ERASMUS SCHOOL OF ECONOMICS

Implementation of an iterated local
search heuristic for the team
orienteering problem with time

windows
Author: Supervisor:
Renée Buiss Dr. Dennis
345246 HuisMAN

Bachelor thesis
Econometrics and Operations Research
Erasmus University Rotterdam
July 3, 2015

Abstract

When tourists visit a city or region, they cannot visit every possible attraction
as they are constrained in time. A Personalized Electronic Tourist guide may
be used to derive a personalized tourist route that maximizes the tourists’
satisfaction. The planning problem that needs to be solved can be modeled
as a Team Orienteering Problem with Time Windows (TOPTW). In the
TOPTW, a set of locations is given, each with a score, a service time and a
time window. The goal is to maximize the sum of the collected scores by a
fixed number of routes, while the visits are within the time windows of the
locations and the time budget of the tourist. Each route can be interpreted
as a day trip. In this thesis, we discuss the algorithm used to solve the
TOPTW developed by Vansteenwegen et al. (2009). They developed an
iterated local search heuristic with an insertion step and a shake step. We
implement this heuristic and we compare the results. Moreover, we extend
the problem by adding the possibility to add more constraints, such as a
limited money budget. This problem can be solved as a Multi Constrained
Team Orienteering Problem with Time Windows (MCTOPTW). To solve a
MCTOPTW, we make the adjustments to the heuristic proposed by Garcia
et al. (2010) and we compare the results.

Table of Contents

1

2

3

Introduction
Literature review
Mathematical program

Iterated local search heuristic

4.1 Example
4.2 Insertionstep
4.3 Shakestep
4.4 Tterated local search heuristic

5 Experimental results
5.1 Test instances
52 Results.
6 MCTOPTW
6.1 Adjustments to the heuristic .
6.2 Test instances
6.3 Results.
7 Conclusions and future research
References

A Appendix

18
18
18

21
21
22
23

25

27

28

1 Introduction

Most tourists visiting a city want to visit as many attractions as possible. If
a tourist wants to visit every tourist attraction during a city trip in a large
city, a considerable amount of time is required. However, most tourists visit
a city during one or more days which means the amount of time is limited.
Therefore, the tourist has to make a selection of what he believes to be the
most valuable attractions. Once the selection is made, the tourist decides
on a route, keeping in mind the available time and the opening hours of the
attractions. This part, of making a feasible route in order to visit the most
attractions within the available time, is difficult. Furthermore, when the
tourist deviates from the original route and the original route becomes infea-
sible, he has to start from scratch to find an optimal route for the remaining
part of the trip.

A Personalized Electronic Tourist guide (PET) may be used to derive a
personalized tourist route. This is a mobile hand-held device that creates a
route that maximizes the tourists’ satisfaction, taking into account several
restrictions, such as the opening and closing hours of the attractions, the ser-
vice time, the available time and the travel distances between the attractions.
The PET has to solve Tourist Trip Design Problems (TTDP). In this paper,
we consider the Team Orienteering Problem with Time Windows (TOPTW).
The TOPTW is a simplified version of the TTDP, which takes the limited
time budget of the tourist into account. In the TOPTW a set of locations is
given, each with a score, a service time and a time window. The goal is to
maximize the sum of the collected scores by a fixed number of routes. Each
route can be interpreted as a day trip.

When a tourist faces an unexpected event or wants to change the plans,
he needs a new route. He does not want to wait too long to receive a new
route in such situations. For instance, when a tourist did not like a attraction
and is done earlier, he does not want to wait minutes for a modified plan to
become available. This means the computation time must be limited.

In this thesis, we discuss the algorithm developed by Vansteenwegen et al.
(2009). This algorithm, that obtains high quality results in limited amount
of time, makes use of an insertion and a shake step. We reproduce the results
of the article. Moreover, we discuss the adjustments to the model proposed
by Garcia et al. (2010) to solve the Multi Constrained Team Orienteering
Problem with Time Windows (MCTOPTW). In this model, it is possible to
add more constraints to the problem.

The thesis is structured as follows. In the next chapter we present a
literature review. In chapter 3, a mathematical problem is presented. In
chapter 4, the heuristic and the two steps of the heuristic are described.
We illustrate the steps with a small example. The results are discussed in
chapter 5. In chapter 6, we discuss the adjustments to the heuristic to solve
the MCTOPTW and we show the results. The conclusions and topics of
future research are discussed in chapter 7.

2 Literature review

In this chapter, we briefly discuss relevant literature about the team orien-
teering problem with time windows.

Many articles have been published regarding the (team) orienteering prob-
lem without time windows. Kantor and Rosenwein (1992) were the first to
solve the orienteering problem with time windows. They model it as a prob-
lem on a graph, with a set of nodes (customers), each with an associated
profit and service duration (time window), and a set of arcs, each with an as-
sociated travel time. They construct an acyclic path beginning at a specified
origin and ending at a specified destination that maximizes the total profit
while taking into account the time windows and time budget. They use a so
called tree heuristic, that systematically generates a list of feasible paths and
then selects the most profitable path from the list. The tree heuristic pro-
duces improved values of total profit for heavily-constrained, modest-sized
problems with computational effort in comparison with an insertion heuris-
tic.

Labadi et al. (2012) developed a local search heuristic algorithm for
TOPTW based on a variable neighborhood structure. They propose a vari-
able neighborhood search procedure in which a segment of a path is replaced
by nodes offering more profit. Based on the solution of the assignment prob-
lem related to the TOPTW, the algorithm decides which arcs to select.

Lin et al. (2012) presents a simulated annealing based heuristic approach
for the TOPTW. In each iteration, a neighboring solution is obtained from
the current solution by applying a swap, insertion or inversion swap. A new
solution is adopted if it is more profitable than the current one. If the solution
is not more profitable, the new solution might again replace the current one
with a probability inversely proportional to the difference in profits between
the old and new solution. After applying this procedure for a specific number
of iterations, local search is applied to improve the best solution so far.

Montemanni and Gambardella (2009) discusses an Ant Colony System
(ACS) based method. This method takes advantage of a solution model based
on a hierarchic generalization of the original problem, which is combined with
the ACS algorithm. The quality of solutions is high, but at the expense of
long computation times.

Vansteenwegen et al. (2009) proposed an iterated local search heuristic

(ILS). This is the fastest known algorithm proposed for TOPTW (Vansteen-
wegen et al., 2011). This algorithm is discussed in this thesis.

Garcia et al. (2010) adjusted the heuristic of Vansteenwegen et al. (2009)
to solve the multi constrained team orienteering problem with time windows
(MCTOPTW). Also this heuristic is discussed in this thesis.

3 Mathematical program

In this chapter, we discuss the formulation of the team orienteering problem
with time windows as a mathematical program.

The team orienteering problem with time windows can be described as
follows. A set of n locations is given, ¢ = 1,...,n. The route starts and
ends at the same location. Every location ¢ is assigned a score S;, a service
or visiting time 7; and a time window for the starting time of the service
[0;,C;]. For all locations, the time ¢;; needed to travel from location i to
location j is known. The time is limited to a given time budget 7},,,. The
objective of the OPTW is to determine a single route which maximizes the
total collected score, where some of the locations are visited during the time
windows within the time budget T,,... Each location can be visited at most
once. It is allowed to wait at a location before its time windows starts. The
TOPTW is an OPTW where the goal is to determine m routes, each limited
by Tinae, that maximizes the total collected score.

The TOPTW can be formulated as an integer program. We define the
following decision variables:

- x5 = 1 if, in route d, a visit to location ¢ is followed by a visit to
location j, 0 otherwise.

- y;q = 1 if location 7 is visited in route d, 0 otherwise.
- 8;q 1s the start of the service at location i in route d.

Moreover, M is a large constant.

