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Abstract

Since standard integer programming techniques do not succeed in tackling large-scale real-world in-
stances, I apply several heuristics for delay management. The first heuristic I implement is the Waiting
Time Rule (WTR), where the decision whether or not to delay a connecting train, in order to maintain a
connection, is based on a predetermined threshold, varying between 0 and 5 minutes. In contrast to the
WTR, the Ratio of Transferring Passengers (RTP), which is the second heuristic I implement, actually
takes into account the number of passengers that plan to use a connection. This could be beneficial for
the results since now the usage of a specific connection is considered in the decision. Finally, the third
heuristic is based on the classical delay management model without passenger rerouting from Schöbel
(2007). This model can be solved with the assumption that passengers who miss a connection will wait
for an estimate of additional delay (D) or for the timetable cycle time (the time after which the timetable
repeats itself). For each heuristic, the goal is to find the parameter value for which the heuristic performs
best (dmax for the WTR, ρmin for the RTP and D for the classical model). I evaluate the outcomes for
these heuristics separately for the case where only long-distance trains and corresponding stations are
taken into account and for the case where all trains and stations are considered. To this end, I execute
numerical experiments on real-world instances from Netherlands Railways. I discuss the results and eval-
uate and compare the performance of the different heuristics. Finally, some improvements and directions
for further research are listed.
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1 Introduction

Netherlands Railways is the main carrier on the Dutch railway network and the management team would like
to know how to act in case of a delayed train, regarding to possible transfers on the next station. Is it best
to delay a train for a few minutes to maintain a connection between that train and a delayed feeder train (a
train which is, given the time, ’connected’ to another train at a station they have in common), or is it better
to let the train depart on time to prevent delay for the passengers in this train? To answer this question,
I will implement three heuristics. Initially, passenger rerouting is not taken into account in the heuristics,
but it is considered when evaluating the passenger routing based on the disposition timetable. Passenger
rerouting can be seen as traveling by a train via another route to arrive at a destination quicker than by
waiting on the next train via the same route. The decisions that have to be made for each connection, can
be described as delay management.

One can think of several consequences that play a role in the decision whether or not to delay a connecting
train. At first, especially in low-frequency railway systems, the waiting time for passengers can be quite long
when they miss a connection. For this reason, delaying a connecting train can be beneficial, especially if the
delay of the feeder train is small. In this case, the delay can be made up in a short time and only a few
passengers, if any, suffer from this delay. However, if the feeder train arrives at a station with reasonable
delay, delaying a connecting train is most of the time that bad for many other passengers, that it does not
compensate the benefit for the passengers whose connection would be maintained.

Secondly, punctuality can play a role, since this is the main performance indicator for European railway
operators, see Dollvoet and Huisman (2014). When a train is delayed, this punctuality decreases, which is
actually measured by the delay on a train at the moment of entering a station. Passenger punctuality is a new
performance indicator recently introduced by Netherlands Railways. This indicator measures the percentage
of passengers who arrive at their destination with a delay below a certain threshold value. By using the
passenger punctuality as a performance indicator, it can be sometimes beneficial to artificially delay a train
to maintain its connection with another train. When only using the punctuality performance indicator, there
is no purpose in applying delay management, since this indicator only measures the total delay on trains,
which would never decrease in delay management.

The remainder of this paper is organized in the following way. In section 2, I explain the structure of the
available data and in section 3 I make some (simplifying) assumptions which are needed to solve the problem
in a mathematical manner. In section 4, I introduce the delay management model in a more formal way and
I explain several concepts which are used throughout the paper. Section 5 actually explains the heuristics
that I use and in section 6 the results are presented, including a comparison in section 6.4. In section 7,
conclusions are drawn based on the results of the heuristics and directions for further research are listed.
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2 Data

The area of focus for my research project consists of parts from the provinces Utrecht, Gelderland and
Noord-Brabant. This includes the following six big stations: Utrecht Centraal, ’s-Hertogenbosch, Tilburg,
Eindhoven, Nijmegen and Arnhem. Besides these stations, there are a lot of smaller stations in between, of
which the majority is only considered in certain parts of the numerical experiments. The timetable and data
on which I am going to apply the delay management model and heuristics originates from the year 2013.
Figure 1 shows the relevant part of the railway network and associated trains in that year.

Figure 1: Part of the Dutch Railway Network in Utrecht, Gelderland and Noord-Brabant

Since I am doing this research project for Netherlands Railways, (transfers to) trains from other carriers like
Arriva or Veolia are not taken into account and those trains and stations are therefore not displayed in this
figure. It is also important to note that not all of the displayed trains end at Utrecht Centraal, Tilburg,
Eindhoven, Nijmegen or Arnhem. In fact, trains cover bigger parts of the Netherlands, for instance the green
and light green lines are trains which continue in the direction of Amsterdam past Utrecht Centraal and in
the direction of Weert past Eindhoven. However, since I will come up with decisions in delay management
which are directly related to transferring passengers, possible transfers on stations outside this area are not
important and thus not taken into account.

