
Solving the multiple-depot vehicle
scheduling problem

Bachelor Thesis
Econometrics & Operations Research

Nemanja Milovanović 1

Supervisor: Dr. D. Huisman
Co-reader: Prof. Dr. A.P.M. Wagelmans

Erasmus School of Economics
Erasmus University Rotterdam

July 5, 2015

1Studentnumber: 378244

Abstract

The Multiple-Depot Vehicle Scheduling Problem (MDVSP) is the problem
where one wants to assign timetabled tasks to vehicles which are housed in
multiple depots. This problem is highly relevant for the public transport
domain, as competition grows fierce and companies need to stay competitive
to survive. As solving the MDVSP optimally is difficult in practice, the aim
of this thesis is to give a detailed description for two heuristics discussed in
Pepin et al. (2009), namely truncated branch-and-cut and the Lagrangian
heuristic. Our implementation of the truncated branch-and-cut heuristic
has very poor behavior, which is probably caused by CPLEX’ root node
heuristics. Also, in comparison with the heuristics in Pepin et al. (2009),
our implementation of the Lagrangian heuristic is rather lackluster, only
outperforming their tabu search heuristic. This is probably due to poor
code-optimization. Nevertheless, our implementation still provides solutions
within 1% optimality gap for all the test instances considered.

i

Contents

1 Introduction 1

2 Problem description 2

3 Literature overview 4

4 Model formulation 5

5 Overview of heuristics 7
5.1 Truncated branch-and-cut . 7
5.2 Lagrangian heuristic . 7

5.2.1 Computing the lower bound 7
5.2.2 Obtaining a feasible solution and an upper bound . . . 10
5.2.3 An algorithm for the Lagrangian heuristic 11

6 Computational results 15
6.1 Truncated branch-and-cut . 15
6.2 Lagrangian heuristic . 16

6.2.1 Sensitivity analysis . 16
6.2.2 Heuristic results . 17

7 Conclusion 22

A Forward/reverse auction iterations for the SDVSP 23

B Forward/reverse auction iterations for the AAP 26

ii

1 INTRODUCTION

1 Introduction

As public transport nowadays is getting more and more privatized, firms
seek to operate as efficiently as possible in order to attain a better market
position. Bus companies and railway operators, for example, all need to
create schedules for their vehicles in which is described which trip they cover.
This problem is called the vehicle scheduling problem (VSP). In this thesis
we will assume that the vehicles are stationed in multiple depots, which is
appropriately called the multiple-depot vehicle scheduling problem (MDVSP).

The motivation for this thesis is to provide a detailed account on two
heuristics discussed in Pepin et al. (2009): Truncated branch-and-cut, and a
Lagrangian heuristic. Especially for the Lagrangian heuristic, there are lots
of ways to implement the various features. This thesis aims to give the reader
an example of which methods can be chosen, and also aims to give a detailed
description such that the reader may be able to implement the heuristics him-
or herself. As such, this thesis is more practically oriented than theoretically.
Basic computer and mathematical programming knowledge is assumed.

This thesis is organized as follows. In Chapter 2, we describe the MD-
VSP thoroughly. In Chapter 3, we provide a short overview of the necessary
literature used in this thesis and for further reading. We give a mathemat-
ical programming formulation of the MDVSP in Chapter 4. Following in
Chapter 5, we give an overview of the heuristics which are treated in this
paper and we provide the details that are needed to implement them. The
computational results of the heuristics are then presented in Chapter 6, after
which we conclude this thesis with some remarks in Chapter 7.

1

2 PROBLEM DESCRIPTION

2 Problem description

In this thesis, we base our notation on Pepin et al. (2009). The MDVSP can
be described as follows. Given a set T of timetabled tasks and a set of depots
K, produce least-cost vehicle schedules in which every task is performed by
exactly one vehicle, and the depot capacity vk for k ∈ K is not exceeded. In
our case, we assume that all tasks can be performed by vehicles in all depots.
This is, for example, the case when the fleet is homogeneous.