As formulated by Vansteenwegen et al., the TOPTW formulation is as
follows:

m n—1
Ma:cZZSiyid (1)
d=1 =2
m n—1 m n—1
Z L1jd = Z Tind = (2)
d=1 j=2 d=1 i=2
n—1 n
inkdzzxjkdzykd (k=2,..,n—1,d=1,...,m) (3)
i=1 =2

sia+Ti+cij — 8ja < M(1—zi50) (,j=1,..,n;d=1,..,m) (4)

 gka <l (k=2,..,n—1) (5)
d=1
n—1 n
> (Tigia+ Y citija) < Tnaa (d=1,...,m) (6)
i=1 =2
$a <C; (i=1,...,n;d=1,..m) (8)
Tija, Yia € {0,1} (4,7 =1,...,n;d=1,...,m) 9)

The objective function (1) maximizes the total collected score. Con-
straints (2) guarantee that all tours start from location 1 and end at location
n. Constraints (3) ensure that all locations, except the starting point and
ending point, have one location before and one location after visited. Con-
straints (4) determine the timeline of each tour. Constraints (5) ensure that
every location is visited at most once. Constraints (6) limit the time bud-
get. Constraints (7) ensure that the service at a location can only start after
the start of the time window. Constraints (8) ensure that the service at a
location can only start before the end of the time window.

4 Iterated local search heuristic

The TOPTW is a highly constrained problem and very difficult to solve. For
the personalized electronic tourist guide, it is required to solve TOPTW with
high quality in a few seconds. The OP is NP-hard, which means that it is
unlikely that the TOPTW can be solved to optimality within polynomial
time. Therefore, a fast iterated local search heuristic has been developed.
This heuristic combines an insertion step and a shake step to escape from
local optima. In this chapter, we first discuss the insertion step and shake
step. Both steps are illustrated by a small example. After this, we discuss
the iterated local search heuristic.

4.1 Example

To illustrate the insertion step and shake step, we make use of a small exam-
ple. This example takes as input four locations, each assigned a service time,
a score and a time window, as can be seen in Table 1. Location 0 is the start
and ending point of the tour. T),.. is equal to the end of time window of
location 0, which is 30 in this case. The time to travel between the locations
is shown in Table 2.

Table 1: Data locations of example

Location Service time Score Start time window End time window

0 0 0 0 30
1 7 14 10 25
2 4 4 4 40
3 6 8 5 20

Table 2: Travel times between locations

Location | 0 1 2 3
00 3 4 5
113 0 5 4
214 5 0 3
3/5 4 3 0

4.2 Insertion step

In each insertion step, a visit is inserted in the tour. A visit can only be
inserted in a tour if all visits scheduled after the insertion place still satisfy

their time window and if the time budget of the tour is not violated. By
recording the two additional variables Wait and Max Delay for each included
location, the visits can be checked on their feasibility. Wait is defined as the
waiting time in case the arrival at a location takes place before the start
of the time window of that location. The service can start when the time
window opens. If the arrival takes place during the time window, there is no
need to wait, which means Wait equals zero.

Wait; = max|[0, O; — Arrival;] (10)

MaxDelay is defined as the maximum time the service completion of a
given visit can be delayed, without making any visit in the tour infeasible. If
MaxDelay of location ¢ is limited by its own time window, it is equal to the
end of the time window minus the service time. If MaxDelay of location ¢
is not limited by its own time window, it is equal to the sum of Wait and
MazxDelay of the next location 7 + 1:

MaxDelay; = min|[C; — s;, Wait; 1 + MaxDelay; 1] (11)

Timelnsertion is defined as the total time consumption to insert an extra
visit j between visits ¢ and k:

Timelnsertion; = cij + Wait; +Tj + cji. — i (12)

An insertion is only feasible if the total time consumption does not exceed
the sum of Waity, and MaxDelayy, of visit k. This gives the following formula
to check feasibility:

Timelnsertion; = c;j + Wait; +T; + cji, — ciy < Waity, + MazDelay,

The arrival time (Arrival) and start of the service (Start) are recorded.
An insertion is only feasible if the start of the service of location j is within
the time window of location j:

Oj S Startj S Oj (13)
For each visit the best possible insert position, with the lowest Temelnsertion

is determined. For each visit a ratio is calculated:

52

Ratio; = — ;
Timelnsertion;

(14)

The ratio represents a measure how profitable it is to visit location ¢ versus
the time delay this visit incurs. The visit with the highest ratio will be

10

selected for insertion. The score is applied to a power two because, due to
waiting and time windows, insertion time becomes less relevant than the
score for adding new visits to the tour.

Algorithm 1 presents the pseudo code for the insertion step. Firstly, for
each non included visit Timelnsertion is calculated for every position in the
tour. We take the position with the smallest Timelnsertion and check if it
is feasible to add the visit at this position. If it is feasible, we calculate the
Ratio. We take the visit with the highest Ratio and we insert this visit in
the tour. The Arrival, Start and Wait for the inserted visit are calculated.
Visits after the insertion require an update of Wait, Arrival, Start and
MaxDelay. We use the following formulas to update the visits after the
insertion position, when visit j is inserted between ¢ and k:

Waity, = max|0, Waity, — Timelnsertion;]
Arrivaly, = Arrivaly, + Timelnsertion;
Timelnsertion;, = max|0, TimelInsertion; — Waity]
Starty = Starty + Timelnsertiony

MazxDelay, = MaxDelay, — Timelnsertiony,

The formulas are then used to update the visits after visit k£, until Timelnsertion
is reduced to zero. Visits before visit j may require an update of MaxDelay,
making use of formula (11).

11

for each non included visit do
Calculate Timelnsertion for every position;
Take position with smallest TimelInsertion;
Check feasibility;
Calculate Ratio;
end
Insert visit with highest ratio;
Visit j: calculate Arrival, Start, Wait;
for each wvisit after j (until Timelnsertion = 0) do
‘ Update Arrival, Start, Wait, MaxDelay, Timelnsertion;
end
Visit j: update MaxDelay;
for each visit before j do
‘ Update MaxDelay;
end
Algorithm 1: Insertion step

Now we discuss the example to illustrate the insertion step. We consider
a tour that consists of three locations, where the first and the last location
is location 0. The time budget for this tour equals 30. Visit 1 is already
inserted. Since the arrival of visit 1 is before the start of the time window, the
waiting time equals 7. The values for Arrival, Start, Wait and MaxDelay
are presented in Table 3.

Table 3: Tour 0-1-0

Location Arrival Start Wait MaxDelay

0 0 0 0 8
1 3 10 7 8
0 22 22 0 8

Location 2 and 3 are not included so we want to find the best visit to insert
and its position. We calculate Timelnsertion for both visits and positions
and we check if insertion is feasible. We calculate the ratio for the smallest
Timelnsertion of feasible insertions:

Firstly, we calculate Ttmelnsertion and Ratio for visit 2:

12

At position 1:

Timelnsertions = cgo + Waity + 15+ o1 —cp1 =4+0+4+5—-3=10
< Wait, + MaxDelay, =7+ 10 = 17

At position 2:

Timelnsertions = ci1o + Waity +To + 9 —co1 =5 +0+4+4—-3=10
< Waity + MaxDelayy = 0+ 10 = 10

Because Timelnsertion of both positions is equal, it makes no difference,
so we take position 1 and calculate Ratios:

sz G

=—=16
Timelnsertions 10

Ratios =

Secondly, we calculate TimelInsertion and Ratio for visit 3:

At position 1:

Timelnsertions = co3 + Waits + T5+c31 —cgp =54+0+6+4—-3 =12
< Wait; + MaxDelay, =7+ 10 = 17

At position 2:

Timelnsertions = c13+ Waits +T5+c30 —cop =4+0+6+5—3 =12
> Waity + MaxDelayy = 0+ 10 = 10
Because an insertion of visit j at position 2 is not feasible, we take position
1 and calculate Ratios:
s2 g

=—=253
Timelnsertions 12

Ratios =

We see Ratios is larger than Ratioy, so we insert visit 3 at position 1. The
arrival at visit 3 is 5. The start of the time window is 5, which means the
start of the service is equal to 5 and there is no waiting time. Now Arrival,
Start, Wait, MaxDelay and Timelnsertion of each visit after visit 3 need
to be updated applying the formulas mentioned above:

Wait; = max|0, Wait; — Timelnsertiong] = max[0,7 —12] =0
Arrivaly = Arrivaly + Timelnsertions = 3 + 12 =15
TimelInsertion, = max|0, Timelnsertions — Wait,] = max[0,12 - 7] =5
Start, = Starty + Timelnsertion; = 10+ 5 =15
MazxDelay, = MaxDelay, — Timelnsertion; =10 —5 =5

13

Waity = max|0, Waity — Timelnsertion;] = max[0,0 — 5] =0
Arrivaly = Arrivaly + Timelnsertion; = 20 +5 = 25
Timelnsertiony = max|0, Timelnsertion; — Waity] = max[0,5 —0] =5
Starty = Starty + Timelnsertiong = 20 +5 = 25
MazxDelayy, = MaxDelayy — Timelnsertiong = 10 — 5 =5

For the visit after visit 3, visit 0, MaxDelay needs to be updated:
MaxDelayy = min[Cy— Starty, Waits+ Max Delays] = min[30—0,0+5] = 5

The updated values for Arrival, Start, Wait and MaxDelay are pre-
sented in Table 4.

