The dataset consists of quarterly observations in the U.S. aviation sector in the period 

from 1993 to 2013.  

In the following chapter, I am going to provide a literature review on how capacity problems in 

general have been investigated in previous literature, followed by a deeper analysis of the 

literature on aircraft capacity and its consequences. Three hypotheses are constructed in this 

section. The third and fourth part contains methodology and dataset description. The fifth and 

following parts present results, a conclusion and comments on limitations & future research. 
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Literature Review & Hypotheses 

 

One of the first to examine capacity was Manne (1961). In his paper he analyzes the optimal degree 

of excess capacity for facilities such as steel plants or superhighways with respect to economies of 

scale and opportunity costs for unsatisfied demand. He develops a model to adjust capacity to the 

actual demand of steel plants or superhighways to optimize utility. The model’s main target is to 

avoid suboptimal capacity planning which leads to excess capacity or supply shortages. Manne 

develops a model considering businesses with only one product. Ho & Fang (2013) add to Manne’s 

model by taking into account several products within a single company. They state that 

manufacturers have to allocate their capacity to individual product lines to meet the market’s 

demand and maximize profits. In their model, they assume that the demand for products is 

uncertain. The model’s goal is therefore to avoid both excess and shortage of products. 

As it is the case in practice, Ho & Fang take finite capacity, substitution effects, as well as holding 

and shortage costs into consideration. Due to finite capacity, manufacturers cannot simply increase 

a product line’s capacity until it hits the demand. While increasing the capacity on one product 

line, the capacities of other product lines need to be decreased simultaneously. Additionally, they 

mention that substitution effects among product lines might lead to lower demand for one product 

while increasing the supply for the substitute good. This in turn makes capacity adjustments for 

both products necessary. 

Ho & Fang develop a model that can be used as a tool to assist managers allocating finite capacity 

to product lines. However, by adjusting capacity between product lines, several assumptions 

concerning the flexibility of capacity are made. The most important one is that investments are 

reversible. He & Pindyck (1992) analyze the capacity choice problem for irreversible investments. 

They find that the irreversibility of investments in combination with uncertainty in demand has a 

significant impact on the capacity choice of companies. In case investments are irreversible and 

demand is uncertain, the capital invested in the firm’s capacity tends to be lower as compared to 

reversible investments. At the same time, the firm value increases since uncertain demand and the 

possibility to invest in additional capacity create valuable options. It is important to note that He & 
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Pindyck assume stepless investments in their model, ignoring the existence of fixed costs or lump 

sum investments. This opens the question whether fixed costs should be taken into account while 

determining the optimal capacity level of investments. 

According to Pan (2007) the cost structure in the hotel business consists of large fixed parts and 

low variable ones. For investments in hotel facilities and the determination of hotel capacity, the 

existence of fixed costs plays a significant role. Pan finds that the amount of fixed costs of 

investments increases with the capacity of investments. While this seems to be obvious for the 

hotel sector or other businesses with high initial investment costs, this might not hold for sectors, 

characterized by comparably low initial investment costs. Pan’s model shows that an increase in 

hotel capacity has a negative impact on hotel room rates, especially in the low season. This can be 

explained by the simple economic principle that an oversupply of goods decreases price levels and 

- vice versa - a scarcity of goods and services increases price levels. 

Since the volume of goods and services on the market appears to be mainly determined by the 

capacity which firms have to produce goods and offer services, the question arises whether a firm’s 

capacity influences the prices through possible over- and undersupply. Lízal & Tashpulatov (2014) 

investigate to what extent capacity cutting strategies for the electricity market in England and 

Wales are utilized to decrease the supply and increase the overall price level. They find empirical 

evidence that in some parts of the market this type of tacit collusion takes place. Their findings go 

in line with Sweeting (2007), observing a divestiture of capacity to increase the overall price level 

in the United Kingdom. His study refers to the case of National Power and PowerGen (today E.On), 

two electricity providers in the UK. 

Because companies are able to influence prices and market volume through the level of investment 

in capacity, it seems obvious that capacity adjustments can be utilized as a strategic means to 

maintain market power. In other words, capacity could be used ex ante to deter new firms from 

entering the market. Spence (1977) mentions two strategies to make a new entrant unprofitable: 

(1) as mentioned above, incumbent companies could increase capacity to that level, at which prices 

are too low for young firms to enter. Due to high investment costs and a low marginal yield, it 

might not be profitable for small companies to enter the market. (2) By creating excess capacity 

which makes additional market supply needless, incumbent firms could create an entry barrier for 
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new companies. These strategies have also been subject for investigation by Spulber (1981) and 

Lieberman (1987). Spulber states that two crucial conceptions to deter entries have been made. 

Following the Sylos Postulate, firms constantly offer a high output on the market to deter entry. 

The Excess Capacity Hypothesis, however, states that a high level of unused capacity built up by 

incumbent firms, deters the entry of new competitors. Lieberman finds that the theoretical 

conception of excess capacity to deter entry does indeed work, though a lack of evidence suggests 

that this ex ante strategy is not very common in practice. He mentions that unused capacity is 

rather built up to compensate demand volatility or has been the result of investment lumpiness.  

So far, this thesis provides a brief literature review of how capacity is examined as a tool for 

strategic ex ante decisions. The majority of researchers develops a model which aims to maximize 

the incumbents’ utility and maintain the market power by determining the optimal level of 

capacity. High capacity - used or unused - seems to be a major competitive advantage which 

companies use to gain or protect their current market share. However, a strategic realignment can 

also be the result of changes in a market’s capacity. In the following, I am going to investigate the 

determinants of an airline’s strategy and how these are influenced by changes in capacity. 

Recent studies in the aviation sector detect three main determinants airlines use to gain and hold 

their market share: Wei & Hansen (2007) mention that two main determinants are the aircraft size 

and the frequency of flights on a given route. Brons et al. (2002) among others state that the airfare 

is a crucial determinant for the demand of flights. The latter begs the question whether airlines 

change their prices in response to an increased supply of goods and services in the market. 

Following basic economic principles, a good’s price increases when the supply of that good 

decreases. This principle might also hold for an increasing capacity in the aviation sector. Malighetti 

et al. (2009) analyze the relation of seat supply to ticket prices by studying a Ryanair case. They 

find that airfares tend to decrease as the number of seats which an airline offers increases. Vice 

versa, ticket prices tend to increase over time since tickets are being sold and the available capacity 

in form of free seats decreases. Malighetti et al. derive a price function which features two main 

premises: An airline’s capacity is restricted and tickets are “perishable”. Because airlines cannot 

produce infinite seats, an airplane might be booked out at some point. The scarcity of seats in 

combination with the travelers’ demand for flights influences the ticket price. Malighetti et al. state 
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that airlines make use of dynamic pricing to sell flight tickets for the maximum price under the 

premise to sell all tickets available. Using this concept, airlines do not determine a booking policy 

when the flight is scheduled but observe the state of ticket bookings over time to decide on the 

price of a ticket when the request arrives (see Pak & Piersma, 2002).  Like Malighetti et al. mention, 

ticket prices tend to increase until the very last minute before the flight. According to them, the 

price trend closely resembles a hyperbola. Furthermore, they state that airplane seats are 

perishable, meaning that the ticket’s value is zero after the airplane takes off. The airline’s goal is 

therefore to sell all tickets before the tickets expire. In particular for low cost carriers this is a crucial 

goal because their success is based on a sensitive combination of load factors, ticket prices and 

operating costs. Additionally, they mention that after scheduling the flight, marginal costs in 

relation to the number of passengers are practically zero. Thus, ticket prices represent an 

important revenue contribution. This goes in line with Alderighi et al. (2012). They investigate yield 

management concepts of airlines and find that demand fluctuations, uncertainty about the 

travelers’ departure date and consumer heterogeneity in combination with the restriction of 

limited capacity and the perishable nature of seats make yield management a complex decision. In 

general, they distinguish between two main yield management concepts. The first one is the 

traditional yield management concept used by full service carriers. The second concept is a down-

graded version, the simplified yield management, which is being used by low cost carriers. Whereas 

the traditional management includes numerous regulating screws to segment the market by 

product differentiation, distribution or extra services next to the time of booking and the choice of 

flight, the simplified management just features the time of booking and the choice of flight. Low 

cost carrier flights are therefore not-differentiated products which do not come with extras like 

e.g. drinks & food during the flight or frequent traveler programs.  

By investigating the effect of additional competition in the market on price determination, they 

find that in the full-service-carrier segment, business fares are more sensitive to additional 

competition as compared to fares of leisure flights. Airfares for leisure flights react less sensitive 

to increased competition in the market. Additional competition by a low cost carrier, however, has 

nearly the same effect on leisure and business airfares. This is strongly contrastive to the finding 
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of Malighetti et al. (2009) who find that the low cost carrier market is a separate market which 

does not compete with the full-service-market.  

Recent literature on revenue management has shown that airlines tend to increase prices as the 

supply of seats decreases. Vice versa, prices tend to increase as additional seats are offered on the 

market. Thus, a possible inference might be that prices decrease as new airlines enter the market 

and offer additional flights. Joskow et al. (1994) investigate empirically the impact of market entries 

on incumbents’ prices in the market. Using a dataset with 40 airlines in the US airline market for 

the years 1985 - 1987, they find that a market entry lets incumbents decrease airfares, whereas a 

market exit in turn increases the price level on the market. Since the airline deregulation act in 

1978 in the USA, the market is open for a price competition which airlines increasingly face to gain 

costumers. Additionally, following Garrow et al. (2006), the availability of online search engines for 

flights even increased the consumer’s price awareness. Nowadays, the comparison of ticket prices 

and booking of the cheapest flights, have become much easier through the availability of certain 

information on the internet. Flight search engines, therefore, increase the customers’ awareness 

of prices and create greater competition among airlines on one market.  

Considering the facts mentioned above, it seems obvious that airlines decrease prices in reaction 

to capacity increases through market entries. The entry via a high capacity airplane might even 

amplify the incumbents’ reaction because the entering airline is expected to attract more 

passengers than usual airlines and to realize crucial cost advantages through economies of scale. 

Based on this, I am going to define the following hypothesis: 

Hypothesis 1: The market entry of an airline via a high capacity plane lowers the incumbents’ 

airfares on the market. 

Following the hypothesis above, entering high capacity airlines could lead incumbents to decrease 

airfares on their route. Carpenter & Hanssens (1994) examine the impact of airfares on additional 

profit and market size by considering the example of the French airline Union des Transports 

Aeriens (UTA). They find that great decreases in airfares can increase the market size, whereas low 

decreases do not increase the market size but rather cannibalize profits. Great discounts might 

increase the market size because, first, lower airfares attract new customers and second, 
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passengers travel more often. Low discounts do not necessarily attract new customers but let 

existing customers travel at cheaper rates which results in lower profits. These findings go in line 

with the previously mentioned study of Joskow et al. who find evidence that, in case of a market 

entry, incumbents decrease their prices significantly. Additionally they find that airlines increase 

the number of flights which, in effect, increases the number of passengers transported. In case of 

a market exit, the effect turns the other way around, correspondingly. A market exit considerably 

increases fares and decreases output. 

Therefore, the investigation how incumbents strategically react to the introduction of larger 

airplanes to the market in terms of airplane size stands to reason. Considering Carpenter & 

Hanssens’ findings, several options seem to be plausible: Because of an increase in demand, 

airlines could simply offer more flights. Alternatively, due to cost efficiency, an airline could have 

an incentive to use larger airplanes without changing the frequency. This way the incumbent airline 

could keep up with the competitors in the market and realize a costs advantage through economies 

of scale. On the other side, because incumbent airlines might fear a market oversupply, they could 

react by decreasing seat capacity of their aircrafts on that route, or alternatively decrease 

frequency. Furthermore, to build up excess capacity might not be an optimal strategy in the 

aviation sector since this business is too cost-sensitive.  