For every task i ∈ T there exist start and end locations which we model
as vertices si and ei, respectively. It is allowed that si = ei, but this need not
be the case. Furthermore, a task is characterized by a start time ai ≥ 0, and
a duration δi ≥ 0. A vehicle schedule is feasible if all tasks are performed by
exactly one vehicle, and for every pair of tasks (i, j) it holds that ai+δi+tij ≤
aj, where tij is the travel time from ei to sj. This implies that task i starts
and ends before j does. Total schedule costs are the sum of the total travel
and total waiting costs. The total travel costs consists of costs made by
traveling from the depot to the first task, traveling in between tasks, and
traveling from the last task to the depot. The total waiting costs consist of
the sum of the costs of waiting in between tasks.

We now introduce some terminology which is quite common in the MD-
VSP literature. A pull-out trip is a trip from the depot to the start location
si of some task i. On the other hand, a pull-in trip is a trip from the end
location ei of some task i to the depot. Lastly, a deadhead trip is a trip from
the end location ei of task i to the start location sj of task j, for some i 6= j.

For an example of an MDVSP (taken from Kliewer et al. 2006), see Fig-
ure 1. Here, an instance is depicted with |K| = 2 depots and |T | = 3 tasks,
where task 1 starts and ends before task 2, and task 2 starts and ends before
task 3.

Task i si ei ai ai + δi

1 A B 1 2
2 B A 3 4
3 B A 5 6

Table 1: Example of an MDVSP with |K| = 2 depots and |T | = 3 tasks.

There exist several extensions of the MDVSP. A closely related problem
is the crew scheduling problem (CSP), which consists of the scheduling of so-
called duties. All tasks are assigned to exactly one duty in a cost-minimizing
manner, and duties can have additional labor constraints. An extension of the
MDVSP is the multiple-depot integrated vehicle- and crew-scheduling problem

2

2 PROBLEM DESCRIPTION

(MD-VCSP) (see Huisman et al. 2005), which integrates the MDVSP with
the CSP (normally, CSP and MDVSP are done sequentially). Also, one could
consider tasks with time-windows (TW) in the MDVSP or the MD-VCSP,
which can considerably lower the necessary amount of vehicles and duties
(Kliewer et al., 2012) which in turn lowers the total costs. These extensions
will not be considered in this thesis, however.

3

3 LITERATURE OVERVIEW

3 Literature overview

A great starting point in the MDVSP literature is Löbel (1997), which is a
dissertation on optimal vehicle scheduling as applied to public transit. This
dissertation focuses primarily on the MDVSP, more specifically, it provides
a short overview of the necessary mathematics involved after which several
techniques are discussed to solve the MDVSP exactly, including branch-and-
bound and variants thereof. Other mathematical programming approaches
can be found in Hadjar et al. (2006), and Ribeiro and Soumis (1994).

Although the MDVSP is often formulated as a connection network, Kliewer
et al. (2006) apply the time-space network model to the problem. Also, be-
cause of this modeling approach, they are able to aggregate many deadhead
arcs. The authors report a tremendous reduction in variables due to this
aggregation.

As the MDVSP is NP-hard, several heuristic approaches have been pro-
posed. An overview of some heuristics can be found in Pepin et al. (2009).
Also, they propose a large neighborhood search (LNS) heuristic which uses
column generation to evaluate the neighborhood. More recently, other local
search heuristics have been proposed by Laurent and Hao (2009) and Ot-
suki and Aihara (2014). The former propose an iterated local search heuris-
tic (ILS) which uses the notion of ejection chains in the construction of
their neighborhood. The latter present a variable-depth local search heuris-
tic (VDS), which utilizes the previous ILS in a variable-depth context. Both
articles use the same test instances as presented in Pepin et al. (2009) and re-
port superior results as compared to their LNS (still inferior to their column
generation approach), but fail to compare computation times.

The Lagrangian heuristic as discussed in this paper uses three key features
that require additional literature. First and foremost, it uses subgradient op-
timization to optimize the Lagrangian multipliers. Although this thesis uses
the subgradient method proposed by Pepin et al. (2009), the reader may
find it useful to try a different method. We therefore point the reader to
a dissertation by Guta (2003), in which subgradient optimization is treated
extensively. The second and third features are obtaining the lower and up-
per bounds, respectively. For these components, we use auction algorithms
as proposed by Freling et al. (2001) and Bertsekas and Castañon (1992) for
the quasi-assignment and asymmetric assignment problems, respectively. Al-
ternatives to these auction algorithms can also be used. Some of these can
be found in the book by Bertsekas (1998), which is an excellent account on
network optimization in general.