Table 4: Tour 0-3-1-0 (after the insertion step)

Location Arrival Start Wait MaxDelay

0 0 0 0)
3)) 0)
1 15 15 0)
0 25 25 0)

4.3 Shake step

In the shake step the algorithm tries to escape from a local optimum by
removing a number of visits in each route. The shake step takes as input
two integers: (a) the number of consecutive visits to remove from each tour
(RemoveNumbery) and (b) the place in the tour to start the removing pro-
cess (StartNumber,). If throughout the removal process, the end location
is reached, then the removal continues with the visits following the start lo-
cation. During the execution of the algorithm, the value of StartNumbery
will become different for different tours, due to different tour lengths. This
increases the possibility to escape from local optima.

After the visits are removed, all visits visited after the removed visits
are shifted towards the beginning of the tour. This is to avoid unnecessary
waiting. If a visit starts at the beginning of its time window, that visit
and the visits following that visit remain unchanged. The shifted visits are
updated using the same process as used for the insertion step. For the visits
before the removed visits, only MaxDelay is updated.

14

for each tour do
Delete the set of visits (i to j);
Calculate extra time available;
for each visit after j (until TimelInsertion = 0) do
Shift visit towards the beginning of the tour;
Update Arrival, Start, Wait, MaxDelay, Timelnsertion;
end
for each visit before © do
‘ Update MaxDelay;
end

end
Algorithm 2: Shake step

To illustrate the shake step, we apply this step on the previous example
with Start Number equal to 2 and RemoveNumber equal to 1. We do not
count visit 0 (the starting point of the tour) because the starting point needs
to be location 0. This means a Start Number equal to 2 results in a removal
of visit 1.

Timelnsertions = c3g —c31 —cio— 11 —Waiti =5—-4—-3—-7—-0=-9
Arrivaly = Arrivaly + Timelnsertions = 25 — 9 = 16
Starty = max|Oy, Arrivaly] = max[0, 16] = 16
Waity = max|0, Starty — Arrivalg) = max|[0, 16 — 16] = 0
Timelnsertiony = min|0, TimelInsertions + Wait,] = min[0, =9 + 0] = —9
MazxDelayy = MaxDelayy — Timelnsertiong =5+ 9 = 14

Now we update MazDelay of visit 3 and visit 0:
MazxDelays = min|Cy — Starts, Waity + MaxDelayg] = min[20 — 5,0 + 14] = 14

MazxDelayy = min[Cy — Starty, Waits + MaxDelays] = min[30 — 0,0 + 14] = 14

The updated values for Arrival, Start, Wait and MaxDelay are presented
in Table 5.

15

Table 5: Tour 0-3-0 (after the shake step)

Location Arrival Start Wait MaxDelay

0 0 0 0 14
3) 5 0 14
0 16 16 0 14

4.4 Tterated local search heuristic

Algorithm 3 presents the iterated local search heuristic. The heuristic starts
with a set of empty tours and initializes the Start Number and Remove Number
of the shake step to one. The heuristic starts executing the insertion step,
until no other visits can be added to a tour. If this solution is better than
the best found solution so far, i.e. if the score is higher, than the solution is
recorded and RemoveNumber is reset to one for the shake step. If this so-
lution is not better, NumberO f NoTimesNolmprovements is increased by
one. Now the shake step is applied. After each shake step, Start Number is
increased by the value of Remove Number and Remove Number is increased
by one for the next shake step. If StartNumber is equal or greater than
the size of the smallest tour, the StartNumber for the next shake step is
decreased by the size of the smallest tour. Remove Number is reset to one if
it equals the number of locations divided by three times the number of tours.

16

startNumber = 1 ;
removeNumber = 1 ;
NumberO fTimesNolmprovement = 0 ;
while NumberO fTimesNolmprovement < 150 do
while insertions possible do

‘ Insert;
end
if Solution better than BestFound then
BestFound = Solution;
removeNumber =1 ;
NumberO fTimesNolmprovement = 0 ;
else
NumberO fTimesNolmprovement =
NumberO fTimesNolmprovement +1;

end
Shake Solution(removeNumber, startNumber);
start Number = start Number + remove Number;
remove Number = removeNumber + 1 ;
if startNumber >= Size of Smallest Tour then
‘ startNumber = startNumber - Size of Smallest Tour;

end
if removeNumber == n/(3*m) then
‘ removeNumber =1 ;
end
end

Return BestFound,;
Algorithm 3: Iterated Local Search

17

5 Experimental results

In this chapter, we present our results. Firstly, we explain the test instances
used to test the heuristic. Secondly, we compare our results with the results
of Vansteenwegen et al. (2009).

5.1 Test instances

The test instances used by Vansteenwegen et al. (2009) are used to test the
heuristic and the results are compared. Vansteenwegen et al. used the test
instances of Righini and Salani (2006) and Montemanni and Gambardella
(2009). Righini and Salani designed 58 instances for the OPTW using data
set of Solomon (1987) of vehicle routing problems with time windows (c*_100,
r*_100 and rc*_100) and 10 multi-depot vehicle routing problems of Cordeau
et al. (1987) (prl-prl0). Montemanni and Gambardella added 27 extra
instances based on Solomon (¢*_200, r* 200 and rc¢*_200) and 10 instances
based on Cordeau et al. (pr11-pr20). All Solomon instances have 100 possible
visits. The number of possible visits of the Cordeau et al. instances varies
between 48 and 288. All test instances, with the number of tours varying
from 1 to 4, are used to test the program and to compare the results.

5.2 Results

All computations were carried out on a personal computer Intel core i5 with
2.6 GHz and 6 GB Ram. We used Matlab 2013a to program the heuristic.
Tables A.1 - A.8 of the appendix give a detailed comparison of the results
obtained by this program by the results obtained by Vansteenwegen et al.
(2009). The program of Vansteenwegen et al. is denoted by VSW and our
program is denoted by BUIL. The first column gives the instance’s name. The
second column gives the score obtained by Vansteenwegen et al. and the
third column presents the score obtained by our program. In column four, the
gap between the solution of Vansteenwegen et al. and the solution found is
given, stated as a percentage of the score of Vansteenwegen et al. In the fifth
column, the number of visited locations of the solution is presented. Column
six gives the computation time in seconds. For each group of problems,
the average, maximum and minimum gap (in %) and computation time (in
seconds) are shown. Tables A.9 - A.12 show comparisons of the scores of the
programs for each number of tours.

Table 6 shows a comparison of the scores of both programs, for all number
of tours together. A positive sign means the program of Vansteenwegen et

18

al. gives a higher score and vice versa. The average gap between the score
of Vansteenwegen et al. and the score found is 1.2 %. In the worst case
the gap is 11.1 % and in the best case -7,3 %. In 168 cases the solution of
Vansteenwegen et al. is better, but in 53 cases our solution is better. In
83 cases the scores are equal. An explanation for differences in scores is a
different interpretation of some parts of the heuristic. For instance, for the
insertion step Vansteenwegen et al. have not defined which position to choose
if two or more positions have equal values for Timelnsertion. Furthermore,
they have not defined which location to insert if two or more locations have
equal values for Ratio.

