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Abstract

This research proposes several performance-based measures to evaluate the estimation of a

high-dimensional covariance matrix, where the number of variables can be close to the number of

observations. In case of high-dimensional data, the sample covariance contains a lot of estimation

error, and is not even invertible in some cases. This research makes a comparative analysis of

covariance estimation based on different priors for the Bayesian estimation methodology. The

performances of the resulting portfolios are judged in the realistic capital asset environment

of the New York Stock Exchange. The sample covariance points out to be an unfit estimator

in case of high-dimensional data. When a proper prior is chosen for the Bayesian estimation

method, this method does not suffer from this dimensionality issue and clearly outperforms the

natural estimator.

Nowadays the amount of money invested in investment funds is larger than ever. Most of this

capital is invested in the financial market and the goal of large institutional investors like pension

funds, mutual funds and insurance companies, is to invest their capital in such a way that the

aims of their investors are fulfilled as good as possible. For different companies the investment

strategies may vary, but something every company wants, is to predict the returns and riskiness

of its investment portfolio properly. Therefore a lot of research is done during the last decades in

order to try to determine and understand the characteristics of asset returns. Natural estimation

methods are applied to determine sample moments of asset returns and then it became clear that it

is difficult to determine the covariance matrix of asset returns properly. Bai and Shi (2011) pointed

out that the natural way to estimate the covariance, by means of the sample covariance estimator,

in some situations leads to estimation error in the parameters. Particularly if there are not much

more observations (T ) than assets (N ).

So although this estimator is unbiased, it might contain estimation error and since the con-

struction of a investment portfolio is mainly based on the assumed covariance matrix, this may

lead to suboptimal asset allocation. Not only the expected return of the portfolio may differ from

the realized return, also the riskiness of the portfolio may be estimated incorrectly, since wrong
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correlations between assets are assumed. This means that if the goal is to forecast the performance

and riskiness of an investment portfolio in an appropriate way, it is necessary to use an estimation

method that does not suffer from this dimensionality issue. A nice way to do this is by applying

Bayesian estimation methods. Bayesian estimation methods namely not only tackle the dimen-

sionality issue, but also give the investor the opportunity to incorporate beliefs about the assets

in the estimation process. In the Bayesian estimation method a certain model is assumed to be

the data generating process and the parameters in this model are considered as random variables.

So beside realized returns on the assets in the past, this methodology also requires a specification

for the distribution of the parameters in the underlying model for the returns; the so-called prior

distribution. A detailed introduction to Bayesian statistics and an explanation of the Bayesian

estimation method applied in the field of portfolio management is given in section I.

In this research the performance of the Bayesian estimation method is evaluated under different

circumstances. Different prior distributions are considered and the effect on the estimation of the

covariance matrix and the performances of the resulting minimum variance portfolios (Markowitz,

1952) are evaluated. The portfolio returns are also compared with the returns of portfolios based on

the sample mean and sample covariance. This is done by using several econometric and economic

evaluation criteria as in the paper of van Engelen et al. (2014).

The paper proceeds as follows. Section I gives an introduction to Bayesian statistics. Section

II introduces the data used in this research. In section III both the natural and the Bayesian

estimation methodology for the mean and covariance is presented. At the end of the section also

Markowitz’s Portfolio Theory is discussed for the determination of the portfolio weights. Section

IV introduces the evaluation criteria. Section V presents the primary results. Section VI concludes.

I. Introduction to Bayesian Statistics

To be able to understand the theory behind the Bayesian estimation method, it is necessary to

be familiar with Bayesian statistics. In Bayesian statistics population parameters θ are considered

as random variables that have probability distributions. These probabilities measure the degree of

belief in certain values of the variables and as a result the degree of belief in all states of nature

are specified; these are non-negative and the total belief in all states of nature is fixed to one.

Subsequently via the rules of probability - known as Bayes’ Theorem (Bayes, 1763) - beliefs are

revised, given the observed data: y. Bayes’ Theorem is given by the following formula:

p(θ|y) =
p(y|θ)p(θ)
p(y)

, (1)

where p(.) denotes a probability distribution and p(.|.) a conditional distribution. When y

represents the data and θ the parameters in a statistical model, Bayes’ Theorem provides the

basis for Bayesian inference. Within the context of Bayesian statistics, the assumed probability

distribution of the parameters: p(θ) is called the prior distribution and the revised beliefs are

denoted by the conditional distribtuion p(θ|y), which is called the posterior distribution.
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To translate this formal definition to the field of portfolio management this research considers;

assume there is just one asset and the following model is assumed to be the data generating process:

yt = θ + εt. (2)

In this model yt denotes the return at time t, θ is the ’population parameter’ that can be seen

as the expected return and εt is the idiosyncratic return at time t. Theoretically, the return on this

asset in the next period can be any value between minus infinity and infinity. Altough it is not

certain what the return will be, an investor may have so-called prior beliefs about it. For example

the investor may belief that the average return on this asset is m̄ and that the volatility is about

s̄. To specify beliefs about all ’states of nature’ a certain distribution for the parameter θ must

be chosen, such that all possible returns have a non-negative probability and all probabilities sum

up to one. Therefore a possible probability specification for θ might be a normal distribution with

mean m̄ and variance s̄2. Subsequently observed data is used to revise these prior beliefs to get

posterior beliefs. The revision of the beliefs is graphically illustrated in figure 1.

