
Erasmus University Rotterdam

Bachelor Thesis

Logistics

Analyzing Pricing and Production Decisions
with Capacity Constraints and Setup Costs

Author:
Bianca Doodeman
Studentnumber: 359215

Supervisor:
W. van den Heuvel

July 3, 2015

Abstract

In this Bachelor Thesis we consider a problem for maximizing profit over the horizon, where we
make use of setup costs and capacity constraints as explained in Deng and Yano (2006). For this
problem we need to determine prices and demands and need to choose the best production patterns.
We characterize properties of the optimal solution, consider cases with constant, increasing and
seasonal demand and different capacity levels. For generating this, we use the Lagrange Multiplier
Method and the Shortest Path Algorithm. An interesting aspect is that the optimal price increases
when the length of the Regeneration Interval changes for increasing capacity. Another interesting
thing is when the capacity increases the average unit price stays the same under certain settings,
which means that the capacity is too big for the given demand. Finally, we discuss what kind of
extensions are possible for our problem.
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1 Introduction

The interest in the integration of pricing and production/inventory has increased over the last few
years. A lot of research about this topic is done, but none of them made use of capacity constraints
or they assume that the production costs are linear or piecewise linear and convex. All the models
that are used now, assume that the supplier decides which products will be purchased. This is one
of the reasons why capacity constraints are not taken into consideration. Another point is that
pricing decisions, capacity constraints, and production scale economies, as said in Deng and Yano
(2006), significantly complicate the problem.

Our research was motivated by the decision problems for typical customers who want to buy
durable goods with seasonal demands. When we speak about seasonal demands, it means that
there is a fluctuation in the demand during the year, which is every year the same. Due to this
phenomenon, it is hard to avoid overcapacity. Industries who face this problem are the automobile
industry, furniture and jewelry shops and so on. This are products that do not need to be purchased
that frequently, because of the long existence of the products. Furthermore, durable goods also
face setup costs, (Deng and Yano, 2006), which are in some periods too large to ignore.

In this bachelor thesis we assume that the capacity and demand curve are known and that the
inventory holding costs are incurred on the end of the period. The production costs consist of
setup costs for each production run and linear variable costs. To simplify the problem we only
look at single product cases. In this bachelor thesis we are going to explain the algorithm for
determining the optimal prices and want to gain an understanding of the relationship between
capacity and optimal prices, as explained in Deng and Yano (2006). Results show that when
capacity constraints and setup costs get inserted, it may be optimal to charge higher prices and to
produce less frequently. We are going to examine this phenomenon.

Another aspect we are going to evaluate is what happens with the optimal price when we
change the capacity level and how does the average unit price change as a function of the capacity.
Further, we are going to compare these average unit prices for homogeneous, increasing and
seasonal demand and explain why the average unit prices differ.

Organization of the report. The outline of the report is as follows. In Section 2 the
problem statement is given and we will explain what we could achieve with this information. The
Literature Review will be shown in Section 3. Here, we explain the background information, the
theories and algorithms we need to use for solving this problem. Further, the Methodology will be
described in Section 4. Here, we introduce the parameters and variables we use for our problem
and we elaborate on the theories and algorithms as mentioned in Section 3. Other aspects we
are going to explain here are the Lagrange Multiplier Method and the Shortest-Path Algorithm.
Section 5 shows our results of the methods we apply and we present some numerical examples that
illustrate the effects of capacity on prices. Next, we make some concluding remarks in Section 6
and in Section 7 we discuss model extensions and future research directions.

2 Problem Description

The research problem is setting prices and choosing production quantities for a single product
over a finite horizon for a capacity constrained manufacturer facing price-sensitive demands. The
general intuition is that optimal prices may increase when capacity increases. In this thesis we will
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examine if this is generally the case or that there will be a change in the pattern of the price when
the capacity increases.

We do not consider promotion or sale prices in our general case. In each period the costs consist
of setup costs, which only holds if production takes place, variable production costs per unit and
per-unit inventory holding costs on end-of-period inventory. These costs could vary in time.

In general, the firm decides the price of the products and this will define the demand and selects
the production quantity. This is in contradiction with our case, we have a given demand function
and with this demand we determine the optimal price. We assume that the product is durable or
semi-durable and that the demand curves are independent across periods. Another requirement in
our case is that back-orders are not allowed. Our goal is to maximize the profit over the horizon.
For achieving our goal we make use of Regeneration Intervals(RIs). A RI is defined as a set of
consecutive periods, where the start and end inventory is equal to zero and with strictly positive
inventory in all periods. We make use of RIs, because it is an useful way to consider all the possible
options for maximizing the profit.

