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1 Introduction

In the shipping service sector one can distinguish between two main types
of shipping: line – and tramp shipping. Line shipping is the type of cargo
shipping which is most often used by shipping companies in the con-
tainer sector. Other than in tramp shipping, vessels are sailing according
to fixed routes and time-schedules. In tramp shipping, ships go to ports
depending on cargo availability and demand. Tramp ships most often
carry bulk cargo or liquids. In this thesis I will limit the scope to line
shipping only.

More precisely, the aim of this thesis is to construct a shipping net-
work for intra Indonesian container traffic. Currently, there is unbalance
in trade between the more developed western region around the island
Java, with the less developed eastern part of Indonesia. Java is connected
to Europa via Singapore and therefore takes more economical benefit in
comparison with the eastern part. As a result of this unbalance, the prices
of goods in the eastern part are much higher and there is only little de-
mand between the two regions. Therefore, the Indonesian government
aims to develop an east-west shipping network in the container sector in
order to re-establish the balance.

The decision making process for setting up a liner shipping service
network consists of three different time-horizon levels. The strategic level
has the longest horizon and it involves determining the optimal fleet.
To do so, one has to decide the different types of ships to use. Ships
may differ in capacity, sailing speed, (un)loading time, fuel consumption
and fixed costs. Since vessels are often utilized for several years or even
decades, in general, one cannot simply completely change the fleet on
short term. Hence, the fleet composition will often remain more or less
unchanged for a large time period.

The tactical planning level is done once in the several months and it
involves constructing a set of routes which has to be sailed. Furthermore,
a ship schedule has to be made, which also includes the optimal sailing
speed of each ship.

The shortest term decision level is the operational level. In liner ship-
ping, the cargo routing problem is the main problem to focus on. In this
problem, the optimal allocation of cargo (in our case, containers) to routes
has to be found. Since multiple transhipment ports can be used to ship
cargo from port A to port B, this can rapidly become a complex problem.
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When not all demand has to be fulfilled, i.e., the objective is to gain op-
timal profit, one also has to determine which orders to accept and which
to reject.

2 Research Purpose

The purpose of this thesis is to provide a method, applicable to different
datasets, that determines the best solution for all three decision making
levels, such that profit is maximized. I will use my found method to con-
struct a shipping service network for intra Indonesian container traffic.
That intention is, that the method can be used to find a (near-)optimal
solution within an acceptable computation time.

3 Literature Study

The research on maritime transportation has increased significantly the
last two or three decades. The focus of this research lies on different
aspects of creating a network design. In the paper of Ronen [1983] a
comparison is made with a network design of road trucks. The main
difference between the two is that more or less every truck has the same
capacity, whereas nearly every ship has a totally different capacity. Fur-
thermore, not every port is capable of handling every type of ship, since
ships may have drafts too large for the ports. Often, comparisons with the
aircraft network design are being made and they seem to have more re-
semblances. However, aircrafts mainly transport passengers, which have
other preferences [Fagerholt et al., 2004]. Thus, the network design for
maritime transportation requires its own method for finding a solution.

A lot of research already has been done on designing the optimal com-
position of the fleet. In his literature study, Fagerholt et al. [2004] refers to
multiple papers in which the optimal fleet is to be determined. He refers
to the early work of Dantzig and Fulkerson [1954] in which the number
of tankers needed is minimized. This problem is called the fleet sizing
problem. Other studies worth noting are presented by Cho and Perakis
[1996] in which both the optimal fleet and liner routes are generated. The
problem is modelled as an LP-model, each column representing a feasi-
ble route. In his paper, he also refers to his own earlier work, Fagerholt
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[1999]. A shipping schedule is created for the Norwegian coast and it
is based on the Set Partitioning formulation (SP). This method is further
extended in Fagerholt and Christansen [2000a] in which also different
sailing speeds can be included.

Limited research is done on the containership routing problem. In
the paper of Shintani et al. [2007] a method is presented for constructing
a service network. It is formulated as a two-stage problem. A genetic
algorithm-based heuristic is used, which is later checked with numeri-
cal experiments. Unlike most other papers, the repositioning of empty
containers is also considered.