A. Graphical Illustration

Figure 1. Graphical illustration of Bayesian estimation method

Since the Bayesian estimation method is not the most trivial way to estimate a parameter, a

graphical illustration of the estimation process is presented in figure 1. In this figure three different

situations are sketched. In the most upper part a quite informative prior is chosen. This means
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that the user is quite sure that the true parameter value is equal to or at least close to the value

believed beforehand and is illustrated by a spiky prior distribution. According to the fat tails of

the likelihood function it is clear that there is relatively much variation in the data. As discussed

before the resulting posterior distribution is some kind of a combination of the prior distribution

and the likelihood function and lies somewhere in between. Finally, from this posterior distribution

a point estimate for the parameter of interest can be made, so in this research from the posterior

of µ (Σ) an estimate for µ (Σ) is derived by using the moments of these distributions.

In the second situation the same prior is chosen, but there is less variation in the data. This

is illustrated by thinner tails of the likelihood function. As a result the mode of the posterior

distribution lies closer to the mode of the likelihood function and since there is less uncertainty

about the true parameter value, the posterior distribution is more peaked as well.

The third situation shows a situation wherein the prior specification is less informative than

in situation 1 and the variation in the data is similar. Since there is more uncertainty about the

correctness of the prior specification, the posterior moves towards the likelihood function again.

However due to this uncertainty about the prior and the variation in the data, the tails of the

posterior distribution are big in this situation.

To summarize: in the Bayesian estimation process first a prior distribution for the parameters

of interest is specified and subsequently this distribution is ’updated’ by information contained in

the data. This way an optimal combination between bias and variance is found by combining the

investor’s prior beliefs about the assets - which are mainly biased, but have very little variance -

and the information in the past returns - which is captured in unbiased estimators with a relatively

high variance. A step-by-step guide through this process is given by Idzorak (2004). The resulting

distribution is called the posterior distribution and from this distribution characteristics of the

parameters can be derived.

II. Data

The primary data used in this research comes from the Center for Research in Security Prices

database. It consists of monthly returns on stocks that were continuously listed on the New York

Stock Exchange (NYSE) between january 1998 and december 2012. From all stocks that met these

requirements, at random 50 stocks were selected. To be able to apply the Capital Asset Pricing

Model implied by Sharpe (1964) and the Fama & French Three Factor Model (Fama and French,

1993) also data on the market portfolio, on firms with small and large market capitalizations and

on firms with high and low book-to-market ratios is collected. For ease and simplicity the riskfree

interest rate is ignored by setting it equal to zero.

During this research a moving window approach is applied to evaluate the out-of-sample per-

formance of the portfolios implied by the different estimation methods. To check for the influence

of the dimensionality issue with the sample mean and covariance discussed by Bai and Shi (2011),

different lengths of the moving window are considered. Window lengths of 60 and 100 are used to
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create situations in which T ≈ N and T � N, respectively.

III. Estimation Methodology

In this section a brief overview of the methodology applied in this research is given. In the first

part of this section the natural way to estimate the mean and covariance is presented. The next

subsection contains a detailed explanation of the Bayesian estimation method. To conclude the

construction of the optimal portfolio based on Markowitz’s Portfolio Theory is discussed.

A. Sample Mean and Sample Covariance Estimation Method

Before the more advanced Bayesian estimation method is discussed, the natural way to estimate

the covariance is shown. Let Rt be a Nx1 vector of asset returns in period t. Then the estimates

of the sample mean and sample covariance based on T time periods are respectively given by

µ̂ =
1

T

T∑
t=1

Rt, (3)

Σ̂ =
1

T − 1

T∑
t=1

(Rt − µ̂)(Rt − µ̂)′. (4)

B. Bayesian Estimation Method

As discussed extensively in section I, the Bayesian estimation method is based on conditional

probabilities and offers the user the opportunity to incorporate his or her prior beliefs in the

estimation process. This is done by specifying the prior distribution of the parameters in the

model, so the first step in the process is to specify the model that is assumed to be the underlying

data generating process for the stock returns. In this research the following model is assumed:

Rt = µ+ εt, (5)

where Rt is the vector of realized returns at time t, µ is the expected return vector and εt

contains the specific returns on the assets at time t. Within this model the parameter µ is assumed

to follow a certain distribution and so prior beliefs can be incorporated by chosing this distribution

and setting certain ’starting values’ for the parameters. In this research it is assumed that µ is

normally distributed with parameters b and B:

µ ∼ N(b, B). (6)
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B.1. Prior Specifications

To be able to determine the posterior distribution analytically, in this research is chosen to work

with conjugate priors for the expected return vector µ and the covariance matrix of the assets Σ.