A planning day for trains runs from 4.00 in the morning until 4.00 in the morning of the next day. The
timetable for passenger trains is based on an hourly frequency, which can be defined formally as the cycle
time (T ). This means that a train from (for example) Utrecht Centraal to ’s-Hertogenbosch departs 8 minutes
past the hour for every hour in a certain time window. The precise time window differs since the timetable
for some passenger trains is less dense in the late evening and nights. Of course, in the Netherlands there
are more trains from Utrecht Centraal to ’s-Hertogenbosch in an hour, e.g. 23, 38 and 53 minutes past the
hour, but they are considered separately since the timetable cycle time is 60 minutes. The reason for this
lies in the fact that the regional train from Ede-Wageningen via Wolfheze and Oosterbeek to Arnhem (and
vice versa) has an hourly frequency.
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The period on the day I will consider starts at 10 AM and ends at 3 PM. The reason for this is that there
are some additional trains in rush hours and the timetable for trains changes slightly after 9 o’clock in the
evening. Some trains are not scheduled anymore after 9 PM and some long distance trains will stop on
smaller stations to preserve a decent number of train stops on these stations. Besides, a planning horizon
of 5 hours is OK to guarantee that the models run in a reasonable amount of time and that there are still
enough delay management decisions to make.

The available data consists of two files, of which one file contains traveling information for all passengers on
a given day, i.e. the departure time, origin and destination for each passenger. The last column is dedicated
to keep track of the number of passengers with the same traveling information. The data in this file can be
seen as the Origin-Destination pairs (OD-pairs). An OD-pair gives the origin and destination of a passenger,
without fixing the train(s) the passenger has to travel by. These OD-pairs are important to later determine
which connections have to be maintained between a feeder train and connecting train(s) since it can be
calculated which connections, if any, passengers have planned to use. It is straightforward to assume that
a passenger will always plan to take the route with the lowest travel time from its departure station to its
destination station. All passenger data is acquired through the use of the ’OV-chipkaart’ (electronic traveling
tickets in the Netherlands used for check in and check out), but since passenger data is confidential, some
scaling has been applied to the data I make use of.

The other file consists of train series and its characteristics, where for the train numbers there is made use
of odd numbers for one direction and even numbers for the opposite direction. For both regional and long
distance trains, there are multiple entries in the file, namely the waiting activities on some stations and the
driving activities to all stations where the train has to stop. The characteristics include the station of arrival
(departure), the time of arrival (departure), the time of departure (arrival) after the waiting (driving) activity
of the train, the station of departure (arrival) and the platform from which passengers can get into the train
or out of the train. It is possible that there are stations where no waiting activity takes place. This is the
case when the arrival time equals the departure time on a station. Of course, passengers have to be able to
leave and enter the train, so there is some time available for that, but this is not visible in the published
timetable. Besides that, there is a number for each entry, measured on one decimal point, that states the
slack time on a waiting or driving activity. This slack time will later be used to make up delay when a train
is (artificially) delayed.
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3 Assumptions

In order to apply the heuristics and acquire results, several assumptions need to be made regarding the data.
Since the passenger data originates from one specific working day, an assumption that needs to be made is
that the data would be more or less the same when another working day would have been measured. It does
not really matter which working day was measured, but since the timetable is different for some of the trains
on Saturdays and Sundays, the passenger data does not match the timetable in a weekend. Therefore, my fo-
cus will lay on the timetable of a working day between 10 AM and 3 PM, as explained in the previous section.

A feeder train is connected to another train when the difference between the departure time of that train
and the arrival time of the feeder train is greater than or equal to 2 minutes. On big stations, like Utrecht
Centraal in the Netherlands, it is possible that there is more transfer time needed for passengers to get from
one train to another train, but for simplicity I assume 2 minutes on each station to be fine to make a transfer.
This assumption could be relaxed since this better resembles reality and there is additional data available
with the minimal transfer time that has to be taken into account for each specific station.

When a certain train is delayed, the delay could actually be in favor of passengers that would not have been
on time to travel by that train but are on time now. Of course, they will get into that train and will not
wait for the train they had planned to travel by. This assumption is crucial for setting up the routes of all
passengers, since in this way the simulated source delays, of which the details will be explained later, can be
used for all passengers and not only for those that are transferring from a delayed feeder train to a connecting
train. This could also influence the route they had initially planned to use, since in this world with real-time
information, passengers will travel via the route that is fastest to their destination station at the moment
they arrive at the station. If this has changed due to delays (which could sometimes be in favor as already
mentioned), they will choose for this faster route.

4 Problem Formulation

Now I will introduce the commonly used delay management model formally by defining an event-activity
network N = (E ,A), where N is a directed graph. In this graph, the set E consists of a set of arrival events
and departure events of trains, thus E = Earr ∪ Edep. In the same way, the set A consists of a set of waiting
activities, driving activities and connections, of which the latter one is represented by activities that can be
removed from the network: A = Await ∪ Adrive ∪ Achange.

