ERASMUS UNIVERSITY ROTTERDAM

BACHELOR THESIS ECONOMETRICS & OPERATIONAL RESEARCH

QUANTITATIVE LOGISTICS

A Tabu Search Heuristic for the Vehicle Routing
Problem with Two-Dimensional Loading

Constraints
Supervisor and first reader:
Author: Dr. W vAN DEN HEUVEL
Jeroen VESTER
Student number: 362010 Second reader:

Dr. T.A.B. DOLLEVOET

July 15, 2015

Abstract

This thesis evaluates the paper of |(Gendreau et al.| (2008]), where the well-known Capacitated Vehicle Rout-
ing Problem (CVRP) is addressed. They incorporate in this problem, which usually only depends on weight
constraints, two-dimensional loading constraints. The CVRP minimizes the transportation costs resulting from
delivering demanded goods to customers, carried out by a fleet of vehicles from a single depot. Since we now
want a load of items to fit two-dimensionally in a vehicle, a feasibility check of the two-dimensional packing
(2L) is executed for every vehicle. In the paper a Tabu Search heuristic is proposed for solving the combined
problem, denoted as 2L.-CVRP, since it is NP-hard and particularly hard to solve in practice. The effectiveness
of the heuristic is evaluated with computational experiments.

Contents

1 Introduction| 2
2__Further literature 2
13 Problem Description| 3
4 Methodology| 4
4.1 Heuristics for checking the loading constraints|. 0 0. 4
B2 TnfHal SOIUBION] .« « « v v v e e e e e e e e e 6
4.3 Tabu Searchl. L e 7
6_Datal 9
[6_Results] 10
6.1 Initial Solutionl o L e 10
6.2 Tabu Searchl. 12
|7 Conclusions & Summary| 16
I8 Further Researchl 17

1 Introduction

The Capacitated Vehicle Routing Problem (CVRP) is one of the most extensively studied combinatorial optimization
problems, due to its relevance in delivery systems of which more and more arise. The CVRP seeks to service a set
of customers with a fleet of vehicles, where the vehicles have limited carrying capacity of the goods that need to be
delivered, expressed in weight. Despite of the relevance of this problem, applying this model to real-world problems
is not always justifiable, since real-world problems often have additional constraints, such as the size of packages,
two- or three-dimensional, or the time in which a delivery has to be made.

In|Gendreau et al.|(2008) one possible extension of the CVRP is discussed, namely adding two-dimensional load-
ing constraints. This problem is referred to as 2L-CVRP (Two-Dimensional Loading Capacitated Vehicle Routing
Problem). |Gendreau et al.| (2008) propose to solve this problem with a Tabu Search (TS) heuristic. The trans-
portation business often handles rectangular packages that cannot be stacked upon each other, because of their
weight or fragility, and then two-dimensional loading constraints apply. The goal of this thesis is to implement the
TS heuristic for 2L-CVRP and compare the found solutions with the solutions of |Gendreau et al.| (2008).

Adding two-dimensional loading constraints to the CVRP makes it significantly more difficult to solve. This
problem was first examined by [lori et al.| (2007, where only sequential loading was considered. In|Gendreau et al.
(2008)) also wnrestricted loading is considered. With sequential loading the order of visits to customers is taken
into account when the items are packed, with unrestricted loading it is not. Before the Tabu Search heuristic of
Gendreau et al.| (2008) was developed, only exact approaches for solving 2L-CVRP existed. The best performing
approaches were branch-and-cut (-and-price) algorithms, which were only able to solve 2L-CVRP for relatively
small instances. (lori et al., [2007)

The Two-Dimensional Bin Packing Problem (2BPP) solves the problem of packing two-dimensional rectangular
items in a rectangular space and is chosen by |Gendreau et al.| (2008) to be combined with CVRP for solving 2L-
CVRP. The 2BPP minimizes the number of identical rectangular bins needed to pack a number of rectangularly
shaped items. For both of the optimization problems, CVRP and 2BPP, several meta-heuristic approaches are
developed, since both are NP-hard. |Gendreau et al.| (2008) justify the choice of developing a Tabu Search heuristic
for 2L-CVRP by the fact that this approach was successful for both of these optimization problems separately.
Furthermore they mention that since finding a feasible solution of 2L-CVRP is already strongly NP-hard, techniques
based on populations of solutions, such as Genetic Algorithms and Scatter Search, would need to handle too much
infeasible solutions.

2 Further literature

Since |Gendreau et al.| (2008) more heuristics for solving 2L-CVRP have been developed, which will be discussed
here. In|Zachariadis et al.| (2009) the Tabu Search of|Gendreau et al.| (2008) is further extended. They developed the
Guided Tabu Search (GTS), where the principles of Guided Local Search are incorporated. Here GTS is proven to
slightly outperform the solutions of the T'S heuristic. Then this heuristic was even further extended and improved
by [Leung et al.| (2011)), who present the Extended Guided Tabu Search (EGTS), which utilizes random moves and
an aspiration criterion to improve the heuristic.

For solving 2L.-CVRP also heuristics different from Tabu Search are found in literature regarding this subject. In
Leung et al.| (2010)) Simulated Annealing (SA) is used to solve 2L-CVRP, introducing a new scoring-based heuristic
in order to improve packing. [Fuellerer et al.| (2009)) present the Ant Colony Optimization (ACO), an algorithm which
explores and evaluates populations of solutions, with proven satisfactory results. Later the Greedy Randomized
Adaptive Search Procedure combined with Evolutionary Local Search (GRASP x ELS) algorithm was developed
by [Duhamel et al.| (2011), where the packing problem was addressed by solving a resource constrained project
scheduling problem (RCPSP). Although the problem is only solved for unrestricted packing, the algorithm is proven
to outperform all previous existing methods. |[Zachariadis et al.|(2013)) propose another meta-heuristic for solving 2L-
CVRP, the Promise Routing-Memory Packing (PRMP), again outperforming previous methods. Recently, solving
2L-CVRP has been even more improved by Wei et al.| (2015, who proposed a Variable Neighborhood Search
heuristic.

Solving 3L-CVRP, similar to 2L-CVRP, but with three-dimensional loading constraints, has also been addressed
by numerous researchers. In |Gendreau et al. (2006]) the problem is solved by utilizing a Tabu Search heuristic, in
Tarantilis et al.| (2009) GTS is used, in [Fuellerer et al.|(2010) ACO and in |Lacomme et al.|(2013) GRASP x ELS.
Furthermore, Ma et al|(2011) developed a heuristic combining tabu search with local search and Bortfeldt| (2012])
introduces a hybrid algorithm, addressing the routing problem with tabu search and the loading problem with a
tree search algorithm.

d,=60 Vehicle 1 Vehicle 2

I |

D=100

Figure 1: Example of 2L-CVRP

3 Problem Description

The problem is described as follows by |Gendreau et al.| (2008). Say we have a graph G = (V, E), where V is a set
of n 4 1 vertices, consisting of a depot (vertex 0) and n customer vertices, and E is the set of edges (¢,) with a
corresponding cost ¢;; for every edge. We have v identical vehicles at our disposal, each having a weight capacity
D and a rectangular loading area A of size W x H, where W is the width of the vehicle and H is the length (in
\Gendreau et al.| (2008) referred to as the height of the vehicle). Every client ¢ (¢ = 1,...,n) has a demand of
m; items of total weight d; and each item I;; (I = 1,...,m;) has a width w; < W and a height h; < H. Let
a; = 22111 w;h;; be the total loading area of the demand of customer 1.

Furthermore some assumptions are made. Firstly, every item is assumed to have a fixed orientation, meaning
that it can be packed in only one single way, the w-edge of an item should be parallelled to the W-edge of the vehicle
and the h-edge to the H-edge. This assumption is realistic, because for pallet loading, the loading fork usually has
a fixed orientation it can load an item in. Secondly it is assumed that every customer should be serviced by only
one single vehicle. The loading area of a vehicle is represented in the positive quadrant of a Cartesian coordinate
system, with the coordinates (0,0) as its bottom left corner, and the W-edge and the H-edge parallelled to the x-
and y-axis respectively. The rear of the vehicle will then be the line between (0, H) and (W, H), the rear being the
side of the vehicle where the tailgate is located. The position of an item I;; in a loading pattern is represented by
the coordinates of its bottom left corner, (x;, yir)-

A route assigned to vehicle k, visiting a set of customers S(k) C {1,...,n}, must satisfy the following constraints:

Weight constraint: the total weight . S(k) d; must not exceed the vehicle capacity D;

Loading constraint: there must be a feasible (non-overlapping) loading of the items in
I(k) = U U I (1)
i€S(k)le{l,...,m;}

into the W x H loading area.