Consequently two informative priors are chosen, but to account for the uncertainty about Σ and

the aim to find a proper posterior of it that is mainly based on the data, the least informative prior

is used for Σ. This is a N -dimensional Wishart distribution for the precision matrix Σ−1, with

v0 = N degrees of freedom and scale matrix R0 = 1
v0

Σ̃−1. Here Σ̃ might be any prior guess for the

real covariance and therefore in this research three different priors are used1. The first is an identity

matrix multiplied by a constant based on empirical research: λIN . Empirical research shows an

average volatility of about 20% on annual stock returns, which results in λ = 3.333e−3 for monthly

returns. For ease and simplicity no correlations between assets are incorporated in the prior in this

situation. The second and third priors are more advanced and do incorporate correlations. They

are based on the covariances implied by the Capital Asset Pricing Model and the Fama & French

Three Factor Model, respectively. Both models are presented later in this section and are seen as

descriptive models for asset returns. Since both models are factor models, the implied covariances

should not suffer from the dimensionality issue and might be good priors for Σ.

For µ three more informative priors are considered. The first is based on empirical research

again. That shows an average annual return on stocks of about 8%. This results in a vector in

which each element equals 6.434e−3, because this research deals with monthly data. The second

prior is the expected return vector based on the Capital Asset Pricing Model (CAPM) and the last

is the expected return vector based on the Fama & French Three Factor Model. To regulate the

influence of the prior specifications on the posterior distribution, the certainty about the prior for

µ can be incorporated. This is done by defining B in equation (6) as cIN and chosing a certain

value for c. To ensure a nice trade-off between bias and variance this research uses c = 1.000e−3.

B.2. Capital Asset Pricing Model

In the previous paragraphs different priors for µ and Σ are presented. The latter two are based

on the CAPM and the Fama & French Three Factor Model, respectively and to show how these

priors are found, these two models are presented in the next subsections. This paper starts with

the CAPM. The CAPM is a univariate regression model in which stock returns are regressed on

the market return. In this model it is assumed that investors are risk-averse and that they make

their one-period investment decisions based solely on the expected returns and the volatility of the

returns. The CAPM is written as

Rt = α+ βRmarkett + εt, (7)

where Rt is the vector of realized returns, Rmarkett is the realized return on the market portfolio

1This prior specification for Σ−1 corresponds with a N -dimensional inverse Wishart distribution for Σ with scale
parameter v∗ = v0 + N + 1 and scale matrix R∗ = R−1

0 .
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and εt contains the idiosyncratic returns on the assets at time t. The priors for µ and Σ implied

by this model therefore are given by:

µ̃CAPM = α̂+ β̂R̄market (8)

Σ̃CAPM = β̂β̂′σ2
market (9)

respectively, in which α̂ and β̂ denote the regression coefficients of equation (7), R̄market is the

average market return and σ2
market denotes the variance of the market return.

B.3. Fama & French Three Factor Model

The next model that is applied to get prior specifications, is the Fama & French Three Factor

Model. This is an extension of the CAPM. Beside the market return, also the return differentials

between companies with small and big market capitalizations (RSMB) and between companies with

high and low book-to-market ratios (RHML) are used as regressors in this model:

Rt = α+ β1R
market
t + β2R

SMB
t + β3R

HML
t + εt. (10)

The priors for µ and Σ implied by this three factor model are:

µ̃FFM = α̂+ β̂1R̄
market + β̂2R̄

SMB + β̂3R̄
HML (11)

Σ̃FFM = β̂Ωβ̂
′

(12)

where β̂ = [β1, β2, β3] denotes the Nx3 matrix of parameter estimates and Ω is the covariance

matrix of the three factors.