Because this theory is yet to be investigated in the latest research, I will examine the impact of a 

market entry via high capacity airplanes on the incumbents’ capacity. More specifically, I will 

investigate whether incumbents follow the strategy of using airplanes with a higher capacity to 

realize a competitive advantage or if they react with a decreasing capacity due to the fear of 

oversupplying the market. Following Carpenter & Hanssens’ statement that airlines might adapt 

their strategy to increasing demand of seats, I am going to hypothesize the following:  

Hypothesis 2: The market entry of an airline with a high capacity airplane will increase the 

competitors’ average aircraft size in the market. 

Like mentioned above, to an increasing demand of flights on a route, an airline could also increase 

the number of flights while keeping the aircraft size constant. Button & Drexler (2005) and Wei & 

Hansen (2007) investigate the S-curve effect of service frequency and capacity for the airline sector. 
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According to this, an airline can increase its market share at a certain point of frequency 

overproportionally by increasing the number of flights. Button & Drexler (2005) refute the 

existence of an S-curved function for service frequency on market share; instead they find a linear 

relation between the service frequency and market share which means that additional flights do 

not increase market share overproportionally. Moreover, they observe that in recent years, airlines 

tend to increase their airplane capacity rather than the frequency of flights. However, Wei & 

Hansen (2007) support the existence of an S-curved effect. They build a nested logit model 

including seat availability, fare, an airline’s market share and the total air travel demand for a 

duopoly market. In their study they find that airlines can gain higher turnovers by an increase in 

service frequency at a certain level as compared to an increase in aircraft’s size. Furthermore, while 

entering airlines try to realize costs advantages through economies of scale, it might be the case 

that incumbent airlines strive to maintain market power by creating a Unique Selling Proposition 

through an increased number of flights.1 Additionally, compared to investments in larger aircrafts, 

an increase in frequency turns out to be the more reversible investment decision which includes 

the option to downsize capacity easier. 

To examine the effect of the introduction of larger airplanes on the incumbents’ frequency of 

flights, I will investigate the following hypothesis: 

Hypothesis 3: The market entry of an airline with a larger capacity airplane will increase the 

competitors’ frequency of flights on the market. 

In addition to afore mentioned explanations of why airlines might change their airplane capacity 

and airfare, there might be more exogenous impacts. For instance, Bazargan & Hartman (2012) 

derive a model to optimize aircraft fleet management and replacement. They find that around 70% 

of an airlines’ cost components belong to the fleet’s operation.2 In its annual report of FY2013, 

American Airlines states that 35.6% of the total mainline operating expenses were expenses for 

“aircraft fuel and related taxes”.  This suggests that the fuel price might impact the aircraft size 

externally. Morell & Swan (2006) examine to what extent airlines are affected by jet fuel prices. 

                                                           
1 For further information see Reeves & Rosser (1961) 
2 Although Bazargan & Hartman derive a complex model, their paper does unfortunately not exemplify the single 
cost components of operational costs. 
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They state that at a price of $25 per barrel, the fuel price makes out 15% of an airline’s total costs. 

Figure 1 impressively shows a tremendous increase in jet fuel price starting in year 2004 with a 

peak during the financial crisis in 2008. Therefore, it seems obvious that the increasing jet fuel price 

as a major cost driver urges airlines to organize their operations in a more efficient way. Givoni & 

Rietveld (2010) state that a high capacity aircraft’s performance with respect to energy usage is 

more efficient as compared to low capacity airplanes. Because fuel prices tend to increase over 

time, airlines would have an incentive to invest in larger airplanes. Since an increase in jet fuel 

seems to affect all market participants, I am going to control for it while running the empirical 

analysis. At this, the jet fuel price is the same for all states in the USA. Though, the increase in fuel 

prices could also be caused by an increase in inflation. The Consumer Price Index for All Urban 

Consumer (CPI-U), compiled by the United States Bureau of Labor Statistics (BLS) is, among others, 

based on the oil price and ticket prices for flights.3 To account for inflation, I am going to include 

quarterly data of the CPI-U from 1993 to 2013.  

A second cost determining factor could be landing fees which are paid to cover an airport’s direct 

costs like e.g. tracking the flights, offering a parking slot and handling passengers and luggage. Allen 

(1994) and Wei (2006) find that landing fee policies affect airlines and the aircraft type they use. 

They mention that with an increase in fees, larger aircrafts will more likely be scheduled as 

compared to smaller aircrafts. At first, it seems obvious that an increase in fees per landing 

influences an airline’s choice of aircraft. However, up to date many airports charge airlines by 

airplane weight.4 For instance, at the Los Angeles International Airport (LAX), passenger aircrafts 

with a maximum gross landing weight (MGLW) of more than 25,000 lbs. have to pay $3.78 per 

1,000 lbs. of the MGLW.5 Other airports charge airlines by the actual landed weight or the starting 

weight.6 Like Allen (1994) finds out, a pricing policy based on an aircraft’s weight does not 

encourage airlines to increase aircraft size. To create the incentive for airlines to actually use larger 

                                                           
3 http://www.bls.gov/cpi/cpid1410.pdf 
4 Airports which charge landing fees based on the Maximum Growth Landing Weight are for instance Hartsfield-
Jackson Atlanta International, Boston Logan International, Chicago Midway International, Miami International, 
Washington Dulles International or Los Angeles International. 
5 See also: Los Angeles World Airports (2013), Rules and Regulations July 2013, Section Airport operating permits 
and fees 
6 See also Morrison (1982) for an argumentation whether the landing or starting weight should be taken into 
account.  
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aircrafts, one would need a fixed price per landing which would, in turn, decrease the landing fees 

per passenger when the number of passengers on a flight increases. From this point of view one 

can consider that landing fees do not have a direct impact on the aircraft’s size. 

Figure 1 - Jet fuel price 1993 - 2014 on a quarterly basis - source:  
http://www.eia.gov/dnav/pet/hist/ 

 

The distance, however, could have a significant impact on the airplanes size: Givoni & Rietveld 

(2009) find that aircraft size increases with the distance to the destination airport. On the one side, 

the flight range could be a significant competitive advantage for airlines. On the other side, defining 

markets as airport pairs assumes that the distance between two airports is the same for all market 

participants. A greater feasible range of an aircraft would therefore not be a competitive advantage 

for that market. 

A further determinant which influences strategic focus is the question whether there is a low cost 

carrier entering the market or already present in the market. Goolsbee & Syverson (2008) 
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investigate the impact of a possible entry threat of a low cost carrier (LCC) on the competitors’ 

fares. They do so by looking at Southwest Airlines which might possibly enter certain markets. 

Goolsbee & Syverson find that solely the threat of Southwest Airlines entering the market, makes 

market participants preemptively lower their fares. Furthermore, they state that airlines increase 

their load factor (meaning the proportion of seats filled with passengers to the seats available) with 

an upcoming entry threat. This indicates that the entry-threat or the existence of a low cost carrier 

drives airlines to work more efficiently. Goolsbee & Syverson cannot find evidence for an impact 

on airplane capacity or the number of flights scheduled. However, they state that they cannot rule 

out a change in capacity due to missing significance on this estimation. Though, Givoni & Rietveld 

(2009) find that in markets where low cost airlines are present, the average aircrafts’ size is 14% 

larger as compared to markets without low cost carriers. This can be explained by two reasons: 

First, low cost carriers use economy-only airplanes, enabling them to place more seats per aircraft. 

Second, the focus of low cost carriers is on a price competition rather than a competition based on 

frequency. Therefore those airlines prefer larger aircrafts with a greater efficiency over a high 

frequency supply. 
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Methodology 

 

Purpose of this study is to investigate the entry-effect of high capacity airplanes on the strategy of 

incumbent firms in the market. Previous literature indicates that airlines use three main 

determinants to adjust their strategy and maintain their market share: The airfare on a route, the 

frequency of flights and the capacity of aircrafts. To each determinant I define a hypothesis to 

investigate the impact of a market entry with a high capacity airplane on that corresponding 

determinant. 

In hypothesis 1, I will examine the impact of high capacity entries on airfare. The expected 

contribution of the main independent variable is negative. Hypothesis 2 examines to what extent 

the incumbents’ aircraft capacity is influenced by high capacity firms entering the market. Because 

airlines can realize cost advantages through economies of scale, the expected sign is positive. This 

means that in reaction to a high capacity market entry, incumbents would react by increasing their 

aircraft capacity. Hypothesis 3 examines the impact of an entrant’s airplane capacity on the 

incumbent’s frequency of flights. Recent research finds that frequency is a main factor to maintain 

market power in a market. Therefore, the expected sign in this analysis is positive, meaning that 

airlines react with an increased frequency to high capacity entries.  

For this analysis, the advantage of panel data stands to reason because the strategic positioning of 

airlines is a long term decision that can only be observed by including a time-series. This 

prerequisite and the need to include more than a single market in this study to increase the 

meaningfulness, make panel data inevitable. Verbeek (2013) states that repeated observations of 

the same units over time enable researchers to generate more realistic models as compared to 

single cross-section or time-series models. Additionally, he mentions that economists can 

investigate changes on an individual level by using panel data. This enables the usage of different 

individual markets over time in this study.  

Because strategy adjustments and investments in new airplanes in particular are expected to be 

long term decisions which require a profound analysis in advance, immediate adjustments to a 

competitor’s high capacity entry are unlikely to be observed. Therefore, all independent and 
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control variables in the panel data models are lagged by one quarter. Furthermore, because entry 

effects do not only affect the competitors’ strategy in the moment of entry but rather influence 

their strategy in the long term, one would expect dynamic effects taking place. Beck & Katz (2011) 

discuss several options to model dynamic time-series cross section data. To include the dependent 

variable as a lagged instrumental variable is one option which is featured by the Arellano-Bond-

estimation. This estimator uses the Generalized Method of Moments (GMM)7 to include the 

dependent variable efficiently as a lagged instrumental variable. A common alternative method is 

the two-stage least squares method (2SLS). Though, in comparison to the GMM, the 2SLS entails a 

trade-off between the lag distance and the number of time periods used in the dataset. The 

consequence of an additional lag period is the loss of one usable period in the dataset (Roodman, 

2009b). By using the GMM, missing observations are filled with zeros. Roodman (2009a) states 

that the Arellano-Bond estimator is particularly designed for “small T, large N” datasets, meaning 

panel data which consists of observations over a few periods in numerous panels, since no periods 

are lost by applying the GMM. Furthermore, he mentions that the Arellano-Bond estimator 

estimates a linear functional relationship taking into account independent variables which are not 

strictly exogenous and feature fixed individual effects. Using the Arellano-Bond estimator, panel-

specific heterogeneity will usually be removed by the first differentiation of the regression 

equation, so-called difference GMM. For unbalanced panel data this entails the problem that gaps 

in panels will be magnified through the differentiation. Based on the work of Arellano & Bond 

(1991), Blundell & Bond (1998) enhance the difference GMM by developing a system GMM which 

assumes that the first differences of the instrument variables are uncorrelated with fixed effects. 