An example of a 2L-CVRP solution, also given in |Gendreau et al.| (2008]), is visually represented in Figure

The objective is to find a partition of the clients in at most v subsets, such that for each subset S(k) the con-
straints listed above hold. In|Gendreau et al.| (2008)) two variations of this problem are considered, the Unrestricted
2L-CVRP and the Sequential 2L-CVRP. The first variation is the problem as was depicted above, for the second
variation one constraint needs to be added for every vehicle k:

Sequence constraint: a vehicle k must be packed such that when a client i € S(k) is visited, the items in the
demand of this client |J,. (Lmi} I;; can be unloaded in a sequence of straight movements parallel to the
H-edge of the vehicle, and thus no other items need to be replaced for unloading.

In other words, when visiting client ¢, no items of customers that will be visited later on the route may be loaded
between the items of client ¢ and the rear of the vehicle. Sequential loading might be useful in situations where
items are very big, heavy or fragile, or have another characteristic that makes moving them complicated and time
consuming, or even impossible.

4 Methodology

Gendreau et al.| (2008) propose a Tabu Search Heuristic for solving the 2L-CVRP, considering sequential and
unrestricted loading. We evaluate the TS heuristic for the unrestricted case in this research. Tabu Search is a
meta-heuristic, based on the Steepest Descent method and declaring certain solutions tabu. In contrast to Steepest
Descent, in every iteration Tabu Search can choose not only a better solution than the current one, but also a worse
solution. By declaring recently visited solutions tabu, TS can escape from local optima.

TS starts from an initial, usually feasible, solution and from there on moves to the best solution in the neigh-
borhood of the current solution. This could mean that the TS moves to a worse solution, if the current solution
is better than all the solutions in the neighborhood. In order to make sure that the heuristic does not cycle in a
local optimum, a visited solution is declared tabu for a predefined number of iterations. TS is often extended with
a diversification phase and an intensification phase. The first one facilitates the TS to escape a poor or already
extensively evaluated solution area, the second one enables the TS to more extensively investigate a promising
solution area.

The TS used by |Gendreau et al| (2008) is allowed to move to an infeasible solution. A tour always satisfies
the sequence constraint, in case of the sequential 2L-CVRP, but can be weight-infeasible if the weight of a freight
exceeds the capacity D, or load-infeasible if the needed loading area of a freight is larger than the loading area A of
a vehicle. This means that the needed height is larger than the height H of the vehicle, since the packing algorithm
does not allow for a packing that exceeds the width W of the vehicle. A penalty is assigned to moves that lead to
an infeasible tour, proportional to the violation of the constraints.

Every move considered by the TS means a different distribution of items over the vehicles. For checking if
the items I(k) assigned to vehicle k (see equation) violate the loading constraints, |Gendreau et al.| (2008) give
the heuristics LHog;, and LHoyy, for the sequential and unrestricted case, respectively. Within these heuristics a
procedure TPagr, or TPoyy, is called in which the items are placed onto a strip of width W in a predefined order, in
such a way that for every item the percentage of the items perimeter touching the edges of the loading area or other
items already packed, also known as the touching perimeter, is maximized. LHsgr, and LHoyy, iteratively use TPagy,
and TPy, respectively, to pack items in different orders, until a load-feasible packing is found, with a predefined
maximum number of iterations. Each item is packed in the so-called normal position, described in |Gendreau et al.
(2008)) as that the bottom edge of an item touches either the bottom of the strip or the top of another item and
that the left edge of an item touches either the left edge of the strip or the right edge of another item.

4.1 Heuristics for checking the loading constraints

Since we initially evaluate the unrestricted case, we will only describe LHoyr, and TPoyy, in further detail. Both
procedures combined check for load feasibility for one vehicle k. TPoyy,, represented in Figure is called by LHsyut,
with a given order of items, sorted by non-increasing width, breaking ties by decreasing height. Sequential calls of
the TPoyr, by LHoyy, are done with altered sequences of the items. Procedure TPoyr, can terminate in two possible
ways, it finds a load-feasible packing within the loading area W x H or it finds a load-infeasible packing on a loading
area of W x Hstrip with Hstrip > H, which is to be penalized in the Tabu Search.

Procedure TPqyy, is based on a packing algorithm introduced by |Lodi et al.| (1999) and works as follows. The
first item of the sequence is packed at position (0,0), the following item, say I;; is packed at position (z,y) that
maximizes the touching perimeter and satisfies that the loading area does not exceed the height of the vehicle.
Maximizing the touching perimeter favors patterns that avoid “trapping” small areas that are hard to use for other
items, according to [Lodi et al.| (1999). The overall time complexity of TPoyr, can be derived as follows. Let T be
the total number of items required by the clients of the considered route. For each item, the number of candidate
normal packing positions (set P), which needs to be redetermined for every item, is O(7m). The touching perimeter
computation of line 7 requires O(m) time, and thus the overall time complexity is O(m?).

Input: an item sorting I(k)
1: procedure TPoyy, (I(k‘)) o
2: pack the first item of I(k) in position (0,0) and set H at its height;

3: for each successive item, say I of size (w, h), of I(k) do
4: P :={set of normal packing positions (z,y) : (a),(b) below hold}
(a) x +w < W;
(b) the rectangle of sides ([(z,v), (z +w,y)],[(z,v), (z,y + h)]) is empty;
5 P:={(z,y) € Pry+h< H};
6 if P # () then -
7 pack I in the position (z,y) € P producing maximum touching perimeter
8 else pack I in the position (x,y) € P for which y + h is a minimum;
9: end if
10 H :=max{H,y+ h}
11: end for
12: return H

13: end procedure

Figure 2: Inner heuristic for packing

After every placement of an item in the loading area, the set of normal packing positions needs to be adjusted.
One normal packing positions is no longer available, obviously, since one of the packing positions is needed for
placing the item in question. This implies that at least one packing position should be removed from the set of
normal packing positions. However, this also implies that new packing positions become available that need to
be added to the set of normal packing positions. In Figure [3| a variety of cases of adding and removing packing
positions that may occur is visually represented. These are just examples and different situations may occur. The
possible adjustments to the set of normal packing positions are, however, divisible in five categories:

I) one position removed, two positions added (e.g. in Figure [3al{3d))
IT) one position removed, one position added (e.g. in Figure [3¢}{3h))

)

)
III) two positions removed, two positions added (e.g. in Figure
IV) two positions removed, three positions added (e.g. in Figure
)

V) one position removed, none added (e.g. when an item fits perfectly in a “trapped” area)

(a) (©) (e) (8) @© (k)

(b) (d) (f) (h) ())

Figure 3: Adjustment situations for the set of normal packing positions; dotted lines denote the placement of a new item,
dashed lines are perpendiculars for packing positions, a ® denotes an existing packing position, a O denotes a new packing
position and a ¥ denotes an existing packing position that will be removed

Input: an item sorting I(k) and a maximum number of iterations A
1: procedure LHsup, (I(k), A)
2: Hstrip := TPauL(I(k)), it := 1,
3 while Hstrip > H and it <)\ do
4 randomly select two items and switch their positions;
5: f = TPQUL(I(k)),
6: Hstrip := min{ H strip, £ };
7 iti=at+1
8 end while
9: return Hstrip
10: end procedure

Figure 4: Heuristic algorithm for checking the loading constraints

Procedure LHayy, iteratively invokes TPyyy, for different item sequences, as can be found in Figure [d] where the
procedure is depicted. The procedure starts with an initial sequence of items in the order in which they need to be
packed with TPoyr,, as was described above. Then, as long as the packing found with TPoy, exceeds the vehicle
height H and the number of iterations does not exceed a predefined number A, the sequence of items is iteratively
altered by switching two randomly selected items in the sequence and a maximum touching perimeter packing is
generated with TPoyr,. The result is a packing of height H strip, which does not necessarily need to fit within the
vehicle height H.

4.2 Initial Solution

In |Gendreau et al.| (2008) two heuristic algorithms, each for both the sequential and the unrestricted case, are
used for determining an initial solution in which the Tabu Search heuristic can start. The first algorithm, IHGoyr,,
works for general 2L-CVRP instances where the travel distance between vertices is known. The second algorithm,
THE>yr1, is executed for the special case of Euclidean distances.

