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1 Introduction

Every day, people make choices with respect to sharing information. They choose

to strategically exaggerate or downplay. Real estate agents tell house sellers their

house is of average appeal - that way the price they get for it is likely to sound

good. At the same time, agents convince potential buyers how special the house is

- hopefully, they accept a high price, resulting in a high commission.

In many situations you can expect a message to induce the receiver(s) to take

a certain action in response. Your job interviewer chooses to hire you or not. The

bank chooses to grant you a credit or not. You know this, and you anticipate on

it. It gets di¢cult when you talk to di§erent receivers at the same time. Would

you still disclose your Friday night adventures when not only your friends but also

your boss is on Facebook? Talking to them separately, you would probably tell a

di§erent story or at least leave parts out talking to your boss. In some situations

however, it can be useful to disclose information publicly. When a company discloses

its annual revenue, investors believe it. The reason for this is not only the approval

of the accountant, but also the fact that the tax authority is provided with the same

information. Sharing information publicly can make it credible.

The previous examples reveal two choices people make in communication. The

first is whether to exaggerate, downplay or tell the truth. The second is whether to

communicate privately (to one receiver at a time) or publicly (to more receivers at

the same time). A last example of people who make these choices often are CEO’s

of big companies. They usually possess private information about the value of the

company, and are surrounded by stakeholders who want to know the truth. These

stakeholders could be investors, the board of directors, or internal managers. They

all want to know the real value of the company. Based on that they respectively

decide whether or not to (further) invest, reward the CEO or expand the company.

The CEO has an incentive to exaggerate the value of the firm to some of them. He

wants investors to think that the value of the company is high, so that they invest

and he can let the company grow. He doesn’t however want them to perceive the

value of the company a lot higher than it is, since sooner or later they find out and

this hurts his reputation. The CEO wants the board of directors to think that the

company is doing really well, since the board decides how much to reward him. The
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internal managers need to hear the true story. They should only decide to expand

when the company is actually doing well, otherwise they shouldn’t. How should the

CEO communicate? And should he talk publicly or privately?

The objective of this thesis is to investigate how senders communicate with more

than one receiver, in a situation where they want the receivers to take di§erent

actions. Furthermore, it will be investigated when senders choose to talk privately

and when they choose to talk publicly.

To this end, I extend the cheap-talkmodel of Crawford and Sobel (1982). My

extended model has the following main features. First of all, there is one sender

and there are m receivers. The sender has information that the receivers don’t

have1. This could be the value of the company that the CEO knows, but not the

investors. Furthermore, the sender has an incentive to communicate di§erent values

to di§erent receivers. The receivers want to know the truth; their expected utility

is the highest when their action is equal to the state of the world.

Solving the model yields the following insights. When the interests of a sender

and the receivers are so di§erent, that they will not believe each other, communica-

tion could nonetheless take place when the sender talks to the receivers as a group.

In that case it could be that the average interests of the group are in line with those

of the sender, and therefore the group will believe the sender’s message. It could also

be the case that the average interests of the group are too di§erent from those of the

sender for communication to happen, while private communication is possible with

some of the individuals. Based on a comparison of the interests of the receivers and

his own interests, the sender decides whether to communicate publicly or privately.

2 Related literature

This thesis aims to contribute to the extensive literature on cheap talk and the

research on multiple audiences. One of the first to write about cheap talk were

Crawford and Sobel (1982). They describe cheap talk as non-verifiable communi-

cation that is costless to the sender. Therefore, as opposed to signaling2, it is not

necessarily credible. Crawford and Sobel develop a communication model with one

1In cheap-talkliterature, this kind of information is often referred to as the state of the world.
2A signaling game is described by Spence (1973) as a game in which messages become credible

due to the cost of sending them.
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sender and one receiver. They find that the receiver’s expected welfare in equilib-

rium potentially rises when the interests of the receiver and the sender are more

aligned. Furthermore, equilibria with more partitions are pareto superior to equilib-

ria with less partitions. In his introduction to game theory, Gibbons (1992) solves

a comparable cheap-talkmodel with one sender and one receiver. His steps to do so

are repeated and extended by this thesis.

Farrel and Gibbons (1989) contributed to the cheap-talkliterature by adding an

extra receiver, or as they call it, audience. They investigate the di§erences between

private communication (with one receiver) and public communication (with more

than one receiver). They find that public communication can discipline the sender

to tell the truth, but also subvert the relationship between one sender and one

receiver. Goltsman and Pavlov (2011) also extend a standard cheap-talkgame with

more than one receiver. In their model, the utility functions of the receivers di§er.