4

4 MODEL FORMULATION

4 Model formulation

The MDVSP can be formulated in different ways. However, in this thesis
we only use one formulation, namely the connection network variant of the
multi-commodity flow network, which can be described as follows. Let Gk =
(V k, Ak) for each depot k ∈ K. Here V k is the set of vertices, which contains
each task vertex i ∈ T and also o(k) and d(k), respectively the start and end
vertices of depot k. Thus, it holds that V k = {o(k), d(k)}∪T . The set of arcs
Ak contains three types of arcs: pull-out arcs, connection arcs, and pull-in
arcs. Pull-out arcs are defined as pairs (o(k), j) for all j ∈ T . This means
that every task has a pull-out arc connected with it. Similarly, all tasks also
have a pull-in arc which is defined as (i, d(k)) for all i ∈ T . Finally, there
are connection arcs. These arcs are characterized as (i, j), where i, j ∈ T ,
connecting two task i and j such that ai+δi+tij ≤ aj. The last parameter in
the model is the cost of an arc, which we denote by cij. This cost is usually
equal to the travel costs between tasks i and j, but other costs are also
allowed. For instance, if i = o(k) then it is possible that a certain fixed-cost
is incurred.

o(1) 1 2 3 d(1)

o(2) 1 2 3 d(2)

pull-in/out arc connection arc

Figure 1: Example from Table 1 modeled as a connection network. Here,
circular vertices represent tasks and rectangular vertices are associated to
depots.

For an example of the connection network approach, see Figure 1, which
extends the example from Table 1. Note that every depot has its own network
layer and that the cost of arc (i, j) does not necessarily have to be the same
between depots.

We are now ready to present the connection network flow formulation as

5

4 MODEL FORMULATION

presented by Pepin et al. (2009) for the MDVSP, which is as follows:

min
∑
k∈K

∑
(i,j)∈Ak

cijX
k
ij (1)

s.t.
∑
k∈K

∑
j:(i,j)∈Ak

Xk
ij = 1, ∀i ∈ T, (2)

∑
j:(o(k),j)∈Ak

Xk
o(k),j ≤ vk, ∀k ∈ K, (3)

∑
j:(j,i)∈Ak

Xk
ji −

∑
j:(i,j)∈Ak

Xk
ij = 0, ∀i ∈ V k \ {o(k), d(k)}, k ∈ K, (4)

Xk
ij ∈ B, ∀(i, j) ∈ Ak, k ∈ K, (5)

where B = {0, 1}, and vk is the vehicle capacity of depot k. Also, Xk
ij are

the decision variables of this model which equal 1 if arc (i, j) ∈ Ak has flow
coming from depot k and 0 otherwise. Flow in this context can be seen as a
vehicle traveling from task i to task j. Objective function (1) minimizes the
total costs. Constraints (2) ensure that every task is performed by exactly
one vehicle, while constraints (3) keep the number of dispatched vehicles from
depot k below the corresponding capacity. Lastly, constraints (4) conserve
the flow through all nodes, as all incoming flow through a certain task vertex
must also go out.

6

5 OVERVIEW OF HEURISTICS

5 Overview of heuristics

5.1 Truncated branch-and-cut

When one incorporates cutting planes (see Gomory, 1963) in a brand-and-
bound algorithm, the result is known as branch-and-cut. As this subject is
not in the scope of this text, we refer the interested reader to Mitchell (2002).

As letting the branch-and-cut algorithm run to completion is too time
consuming for large problem instances, we could simply terminate the al-
gorithm after the first feasible integer solution we find. This results in a
procedure which is called truncated branch-and-cut. This procedure is actu-
ally a heuristic, as we are not guaranteed that the solution we find is optimal.