IHGoyr, was obtained by embedding the loading constraints in the classical savings algorithm of |Clarke and
Wright| (1964). Here the CVRP is solved by initially allocating a different vehicle to every customer, most likely
exceeding the amount of available vehicles. Then, iteratively, the two routes that yield the largest saving of distance
travelled if they would be merged are merged. A merge between two routes consists of connecting two vertices.
Only merges that satisfy certain conditions can be executed. The conditions are:

I) The vertices that are to be connected are both connected to the depot (vertex 0)
IT) The vertices that are to be connected are not already both on the same route

IIT) The combined weight of the items of the customers on the routes of the vertices that are to be connected does
not exceed the weight capacity (weight-feasibility)

IV) The items of the customers on both of the routes of the vertices that are to be connected have a feasible
packing, to be checked with LHayy, (load-feasibility)

The algorithm first only accepts feasible merges to reduce the number of vehicles to the amount that are available
v. When the number of vehicles is still too large, but no more feasible merges are possible, first merges that lead to
load-infeasible packings, but which are still weight-feasible, are accepted. If this still does not decrease the number
of vehicles to the desired level, also weight-infeasible packings are accepted.

The Euclidean algorithm IHEsy;, was derived from the algorithm of |Cordeau et al.| (1997) for solving periodic
and multidepot Vehicle Routing Problems (VRP’s). The loading constraints are embedded in this algorithm to suit
our problem. ITHE,yy, starts with randomly selecting a radius emanating from the depot and constructs a feasible
route containing the vertices closest to this radius, i.e. of which the angles between the radius and the segment
connecting the vertices to the depot are smallest. The feasibility check is done with LHoyr,. For the first v — 1
vehicles only feasible packings are accepted, the remainder of customers is assigned to the last vehicle, whether that
results in a feasible packing or not.

The instances used by |Gendreau et al.| (2008) only have coordinates of the vertices and do not give the travel
distances between clients and the depot (see Section , but these can be approximated by taking the Euclidean
distance between the vertices. With this approximation, usage of the IHGyyy, algorithm is enabled and we choose
to use this algorithm for determining the initial solutions.

4.3 Tabu Search

For the TS heuristic |Gendreau et al.| (2008) introduce an objective function in which infeasibilities are treated as
penalties. Naturally the objective function needs to be minimized. Let s denote a solution, consisting of a set of ©
routes, with 1 < v < v, in which each client belongs to exactly one route. The objective function to be minimized
is then defined as follows:

2'(s) = 2(s) + aq(s) + Bh(s), (2)
with

k=1
bl +
q<s>=z[zdi—zﬂ | @
k=1 LiesS(k)
h(s) =Y [Hp—H]", (5)
k=1

where c(k) are the total costs of the edges in route k, Hy, is the height of the two-dimensional loading of vehicle k
and [a]* = max{0,a}. Defined in equation (3, z(s) represents the costs of the the edges that are in the routes of
the solution s, ¢(s), defined in equation , represents the violation of the weight constraint and h(s) represents
the violation of the height constraint, defined in equation . The search is regulated by three parameters, o and
B in the objective function and A in the LHsyr, procedure. The weight-infeasibilites are controlled by « and the
load-infeasibilities by 8 and A. These parameters are adjusted depending on the violations of the constraints in the
current solution. If a current solution is weight-infeasible (or not), we set & = a(1+49) (resp.,a = a/(1+46)). Further,
if a current solution is load-infeasible (or not), we set 8 = 8(1+4) and A = min{\+ 1,4} (resp., 8 = 8/(1+) and
A =max{\ —1,1}).

As was explained before, Tabu Search evaluates a selection of possible moves and chooses the best move. A
move consists of selecting a client ¢ that is currently in a route k, and allocating this client to another route &’. In
Gendreau et al.| (2008) the insertion procedure is according to the GENI (Generalized Insertion Procedure) heuristic
developed by |Gendreau et al|(1992) for the Traveling Salesman Problem (TSP). GENI considers a subset of possible
4-opt modifications of the two concerned tours, meaning a deletion of four arcs between vertices and adding five

4 A

Check possible moves

\ J

for all possible moves
Y

4 A

Make v routes

\ J

for every route k € {1,...,0}
v

[TPyur(I(k))]—» LHaur, (1(k), A)

for resulting solution s
\4

4 A

Calculate 2/(s)

\ J

compare all solutions
\

4 A

Move to s with
lowest 2’(s)

J

Figure 5: The steps that are iteratively executed in the Tabu Search heuristic

arcs in the tour where the client is inserted, and deleting five arcs and adding four in the tour where the client is
deleted. For both tours the best modification is selected.

However for the particular instances tested over here (see Section , a vehicle does not visit a large amount
of customers. This is due to the weight and loading constraints and the fact that the item characteristics are
such that not many customers can be feasibly served with one vehicle. Therefore we choose to solve the Traveling
Salesman Problem to exact optimality as insertion procedure when the amount of customers n is less than 10. We
evaluated all possible routes, totalling to n! evaluations, and choose the route with smallest travel distance. When
the amount of customers a vehicle has to visit is larger, we used a Genetic Algorithm (GA) for solving TSP, because
the number of possible routes then becomes too large to evaluate all. A GA is a search heuristic where first a
randomly generated population of solutions is evaluated. Then, iteratively, a new generation is created by selecting
a proportion of the population that has promising objective values and these are mutated into new solutions. This
is done for a predefined number of iterations and the solution with the best objective value is chosen. We opt for
GA because of its balance between simplicity and performance.

Let N, (i) be the set of p vertices closest to i (neighbors of client ¢). The p-neighborhood of client ¢ is used when
selecting a route to which it can be allocated in order to limit the options and therefore speed up the algorithm.
Client 7 can only be allocated to an empty tour or a tour in which at least one client in N,(7) is visited. According
to |Gendreau et al| (2008) a good performing value for p is 10, balancing the computation time and the solution
quality.

With every iteration of the Tabu Search, all possible moves are evaluated, i.e. for each client all possible
allocations to other tours are considered, provided the allocation satisfies the neighborhood condition defined above.
For every move the value of the objective function 2'(s), equation , is obtained. After a move has been performed,
say removing client ¢ from route k, reinserting client ¢ in route k is declared tabu, and thus prohibited, for the next
0 iterations. The value of 6 was experimentally determined as 6 = log(nv). However, a tabu move may still be
accepted. We define a n x v array M where the value of the best solution with client ¢ assigned to route j is stored
in the elements M;;. If no such solution has yet been identified M;; = oco. If a tabu move would improve a current
M;;, then that move may be accepted as well.

In certain situations a penalty term 7, defined in equation @, is possibly added to the cost in order to diversify
the search. Diversification is applied to Tabu Search in order to escape a poor or already extensively searched
solution area. Let s, be the current solution and s, the solution obtained by removing client ¢ from route k. If
Z'(sp) > 2'(s4) we add to 2’(sp) a penalty 7 proportional to frequency of this move. Let p;; denote the number of
times client ¢ has been removed from route k, divided by the total number of iterations. The penalty term is then
defined as follows:

™= pir(2' () = 2'(sa))7, (6)

with 7 set to v/nv. Now when a certain poor solution area is extensively being searched, the solutions in this area
will be increasingly penalized, thus escaping this poor local minimum. In other words, a step in the Tabu Search
that leads to a worse solution compared to the current solution is penalized. This penalty depends on the number
of times the customer in question has already been removed from the route it is currently in. The removal of client
i out of route k will then yield increasingly worse objective values as the frequency of this move rises. This leads
to another move turning out to be the best possible move. With declaring recent moves tabu, a part of the risk
of cycling in the neighborhood of a local minimum is already repulsed, but with this diversification, neighborhoods
of other neighboring solutions of local optima are also explored. |Gendreau et al.| (2008)) propose an intensification
phase as well, but we did not implement this procedure, due to a lack of time and the complexity of this algorithm.
It namely requires a mixed integer problem to be solved. In Figure [f] the TS heuristic is schematically depicted.