The receivers thus do not only want something di§erent than the sender; they also

want something di§erent than each other. Goltsman and Pavlov find that when the

average of the biases of the receivers is high, private communication is preferred by

the sender. The sender chooses to communicate publicly when the average bias of

the receivers is low and the interests of the receivers are su¢ciently di§erent. This

thesis also aims to investigate communication when the sender would say di§erent

things to the di§erent receivers in private. Only now, this is a result of his own bias

towards them; the receivers themselves all want to know the truth.

Recently, di§erent researchers shifted from theoretical to empirical research about

cheap talk. Battaglini (2013) finds that in his experiments people happen to behave

quite similar to what could be expected based on cheap-talktheory on one sender and

one receiver. Sobel (2013) points at many areas within the cheap-talkresearch field

that are in need of experimental evidence. Sobel (2011) earlier wrote an extensive

overview of the literature on cheap talk.

3 Model

My model is an adjusted version of Crawford and Sobel’s (1982) cheap-talkmodel.

There is a sender and there are m receivers. The sender knows the state of the

world  2  = [0, 1]; the receivers don’t. The sender sends a message about  to the
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receivers. After the receivers receive the message, they choose action a 2 R. The

sender’s utility is determined by equation 1.

US(a1, a2,..., am) =
mX

i=1

(aj    bj)2 (1)

When there is one receiver, the utility of the sender is determined by (a1 

 b1)2. The utility of the sender depends on  and on the actions of the receivers.

From his utility function it follows that the sender’s preferred action of player j is

 + bj. Parameter bj represents the sender’s preference with respect to the actions

of the players. The further away the actions of the players lie from + bj, the lower

is the utility of the sender. This holds for positive as well as negative variations.

The receivers’ utility is determined by equation 2.

URj (aj) = (aj  )
2 (2)

From equation 2 it follows that the receivers want their action aj to be equal to

: they want to know the truth.

This sequential model is solved applying backwards induction. First, the optimal

responses of the receivers are determined. Next, the optimal responses of the sender

are found. The optimal responses of the sender involve the choice what message to

send and whether to communicate publicly or separately. In the case of separate

communication, receivers don’t share their received messages with each other.

Gibbons (1992) solves this model for one receiver. He explains that there is

always a pooling Bayesian equilibrium. More interesting is the question whether

non pooling perfect Bayesian equilibria exist. These are equilibria in which all

players’ strategies are optimal responses to each other. Furthermore, Bayes’ rule3

applies, according to which players calculate the odds of former event A (the value

of ), given event B (the message of the sender).

3According to Bayes’ rule, the probability of event A given event B is calculated as follows:
P (A|B) = P (A)·P (B|A)

P (B) .
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4 Analysis

In the following subsections, partially pooling equilibria are characterized for one,

two and m receivers in the case of two and n partitions. Finally, the maximum

possible number of partitions (n) is calculated.

4.1 Two partitions

4.1.1 One receiver

Suppose that when  lies in the interval [0, x1), senders send one message ("low")

while a  in the interval [x1, 1] induces senders to send another ("high"). After

receiving the message ("low" or "high"), receivers choose an action that optimizes

their expected payo§. Their optimal response is the action that lies in the middle

of the indicated partition. A message "low" thus induces a receiver to take action
x1
2
and a message "high" leads to action x1+1

2
. In order for a two-step equilibrium to

exist, a sender who knows  to be x1 must be indi§erent between sending "low" and

"high". His expected utility from sending either of these messages must be equal

at  = x1. The expected responses from the receivers to both "low" and "high" are

inserted into the utility function of the receiver. Utility from both messages is set

equal in equation 3. Furthermore,  is replaced by x1.

(
x1
2
 x1  b1)2 = (

x1 + 1

2
 x1  b1)2 (3)

From equation 3 it can be derived that x1 = 1
2
 2b1. This means the following.

When b1 = 0, and the interests of the sender and the receiver are, thus, the same,

x1 =
1
2
and lies exactly in the middle of [0, 1]. In that case, the partitions are of

the same length. This is intuitive: the sender wants the receiver to take action4

x1 + 0, but is limited to indicating one of the two partitions. He is indi§erent

between actions that surround his preferred action at equal distance (like 0, 2 and

0, 2). Since receivers are expected to take the action that lies in the middle of the

indicated partitions, the partitions must in the case of b1 = 0 be of equal length for

the sender to be indi§erent. The larger b1 gets5, the larger the relative length of

4Please remember that the utility function of the sender shows that he wants the receiver to
take action  + b1. In this case that is x1 + 0.