Waiting activities are used when the arrival time of a train is unequal to its departure time, which will
usually be the case on bigger stations and/or when the train driver has to walk to the other side of the
train to continue in the opposite direction, and driving activities are used for movements between stations.
Connections (or changing activities) represent the transfers that are used by passengers who change from one
train to another train. To this end, the arrival event of a feeder train and the departure event of another train
have to be ’connected’ at a station in such a way that there is enough time to make a transfer (2 minutes in
my case). Connections that are maintained pose restrictions on the departure time of connecting trains.

As input for this model, the original timetable consisting of a set of arrival and departure times (πe), a set
of source delays (de), minimal required time per activity (La) and passenger data (wp) is used. Then a so
called disposition timetable is created; a timetable with (slightly) altered departure and arrival times since
the delay (source delay and propagated delay) and the composition of optimal departure and arrival times
is done. Thus the disposition timetable consists of a set of new arrival and departure times (xe), based on
the initial timetable, source delays and the minimal required time on activities. Additionally, the binary
variables za indicate which connections are maintained.

Most of the concepts explained here are used throughout the paper. However, the dispatching rules do not
make use of the event-activity network and therefore can not be modeled in software like AIMMS. Creating
the disposition timetable for these dispatching rules is done in MATLAB.
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5 Heuristics

Since the delay management model first introduced by Dollevoet et al. (2012) is not applicable for delay
management in a small amount of time, I will make use of several fast heuristics proposed by Dollevoet and
Huisman (2014). In each heuristic, the first step is to create a disposition timetable, in contrast to the (more
advanced) delay management model with passenger rerouting, where the delay management decisions as well
as the optimal routing for passengers is solved simultaneously. Secondly, I make use of a script I have written
to calculate the passenger routing and travel times based on the disposition timetable and arriving times of
passengers on their departure station. This script uses the arrival and departure times of trains from the
disposition timetable and calculates, based on just the driving times between stations, the k shortest paths
for each OD-pair, see JY Yen (1971). Thereafter, the actual shortest path is calculated by taking into account
connections and associated waiting times when transfers at stations are required.

To understand why all of these steps are required, consider the following example. Take the path from Oss to
Utrecht Centraal, which could be shortest via ’s-Hertogenbosch when looking at the sum of travel times from
Oss to ’s-Hertogenbosch and from ’s-Hertogenbosch to Utrecht Centraal. However, when actually taking into
account the fact that passengers have relatively much spare time on their transfer at ’s-Hertogenbosch, it
can work out that traveling from Oss via Nijmegen and Arnhem to Utrecht Centraal is faster in the end.
For this reason, it is important to make a difference between the travel time from station to station and the
spare waiting times at stations when needing a transfer.

As a benchmark, a so called no-wait policy is considered, which does not take into account connections at
all. Of course, delays are propagated in waiting and driving activities and delay is decreased by using the
slack time. However, if a train arrives a few minutes late and therefore the transfer time for passengers to
another train is only 1 minute, the connecting train does not wait and the passengers miss their connection.

5.1 Waiting Time Rule

The first heuristic I implement is based on a simple dispatching rule; the Waiting Time Rule (WTR). Under
a WTR policy, a maximal waiting time is determined for each connection. This maximal waiting time has
to be chosen in such a way that the total travel time of all passengers is minimized. This is influenced
by transferring passengers that want to reach their next train in time and passengers already on board of
the train, which suffer from delay when this train is artificially delayed in order to maintain a connection
for other passengers. It is possible (and could be beneficial) to determine a maximal waiting time for each
connection separately, but for simplicity I assume a constant time dmax for all connections. In mathematical
notation it follows that a connection will be maintained if da ≤ dmax, where da = πe + de +La− πe′ , thus da
resembles the time that a connecting train has to be delayed to maintain the connection with the feeder train.
Note that πe is the time when departure event e is planned and πe′ is the time when arrival event e′ is planned.

For determining the optimal maximal waiting time dmax, I will look into values ranging from 0 to 5 minutes,
where the setting of 0 minutes corresponds to the no-wait policy. Waiting for more than 5 minutes is very
unlikely to be optimal, since all of the passengers in the connecting train will be delayed for that amount of
time, which is harmful in the first place, but secondly the risk of missing connections for other passengers on
following stations arises.
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5.2 Ratio of Transferring Passengers

To take the number of passengers into account that actually want to make use of a connection, I will look
into the RTP policy, which defines a threshold (ρmin) with respect to the number of passengers that want to
make use of a connection and the number of passengers in the train that would be delayed when the train
waits for a few minutes after departure time (and thus the connection is maintained). The actual ratio for
each chancing activity a can be calculated in the following way:

ρa =
Number of passengers that planned to use connection (e′, e)

Number of passengers that planned to use driving activity (e, f)
(1)

In this equation, (e′, e) ∈ Achange denotes the connection between an arrival event e′ from the feeder train
and a departure event e from the connecting train and (e, f) ∈ Adrive denotes a driving activity, where e
again resembles the departure event from the connecting train and f resembles the arrival event of this train
at a subsequent station.

Under this policy, a connection will be maintained when the number of transferring passengers is high
compared to the number of passengers in the connecting train; they who suffer when the train waits for
the passengers from the feeder train. Thus in mathematical notation, a connection will be maintained if
ρa ≥ ρmin. For determining the optimal threshold value (ρmin), I will experiment with values ranging from
0% to 100% and a value bigger than 100% (110 % will do), since the latter corresponds to the ’no-wait’ policy.