Table 1: Classes 2-5

Vertical Homogeneous Horizontal
Class m; hii w;i hig wii hi w;i
2 [1,2] 4H 9H w 2w 2H 5H 2W 5W H 2H AW 9w
) 10’ 10 10’ 10 10’ 10 10 ’ 10 10’ 10 10 ’ 10
3 [1,3] 3H 8H w 2w 2H 4H 2W AW H 2H 3W 8W
) 10 ’ 10 10° 10 10’ 10 10 ’ 10 10’ 10 10 ’ 10
4 [1,4] 2H T7H w 2w H 4H w 4w H 2H 2w TW
) 10’ 10 10° 10 10’ 10 10’ 10 10’ 10 10 ’ 10
5 [1,5] H 6H w 2w H 3H w 3w H 2H W 6w
’ 10’ 10 10° 10 10° 10 10° 10 10° 10 10° 10

5 Data

In order to be able to compare computational results with the computational research of |Gendreau et al.| (2008)) we
will use graphs and weights demanded by the customer obtained from the same CVRP instances. The number of
items and their dimensions were created according to five classes as defined by |Gendreau et al.| (2008):

Class 1: each customer i, for i = 1,...,n, is assigned one item with unit width and height.

Classes 2-5: an integer uniform distribution on a certain interval (see Table |1} column 2), is used to generate the
number m; of items for each customer 7. Each item is then randomly assigned, with equal probability, one
out of three possible shapes: vertical (the relative heights are greater than the relative widths), homogeneous
(the relative heights and widths are generated in the same interval), or horizontal (the relative heights are
smaller than the relative widths). Finally, the dimensions of the items are uniformly generated in a given
interval (see Table |1} columns 3-8).

For the dimensions of the loading area of a vehicle the values W = 20 and H = 40 were chosen. Class 1
instances were pure CVRP and here the loading constraints were not even needed to be imposed, the instances of
other classes, however, prove to be more difficult to solve due to differently sized items. Evidently, all input data
are integer valued. This has, however, no consequences for the performance of the heuristic, since all data can be
up- or downscaled with a certain factor, and the heuristic will yield the same solution. Integer data may thus be
used without loss of generality. For 36 CVRP instances, combinations of number of customers n and number of
vehicles v, an 2L-CVRP instance was created in all five classes, totalling to 180 2L-CVRP instances. We used the
exact same 2L-CVRP instances as|Gendreau et al. (2008). Both the CVRP instances and the 2L.-CVRP instances
can be downloaded from http://www.or.deis.unibo.it/research.html.

Table 2: Details on the instance generation

Class 1 Class 2 Class 3 Class 4 Class 5
Instance n M v LB M v LB M v LB M v LB M v LB
1. E016-03m 15 15 3 3 24 3 3 31 3 3 37 4 3 45 4 3
2. E016-05m 15 15 5 5 25 5 5 31 5 5 40 5 5 48 5 5
3. E021-04m 20 20 4 4 29 5 4 46 5 4 44 5 4 49 5 4
4. E021-06m 20 20 6 6 32 6 6 43 6 6 50 6 6 62 6 6
5. E022-04g 21 21 4 4 31 4 4 37 4 4 41 4 4 57 5 4
6. E022-06m 21 21 6 6 33 6 6 40 6 6 57 6 6 56 6 6
7. E023-03g 22 22 3 3 32 5 4 41 5 4 51 5 4 55 6 3
8. E023-05s 22 22 5 5 29 5 5 42 5 5 48 5 5 52 6 5
9. E026-08m 25 25 8 8 40 8 8 60 8 8 63 8 8 91 8 8
10. E030-03g 29 29 3 3 43 6 5 49 6 4 72 7 6 86 7 5
11. E030-04s 29 29 4 4 43 6 5 62 7 6 74 7 6 91 7 5
12. E031-0%9h 30 30 9 9 50 9 9 56 9 9 82 9 9 101 9 9
13. E033-03n 32 32 3 3 44 7 5 56 7 5 78 7 6 102 8 5
14. E033-04g 32 32 4 4 47 7 5 57 7 5 65 7 5 87 8 4
15. E033-05s 32 32 5 5 48 6 5 59 6 6 84 8 7 114 8 6
16. E036-11h 35 35 11 11 56 11 11 74 11 11 93 11 11 114 11 11
17. E041-14h 40 40 14 14 60 14 14 73 14 14 96 14 14 127 14 14
18. E045-04f 44 44 4 4 66 9 7 87 10 8 114 10 8 122 10 6
19. E051-05e 50 50 5 5 81 11 9 103 11 10 134 12 10 157 12 8
20. E072-04fF 71 71 4 4 104 14 12 151 15 13 178 16 13 226 16 13
21. E076-07s 75 75 7 7 114 14 12 164 17 14 168 17 14 202 17 14
22. E076-08s 75 75 8 8 112 15 13 154 16 14 198 17 14 236 17 14
23. E076-10e 75 75 10 10 112 14 13 155 16 14 179 16 14 225 16 14
24. E076-14s 75 75 14 14 124 17 14 152 17 14 195 17 14 215 17 14
25. E101-08e 100 100 8 8 157 21 18 212 21 18 254 22 19 311 22 19
26. E101-10c 100 100 10 10 147 19 16 198 20 17 247 20 18 310 20 18
27. E101-14s 100 100 14 14 152 19 17 211 22 19 245 22 19 320 22 19
28. E121-07c¢ 120 120 7 7 183 23 20 242 25 21 299 25 21 384 25 21
29. E135-07f 134 134 7 7197 24 21 262 26 22 342 28 24 422 28 24
30. E151-12b 150 150 12 12 225 29 25 298 30 27 366 30 27 433 30 27
31. E200-16b 199 199 16 16 307 38 33 402 40 35 513 42 37 602 42 37
32. E200-17b 199 199 17 17 299 38 33 404 39 34 497 39 34 589 39 34
33. E200-17c¢ 199 199 17 17 301 37 32 407 41 35 499 41 36 577 41 36
34. E241-22k 240 240 22 22 370 46 40 490 49 42 604 50 44 720 50 44
35. E253-27k 252 252 27 27 367 45 39 507 50 43 634 50 45 762 50 45
36. E256-14k 255 255 14 14 387 47 41 511 51 44 606 51 44 786 51 44

http://www.or.deis.unibo.it/research.html

In summary, the 2L-CVRP instances were created from the CVRP instances by only generating a number of
items, the amount per customer depending on the class, for every customer with certain heights and widths, also
depending on the class. This implies that the five 2L-CVRP instances generated from one CVRP instance, one in
every class, all have the same customer information. All five have the same amount of customers with the same
coordinates and the same weight demand, only the number of items and the item measurements demanded by the
customers differ between instances.

A more detailed insight in the different combinations can be found in Table[2] The original names of the CVRP
instances can be found in the first column and for all 36 CVRP instances the number of customers (n) is given in the
second column. In the other columns the total number of items (M = Y. | m;), the number of vehicles (v) and a
lower bound (LB) on the number of vehicles are displayed for the five classes per CVRP instance. The lower bound
was determined by |Gendreau et al.| (2008) as the maximum of two lower bounds: the number of available vehicles
in the original CVRP instance and the value obtained by solving the two-dimensional bin packing problem (2BPP)
for the items of the 2L-CVRP instance, with one bin defined as the loading area of a vehicle. 2BPP minimizes
the number of bins all items can be packed in. This lower bound is given in order to show the reasonableness of
the produced instances. As can be seen in Table [2] the values of v and LB are very close, in 73 cases they match
exactly and the differ by at most two vehicles in 57 cases.

6 Results

In this Section we discuss computational results of solving the 2L-CVRP instances described in Section [5] All
procedures were implemented in MATLAB R2013a and results were obtained on a AMD Athlon™II X2 B28 Processor
3.00 GHz with 4.00 GB Installed RAM memory and Windows 7. First we discuss the initial solutions and thereafter
the optimal solutions obtained through the Tabu Search heuristic.

6.1 Initial Solution

As was described in Section Gendreau et al.| (2008) make use of two different algorithms for determining an
initial solution. The algorithm THGoyy, is only usable in the case of known travel distances between vertices. The
2L-CVRP instances that are provided do not contain information about travel distances between vertices, only the
coordinates of the vertices are given. However, as was described in Section we choose to approximate these
distances by taking the Euclidean distances between the vertices as the travel distances and make use of IHGoyr,
for determining the initial solution.