5By larger, I mean larger in absolute terms, i.e. larger positive or larger negative values.
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the second partition is6. When b1 gets larger than 1
4
(or smaller than 1

4
), x1 lies

outside [0, 1]. Within [0, 1], there is only one partition. The result of this is that

the sender must always send the same message, irrespective of what the value of 

is. Consequently, this message does not learn the receiver anything about . When

b1 gets too large, communication can no longer take place.

4.1.2 Two receivers

A two-step equilibrium for two receivers can be solved in the same way. The expected

responses to the messages "low" (x1
2
) and "high" (x1+1

2
) are inserted into the utility

function of the sender and the results of this are set equal.  is replaced by x1. This

leads to equation 4.

(
x1
2
x1 b1)2 (

x1
2
x1 b2)2 = (

x1 + 1

2
x1 b1)2 (

x1 + 1

2
x1 b2)2 (4)

From equation 4 it can be derived that x1 = 1
2
 b2  b1. This outcome should

be interpreted the same as the outcome of equation 3. The only di§erence is that

the length of the partitions is now determined by the sum of b1 and b2. This is

interesting, because consequently, it could be that although the values of b1 and b2

are both too large for communication7, they sum up to 0 or any other number below
1
2
8, resulting in more than one partition and thus possible communication. Please

note that the reverse is not true. When public communication is not possible, there

could be communication with one of the receivers, but not with both of them.

4.1.3 m receivers

A two-step equilibrium for m receivers is derived in the same way. It follows that

x1 =
1
2

Xm

j=1

2
m
bj. Also here, communication that is not possible privately, could

take place publicly, depending on the values of bj.

6Why this is the case, will be further explained under equation 6.
7Again, in absolute terms (say, 10 and 10).
8Please note that the earlier mentioned treshold value of 14 is doubled here, since the b’s of the

two receivers are also added up.
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4.2 n partitions

Now I characterize an equilibrium with more than two partitions.

4.2.1 One receiver

Let’s take a look at the two partitions that surround state xi, namely [xi1, xi) and

[xi, xi+1). Suppose that the sender can either send a message that indicates the

former partition, or one that indicates the latter partition. In that case, in line

with the two-step equilibrium, receivers will respond with the action that lies in the

middle of the indicated partition. A message indicating [xi1, xi) leads to action
xi1+xi

2
and a message indicating [xi, xi+1) leads to action

xi+xi+1
2

. For an n-step

equilibrium to exist, the expected utility of the sender observing state xi must be

equal in the case of both actions. Therefore, the best responses of the receivers to

both messages are inserted into the utility function of the sender and the results are

set equal to each other in equation 5. Here,  is replaced by xi, which is the state

of the world in which case the sender must be indi§erent.

(
xi1 + xi

2
 xi  b1)2 = (

xi + xi+1
2

 xi  b1)2 (5)

Solving and simplifying equation 5 gives equation 6.

xi+1  xi = xi  xi1 + 4b1 (6)

Equation 6 leads to an important finding of Gibbons (1992): each partition is

4b1 longer than the former. This is intuitive. Based on the utility function of the

sender, he wants receivers to choose action xi+bj. Receivers, however, choose either

action xi1+xi
2

or xi+xi+1
2

. For the sender to be indi§erent between sending a message

about the former or the latter interval, these actions have to yield him equal utility.

The midpoints of the partitions thus have to be of equal distance to the sender’s

preferred action xi + bj9. For this to be the case, [xi, xi+1) must be longer than

[xi1, xi). The steps by which the partitions grow10, are however limited (in this

9Please remember that the utility of the sender declines in positive as well as negative variations
from the action he prefers from a sender.
10Please note that bj could also be negative. In that case the partitions grow with a negative

number and thus actually are shorter in stead of longer than the former.

7



case to 4b1). The reason for this is that if they get too long, the best response of the

receiver to the former partition would become closer to the preferred action of the

sender than the best response to the latter. As a result, the sender would no longer

be indi§erent between sending a message about the former or the latter partition;

he would prefer indicating the former.

4.2.2 Two receivers

In order to solve the n-step equilibrium for two receivers, we take a look at the

two partitions that surround state xi, namely [xi1, xi) and [xi, xi+1). The expected

responses from the receivers to a message that indicates these intervals, are xi1+xi
2

and xi+xi+1
2

, respectively. In order for an n-step equilibrium to exist, the sender who

observes state xi must be indi§erent between indicating the former and the latter

partition. This is expressed by equation 7.