Bun & Windmeijer (2010) mention that the system GMM estimates moment conditions for first 

differences and moment conditions for levels simultaneously. According to Roodman (2009a), this 

allows the model to use more instruments to increase its efficiency. Therefore, in this study I am 

going to regress an Arellano-Bond model with system GMM. The maximum number of lags being 

used as instruments for the dependent variable is set to four periods.  The general Arellano-Bond 

equation is the following: 

                                                           
7  See also Hansen, L. P. (1982) - Large Sample Properties of Generalized Method of Moments Estimators, 
Econometrica, Vol. 50, No. 4, pages 1029-1054 
 



16 
 

𝑦𝑖𝑡 =  𝛼0 + ß ∗ 𝑦𝑖,𝑡−1 + 𝛿𝑖𝑡 ∗  𝑥𝑖𝑡 + [… ] + 𝑢𝑖 

where 𝑦𝑖𝑡 is the dependent variable and 𝑦𝑖,𝑡−1 the lagged dependent variable included as an 

independent variable. The first differentiation is constructed as follows: 

∆𝑦𝑖𝑡 =  ß ∗ ∆𝑦𝑖 𝑡−1 + 𝛿𝑖𝑡 ∗  ∆𝑥𝑖𝑡 + [… ] + ∆𝑢𝑖 

The model is tested for autocorrelation in first differenced errors and the goodness of fit. The latter 

is tested by using the Wald Chi-Square statistic. The existence of autocorrelation in first differenced 

errors is tested by the Arellano-Bond test for autocorrelation. By means of the Sargan Test one can 

test whether the model might be over-identified. However, Chao et al. (2014) state that the Sargan 

test is not robust to a large number of instruments. Additionally, Roodman (2009b) finds that an 

instrument count above the ideal does not make the GMM inconsistent. Chao et al. propose an 

alternative testing procedure which is robust to numerous instruments and heteroskedasticity. 

Though, this recent test did not find recognition in latest research and is not featured by STATA 

packages, yet.  

In this analysis, I am going to take markets as the individual level. Following Brueckner (2013), I 

define an airport pair as a market. All observations on individual level in the dataset are observed 

on a market-time-level which is the prerequisite for the use of panel data. The initial dataset has 

been collected on a time-market-airline-level. Therefore, I prepare the dataset for the use of panel 

data. For instance, the variable for passenger airfare on a certain route, has been observed for 

individual markets over time and for all airlines in the market. By preparing the dataset for panel 

data, it will be collapsed to a market-time-level by taking the mean of the airfares offered by the 

individual airlines. In contrast to that, market size will be derived by the sum of the number of 

passengers transported by the corresponding airlines. Furthermore, individual-independent data 

like, for instance, the consumer price index, GDP or jet fuel price, were initially observed for all 

markets per quarter. In these cases there was no necessity to collapse data. Because this analysis 

is based on a dataset from 1993 to 2013, time fixed effects are expected to play a role. All 

regressions will therefore take time fixed effects into account by including time dummies. 

The main independent variables in the analyses are related to high capacity aircrafts. Due to the 

non-existence of literature on this, I am going to define an aircraft to be large if the aircraft’s 
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capacity is at least 1.5 times larger than the market average. Capacity in turn is measured by seats 

available per flight per aircraft. Subsequent to the panel data regression, I am going to conduct a 

sensitivity analysis by defining airplanes to be large if they are 1.25 and 1.75 times larger than the 

market average. These results will be compared with the base model.  

To account for high capacity airplanes in the regression analysis, the dummy variable market_entry 

will turn one if there is a market entry of a high capacity airplane in that particular market for that 

particular quarter. This dummy will only turn one if the entering airline did not offer flights on the 

market in any period before. To control for ticket prices on a specific route, the variable fare_mean 

indicates the average ticket price on a specific route per quarter. In markets with only one airline, 

fare_mean represents the average ticket price within this quarter. In case two or more airlines 

offer flights on this route, fare_mean represents the average of all airfares of all airlines. The 

number of carriers competing in the market and the Herfindahl-Hirschmann-index (HHI) on a route 

are likewise crucial control variables included in this analysis. The HHI is a measure for market 

concentration and increases when a great proportion of market power is bundled among one or a 

few airlines (see also Rhoades, 1993). Connected to the market share of the participants, it seems 

reasonable to control for the number of airlines in a market. The control variable n_carr counts the 

number of market participants for the market observed. The use of this variable stands to reason 

because Bresnahan & Reiss (1991) find that the influence of the competitive conduct is the greatest 

if there are already three to five participants in the market. Starting with the sixth market 

participant, the strength of the influence on the competitive conduct declines. The HHI and the 

number of airlines competing in the market are expected to be negatively correlated. Because in 

concentrated markets the number of competitors tends to be lower as compared to less 

concentrated markets, the entry effect of an additional airline is expected to be a greater. 

However, in less concentrated markets one would expect this effect to be weaker. Furthermore, 

the control variable lcc_on_route indicates if there is a low cost carrier in that particular market. 

Since Givoni & Rietveld (2009) find that in markets where low cost airlines are present, the average 

aircrafts’ size is 14% larger as compared to markets without low cost carriers, it seems reasonable 

to control for it. In case there is at least one low cost carrier present, the dummy variable turns 

one and zero otherwise. 
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Since external impacts might have a significant influence on the overall aviation market, I include 

the Gross Domestic Product (GDP) as well as jet fuel price in a preliminary analysis. The natural 

logarithm of the GDP rather than the absolute value will be taken into consideration, because the 

change in GDP is of particular importance. Due to the huge impact of the jet fuel price on the 

profits of airlines (see annual report of FY2013, American Airlines), price changes are expected to 

have a significant impact on the airlines’ strategy. The tremendous increase in jet fuel price in 

recent years (see figure 1) gives another reason to control for it. Analogous to GDP, the jet fuel 

price will mainly be included via the natural logarithm. Though, the use of GDP and jet fuel price 

might entail two problems: First, GDP and jet fuel price are expected to be positively correlated. 

Second, the tremendous increase in GDP and jet fuel price might intrinsically be meaningful, but 

could also be caused by inflation. To take these two concerns into account, the GDP and jet fuel 

price will in a second analysis be replaced by the consumer price index for all urban consumers (CPI-

U). Like mentioned in the literature review, the general concept of landing fees might have an 

impact on an airline’s choice of aircraft size. Nevertheless, because the MGLW increases almost 

proportionally with the number of seats, airports do not create an incentive to use larger airplanes. 

Figure A1 shows the relation of the number of seats per aircraft on the maximum gross landing 

weight. Included are all major passenger aircrafts being offered by Boeing Inc. and Airbus S.A.S. 

In hypothesis H1, I am going to investigate the impact of a market entry via a high capacity airplane 

on the incumbents’ airfare. The dependent variable is the quarterly average airfare of all airlines 

in the market excluding the entering airline. Because less the absolute value than the change in 

airfare is of particular interest, I am going to estimate the natural logarithm. Since the entry’s 

impact is expected to be delayed, I am going to lag the independent variables by one quarter. The 

main independent variable is the dummy variable entry_large which turns one if there is a high 

capacity entry in that market for that period and zero otherwise. 

In the regression for hypothesis 1, I am going to control for several factors: The variable herf_route 

is the Herfindahl index on the individual route and controls for market concentration, whereby 

 Herfindahl index = {𝑥 ∈ ℝ |0 ≤  𝑥 ≤  1}. To account for the total number of airlines in the 

market, I am going to include n_carr in the regression. With an increasing number of competitors, 

the actual impact of an airline entering the market is expected to decline. The dummy variable 
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lcc_on_route indicates whether there is a low cost carrier existent in the market. The variable CPIU 

is a control variable for inflation. 

The regression is run as a base model, as well as with several specifications to test the robustness. 

The base model uses the Arellano-Bond estimation including all control variables mentioned. As a 

robustness check, I am going to test several combinations of control variables (see for example 

table 4). 

Since market concentration might have a significant impact on market response to an airline’s 

entry, I am also going to conduct the regression, first, with a dataset only consisting of observations 

in markets with a high market concentration and second, with a low market concentration. The 

threshold is a Herfindahl index of 0.7. The same procedure is applied for the number of participants 

in the market. Since Bresnahan & Reiss (1991) find out that the sixth market participant will have 

a weaker impact on the market conduct as compared to the market participants entering before, 

I am going to run the analysis first, only for observations with less than six market participants and 

second, with six or more market participants. Additionally, since the terroristic attacks of the 11th 

of September in 2001 put some extraordinary conditions on the market, it might not be reasonable 

to include observations after the 11th of September to draw conclusions on the regular behavior 

of market participants in the aviation sector. To account for that, I am taking the base model and 

estimating the results with the dataset while excluding all observations after the second quarter of 

year 2001. 

The estimated base model equation is as follows: 

𝑎𝑣𝑓𝑎𝑟𝑒𝑙𝑜𝑔𝑖𝑡 =  𝛼 ∗ 𝑎𝑣𝑓𝑎𝑟𝑒𝑙𝑜𝑔𝑖,𝑡−1 +  ß0 +  ß1 ∗ 𝑒𝑛𝑡𝑟𝑦𝑙𝑎𝑟𝑔𝑒𝑖,𝑡−1 + ß2 ∗ ℎ𝑒𝑟𝑓𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 + ß3

∗ 𝑛𝑐𝑎𝑟𝑟𝑖,𝑡−1 + ß4 ∗ 𝑙𝑐𝑐𝑜𝑛𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 + ß5 ∗ 𝐶𝑃𝐼𝑖,𝑡−1 + 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑡 + 𝑢𝑖𝑡  

where 𝑎𝑣𝑓𝑎𝑟𝑒𝑙𝑜𝑔𝑖𝑡 describes the natural logarithm of the incumbents’ average airfare per market 

and quarter. This dependent variable is also included as a lagged instrumental variable to include 

dynamic effects. 𝑒𝑛𝑡𝑟𝑦𝑙𝑎𝑟𝑔𝑒𝑖,𝑡−1 is a dummy indicating whether an airline enters the market with 

a high capacity aircraft in the individual markets per quarter. Similar to the control variables, this 

independent variable is lagged by one quarter. The variable ℎ𝑒𝑟𝑓𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 represents the 

Herfindahl index on a particular route for each quarter, 𝑛𝑐𝑎𝑟𝑟𝑖,𝑡−1 counts the number of 
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participants in the market on a market-time level and 𝑙𝑐𝑐𝑜𝑛𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 represents a dummy 

indicating if a low cost carrier is present in the particular market-time combination. 𝐶𝑃𝐼𝑖,𝑡−1 is the 

Consumer Price Index for All Urban Consumers (CPI-U). This control variable is identical for all 

markets and varies over time. 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑡 is a time dummy which makes it possible to account for 

time fixed effects.  𝑢𝑖𝑡 stands for the error term in this model. 

In hypothesis 2, the impact of a high capacity market entry on the incumbents’ airplane size in the 

market is examined. In this regression, the dependent variable is the average airplane capacity of 

all market participants per market-time combination. The entering airline’s aircraft size is excluded 

from the market average. The capacity is measured by the seats per airplane. Because the change 

in capacity is rather important than the absolute capacity, I am going to take the natural logarithm 

of the number of seats per aircraft. Similar to hypothesis 1, the airplanes’ capacity is included as a 

lagged instrumental variable. 

The main independent variable is the dummy entry_large which turns one if there is a market entry 

via a high capacity airplane in that market time combination and zero otherwise. The set of control 

variables is composed like in hypothesis 1, including Herfindahl index for individual routes, number 

of carriers in the market, a dummy indicating if there is a low cost carrier in the market and the 

consumer price index CPI-U. Time fixed effects will be observed by a time dummy. 