Table 3: Computation times in seconds for initial solutions, colored cells indicate an initial solution is infeasible

Instance Class 1 Class 2 Class 3 Class 4 Class 5
1. E016-03m 2,50 3,53 4,37 4,69 4,56
2. E016-05m 2,13 2,61 3,70 3,12 3,78
3. E021-04m 6,21 9,19 15,40 9,47 9,31
4. E021-06m 5,96 6,89 7,75 8,79 9,74
5. E022-04g 7,54 9,36 10,42 10,15 11,20
6. E022-06m 7,47 8,81 8,95 12,22 10,61
7. E023-03g 9,90 16,49 17,71 22,20 22,34
8. E023-05s 9,79 13,38 20,34 21,26 18,13
9. E026-08m 14,13 15,50 19,32 19,67 21,09
10. E030-03g 26,04 43,42 46,44 67,28 70,83
11. E030-04s 25,97 42,87 54,98 74,77 78,00
12. E031-0%h 28,15 29,77 31,98 36,32 39,49
13. E033-03n 41,55 64,10 70,39 89,12 102,85
14. E033-04g 40,08 59,01 57,82 64,87 71,46
15. E033-05s 36,77 51,53 70,03 90,60 106,09
16. E036-11h 47,44 50,90 54,53 60,23 65,11
17. E041-14h 80,86 89,75 90,66 95,74 98,94
18. E045-04fF 121,55 190,74 230,18 281,70 255,69
19. E051-05e 208,23 359,48 393,74 492,03 466,32
20. E072-04f 819,24 1180,47 1381,36 1585,03 2109,54
21. E076-07s 1401,78 1652,92 1996,85 1697,36 1731,21
22. E076-08s 978,29 1364,08 1592,58 1809,49 2008,11
23. E076-10e 1075,03 1305,87 1507,95 1642,86 1556,59
24. E076-14s 964,72 1327,82 1250,76 1386,27 1305,63
25. E101-08e 3029,59 7910,53 9095,79 9968,06 9452 81

10

(a) Vehicle 1, Hstrip = 53, (b) Vehicle 2, Hstrip = 40, (c) Vehicle 3, Hstrip = 38,
Zies(l) di =114 ZiES(Z) di = 68 Eies(s) di =76

Figure 6: The packings for the initial solution of instance 1, class 2, v = 3, n = 15, weight capacity D = 90

Since the 2L-CVRP instances increase in number of customers and vehicles, as can be seen in Table [2] the
number of possible merges the IHGoyy, algorithm has to consider every iteration increases drastically. Therefore the
computation times of the initial solution increase exponentially as well. Since finding an initial solution for larger
instances takes too much time, we decided to leave the largest instances for later research. We found initial solutions
for the smallest 125 instances and the corresponding computation times can be found in Table[3] Here colored cells
indicate a solution is infeasible, which was the case for 100 of the 125 instances. In 56 cases the initial solution was
only load-infeasible, in 17 cases it was only weight-infeasible and in 27 cases it was both. The computation times
for finding optimal solutions were given in |Gendreau et al.| (2008)) and these were already significantly smaller than
our computation times for finding an initial solution. This may be attributed to the choice of program in which
the algorithms were implemented. Unfortunately the choice of program is not given by |Gendreau et al.| (2008]), but
likely is that they made use of a more efficient program.

Tos

Itz

(a) Vehicle 1, Hstrip = 39, (b) Vehicle 2, Hstrip = 35, (c) Vehicle 3, Hstrip = 36, (d) Vehicle 4, H strip = 40,
ZieS(l) di =83 ZieS(Q) di =26 EieS(S) di = 68 ZieS(él) di =76

Figure 7: The packings for the initial solution of instance 1, class 5, v = 4, n = 15, weight capacity D = 90

11

(a) Class 2 (infeasible solution) (b) Class 5 (feasible solution)

Figure 8: The routes for the initial solutions of instance 1

In Figures two initial solutions are visually represented. These are the solutions of the first CVRP instance
(E016-03m) for class 2 and 5. One important difference between the two instances is that for class 2, three vehicles
are available, and for class 5, four vehicles are available. This is due to the fact that the instance for class 5 has
more items, 45 in total, that need to be packed than the instance for class 2, which has 24 items in total. The initial
solution for class 5 is a feasible solution, as can be derived from Figure[7] All four vehicles have a packing that does
not exceed the weight capacity or the loading capacity. The initial solution for class 2 however, is infeasible. The
packing of the first vehicle exceeds the weight and loading capacity, as can be seen in Figure[6] The routes for the
vehicles are given in Figure

6.2 Tabu Search

Since the computation times for finding initial solutions were already significantly larger than the computation times
of the Tabu Search heuristic of |Gendreau et al.| (2008), we decided to use only the 20 smallest CVRP instances (100
2L-CVRP instances) for our Tabu Search. For these, we found infeasible initial solutions in 79 cases, of which 36
were only load-infeasible, 16 were only weight-infeasible, and 27 were both. In Tables [] and [5] detailed information
on the solutions obtained for the first 17 CVRP instances is displayed. Only the first 17 are displayed here, because
we want to compare our computational results to those of |(Gendreau et al.|(2008) and they only provide detailed
information on the first 17 CVRP instances. |Gendreau et al.| (2008)) added extra restrictions to the problem here,
namely that every vehicle should be used and that no single-customer-routes were allowed. These restrictions were
added in order to be able to compare their results to the results that were obtained through another method.
Solutions violating these restrictions were made infeasible through penalties. However, we did not embed these
restrictions in our Tabu Search, because they have no further purpose in solving the problem. For obtaining the
objective, the Euclidean distances, rounded down, were used as costs between vertices. We used a slightly different
policy for running the Tabu Search than |Gendreau et al.| (2008), namely that the Tabu Search is halted after 2n2v
iterations (the same) or after two hours of CPU time (twice as long).

For every instance the objective of the best found solution is given for both Tabu Searches, the one of |(Gendreau
et al.| (2008) (z7ggern) and the one that was implemented with this thesis (zrsyes). An asterisk indicates a proven
optimal solution and two asterisks indicate that no feasible solution was found. For both also the elapsed CPU time
in seconds is given until the best solution was found (C'PU,y;) and until the Tabu Search was halted (CPU). Also
the %gap is given, with %gap = 100(275ves — 273gen)/2T5gen, t0 evaluate the quality of the solutions compared to
the solutions of |Gendreau et al.| (2008). Since we did not embed the extra restrictions discussed before, sometimes
a proven optimal solution can be beaten by our solution. Our solutions are allowed to leave vehicles unused or let
a vehicle visit only one customer. To illustrate this, the number of vehicles used in the best solution (9) and the
number of vehicles available (v) can also be found in Tables 4] and [5| for every instance. Naturally, ¢ is only given
for the solutions of this thesis, since the solutions of |(Gendreau et al.| (2008) always use all vehicles available. Most

12

Table 4: Performance of our Tabu Search heuristic compared to the Tabu Search heuristic of |Gendreau et al.| (2008)