B.4. Posterior distributions

Once the priors are specified, the next step is to update the prior beliefs about the parameters

with information in the stock returns. After applying Bayes’ Theorem it can be seen that the

posterior distribution µ|R is proportional to the prior distribution of µ multiplied by the conditional

distribution of R|µ:

p(µ|R) =
p(µ,R)

p(R)

=
p(µ)p(R|µ)

p(y)

∝ p(µ)p(R|µ). (13)

Since conjugate priors are chosen for µ and Σ, this is a known density function and it is possible
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to obtain the marginal posterior density functions of the parameters given the data: p(µ|R) and

p(Σ|R) analytically. This is done by integrating over all possible values of the other parameter and

these distributions are of the same class as the prior distributions were, so

p(µ|R) =

∫
Σ
p(µ,Σ|R)dΣ (14)

p(Σ|R) =

∫
µ
p(µ,Σ|R)dµ (15)

denote the marginal posterior densities of µ and Σ, respectively. From (14) we can derive the

’updated’ parameters of the distribution of µ: b(1) and B(1). An estimation of the covariance matrix

of the assets, Σ(1), can be derived from (15). Together these estimates lead to the predictive density

of R: p(R|µ(1),Σ(1)). To find the updated parameters different techniques can be applied. In this

research the first moments of the posterior distributions for µ and Σ are used as point estimates.

The posterior distribution for µ is

µ|R,Σ ∼ NN (b(1), B(1)), (16)

where

B(1) =

[ T∑
t=1

I ′NΣ−1IN +B−1
0

]−1

, (17)

b(1) = B(1)

[ T∑
t=1

I ′NΣ−1Rt +B−1
0 b0

]−1

. (18)

In definition (17) and (18) b0 and B0 denote the parameters of the prior distribution for µ (see

equation 6). The posterior distribution for Σ is

Σ|R,µ ∼WN (v(1), R(1)), (19)

where

v(1) = v0 + T, (20)

R(1) =

[
R−1

0 +
T∑
t=1

(Rt − b(1))(Rt − b(1))′
]−1

. (21)

Using this results, point estimates for µ and Σ are given by
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µ̂ = b(1), (22)

Σ̂ = v(1)R(1). (23)

The predictive density itself will not be used in this paper, because no forecasts will be made.

In the portfolio optimization context discussed here, only the estimates of µ(1) and Σ(1) are relevant

as they are the inputs for Markowitz’s theory to determine the optimal portfolio weights.

C. Markowitz’s Mean-Variance Portfolio Theory

In the previous sections a detailed explanation is given how to estimate the covariance matrix

of a set of asset returns. Now the next step is to find optimal portfolio weights corresponding to

this covariance. The method used to determine these portfolio weights is based on Markowitz’s

Mean-Variance Portfolio Theory (Markowitz, 1952). The required inputs are the expected returns,

the covariance matrix and a set of constraints. Constraints may be no short-selling, limitations on

portfolio weights or what so ever.

The mean-variance principal can be expressed by the following problem

min
ω

ω′Σtω

s.t. ω′µt ≥ µ∗ (24)

ω′ι = 1 (25)

in which the variance of the portfolio is minimized for a given target return (24) and under the

constraint that all capital is invested (25). In this optimization problem ω denotes the vector of

portfolio weights, Σt the covariance matrix estimated at time t, µt the expected returns at time t,

µ∗ the target return and ι a vector of ones. Solving this problem results in the optimal weights

stated in the following formula:

ω∗ =
Σ−1
t µt

ι′Σ−1
t µt

. (26)

C.1. Minimum Variance Portfolio

A special case of a mean-variance optimal portfolio is the minimum variance portfolio. Best

and Grauer (1992) pointed out that estimation errors in the expected return vector are about ten

times more influential than estimation errors in the covariance matrix. Since this research aims to

focus on differences in estimation error in the covariance instead of the expected return, using the

minimum variance portfolio helps to avoid this problem. The asset weights for this portfolio are

found by solving the same minimizing problem as above, but without contraint (24) and are given

9



by:

ω∗MV P =
Σ−1
t ι

ι′Σ−1
t ι

. (27)

IV. Evaluation Methodology

In this section the evaluation criteria for the minimum variance portfolios are presented. The

evaluation criteria used in this research are the realized return, realized volatility and the ex post

Sharpe Ratio.

A. Realized Return and Realized Volatility

The first evaluation criterion that is considered, is the realized return. In the end this what

matters most for investors, because it determines the profit or loss they have made. The realized

return of a portfolio is calculated by multiplying the portfolio weights chosen for a certain period

t by the realized returns on the assets in that period:

RRportt = ω′tRt. (28)

This may differ from the expected return, which is given by E[Rportt ] = ω′tE[Rt], and therefore

the expected and realized return can be compared to check if predictions before investing were

valid. The same can be done with the volatility of the portfolio returns. Before investing a volatility

forecast of the portfolio is made by using the portfolio weights and the estimated covariance matrix:

E[σt] =

√
ω′tΣ̂tωt. (29)

Again the realized volatility can - and in most situations does - differ from the expected volatility

due to unexpected price changes in the assets. The realized volatility can easily be computed by

formula (4) and so it is possible to compare the realized volatility over a time period with for

example the average expected volatility over this period.