For our problem we have a known demand curve, which may vary from period to period and is
differentiable and strictly decreasing with respect to the price. The demand curves for the different
periods are independent. In our problem we do not make use of competitive effects, which are
multiple firms who have similar products.

In the following Section we will give some background information about our problem and explain
which theories we use.

3 Literature Review

Loads of literature can be found for this topic, but all the articles look at the topic differently.
Yano and Gilbert (2004) have a comprehensive review about coordinating production and pricing
decision making. They do not consider capacity constraints, which is important for our research.

The concept of RIs is also introduced in Thomas (1970). His first discrete-time model with
concave costs shows that the optimal solution consists of RIs and that prices can be determined by
solving a non-linear optimization problem. This thesis considers a problem of a monopolist. We
generalize his model and include capacity constraints. With the algorithm as shown in Thomas
(1970) we get optimal prices and production quantities.

Florian and Klein (1971) already take capacity constraints in consideration. They make use of
a discrete-time concave-cost production problem with capacity constraints, but without pricing
decisions. They prove that at most one production quantity is strictly positive and less than the
capacity for the optimal production schedule within an RI.

Another article that takes capacity in consideration is Gaimon (1988). They assume that capacity
may be acquired to either increase or replace the firms existing productive capacity. Second they
assume that the acquisition of new capacity causes a reduction in the firm’s production costs.

Zhao and Wang (2002) consider the same problem about maximizing their profit when coordi-
nating joint pricing-production decisions in a supply chain. Their goal is to show the existence of a
manufacturer’s price schedule that induces distributor to adopt decisions in the decentralized set-
ting to achieve the performance of a centralized supply chain, (Zhao and Wang, 2002). They focus
on developing an incentive scheme for the manufacturer to achieve channel coordination. Their
research is different from our search in a way that they do not consider capacity constraints.

In Lee and Kim (2002) they propose a hybrid approach combining the analytic and simulation
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model for solving integrated production-distribution problems in supply chain management. They
consider multiple constraints including capacity constraints.

In Jans and Degraeve (2008) are different lot sizing problems described. They focus on the same
aspects: the set ups, the characteristics of the production process, the inventory, demand side and
rolling horizon. As in our problem we also take a close look to the set ups and the demand side.
There main aim is to discuss models that have been developed for optimizing production planning
and inventory management. In Jans and Degraeve (2008) are several similarities compared to the
formulation of the problem.

In another article they model a joint manufacturing/pricing decision problem, accounting for
that portion of demand realized in each period that is induced by the interaction of pricing
decisions in the current period and in previous periods, (Ahn H. and Kaminsky, 2007). They
formulate programming models and develop solution techniques to solve this problem.

The methods we are going to use to solve our problem are the Lagrange Multiplier Method and
the Shortest Path Algorithm. For solving the relaxation of our problem we make use of the Lagrange
Multiplier Method.

In Fraser (1992) the achievement in Lagrange’s method of multipliers is documented and they
consider its precise character as an advance over earlier methods and results. For this they consider
the Isoperimetric Problem.

We use the theory of the Lagrange Multiplier Method for determining the profits and all pro-
duction patterns within a RI. Next, we use the Shortest-Path Algorithm for connecting the RIs
and to find the maximum profit for the whole period, as explained in Knuth (1977) and Dijkstra
(1959). In Dijkstra (1959) the general idea of this method is explained. There are different types
of the Shortest-Path Method. There is the single-source shortest path problem, single-destination
shortest path problem and the all-pairs shortest path problem. For our problem we make use of
the single-source shortest path problem, because we have to find the shortest paths between two
nodes. To develop our problem we use Dijkstra’s Algorithm, (Knuth, 1977). Here, the general case
of this problem is expounded.
We use all this research for solving our problem, which is further elaborated in Section 4.

4 Methodology

Our main goal is to realize the optimal production schedule and prices. There are several steps to
achieve this. In Section 4.1 we explain the problem and give the general and reduced form of the
problem. Furthermore, we give the special case under certain conditions we used for determining
our results. After having a clear view of the problem, we will show how we determine this problem
for a RI. Next, we introduce in Section 4.3 the methods we use to solve our problem.