Rana and Vickson [1988] also discuss optimal routing for a fleet of
containerships. The fleet is assumed to be already existing and therefore
it is not optimized. The profit is maximized and therefore for each port
it is decided whether to visit it or not. The problem is formulated as a
mixed integer non-linear programing model and solved by making use
of Langrangian relaxation.

In the paper of Mulder and Dekker [2013] all three levels of decision
making are of interest. In this approach, they start off with the available
fleet instead of creating an optimal fleet from scratch. First, routes are
generated at random. Then, the generated routes are checked for feasi-
bility, by checking certain conditions. A ship is allocated to the feasible
routes, at random. The constructed network is then used as input for
the cargo routing model, which is formulated as a multi-commodity flow
problem, an LP-problem. They make use of a generic algorithm in order
to improve the network.

4 Data

This section summarizes all necessary data. The demand between all port
combinations are required. Furthermore, information about the available
vessels is needed. In order to calculate fuel costs and the duration of
every route, the distances between all ports are given in Section 4.2. The
main source of data used in this is the Indonesia Port Corporation I-IV
via MSc thesis Wardana [2014].
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4.1 Ports

The dataset of Indonesia Port Corporation I-IV contains information on
14 ports located on different islands in Indonesia:

• Belawan
• Panjang
• Palembang
• Tanjung Priok
• Tanjung Emas
• Tanjung Perak
• Pontianak
• Samarinda
• Palaran
• Banjarmasin
• Makasar
• Sorong
• Ambon
• Jayapura

Since making use of 14 ports already results in an enormous number
of possible routes, aggregation of ports is required. Aggregation of ports
can be based on throughput and geographical position. Wardana [2014]
has already done aggregation on the 14 ports, based on those two criteria,
which resulted in six hub-ports, island or region in brackets:

1. Belawan (Sumatera)
2. Tanjung Priok (Java)
3. Tanjung Perak (Java)
4. Banjarmasin (Kalimantan)
5. Makasar (Sulawesi)
6. Sorong (New Guinea)

For convenience, for the remainder of the text, I will refer to the ports
as numbers as presented above.
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4.2 Distances

The distances in nautical miles are presented in Table 1. This data is
obtained from www.SeaRates.com [2015].

Distance Belawan Priok Perak Banjar-Masin Makasar Sorong
Belawan - 1,064 1,488 1,430 1,708 2,807
Tanjung Priok 1,064 - 438 614 806 2,102
Tanjung Perak 1,488 438 - 328 520 1,816
Banjar-masin 1,430 614 328 - 353 1,577
Makassar 1,708 806 520 353 - 1,375
Sorong 2,807 2,102 1,816 1,577 1,375 0

Table 1: Distances between ports in Nautical Miles

4.3 Demand

For all combinations of ports, the demand is given by Wardana [2014].
The weekly demand is given in TEU, which stands for twenty-foot equiv-
alent unit, the capacity of one 20-foot container.

Demand Belawan Priok Perak BanjarM. Makasar Sorong Supply
Belawan 0 6,693 1,058 87 81 27 7,946
Tanjung Priok 6,740 0 1,916 4,092 2,798 464 16,010
Tanjung Perak 1,036 2,437 0 3,795 4,820 2,174 14,262
Banjar-masin 90 3,637 3,498 0 13 0 7,238
Makassar 91 3,501 4,109 73 0 0 7,774
Sorong 39 661 2,174 0 0 0 2,874
Demand 7,996 16,929 12,755 8,047 7,712 2,665 56,104

Table 2: OriginDestination Matrix in TEU
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4.4 Costs and Revenue

In this thesis, I assume that the revenue for shipping one TEU from one
port to another is fixed and equals $215 for all TEU [Wardana, 2014].
Hence, we do not distinguish between different types of cargo. The costs
for loading or unloading one TEU are $34, so the costs are $68 for direct
shipping and an additional $34 for every transhipment. Furthermore, the
port fees are equal to $628 per port visit [Kalem, 2015].

4.5 Ship types

All required information for the five available ship types are listed in
Table 3 below. For convenience, in this thesis I assume that every port is
capable of handling every type of ship, i.e., we do not take the maximum
ship draft for a given port into account, which is also assumed in Kalem
[2015].