For the branch-and-cut implementation we use the connection network
formulation, which was discussed in Chapter 4, and we implement it using the
commercial MIP solver CPLEX (version 12.6, 32-bits), with default settings
unless stated otherwise.

5.2 Lagrangian heuristic

A Lagrangian heuristic is a heuristic which uses a Lagrangian relaxation to
obtain lower bounds for the problem at hand. Usually, an upper bound is
obtained by “transforming” the lower bound solution to a feasible one. La-
grangian relaxation transfers certain constraints to the objective function
by introducing new variables called Lagrangian multipliers. The problem of
assigning these multipliers values such that the lower bound is as tight as
possible is called the Lagrangian dual problem. Additionally, the objective
function to the Lagrangian dual problem is called the Lagrangian dual func-
tion. As the Lagrangian dual function is non-smooth, a popular choice in
solving the dual problem is subgradient optimization. For a more detailed
text on subgradient optimization for the Lagrangian dual problem with ap-
plications, we refer the reader to Guta (2003). This section outlines the
heuristic proposed by Pepin et al. (2009). In the following, we provide the
reader with details regarding every aspect of the Lagrangian heuristic.

5.2.1 Computing the lower bound

As described earlier, the Lagrangian dual problem is obtained when one
relaxes certain constraints. However, there is no limit on the choice of
which constraints to relax. The Lagrangian heuristic is based on the con-
nections network formulation given by (1)–(5) augmented by the redundant

7

5.2 Lagrangian heuristic 5 OVERVIEW OF HEURISTICS

constraints: ∑
k∈K

∑
j:(j,i)∈Ak

Xk
ji = 1, ∀i ∈ T. (6)

The Lagrangian dual problem is then obtained by relaxing constraints (3)
by deleting them, and relaxing constraints (4) in a Lagrangian fashion, as
follows:

φ(λ) = min
∑
k∈K

∑
(i,j)∈Ak

c̃ijX
k
ij (7)

s.t.
∑
k∈K

∑
j:(i,j)∈Ak

Xk
ij = 1, ∀i ∈ T, (8)

∑
k∈K

∑
j:(j,i)∈Ak

Xk
ji = 1, ∀i ∈ T, (9)

Xk
ij ∈ B, ∀(i, j) ∈ Ak,∀k ∈ K, (10)

where c̃ij is defined as

c̃ij =

cij + λkj − λki ∀i, j ∈ T
cij + λkj ∀j ∈ T, i = o(k)

cij − λki ∀i ∈ T, j = d(k)

. (11)

This dual problem is equivalent to a single-depot vehicle scheduling problem
(SDVSP), which can be seen by replacing Xk

ij with a single variable corre-
sponding to the arc (i, j) for which cij + λkj − λki is the lowest. This SDVSP
can be solved in a manner of ways (see Freling et al. 2001), one of which is
an auction algorithm.

An auction algorithm in the SDVSP sense is an algorithm in which tasks
bid for other tasks or the start/end vertices of the depot. The auction al-
gorithm Freling et al. (2001) proposed for the SDVSP consists of forward
and reverse auction iterations. In a forward iteration, trips bid for successor
trips or the end vertex of the depot, and in a reverse iteration trips bid for
predecessor trips or the start vertex of the depot. The pseudo-code for both
types of iteration can be found in Appendix A.

In the combined forward and reverse auction algorithm as proposed by
Freling et al. (2001), one switches between forward and reverse iterations.
Freling et al. (2001) also guarantees convergence when one refrains from
switching between the iterations until at least one more task is forward or
backward assigned. Also, the start values of the dual variable vectors π and
p may be chosen arbitrarily.

8

5.2 Lagrangian heuristic 5 OVERVIEW OF HEURISTICS

In theory, the previously described algorithm should always terminate.
However, in practice we see that if ε < 1

|T | remains constant during the auc-
tion algorithm, it may take many iterations before the algorithm converges.
Luckily, one can remedy this by means of ε-scaling. ε-scaling is a technique
where the original problem is solved several times for decreasing values of ε
according to some (monotonically) decreasing function f(ε, i), where i is the
number of the iteration, until finally ε < 1

|T | , in which case the solution is

optimal. Freling et al. (2001) proposes the following updating scheme. First,
for all (i, j) we define new costs a′ij = |T+1|aij. Then, we define the ε-scaling
function to be

f(ε, i) = max{1,∆/θi}, (12)

with ∆ = |T |max(i,j) |a′ij| and θ = 4. The new optimality criterion for
the auction algorithm then becomes ε = 1. The entire auction procedure
(including ε-scaling) can be found in Algorithm 1.