Note: Since the RTP is based on the number of passengers that plan to use a certain train or connection,
in reality it could sometimes be the case that the number of passengers does not match the actual number
of passengers in a train or using a connection. Even though I only execute the heuristics on the timetable
between 10 AM and 3 PM, it is important for the RTP policy to consider passengers on other moments of
the day as well. Since ρa is based on the number of passengers that use a certain connection and driving
activity, passengers that start their travel before 10 AM or still travel after 3 PM, have to be counted in the
trains where they travel by and the connections they make use of.

5.3 Classical Model

The last heuristic I implement is the classical delay model from Schöbel (2007). To start with, the assumption
can be made that passengers who miss a connection have to wait for one cycle time of the timetable (60
minutes for this timetable). After waiting for this long, the next train arrives and passengers will travel by
that train. Another approach is the consideration of an estimate of additional delay. In this case, passengers
are allowed to travel by another train, generally 15 or 30 minutes after the initial connection. The only
difference between the two models is the value of D, which can be chosen somewhere between 0 and 60. The
optimal value for D will depend on the timetable characteristics, where the density of the railway network
plays a big role.

Making use of the number of passengers that plan to end their journey when arriving at a certain station and
the number of passengers that use a certain connection, the model formally shown on the next page can be
modeled in AIMMS and then solved by a CPLEX-solver. As a result of solving this model, the disposition
timetable is calculated in terms of the variable xe. Additionally, za shows which connections are maintained
for passengers that want to transfer from one train to another train. Making use of the general script in
MATLAB, as explained in the beginning of this section, I obtain the passenger routing and travel times for
each OD-pair. Subsequently, the total travel time of all passengers, which serves as the objective value, can
be calculated from the number of passengers in each OD-pair.
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Sets
Earr = Set of arrival events
Edep = Set of departure events
E = Earr ∪ Edep = Set of events
Await = Set of waiting activities
Adrive = Set of driving activities
Achange = Set of connections
A = Await ∪ Adrive ∪ Achange = Set of activities

Parameters
πe = Time when event e is planned
La = Minimal required time for activity a
de = Delay on event e
we =

∑
p∈P(e) wp = Number of passengers that plan to end their journey at event e ∈ Earr

wa =
∑

p∈P(a) wp = Number of passengers that use a changing activity a ∈ Achange

Constants
M = maxe∈E(de)
D = Estimate of additional delay when missing a connection

Decision variables
xe = New time when event e takes place

za =

{
1 if connection a is maintained,
0 otherwise.

Mathematical formulation

minimize
∑

e∈Earr

wexe +
∑

a∈Achange

waD(1− za) (2)

subject to

xe ≥ πe + de, ∀e ∈ E , (3)

xe ≥ xe′ + La, ∀a = (e′, e) ∈ Await ∪ Adrive, (4)

M(1− za) + xe ≥ xe′ + La, ∀a = (e′, e) ∈ Achange, (5)

xe ∈ N, ∀e ∈ E , (6)

za ∈ {0, 1}, ∀a ∈ Achange (7)

Explanation of the mathematical formulation
The objective function (2) minimizes the arrival time at their destination for all passengers, while taking
into account the suffering from connections which are not maintained. In this model, if a connection is not
maintained, the additional travel time is equal to the estimate of additional delay (D). Restriction set (3)
makes sure that an event takes place after the planning time of that event plus a possible source delay. Finally,
restriction sets (4) and (5) are needed for the propagation of delay in the timetable along waiting/driving
activities and maintained changing activities respectively, in such a way that only the minimal required time
for each activity is used until there is no delay left. In this way, slack time on activities will be used to make
up possible delay. M is a sufficiently large number, which is equal to the maximum delay in the set of source
delays, as proposed by Dollevoet et al. (2012).
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6 Results

I have applied the heuristics to two different cases, of which the first case consists of the long distance trains
only (and associated railway stations) and of which the second case includes all trains and stations. The
trains and stations used for the two cases are shown in Figure 2a and Figure 2b respectively. In the same
color as the line of a train, the number of a train series is depicted.

(a) Case I (b) Case II

Figure 2: Railway network in each of the two considered cases

In Table 1 some characteristics of the cases are listed, which include the number of stations, the number
of trains, the number of OD-pairs and the number of passengers in each of the cases. Additionally, in
the columns with the number of passengers and the number of OD-pairs, I have indicated in brackets the
percentage of passengers that make use of a transfer during their trip. The percentage of passengers that
transfer, is about 1

3 th of the OD-pairs with a transfer. This shows that, although there are relatively many
OD-pairs with a transfer, not many passengers are involved. The number of passengers in the OD-pairs with-
out a transfer is therefore much higher compared to the number of passengers in the OD-pairs with a transfer.