4.1 Problems

Deng and Yano (2006) have several forms to represent the problem of setting prices and choosing
production quantities over a finite horizon with capacity constraints and setup costs. In this part
we will first introduce the general problem followed by the reduced problem and give our special
case with the conditions we used.
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4.1.1 General Problem

The general form of the problem is NP (non-deterministic Polynomial time) - hard even without the
introduction of pricing decisions, which means that other forms of the problem can be transformed
in polynomial time to the general problem. The price does not influence the optimal production
decisions. Factors that do influence the structure of the optimal solution are:

• whether capacity is time varying or constant

• whether there is speculative motive for holding inventory

• whether the setup costs are non-increasing over the horizon

With speculative motive for holding inventory in period t we mean that the production costs per
unit in period t are higher than when you produce your product in period t− 1 and hold the unit:
vt > vt−1 + ht−1. Thus, this is an important factor to check. Furthermore, for determining the
optimal production schedule and prices we make use of the following variables and parameters:

T : number of periods
t: period index, t = 1, ..., T
Kt: setup cost in period t
vt: unit production cost in period t
ht: inventory holding cost per unit remaining at the end of period t
Ct: capacity in period t (in units)
Dt: demand in period t (decision variable)
Pt(Dt): price in period t, which is the inverse of the demand function in period t (implicit decision)
xt: production quantity in period t (decision variable)
δt: setup indicator in period t (1 if xt > 0; 0 otherwise)
It: inventory remaining at the end of period t

For the general problem: the firm decides the price in each period, which then defines the
demand, and selects the production quantity. The objective function to maximize the profit over
the horizon for the general case will look as follows:

max
~D,~x

T∑
t=1

[Pt(Dt)Dt − δtKt − vtxt − htIt] (1)

s.t. It = It−1 + xt −Dt, t = 1, ..., T (2)

0 ≤ xt ≤ δtCt, t = 1, ..., T (3)

It, Pt(Dt), Dt ≥ 0, t = 1, ..., T (4)

Where Pt(Dt)Dt is the revenue function in the objective function and that this function is concave
in Dt and achieves in Dt a maximum, which is strictly positive but finite. Due to this assumption
we eliminated 2 unrealistic options. The first possibility that Dt = 0 is optimal cannot be reached.
Secondly, the infinite quantity cannot be sold for a negative price.

For finding optimal production schedules and prices of the general problem and prices are
different ways:

• Non-constant capacity, speculative motive for holding inventory, and arbitrary setup costs
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• Non-constant capacity, no speculative motive for holding inventory and arbitrary setup costs

• Constant capacity, no speculative motive for holding inventory, and arbitrary setup costs

• Constant capacity, no speculative motive for holding inventory, and non-increasing setup costs

We will focus on constant capacity, no speculative motive for holding inventory, and non-increasing
setup costs.

4.1.2 Reduced Problem

However, the general form as mentioned in Section 4.1.1 can be reformulated by taking advantage
of the characteristics of the optimal production policy. The reason why we consider a reformulated
problem is that the challenge for solving a standard capacitated lot-sizing problem in a RI, even
without pricing decisions, is not trivial, and the pricing decisions further complicate the problem.
Therefore, the new formulation, as introduced in Deng and Yano (2006), suggests that solving the
joint production and pricing problem for the reduced problem has the same fundamental complex-
ity as the general problem. In the reduced form we have ti, which denotes the period in which
the ith setup within the RI occurs. Next, tf denotes the fractional production if it exists. We
have a fractional production when the demand does not meet the capacity. We will explain this
more comprehensive in the special case part. However, the production pattern for the fractional
production is determined differently:

xtf =

tf−1∑
j=1

Dj −
∑

ti∈S:i 6=f

Cti (5)

Here, S stands for the production pattern. When we implement (5) in the general problem we get
the following objective function and restrictions:

max
~D

tf−1∑
t=1

(Pt(Dt)− vtf +

tf−1∑
j=t

hj)Dt +
n∑

t=tf

(Pt(Dt)− vtf −
t−1∑
j=tf

hj)Dt + κ (6)

s.t.

n∑
j=1

Dj ≤
∑

ti∈S:ti≤t
Cti for t = 1, ..., tf − 1 (7)

t∑
j=1

Dj ≤
∑

ti∈S:i 6=f,ti≤t
Cti + (

n∑
j=1

Dj −
∑

ti∈S:i 6=f

Cti) for t = tf , ..., n (8)

0 ≤
n∑

j=1

Dj −
∑

ti∈S:i 6=f

Cti (9)

n∑
j=1

Dj −
∑

ti∈S:i 6=f

Cti ≤ Ctf (10)

Pt(Dt) ≥ 0 for t = 1, ..., n (11)

Dt ≥ 0 for t = 1, ..., n (12)
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where the constant κ is defined as:

κ =
∑

i∈S−{tf}

(vtf − vi)Ci −
m∑
j=1

Ktj −
f−1∑
j=1

Ctj [

tf−1∑
i=tj

hi] +
m∑

j=f+1

Cij [

tj−1∑
itf

hi] (13)

In this problem, constraint (7) and (8) ensure that the demand is satisfied for all periods and do not
exceed the capacity for that period. Constraint (9) and (10) ensure that the production quantity
in the fractional production period is positive and within the limits of the capacity level.