Algorithm 1 The entire auction algorithm for the SDVSP.

1: procedure Auction
2: ε← initial value
3: π ← 0, p← 0
4: i← 1
5: do forward ← true
6: while ε > 1 do
7: S ← ∅
8: while ∃i, j ∈ T : (i, j) 6∈ S do
9: if ∃i ∈ T : (i, j) 6∈ S and do forward is true then

10: forward(p, π, ε, S)
11: if we forward assigned, do forward is false
12: end if
13: if ∃j ∈ T : (i, j) 6∈ S and do forward is false then
14: reverse(p, π, ε, S)
15: if we backward assigned, do forward is true
16: end if
17: end while
18: i← i+ 1
19: ε← f(ε, i)
20: end while
21: return S
22: end procedure

9

5.2 Lagrangian heuristic 5 OVERVIEW OF HEURISTICS

5.2.2 Obtaining a feasible solution and an upper bound

The next step in the heuristic is obtaining an upper bound to the original
problem. Although several options are possible, usually the solution corre-
sponding to the lower bound is made feasible using some procedure. In our
case, we have obtained a number of paths which are assigned to a single
depot. By assigning these paths to different depots and keeping in mind the
capacity constraints, we obtain a feasible solution for the MDVSP. Formally,
we have the following problem:

min
∑
k∈K

∑
p∈P

ckpY
k
p (13)

s.t.
∑
k∈K

Y k
p = 1, ∀p ∈ P, (14)∑

p∈P

Y k
p ≤ vk, ∀k ∈ K, (15)

Y k
p ∈ B, ∀p ∈ P, ∀k ∈ K, (16)

where P is the set of all paths obtained by solving the Lagrangian subprob-
lem, and K is the set of depots. Also, ckp is the cost of letting path p be
serviced by a vehicle from depot k, and vk is the capacity for depot k. Fur-
thermore, the decision variable Y k

p is equal to 1 if path p is serviced from
depot k, and 0 otherwise. The objective function (13) minimizes the total
costs, constraints (14) make sure that every path is serviced by exactly one
depot, and constraints (15) guarantee that the depot capacities are respected.

The problem described by (13)–(16) is called a transportation problem
and can be solved by a variety of methods. In this thesis, we propose to
solve the transportation problem by transforming it into an asymmetric as-
signment problem (AAP), which we solve by means of a combined forward
and reverse auction algorithm proposed by Bertsekas and Castañon (1992).
More information about the forward/reverse iterations can be found in Ap-
pendix B. The transformation is simple, we split every depot k ∈ K into
vk artificial depots. We denote the set of artificial depots by K ′, which has

10

5.2 Lagrangian heuristic 5 OVERVIEW OF HEURISTICS

cardinality |K ′| =
∑

k∈K vk. The resulting AAP then becomes:

min
∑
k∈K′

∑
p∈P

ckpY
k
p (17)

s.t.
∑
k∈K′

Y k
p = 1, ∀p ∈ P, (18)∑

p∈P

Y k
p ≤ 1, ∀k ∈ K ′, (19)

Y k
p ∈ B, ∀p ∈ P, ∀k ∈ K ′. (20)

Note that instead of having |K||P | variables using the transportation prob-
lem, we now have

∑
k∈K vk|P | ≥ |K||P | variables. This shows that the

complexity of the auction algorithm (which is dependent on the number of
variables) will be heavily influenced by the depot capacities. However, trans-
formations done on the data instances which will be introduced in Chap-
ter 6 showed that the number of paths |P | remains relatively small, and
so the transformed transportation problem, even for rather large instances
(|T | = 1500), is solved swiftly.