Instance Tabu Search (Gendreau et al., |2008) Tabu Search (Vester)
No. Class ZTSgen CPUopt CPU ZTSves b} v CPUopt CPU Y%gap
1 1 273* 0.0 2.4 273 3 3 32.0 548.7 0.00
2 285* 0.2 4.6 **o *ok 3 *ok 4262.9 *k
3 280* 1.3 7.8 309 3 3 1414.4 1464.0 10.36
4 290%* 0.3 7.5 290 4 4 3.3 1944.1 0.00
5 279%* 2.3 15.7 273 3 4 68.9 2544.3 -2.15
2 1 329* 0.1 1.4 3440 5 5 221.6 844.2 4.56
2 342% 1.1 2.0 329 5 5 24.5 827.0 -3.80
3 350 0.2 3.2 **o Hox 5 rox 5367.4 HE
4 336%* 0.1 6.7 3410 5 5 109.3 4102.2 1.49
5 329% 0.3 6.1 **o *ox 5 ok 2998.1 Hk
3 1 351* 0.2 8.4 357 4 4 2769.4 7249.1 1.71
2 407 8.9 9.8 381 5 5 971.4 2928.0 -6.39
3 387* 1.0 20.0 387 5 5 546.7 5425.1 0.00
4 374% 14.3 21.9 357 4 5 1175.3 7202.0 -4.55
5 369* 1.0 29.9 351 4 5 479.3 7201.1 -4.88
4 1 423* 0.2 5.7 **o Hox 6 rx 3203.4 HE
2 434* 0.3 7.4 452 6 6 977.4 3081.1 4.15
3 438 5.0 12.8 437 6 6 86.4 5188,8 -0.23
4 451 0.8 16.9 454 6 6 692.6 5539,3 0.67
5 423* 1.2 27.1 445 6 6 233.0 4692.7 5.20
5 1 367* 2.9 12.8 376 4 4 631.4 7201.4 2.45
2 396 4.0 19.7 380 4 5 1075.1 7265.6 -4.04
3 377 0.6 20.5 377 4 5 4114.6 7204.9 0.00
4 406 5.9 33.0 380 4 5 83.9 7205.1 -6.40
5 389* 5.7 57.8 367 4 5 155.0 7200.5 -5.66
6 1 488* 0.1 10.3 488 6 6 1220.6 2351.5 0.00
2 498 1.8 14.0 497 6 6 448.5 4171.8 -0.20
3 496* 11.2 16.9 500 6 6 1379.8 5318.9 0.81
4 503 0.1 40.2 497 6 6 4346.2 7200.5 -1.19
5 488* 0.7 34.2 488 6 6 2534.0 5354.9 0.00
7 1 558% 0.3 22.0 558 3 3 307.9 7315.9 0.00
2 752 0.7 18.9 7150 5 5 12789.8 14480.5 -4.92
3 704 19.9 29.8 **o ok 5 Hox 14503.1 HE
4 742 26.5 50.4 7820 5 5 0.0 14439.0 5.39
5 743 16.1 75.1 ko Hok 6 ok 14472.2 Hok
8 1 657* 7.0 31.3 558 3 5 857.7 7283.2 -15.07
2 720%* 3.1 20.1 7440 5 5 0.0 14422.2 3.33
3 752 20.5 33.4 **o *ok 5 ok 14466.3 Hok
4 722 11.2 50.0 ko Hk 5 HK 14528.6 Hox
5 736 12.0 90.2 699 6 6 0.0 7255.9 -5.03
9 1 609* 1.9 11.9 **o ok 8 ok 9123.6 Hx
2 612* 2.9 15.4 618 8 8 293.2 7200.4 0.98
3 626 7.9 38.4 **o Hk 8 oK 14401.8 Hok
4 627 5.9 43.5 **o HoE 8 Hox 14401.3 HE
5 609* 8.5 81.9 **o *ok 8 *ok 14401.6 Hk

of the times when our Tabu Search finds a better objective value than the Tabu Search of |Gendreau et al.| (2008]),
its solution violates the extra restrictions of the minimum number of customers each vehicle should visit. However,
for some instances, e.g. instance 4, class 3, our Tabu Search finds a better objective value than the Tabu Search of
Gendreau et al.| (2008) without violating these restrictions.

Unfortunately, the Tabu Search that was implemented with this paper does not perform as well as the Tabu
Search of |Gendreau et al.| (2008). Their heuristic manages to find solutions for all instances, whereas we only find
solutions in 47 of the 100 instances. This may probably be attributed to the significantly larger computation times,
but it is also possible that the parameters that the Tabu Search is dependent on play a role here. Our computation
times are on average approximately 400 times larger, given that the Tabu Search runs all the predefined number
of iterations. Mostly, the Tabu Search does not run all of the predefined number of iterations, but is halted by the
limit of the CPU time, which was set to two hours. This means that our Tabu Search runs over fewer iterations
and therefore simply does not reach a feasible solution within the set time limit. The Tabu Search does find a
better solution than the initial solution for all instances where no feasible solution was found, but these were still
infeasible. However, it should be noted that a "better" infeasible solution, means that it has a lower objective value.

13

Table 5: Performance of our Tabu Search heuristic compared to the Tabu Search heuristic of |Gendreau et al.| (2008)

Instance Tabu Search (Gendreau et al., |2008) Tabu Search (Vester)
No. Class ZTSgen CPUopt CPU 2T Sves b} v CPUgpt CPU %gap
10 1 544 19.9 97.3 **o Hok 3 *k 14840.4 *ok
2 703 3.8 72.2 692 6 6 5325.6 7238.3 -1.56
3 676 47.9 118.7 **o Hk 6 Hok 14405.0 Hok
4 773 47.3 156.9 **o wE 7 HE 14421.5 Hox
5 724 84.5 308.9 691 6 7 24.4 7245.5 -4.56
11 1 500%* 0.8 107.8 494 4 4 3489.7 7448.7 -1.20
2 734 4.7 72.2 **o HoE 6 HoE 14401.7 HE
3 785 72.2 101.7 7480 7 7 14206.8 14404.1 -4.71
4 877 196.4 209.5 **o *k 7 Hk 14440.5 *ok
5 696 279.2 387.0 6610 7 7 12068.6 14403.6 -5.03
12 1 598 19.4 33.8 **o woE 9 HoE 14400.4 o
2 628 9.6 42.9 **o HE 9 HE 14400.9 Hox
3 597 12.9 50.7 **o Hx 9 HE 14400.6 Hox
4 640 96.0 120.6 **o *x 9 Hk 14406.6 *ox
5 597 103.5 188.2 617 9 9 315.8 7201.0 3.35
13 1 1991%* 47.4 218.7 1991 3 3 2229.9 7775.4 0.00
2 2775 43.7 123.1 28570 7 7 0.0 14704.8 2.95
3 2696 121.5 170.3 **o *x 7 Hk 14544.3 *ox
4 2743 29.3 277.0 o Hk 7 Hok 14564.1 Hok
5 2737 237.5 691.9 2701 8 8 0.0 7515.9 -1.32
14 1 823 21.8 145.0 826 4 4 3381.5 7238.6 0.36
2 1266 52.3 144.4 1279¢ 7 7 0.0 14434.5 1.03
3 1204 137.9 207.1 1148 6 7 92.1 7210.2 -4.65
4 1187 108.5 324.9 **o HE 7 HE 14402.0 Hox
5 1309 103.2 895.0 927 5 8 3137.4 7474.2 -29.18
15 1 907* 51.9 196.4 823 4 5 6847.2 7428.4 -9.26
2 1135 94.7 133.9 HoE woE 6 HoE 7408.8 o
3 1183 37.1 205.9 HE HoE 6 wE 7424.8 HoE
4 1372 268.2 332.2 H* Hk 8 Hk 7252.8 HoE
5 1361 651.4 671.7 Hk *x 8 Hx 7228.7 Hok
16 1 682% 56.1 96.6 687 11 11 27.2 7200.2 0.73
2 682% 20.5 91.7 691 11 11 239.0 7200.9 1.32
3 682% 15.3 138.1 727 11 11 3984.8 7200.9 6.60
4 704 21.7 206.1 716 11 11 1165.2 7202.9 1.70
5 682* 62.8 276.6 687 11 11 90.6 7200.2 0.73
17 1 842 84.4 158.6 HoE HE 14 HE 7200.3 Hox
2 851 56.6 132.5 Hk Hx 14 HE 7200.1 *ox
3 842 38.8 200.6 Hx ok 14 Hox 7200.7 oK
4 845 7.4 279.7 Hox Hok 14 Hox 7202.2 Hk
5 842 44.7 402.2 HE Hok 14 Hok 7201.6 HoE

This implies that the total travelled distance is smaller, but does not account for the extent of violations of the
constraints. In short, a "better" infeasible solution has a smaller overall travel distance, but might also violate the
constraints more.

In some cases, where the initial solution was already feasible, no better solution was found through Tabu Search.
These cases can be found in the Tables @ and |§| where the value for CPU,,; of our Tabu Search is equal to 0.0.
This could either be because the initial solution already was a good feasible solution or because the Tabu Search
failed to escape a local minimum. The latter should be made improbable by declaring latest visited solutions tabu
and the diversification through penalties, but our Tabu Search has not been tested for cycling in local minimum
solutions and thus we cannot know with certainty that the Tabu Search does not cycle in local optima.