When we look at constraint (11) we see that it is not profitable to have Pt = 0 and Dt positive.
In this case, the revenue will be zero but there are production costs and other costs, which gives a
loss. The conclusion we can draw here is that this constraint is not binding. The same holds for
constraint (7) and (8) except for t = n. These constraints are not binding at optimality because
they ensure non-negativity of inventory at the end of intermediate periods in the RI. With this
taking in consideration we made some adjustments in the problem and got the following relaxed
problem:

max
~D

tf−1∑
t=1

(Pt(Dt)− vtf +

tf−1∑
j=t

hj)Dt +

n∑
t=tf

(Pt(Dt)− vtf −
t−1∑
j=tf

hj)Dt + κ (14)

s.t.
n∑

j=1

Dj ≤
∑
ti∈S

Cti (15)

Dt ≥ 0 for t = 1, ..., n (16)

4.1.3 Special Case

For our special case we can define Pt(Dt) in a different way. In our numerical examples we use an
inverse demand function as noted in Equation (17). The reason for this is that we consider constant
costs. In addition, each unit of production uses one unit of capacity.

Pt(Dt) = At −BtDt (17)

Here, At is the expected demand in period t and Bt is the slope for the demand function. We can
implement this price function in (14) and this will give the new objective function in (18).

max
~D

tf−1∑
t=1

(At −BtDt − vtf +

tf−1∑
j=t

hj)Dt +

n∑
t=tf

(At −BtDt − vtf −
t−1∑
j=tf

hj)Dt + κ (18)

4.2 Regeneration Intervals

In the previous Sections we introduced the general and reduced problem. There exist many efficient
algorithms for determining this problem with a concave objective function and a single constraint.
We made use of Algorithm 1 to solve the general problem and to make use of the problem when
considering fractional productions. Here we determine RIs in the first part of the Algorithm.

The first step we take is determining the total number of periods(n). Every period can exists of
multiple RIs. We can explain this in more detail with Figure 1.
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Result: Maximize profit
initialization;
for Start period do

for End period do
for Number of periods producing do

Determine corresponding Dt and Pt;
Check for producing period;
Determine inventory level and profit;

end

end

end
Initialization;
for Number of Periods do

Determine corresponding Dt and Pt given no restrictions;
Calculate inventory level and profit;

end
Shortest path Algorithm;
Get optimal solution for capacity;

Algorithm 1: Algorithm for maximizing profit

In this example we chose a period of length 4. In total there are 10 different options for a RI as
shown. When you look at row 7 in Figure 1, this RI starts in period 2 and ends in period 4. When
the total number of periods increases, the number of possibilities for RIs increases too.

Figure 1: Possible RIs for n = 4

Further, there are several possibilities for every RI and we will compare these options with each
other in the following loop in Algorithm 1. Here we also calculate the demand and price for every
period, we check the producing level and determine the inventory level for calculating the profit.
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Next, we compare the profit for the same RI length and choose the maximum and store this option.
We continue with these steps until we got all the possible RIs.

Next, we check the profit for the fractional production. For this option we ignore restriction (15).
This implies that for the first period the demand can vary between 0 and the capacity level and that
the total capacity does not need to be a multiple of the given capacity. Taking this in consideration
we can consider the permission of the fractional production. After determining the highest profit
for all the possible RIs for both, the fractional production and the the general production, we get
the optimal solution for a given capacity level.

We consider all these steps of Algorithm 1 to find the optimal price in a RI and to get eventually
the optimal solution for the whole generating period. If none of the options for a given RI are
viable, the RI can be eliminated from consideration. There are only 2 aspects of the production
pattern that play a role: tf , the fractional product period and the sum of the capacities in the
periods with setups.

In the next Section we discuss which methods we use to construct the price, demand and pro-
duction pattern for all RIs.