Vessel: Capacity
[TEU]:

Design
Speed
[kn]

Min.
Speed
[kn]

Max.
Speed
[kn]

Idle Costs
Per day [$]

Fixed
Costs
daily [$]

Fuel costs
[$]/nmi

Feeder 450 900 12 10 14 1440 5000 39.17
Feeder 800 1600 14 10 17 1500 8000 42.32
Panamax 1200 2400 18 12 19 2400 11000 72.92
Panamax 1750 3500 18 12 20 2700 15000 76.39
Panamax 2400 4800 16 12 22 3180 21000 89.69

Table 3: Available shiptypes and their specifications

These ships are based on the data of Maersk and on Wardana [2014].
The idle consumption is the fuel a ship uses when waiting in a port, i.e.,
both when a ship is (un)loading and when it is waiting for its next trip. It
is based on the fuel consumption per 24 hours given by Wardana [2014]
and a fuelprice of $600 per ton. No exact data on the daily fixed costs
of the Panamax 1750 was given. Therefore, the assumption is made that
this lies in between those from the Panamax 1200 and Panamax 2400 and
is set on $15000 per day.
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5 Methodology

5.1 Decision-making Levels

On the strategic level, the composition of the fleet has to be determined,
the so-called fleet-design problem. In this paper, I start off with an empty
fleet, i.e, there is no existing fleet and it can be composed from any com-
bination of shiptypes presented in Section 4.5.

Constructing the network design is the main problem on the tacti-
cal planning level. It consists of two problems; the construction of the
shipping routes and the assignment of the different types of ships to the
routes. For the construction of routes, several types of routing are pos-
sible. One can make use of a feeder network, port-to-port routes and
butterfly routes.

In a feeder network, vessels are used to ship cargo from and to smaller
ports to a so-called hub port. The hub-port collects cargo from different
smaller ports. The cargo is then loaded onto vessels capable of carrying
a larger number of TEU’s. These larger ships can be economical more
efficient than smaller vessels when they are sailing for larger distances.
Within the feeder network there is no transshipment of cargo. The de-
cision on which ports should be seen as hub ports can be based on a
combination of mutual distances to other ports and throughput. A hub
port should be located relatively centrally compared to other ports.

In the case of intra Indonesian shipping, it might be a good decision
to select as hub ports the ports with the largest throughput, which are
Tanjung Priok and Tanjung Perak.

On a port-to-port route, every port is visited exactly once. The route
is cyclical, so the begin port is the same as the end port of the route. The
major drawback of this system is that cargo sometimes has to go a nearly
full-cycle when it has a destination that was visited just before the origin
port. Butterfly routes are also cyclical, but the difference is that subcycles
are now possible, i.e., ports can be visited multiple times in one cycle.

The main problem on the operational planning level is the assign-
ment of cargo to the ships sailing the determined routes. This problem is
called the cargo-routing problem and can be formulated as an LP-model.
In Mulder and Dekker [2013] a formulation is already provided for this
problem, which requires the routing network and port demand as input.
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5.2 Combined Problem

Clearly, those sub-problems are all strongly related to each other. For
instance, the selection of routes to be sailed depends on the ship type
chosen in the fleet-design problem and vice versa. Whereas the cargo
allocation of course depends on the routes to be sailed. Since all three sub-
problems relate closely to each other, solving all of them simultaneously
is of great importance, i.e., all decisions on the different planning levels
have to be taken at the same time [Mulder and Dekker, 2013].

The above-mentioned formulation of the cargo-routing problem pre-
sented by Mulder and Dekker [2013] can be used as a foundation for
the combined problem. By rewriting the objective funtion and some of
the constraints the model changes to a MIP-problem and can be used to
determine the optimal fleet, routes and cargo-allocation.

The objective function changes, such that the fixed costs are included.
fs are the weekly fixed costs of using route s. Furthermore, the total fuel
costs also have to be substacted and are calculated with the relationship
given in Section 5.3 and Table 1.

Since in the original formulation every inputted ship and route was
utilized and in the new formulation the decision on usage of a ship or
route has to be determined, an integer variable for every route has to be
made. For every route, this variable is equal to the number of times the
route is used and 0 otherwise. All used sets, parameters and variables
are listed below.