Table 6: Differences in scores of the program of Vansteenwegen et al. and
our program

Average gap Max gap Min gap # lower # higher # equal

Solomon 100 2.3 11.1 -2.9 80 5 31
Solomon 200 0.5 4.7 -2.8 45 16 47
Cordeau 1-10 0.6 4.7 -3.6 21 14 5
Cordeau 11-20 0.5 8.2 -7.3 22 18 0
All 1.2 11.1 -7.3 168 53 83

Table 7 shows the average computation time for the programs. For both
programs the table shows the average computation time per set of test in-
stances and per number of tours. Based on Table 7, it can be concluded that
the computation time is positively correlated with the number of tours.

The program of Vansteenwegen et al. is faster. The differences in com-
putation times can be explained by making use of different programming
languages, carrying out computations on different computers and differences
in implementation of the heuristic as mentioned above.

Our program is still many times faster than other methods that solve this
problem, such as the ant colony system of Montemanni and Gambardella
(2009) that require more than 200 seconds for the easiest problems with only
one tour and the fastest method of Righini and Salani (2006) that require
more than 400 seconds for the easiest problems with only one tour.

19

Table 7: Average CPU time for the program of Vansteenwegen et al. (VSW)
and our program (BUI) (s)

Program VSW BUI VSW BUI VSW BUI VSW BUI
m 1 2 3 4

Solomon 100 0.2 21 09 78 1.5 104 2.4 158
Solomon 200 1.7 133 2.6 29.6 1.7 225 1.0 11.9
Cordeau 1-10 1.8 154 4.8 60.1 9.2 815 14.1 132.7
Cordeau 11-20 2.0 18.6 5.2 58.9 9.7 1180 13.7 1274
All 1.2 10.0 2.6 29.2 3.7 382 4.9 445

20

6 MCTOPTW

The only constraint in the TOPTW of Vansteenwegen et al. (2009) is the
time available. In reality, tourists need to take into account more restrictions,
such as a limited money budget. The Multi Constrained Team Orienteering
Problem with Time Windows (MCTOPTW) is based on the TOPTW, but
with the possibility to take more constraints into account. The MCTOPTW
consists of a set of locations, each of them with a certain score, a time window
and one or more associated attributes, such as an entrance fee. Garcia et al.
(2010) proposed an algorithm based on the algorithm of Vansteenwegen et al.
(2009) to tackle the MCTOPTW. In this chapter, we discuss the adjustments
made to the heuristic of Vansteenwegen et al. (2009). We explain the test
instances used to test the adjusted heuristic and we compare our results with
the results of Garcia et al. (2010).

6.1 Adjustments to the heuristic

In order to solve the MCTOPTW, we adjust algorithm 3 following Garcia
et al. (2010). Firstly, we change the feasibility check of insertions. For
the TOPTW only the time feasibility was checked. The insertion of extra
attribute constraints requires checking each of the constraints to check the
feasibility of an insertion of a visit. For each non included visit, we first
inspect each constraint feasibility before checking the time feasibility, because
the time check is computationally more expensive.

Moreover, the ratio function that determines which visit is the best one
to insert, needs to be changed. For the TOPTW, the ratio only takes into ac-
count the score of the location and the time required to insert the visit. This
ratio is not optimal to use in the MCTOPTW, since the attribute constraints
are not taken into account. Garcia et al. analyzed different possibilities in
order to define the best ratio function. Empirical tests indicated that the
following ratio function is the best:

2
Ratio; = 5i (15)

l
Timelnsertion; 1 €k
availableTime + 1;1 K availabley,

In this ratio function, e;; is the value related to attribute constraint &
associated to location 7. For each constraint, the value is divided by the
available quantity of that constraint. The optimal weight for the attribute
constraints is obtained by setting the weight of each constraint as the in-
verse of the number of constraints (e.g. 0.5 for two attribute constraints).

21

With this weighting the insertion time is equally important as the attribute
constraints together. More attribute constraints will not increase the total
weight of the denominator. Moreover, in this ratio function the quantity that
is still available for each constraints is important and more relevant than the
upper bound of the constraint.

The third change, is the change in maximum number of iterations without
improvements. In the heuristic a standard number of 150 is used. Garcia et
al. made this number problem dependent. To do this, we take the size of the
first route of the initial solution as a indication of the number of locations that
can be visited per route and the degree of difficulty of the problem. Therefore,
the maximum number of iterations without improvement (MaxIter) is:

MaxIter = Factor Nolmprovement x SizeO f First Route (16)

The parameter Factor NoI'mprovement needs to be predefined. Prelim-
inary tests showed that changing this parameter did not significantly im-
prove the results and only caused longer computation times. Therefore,
Factor Nolprovement is set equal to 10 and the maximum number of it-
erations without improvement is:

MaxIter =10 x SizeO f First Route (17)

The heuristic shown in algorithm 3 with the adjustments mentioned above
is used to solve the MCTOPTW.

6.2 Test instances

Since no test problems for the MCTOPTW were available in the literature,
Garcia et al. designed a new test based on the available test sets for the
TOPTW. Although it is possible to add more attribute constraints, they
tested their heuristic with two attribute constraints added to the test in-
stances of Solomon and Cordeau et al. Therefore, they added two attribute
values (e;; and e;3) to each location in the data sets. The maximum value
E, and E5 of each optimal solution has been calculated based on the values
associated to the visited locations. These values are assigned as maximum
values for the attribute constraints. The new test instances are used for
problems with the number of constraints and the number of tours equal to
one and two.

22

6.3 Results

Tables A.13 - A.16 of the appendix give a detailed comparison of the results
obtained by this program by the results obtained by Garcia et al. The
program of Garcia et al. is denoted by GAR and our program is denoted
by BUI. The first column gives the instance’s name. The following group of
columns gives information about the program with one attribute constraint:
The second column gives the score obtained by Garcia et al. and the third
column presents the score obtained by our program. In column four, the
gap between the solution of Garcia et al. and the solution found is given,
stated as a percentage of the score of Garcia et al. In the fifth column, the
number of visited locations of our solution is presented. Column six gives the
computation time in seconds. The following group of columns gives the same
information for the program with two attribute constraints. For each group of
problems, the average, maximum and minimum gap (in %) and computation
time (in seconds) are shown. Tables A.17 - A.20 show comparisons of the
scores of the programs for each number of tours and constraints.

Table 8 shows a comparison of the scores of both programs, for all number
of tours and number of constraints together. A positive sign means the
program of Garcia et al. gives a higher score and vice versa. The average
gap between the score of Garcia et al. and the score found is -0.1 %. This
means our program gives better results on average. In the worst case the
gap is 11.6 % and in the best case -9,4 %. In 38 cases the solution of Garcia
et al. is better, but in 39 cases our solution is better. In 30 cases the scores
are equal. Explanation for differences in scores is a different interpretation of
some parts of the heuristic of Vansteenwegen et al. as mentioned above. A
different interpretation of the adjustments proposed by Garcia et al. is less
likely, since their article leaves no space to interpret it differently.

Table 8: Differences in scores of the program of Garcia et al. and our program

Average gap Max gap Min gap # lower # higher # equal

Solomon 100 0.6 11.6 -9.4 35 15 37
Cordeau 1-10 -2.0 2.2 -9.2 3 15 2
All -0.1 11.6 94 38 30 39

Table 9 shows the average computation time for the programs. For both
programs the table shows the average computation time per set of test in-
stances, per number of tours and per number of constraints. This table also
shows a positive correlation between the computation time and the number

23

of tours, but the computation times are slightly lower for two constraints
than for one constraint.

The program of Garcia et al. is faster. Again, the differences in com-
putation times can be explained by making use of different programming
languages, carrying out computations on different computers and differences
in implementation of the heuristic. The computation times are lower than
the computations times of the program solving the TOPTW for the number
of tours equal to one and two. An explanation for this could be that check-
ing the feasibility of an insertion in the MCTOPTW takes less time, because
checking the feasibility of the two attribute constraints is computationally
less expensive than checking the time feasibility.