4.3 Methods

For solving the general and reduced problem as mentioned in Section 4.1, we use certain methods.
The first method is the Lagrange Multiplier Method. With the use of this method we determine
the price, demand and associated profit for every t in a RI. When we constructed all RIs we
used a Shortest Path Algorithm to find the optimal solution. In this algorithm we determine the
combinations of RIs which give the highest profit.

4.3.1 Lagrange Multiplier Method

For addressing the relaxed problem in Equation (14 - 16) for constant capacity with no speculative
motive for holding inventory, and non-increasing setup costs we use the Lagrange Multiplier Method.
For implementing this reduced problem we use the method as described in Fraser (1992). Equation
(19 & 20) represents the same problem as described in (14) and (15) only defined with f(D), g(D)
and b, where f(D) represents the objective function in (18), g(D) =

∑n
j=1Dj and b =

∑
ti∈S Cti . In

Equation (21) we get the Lagrange function L(D,λ) for our problem and in (22) are the functions
implemented, where λ represents the Langrange Multiplier.

max
~D
f(D) (19)

s.t. g(D) = b (20)

L(D,λ) = f(D) + λ(g(D)− b) (21)

L(D,λ) =

tf−1∑
t=1

(At −BtDt − vtf +

tf−1∑
j=t

hj)Dt +

n∑
t=tf

(At −BtDt − vtf − (22)

t−1∑
j=tf

hj)Dt + κ+ λ(

n∑
j=1

Dj −
∑
ti∈S

Cti)

The next step, is to take the derivative of the Lagrange function. However, for determining λ we
found out that there exists a certain pattern under our conditions, which are a constant λ within a
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RI and the other parameters are given. As mentioned earlier, tf denotes the fractional production
period. There are only n possible choices when tf = 1. But for the sum of capacity, we must
consider all possible combinations of production periods. Under the condition that the fractional
production only takes place in the first period, will give the the following problem for the Lagrange
multiplier function:

L(D,λ) =
n∑

t=1

(At −BtDt − vtf −
t−1∑
j=1

hj)Dt + κ+ λ(
n∑

j=1

Dj −
∑
ti∈S

Cti) (23)

With this Equation we will determine the derivative with respect to Dt and λ. This gives the
following equations:

∂L(Dt, λ)

∂Dt
= At − 2BtDt − vt − (t− 1)ht + λ = 0 (24)

∂L(D,λ)

∂λ
=

n∑
j=1

Dj −
∑
ti∈S

Cti = 0 (25)

With these equations and the given condition that λ is constant within a RI we can generate a
general function for λ:

λ =

∑
ti∈S Cti −

∑n
t=1(

At
2·Bt
− vt

2·Bt
− (t−1)·ht

2·Bt
)

0.5 · n
(26)

Where, n is the number of periods within a RI. Given λ we can determine the corresponding
demand and price for all periods in the RI. Our formula for calculating the demand is as follows:

Dt =

∑
ti∈S Cti

nBt
−

n∑
t=1

(
At

0.5n
− vt

0.5n
− (t− 1) · ht

0.5n
) +

At

2Bt
− vt

2Bt
− (t− 1) · ht

2Bt
(27)

With this demand function we calculate the price with Equation (17). This price function only
holds under the following conditions: homogeneous linear demand, constant capacity, constant
variable costs, constant holding costs and constant setup costs. The optimal price within a RI
increases, because all the parameters are constant. The only part that causes a different price are
the holding costs, which increases every period with ht. Thus, the optimal price increases within
a RI and than declines when it goes to the consecutive RI. The value of the holding costs is very
important for the variation of the optimal price.

However, for calculating the fractional production we consider the optimization problem without
restrictions. This implies that λ is equal to zero. In this case, the demand function will look as
follows:

Dt =
n∑

t=1

At − vt − (t− 1) · ht
2 ·Bt

(28)

For we can use our solutions for the fractional production in the Shortest Path Algorithm, we
need to check if the option is feasible. When this is checked, with the given price and demand
given from Equations (17,27) we can calculate the sales and the profit for both scenarios, with and
without fractional production. In Equation (1) the formula for the profit for the general form is
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given. We compare the profit for both scenarios starting in period 1 and choose the one with the
highest profit, we can check this n times. When the profit of the fractional production is higher,
we take this option instead of the normal one as RI. When all the RIs are determined, we go to the
following step for optimizing our problem, which will be explained in the next Section.