Sets:
h ∈ H Set of ports
t ∈ T ⊆ H Set of transhipment ports
s ∈ S Set of ship routes

j ∈ J
Indicator set denoting wheter ship passes poth ports
h1 ∈ H and h2 ∈ Hon ship route s ∈ S, where
j = (h1, h2, s)

k ∈ K
Indicator set denoting whether port h2 ∈ H is directly
visited after port h1 ∈ H on ship route s ∈ S, where
k = (h1, h2, s)
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Parameters:

rh1,h2

Revenue of transporting one TEU from port h1 ∈ H to
port h2 ∈ H

ct
t Cost of transhipping one TEU in transhipment port t ∈ T

ch
h

Cost of (un)loading one TEU in origin or destination port
h ∈ H

dh1,h2

Demand with origin port h1 ∈ H and destination port
h2 ∈ H

bs Capacity on ship route s ∈ S.

Ipath
h1,h2,h3,h4,s

0/1 parameter that takes the value 1 if a ship passes
consecutive ports h3 ∈ H and h4 ∈ H when sailing from
port h1 ∈ H to port h2 ∈ H on ship route s ∈ S

fs Fixed costs of using route s ∈ S
disth1,h2 Distance from sailing from port h1 ∈ H to h2 ∈ H
f f
s Fuelprce of ship s ∈ S per nautical mile

Variables:

xh1,h2,s
Cargo flow on ship route s ∈ S between consectutive ports
h1 ∈ H and h2 ∈ H

ys
integer variable that denotes the number of times the
route is used.

xod
h1,h2,s

Direct cargo flow on ship route s ∈ S between ports
h1 ∈ H and h2 ∈ H

xot
h1,t,h2,s

Transhipment flow on ship route s ∈ S between port
h1 ∈ H and transhipment port t ∈ T with destination port
h2 ∈ H

xtd
t,h,s1,s2

Transhipment flow on ship route s2 ∈ S between
transhipment port t ∈ T and destination port h ∈ H,
where the flow to transhipment port t ∈ T was
transported on ship route s1 ∈ S.

xtt
t1,t2,h,s1,s2

Transhipment flow on ship route s2 ∈ S between
transhipment port t1 ∈ T and transhipment port t2 ∈ T
with destination port h ∈ H, where the flow to
transhipment port t1 ∈ T was transported on route s1 ∈ S
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The formulation becomes:

max ∑
h1∈H

∑
h2∈H

∑
s∈S

rh1,h2

(
xod

h1,h2,s + ∑
t∈T

xot
h1,t,h2,s

)

− ∑
h1∈H

ch
h1

(
∑
t∈T

∑
h2∈H

∑
s∈S

[xot
h1,t,h2,s + xot

h2,t,h1,s] + ∑
h2∈H

∑
s∈S

[xod
h1,h2,s + xod

h2,h1,s]

)

− ∑
t1∈T

ct
t1

(
∑

t2∈T
∑

h2∈H
∑

s1∈S
∑

s2∈S
[xtt

t1,t2,h2,s1,s2
+ ∑

h2∈H
∑

s1∈S
∑

s2∈S
xtd

t1,h2,s1,s2

)
−

∑
s∈S

fsys −∑
s∈S

∑
k∈K

disth1,h2ys f f
s

(1)

s.t.:
∑
t∈T

∑
s∈S

xot
h1,h2,s + ∑

s∈S
xod

h1,h2,s ≤ dh1,h2 h1 ∈ H, h2 ∈ H (2)

xh1,h2,s ≤ bsys (h1, h2, s) ∈ K (3)

∑
h1∈H

xot
h1,t1,h2,s1

+ ∑
t2∈T

∑
s2∈S

xtt
t2,t1,h2,s2,s1

− ∑
s2∈S

xtd
t1,h2,s1,s2

− ∑
t2∈T

∑
s2∈S

xtt
t1,t2,h2,s1,s2

= 0 (t1, h2, s) ∈ J (4)

xh1,h2,s − ∑
h3∈H

∑
h4∈H

xtot
h3,h4,s Ipath

h3,h4,h1,h2,s = 0 (h1, h2, s) ∈ K (5)

xtot
h1,h2,s1

− xod
h1,h2,s1

− ∑
h3∈H

xot
h1,h2,h3,s1

− ∑
s2∈S

xtd
h1,h2,s2,s1

− ∑
h3∈H

∑
s2∈S

xtt
h1,h2,h3,s2,s1

= 0 h1 ∈ H, h2 ∈ H, s1 ∈ S
(6)
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xh1,h2,s ≥ 0 (h1, h2, s) ∈ K (7)