(
xi1 + xi

2
xib1)2(

xi1 + xi
2

xib2)2 = (
xi + xi+1

2
xib1)2(

xi + xi+1
2

xib2)2

(7)

Solving and rewriting gives the following.

xi+1  xi = xi  xi1 + 2b1 + 2b2 (8)

From equation 8 it follows that each partition is 2b1+2b2 longer than the former

partition. As explained before, when b  0, each partition must be longer than the

former for the sender to be indi§erent between sending a message about either of

them.

4.2.3 m receivers

In the case of m receivers, something interesting happens. Whether the same math-

ematics are applied to three, five or any other number of receivers, the length of

the partitions can be described systematically the same. It follows that xi+1  xi =

xi  xi1 +
Xm

j=1

4
m
bj. Each partition is thus

Xm

j=1

4
m
bj longer than the former.
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4.3 n(b) partitions

From the length of the partitions the maximum number of partitions can be derived.

This can be interpreted as the maximum richness of the language in which the sender

and receiver(s) communicate. We call this maximum number n(b) and derive it in

the rest of this subsection for one, two and m receivers.

4.3.1 One receiver

As shown earlier, in the case of one receiver, each partition is 4b1 longer than the

former. In order to find the maximum number of partitions, Gibbons (1992) reasons

as follows. All partitions together sum up to 1 and let us call the first partition d;

this gives equation 9.

d+ (d+ 4b) + ...+ [d+ (n 1)4b] = 1 (9)

Using the fact that 1+ 2+ ...+ (n 1) = n(n 1)/2, we rewrite equation 9 into

equation 10.

n · d+ n(n 1) · 2b = 1 (10)

Given that n · d can not be zero or negative, the largest possible n - we call that

n(b) - is the largest value of n such that n(n 1) · 2b < 1. Applying the quadratic

formula shows that n(b) is the largest integer less than 1
2
(1 +

q
1 + 2

b
).

4.3.2 Two receivers

The same can be done in the case of two receivers. We found that each partition is

in this case 2b1 + 2b2 longer than the former. All partitions together sum up to 1

and let us again call the first partition d; this gives us equation 11.

d+ (d+ 2b1 + 2b2) + ...+ [d+ (n 1)(2b1 + 2b2)] = 1 (11)

Using the fact that 1 + 2 + ... + (n  1) = n(n  1)/2, we rewrite equation 11

into equation 12.

n · d+ n(n 1) · (b1 + b2) = 1 (12)
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Given that n · d can not be zero or negative, n(b) is the largest value of n such that

n(n  1) · (b1 + b2) < 1. Applying the quadratic formula shows that n(b) is the

largest integer less than 1
2
(1 +

q
1 + 4

b1+b2
).

4.3.3 m receivers

In the case of m receivers - just as was the case by the length of the partitions -

there happens to be a systematic formula for n(b). This is expressed in equation

13.

n(b) = the largest integer less than
1

2
(1 +

vuut1 +
2m

Xm

j=1
bj
) (13)

Please note that the fraction 2mXm

j=1
bj

can also be written as 2Xm

j=1
m

bj

. Now n

looks just the same as in the case of one receiver; though it is now a function of the

average of all b’s. Let’s call this bav.

4.4 Analysis: summary

The mathematical results that were derived in this section are summarized in the

following table.

n partitions n(b) = largest integer less than:

1 receiver xi+1  xi = xi  xi1 + 4b1 1
2
(1 +

q
1 + 2

b
)

2 receivers xi+1  xi = xi  xi1 + 2b1 + 2b2 1
2
(1 +

q
1 + 4

b1+b2
)

m receivers xi+1  xi = xi  xi1 +
Pm

j=1
4
m
bj

1
2
(1 +

q
1 + 2mPm

j=1 bj
) or: 1

2
(1 +

q
1 + 2

bav
)

These results lead to the following proposition.

Proposition 1 There exist partially pooling perfect Bayesian equilibria of the ex-

tended cheap-talkgame in which every partition is
Pm

j=1
4
m
bj longer than the former

and n(b) is the largest integer less than 1
2
(1 +

q
1 + 2

bav
).

5 Interpretation

We knew already from Crawford and Sobel (1982) that the expected welfare of the

sender and receiver is higher when their interests are more aligned. Furthermore,
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they found that when b is zero, the sender is induced to tell the truth11. On the

other hand, communication possibilities are limited or even non-existent when b gets

too large. The CEO thus already knew that the board of directors might not believe

him when he tells them how good the company is doing. The reason for this is that

their interests are too far apart: the board of directors wants to give him a very

small reward, while the CEO wants to be granted a big one. The same goes for the

real estate agent and the job applicant: when they brag about their house for sale

or their fluency in German, they probably won’t be believed.