Case Stations Trains OD-pairs Passengers
I 13 145 1104 (19%) 19164 (6%)
II 39 349 2669 (30%) 27898 (10%)

Table 1: Some characteristics of the instances

For evaluating the heuristics, I have generated a set of delays for both of the cases I consider in the following
way. Each arrival event has a probability of 10% to be delayed. This delay only bears the incurred delay
from that specific moment, i.e. delay incurred at one or more stations before is not directly present here but
will be taken into account by the heuristic when calculating the disposition timetable. The waiting activities,
which are present at some of the stations, and the slack time will be used to make up delay. If an event is
delayed, its delay is uniformly distributed between 1 and 15 minutes. The arise of a delay of more than 15
minutes at once could happen, but since it is not really common, 15 minutes is the highest delay simulated
per arrival event. In this way, a train can still be delayed for more than 15 minutes when there arises delay
at multiple arrival events on a route.
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The results for each heuristic are averaged over 5 different instances of delays to prevent randomness having
too much influence on the results. Of course, a sample of 5 instances is not that large, but since some
scripts/functions can be running for over an hour, it is impossible to achieve a much better sample size in
such a limited time window. The results per policy for both case are displayed and discussed in the following
sections.

6.1 Waiting Time Rule

In a policy based on the Waiting Time Rule, a connection is maintained when a connecting train has to wait
for at most dmax minutes on a delayed feeder train. In Table 2 and Figure 3, the results are displayed for
the different values of dmax. Remember that dmax = 0 corresponds to a no-wait policy.

dmax Case I Case II
0 598650 770224
1 598506 769598
2 598293 768963
3 598403 769883
4 598519 772176
5 599131 775187

Table 2: Results of the WTR policy (best result underlined for each case)

Figure 3: Results of the WTR policy

For both cases dmax = 2 results in the lowest objective value. As expected, for both cases a high value for
dmax results in a solution worse than a no-wait policy, which is true for dmax = 5. For Case II, dmax = 4
also results in an objective value worse than those of the no-wait policy. The performance of dmax ∈ {1, 2, 3}
is better than a no-wait policy for both cases and for Case I, even dmax = 4 gives a better solution.

For Case II, the differences between applying a WTR policy with dmax > 0 and applying the current no-wait
policy are most clear. For Case I, a WTR policy still gives a better solution in terms of the objective value,
thus the total travel time of all passengers, but it is less beneficial than for Case II. This difference can be
caused by the fact that Case II contains a lot more trains than Case I, which results in more artificial delays
(10% of the arrival events incurs a delay) and therefore creates more opportunity for the WTR to work out
well (compared to a no-wait policy).

On average, delay will be reduced by 0.1%, which does not sound as a big improvement in performance. A
possible explanation for this low improvement is that we have to deal with circumstances where passengers
have that much spare time to make a transfer, that the WTR policy does not grant very much improvement
compared to the no-wait policy. To give an example: If most of the transfers have to be finished in 2 to 3
minutes, a WTR policy will have a heavy impact on the total travel time of all passengers when there is some
delay present. However, if most of the transfers have to be finished in 5 to 10 minutes, there is enough spare
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time left (besides the 2 minutes required for a transfer) to maintain a connection anyhow when a feeder train
arrives with delay. A WTR policy could still sometimes carry improvements in this case, but the benefits
will be significantly lower than in the first scenario.

To validate this hypothesis, I have calculated the mean of all spare minutes on transfers that are used,
corrected for the 2 minutes which are needed to make the transfer. The mean of these spare minutes works
out to be just above 13 minutes for Case I and a little under 8 minutes for Case II. These are actually quite
high numbers in a timetable where all trains (except one regional train) have a frequency of 2 or 4 times per
hour. For this reason the spare time at transfers is more than enough to still have a connection maintained in
case of a delayed feeder train while a no-wait policy is used. On the other hand, I can argue that the current
timetable is not really optimal at some stations, since earlier transfers are just missed quite often in this
timetable without delays. It would be better for certain passengers to have just a few minutes more at some
of the stations (’s-Hertogenbosch for example) to give them the opportunity to make use of one connection
earlier. However, this is not something to consider in delay management, but it could be something for
Netherlands Railways to look into for next years timetables.

6.2 Ratio of Transferring Passengers

In a policy based on the Ratio of Transferring Passengers, a connection is maintained when the number of
passengers that want to transfer from a feeder train to a connecting train is high enough compared to the
number of passengers that travel by the connecting train, at least to the next station. In Table 3 and Figure
4, the results are displayed for the different values of ρmin. The objective values for ρmin ∈ {80, 90, 100} are
omitted from the table since from ρmin = 70, it is a straight line. Remember that ρmin = 0 corresponds to
a policy where every connection is maintained, no matter how many passengers want to make use of that
connection, and ρmin = 110 corresponds to a policy where a connection is never maintained in case of a
delayed feeder train (a no-wait policy).

pmin Case I Case II
0 599858 780356

10 598157 770793
20 598100 769930
30 598595 770042
40 598650 769789
50 598650 770100
60 598650 770190
70 598650 770224

110 598650 770224

Table 3: Results of the RTP policy (best result underlined for each case)

Figure 4: Results of the RTP policy
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For Case I, ρmin = 20 and for Case II, ρmin = 40 results in the best objective value. For both cases, the
RTP for ρmin = 0 is even performing worse than a no-wait policy and for Case II for ρmin = 10 as well. It
holds that the performance for ρmin ∈ {10, 20, 30} is better than a no-wait policy for Case I, and the same
holds for the values ρmin ∈ {20, 30, 40, 50, 60} for Case II. From ρmin = 70, the objective value is equal to the
objective value in the no-wait policy for Case II. The same applies to Case I, but there the objective value is
yet equal to the no-wait policy from ρmin = 40.