B. Ex Post Sharpe Ratio

Combining the two perfomance measures discussed above results in the ex post Sharpe ratio

(Sharpe, 1966). This is a measure of the risk-adjusted return on a portfolio. A higher ratio means

that a higher return is realized per unit of risk. Since the performance of an investment portfolio

is mainly based on the composition of it, and for the minimum variance portfolio considered in

this research holds that the composition solely depends on the estimated covariance matrix, the

ex post Sharpe ratio is a good evaluation criterion for the estimation of the covariance. Under the

assumpion of a riskfree interest rate of zero, the Sharpe ratio is given by
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SR =
1

T

T∑
t=1

RRportt

σT
, (30)

where RRportt denotes the realized return of the portfolio at time t and σT the realized volatility

of the portfolio over the time period t = 1, 2, ..., T .

V. Results

After introducing the estimation methods for the covariance matrix and the portfolio weights,

and showing the different evaluation criteria, in this section the results of the portfolios are dis-

cussed. However, before showing the out-of-sample performance of the portfolios an overview of

the different priors that are used in the Bayesian estimation method is given.

A. Prior Specifications

One thing that is the same for all three prior specifications, are the prior distributions. To

ensure known distributions for the posteriors, the following conjugate priors are chosen for µ and

Σ, respectively:

µ ∼ NN (b0, B0), (31)

Σ ∼WN (v0, R0). (32)

The differences between the priors are in the ’start values’ of the parameters b0 and R0. The

certainty about the expected return vector b0 is captured in B0. This parameter is set equal to

cIN with c = 1.000e−3 in all prior specifications. The value of c is chosen in such a way that a nice

trade-off between bias and variance is ensured in the posterior. Because in this research is chosen

to use the least informative prior for Σ to limit the influence of the prior as much as possible, but

to ensure a known distribution of the posterior, v0 is the same in each situation as well and equals

N . The starting values for b0 and R0 can be found in table I, where a and σ2
month are constants

based on empiral research2. For monthly data that gives a = 6.434e−3 and σ2
month = 3.333e−3.

Table I Prior specifications

b0 B0 v0 R0

Situation 1 aιN cIN N 1
N [σ2

monthIN ]−1

Situation 2 µ̃CAPM cIN N 1
N Σ̃−1

CAPM

Situation 3 µ̃FFM cIN N 1
N Σ̃−1

FFM

2Empirical research shows an average annual return of 8% on stocks. The average volatility is about 20%.
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B. Minimum Variance Portfolio Evaluation

After specifying the priors the Bayesian estimation method can be applied to find the posteriors

and finally get estimates for the expected returns and the covariance matrix. For this estimation

process a moving window approach is applied. Each iteration a subsample of 60 (or 100) successive

observations is used as dataset to find the posterior. From this posterior an estimation of the

covariance is derived and this covariance is used to determine the portfolio weights of the mini-

mum variance portfolio. Subsequently with these weights the expected return, realized return and

expected volatility of the portfolio in the next period are determined. Since the data came from

the period January 1998 - December 2012, 180 observations on each asset were available. This

resulted in 120 (80) out-of-sample forecasts for a window length of 60 (100). From these forecasts

the realized volatility and ex post Sharpe ratio are derived.

This procedure is followed for the three different prior specifications presented earlier in this

section, as well as for the natural sample estimators presented in definition (3) and (4). To give

a clear overview of the performances of the portfolios implied by the different methods, also the

compounded return is given. In case a window length of 60 (100) is used, the compounded return is

the amount of euros an investor that initially invested one euro in the minimum variance portfolio

will have after 120 (80) months. This is under the assumption that after each month the current

saldo is invested in the minimum variance portfolio again. As a side note it has to be mentioned that

no transaction costs are considered. The results with window lengths of 60 and 100 are presented

in tables II and III, respectively. All percentages in these tables are annualized.

Table II Performance Minimum Variance Portfolio

Window length: 60 Bayes Prior 1 Bayes Prior 2 Bayes Prior 3 Sample Estimators

Expected Return 10.18% 10.34% 10.10% 10.03%

Realized Return 5.788% -0.063% 1.151% -0.488%

Expected Volatility 6.176% 2.992% 2.982% 3.953%

Realized Volatility 11.24% 20.15% 20.40% 21.59%

Sharpe Ratio 0.1448 -0.0009 0.0162 -0.0065

Compounded Return 1.6467 0.8106 0.9108 0.7540

When we take a look at table II the first thing that points out, is that the expected return on

the minimum variance portfolio is approximately the same for all estimation methods. However,

the realized returns differ a lot. Only the portfolio implied by the Bayes estimation method with

the prior from situation 1 shows a nice positive return that approximates the expected return to

some extend. The other three portfolios show very low or even negative returns, which seems to

be quite strange, since the realized return on the market index is about 15% in the same period.