xod
h1,h2,s ≥ 0 h1 ∈ H h2 ∈ H, s ∈ S (8)

xtt
t1,t2,h,s1,s2

≥ 0 h ∈ H s1 ∈ S, (t1, t2, s2) ∈ J (9)

xtd
t,h,s1,s2

≥ 0 s1 ∈ S (t, h, s2) ∈ J (10)

xot
h1,t,h2,s ≥ 0 h2 ∈ H (h1, t, s) ∈ J (11)

The objective function (1) maximizes the profit, which is equal to the
revenue minus all costs; fuel costs, transshipment costs, handling costs
and fixed costs. Constraints (2) make sure that the cargo shipped be-
tween every combination of ports does not exceed the demand for those
combinations. Constraints (3) make sure that the amount of cargo trans-
ported on each leg, does not exceed the capacity of the ship sailing this
route. Constraints (4) ensure that all containers which have to be tran-
shipped, will also be loaded on another route. Constraints (5) define the
amount of flow between two consecutive ports. Constraints (6) define the
total flow between each two ports in the same cycle. Constraints (7) - (11)
all make sure that cargo flow is nonnegative.

5.3 Sailing Speed

Given the minimum and maximum speed of every vessel (Table 3 and
considering the fuel, fixed - and idle costs, it is possible to calculate
whether it is more economically efficient to have more ships on the same
route or to sail with a higher speed, such that a smaller number of vessels
is needed.

By the changing the sailing speed, the fuel consumption changes as
well. Brouer et al. [2014] provides a simplified relationship between the
fuel consumption and the sailing speed:

f (x) =

 f f
s (v) =

(
v
v∗s

)3
· f f

s (v∗s ), if vmin ≤ v ≤ vmax.

f f
si, v = 0.

(12)

Where, f f
s (v) denotes the fuel consumption in bunker ton per day at

speed v, v∗ is the design speed of shiptype s and f f
s (v∗s ) denotes the fuel
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consumption of ship type s, sailing at design speed. f f
si is the idle fuel

consumption per day.

5.4 Model Input

The input for the combined formulation consists of all combinations of
routes and ships. That is, every route is duplicated for every ship type,
resulting in a large number of possible routes. For instance, when there
are 15 possible routes, the total number of ship-route combinations equals
75 (15 · 5 (5 types of ships)) However, there are a lot of duplicate routes.
For instance, route {2-3-1-2} is the same as route {1-2-3-1}, when sailed
multiple times. In order to limit the number of routes and thereby the
complexity, in this thesis, only routes visiting every port at most once
are considered.

For all of these route-ship combinations a calculation is made for the
duration of the route, based on max speed and a port duration of 24
hours. Since weekly frequencies of sailing the routes is required, the num-
ber of ships needed on every route is equal to route-duration in weeks,
rounded off upwards. Next, it is checked whether it is possible to lower
the speed, such that sailing is more efficient. This speed is subject to some
constraints; the speed should be within the upper and lower bound of the
vessel and the speed should be kept at such speed, that the duration is
shorter than the multiple of weeks. Otherwise a new vessel has to be
added, which is always less efficient. Hence, no new vessel should be
added.

Given the found optimal speed, the total fuel costs can be calculated
according to the relation given in Section 5.3. Furthermore, since we
know the duration of every route, including loading time, the total idle
costs can be computed. This is done by multiplying the daily idle costs of
a ship by the time it is not sailing, i.e., it is either (un)loading or waiting
for the next trip, which is of course inefficient.

5.5 Reducing the Input-Matrix

When making use of larger routes, i.e., all routes visiting at least two and
at most six different ports, the problem rapidly increases in complexity.
By ennumerating, the number of possible routes, given that every port is
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visited at most once, except for the starting port, turns out to be equal to
409. Combining those with all ship types leads to a route input-matrix
of 2045-by-7, where a row denotes a route and a column denotes a port.
After attempting to run the procedure in AIMMS for several hours, it
turns out the problem is too complex for the computer used. A new
method for choosing the right input is thus called for.