What can we and the CEO learn from proposition 1 with respect to communicat-

ing with di§erent receivers? From solving the extended cheap-talkmodel, we learned

that in the case of m receivers, the maximum number of partitions is determined by

bav. Keeping the earlier findings of Crawford and Sobel in mind, this has huge im-

plications for the CEO and all others who have to choose how to communicate with

more than one receiver. When the interests of the receivers are not at all aligned

with those of the sender, communication could still take place. For this it is only

required that the average interests of the group aren’t too far apart from those of

the sender. It is thus possible for a CEO to communicate with a group of receivers

who wouldn’t have believed him in separate conversations.

This finding could be seen as a sharpening of, and an addition to Crawford and

Sobel’s conclusions. It shows that (very) di§erent interests among individuals don’t

always rule out communication through cheap talk. Furthermore, my research shows

that Crawford and Sobel’s model is not only fit for describing private communication,

but also for public communication.

What does the CEO practically learn from this? He might be able to commu-

nicate with people of whom it never seemed plausible that they would believe him.

Within a group, the individual interests of the receivers could "block each other

out" and the group could become su¢ciently aligned to his interests to be willing

to believe him. When their average b is zero, it is even in his and their best interest

to tell the truth.

You might ask whether an average b of zero is likely to be the case in the CEO

example. It probably isn’t. The reason for this is that there isn’t enough negative

11The sender is induced to tell the truth because his preferred action of the receiver is  + b.
When b becomes zero, the sender wants the receiver to choose action . Since the receiver sets his
action equal to , the sender honestly tells what the value of  is.
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variation among his audience. In other words, there is nobody whom he wants to

believe that the value of the company is lower than it actually is. Maybe, however,

he could combine talking to the internal managers and the investors. Their average

b could be su¢ciently low for communication to arise. Maybe companies should

invite investors to internal meetings in order to make their statements about the

company value credible.

The second question to be answered with this research is how senders decide

whether to communicate publicly or privately. In line with the findings of Goltsman

and Pavlov (who investigated communication with two di§erent receivers) it follows

from my analysis that the choice between private and public communication depends

on the di§erent values of bj. Keeping in mind Crawford and Sobel’s conclusion that

more communication is better for the sender and the receiver, the sender in my

extended model will reason as follows. Imagine that he wants to talk to a group

with members A, B, C, D, E, F and G, with respective b’s of 0, 1, 2, 3, 4, 5 and 6.

Let’s say that 2 is the treshold value12 for communication to take place. In this

situation, the sender will not choose to talk to all seven receivers at the same time.

The reason for this is that bav would be larger than the treshold value of 2, and no

communication would take place. With A, B, and C, the sender could talk privately,

since their b’s are  2. It would however be possible for the sender to also talk to

D, if he would combine B, C and D into a group. In that case bav would be 2 and

communication could take place. Receiver A could also be added to this group,

thereby lowering bav, but the sender might not decide so. The reason for this, is

that in private talk, he could be completely honest with receiver A, while in public

talk, he couldn’t. After all, the sender decides how to combine his receivers into a

group and whom to talk to privately based on what yields him the highest expected

utility.

What about the Facebook example? You want your boss to think you are serious

and you want your friends to think you are wild. You are in fact an average, sociable

person. When you know they are both going to read your message, there is no other

option for you than to tell the truth. The question is, whether that is interesting for

12The concept of a treshold value for communication to take place, is clearly explained by
Gibbons (1992). When b gets higher than this value, communication is no longer possible. In my
extended model, this treshold value is 1

4 , as was derived from equation 3 and equation 4. In the
example with receivers A, B, C, D, E, F and G, we take 2 as the treshold value.
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you. Talking publicly, you are more credible, but also limited to sending a message

you might not want to send. In the Facebook example, you might find it optimal to

talk privately, and be able to customize your message at the cost of a declined (but

maybe still existent) credibility. This example shows that there could be a trade o§

between being believed and telling what you want to tell. As said before, it depends

on the utility functions of the sender and the receivers whether the sender decides to

communicate publicly or privately. In some situations however, as was shown, this

is already clear from the b’s: in the case of a treshold value of x and respective b’s

of 1, 5x, 3x and 4x, a sender will always choose to communicate publicly, since

no private communication can take place.

We can conclude that talking to a group can make communication happen that

would not have arisen between the sender and the individual receivers. It seems

intuitive that a message must in that case be targeted at the average person. The

analysis of this thesis can however not be used to prove that. It would be very

interesting for future research.
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