While considering the expected and realized volatility, practically the same tendence is noticed.

The only portfolio which volatility approximates the expected volatility a little bit, is the one based

on the first prior. The remaining methods clearly underestimate the volatility and show very high
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realized volatilities. Especially if it is mentioned that the realized volatility on the market index

is just 17% in the same time period and the aim was to find the portfolio with the lowest possible

volatility: the minimum variance portfolio. These results are not striking for the portfolio based

on the sample estimators. It is well known that these estimators suffer from the dimensionality

issue implied by Bai and Shi (2011) if the number of assets is close to the number of observations.

However, for the portfolios based on the Bayesian estimation method it is strange, since this method

should not have this problem.

A possible explanation is found by inspecting the priors chosen for Σ. In both situation 2 and 3

the parameter R0 is based on a covariance matrix implied by a factor model. Below the problem in

situation 2 is discussed extensively. Situation 3 will not be discussed explicitly, but the reasoning

why situation 3 does not lead to the desired outcome is quite similar. When the expressions for

R0 in table I and Σ̃CAPM in equation (9) are investigated, it becomes clear that the vector β̂ is

very influential. In case this vector has two elements that are approximately the same, this will

lead to a situation in which two columns of Σ̃CAPM are approximately the same. A well known

theorem of matrix algebra states that a square matrix is invertible if and only if all its columns

are linearly independent. In this situation the columns are independent, since they are not exactly

the same and therefore Σ̃CAPM can be inverted and used as prior, but the inverse will contain a

lot of estimation error. As can be seen in equations (17) and (18) this inverse occurs quite often in

calculations in the Bayesian estimation process and subsequently resulting matrices are inverted as

well. Due to this errors are compounded and the final estimate of the covariance becomes worthless.

Turning back to the results in the table and taking a look at the Sharpe ratios and the com-

pounded returns, the same conclusion can be drawn. The first prior leads to a nice positive Sharpe

ratio of 0.14, which means a good reward per unit of risk. The other methods have ratios close to

or even smaller than zero. The compounded return gives approximately the same information as

the realized return, but it points out that only the prior specification of situation 1 is not capital

destructive. This seems to be in contradiction with the positive average return of prior 3, but can

simply be explained by the fact that (1− α)(1 + α) < 1, although the average return is zero.

Table III Performance Minimum Variance Portfolio

Window length: 100 Bayes Prior 1 Bayes Prior 2 Bayes Prior 3 Sample Estimators

Expected Return 9.894% 9.237% 9.523% 9.519%

Realized Return 3.590% 0.777% 2.123% 2.068%

Expected Volatility 6.923% 5.390% 5.351% 6.502%

Realized Volatility 12.15% 13.74% 14.13% 14.06%

Sharpe Ratio 0.0839 0.0163 0.0430 0.0420

Compounded Return 1.2033 0.9874 1.0748 1.0715

Next the results of portfolios based on the 100 most recent observations are discussed. These

results are presented in table III and it is important to notice that these values cannot be compared
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one-to-one with values from table II, because the forecast period is not the same. The data in table

II is based on returns of portfolios that are constructed over the period January 2003 - December

2012, while the data in table III is based solely on portfolio returns over the period May 2006 -

December 2012.

When the first row of the table - with expected returns - is inspected, the conclusion is the same

as for a window length of 60. There are no significant differences between the estimation methods.

The realized returns and volatilities show again that prior specification 1 leads to the best portfolio

performance. The difference with the other methods is not that big, though. In comparison with

the situation in which T ≈ N, it can be seen that the natural estimation method performs much

better. Results are comparable with the other methods now. The second prior specification for

the Bayesian estimation method shows the previously discussed dependency issue with the columns

again. For the third prior this seems not to be dramatically any more. A reason can be that a

larger sample to estimate the parameter matrix β from equation (12) leads to less uncertainty in

the parameter estimates.

The Sharpe ratios by definition show approximately the same pattern as the realized returns

and volatilities. Prior 1 performs best and the reward per unit of risk is almost twice as high as

of the portfolio based on the sample estimators. Prior 2 shows a positive ratio this time, but this

prior specification does not seem to be very useful, since it is even outperformed by the natural

estimation method. The same tendence holds for the compounded returns, with that difference

that the portfolio based on prior 2 is still capital destructive.

C. Adjusted Prior Specifications

While overlooking the results, the general conclusion is that the more advanced prior specifica-

tions of situation 2 and 3 do not lead to better results than the simple specification of situation 1.