The estimated equation is as follows: 

𝑎𝑣𝑐𝑎𝑝_𝑙𝑜𝑔𝑖𝑡 =   𝛼 ∗ 𝑎𝑣𝑐𝑎𝑝_𝑙𝑜𝑔𝑖,𝑡−1 +  ß0 + ß1 ∗ 𝑒𝑛𝑡𝑟𝑦𝑙𝑎𝑟𝑔𝑒𝑖,𝑡−1 + ß2 ∗ ℎ𝑒𝑟𝑓𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 + ß3

∗ 𝑛𝑐𝑎𝑟𝑟𝑖,𝑡−1 + ß4 + ß5 ∗ 𝑙𝑐𝑐𝑜𝑛𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 + ß6 ∗ 𝐶𝑃𝐼𝑖,𝑡−1 + ß7 ∗ 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑡 + 𝑢𝑖𝑡 

In this equation 𝑎𝑣𝑐𝑎𝑝𝑖𝑡 describes the natural logarithm of the average number of seats per airline 

on a market-time level. 𝑒𝑛𝑡𝑟𝑦𝑙𝑎𝑟𝑔𝑒𝑖,𝑡−1 is the dummy, indicating whether an airline enters the 

market with a large aircraft in the individual markets per quarter. The variable ℎ𝑒𝑟𝑓𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 

represents the Herfindahl index on a particular route for each quarter and 𝑛𝑐𝑎𝑟𝑟𝑖,𝑡−1 gives out the 

number of market participants on a market-time level. 𝑙𝑐𝑐𝑜𝑛𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 is a quarterly dummy 

accounting for the existence of a low cost carrier in the market. 𝐶𝑃𝐼𝑖,𝑡−1 is the Consumer Price 

Index CPI-U. 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑡 is a time dummy to account for time fixed effects. 𝑢𝑖𝑡 represents the error 

term in this model.  
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For the last hypothesis, I am going to examine the impact of an entry via a high capacity aircraft on 

the incumbents’ frequency of flights. Because recent research found that the frequency of flights 

can be a crucial factor to gain a great market share, airlines could respond to an entry by increasing 

the frequency of flights to set up a unique selling proposition. Therefore, the dependent variable 

in this regression is the average number of flights per market-time combination whereby the 

entering airline will be excluded. Like in hypothesis 1 and 2, the main independent variable is the 

dummy entry_large which turns one if an airline enters the market in that particular quarter with 

a high capacity airplane and zero otherwise. To take market characteristics into account, I am going 

to control for the Herfindahl index and the number of market participants on a route. Furthermore, 

a dummy variable controls for the existence of low cost carriers in the market. The consumer price 

index CPI-U is a control variable for the inflation and time fixed effects are taken into account.  

Like in the hypotheses before, I am using the Arellano-Bond estimator. For robustness checks, 

several combinations of control variables are used. The hypothesis will, analogous to the previous 

hypotheses, be tested for a high & low market concentration and for less than six and also for six 

and more market participants. Additionally, I am going to account for the effect resulting from the 

terroristic attacks in 2001 by conducting the analysis only for the observations before the third 

quarter in 2001. 

The estimated equation is as follows: 

𝑎𝑣#𝑓𝑙𝑖𝑔ℎ𝑡𝑠_𝑙𝑜𝑔𝑖𝑡

=  𝛼 ∗ 𝑎𝑣#𝑓𝑙𝑖𝑔ℎ𝑡𝑠_𝑙𝑜𝑔𝑖,𝑡−1 +  ß0 + ß1 ∗ 𝑒𝑛𝑡𝑟𝑦𝑙𝑎𝑟𝑔𝑒𝑖,𝑡−1 + ß2 ∗ ℎ𝑒𝑟𝑓𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1

+ ß3 ∗ 𝑛𝑐𝑎𝑟𝑟𝑖,𝑡−1 + ß4 ∗ 𝑙𝑐𝑐𝑜𝑛𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 +  ß5 ∗  𝐶𝑃𝐼𝑖,𝑡−1 +  ß6 ∗  𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑡

+ 𝑢𝑖𝑡 

In this equation 𝑎𝑣#𝑓𝑙𝑖𝑔ℎ𝑡𝑠_𝑙𝑜𝑔𝑖𝑡 describes the natural logarithm of the average number of flights 

per market and quarter. This variable is also included as a lagged independent variable. The dummy 

𝑒𝑛𝑡𝑟𝑦𝑙𝑎𝑟𝑔𝑒𝑖,𝑡−1 indicates whether an airline enters the market with a large aircraft in the 

individual markets per quarter. The variable ℎ𝑒𝑟𝑓𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 indicates the Herfindahl index on a 

particular route for each quarter, 𝑛𝑐𝑎𝑟𝑟𝑖,𝑡−1 gives out the number of participants in the market on 

a market-time level. The dummy 𝑙𝑐𝑐𝑜𝑛𝑟𝑜𝑢𝑡𝑒𝑖,𝑡−1 accounts for the presence of a low cost carrier 
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in the market per individual quarter and 𝐶𝑃𝐼𝑖,𝑡−1 is the Consumer Price Index for All Urban 

Consumers (CPI-U). Time fixed effects are considered by involving the dummy variable 𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑡. 

𝑢𝑖𝑡 represents the error term in this model.  
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Data & Descriptives 
 

This empirical study is mainly based on a dataset which includes 848,637 observations on domestic 

flights in the United States of America on a quarterly basis from 1993 to 2013. Observations are 

self-reported by the airlines and collected by the United States Department of Transportation.8  

Observed is a total of 54 different carriers (see table A1) whereas 14 of those are low cost carriers. 

The carriers operate on 5,371 different airport combinations which are defined as markets. To be 

able to control for additional externalities, the Gross Domestic Product of the USA and the jet fuel 

price are added to the dataset.9 The panel in this study is unbalanced due to the non-existence of 

observations for some airline-time combinations.   

The main variables of interest in this study are the capacity per airplane, the airfare per flight and 

the frequency of flights measured by the number of flights per quarter. The average capacity per 

airplane for all markets and times is 139 seats per airplane, whereby the dataset also observes 

flights of comparatively small airplanes with 15 seats and large airplanes with 511 seats (see table 

1). The number of passengers transported is on average 99 passengers per flight. The dataset 

observes empty runs with zero passengers as well as airplanes with 471 passengers on board. On 

average an airline transported 28,330 passengers on one route per quarter. The maximum number 

of passengers an airline transported in one market amounts to 307,223 in one quarter. 

Furthermore, the dataset observes an average of 292 departures which an airline conducts in one 

market per quarter, whereby the maximum of departures is 3,491 and the minimum 1 departure. 

 

                                                           
8 More specifically: United States Department of Transportation - Research and Innovative Technology 
Administration (RITA). 
9 The data on GDP descent from http://www.bea.gov/national/index.htm#gdp and the information on the jet fuel 
price are obtained from 
http://www.eia.gov/dnav/pet/hist/LeafHandler.ashx?n=pet&s=eer_epjk_pf4_rgc_dpg&f=m  
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Variable (per quarter) Mean Std dev Min Max 

# seats per airplane 
 

139.00 38.19 15 511 

# passengers per airplane 
 

98.89 38.58 0 471 

# passengers per airline 
per market 

 

28,329.36 29,824.14 1 307,223 

# departures per airline 
per market 

292.38 278.73 1 3,492 

     
Table 1: Descriptive statistics of main variables 

 

Market entries are of particular importance for this study. Within the dataset one can observe 

3,913 market entries, thereof are 1,446 low cost carrier entries and 2,467 of legacy carriers (see 

table 2). In total one can observe 284 market entries of airlines introducing an airline on the market 

which has at least 1.5 times as many seats as the average on that market. 

 
 

Observation Number Percent of market-airline 
combination 

Market entries 
 

3,913 1.10 

Entry of LCC 
 

1,446 0.41 

Entry of legacy carrier 
 

2,467 0.70 

Entry of large airplane 
 

284 0.08 

Number of large airplanes 
introductions by market 

participants 
 

53 0.01 

Number of different airline-
market combination 

354,757 100.00 

 
Table 2: Descriptives statistics 
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The control variables in this dataset include several macroeconomic KPIs and factors which are 

directly connected to the econometric analysis. Since the jet fuel price is a major cost driver for 

airlines (see annual report of FY2013, American Airlines), it is included as a control variable in some 

regressions. In 1999 Q1, the jet fuel price is at its minimum with 0.34 US$ per gallon (see table 3). 

During the financial crisis in 2008 Q2, the jet fuel price reaches its maximum with 3.66 $US per 

gallon. Since this study is particularly focused on the change of jet fuel prices, the natural logarithm 

is used. To account for market concentration, the Herfindahl index is included as a control variable. 

The lowest value observed is 0.12 and highest 1.00 which indicates a monopoly in this particular 

market. The economic performance in the USA is observed and included by the absolute Gross 

Domestic Product as well as the logarithm of it. In 1993 Q1, the GDP accounts for $US 6,748.20 

billion, whereas in 2013 Q1 the maximum peaks at $US 16,535.30 billion (see figure 2). This 

indicator closely resembles the Consumer Price Index for All Urban Consumers (see figure 3). 

Analogous to the GDP, the CPI hast a steady increase and peeks during the financial crisis in 2008.  

Variable (per quarter) Mean Std. dev. Min Max 

Jet fuel price (US$/gallon) 
 

1.35 0.94 0.34 3.66 

Natural logarithm of Jet fuel 
price 

 

0.06 0.70 -1.08 1.30 

Consumer price index for all 
urban consumers 

185.4474 27.46653 143.1 231.7397 

     
GDP in billion US$ 

 
11,605.33 2,960.61 6,748.20 16,535.30 

Herfindahl index on route 
 

0.70 0.27 0.12 1.00 

Natural logarithm of GDP 
 

9.32 0.27 8.82 9.71 

Distance between origin 
and destination 

 

1,709.83 1,283.52 45.00 9,966.00 

Dummy whether there is a 
low cost airline on the route 

0.38 0.49 0.00 1.00 

 

Table 3: Descriptive statistics of control variables 
 



26 
 

 

Figure 2: U.S. GPD over time 
Source: http://www.bea.gov/national/index.htm#gdp 
 

 

Figure 3: Consumer price index for all urban consumers per quarter 

Source: http://www.bls.gov/cpi/cpid1410.pdf 
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Limitations of this dataset result from the fact that the data is self-reported by the individual 

airlines.10 First, there is no superior committee being in charge of the completeness of the data. 

Second, airlines might not have the incentive to report all the data accurately which would 

otherwise provide competitors valuable data. By looking at the average number of departures per 

quarter, one can see that this number is declining from the year 2002 on (see figure 4). This turning 

point is shortly after the terrorist attacks on the 11th of September in 2001. Two possible theories 

might explain the decline: First, due to the passenger’s fear of further attacks, the aviation sector 

lost customers. Additionally, the increased costs of higher security standards were apportioned 

among the customers. This, in turn, led to less traveling customers. Second, due to security issues, 

airlines might have reported less data. Because this dataset is based on self-reported observations, 

certain flights might therefore simply not be listed. Due to the reasons mentioned, one could argue 

that an airline’s strategic decision and behavior in the market does not reflect the typical course of 

action. To take that situation into consideration, I am going to run additional robustness checks for 

each analysis by taking only from before Q3 2001 into account. 