For the first 14 CVRP instances we tested whether altering the parameters of which the Tabu Search is dependent
would lead to feasible solutions for instances where initially no feasible solution was found or no better feasible
solution was found than the initial solution. There are some cases where the initial solution is already feasible and
a better solution than the one found by |Gendreau et al.| (2008]), for these cases we did not alter the parameters.
The solutions z7gyes for which we altered the parameters are indicated with a ¢ in Tables [] and [a total of 33
instances. In order to widen the search for a solution, the alteration of parameters was as follows. We extended the
maximum value of A from 4 to 10. This means that checking for load-feasibility will take longer, but also might find
packings that are feasible, which were not found before. We also squared the value of 0, declaring moves tabu for
more iterations. Furthermore we doubled the maximum number of iterations and maximum CPU time. As can be

14

Table 6: Summary of the solutions that are obtained compared to the solutions obtained by |Gendreau et al.| (2008))

CVRP (Gendreau et al.|[2008)

CVRP (Vester)

2L-CVRP (Gendreau et al.||2008)

2L-CVRP (Vester)

Instance 21 CPU,pt CPU 21 CPUypt CPU Zo-5 CPUypt CPU Zo-s solved ~ CPUyp; CPU

1 278.73 2.0 2.2 278.98 32.0 548.7 291.60 4.2 9.7 296.60 [3,4,5] 495.5 2553.8
2 334.96 0.0 1.4 349.63 221.6 844.2 341.02 0.1 3.7 340.96 [2,4] 66.9 3323.7
3 359.77 3.5 8.4 364.45 2769.4 7249.1 377.35 1.6 19.6 376.32 [2,3,4,5] 793.2 5689.1
4 430.88 0.1 5.7 o 32034 437.45 0.5 14.7 455.40 [2,3,4,5] 410.0 3743.8
5 375.28 1.4 12.8 384.06 631.4 72014 380.20 5.0 25.2 383.89 [2,3,4,5] 1357.2 7219.0
6 495.85 0.3 8.7 496.07 1220.6 2351.5 501.02 7.2 18.8 503.66 [2,3,4,5] 2177.1 5511.5
7 568.56 0.5 22.6 568.56 3079 73159 700.34 6.3 48.4 759.36 [2,4] 6394.9 14473.7
8 568.56 0.5 36.2 568.56 857.7 7283.2 694.99 11.2 61.3 731.07 [2,5] 0.0 12668.4
9 607.65 0.4 13.5 HK ** 0 09123.6 619.69 3.6 41.2 630.21 2] 293.2 117014
10 538.79 6.1 81.7 ** ** o 14840.4 700.39 36.0 192.0 704.98 [2,5] 2675.0 10827.6
11 505.01 2.5 98.9 505.68 3498.7 7448.7 739.04 55.7 207.6 718.67 [3,5] 13137.7 144125
12 610.57 28.5 32.5 ok % 14400.4 620.62 49.0 82.7 632.27 [5] 315.8 12602.3
13 2006.34 29.9 161.6 2006.68 2229.8 77754 2598.20 575 332.0 2796.39 [2,5] 0.0 12833.3
14 837.67 22.2 152.1 841.35 3381.5 7238.6 1047.72 375.8 565.6 1134.90 12,3,5] 1076.5 10880.2
15 837.67 1.7 182.5 837.97 6847.2 74284 1201.38 156.7 375.9 HoK HK R T328.7
16 698.61 2.7 99.0 703.17 272 7200.2 702.03 20.5 160.1 722.18 [2,3,4,5] 1369.9 7201.2
17 862.62 59.0 162.8 *K * 0 7200.3 866.37 64.9 2182 *k HK 0 7280.8
18 723.54 81.9 587.3 748.54 3702.8 7410.5 1085.84 589.3 1318.0 Hx o 73296
19 524.61 128.8 641.9 ** *7756.3 772.25 633.7 1524.5 833.44 [4] 7154.0 73575
20 241.97 253.6 1005.2 252.75 3905.3 7404.0 564.67 954.5 3237.3 565.84 [4,5] 32814 3624.2
Average 620.58 31.8 165.9 636.18 2116.7 7061.2 762.11 151.7 422.8 684.77 2.1 2411.7 8607.0

seen in Tables |4 and |5| this sometimes did result in a (better) feasible solution, in only 9 of the 33 cases, but mostly
not. The total number of instances we have found a solution for is now 56 out of 100. We did not test for all the
instances where no or no good solution was found whether altering the parameters would improve the performance
of the heuristic. We choose to investigate this for rather small instances, up to 32 customers, since we expect that
for larger instances we would need to widen the search area through altering the parameters much more.

Of the first 85 2L-CVRP instances depicted in Tables [4] and [5| a solution was found for 51 instances. The %gap
between the best found objective values is on average -1.28 and 22 found solutions are better. This implies that our
Tabu Search performs slightly better, if it is able to find a solution. However, the Tabu Search of (Gendreau et al.
(2008) had extra restrictions to take into consideration. If we leave out the solutions where these restrictions are
violated, leaving 36 solutions, the average %gap becomes 0.65, and only 9 found solution are better. This disproves
the idea that our Tabu Search is slightly better than the Tabu Search of |Gendreau et al.| (2008]), and leads to think
that our Tabu Search performs on average the same or even slightly worse.

Gendreau et al.| (2008) also give results of the Tabu Search without the restrictions as in Tables {4 and |5 and
where the Euclidean distances between the vertices were not rounded for the costs used in the objective function.
Unfortunately, only a concise representation of the results is provided, making exact comparison with our results
difficult. These results for the first 20 CVRP instances can be found in Table [l The results were divided in two
sets: solutions for the first class of every instance, which is in practice equal to pure CVRP, and solutions for the
other classes of every instance. The instances of the first class are pure CVRP, because every client demands only
one item, which is always of unit length and height. Since all items always would fit in one vehicle, independent of
the size of the instance, the loading constraint is never binding. This means only the weight constraint is binding
for these instances and this is pure CVRP.

In Table |§| the results are grouped in results for CVRP found with the Tabu Search of |Gendreau et al.[(2008)
(first cluster), results for CVRP found with the Tabu Search of this paper (second cluster), results for 2L-CVRP
found with the Tabu Search of |Gendreau et al.| (2008) (third cluster), and results for 2L-CVRP found with the Tabu
Search of this paper (last cluster). The best found objective values for the first class instances (z;) are depicted
for both Tabu Searches. The corresponding time it took to find this solution (C'PU,y:) and the total computation
time (C'PU), both in seconds, can be found as well. For instances of class 2 to 5 an average of the found optimal
objective values is given (Z,_5) for both Tabu Searches, also together with the computation times in seconds. Here
the computation times are also averages of the computation times of classes 2 to 5 for every CVRP instance. Since
the Tabu Search of this thesis is not able to find solutions for all the instances, the classes that the Tabu Search
was able to find a solution for are given under solved for every instance. Averages of all values are given in the
last line of Table [6] where the average of solved is the average number of 2L-CVRP instances for which a solution
was found. For the average of Z,_5 of our Tabu Search the weighted average is taken with respect to the number of
instances that are solved. Two asterisks indicate the instances for which no solutions are found.

15

What is clearly visible from Table @, is that the Tabu Search of |Gendreau et al. (2008|) never exceeds their
maximum computation time of one hour, meaning that it completes all predefined number of iterations for the
Tabu Search. Our Tabu Search on the contrary reaches the maximum computation time (2 or 4 hours) more often,
and thus almost never completes the Tabu Search for the predefined number of iterations. From this table we can
also derive that including loading constraints leads to worse solutions, as the best found objective values for CVRP
are smaller on average than those for 2L-CVRP.

7 Conclusions & Summary

We have evaluated a heuristic method, proposed by |Gendreau et al| (2008), for solving an extended version of
the classical vehicle routing problem in which two-dimensional loading constraints are introduced. This problem
combines two classical optimization problems, CVRP and 2BPP. A Tabu Search heuristic was developed for solving
the resulting problem: 2L-CVRP. The research of (Gendreau et al.| (2008]) covers two versions of 2L.-CVRP, with
unrestricted loading and with sequential loading. In this thesis this Tabu Search heuristic was implemented and
tested for the unrestricted version of the problem, meaning that with packing a vehicle, the order in which customers
are visited is not considered. The heuristic was applied to a large set of 100 instances, which are also used by
Gendreau et al.| (2008)).

Some aspects of the heuristic were differently implemented with this thesis. The procedure of packing a vehicle
was exactly implemented as was described by (Gendreau et al.| (2008). In the Tabu Search itself, however, some
alterations were made. For determining a new solution, a different insertion procedure was applied for deleting a
customer from a route and adding it to another route. |Gendreau et al.| (2008)) make use of the so-called Generalized
Insertion Procedure (GENI), which is heuristic for solving the Traveling Salesman Problem (TSP) that considers a
subset of the possible 4-opt modifications of both the routes in question. We opted for solving a TSP differently
for both routes, mostly to exact optimum. Since most of the time the routes in consideration do not visit a large
amount of clients, this was a manageable option. For routes visiting less than 10 clients we solved TSP to exact
optimality, for larger routes we used a Genetic Algorithm, another heuristic. By doing so, more individual routes
of vehicles were sure to be distance optimal.