Therefore it is chosen to create two new priors that combine best of both situations. Priors 4 and

5 have the same prior specifications for µ as in situations 2 and 3, respectively, but the start values

for R0 differ. All elements that are not on the main diagonal are set equal to zero. This is to avoid

a situation where the columns of R0 are nearly dependent, while the advanced estimates of the

volatilities can be used. Again window lengths of 60 and 100 are used to estimate the covariances

and portfolio performances are compared with that of prior 1 and the sample estimator. Annualized

results are presented in tables IV and V.

When table IV is analyzed, it points out that the results of the portfolios based on the new

priors are approximately the same as of the portfolio based on prior 1. The expected returns are

a bit higher and the expected volatilities lower, but these expectation are not proven. In table V

though, it can be seen that for a window length of 100, not only the expected returns, but also

the realized returns are higher for the portfolios based on the new priors. This might be due to

more accurate parameter estimates in equations (7) and (10), because more data is available while

performing ordinary least squares to get these estimates. As a consequence this leads to better

priors for µ and Σ and in the end to better posteriors and covariance estimates.
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Table IV Performance Minimum Variance Portfolio

Window length: 60 Bayes Prior 1 Bayes Prior 4 Bayes Prior 5 Sample Estimators

Expected Return 10.18% 11.89% 11.58% 10.03%

Realized Return 5.788% 5.483% 5.780% -0.488%

Expected Volatility 6.176% 4.998% 5.230% 3.953%

Realized Volatility 11.24% 11.75% 11.46% 21.59%

Sharpe Ratio 0.1448 0.1315 0.1423 -0.0065

Compounded Return 1.6467 1.5901 1.6437 0.7540

Table V Performance Minimum Variance Portfolio

Window length: 100 Bayes Prior 1 Bayes Prior 4 Bayes Prior 5 Sample Estimators

Expected Return 9.894% 10.31% 10.28% 9.519%

Realized Return 3.590% 4.040% 4.055% 2.068%

Expected Volatility 6.923% 6.103% 6.213% 6.502%

Realized Volatility 12.15% 12.28% 12.26% 14.06%

Sharpe Ratio 0.0839 0.0933 0.0938 0.0420

Compounded Return 1.2033 1.2371 1.2383 1.0715

It can also be seen that the highest Sharpe ratios and compounded returns so far are reached

with the new priors and therefore it seems to be useful to apply factor models for prior specifications.

Now an interesting thing might be to consider a prior for Σ that is more informative to see which

influence that has on the portfolio performance.

D. More Informative Prior for Σ

As discussed in section III this research so far used the least informative prior for Σ to ensure a

posterior distribution for Σ that is mainly based on the data. However, in the previous subsection

it is pointed out that the portfolios implied by the Bayesian estimation method clearly outperform

the portfolios implied by the sample estimators. Therefore it might be interesting to slightly adjust

the priors for Σ, such that they become more influential.

In the least informative prior for Σ (or Σ−1) the prior distribution for Σ−1 is given by a Wishart

distribution with v0 = N degrees of freedom and scale matrix R0 = 1
v0

Σ̃−1. As graphically illus-

trated in figure 1 the certainty about the prior to some extend influences the posterior distribution

and therefore it might be interesting to change the degrees of freedom in the prior for Σ. The

degrees of freedom can be seen as the number of observations added to the dataset by using this

prior. To illustrate the effect of changing v0, v0 is specified as pN and different values for p are

considered. The prior becomes more influential if p > 1 and less influential if p < 1. Consequently

setting p =∞ leads to a situation in which the posterior will be the same as the prior and setting
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p ≈ 0 will result in approximately the same estimate for Σ as the sample estimator gives.

Since the effect of changes in v0 is evaluated for the Bayesian priors of situation 1, 4 and 5, it

does not make sense to chose a very high value for p. This is because all off-diagonal elements of

the covariance will remain very close to zero in that situation and no correlations between assets,

that are necessary to achieve the diversification needed to create the minimum variance portfolio,

are found. Therefore in this research values for p are chosen between 0.5 and 2.0. The results for a

window length of 60 are presented in table VI. A window length of 100 results in quite comparable

results and therefore the table is shown in appendix A.