 

Figure 4: Average number of departures per quarter

                                                           
10 On self-reported data also see Brener et al. (2003) 
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Results 

 

The purpose of this study is to investigate the influence of an airline’s high capacity entry on the 

strategic positioning of incumbent airlines. In the dataset of this analysis, 23 of 54 observed carriers 

enter a market with a high capacity airplane at some point in time. In total 186 high capacity entries 

are observed. Chen & Hambrick (1995) find that smaller airlines are more likely to drive an 

offensive market strategy and attack competitors as compared to larger airlines. Though, the top 

five airlines with the most high capacity entries are Delta Airlines (38 HC entries), ATA Airlines (25 

HC entries), American Airlines (22 HC entries), United Airlines (15 HC entries) and Continental 

Airlines (14 HC entries). The fact that these five airlines are not considered to be low cost carriers 

but major legacy airlines, indicates that costly investments in larger airplanes are primarily done 

by well-established airlines with a high workload. Additionally, with high capacity aircrafts, airlines 

are less flexible to adjust the number of seats to the demand. While smaller airlines mostly serve 

just a few routes, bigger airlines have more options to place a high capacity aircraft on a market 

with a high demand. Due to seasonal effects the demand might vary and make adjustments 

necessary.  

Hypothesis 1 examines the impact of a market entry via a high capacity airplane on the incumbent’s 

airfare. Expected is a negative contribution of high capacity entries on the incumbent’s airfare 

which is grounded on three suppositions: First, incumbent airlines could try to maintain their 

market share by gaining additional customers through lower prices. Second, the airfare of entering 

airlines is lower as compared to the incumbents’ fare which could lead to a price competition. 

Third, in the long term, high capacity airplanes are more cost efficient than smaller ones. This cost 

advantage could lead the entrant to offer lower airfares which will likewise influence the 

competitors’ airfares. The result of the regression supports this hypothesis. A high capacity market 

entry is on average associated with a 2.71% decrease of the incumbents’ airfares. This result is 

significant on a 5% level. The control variable n_carr shows that ticket prices decrease, as the 

number of airlines in the market increase. This could simply be explained by increased competition 

in the market. The control variable Herfindahl index does not indicate significant results. A negative 

correlation of 0.7352 between the Herfindahl index and number of competitors in the market 
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might explain this outcome (see table A2). The consumer price index indicates that the average 

airfare increases slightly with an increasing CPI. This finding is significant on a 0.1% level. The 

existence of low cost carriers is associated with an increase in ticket prices which goes in line with 

the theory of Malighetti et al. (2009) who find that low cost carriers do not compete in full service 

markets. The replacement of CPI by jet fuel price and GDP indicates a significant influence of the 

jet fuel price on airfares. An increase of jet fuel price by 100% would result in a 4.81% increase of 

ticket prices. This results is significant on a 0.1% level. Due to a high positive correlation of GDP 

and jet fuel price, the GDP is omitted from the regression (see table A2). 

By regressing the model only for observations in low concentration and high concentration 

markets, the main independent variable does not indicate significant results. Though, the 

magnitudes of all independent variables do not change significantly. The results of the regression 

which is taking only markets with five or less participants into account, support hypothesis 1, 

likewise. By excluding markets with five or less participants, no significant results can be estimated. 

Furthermore, hypothesis 1 can be supported by investigating the data before September 11th in 

2001. The coefficient of the dummy variable indicating high capacity entries is significant on a 1% 

level and its magnitude is even higher as compared to the base model. 

Hypothesis 2 investigates the incumbents’ capacity adjustments in reaction to market entries via 

high capacity airplanes. Because larger airplanes are supposed to entail significant cost advantages, 

incumbent airlines are expected to follow the strategy of realizing economies of scale through 

higher capacities. This hypothesis cannot be supported through the base model. The magnitude of 

dummy variable entry_large has the expected positive sign, though, this finding is not significant 

on a 5% level. By looking at the regressions for different market segments, one can observe that in 

markets with five or more participants, the entry of an airline with a high capacity airplane induces 

incumbents to decrease their capacity. This finding is significant on a 0.1% level. The negative sign 

could be explained by a possible oversupply of seats. Since the supply of flights in markets with five 

or more participants is already high, the additional high capacity airplane might lead to an 

oversupply of seats. An under-utilization of airplanes is especially due to high fixed costs in the 

aviation sector not lucrative. Analogous to the base model, the regressions for high concentration 

and low concentration markets do not indicate significant results. The Analysis which is taking only 
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data from Q1 1993 to Q2 2001 into account, however, suggests that incumbents decrease their 

average capacity when an additional carrier enters the market. Since passenger numbers 

decreased after Q2 in 2001 due to concerns about the safety of flights, airlines were expected to 

adjust their fleet planning under exceptional circumstances. This means that an analysis depicts a 

more realistic outcome for capacity adjustments when taking into account data from quarters 

before 9/11. For observations after 9/11 it is difficult to determine whether capacity adjustments 

are caused by market entries or consequences from the terroristic attacks.  

The control variables in the base model indicate that in markets with a high market concentration 

airlines are more likely to deploy airplanes of a smaller capacity compared to less concentrated 

markets. However, in markets where a LCC is present, the average aircraft size is slightly greater 

than in markets without LCCs. The consumer price index does not have an effect on the aircraft 

capacity.   

In hypothesis 3, I am going to look at the frequency of incumbents and to what extent it is affected 

by the airplane capacity of an entering airline. Following the theory, through the existence of an S-

curve effect incumbents could increase their frequency to maintain market power. In this analysis, 

the base model cannot support or reject this hypothesis due to missing significance. Though, by 

taking only markets with a low concentration and markets with more than five participants into 

account, the results are significant on a 1% level and suggest a decrease in frequency when an 

airline enters the market with a high capacity airplane. A possible explanation might be the 

oversupply of seats which induces airlines to avoid spare seats. The effects of the S-curve effect 

can therefore not be supported by this study. However, by looking at control variables I find that a 

high market concentration and high number of market participants, however, seem to induce 

airlines to increase their frequency. Like expected in the analysis before, the replacement of CPI by 

the jet fuel price and GDP shows that an increase in jet fuel price is followed by a decrease in 

frequency. This hints at a higher efficiency of larger airplanes. Like before, GDP is omitted due to a 

high positive correlation with the jet fuel price.  
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 (1) (2) (3) 

 H1 base model H2 base model H3 base model 
 

 Natural logarithm 
of the incumbents’ 

average airfare 

Natural logarithm 
of the incumbents’ 
average capacity 

Natural logarithm 
of the incumbents’ 
average frequency 

    
Lagged dependent variable 0.4422*** 0.5329*** 0.0165* 
 (0.01) (0.01) (0.01) 
    
Dummy variable high  -0.0271* 0.0024 -0.0370 
capacity entry (0.01) (0.01) (0.02) 
    
Herfindahl index on route -0.0089 -0.0182*** 0.0751*** 
 (0.01) (0.00) (0.02) 
    
Number of carriers on the  -0.0019*** -0.0026*** 0.0223*** 
Market (0.00) (0.00) (0.00) 
    
Dummy variable for the  0.0115*** 0.0032* 0.0630*** 
existence of a LCC in the  (0.00) (0.00) (0.01) 
Market 
 

   

Consumer price index 0.0014*** -0.0000 -0.0137*** 
 (0.00) (0.00) (0.00) 
    
Constant 2.6110*** 2.3197*** 7.7084*** 
 (0.04) (0.04) (0.09) 

Observations 188663 188910 188910 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 

Table 4: Regression output for main models
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The sensitivity analysis partly supports the findings of the previous regressions and indicates 

stronger effects for larger airplanes. Shifting the definition of high capacity airplanes from larger 

than 150% of the average airplane size in the market to 175% decreases the magnitude of the main 

independent variable in hypothesis 1 from -0.0271 to -0.0319 which means that the effect of entries 

via larger airplanes is stronger by 0.48 percentage points. By defining high capacity airplanes as being 

larger than 125% of the average airplane size in the market, the magnitude decreases to  

-0.0142 but no significant results can be estimated. This could suggest that an airplane being 25% 

larger than the average, is not perceived as a high capacity airplane. By looking at the regressions of 

hypothesis 2, the sensitivity analysis suggests a stronger impact of larger high capacity airplanes on 

the incumbents’ average capacity as compared to smaller ones. Though, like in the base model, 

these findings are not significant. The same holds for the sensitivity analyses of hypothesis 3. The 

magnitude indicates stronger effects for larger airplanes, but these findings are insignificant, too.  

The Wald Chi-Square statistic is used to test the goodness of fit. Its null hypothesis states that all 

regression coefficients in the model are simultaneously equal to zero. This hypothesis can be 

rejected which means that at least one regression coefficient is different to zero.  To test for over-

identification of the Arellano-Bond model, I am going to conduct a Sargan test. In the first instance 

the test indicates to reject the null hypothesis “overidentifying restrictions are valid” which could be 

a sign for an over-identified model. Though, like mentioned by Chao at al. (2014), this test is not 

robust to large numbers of instruments. For instance, the model testing hypothesis 1 features 394 

instruments which challenges the significance of this test and does not allow conclusions. The 

Arellano-Bond test for autocorrelation rejects the second order null hypothesis, indicating the non-

existence of autocorrelation in first differenced error terms. Like expected by Roodman (2009a), the 

null hypothesis of the first order in this type of model is rejected. Though, this does not support any 

conclusions.  
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 (1) (2) (3) (4) (5) (6) 

 H1 - 125% H1 - 175% H2 - 125% H2 - 175% H3 - 125% H3 - 175% 
 Natural logarithm 

of the incumbents’ 
average airfare 

Natural logarithm 
of the incumbents’ 

average airfare 

Natural logarithm 
of the competitors’ 

average capacity 

Natural logarithm of 
the competitors’ 
average capacity 

Natural logarithm of 
the incumbents’ 

average frequency 

Natural logarithm of 
the incumbents’ 

average frequency 

       
Lagged dependent  0.4454*** 0.4430*** 0.5390*** 0.5278*** 0.0116 0.0159* 
Variable 
 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

Dummy variable  -0.0142 -0.0319* 0.0011 0.0019 -0.0190 -0.0389 
high capacity entry (0.01) (0.01) (0.01) (0.01) (0.01) (0.04) 
       
Herfindahl index on  0.0090 -0.0091 -0.0196*** -0.0179*** 0.0720*** 0.0736*** 
Route (0.01) (0.01) (0.00) (0.00) (0.02) (0.02) 
       
Number of carriers  -0.0020*** -0.0019*** -0.0024*** -0.026*** 0.0211*** 0.0226*** 
on the Market (0.00) (0.01) (0.00) (0.00) (0.00) (0.00) 
       
Dummy variable for  -0.0102*** -0.0115*** 0.0040** -0.0028*** 0.0637*** 0.0625*** 
the existence of a 
LCC in the Market 

(0.00) (0.00) (0.00) (0.00) (0.01) (0.01) 

       
Consumer price  0.0014*** 0.0014*** -0.0000 -0.0000 -0.0137*** -0.0137*** 
index (0.00) (0.01) (0.00) (0.00) (0.03) (0.03) 
       
Constant 2.5948*** 2.6055*** 2.3465*** 2.3465*** 7.7308*** 7.7104*** 
 (0.04) (0.04) (0.06) (0.06) (0.09) (0.09) 

Observations 186725 189296 187312 189362 187312 189362 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
 

Table 5: Regression output for sensitivity analysis 
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Conclusion 

 

Previous research finds that three main factors influence an airline’s market share: The frequency 

of flights, airfare and capacity of airplanes. This empirical analysis investigates how incumbent 

airlines change their strategy when new airlines enter markets with high capacity airplanes. From 

the investigation of hypothesis 1 we learn that the entry of high capacity airplanes induces 

incumbents to decrease their airfare by on average 3%. This finding supports the study of Joskow et 

al. (1994) saying that the additional supply of seats on a route through a market entry lets 

incumbents decrease airfares. A sensitivity analysis additionally reveals that this effect is stronger 

for larger airplanes.  