4.3.2 Shortest-Path Algorithm

In Section 4.3.1 we generated all possible RIs, with optimal demand for every period, given capacity
and number of periods. The next step is to implement the information of the Lagrange Multiplier
Method in the Shortest Path Algorithm. Here, we ascertain all possible combinations for connecting
the RIs with each other. For the example in Figure 1 in Section 4.2 there are 8 different options
for connecting the RIs with each other:

[1, 5, 8, 10], [1, 5, 9], [1, 6, 10], [1, 7], [2, 8, 10], [2, 9], [3, 10], [4]

We generated the Shortest Path Algorithm as follows. First we check for a RI of period 1, which
end is in period 1, the maximum profit. Thereafter, we look for all the RIs and check what is the
end en start period. For example, when the start & end period is equal to 2, which means that the
RI only exists of one period, we count this profit with the profit which only produces in period 1.
When all the possible combinations for a period, which starts at 1 and ends at 2 are calculated, we
compare the total profit for the different options and take the maximum. We put the combination
of RIs, which corresponds to the maximum profit, at the place for period 2 with the corresponding
profit. We continue this process until we have the whole period n. We can visualize our steps with
Equation (29 - 31). p(i, j) represents the profit of RI [i, j], where i stands for the start period of the
RI and j for the end period. π(t) means the profit until period t. In this example we considered
n equal to 3, but for greater values of n the same process continues only the different options for
π(t) will increase.

π(1) = p(1, 1) (29)

π(2) =

{
π(1) + p(2, 2)

p(1, 2)
(30)

π(3) =


π(2) + p(3, 3)
π(1) + (2, 3)
p(1, 3)

(31)

The main motivation to use the Shortest Path Algorithm is for the reduce of the computation
time and number of iterations for the whole problem. For this case, not all the possible options
need to be calculated.

Next, the total profit is the profit which belongs to π(n). With this π(n) we get the corresponding
price, demand and production pattern for every time period. We could continue all these steps for
other capacity levels.

In conclusion, the whole process starts with initializing all parameters followed by determining
the price and demand for every time period within a RI with use of the Lagrange Multiplier Method.
At the end, we determine the combination of RIs with the highest profit, using the Shortest Path
Algorithm, and solve the problem. In the next Section we give some examples for these models and
problems.
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5 Results

In this Section, we demonstrate the theory as explained in Section 4 and present some numerical
examples. We look at what happens with the optimal price when we change the capacity. First, we
show what happens with the price pattern for homogeneous demand when we change the capacity.
In Section 5.2 we present the average unit price and next we give the optimal solution given seasonal
demand for a given capacity in Section 5.3.

In the examples followed by Deng and Yano (2006) we consider 6 time periods and each unit
of production uses one unit of capacity. Under these conditions we will look for homogeneous
demand and constant costs. The parameters are as follows:

B = 1
At = 10
Kt = 10
vt = 1
ht = 0.1

5.1 Price Pattern for Homogeneous Demand

In this case, capacity is constant over the horizon, but we consider different capacity levels to
illustrate the effect of changes in capacity for the optimal solution. In our examples, we use the
inverse demand function as noted in (17) for determining the price for the case of homogeneous
demand and constant costs.

In Figure 2 the optimal price against the time periods is given for capacity varying from 7 to
14. The results almost correspond to the results in Deng and Yano (2006). The only difference
is that for a capacity of 10 the production pattern is different. In Deng and Yano (2006) they
have 3 RIs. This cannot be a fractional production pattern, because in my case this option is not
feasible. The total demand for the 3 periods is greater than 10, so we must produce in more than
one period. However, when we produce the remaining in period 1, which is not a multiple of 10,
ensures that the demand is greater than the production. This is the reason why the fractional
production is not feasible. For the general production pattern is this ([1,2] , [3,4], [5,6]) not the
optimal solution. Other options, including my ([1,2,3] , [4,5,6]), have a higher profit. This is the
reason for the difference for a capacity level of 10.

It is also interesting in Figure 2 that for every capacity level there is a certain pattern. Each
curve has a different shape depending on the optimal production pattern.

For a capacity level of 7, you could see that the optimal solution exists of 3 RIs namely: [1,2],
[3,4] and [5,6]. Within a RI the optimal price raises every time period. This can be explained by
the fact that the price linearly depends on the demand (17), as already mentioned in Section 4.1.3.