Table 9: Average CPU time for the program of Garcia et al. (GAR) and our
program (BUI) (s)

Program GAR BUI GAR BUI GAR BUI GAR BUI
m 1 2
Constraints 1 2 1 2

Solomon 100 03 1.5 0.2 1.0 1.2 2.2 1.2 2.0
Cordeau 1-10 4.3 221 3.8 17.1 15 67.1 124 58.8
All 1.3 6.8 1.1 5.1 4.7 18.8 4.1 16.6

24

7 Conclusions and future research

In this chapter we discuss our conclusions and possible topics of further
research.

In this thesis the Team Orienteering Problem with Time Windows (TOPTW)
is discussed. In the TOPTW, a set of locations is given, each with a score,
a service time and a time window. The goal is to maximize the sum of the
collected scores by a fixed number of routes, while the visits are within the
time windows of the locations and the time budget of the tourist.

We discussed the algorithm used to solve the TOPTW developed by
Vansteenwegen et al. (2009). They developed an iterated local search heuris-
tic with an insertion step and a shake step. We implemented this heuristic
and reproduced their results. The average gap between the score of Vansteen-
wegen et al. and the score found is 1.2 %, which could be explained by a
different interpretation of some parts of the heuristic. Moreover, the program
of Vansteenwegen et al. is faster. The differences in computation times can
be explained by making use of different programming languages, carrying out
computations on different computers and differences in the implementation
of the heuristic. Our program is still many times faster than other methods
that solve this problem, such as the ant colony system of Montemanni and
Gambardella (2009) and the best program of Righini and Salani (2006).

In reality, tourists need to take into account several restrictions. The
only constraint in the TOPTW of Vansteenwegen et al. is the time available.
Therefore, we extended the problem by adding the possibility to add more
constraints, such as a limited money budget. This problem can be solved as
a Multi Constrained Team Orienteering Problem with Time Windows (MC-
TOPTW). We adjusted the TOPTW heuristic following Garcia et al. (2010).
We changed the feasibility check, the ratio function and the maximum num-
ber of iterations. We implemented the adjusted heuristic and reproduced the
results of Garcia et al. It turned out that the average gap between the score
of Garcia et al. and the score found is -0.1 %. Explanation for differences in
scores is a different interpretation of some parts of the heuristic of Vansteen-
wegen et al. or a different interpretation of the adjustments to the heuristic
of Garcia et al.

The program of Garcia et al. is faster. Again, the differences in com-

putation times can be explained by making use of different programming
languages, carrying out computations on different computers and differences

25

in the implementation of the heuristic. The computation times of the pro-
gram solving the MCTOPTW are lower than the computations times of the
program solving the TOPTW. An explanation for this could be that check-
ing the feasibility of an insertion in the MCTOPTW takes less time, because
checking the feasibility of the two attribute constraints is computationally
less expensive than checking the time feasibility.

A topic of further research is to investigate new possible actions such as
insertion two or more visits simultaneously in an insertion step or move visits
between tours. Regarding the MCTOPTW, a topic of further research is to
develop a new heuristic to tackle MCTOPTW problems to compare with the
one discussed in this thesis. Furthermore, new test instances can be made to
test the performance of the heuristic.

26

References

1]

Garcia A., Vansteenwegen P., Souffriau W., Arbelaitz O. & Linaza M.T.
(2010) Solving multi constrained team orienteering problems to generate
tourist routes. Centre for Industrial Management, Katholieke Universiteit
Leuven, Leuven, Belgium.

Kantor M. & Rosenwein M. (1992) The orienteering problem with time
windows. The Journal of the Operational Research Society. 43(6). p. 629-
635.

Labadi N., Mansini R., Melechovsk J. & Wolfler Calvo R. (2012) The
team orienteering problem with time windows: An lp-based granular
variable neighborhood search. Furopean Journal of Operational Research.
220. p. 15-27.

Lin SW. & Yu V.F. (2012) A simulated annealing heuristic for the team
orienteering problem with time windows. Furopean Journal of Opera-
tional Research. 217(1). p. 94-107.

Montemanni R. & Gambardella L.M. (2009) An ant colony system for
team orienteering problems with time windows. Foundations of Comput-
ing and Decision Sciences. 34(4). p. 287-306.

Righini G. & Salani M. (2006) Dynamic programming for the orienteer-
ing problem with time windows. Dipartimento di Tecnologie dell Infor-
mazione, Universita degli Studi Milano, Crema, Italy.

Solomon M. (1987) Algorithms for the vehicle routing and scheduling
problem with time window constraints. Operations Research. 35. p. 254-
265.

Vansteenwegen P., Souffriau W., Vanden Berghe G. & Van Oudheusden
D. (2009) Iterated local search for the team orienteering problem with
time windows. Computers € Operations Research. 36. p. 3281-3290.

Vansteenwegen P., Souffriau W. & Van Oudheusden D. (2011) The ori-
enteering problem: A survey. Furopean Journal of Operational Research.
209(1). p. 1-10.

27

A Appendix

Table A.1: Results for Solomon’s test problems (m=1)

Name VSW BUI Gap(%) Visits(BUI) CPU(s)(BUI) Name VSW BUI Gap(%) Visits(BUI) CPU(s)(BUI)
cl01 320 310 3.1 9 1.7 c201 849 840 1.1 27 8.0
cl02 360 360 0.0 11 2.2 c202 910 900 1.1 30 10.0
cl03 390 380 2.6 10 2.0 c203 940 920 2.1 31 9.2
cl04 400 390 2.5 10 2.1 c204 950 960 -1.1 32 13.3
cl05 340 340 0.0 10 2.0 c205 900 900 0.0 30 8.5
cl06 340 340 0.0 10 2.0 c206 910 910 0.0 30 9.0
cl07 360 350 2.8 10 2.1 c207 910 900 1.1 29 8.5
cl08 370 360 2.7 11 2.3 c208 930 930 0.0 31 10.5
cl09 380 380 0.0 11 2.2
r101 182 182 0.0 7 1.2 r201 788 781 0.9 36 10.6
r102 286 286 0.0 11 2.3 r202 880 904 -2.7 46 16.4
r103 286 286 0.0 10 2.0 r203 980 956 2.4 50 12.5
r104 297 297 0.0 11 2.3 r204 1073 1045 2.6 53 14.0
r105 247 240 2.8 10 2.1 r205 931 932 -0.1 44 13.3
r106 293 293 0.0 11 2.2 r206 996 978 1.8 47 8.2
rl07 288 286 0.7 10 2.1 r207 1038 1018 1.9 50 15.2
r108 297 297 0.0 11 2.4 r208 1069 1075 -0.6 55 15.0
r109 276 276 0.0 11 2.9 r209 926 917 1.0 46 11.8
r110 281 281 0.0 11 2.4 r210 958 949 0.9 49 17.4
rill 295 294 0.3 12 3.1 r211 1023 995 2.7 48 19.3
rl12 295 290 1.7 11 2.3

rcl01 219 203 7.3 9 1.6 rc201 780 779 0.1 35 9.9

rcl02 259 232 10.4 9 1.8 rc202 882 891 -1.0 38 16.5

rcl03 265 265 0.0 11 1.6 rc203 960 948 1.3 40 11.1

rcl04 297 297 0.0 11 1.7 rc204 1117 1118 -0.1 47 24.6

rcl05 221 215 2.7 10 2.1 rc205 840 835 0.6 37 11.7

rcl06 239 239 0.0 11 2.2 rc206 860 864 -0.5 36 16.3

rcl07 274 274 0.0 11 2.6 rc207 926 929 -0.3 41 23.7

rcl08 288 283 1.7 11 2.4 rc208 1037 1000 3.6 40 13.8

Average 1.4 2.1 Average 0.6 13.3
Max 10.4 3.1 Max 3.6 24.6
Min 0.0 1.2 Min -2.7 8.0

28

Table A.2: Results for Solomon’s test problems (m=2)