For Case II, the amplitude of the objective value is higher than for Case I. The performance of ρmin = 0 is
not that good for both cases, but it is worst for Case II in comparison with the other values of ρmin. This
difference is most likely caused by the fact that there are a lot more trains in Case II than in Case I. Since
10% of the arrival events is artificially delayed, more delay will be present in Case II. With this RTP policy
where ρmin = 0, every train will wait, independently of the number of passengers that want to make use of
the connection. In this way, it could even happen that nobody wants to make a specific transfer, but that
connection is still maintained caused by the low value of ρmin.

On average, the performance of the RTP is about 0.1% better than the no-wait policy, which again does
not sound as a big improvement. More or less the same explanation as for the low improvement under the
WTR policy holds here. Although the decision whether or not to wait in the RTP policy is not based on
a maximal waiting time, the characteristics of the timetable are the same. So if the spare time at transfers
happens to be that high that delay will not very often break a connection, there is also not much benefit to
gain in applying the RTP policy. We have already seen that the mean of all spare minutes on transfers that
are used, corrected for the 2 minutes which are needed to make the transfer, is high, so it is likely that the
low improvement is caused by the characteristics of the timetable, especially the spare time on transfers.

By comparing the best objective value among the two cases, it is clear that for Case II, where all trains
and stations are considered, the optimal ratio ρmin should be higher than for Case I. A possible explanation
for this observation is the fact that passengers getting on board of the train at stations n + 1, n + 2, n + 3,
and so on, are not considered for the decision that has to be made for the connection at station n, see
Dollevoet and Huisman (2014). However, these passengers will suffer from delay if the train is delayed at
station n and has not made up the delay in the meanwhile, which is plausible since regional trains stop at all
stations and there is usually not that many distance between these stations. This implies that the RTP policy
underestimates delay from maintaining a connection and choosing a higher value for ρmin will compensate
this underestimation and therefore in the end works out to be a better threshold.

6.3 Classical Model

In the classical delay management model, an integer programming formulation on an event-activity network
is used to determine the disposition timetable. Thereafter, the routing of all passengers can be determined
and the total travel time is calculated. In Table 4 and Figure 5, the results are displayed for different values
of D, where D = 60 corresponds to waiting for the cycle time of the timetable.

D Case I Case II
0 592808 775346
5 592808 772467

10 592770 772004
15 592758 771872
20 592763 771569
25 592795 771693
30 592879 771623
35 592917 771749
40 592968 771827
45 593085 771996
50 593098 772164
55 593128 772624
60 593194 772919

Table 4: Results for the classical delay management model (best result underlined for each case)
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Figure 5: Results for the classical delay management model

For Case I, a pattern in the figure is not really obvious to see. This is a result of the low improvement in
objective value between D = 15, which is the best value for the additional delay, and other values of D. This
implies that the additional delay for passengers who miss a connection is about 15 minutes for this case,
which is plausible since most of the considered stations are served 4 times per hour.

For Case II, a clear pattern is visible in the figure and the objective value is lowest for D = 20. This implies
that the additional delay for passengers who miss a connection is about 20 minutes. Remember that in this
case both long distance trains and regional trains (and all stations) are considered. Therefore, 20 minutes
of additional delay when missing a connection seems reasonable since in this timetable, most of the long
distance trains serve an associated station 4 times per hour and regional trains serve all stations only 2 times
per hour (and only once per hour between Ede-Wageningen and Arnhem).

Comparing the best value of D to the worst value of D for each case separately, the objective value of the
classical model decreases about 0.01% for Case I and about 0.5% for Case II. The improvement of the objective
value is clearly more significant for Case II. For the relatively low overall improvement of the objective value,
the same explanation applies as for the previous heuristics. The used sets of delays are the same for each
heuristic and the initial timetable is identical of course, so the low improvement is due to the amount of
spare time on a station, when making use of a transfer. This spare time is particularly high compared to the
density of the timetable. Especially for Case I, a spare time of 13 minutes while most trains have a frequency
of 4 times per hour is quite high and therefore results in a low improvement when varying the value of D.
There are simply not many delay management decisions to be made in case of a delayed feeder train. For
Case II, the same applies but now the trains (except one regional train) have a frequency of 2 or 4 times per
hour and the spare time on changing events is 8 minutes on average. Thus in this case, it does make sense
to look at connections when a feeder train is delayed, since it is not straightforward that the connection is
maintained when letting the connection train depart on time.

6.4 Comparison

After solving the delay management model with three heuristics, it is time to compare the results. In Table
5, the optimal absolute and relative objective values for each heuristic can be found for both of the two cases,
where the no-wait policy is the benchmark to which the objective values are normalized in the second part.