In the case of Figure 2 we have constant demands and production costs. Furthermore, λ is the
same for every period in a RI because the general problem (6 - 8) has a single constraint, only
the increase in the inventory holding costs provides a decrease in the demand when t increases.
The price in period t is linear depending on the demand. This explains why the price raises for
every period in a RI. In the first period of the next RI is the price dropped compared to the last
time period of the previous RI. Considering our restrictions, the value of the first period in ev-
ery RI is the same for all RIs. Because of this phenomenon every price curve gets a sawtooth shape.
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Figure 2: Optimal Prices vs. Time for Capacity Levels 7 to 14

Moreover, for the capacity levels 7 to 9 the length of the RIs are equal to two and for 10 to 14
they are three, as shown in Figure 2. An increase in the capacity level for the same length of the RIs
ensures that the optimal price drops. Further, when the number of periods within a RI changes,
which in our case happens when the capacity increases from 9 to 10, the level of the optimal price
increases again. Next, when the capacity increases and the RI length stays the same the optimal
price drops. Here, we can find a certain pattern. For the same length of RIs, the price decreases
when the capacity increases. However, when the number of periods within a RI changes, when the
capacity increases, the optimal price increases again.

In the following Section we will show what happens with the price for different levels of capacity
when we use the average unit price.

5.2 Average Unit Price

In Section 5.1 we examined what happens with the price level in every period when the capacity
changes. Here, we will look what happens with the average price for the whole period when the
capacity changes. For calculating the average unit price we used the following formula:

pa =

∑T
t=1 ptDt∑T
t=1Dt

(32)

where pa is the demand-weighted average price. In Figure 3 is the average unit price for constant
demand shown, A = [10]. For this option we look for a capacity from 1 to 30. An interesting thing
to see is that for certain periods the average unit price is constant. We could conclude that for
the capacity of 14 until 20 they used fractional production, because the average unit price is here
exactly alike. The average unit price is here equal to e5,55 The same holds for a capacity of 27
and higher with a price of e5,62. We can underpin our arguments by the fact that the average
unit price is the same, which could not be the case when we make use of restriction (15). For low
capacity levels, small changes in capacity lead to a decline in the average unit price, which indicates
that the demand increases. So more customers are willing to buy the product.
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Figure 3: Average Unit Price with Constant Demand as a Function of Capacity

We also did some calculation for increasing demand and seasonal demand functions. We made use
of the following increasing demand: A = [7.5, 8.5, 9.5, 10.5, 11.5, 12.5] and for the seasonal demand
we used A = [10, 14, 6, 10, 14, 6]. In Figure 4a & 4b the average unit prices are shown as a function
of the capacity.

(a) Average Unit Price with Increasing Demand
as a Function of Capacity

(b) Average Unit Price with Seasonal Demand
as a Function of Capacity

Figure 4

An interesting aspect to notice is that for Figure 4a the average unit price is the same for a
capacity from 16 - 20 namely e5,71 and also for a capacity level of 27 and greater, which equals
e5,79. For the average price with seasonal demand is the capacity of 14 until 20 equal to e6,15
and for a capacity of 27 and greater e6,23. An aspect that stands out is that for all the three
cases: homogeneous, increasing and seasonal demand, the average unit price converges at the same
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capacity level, namely 27, to a constant price. We can conclude from this phenomenon that a
capacity level greater than 27 does not influence the average unit price. However, these three
constant prices differ. For a constant demand is the price equal to e5,62, increasing demand e5,79
and for seasonal demand is it equal to e6,23. We conclude from this difference that the demand
scenario has an influence on the height of the average unit price. But in general, the shape of the
three Figures (3, 4a, 4b) has approximately the same form only shifted. In the next Section we will
continue with the seasonal demand and explain in more detail the corresponding price and demand
for given capacity levels.

5.3 Price Pattern for non-Homogeneous Demand

In the example above we looked at the optimal prices against the capacity levels with homogeneous
demand. Now we consider non-homogeneous demands. The prices in different periods may move
in different directions and the demand weighted average price may move in unexpected directions,
because the demand in every period differs. In the following example we use seasonal demand
A = {10, 14, 6, 10, 14, 6}. All other parameters stay the same. In Table 1 the production pattern,
demand and corresponding price are given for a capacity of 5 & 6. The profit is e88,74 and e95,21
for a capacity of 5 & 6 respectively. The optimal solutions for a capacity of 5 are different from
Deng and Yano (2006). The optimal solution Deng and Yano (2006) used are a feasible solution but
not the optimal solution, because it has a lower profit. The optimal solution for seasonal demand
is shown in Table 1.