Name VSW BUI Gap(%) Visits(BUI) CPU(s)(BUI) Name VSW BUI Gap (%) Visits(BUI) CPU(s)(BUI)
cl01 590 570 3.4 19 6.5 c201 1400 1400 0.0 59 29.4
cl02 650 650 0.0 21 8.6 c202 1430 1410 1.4 60 25.1
cl03 700 690 1.4 20 9.6 c203 1430 1440 -0.7 64 27.4
cl04 750 750 0.0 22 12.9 c204 1460 1450 0.7 64 47.1
cl05 640 640 0.0 21 7.5 c205 1450 1440 0.7 63 34.2
cl06 620 620 0.0 20 7.2 c206 1440 1450 -0.7 64 25.7
cl07 670 670 0.0 22 8.6 c207 1450 1460 -0.7 65 49.2
c108 670 670 0.0 22 6.8 c208 1460 1470 -0.7 66 28.4
cl09 710 700 1.4 22 8.5
r101 330 330 0.0 13 4.1 r201 1231 1223 0.6 71 58.1
r102 508 508 0.0 21 8.5 r202 1270 1305 -2.8 80 49.3
r103 513 506 1.4 20 6.3 r203 1377 1354 1.7 83 32.1
r104 539 537 0.4 22 8.8 r204 1440 1427 0.9 93 21.2
r105 430 412 4.2 17 5.0 r205 1338 1315 1.7 81 18.0
r106 529 529 0.0 21 7.9 r206 1401 1377 1.7 85 41.7
r107 529 520 1.7 20 7.8 r207 1428 1428 0.0 93 31.7
r108 549 545 0.7 22 10.0 r208 1458 1450 0.5 97 21.5
r109 498 491 1.4 22 8.1 r209 1345 1325 1.5 82 22.3
rl110 515 498 3.3 21 10.0 r210 1365 1361 0.3 85 23.4
r111 535 526 1.7 23 8.6 r211 1422 1409 0.9 91 34.5
r112 515 514 0.2 22 8.2
rcl01 427 410 4.0 19 6.5 rc201 1305 1291 1.1 61 17.3
rcl102 494 461 6.7 19 6.6 rc202 1461 1392 4.7 66 18.3
rcl03 519 471 9.2 17 6.2 rc203 1573 1522 3.2 83 28.3
rcl04 565 533 5.7 22 7.9 rc204 1656 1628 1.7 88 16.3
rcl05 459 427 7.0 20 7.1 rc205 1381 1365 1.2 69 24.7
rcl06 458 440 3.9 20 6.6 rc206 1495 1466 1.9 76 25.1
rcl07 515 516 -0.2 21 8.1 rc207 1531 1493 2.5 76 27.6
rcl08 546 515 5.7 19 6.6 rc208 1606 1596 0.6 84 22.1

Average 2.2 7.8 Average 0.9 29.6
Max 9.2 12.9 Max 4.7 58.1
Min -0.2 4.1 Min -2.8 16.3

Table A.3: Results for Solomon’s test problems (m=3)

Name VSW BUI Gap (%) Visits(BUI) CPU(s)(BUI) Name VSW BUI Gap (%) Visits(BUI) CPU(s)(BUI)
cl01 790 780 1.3 29 9.9 c201 1750 1700 2.9 89 18.6
cl02 890 870 2.2 30 7.7 c202 1750 1740 0.6 93 23.3
cl03 960 940 2.1 33 12.6 c203 1760 1760 0.0 95 43.3
cl04 1010 980 3.0 33 7.6 c204 1780 1770 0.6 96 33.3
cl05 840 840 0.0 30 10.3 c205 1770 1730 2.3 92 15.2
cl06 840 830 1.2 29 11.1 c206 1770 1770 0.0 96 28.1
cl07 900 870 3.3 32 10.9 c207 1810 1760 2.8 95 32.9
c108 900 900 0.0 33 12.1 c208 1810 1800 0.6 99 36.3
c109 950 940 1.1 33 8.8
r101 481 460 4.4 19 6.9 r201 1408 1402 0.4 93 19.6
r102 685 648 5.4 31 11.1 r202 1443 1443 0.0 98 19.2
r103 720 717 0.4 32 15.3 r203 1458 1458 0.0 100 18.6
r104 765 707 7.6 30 8.2 r204 1458 1458 0.0 100 7.5
r105 609 594 2.5 26 10.7 r205 1458 1458 0.0 100 13.4
r106 719 677 5.8 29 10.6 r206 1458 1458 0.0 100 14
rl07 747 693 7.2 29 11.8 r207 1458 1458 0.0 100 12.1
r108 790 702 11.1 33 11.1 r208 1458 1458 0.0 100 7.3
r109 699 670 4.1 30 13.5 r209 1458 1458 0.0 100 17.2
r110 711 679 4.5 30 12.2 r210 1458 1458 0.0 100 20
r1ll 764 707 7.5 30 7.7 r211 1458 1458 0.0 100 20.5
r112 758 744 1.8 32 13.4
rcl01 604 558 7.6 25 8.2 rc201 1625 1623 0.1 89 32.2
rcl02 698 634 9.2 28 6.7 rc202 1686 1679 0.4 95 27.6
rcl03 747 713 4.6 27 8.6 rc203 1724 1721 0.2 99 16.5
rcl04 822 813 1.1 32 12.5 rc204 1724 1724 0.0 100 12.2
rcl05 654 653 0.2 28 10.3 rc205 1659 1672 -0.8 94 33.1
rcl06 678 668 1.5 28 9.9 rc206 1708 1712 -0.2 98 20.6
rcl07 745 745 0.0 31 11.1 rc207 1713 1724 -0.6 100 46.4
rcl08 757 740 2.2 28 10.3 rc208 1724 1724 0.0 100 18.7

Average 3.5 10.4 Average 0.3 22.5
Max 11.1 15.3 Max 2.9 46.4
Min 0.0 6.7 Min 0.8 7.3

29

Table A.4: Results for Solomon’s test problems (m=4)

Name VSW BUI Gap(%) Visits(BUI) CPU (s)(BUI) Name VSW BUI Gap(%) Visits(BUI) CPU(s)(BUI)
cl01 1000 970 3.0 39 14.6 c201 1810 1810 0 100 15.1
cl02 1090 1090 0.0 43 19.3 c202 1810 1810 0 100 13.4
cl03 1150 1160 -0.9 42 17.9 c203 1810 1810 0 100 13.4
cl04 1220 1200 1.6 44 18.1 c204 1810 1810 0 100 8.6
cl05 1030 1040 -1.0 41 16.2 c205 1810 1810 0 100 13.3
cl06 1040 1070 -2.9 42 18.3 c206 1810 1810 0 100 3.6
cl07 1100 1100 0.0 44 22.7 c207 1810 1810 0 100 10.7
c108 1100 1060 3.6 40 14.6 c208 1810 1810 0 100 9.5
cl09 1180 1140 3.4 44 10.6
r101 601 590 1.8 28 10.2 r201 1458 1458 0 100 15.4
r102 807 794 1.6 36 11.1 r202 1458 1458 0 100 13.3
r103 878 850 3.2 40 18.6 r203 1458 1458 0 100 9.6
r104 941 881 6.4 40 13.5 r204 1458 1458 0 100 7.5
r105 735 742 -1.0 35 12.8 r205 1458 1458 0 100 10.5
r106 870 831 4.5 39 15.2 r206 1458 1458 0 100 13.3
r107 927 894 3.6 42 19.2 r207 1458 1458 0 100 8.1
r108 982 954 2.9 45 22.5 r208 1458 1458 0 100 5.6
r109 866 815 5.9 39 12.5 r209 1458 1458 0 100 13.7
rl110 870 846 2.8 40 12.8 r210 1458 1458 0 100 15.6
r111 935 931 0.4 44 16.5 r211 1458 1458 0 100 15.2
rll2 939 927 1.3 43 18.2
rcl0l 794 794 0.0 37 11.3 rc201 1724 1724 0 100 21.5
rcl102 881 845 4.1 38 11.1 rc202 1724 1724 0 100 15.9
rcl03 947 940 0.7 42 21 rc203 1724 1724 0 100 3.3
rcl04 1019 996 2.3 40 17.3 rc204 1724 1724 0 100 1.5
rcl05 841 806 4.2 39 15.3 rc205 1724 1724 0 100 21.0
rcl06 874 850 2.7 37 11.8 rc206 1724 1724 0 100 14.2
rcl07 951 941 1.1 40 18.5 rc207 1724 1724 0 100 13.9
rcl08 998 933 6.5 39 15.6 rc208 1724 1724 0 100 15.3