This can be done by reducing the number of routes used as input in
the model. To do so, one can remove all routes going from and to a certain
port which is located in the outskirts. However, in order to still be able to
serve demand from and to this port, some new routes have to be added.
This can be done by inspecting both the demand - and distance matrices
and check where most demand from this port is going to.

A measure that can be used to detect candidate ports to be ’excluded’
is:

∑h2∈H dh1,h2

∑h2∈H disth1,h2

+
∑h2∈H dh2,h1

∑h2∈H disth1,h2

, f or h1 ∈ H (13)

The port with the lowest value either has a low back-and-forth de-
mand, or is located relatively non-centrally of other ports and therefore
might be a good candidate to be excluded. This can be done until the
problem is decreased to the desired complexity. If there is no clear can-
didate port to be excluded, a general method is presented in the next
section.

5.6 Iterating over Subsets of Routes

Another method to handle a large number of routes within acceptable
computation times is to compute the optimal composition by not taking
all possible routes simultaneously. That is, to calculate the best solution
by iterating over different subsets of all the routes. When a route is used,
it is included in the next iterations and the cargo-allocation problem is
solved. Routes are included into the next iteration as long as they were
selected in the network in the previous iteration. Although the found
results will not be optimal, the computation times can be kept at a low
level. Furthermore, this approach can be used in more general cases.
That is, in not every case it is possible to exclude certain ports, as seen in
Section 5.5.
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6 Results

6.1 Back and forth routes

When making use of only the smallest routes possible (back and forth),
and duplicates removed, there are 75 combinations ((5+ 4+ 3+ 2+ 1) · 5)
of routes and ships. When running the procedure in AIMMS, it turns out
that it is capable of finding the optimal solution well under a minute,
using a Intel Duo Core T6400 2.00GHz CPU. The used solver is CPLEX
12.6.1. Results are given in Table 4.

Ship type: Route: Number of
Ships Needed:

Fixed Costs
Per Week [$]:

Total Fuel Costs
Per Week [$]:

Optimal
Speed [kn]:

Feeder 800 {1,3,1} 2 112.000 104.261,22 10,33
Panamax 1750 {1,2,1} 1 105.000 160.839,63 17,73
Panamax 1750 {1,2,1} 1 105.000 160.839,63 17,73
Panamax 1750 {2,3,2} 1 105.000 30.514,95 12,00
Panamax 1750 {2,5,2} 1 105.000 56.584,14 13,43
Panamax 1750 {3,4,3} 1 105.000 27.597,95 12,00
Panamax 1750 {3,6,3} 2 210.000 196.233,62 12,61
Panamax 2400 {2,4,2} 1 147.000 55.165,86 12,00
Panamax 2400 {3,5,3} 1 147.000 50.128,15 12,00
Total: - 11 1.141.000 842.165,16 -

Table 4: Weekly Results of Required Ships using Back-and-Forth Routes

Revenue: $12.062.360
Handling Costs: $3.815.072
Transhipment Costs: $68.510
Fuel Costs (sailing): $774.650,15
Fixed Costs: $1.141.000
Port Fees: $11.304
Idle Costs: $67.515
Total Weekly Profit: $6.184.308,85
Percentage of cargo
delivered: 100.00%

Table 5: Weekly Performances Back-and-forth Routes
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When we look at Table 5, we see that, in the optimal configuration, the
weekly profit is equal to $6.184.308,85 and in which 100% of all cargo is
delivered.

6.2 Larger routes

By further inspection of the data, we see that the demand from and to
Sorong is largely linked to Tanjung Perak. In Table 6 we see that Sorong
has the lowest value, using Formula 13. Therefore, removing all routes
that visit Sorong and using a ship that goes back and forth from Sorong
to Tanjung Perak, is likely to be fruitful. Adding up the demands from
and to Sorong, calls for the utilization of a Panamax 1750. When we look
at Belawan, we see that almost all demand is linked to Tanjung Priok and
Tanjung Perak. Hence, we can also leave Belawan out of consideration.

Port: Value:
Belawan 1,88
Tanjung Priok 6,56
Tanjung Perak 5,89
Banjar-Masin 3,55
Makassar 3,25
Sorong 0,57

Table 6: Values per Port using Formula (13)

However, the routes {1,2,1} and {1,3,1} have to be included instead.
The total demand from and to Belawan is roughly 8000. Since it is not
obvious which combination of ships is most efficient to carry this, all
route options have to be included.