Next to adjustments in airfare, previous research suggests changes in frequency of flights or airplane 

capacity in reaction to changing market conditions. In particular, the analysis on hypothesis 2 

investigates the impact of high capacity market entries on the incumbents’ airplane capacity. By 

analyzing the output of the base model, no significant conclusions can be drawn. Though, the 

exclusion of markets with five or less participants indicates that a high capacity market entry leads 

incumbent airlines to decrease their average number of seats per airplane. On average, in reaction 

to a high capacity market entry, incumbent airlines decrease their number of seats per airplane by 

2.31%. Whereas some previous studies suggest a positive sign, other studies explain the negative 

contribution by stating that especially in markets with numerous competitors a possible oversupply 

of seats induces airlines to decrease their capacity slightly to avoid spare seats. Especially due to a 

high cost sensitivity excess capacity seems to be unprofitable. The investigation of hypothesis 3 

examines changes of frequency in reaction to high capacity market entries. The results suggest that 

especially in low concentrated markets and markets with more than five market participants, airlines 

tend to decrease their frequency in response to high capacity market entries. On average, 

incumbent airlines reduce the frequency of flights by roughly 8%.  

The combination of hypothesis 2 and 3 shows that airlines decrease their overall capacity which is 

the product of airplane capacity times frequency in reaction to high capacity entries. With this, a 

high capacity entry seems to have a greater impact on frequency as compared to airplane capacity. 
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This can be explained by the fact that mutations in frequency are more reversible decisions as 

compared to mutations in the number of seats per airplane. Furthermore, frequency adjustments 

seem to be easier and faster to implement as compared to fleet adjustments. The process of code 

sharing might here be a common means. With this, two airlines which offer flights on the same 

route, have the option to conduct one flight commonly whereby the other flight is cancelled. It 

seems obvious that this strategy turns out to be more cost-effective. Combining this insight with the 

results of hypothesis 1, one could conclude that a high capacity market entry represents a challenge 

for incumbent airlines which deal with the upcoming threat by entering a price competition and 

improving (cost-)efficiency primarily through adjustments in frequency. 
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Limitations and future research 

 

Although this research provides a grounded analysis, it has some limitations which could be 

eliminated by further detailed analyses: Like mentioned above, Pai (2010) finds that the target group 

an airlines serves, has a significant impact on the frequency of flights. An increase of the proportion 

of passengers with a managerial position will lead the airline to offer a higher frequency of flights 

with airplanes of a lower capacity. He mentions that this effect is caused by a higher time sensitivity 

of managers. However, airplanes transporting leisure travelers are more likely to be larger and 

scheduled with a lower frequency.  By adding passenger characteristics which distinguish between 

e.g. leisure & business travelers or low cost & premium passengers, the analysis’ validity could be 

enhanced. The distinction between smaller and larger airlines could likewise provide further insights. 

Like Chen & Hambrick (1995) find, substantial difference between smaller and larger firms can be 

found by looking at strategy adjustments. 

Furthermore, this master’s thesis focuses on capacity in terms of seat quantity per aircraft and 

frequency of flights. To observe changes in the airplane’s number of seats might not be optimal since 

stepless adjustments are not feasible for airlines. Because standard airplanes are used on many 

routes, airlines might not be able to conduct fine adjustments to market conditions. The costs of 

changing to a different aircraft type probably outweigh cost optimization through a higher load 

factor. An analysis which investigates capacity in terms of fleet size is also imaginable. By increasing 

capacity through adding smaller airplanes to the fleet, an airline might face higher investment costs 

per seat but might also increase the fleet’s flexibility at the same time. Depending on market 

characteristics, an increase in the number of aircrafts rather than in an aircraft’s size might optimize 

utility. Future research could take this into account.  

With respect to the methodology used, a dynamic panel data model seems to be the best tool to 

observe strategic decisions in multiple markets over time. Nevertheless, the use of panel data 

requires one single observation per panel-time combination which makes it necessary to average 

observed variables among airlines. This way, the variation between airlines is lost in this study. 
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Though, a concentrated analysis on only one market or one airline would lead to less representative 

results.  

Finally, for airlines facing capacity related issues, this research provides useful insights. Though, to 

what extent airplane capacity is available for airlines, depends inter alia on aircraft manufacturer 

like Airbus or Boeing. Future research should be done on airplane capacity with respect to demand 

for capacity. It might be valuable for manufacturers to predict the market’s need for larger or smaller 

airplanes since the direction of their strategic focus is a long term decision due to high engineering 

efforts.
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Appendix 
 

IATA Airline & time of operation Type 

AA American Airlines Inc. (1960 - ) Legacy carrier 

AS Alaska Airlines Inc. (1960 - ) Legacy carrier 

DL Delta Air Lines Inc. (1960 - ) Legacy carrier 

HA Hawaiian Airlines Inc. (1960 - ) Legacy carrier 

NK Spirit Air Lines (1992 - ) Low cost carrier 

QX Horizon Air (1984 - ) Legacy carrier 

UA United Air Lines Inc. (1960 - ) Legacy carrier 

US US Airways Inc. (1997 - ) Legacy carrier 

WN Southwest Airlines Co. (1979 - ) Low cost carrier 

EV ExpressJet Airlines Inc. (2012 - ) Legacy carrier 

CO Continental Air Lines Inc. (1960 - 2011) Legacy carrier 

F9 Frontier Airlines Inc. (1994 - ) Low cost carrier 

FL Frontier Airlines Inc. (1960 - 1986) Legacy carrier 

SY Sun Country Airlines d/b/a MN Airlines (2005 - ) Low cost carrier 

CS Continental Micronesia (1993 - 2010) Legacy carrier 

NW Northwest Airlines Inc. (1960 - 2009) Legacy carrier 

TZ ATA Airlines d/b/a ATA (2003 - 2008) Legacy carrier 

HP America West Airlines Inc. (1983 - 2007) Legacy carrier 

XJ Mesaba Airlines (1997 - 2011) Legacy carrier 

ZW Air Wisconsin Inc. (1979 - 1993) Legacy carrier 

B6 JetBlue Airways (2000 - ) Low cost carrier 

G4 Allegiant Air (2000 - ) Low cost carrier 

YV Mesa Airlines Inc. (1995 - ) Legacy carrier 

9E Pinnacle Airlines Inc. (2002 - 2013) Legacy carrier 

RP Chautauqua Airlines Inc. (2004 - ) Legacy carrier 

U5 USA 3000 Airlines (2003 - 2012) Low cost carrier 

TW Trans World Airways LLC (2001 - 2001) Legacy carrier 

NJ Vanguard Airlines Inc. (1994 - 2002) Low cost carrier 

YX Midwest Airline, Inc. (2003 - 2009) Legacy carrier 

FF Tower Air Inc. (1983 - 2000) Low cost carrier 

QQ Reno Air Inc. (1992 - 1999) Legacy carrier 

U2 UFS Inc. (1993 - 2000) Legacy carrier 

KP Kiwi International (1992 - 2000) Legacy carrier 

NA North American Airlines (2005 - ) Legacy carrier 

RV Reeve Aleutian Airways Inc. (1960 - 2002) Legacy carrier 

VX Virgin America (2007 - ) Low cost carrier 

KW Pacific Interstate Airlines (1989 - 1991) Legacy carrier 
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PN Pan American Airways Corp. (1999 - 2004) Legacy carrier 

J7 Valujet Airlines Inc. (1993 - 2000) Low cost carrier 

W9 Eastwind Airlines Inc. (1995 - 1999) Legacy carrier 

N7 National Airlines (1999 - 2002) Low cost carrier 

DH Atlantic Coast Airlines (2002 - 2004) Legacy carrier 

P9 Pro Air Inc. (1997 - 2000) Legacy carrier 

BF Markair Inc. (1984 - 1995) Legacy carrier 

W7 Western Pacific Airlines (1995 - 1998) Low cost carrier 

E9 Boston-Maine Airways (2003 - 2008) Legacy carrier 

KN Morris Air Corporation (1992 - 1994) Legacy carrier 

XE ExpressJet Airlines Inc. (2006 - 2011) Legacy carrier 

RL UltrAir (1993 - 1994) Legacy carrier 

T3 Tristar Airlines Inc. (1995 - 1997) Legacy carrier 

QD Grand Airways Inc. (1995 - 1995) Legacy carrier 

SX Aeroejecutivo S.A. (1997 - 2000) Low cost carrier 

ZA Accessair Holdings (1998 - 2002) Legacy carrier 

OE Westair Airlines Inc. (1988 - 1993) Legacy carrier 
Table A1: Airlines observed in this dataset 

 

Figure A1: Relation of the number of seats on the maximum gross landing weight for the major airplanes in the passenger aviation 
sector 
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Figure A2: Distribution of the natural logarithm of the incumbents’ average airfare 

 

 

 

Figure A3: Distribution of the natural logarithm of the incumbents’ average capacity 
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Figure A4: Distribution of the natural logarithm of the incumbents’ average frequency 
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Natural 

logarithm of the 

incumbents' 

average airfare 

Dummy 

variable 

high 

capacity 

entry 

Herfindahl 

Index on 

route 

Number 

of carriers 

on the 

market 

Dummy 

variable 

for the 

existence 

of a LCC 

Natural 

logarithm 

of GDP 

Natural 

logarithm 

of jet fuel 

price 

Consumer 

price 

index for 

all urban 

consumers 

Natural logarithm of the 

incumbents' average 

airfare 1        

         

Dummy variable high 

capacity entry -0.0009 1       

         

Herfindahl Index on route 0.1554 -0.0056 1      

Number of carriers on the 

market -0.1418 0.0152 -0.7352 1     

         

Dummy variable for the 

existence of a LCC -0.391 -0.0009 -0.1926 0.2 1    

         

Natural logarithm of GDP 0.0753 -0.0217 -0.1476 0.2148 0.3496 1   

         

Natural logarithm of jet 

fuel price 0.0656 -0.017 -0.1382 0.2116 0.3462 0.9179 1  

         

Consumer price index for 

all urban consumers 0.0668 -0.02 -0.1303 0.2051 0.3724 0.9844 0.9468 1 

 

Table A2: Correlation Table 
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 (1) (2) (3) (4) (5) (6) 

 average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

L.  0.4421*** 0.4415*** 0.4415*** 0.4422*** 0.4422*** 0.4422*** 

average_fare_inc

umbents_logged 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0273* -0.0272* -0.0264* -0.0271* -0.0271* -0.0271* 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

       

L. herf_route  -0.0066 -0.0109 -0.0089 -0.0089 -0.0089 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0013** -0.0019*** -0.0019*** -0.0019*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0115*** 0.0115*** 0.0115*** 

    (0.00) (0.00) (0.00) 

       

       

L.      0.0481***  

fuel_price_logged     (0.00)  

       

L. CPIU      0.0014*** 

      (0.00) 

       

Constant 2.8474*** 2.8548*** 2.8617*** 2.9242*** 2.9388*** 2.6110*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Observations 188663 188663 188663 188663 188663 188663 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A3: H1_BASEMODEL 

 (1) (2) (3) (4) (5) (6) 

 average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

L.  0.3878*** 0.3879*** 0.3880*** 0.3881*** 0.3881*** 0.3881*** 

average_fare_inc

umbents_logged 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0265 -0.0264 -0.0256 -0.0257 -0.0257 -0.0257 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

       

       