Average 2.1 15.8 Average 0.0 11.9
Max 6.5 22.7 Max 0.0 21.5
Min -2.9 10.2 Min 0.0 1.5
Table A.5: Results for the test problems of Cordeau, Gendreau and Laporte
(m=1)

Name VSW _ BUI _ Gap(%) Visits(BUI) __CPU(s)(BUI) Name VSW _ BUI _ Gap(%) Visits(BUI) _ CPU(s)(BUI)
pr01 304 304 0.0 20 2.3 prll 330 325 1.5 20 1.7
pr02 385 382 0.8 20 4.9 prl2 431 422 2.1 23 4.7
pr03 384 388 -1.0 21 8.4 prl3 450 434 3.6 25 12.9
pr04 447 449 -0.4 22 14.0 prl4 482 517 -7.3 27 18.9
pr05 576 565 1.9 31 21.0 prls 638 656 -2.8 36 17.9
pr06 538 528 1.9 26 28.9 prl6 559 568 -1.6 30 34.3
pr07 291 291 0.0 16 6.7 prl7 346 355 -2.6 18 3.8
pr08 463 463 0.0 25 10.5 prl8 479 455 5.0 23 16.3
pr09 461 468 -1.5 25 27.7 prl9 499 462 7.4 27 26.4
prl0 539 543 -0.7 29 29.9 pr20 570 599 -5.1 34 48.7

Average 0.1 15.4 Average 0.0 18.6
Max 1.9 29.9 Max 7.4 48.7
Min -1.5 2.3 Min -7.3 1.7

30

Table A.6: Results for the test problems of Cordeau, Gendreau and Laporte

(m=2)

Name VSW BUI Gap(%) Visits(BUI) CPU(s)(BUI) Name VSW BUI Gap(%) Visits(BUI) CPU(s)(BUI)
prO1 471 450 4.5 30 3.6 prll 542 540 0.4 36 6.3
pr02 660 667 -1.1 39 16.4 prl2 727 724 0.4 40 12.3
pr03 714 717 -0.4 39 33.9 prl3 757 s -2.6 45 32.7
pr04 863 857 0.7 45 57.3 prl4 925 874 5.5 49 74.8
pr05 1011 1020 -0.9 56 109.2 prl5 1126 1107 1.7 61 78.8
pr06 997 996 0.1 52 82.3 prl6 1110 1098 1.1 57 156.9
pr07 552 544 1.4 32 6.2 prl7 624 630 -1.0 37 13.3
pr08 796 T 2.4 42 48.5 prl8 877 872 0.6 46 38.4
pr09 867 826 4.7 50 46.3 prl9 955 877 8.2 52 64.2
prl0 1004 1040 -3.6 56 197.1 pr20 1056 1098 -4.0 59 110.8

Average 0.8 60.1 Average 1.0 58.8
Max 4.7 197.1 Max 8.2 156.9
Min -3.6 3.6 Min -4.0 6.3
Table A.7: Results for the test problems of Cordeau, Gendreau and Laporte
(m=3)

Name VSW _ BUI _ Gap(%) Visits(BUI) _ CPU(s)(BUI) Name VSW _ BUI _ Gap(%) Visits(BUI) _ CPU(s)(BUI)
prO1 598 598 0.0 42 3.5 prll 632 635 -0.5 44 4.2
pr02 899 906 -0.8 57 46.1 prl2 902 912 -1.1 60 24.3
pr03 946 935 1.2 56 43.4 prl3 1046 1099 -5.1 68 47.3
pr04 1195 1195 0.0 70 86.3 prl4 1197 1226 -2.4 71 149.1
pr05 1356 1350 0.4 73 136.0 prl5 1488 1495 -0.5 89 144.3
pr06 1376 1371 0.4 7 141.3 prl6 1478 1512 -2.3 83 230.0
pr07 713 709 0.6 45 25.2 prl7 808 803 0.6 52 29.0
pr08 1082 1054 2.6 58 39.0 prl8 1165 1182 -1.5 70 86.2
pr09 1144 1117 2.4 69 97.3 prl9 1238 1322 -6.8 7 152.0
prl0 1473 1440 2.2 79 197.2 pr20 1514 1507 0.5 84 313.7

Average 0.9 81.5 Average -1.9 118.0
Max 2.6 197.2 Max 0.6 313.7
Min -0.8 3.5 Min -6.8 4.2
Table A.8: Results for the test problems of Cordeau, Gendreau and Laporte
(m=4)

Name VSW BUI Gap(%) Visits(BUI) CPU(s)(BUI) Name VSW BUI Gap(%) Visits(BUI) CPU(s)(BUI)
prO1 644 649 -0.8 46 5.3 prll 657 654 0.5 47 3.0
pr02 1014 1007 0.7 65 28.6 prl2 1118 1041 6.9 66 23.2
pr03 1162 1146 1.4 74 122.6 prl3 1329 1273 4.2 89 71.2
pr04 1452 1463 -0.8 84 194.4 prl4 1568 1502 4.2 92 196.5
pr05 1665 1640 1.5 95 247.2 prl5 1854 1814 2.2 104 177.6
pr06 1696 1653 2.5 91 221.8 prl6 1887 1877 0.5 105 272.5
pr07 840 805 4.2 56 10.6 prl7 925 877 5.2 61 17.3
pr08 1267 1269 -0.2 72 55.1 prl8 1470 1381 6.1 82 78.8
pr09 1460 1465 -0.3 92 126.1 prl9 1596 1598 -0.1 98 184.7
prl0 1782 1802 -1.1 103 315.2 pr20 1841 1874 -1.8 110 249.5

Average 0.7 132.7 Average 2.8 127.4
Max 4.2 315.2 Max 6.9 272.5
Min -1.1 5.3 Min -1.8 3.0
Table A.9: Differences in scores (m=1)
Average gap Max gap Min gap # lower # higher # equal
Solomon 100 1.4 10.4 0 13 0 16
Solomon 200 0.6 3.6 -2.7 15 8 4
Cordeau 1-10 0.1 1.9 -1.5 3 4 3
Cordeau 11-20 0 7.4 -7.3 5 5 0

31

Table A.10:

Differences in scores (m=2)

Average gap Max gap Min gap # lower # higher # equal

Solomon 100 2.2 9.2 -0.2 19 1 9

Solomon 200 0.9 4.7 -2.8 20 5 2

Cordeau 1-10 0.8 4.7 -3.6 6 4 0

Cordeau 11-20 1.0 8.2 -4 7 3 0
Table A.11: Differences in scores (m=3)

Average gap Max gap Min gap # lower # higher # equal

Solomon 100 3.5 11.1 0 26 0 3

Solomon 200 0.3 2.9 -0.8 10 3 14

Cordeau 1-10 0.9 2.6 -0.8 7 1 2

Cordeau 11-20 -1.9 0.6 -6.8 2 8 0
Table A.12: Differences in scores (m=4)

Average gap Max gap Min gap # lower # higher # equal

Solomon 100 2.1 6.5 -2.9 22 4 3

Solomon 200 0.0 0.0 0.0 0 0 27

Cordeau 1-10 0.7 4.2 -1.1 5 5 0

Cordeau 11-20 2.8 6.9 -1.8 8 2 0

Table A.13: Results for the MCTOPTW test problems of Solomon (m=1)