As can be seen in the table, most of the heuristics result in a better objective value, thus a lower total travel
time for passengers, than the no-wait policy. For Case I, the performance of the classical delay management
model is best, followed by the Ratio of Transferring Passengers and the Waiting Time Rule. For Case II,
the Waiting Time Rule leads to the best solution, followed by the Ratio of Transferring Passengers, but the
difference in objective values is quite small. On top of that, for Case I the RTP performs better than the
WTR and for Case II vice versa. Therefore it is hard to say which dispatching rule performs better.
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Policy Case I Case II

Absolute

No-wait 598650 770224
WTR 598293 768963
RTP 598100 769789
Classical 592758 771569

Relative

No-wait 100.00 100.00
WTR 99.94 99.84
RTP 99.91 99.94
Classical 99.02 100.17

Table 5: Comparison of the absolute and relative objective values for each heuristic

While the performance for the heuristic based on the classical delay management model is clearly best for
Case I, the performance of this heuristic is even worse than the no-wait policy for Case II. This is quite
strange since this implies that applying a delay management heuristic results in a worse policy than doing
nothing; i.e. never delay a connecting train when a feeder train is delayed. It is most likely that this strange
outcome is the result of something else, namely that the no-wait policy and the other two heuristics provide
too optimistic results.

Initially, the WTR and RTP heuristic seemed to work fine; same result for the no-wait policy and improve-
ments in the objective value as expected for different values of the threshold. However, when constructing the
classical delay management model in AIMMS, I have encountered some, at the first sight, strange behavior at
waiting and driving activities with negative slack time. The classical delay management heuristic implicitly
models slack time, since only the minimal time required for an activity is required as input, while the slack
time is taken into account when the optimal disposition timetable is calculated. Testing an instance without
any delay resulted in a disposition timetable different from the initial timetable. This may sound strange
since no delay implies that there are no delay management decisions to be made, thus every train will depart
and arrive as planned. However, the activities with negative slack time will be delayed in such a way that
there will be more time assigned to these activities than in the initial timetable since otherwise, the model
will be infeasible. To provide some extra insight; if a train departs from Nijmegen at 5.35 and arrives at
Nijmegen Lent at 5.39 according to the timetable, the listed driving time is 4 minutes. However, the slack
time on this activity is -1 minute, which implies that the actual required driving time between Nijmegen and
Nijmegen Lent is 5 minutes instead of 4 minutes. The model in AIMMS will correctly solve this (and thus
make it feasible) by assigning 5 minutes driving time to this activity, but the created disposition timetable
with no delays will therefore not precisely resemble the initial timetable.

What in the end seemed to go wrong is the consideration of negative slack time in the no-wait policy and
the previous heuristics. Negative slack time is treated right when constructing the disposition timetable and
adding artificial delay for maintaining connections, but the actual outcome will most likely works out to be
infeasible. Negative slack times do not only have to be taken into account when adding source delays and
artificial delays for delay management purposes, but also have to be considered for constructing a feasible
solution. Referring to the example from earlier, in a feasible solution, 5 minutes driving time is used from
Nijmegen to Nijmegen Lent. Currently, in the first two heuristics and the no-wait policy, only the 4 minutes
driving time as in the timetable is used. In some situations, this will compensate with positive slack time
earlier or later on, especially when passengers travel a long distance and therefore encounter most likely more
positive slack time than negative slack time. That is often the case on longer journeys since the slack time
is relatively not that often negative, as can be seen per case in Table 6.

Case I Case II
Positive slack time 74.4% 68.8%
Negative slack time 5.0% 15.8%
No slack time 20.6% 15.4%

Table 6: Type of slack time on activities per case
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For Case II, the slack time is negative about three times more often than for Case I. This results in a bigger
deviation for the no-wait policy, the WTR heuristic and the RTP heuristic compared to what the results in
a feasible solution would have been. Therefore the performance of these policies would have been somewhat
worse for Case I and considerably worse for Case II than listed in Table 5. For this reason, the classical delay
management model will most likely be the best choice for both of the cases when the negative slack time
would have been handled correctly in all heuristics and the no-wait policy.

In order to apply off-line delay management heuristics to an on-line delay management problem, a short
computation time is required. Constructing the disposition timetable was managed in a few seconds for
the dispatching rules (WTR and RTP) and even in under a second for the classical delay management
model. However, determining the actual routing for every passenger by using the general script, took a lot
longer. MATLAB is not particularity fast when using if-loops and for-loops (which is sometimes unavoidable)
compared to using matrix calculations. Dependent on the number of trains and OD-pairs and the type of
heuristic, the scripts ran between 2.5 minutes and 99.5 minutes for constructing the disposition timetable
and determining the optimal routing, see Table 7 for the running times per heuristic and per case.