Table 1: Optimal Solutions for the Seasonal Demand with C= 5 and 6

t 1 2 3 4 5 6
A 10 14 6 10 14 6

C = 5
xt∗ 5 5 0 5 5 0
Dt∗ 3,383 5,333 1,283 3,383 5,333 1,283
Pt 6,617 8,667 4,717 6,617 8,667 4,717

C = 6
xt∗ 6 6 0 6 6 0
Dt∗ 4,050 6,000 1,950 4,050 6,000 1,950
Pt 5,950 8,000 4,050 5,950 8,000 4,050

In Table 1 we observe that when there is a positive or negative change in A the same pattern
happens for the optimal demand in that period for the demand Dt and the optimal price Pt.
Another thing that stands out is when the capacity raises, the price declines for the same length
of RIs, which is here equal to 3. The same happened for the homogeneous demand in Section 5.1,
where for the same length of the RIs the optimal price drops when the capacity increases. In this
case, the demand-weighted average unit price (pa) for C = 5 is equal to 7,47 and for C = 6 is
pa = 6, 67. For these capacities, the average unit price increases when the capacity decreases.

6 Conclusion & Discussion

In this Bachelor Thesis, we examine the problem of joint production and pricing decisions with given
capacity constraints for a given time period with setup costs. We clarify how to solve this problem
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for maximizing the profit over the horizon. For completing our steps we made use of Regeneration
Intervals(RIs). The models we used for determining the RIs are the Lagrange Multiplier Method
and the Shortest Path Method. We used the Lagrange Multiplier Method for computing all the RIs.
Furthermore, first we found all the RIs for a particular capacity level and then we got the optimal
production pattern out of the Shortest Path Algorithm.

In Section 5 we found several interesting aspects. The price pattern for homogeneous demand
follows a certain pattern. The price in period t depends linearly on the demand, which explains
why the price raises for every period in a RI. A change in the length of RIs for different capacity
levels influences the optimal price as shown in Figure 2. The pattern we can deduce here is that
the optimal price drops, for RIs with the same length, when the capacity increases. The optimal
price raises again when there is a change in the length of RIs for increasing capacity.

The following aspect we examined is the average unit price. When the capacity increases the
average price converges to a certain value. We compared the prices for constant, increasing and
seasonal demand and conclude that the average price for seasonal demand is the highest when the
capacity does not influence the price level, which is for a capacity greater than 27. In Section 5.3
we deepen into the scenario for seasonal demand. We observed that when A increases or decreases
in the next period the same pattern happens for the optimal demand(Dt) in that period. Another
thing that stands out is when the capacity raises, the price declines for the same length of RIs for
every t, which is the same conclusion as we made for homogeneous demand in Section 5.1.

Further, we could check for many different scenario’s certain aspects. These scenario’s are ex-
plained in Section 7.

7 Further Research

For determining the maximum profit over the horizon are different ways. In this Bachelor Thesis we
considered constant capacity, no speculative motive for holding inventory, and non-increasing setup
costs. For further research we also could check the maximum profit for the other three options as
mentioned in Section 4.1.1. One of these options is a change in the setup costs. In our research we
made use of non-increasing setup costs. But in this case we could consider arbitrary setup costs.
When the setup costs are arbitrary, the demand given from the demand function stays the same, it
will only influence the profit. This could have a greater influence for the RIs which will be chosen
when maximizing the profit.

Further, another aspect we could determine is non-constant capacity. In this case, every RI
could consist of multiple capacity levels, which would give different conditions and much more
combinations for RIs. For these options other assumptions must be made, which means that we
need to change parts of the algorithms.

Another extension that can be made is calculating the maximum profit with constant price
instead of constant demand. A question to ask here, is how much benefit can be obtained when
the prices are flexible instead of constant. Another question that follows is how much influence has
homogeneous, increasing and seasonal demand when we consider constant prices.

Further we can compare our optimal solution with myopic solutions. The myopic policy compares
the prices and resulting demands with those for independent single-period problems with a setup
in each period. An interesting question is whether, when taking seasonal changes in mind, does it
benefit to set prices in low seasons, which means to have overcapacity, for satisfying the demand in
high seasons. For some cases it is not optimal to use the myopic policy. Cases for which this hold
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are when the gross margin does not cover the setup cost.
The last point we could consider is instead of a single product looking at multiple product

scenario’s. Here, a decision maker can explore different allocations of capacity to products in the
various time periods for better understanding of the interrelated effects of capacity allocations and
prices on profits.

Further research is needed to consider other realistic factor that could happen during a production
process. Examples of these factors could be inter-temporal substitutions by customers, uncertain
demand and dynamic pricing.
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