1 constraint

2 constraints

Name GAR BUI Gap(%) Visits(BUI) __ CPU(s)(BUT) GAR BUI Gap(%) Visits(BUI) __CPU(s)(BUT)
cl01 300 300 0.0 9 0.9 320 320 0.0 10 0.6
cl02 360 360 .0 11 2 360 360 0.0 11 1.3
cl03 380 380 0.0 10 2.1 390 390 0.0 10 1.4
cl04 400 390 2.5 10 2.1 400 390 2.5 10 1.5
cl05 330 330 0.0 10 2.1 340 340 0.0 10 1.4
c106 340 340 0.0 10 2.1 340 330 2.9 10 1.5
cl07 370 370 0.0 11 2.3 340 370 -8.8 11 1.5
cl08 350 350 0.0 11 2.0 340 340 0.0 11 1.4
cl09 380 380 0.0 11 1.7 370 380 -2.7 11 1.3
r101 182 182 0.0 7 0.5 182 186 -2.2 7 0.3
r102 281 283 -0.7 11 1.7 286 283 1.0 11 1.1
r103 286 286 0.0 10 1.7 286 286 0.0 10 1.1
r104 288 281 2.4 10 1.1 288 281 2.4 10 0.7
r105 247 240 2.8 10 1.6 247 247 0.0 10 0.9
r106 281 283 -0.7 11 1.3 289 283 2.1 10 0.6
r107 289 286 1.0 10 1.7 288 286 0.7 10 0.8
r108 308 308 0.0 13 2.0 295 304 -3.1 13 1.5
r109 276 276 0.0 11 2.4 277 276 0.4 11 1.9
r110 274 281 -2.6 11 2.1 277 276 0.4 10 1.5
r1ll 295 294 0.3 12 2.1 295 295 0.0 12 1.6
r1l2 292 292 0.0 11 2.1 295 297 -0.7 11 1.4
rcl0l 216 206 4.6 9 0.8 219 216 1.4 9 0.4
rcl02 259 259 0.0 9 0.8 259 259 0.0 9 0.4
rcl03 259 256 1.2 9 0.5 259 259 0.0 9 0.3
rcl04 301 266 11.6 9 0.4 296 266 10.1 9 0.3
rcl05 213 189 11.3 7 0.4 213 195 8.5 7 0.2
rcl06 233 255 -9.4 10 1.4 227 233 -2.6 9 0.5
rcl07 270 268 0.7 10 1.4 270 268 0.7 10 0.5
rcl08 298 283 5.0 10 0.9 298 283 5.0 10 0.4
Average 1.0 1.5 0.6 1.0
Max 11.6 2.4 10.1 1.9
Min -9.4 0.4 -8.8 0.2

32

Table A.14: Results for the MCTOPTW test problems of Solomon (m=2)

1 constraint

2 constraints

Name GAR BUI Gap(%) Visits(BUI) CPU(s)(BUI) GAR BUI Gap(%) Visits(BUI) CPU(s)(BUI)
cl01 580 580 0.0 20 3.1 580 580 0.0 20 2.7
cl02 650 650 0.0 22 3.2 650 640 1.5 22 2.8
cl03 710 700 1.4 21 3.5 690 670 2.9 20 2.9
cl04 760 750 1.3 21 2.7 740 740 0.0 21 2.4
cl105 640 640 0.0 19 2.8 640 640 0.0 19 2.8
cl106 620 620 0.0 19 2.5 620 620 0.0 19 2.4
cl07 660 670 -1.5 19 2.7 670 660 1.5 19 2.6
cl08 680 670 1.5 19 2.6 680 670 1.5 19 2.3
cl109 710 700 1.4 21 2.8 720 700 2.8 21 2.4
r101 322 330 -2.5 13 1.6 322 341 -5.9 13 1.3
r102 508 501 1.4 17 2.6 494 501 -1.4 17 2.3
r103 512 513 -0.2 18 2.7 513 513 0.0 18 2.3
r104 538 538 0.0 19 2.3 518 531 -2.5 18 2.1
r105 434 434 0.0 19 1.9 423 423 0.0 19 1.7
r106 529 529 0.0 20 2.9 529 519 1.9 19 2.4
r107 523 523 0.0 19 1.5 527 527 0.0 19 1.5
r108 539 534 0.9 17 1.6 541 524 3.1 17 1.4
r109 498 506 -1.6 20 2.2 488 498 -2.0 19 2.0
rl10 519 519 0.0 20 2.0 503 506 -0.6 19 2.0
r1ll 536 535 0.2 22 1.6 530 530 0.0 22 1.5
r112 513 513 0.0 19 1.8 520 522 -0.4 19 1.6
rcl01 427 427 0.0 18 1.8 427 419 1.9 18 1.5
rcl02 497 497 0.0 17 1.9 487 487 0.0 17 1.4
rcl03 501 497 0.8 18 0.7 510 512 -0.4 19 1.5
rcl04 556 551 0.9 19 1.7 551 551 0.0 19 1.6
rcl05 448 438 2.2 16 1.4 448 441 1.6 16 1.4
rcl06 462 464 -0.4 19 2.0 455 446 2.0 18 1.6
rcl07 516 516 0.0 20 2.5 523 510 2.5 20 2.1
rc108 526 522 0.8 20 1.9 541 540 0.2 21 1.8
Average 0.2 2.2 0.3 2.

Max 2.2 3.5 3.1 2.9
Min -2.5 0.7 -5.9 1.

Table A.15: Results for the MCTOPTW test problems of Cordeau, Gendreau
and Laporte (m=1)
1 constraint 2 constraints

Name GAR _BUI Gap(%) _ Visits(BUI) __ CPU(s)(BUI) GAR _BUI Gap(%) _ Visits(BUI) __CPU(s)(BUI)
prO1 290 302 -4.1 20 2.4 288 302 -4.9 20 2.3
pr02 375 385 -2.7 20 8.9 378 385 -1.9 20 8.2
pr03 380 388 -2.1 21 9.0 386 386 0.0 21 8.1
pr04 445 453 -1.8 22 19.0 455 445 2.2 21 17.0
pr05 521 569 -9.2 30 43.0 553 571 -3.3 29 32.0
pr06 534 548 -2.6 27 63.9 493 522 -5.9 26 51.6
pr07 289 288 0.3 17 3.0 289 289 0.0 17 2.9
pr08 452 458 -1.3 24 13.8 450 458 -1.8 24 11.2
pr09 461 463 -0.4 24 23.7 449 441 1.8 23 14.5
prl0 517 519 -0.4 26 34.5 502 511 -1.8 26 22.8
Average -2.4 22.1 -1.5 17.1
Max 0.3 63.9 2.2 51.6
Min -9.2 2.4 -5.9 2.3

33

Table A.16: Results for the MCTOPTW test problems of Cordeau, Gendreau
and Laporte (m=2)

1 constraint 2 constraints
Name GAR BUI Gap(%) Visits(BUI) CPU(s)(BUI) GAR BUI Gap(%) Visits(BUI) CPU (s)(BUI)
prO1 489 489 0.0 31 8.2 479 471 1.7 30 7.4
pr02 654 668 -2.1 39 32.6 656 667 -1.7 39 28.7
pr03 701 692 1.3 38 37.3 710 701 1.3 39 34.9
pro4 872 876 -0.5 45 60.2 846 857 -1.3 44 53.2
pr05 1002 1013 -1.1 56 105.6 1036 1026 1.0 57 98.4
pr06 952 974 -2.3 50 155.8 935 982 -5.0 50 123.6
pr07 547 558 -2.0 33 14.5 546 544 0.4 34 10.3
pro8 774 797 -3.0 42 55.7 813 803 1.2 42 55.4
pr09 828 824 0.5 50 66.4 823 826 -0.4 50 39.8
prl0 998 1014 -1.6 53 134.5 1012 1032 -2.0 54 136.3
Average -1.1 67.1 -0.5 58.8
Max 1.3 155.8 1.7 136.3
Min -3.0 8.2 -5.0 7.4

Table A.17: Differences in scores (m=1, 1 constraint)

Average gap Max gap Min gap # lower # higher # equal
Solomon 100 1.0 11.6 -9.4 11 4 14
Cordeau 1-10 -2.4 0.3 -9.2 1 9 0

Table A.18: Differences in scores (m=1, 2 constraints)

Average gap Max gap Min gap # lower # higher # equal
Solomon 100 0.6 10.1 -8.8 13 6 10
Cordeau 1-10 -1.5 2.2 -5.9 2 6 2

Table A.19: Differences in scores (m=2, 1 constraint)

Average gap Max gap Min gap # lower # higher # equal
Solomon 100 0.2 2.2 -2.5 11 5 13
Cordeau 1-10 -1.1 1.3 -3.0 2 7 1

Table A.20: Differences in scores (m=1, 2 constraints)

Average gap Max gap Min gap # lower # higher # equal
Solomon 100 0.3 3.1 -5.9 12 7 10
Cordeau 1-10 -0.5 1.7 -5.0 5 5 0

34