L. herf_route  -0.0012 -0.0092 -0.0081 -0.0081 -0.0081 

  (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. n_carr   -0.0009 -0.0011 -0.0011 -0.0011 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0039 0.0039 0.0039 

    (0.00) (0.00) (0.00) 

       

L.      0.0389***  

fuel_price_logged     (0.00)  

       

L. CPIU      0.0016*** 

      (0.00) 

       

Constant 3.1370*** 3.1375*** 3.1461*** 3.1830*** 3.2527*** 2.8768*** 

 (0.05) (0.05) (0.05) (0.05) (0.06) (0.06) 

Observations 98332 98332 98332 98332 98332 98332 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A4: H1_HIGH_CONCENTRATION 

 

 

 (1) (2) (3) (4) (5) (6) 

 average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

L.  0.4625*** 0.4641*** 0.4639*** 0.4657*** 0.4657*** 0.4657*** 

average_fare_incu

mbents_logged 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0127 -0.0124 -0.0109 -0.0135 -0.0135 -0.0135 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. herf_route  -0.0277 -0.0387* -0.0367* -0.0367* -0.0367* 

  (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. n_carr   -0.0022*** -0.0028*** -0.0028*** -0.0028*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0163*** 0.0163*** 0.0163*** 

    (0.00) (0.00) (0.00) 

       

L.      0.0195***  

fuel_price_logged     (0.00)  

       

L. CPIU      0.0025*** 

      (0.00) 

       

Constant 2.6493*** 2.6569*** 2.7665*** 2.7525*** 2.7486*** 2.3033*** 

 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 

Observations 76153 76153 76153 76153 76153 76153 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A5: H1_LOW_CONCENTRATION 

 
 

 (1) (2) (3) (4) (5) (6) 

 average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

L.  0.1023*** 0.1034*** 0.0999*** 0.1011*** 0.1120*** 0.1144*** 

average_fare_inc

umbents_logged 

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. entry_large -0.0057 -0.0120 -0.0091 -0.0057 -0.0178 -0.0117 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  0.1789*** 0.1772*** 0.1772*** 0.1826*** 0.1905*** 

  (0.03) (0.03) (0.03) (0.03) (0.03) 

       

L. n_carr   -0.0005 -0.0008 -0.0010 -0.0010 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0140*** 0.0154*** 0.0151*** 

    (0.00) (0.00) (0.00) 

       

L.      0.0981***  

fuel_price_logged     (0.02)  

       

L. CPIU      0.0057*** 

      (0.00) 

       

       

Constant 4.4421*** 4.3386*** 4.3637*** 4.3574*** 4.3561*** 3.2658*** 

 (0.08) (0.09) (0.09) (0.09) (0.09) (0.15) 

Observations 5430 5430 5430 5430 5430 5430 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A6: H1_ PARTICIPANTS_ABOVE_5 

 (1) (2) (3) (4) (5) (6) 

 average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

L.  0.4319*** 0.4314*** 0.4312*** 0.4316*** 0.4316*** 0.4316*** 

average_fare_inc

umbents_logged 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0325** -0.0326** -0.0312* -0.0314* -0.0314* -0.0314* 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0072 -0.0127 -0.0113 -0.0113 -0.0113 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0019** -0.0023*** -0.0023*** -0.0023*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0079** 0.0079** 0.0079** 

    (0.00) (0.00) (0.00) 

       

L.      0.0510***  

fuel_price_logged     (0.00)  

       

L. CPIU      0.0015*** 

      (0.00) 

       

Constant 2.9839*** 2.9916*** 3.0008*** 2.9963*** 3.0079*** 2.6727*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Observations 171595 171595 171595 171595 171595 171595 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A7: H1_PARTICIPANTS_BELOW_6 
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 (1) (2) (3) (4) (5) (6) 

 average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

L.  0.4615*** 0.4609*** 0.4605*** 0.4611*** 0.4611*** 0.4611*** 

average_fare_inc

umbents_logged 

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0370** -0.0370** -0.0355** -0.0361** -0.0361** -0.0361** 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0093 -0.0156 -0.0142 -0.0142 -0.0142 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0021* -0.0025* -0.0025* -0.0025* 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0071 0.0071 0.0071 

    (0.00) (0.00) (0.00) 

       

L.      0.1045***  

fuel_price_logged     (0.00)  

       

L. CPIU      0.0021*** 

      (0.00) 

       

Constant 2.8036*** 2.8140*** 2.8251*** 2.8207*** 2.9392*** 2.4472*** 

 (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) 

Observations 80938 80938 80938 80938 80938 80938 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A8: H1_BASEMODEL_BEFORE_9_11 
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 (1) (2) (3) (4) (5) (6) 

 av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

L.av_cap_incumbents 0.5300*** 0.5298*** 0.5327*** 0.5329*** 0.5329*** 0.5329*** 

_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large 0.0011 0.0008 0.0027 0.0024 0.0024 0.0024 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0107*** -0.0189*** -0.0182*** -0.0182*** -0.0182*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) 

       

L. n_carr   -0.0024*** -0.0026*** -0.0026*** -0.0026*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0032* 0.0032* 0.0032* 

    (0.00) (0.00) (0.00) 

       

L. fuel_price_logged     -0.0016  

     (0.00)  

       

L. CPIU      -0.0000 

      (0.00) 

       

Constant 2.3097*** 2.3180*** 2.3165*** 2.3143*** 2.3173*** 2.3197*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Observations 188910 188910 188910 188910 188910 188910 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table A9: H2_BASEMODEL  
 

 

 (1) (2) (3) (4) (5) (6) 

 av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

L.av_cap_incumbents 0.5425*** 0.5438*** 0.5457*** 0.5457*** 0.5457*** 0.5457*** 

_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large 0.0081 0.0085 0.0097 0.0096 0.0096 0.0096 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  0.0400*** 0.0281* 0.0284* 0.0284* 0.0284* 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0014* -0.0014* -0.0014* -0.0014* 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0001 0.0001 0.0001 

    (0.00) (0.00) (0.00) 

       

L. fuel_price_logged     0.0015  

     (0.00)  

       

L. CPIU      0.0000 

      (0.00) 

       

Constant 2.2489*** 2.2040*** 2.2058*** 2.2055*** 2.2086*** 2.2009*** 

 (0.05) (0.05) (0.05) (0.05) (0.05) (0.05) 

Observations 98345 98345 98345 98345 98345 98345 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A10: H2_HIGH_CONCENTRATION  
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 (1) (2) (3) (4) (5) (6) 

 av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

L.av_cap_incumbents 0.4814*** 0.4820*** 0.4846*** 0.4854*** 0.4854*** 0.4854*** 

_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0022 -0.0021 -0.0004 -0.0007 -0.0007 -0.0007 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  0.0054 -0.0062 -0.0056 -0.0056 -0.0056 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0024*** -0.0025*** -0.0025*** -0.0025*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0043** 0.0043** 0.0043** 

    (0.00) (0.00) (0.00) 

       

L. fuel_price_logged     -0.0080***  

     (0.00)  

       

L. CPIU      -0.0002*** 

      (0.00) 

       

Constant 2.5566*** 2.5505*** 2.5507*** 2.5452*** 2.5399*** 2.5877*** 

 (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) 

Observations 76321 76321 76321 76321 76321 76321 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A11: H2_LOW_CONCENTRATION 
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 (1) (2) (3) (4) (5) (6) 

 av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

L.av_cap_incumbents 0.2044*** 0.2038*** 0.1850*** 0.2050*** 0.1932*** 0.2086*** 

_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0234*** -0.0241*** -0.0237*** -0.0236*** -0.0243*** -0.0231*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

       

L. herf_route  0.0271* 0.0243* 0.0207 0.0232 0.0205 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0019*** -0.0020*** -0.0021*** -0.0020*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0032 0.0035* 0.0034 

    (0.00) (0.00) (0.00) 

       

L. fuel_price_logged     -0.0079  

     (0.01)  

       

L. CPIU      -0.0020*** 

      (0.00) 

       

Constant 3.9076*** 3.9036*** 4.0115*** 3.9168*** 3.9658*** 4.4014*** 

 (0.06) (0.06) (0.06) (0.06) (0.07) (0.11) 

Observations 5431 5431 5431 5431 5431 5431 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A12: H2_MARKET_PARTICIPANTS_ABOVE_5 
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 (1) (2) (3) (4) (5) (6) 

 av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

L.av_cap_incumbents 0.5539*** 0.5538*** 0.5565*** 0.5568*** 0.5568*** 0.5568*** 

_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large 0.0065 0.0061 0.0083 0.0081 0.0081 0.0081 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0132*** -0.0211*** -0.0206*** -0.0206*** -0.0206*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) 

       

L. n_carr   -0.0025*** -0.0027*** -0.0027*** -0.0027*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0031 0.0031 0.0031 

    (0.00) (0.00) (0.00) 

       

L. fuel_price_logged     -0.0028*  

     (0.00)  

       

L. CPIU      -0.0000 

      (0.00) 

       

Constant 2.1876*** 2.1974*** 2.2009*** 2.1935*** 2.2016*** 2.2081*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Observations 171823 171823 171823 171823 171823 171823 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A13: H2_PARTICIPANTS_BELOW_6 
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 (1) (2) (3) (4) (5) (6) 

 av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

L.av_cap_incumbents 0.5608*** 0.5608*** 0.5632*** 0.5638*** 0.5638*** 0.5638*** 

_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0251*** -0.0339*** -0.0322*** -0.0322*** -0.0322*** 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0030*** -0.0033*** -0.0033*** -0.0033*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0081** 0.0081** 0.0081** 

    (0.00) (0.00) (0.00) 

       

L. fuel_price_logged     -0.0047**  

     (0.00)  

       

L. CPIU      -0.0002* 

      (0.00) 

       

Constant 2.1489*** 2.1692*** 2.1702*** 2.1593*** 2.1603*** 2.1879*** 

 (0.06) (0.06) (0.06) (0.06) (0.06) (0.06) 

Observations 80959 80959 80959 80959 80959 80959 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A14: H2_BASEMODEL_BEFORE_9_11 
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 (1) (2) (3) (4) (5) (6) 

 av_freq_incumben

ts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

L.av_frequ_incum 0.0076 0.0079 0.0150* 0.0165* 0.0165* 0.0165* 

bents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0173 -0.0176 -0.0336 -0.0370 -0.0370 -0.0370 

 (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. herf_route  -0.0187 0.0627*** 0.0751*** 0.0751*** 0.0751*** 

  (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. n_carr   0.0249*** 0.0223*** 0.0223*** 0.0223*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0630*** 0.0630*** 0.0630*** 

    (0.01) (0.01) (0.01) 

       

L.      -0.3187***  

fuel_price_logged     (0.01)  

       

L. CPIU      -0.0137*** 

      (0.00) 

       

Constant 4.8641*** 4.8976*** 4.7282*** 4.6980*** 5.2003*** 7.7084*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.09) 

Observations 188910 188910 188910 188910 188910 188910 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A15: H3_BASEMODEL 
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 (1) (2) (3) (4) (5) (6) 

 av_freq_incumben

ts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

L.av_frequ_incum -0.0295*** -0.0279*** -0.0231** -0.0205* -0.0205* -0.0205* 

bents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large 0.0116 0.0099 -0.0110 -0.0102 -0.0102 -0.0102 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

       

L. herf_route  -0.1397** 0.1125* 0.1405** 0.1405** 0.1405** 

  (0.05) (0.05) (0.05) (0.05) (0.05) 

       