As with the SDVSP auction algorithm, it is possible to achieve conver-
gence faster with ε-scaling. We let the scaling function f(ε, i) be the same
as before, where we define ∆ as ∆ = |P |max(p,k) |a′pk| and a′pk = |P + 1|apk.
The complete auction procedure can be found in Algorithm 2.

5.2.3 An algorithm for the Lagrangian heuristic

Now for the final ingredient for the Lagrangian heuristic: the subgradient
optimization procedure. As already mentioned, the Lagrangian dual function
is non-smooth, so optimization by means of gradient descent methods is out
of the question. For this reason, one often turns to subgradient optimization,
as subgradients are available even for non-differentiable points.

The basic form of a subgradient procedure is

λk,n+1
i = λk,ni + δns

k,n
i , (21)

where λk,ni is the Lagrangian multiplier of iteration n, δn is a scalar, and sk,ni

is a subgradient. Note that subgradient optimization comes in many flavors,
of which in this thesis we only focus on the one suggested by Pepin et al.

11

5.2 Lagrangian heuristic 5 OVERVIEW OF HEURISTICS

Algorithm 2 The complete auction procedure for solving the AAP.

procedure AsymmetricAuction
ε← initialvalue
π ← 0, p← 0
λ← 0, i← 0
while ε > 1 do S ← ∅

forward()
λ← mink:(p,k)∈S pk
do forward ← true
while there is an unassigned p ∈ P and ∃k ∈ K ′ : pk ≤ λ do

if do forward is true then
forward(p, π, ε, S, λ)
if we forward assigned, do forward is false

end if
if do forward is false and ∃k ∈ K ′ : pk ≤ λ then

reverse(p, π, ε, S, λ)
if we backward assigned, do forward is true
if all p ∈ P are assigned, do forward is false

end if
end while
i← i+ 1
ε← f(ε, i)

end while
end procedure

12

5.2 Lagrangian heuristic 5 OVERVIEW OF HEURISTICS

(2009), namely:

δn = αn
UB − φ(λn)∑
k∈K

∑
i∈T (sk,ni)2

, (22)

sk,ni =
∑

j:(j,i)∈Ak

Xk,n
ji −

∑
j:(i.j)∈Ak

Xk,n
ij , (23)

where UB is the best upper bound found so far, α0 is left as a parameter to
be chosen by the user, and the rule for updating αn+1 given αn will be given
shortly.

The entire Lagrangian heuristic (as suggested by Pepin et al. 2009) is
given in Algorithm 3. First, we compute a lower bound φ(λn) by solving the
Lagrangian subproblem given a vector λn of Lagrangian multipliers. Then,
we make this (often unfeasible) solution feasible for the MDVSP by trans-
forming it. We do this by means of solving a transportation problem. Then,
we update the lower and upper bounds, and the Lagrangian multipliers us-
ing a subgradient optimization procedure. Finally, we check if we fulfilled a
stopping criterium, and if so, we terminate the heuristic. If not, we begin
by computing a new lower bound, and so on. Also, we use the following
updating rule for αn. Every γ iterations in which we have not improved our
lower bound, we halve αn.

The stopping criteria we use are the following. If the upper and lower
bounds collide, we stop as we have found the optimal solution. Also, if αn

is too small, say smaller than ε, or after nmax iterations, we terminate the
procedure.

13

5.2 Lagrangian heuristic 5 OVERVIEW OF HEURISTICS

Algorithm 3 Lagrangian heuristic for solving the MDVSP.

1: procedure LagrangianHeuristic(nmax, γ, ε)
2: UB ←∞, LB ← −∞
3: n← 0, m← 0, λ0 ← 0
4: while true do
5: solve Lagrangian subproblem (7)–(10) to obtain Xn and φ(λn)
6: compute a subgradient sk,ni

7: compute an upper bound UBn by solving (13)–(16)
8: if UBn < UB then
9: UB ← UBn

10: end if
11: λk,n+1

i = λk,ni + δns
k,n
i

12: if φ(λn) > LB then
13: m← 0
14: LB ← φ(λn)
15: else
16: m← m+ 1
17: end if
18: if m = γ then
19: αn+1 ← αn/2
20: m← 0
21: else
22: αn+1 ← αn

23: end if
24: if UB = LB, αn ≤ ε, or n ≥ nmax then
25: stop
26: else
27: n← n+ 1
28: end if
29: end while
30: end procedure

14

6 COMPUTATIONAL RESULTS

6 Computational results

All results were obtained with a computer running Windows 7 (64-bit) with
Intel Core i7-4770 CPU at 3.40GHz and 8GB RAM. Additionally, we used
Java (version 1.8.0u45, 32-bits) to program (parts of) the heuristics. In case
a MIP solver was necessary, we used the commercial MIP solver CPLEX
(version 12.6, 32-bits). All user-created code runs on a single thread.