Case I Case II

WTR
Disposition Timetable 0.60 3.43
Optimal Routing 89.39 2217.00
Total Running Time 89.99 2220.43

RTP
Disposition Timetable 0.49 1.14
Optimal Routing 171.34 4425.59
Total Running Time 171.83 4426.73

Classical
Disposition Timetable 0.02 0.09
Optimal Routing 173.85 5976.71
Total Running Time 173.87 5976.80

Table 7: Running time of MATLAB/AIMMS in seconds per case for each heuristic

As shown in the table, the running time for making the disposition timetable is often negligible. However,
for all heuristics hold that the optimal routing script for Case II runs about 25 to 35 times as long as for
Case I. The number of considered stations, trains and OD-pairs is respectively 3, 2.4 and 2.4 times as high
for Case II in comparison with Case I, see Table 1. This shows that the complexity of the problem increases
drastically when the size of the case extends. This is not strange at all since the addition of regional trains
directly influences the number of travel possibilities, even for traveling between two stations where long dis-
tance trains stop. Since if a regional train departs at a better point in time regarding the arrival time on
the departure station of some passengers, it could be beneficial for them to take the regional train instead of
waiting for the next long distance train. The increase in running time is therefore not linearly related to the
increase in case size.

Comparing the running time of creating the disposition timetable among the heuristics, the classical delay
management model is fastest, followed in turn by the RTP and the WTR. The disposition timetable for the
classical delay management model is modeled in AIMMS, which is designed to tackle this kind of problems,
so it is not strange that this running time is lowest. The results for the dispatching rules are acquired in
MATLAB and the running time differs somewhat dependent on the dispatching rule.

For the running time of calculating the optimal routing, it is important to note that the WTR has to cal-
culate for all passengers only 6 routings (dmax ∈ {0, 1, 2, 3, 4, 5}), the RTP has to calculate 12 routings
(ρmin ∈ {0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110}) and the classical delay management model has to calcu-
late 13 routings (D ∈ {0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60}). This results in considerable longer running
times for the optimal routing for the RTP and classical delay management model compared to the WTR.

By looking at the total running time, it is clear that I have to conclude that solving these heuristics in
MATLAB is far too slow for applying them to the on-line delay management problem. In a programming
language like Java or C++, the heuristics would have possibly ran faster. The major problem lies in the
script for the passenger routing, where different possibilities are checked in order to choose the shortest route
in terms of the travel time.
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7 Conclusion

In this paper I have described and executed several heuristic methods to solve the off-line delay management
problem. I have compared the results of these heuristics among each other and to the no-wait policy. For
the case where only long distance trains and associated stations are taken into account, the classical delay
management model leads to the best solution, with a decrease of 1% in the total travel time of the passengers
compared to the no-wait policy. For the case where all trains and stations are considered, the classical delay
management model does not provide the best solution. This is not as expected and will likely be caused by
a too optimistic result from the other heuristics. While the classical delay management model is correctly
solved, the script I have used for the other heuristics does not take into account the actual driving time, but
the planned driving time. When a lot of negative slack time is present (without compensating positive slack
time), the travel time of passengers is not correctly calculated and therefore an unfeasible solution is acquired.
Most likely the classical delay management model would have also performed better for Case II when the
results of the other heuristics would have been acquired correctly and thus resulted in a worse objective value.

I have also implemented two dispatching rules, of which the Waiting Time Rule is currently used by Nether-
lands Railways. These dispatching rules do not massively decrease the total travel time of passengers for
the timetable I have used. This is caused by the fact that the average spare time on connections is large
compared to the density of the timetable; having 13 minutes on average to make a transfer to a train which
has a frequency of 4 times per hour will not very often lead to a possible broken connection and thus a
situation where delay management can improve the total travel time of the passengers.

In terms of the running time, making the disposition timetable is done in a few seconds for all heuristics.
However, calculating the optimal passenger routing takes a lot longer, dependent on the heuristic and the
considered case. Especially when calculating the passenger routing for Case II, the number of possibilities is
huge and therefore the running time was about 100 minutes for one of the heuristics. This is clearly far too
slow for applying these heuristics to an on-line delay management problem, where one has to make decisions in
a few seconds. For speed purposes, the programming languages Java or C++ would have been a better choice.

For trying to acquire a lower objective value, the iterative heuristic as described in Dollevoet and Huisman
(2014) can be used. This heuristic is based on the classical delay management model, but uses a parameter
Dp which differs among the OD-pairs p ∈ P. With the obtained disposition timetable, new routes can be
determined for all passengers and when finding an OD-pair that misses a connection, the actual delay can be
used to update the estimate Dp. Repeating this process will find optimal values for Dp and hopefully give
better results in terms of the total travel time of the passengers.

Another possible direction for further research is the consideration of a more realistic case, that is the transfer
time on each station can be determined separately, dependent on the number of tracks on a station. Dis-
tinction can also be made between transfers from one platform to another platform or transfers which are
cross-platform. To this end, there is data required which lists the transfer times for all stations and the tracks
which are located next to the same platform.

A last relevant aspect to consider is the limited capacity of the railway infrastructure, i.e. the number of
platforms and the possibility of a train to pass another train in or just before a station. In general, connections
between trains will hold when these trains are not supposed to stop near the same platform. However, if
there are multiple trains at a station arriving with some delay, the capacity of the railway infrastructure can
influence the possible outcomes of delay management decisions.
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