Table VI Performance Minimum Variance Portfolio

Window length: 60 Exp Ret Real Ret Exp Vol Real Vol SR Comp Ret

Situation 1 p=0.5 10.49% 4.768% 6.114% 11.81% 0.1140 1.484

p=1.0 10.18% 5.789% 6.176% 11.24% 0.1448 1.647

p=1.5 10.02% 6.444% 6.075% 10.99% 0.1644 1.757

p=2.0 9.930% 6.940% 5.943% 10.88% 0.1786 1.843

Situation 4 p=0.5 12.12% 4.630% 5.198% 12.58% 0.1040 1.451

p=1.0 11.89% 5.483% 4.998% 11.75% 0.1315 1.590

p=1.5 11.71% 6.010% 4.747% 11.31% 0.1493 1.680

p=2.0 11.56% 6.389% 4.516% 11.04% 0.1623 1.747

Situation 5 p=0.5 11.92% 4.831% 5.400% 12.27% 0.1112 1.485

p=1.0 11.58% 5.798% 5.230% 11.46% 0.1423 1.644

p=1.5 11.34% 6.385% 4.993% 11.05% 0.1621 1.746

p=2.0 11.16% 6.803% 4.770% 10.80% 0.1764 1.821

When table VI is examined the first thing that points out is that in all situations the realized

returns go up if p increases and that the realized volatilities go down at the same time. This might

be interesting, but can be declared by the following two observations. The first is based on the

trade-off between bias and variance in the Bayesian estimation method. The sample covariance

namely contains a lot of estimation error when N ≈ T and for small values of p the posterior

distribution, and therefore also the estimation of Σ, probably contains this error, which results in

bad portfolio performance. The second is based on the analysis of the data set and the market

return. It turns out that the average return on the assets, and so the market return, in the

investment period is about 15%, which is very high, and has of volatility of just 17%. When p

increases, the estimate of Σ becomes more like a diagonal matrix and therefore no correlations can

be used for diversification purposes. So in situation 1 the minimum variance portfolio will converge

to the market portfolio if p increases too much, because all assets are assumed to have the same

expected return and variance, and in situation 4 and 5 the assets with the lowest variances will

get huge weights, while others are ignored. Since the aim was to determine the influence of p on

the estimate of Σ and these estimates become worthless if p is too large, the maximum value of p
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is set equal to 2.0. It has to be mentioned though, that when a more advanced matrix is used for

Σ̃, such that correlations are already included in the prior, probably a nicer pattern will show up

when p changes.

To come back to the results; the next remarkable thing is that both the expected and realized

return and the expected and realized volatility converge to each other when p increases. So this

increase in p probably leads to a decrease in estimation error in the parameters and therefore

better expectations. When the latter two columns with the summary statistics are considered, the

conclusion obviously is the same. For all situations both the Sharpe ratio and the compounded

return increase when p increases.

VI. Conclusion

Taking everything into consideration the Bayesian estimation method seems to be a good

method to estimate a covariance matrix for investment purposes. The sample estimators are clearly

outperformed; even in situations they do not suffer from the dimensionality issue. However, the

specification of the prior distribution in the Bayesian estimation method points out to be very

important. In this paper it is shown that more advanced specifications of the prior distributions

do not necessarily lead to better results. Particularly when not so much data is available, it can be

more efficient to use simple properties found in empiral research to set priors. A drawback from

these simple specifications is that they do not incorporate correlations between assets in the priors,

though and this leads to missed diversification possibilities.

Another thing that might be very interesting to consider, is to chose other prior distributions

for µ and/or Σ. As Cont (2000) discusses in his paper about empirical properties of asset returns,

it points out that asset returns are not normally distributed. Outliers seem to occur more often

than a normal distribution can anticipate on and large negative returns occur more often than large

positive ones. Therefore a (lightly) skewed distribution with fatter tails might be better as prior

distribution for µ.
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Appendix A.

In table VII the results of the minimum variance portfolios based on a window length of 100

are shown. In the out-of-sample forecast period the average return on the market index was 11%

and had a volatility of about 19%.

Table VII Performance Minimum Variance Portfolio

Window length: 100 Exp Ret Real Ret Exp Vol Real Vol SR Comp Ret

Situation 1 p=0.5 9.843% 2.841% 6.974% 12.52% 0.0647 1.143

p=1.0 9.894% 3.590% 6.923% 12.15% 0.0839 1.203

p=1.5 9.928% 4.117% 6.792% 11.96% 0.0975 1.247

p=2.0 9.964% 4.515% 6.647% 11.85% 0.1078 1.280

Situation 4 p=0.5 10.19% 3.417% 6.406% 12.67% 0.0767 1.185

p=1.0 10.31% 4.040% 6.103% 12.28% 0.0933 1.237

p=1.5 10.38% 4.454% 5.811% 12.05% 0.1046 1.273

p=2.0 10.42% 4.761% 5.552% 11.90% 0.1130 1.299

Situation 5 p=0.5 10.18% 3.423% 6.485% 12.64% 0.0770 1.185

p=1.0 10.28% 4.055% 6.213% 12.26% 0.0938 1.238

p=1.5 10.32% 4.474% 5.940% 12.05% 0.1051 1.274

p=2.0 10.35% 4.784% 5.693% 11.91% 0.1135 1.301
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