Removing those two ports and adding possible back-and-forth routes
reduces the input-matrix to 110-by-5 (100 for all combinations between
the four ports, 6 possible back-and-forth routes for {1-2-1} and {3-6-3}),
and the routes {1,2,3,2,1} and {1,2,3,1}. The results are shown in Tables
7 and 8. The computation time using an Intel Duo Core T6400 2.00GHz
CPU and CPLEX 12.6.1 solver is 1447 seconds.
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Ship type: Route: Number of
Ships Needed:

Fixed Costs
Per Week [$]:

Total Fuel Costs
Per Week [$]:

Optimal
Speed [kn]:

Panamax 1750 {5,2,5} 1 105.000 56.584,14 13.43
Panamax 1750 {5,3,5} 1 105.000 32.689,44 12,00
Panamax 1200 {5,4,3,5} 1 77.000 36.602,72 12,51
Panamax 1750 {2,3,4,2} 1 105.000 61.793,49 14,38
Panamax 1750 {2,4,3,2} 1 105.000 61.793,49 14,38
Panamax 1750 {3,6,3} 2 210.000 187.565,04 12,61
Panamax 1750 {1,2,1} 1 105.000 153.778,82 17,73
Panamax 1750 {1,2,1} 1 105.000 153.778,82 17,73
Feeder 800 {1,3,1} 2 112.000 104.285,15 10,33
Total: - 11 1.029.000 848.871,11 -

Table 7: Weekly Results using Larger Routes

Revenue: $12.062.360
Handling Costs: $3.815.072
Transhipment Costs: $52.394
Fuel Costs (sailing): $791.721,10
Fixed Costs: $1.029.000
Port Fees: $13.188
Idle Costs: $57.150
Total Weekly Profit: $6.303.834,90
Percentage of cargo
delivered: 100.00%

Table 8: Weekly Performances using Larger Routes
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6.3 Iterative Method over all Routes

When using the iterative method, a balance between a higher profit and
computation times has to be found. The larger the used subset within
an iteration, the higher the likelihood of finding a higher profit. A larger
subset of course results in a lower number of iterations when a fixed num-
ber of routes has to be checked. However, it turns out that computation
times become longer when making use of larger subsets. Hence, the size
of the subsets has to be limited, such that computation times are kept at
an acceptable level. First, we check the results using subsets of 50 routes.
With a total of 2045 route-ship combinations, this requires 41 iterations.
Second, we increase the size of the subset to 100 (21 iterations) and com-
pare both the computation times and the profit. The results are shown in
Table 9. The computer used has an Intel Duo Core T6400 2.00GHz CPU
and the used solver is CPLEX 12.6.1.

Subset Size: Profit: Computation Time:
50 $6.254.064 7891 sec
100 $6.265.309 18790 sec

Table 9: Optimal Profit and Computation Times using different Subsets

As we see in the table, making use of subsets of 100 routes indeed
increases maximum profit. However, we see that differences are much
less than 1% of total profit, while the computation times are more than
doubled. Therefore, it may be better to keep the number of routes in a
subset relatively low.
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7 Conclusion and further research

In the thesis of Wardana [2014] only vessels with a capacity of 3500 TEU
are taken into consideration. Moreover, there is some data missing (such
as the fixed costs of the Panamax 1750), which had to be estimated.
Therefore, it is hard to make a comparison with the results found by
Wardana [2014].

As shown, the method of creating a network as presented in this thesis
works well and is probably nearly optimal for a small number of ports.
The computation time can then be held at an acceptable level. However,
the complexity increases dramatically when new ports are added. By
including all routes for the six ports, the solving duration for the cargo-
routing problem already reaches a few hours. One can imagine that the
computation time explodes when even more ports are added. Therefore,
iterating over different subsets of all possible routes is proven to be useful,
even though it is not optimal.

Further research is required on creating routes that visit ports multi-
ple times, which increases the number of candidate routes dramatically.
Furthermore, in this paper, some possible influencal factors are being
neglected, such as the ship draft and some uncertainties as the weather
and possibly stochastic demands, which also can be implemented in the
model.
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