L. n_carr   0.0294*** 0.0251*** 0.0251*** 0.0251*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0810*** 0.0810*** 0.0810*** 

    (0.01) (0.01) (0.01) 

       

L.      -0.3016***  

fuel_price_logged     (0.02)  

       

L. CPIU      -0.0146*** 

      (0.00) 

       

Constant 5.3144*** 5.4410*** 5.1253*** 4.9844*** 5.1414*** 7.8800*** 

 (0.05) (0.06) (0.07) (0.07) (0.07) (0.13) 

Observations 98345 98345 98345 98345 98345 98345 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A16: H3_HIGH_CONCENTRATION 
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 (1) (2) (3) (4) (5) (6) 

 av_freq_incumben

ts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

L.av_frequ_incum 0.0732*** 0.0716*** 0.0925*** 0.0943*** 0.0943*** 0.0943*** 

bents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0690* -0.0684* -0.0834** -0.0889** -0.0889** -0.0889** 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

       

L. herf_route  0.0769** 0.1965*** 0.2035*** 0.2035*** 0.2035*** 

  (0.03) (0.03) (0.03) (0.03) (0.03) 

       

L. n_carr   0.0249*** 0.0231*** 0.0231*** 0.0231*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0559*** 0.0559*** 0.0559*** 

    (0.01) (0.01) (0.01) 

       

L.      -0.2700***  

fuel_price_logged     (0.01)  

       

L. CPIU      -0.0109*** 

      (0.00) 

       

Constant 5.4495*** 5.4170*** 5.2170*** 5.1889*** 4.8792*** 6.7615*** 

 (0.07) (0.07) (0.07) (0.08) (0.07) (0.12) 

Observations 76321 76321 76321 76321 76321 76321 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A17: H3_LOW_CONCENTRATION 
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 (1) (2) (3) (4) (5) (6) 

 av_freq_incumben

ts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

L.av_frequ_incum 0.0478*** 0.0430** 0.0694*** 0.0473** 0.0550*** 0.0482** 

bents_logged (0.01) (0.01) (0.01) (0.02) (0.02) (0.02) 

       

L. entry_large -0.0376* -0.0341* -0.0490** -0.0552*** -0.0431* -0.0454** 

 (0.01) (0.01) (0.02) (0.02) (0.02) (0.02) 

       

L. herf_route  -0.1313* -0.0793 -0.0647 -0.0863 -0.0744 

  (0.06) (0.06) (0.06) (0.06) (0.06) 

       

L. n_carr   0.0140*** 0.0131*** 0.0131*** 0.0129*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0098 0.0081 0.0088 

    (0.01) (0.01) (0.01) 

       

L.      -0.1995***  

fuel_price_logged     (0.04)  

       

L. CPIU      -0.0086*** 

      (0.00) 

       

Constant 5.7786*** 5.8682*** 5.5641*** 5.7369*** 5.5858*** 6.8020*** 

 (0.12) (0.12) (0.10) (0.13) (0.11) (0.28) 

Observations 5431 5431 5431 5431 5431 5431 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A18: H3_PARTICIPANTS_ABOVE_5 
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 (1) (2) (3) (4) (5) (6) 

 av_freq_incumben

ts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

L.av_frequ_incum 0.0003 0.0006 0.0069 0.0079 0.0079 0.0079 

bents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0021 -0.0026 -0.0226 -0.0249 -0.0249 -0.0249 

 (0.02) (0.03) (0.03) (0.03) (0.03) (0.03) 

       

L. herf_route  -0.0227 0.0697*** 0.0840*** 0.0840*** 0.0840*** 

  (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. n_carr   0.0310*** 0.0274*** 0.0274*** 0.0274*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0727*** 0.0727*** 0.0727*** 

    (0.01) (0.01) (0.01) 

       

L. 

fuel_price_logged 

    -0.3342***  

     (0.01)  

       

L. CPIU      -0.0143*** 

      (0.00) 

       

Constant 4.8557*** 4.8695*** 4.6721*** 4.6615*** 5.1855*** 7.7996*** 

 (0.04) (0.04) (0.04) (0.05) (0.04) (0.10) 

Observations 171823 171823 171823 171823 171823 171823 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A19: H3_PARTICIPANTS_BELOW_6 
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 (1) (2) (3) (4) (5) (6) 

 av_freq_incumben

ts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

L.av_frequ_ 0.0761*** 0.0754*** 0.0865*** 0.0855*** 0.0855*** 0.0855*** 

incumbents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0058 -0.0075 -0.0325 -0.0393 -0.0393 -0.0393 

 (0.03) (0.03) (0.03) (0.03) (0.03) (0.03) 

       

L. herf_route  -0.1069*** 0.0009 0.0213 0.0213 0.0213 

  (0.03) (0.03) (0.03) (0.03) (0.03) 

       

L. n_carr   0.0372*** 0.0327*** 0.0327*** 0.0327*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0897*** 0.0897*** 0.0897*** 

    (0.01) (0.01) (0.01) 

       

L. fuel_price_logged     -0.0684***  

     (0.01)  

       

L. CPIU      -0.0065*** 

      (0.00) 

       

Constant 5.0794*** 5.1704*** 4.9514*** 4.8993*** 4.8536*** 6.0428*** 

 (0.07) (0.07) (0.08) (0.08) (0.08) (0.13) 

Observations 80959 80959 80959 80959 80959 80959 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A20: H3_BEFORE_9_11 
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 (1) (2) (3) (4) (5) (6) 

 average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

L. average_fare_ 0.4453*** 0.4447*** 0.4447*** 0.4454*** 0.4454*** 0.4454*** 

incumbents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0146* -0.0146* -0.0136 -0.0142 -0.0142 -0.0142 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0060 -0.0107 -0.0090 -0.0090 -0.0090 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0015** -0.0020*** -0.0020*** -0.0020*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0102*** 0.0102*** 0.0102*** 

    (0.00) (0.00) (0.00) 

       

L.      0.0487***  

fuel_price_logged     (0.00)  

       

L. CPIU      0.0014*** 

      (0.00) 

       

Constant 2.8313*** 2.8379*** 2.8455*** 2.9070*** 2.9223*** 2.5948*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Observations 186725 186725 186725 186725 186725 186725 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A21: H1_BASEMODEL_ Sensitivity analysis 125% 
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 (1) (2) (3) (4) (5) (6) 

 average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

average_fare_incu

mbents_logged 

L. average_fare_ 0.4429*** 0.4423*** 0.4423*** 0.4430*** 0.4430*** 0.4430*** 

incumbents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0315* -0.0314* -0.0305* -0.0319* -0.0319* -0.0319* 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0069 -0.0112 -0.0091 -0.0091 -0.0091 

  (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. n_carr   -0.0013** -0.0019*** -0.0019*** -0.0019*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0115*** 0.0115*** 0.0115*** 

    (0.00) (0.00) (0.00) 

       

L. fuel_price     0.0482***  

_logged     (0.00)  

       

L. CPIU      0.0014*** 

      (0.00) 

       

Constant 2.8431*** 2.8507*** 2.8578*** 2.8503*** 2.9351*** 2.6055*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Observations 189296 189296 189296 189296 189296 189296 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A22: H1_BSEMODEL_Sensitivity analysis 175% 
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 (1) (2) (3) (4) (5) (6) 

 av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

       

L.av_cap_ 0.5366*** 0.5361*** 0.5387*** 0.5390*** 0.5390*** 0.5390*** 

incumbents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0000 -0.0004 0.0013 0.0011 0.0011 0.0011 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

       

L. herf_route  -0.0130*** -0.0204*** -0.0196*** -0.0196*** -0.0196*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) 

       

L. n_carr   -0.0022*** -0.0024*** -0.0024*** -0.0024*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0040** 0.0040** 0.0040** 

    (0.00) (0.00) (0.00) 

       

L.      -0.0015  

fuel_price_logged     (0.00)  

       

L. CPIU      -0.0000 

      (0.00) 

       

Constant 2.2746*** 2.2880*** 2.2844*** 2.2812*** 2.2859*** 2.2903*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Observations 187312 187312 187312 187312 187312 187312 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A23: H2_BASEMODEL_Sensitivity analysis 125% 
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 (1) (2) (3) (4) (5) (6) 

 av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

av_cap_incumben

ts_logged 

L.av_cap_incumbents 0.5246*** 0.5244*** 0.5277*** 0.5278*** 0.5278*** 0.5278*** 

_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large 0.0008 0.0006 0.0023 0.0019 0.0019 0.0019 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0102** -0.0184*** -0.0179*** -0.0179*** -0.0179*** 

  (0.00) (0.00) (0.00) (0.00) (0.00) 

       

L. n_carr   -0.0025*** -0.0026*** -0.0026*** -0.0026*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0028 0.0028 0.0028 

    (0.00) (0.00) (0.00) 

       

L. fuel_price_logged     -0.0018  

     (0.00)  

       

L. CPIU      -0.0000 

      (0.00) 

       

Constant 2.3333*** 2.3435*** 2.3404*** 2.3385*** 2.3422*** 2.3465*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.04) 

Observations 189362 189362 189362 189362 189362 189362 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A24: H2_BASEMODEL_Sensitivity analysis 175% 
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 (1) (2) (3) (4) (5) (6) 

 av_freq_incumben

ts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

L.av_frequ_ 0.0036 0.0038 0.0103 0.0116 0.0116 0.0116 

incumbents_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large 0.0018 0.0013 -0.0149 -0.0190 -0.0190 -0.0190 

 (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. herf_route  -0.0187 0.0594*** 0.0720*** 0.0720*** 0.0720*** 

  (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. n_carr   0.0238*** 0.0211*** 0.0211*** 0.0211*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0637*** 0.0637*** 0.0637*** 

    (0.01) (0.01) (0.01) 

       

L.      -0.3183***  

fuel_price_logged     (0.01)  

       

L. CPIU      -0.0137*** 

      (0.00) 

       

Constant 4.9163*** 4.9273*** 4.7424*** 4.7127*** 5.2394*** 7.7308*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.09) 

Observations 187312 187312 187312 187312 187312 187312 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A25: H3_BASEMODEL_Sensitivity analysis 125% 
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 (1) (2) (3) (4) (5) (6) 

 av_freq_incumben

ts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

av_frequ_incumbe

nts_logged 

L.av_frequ_incumbents 0.0068 0.0071 0.0145* 0.0159* 0.0159* 0.0159* 

_logged (0.01) (0.01) (0.01) (0.01) (0.01) (0.01) 

       

L. entry_large -0.0176 -0.0181 -0.0330 -0.0389 -0.0389 -0.0389 

 (0.03) (0.03) (0.04) (0.04) (0.04) (0.04) 

       

L. herf_route  -0.0212 0.0614*** 0.0736*** 0.0736*** 0.0736*** 

  (0.02) (0.02) (0.02) (0.02) (0.02) 

       

L. n_carr   0.0252*** 0.0226*** 0.0226*** 0.0226*** 

   (0.00) (0.00) (0.00) (0.00) 

       

L. lcc_on_route    0.0625*** 0.0625*** 0.0625*** 

    (0.01) (0.01) (0.01) 

       

L.      -0.3185***  

fuel_price_logged     (0.01)  

       

L. CPIU      -0.0137*** 

      (0.00) 

       

Constant 4.8914*** 4.8784*** 4.7039*** 4.7013*** 5.2023*** 7.7104*** 

 (0.04) (0.04) (0.04) (0.04) (0.04) (0.09) 

Observations 189362 189362 189362 189362 189362 189362 
Standard errors in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 

 
Table A8: H26_BASEMODEL_Sensitivity analysis 175% 
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