One large element of the Tabu Search heuristic developed by |Gendreau et al. (2008|) was not implemented. A
Tabu Search heuristic usually has a diversification phase and a intensification phase in order to escape poor searching
areas or more extensively search a promising solution area. The diversification was implemented by penalizing moves
with respect to the frequency of the move before. The intensification phase, however, was omitted. This was due
to the complexity of the algorithm, it required a mixed integer problem to be solved, and the limited time this
thesis had to be completed in. The computational results were probably substantially affected by choosing not to
implement the intensification phase.

After implementation, the heuristic was tested and the results were compared to the results of (Gendreau et al.
(2008). In comparison, the performance of our heuristic proved itself poor. In contrast to the Tabu Search of
Gendreau et al.| (2008), in a lot of the instances, 53%, not even a feasible solution was found initially, and when
a feasible solution was found, it often was worse than the solution found with the Tabu Search of (Gendreau et al.
(2008). This may probably be attributed mostly to the computation time. Our heuristic needed approximately 200
times more time for completion of the Tabu Search. The computation times may be that much larger, because of
the choice of program. Another explanation could be that the heuristic was not efficiently enough implemented.
The limit of the computation time was set to two hours, and for most of the instances the Tabu Search did not
complete all iterations. Hence it is possible that the heuristic did not find a feasible or optimal solution, because it
ran over too few iterations or because the Tabu Search is too much restricted by its parameters.

We therefore chose to widen the search area by altering the parameters the Tabu Search is dependent on for
some of the instances where no or no good solution was found. We increased the maximum value for A, leading to
more extensively check for load-feasibility and we squared the value for 8, declaring moves tabu for more following
iterations. We also doubled the maximum number of iterations and the maximum computation time in order to
let the Tabu Search run over more iterations, in the hope that then good feasible solutions are found. We tested
whether this would improve our performance for 33 instances where no or no good solution was found, and with
this alteration did now found solutions in 9 of these cases. Hence it means that we can improve the performance of
our heuristic somewhat, but this also yields much more computation time.

Concluding we can say that our heuristic does not measure up to the Tabu Search of |Gendreau et al.| (2008).
It does find better solutions sometimes, but overall it performs worse, especially regarding the computation times.
Also our heuristic does not always find a solution, contrary to the Tabu Search of |Gendreau et al.| (2008).

16

8 Further Research

We would like to touch on some notes for further research. Obviously, looking at the performance of our Tabu
Search, our implementation of the heuristic leaves a lot to be desired. The computation times were much too high
for finding solutions within a reasonable amount of time. The modules that this heuristic consists of can probably
be implemented more efficiently and should be fine-tuned. For example, the adjustment of the packing positions in
the procedure TPoyy, is divided into 5 different possible situations, which were all individually implemented. This
might be done more efficiently by determining covering adjustment rules that would work for all situations. Also a
more efficient program to implement the heuristic in should be considered.

Secondly, an intensification phase should be implemented, because then a promising solution that might be
infeasible, can be more extensively adapted, trying to make it feasible. As was discussed, our current heuristic lacks
such a phase. |Gendreau et al. (2008)) propose an intensification phase, but different intensification phases could be
considered. Also different diversification methods could be considered than the one proposed by [Gendreau et al.
(2008)), which used penalizing frequently made moves in order to diversify the search. An example of a different
diversification could be perhaps to allocate more than one customer in one move, if the Tabu Search is stuck in a
local minimum.

Also some more robustness testing on the parameters the Tabu Search is dependent on should be done, for
determining its sensitivity to these parameters. Different rules on adapting «, 3, and A may be considered as well
as different values for 0, v, and §. Also more different halting criteria for the Tabu Search could be investigated,
altering the maximum number of iterations and maximum CPU time. We did slightly test for some alterations, but
this does not give a good overall impression of the dependence of the Tabu Search on these parameters.

Furthermore, the different modules the Tabu Search consists of could be further investigated. Different insertion
procedures for reallocating a client may be examined for example. |Gendreau et al.| (2008) made use of the GENI
heuristic, we used a combination of exactly solving TSP and a Genetic Algorithm, but many more options exist for
solving T'SP. Also checking for load-feasibility may be done differently, for example use a different initial sequence
of items that is packed, or swap items in LHoyy, more cleverly, instead of randomly.

Lastly, the other algorithm for determining an initial solution, IHEsy,, should be examined as well. With
THGaur, we found feasible solutions only for 21% of the instances. Perhaps better initial solutions would be found
with IHEQUL.

17

References

Bortfeldt, A. (2012). A hybrid algorithm for the capacitated vehicle routing proble with three-dimensional loading
constraints. Computers & Operations Research, 39(2):2248-2257.

Clarke, G. and Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points.
Operations Research, 12(4):568-581.

Cordeau, J.-F., Gendreau, M., and Laporte, G. (1997). A tabu search heuristic for periodic and multi-depot vehicle
routing problems. Networks, 30(2):105-119.

Duhamel, C., Lacomme, P., Quilliot, A., and Toussaint, H. (2011). A multi-start evolutionary local search for the
two-dimensional loading capacitated vehicle routing problem. Computers & Operations Research, 38(3):617-640.

Fuellerer, G., Doerner, K. F., Hartl, R. F., and Iori, M. (2009). Ant colony optimization for the two-dimensional
loading vehicle routing problem. Computers & Operations Research, 36(13):655—673.

Fuellerer, G., Doerner, K. F., Hartl, R. F., and Iori, M. (2010). Metaheuristics for vehicle routing problems with
three-dimensional loading constraints. Furopean Journal of Operational Research, 201(3):751-759.

Gendreau, M., Hertz, A., and Laporte, G. (1992). New insertion and postoptimization procedures for the traveling
salesman problem. Operations Research, 40(6):1086-1093.

Gendreau, M., Tori, M., Laporte, G., and Martello, S. (2006). A tabu search algorithm for a routing and container
loading problem. Transportation Science, 40(3):342-350.

Gendreau, M., Tori, M., Laporte, G., and Martello, S. (2008). A tabu search heuristic for the vehicle routing problem
with two-dimensional loading constraints. Networks, 51(1):4-18.

Tori, M., Salazar-Gonzéalez, J.-J., and Vigo, D. (2007). An exact approach for the vehicle routing problem with
two-dimensional loading constraints. Transportation Science, 41(2):253-264.

Lacomme, P., Toussaint, H., and Duhamel, C. (2013). A GRASPXELS for the vehicle routing problem with basic
three-dimensional loading constraints. Engineering Applications of Artificial Intelligence, 28(8):1795-1810.

Leung, S. C., Zheng, J., and Zhang, D. (2010). Simulated annealing for the vehicle routing problem with two-
dimensional loading constraints. Flexible Services and Manufacturing Journal, 22(1-2):61-82.

Leung, S. C., Zhou, X., Zhang, D., and Zheng, J. (2011). Extended guided tabu search and a new packing algorithm
for the two-dimensional loading vehicle routing problem. Computers & Operations Research, 38(1):205-215.

Lodi, A., Martello, S., and Vigo, D. (1999). Heuristic and metaheuristic approaches for a class of two-dimensional
bin packing problems. INFORMS Journal on Computing, 11(4):345-357.

Ma, H.-w., Zhu, W., and Xu, S. (2011). Research on the algorithm for 3L-CVRP with considering the utilization
rate of vehicles. Intelligent computing and information science, 134:621-629.

Tarantilis, C., Zachariadis, E., and Kiranoudis, C. (2009). A hybrid metaheuristic algorithm for the integrated
vehicle routing and three-dimensional container-loading problem. Intelligent Transportation Systems, 10(2):255—
271.

Wei, L., Zhang, Z., Zhang, D., and Lim, A. (2015). A variable neighborhood search for the capacitated vehicle routing
problem with two-dimensional loading constraints. Furopean Journal of Operational Research, 243(3):798-814.

Zachariadis, E. E., Tarantilis, C. D.; and Kiranoudis, C. T. (2009). A guided tabu search for the vehicle routing
problem with two-dimensional loading constraints. Furopean Journal of Operational Research, 195(3):729-743.

Zachariadis, E. E., Tarantilis, C. D., and Kiranoudis, C. T. (2013). Integrated distribution and loading planning
via a compact metaheuristic algorithm. European Journal of Operational Research, 228(1):56-71.

18

	Introduction
	Further literature
	Problem Description
	Methodology
	Heuristics for checking the loading constraints
	Initial Solution
	Tabu Search

	Data
	Results
	Initial Solution
	Tabu Search

	Conclusions & Summary
	Further Research