The test instances we used in this thesis to evaluate the heuristics were
created by Pepin et al. (2009) and are available from http://people.few.

eur.nl/huisman/instances.htm. Optimal costs and optimal amount of
vehicles can also be found here.

The data vary in two dimensions, namely number of depots and number of
tasks. Also, for every depot-task pair, there are five different cases available.
Table 2 gives the reader an insight in how big the test instances are. Here,
we have summed the number of arcs across all depots.

Table 2: Number of arcs for the 500, 1000, and 1500 task test instances, for
both 4 and 8 depots.

Instance 500 tasks 1000 tasks 1500 tasks

0 304,620 1,221,640 2,684,272
1 307,728 1,224,572 2,763,400
2 311,772 1,218,576 2,744,656
3 307,676 1,194,052 2,757,136
4 301,868 1,207,288 2,750,936

(a) 4-depot case

Instance 500 tasks 1000 tasks 1500 tasks

0 615,488 2,435,368 5,453,944
1 624,744 2,477,024 5,459,040
2 620,208 2,412,984 5,486,792
3 611,640 2,422,160 5,514,720
4 615,672 2,389,192 5,534,336

(b) 8-depot case

6.1 Truncated branch-and-cut

Before we present the results obtained from the truncated branch-and-cut
heuristic, we should mention that using the 32-bits version of CPLEX has

15

http://people.few.eur.nl/huisman/instances.htm
http://people.few.eur.nl/huisman/instances.htm

6.2 Lagrangian heuristic 6 COMPUTATIONAL RESULTS

severe drawbacks regarding solving the MDVSP. Due to the relatively large
amount of memory CPLEX needs for the MDVSP, it is impossible to solve
the larger test instances; we were only able to solve the instances with 4
depots and 500 tasks. Also, selecting any algorithm other than the barrier
algorithm at the root node lead to memory problems.

Table 3: Results of the truncated branch-and-cut heuristic for the test in-
stances of category “4 depots, 500 tasks”. The optimality gap is calculated
using the optimal costs.

Instance Gap (%) Time (s) Absolute costs

0 49.33 20.45 2,544,110
1 50.44 21.34 2,505,449
2 46.10 22.12 2,381,940
3 50.24 20.74 2,529,575
4 44.30 22.51 2,364,573

The results of the truncated branch-and-cut are shown in Table 3. The
reported optimality gap is calculated with

Gap =
100(UB − LB)

UB
. (24)

We see from the table that using the first obtained solution results in opti-
mality gaps which are quite large. This can be explained by CPLEX’ default
behavior. When left default, CPLEX uses heuristics at the root node which
give quick solutions. The quality of these quick solutions, however, may turn
out be poor, as is likely our case. To investigate this, one could turn off these
root node heuristics. Unfortunately, when doing so, we ran into memory
problems, which prohibited us to investigate this issue any further.

6.2 Lagrangian heuristic

6.2.1 Sensitivity analysis

As there is quite some freedom in choosing the parameters for the subgra-
dient procedure described in Chapter 5.2.1, we begin with a small sensitiv-
ity analysis. As a reference point, we take the following parameter values:
nmax = 500, α0 = 1.0, γ = 10, ε = 0.000001. Also, due to the fact that
sensitivity analysis requires many runs of the algorithm, we limit ourselves
to the 4-depot instances with 500 tasks and assume that the larger instances
comply in behavior.

16

6.2 Lagrangian heuristic 6 COMPUTATIONAL RESULTS

We vary the parameters α0 and γ, which both give us some control over
the size of the step we take in the direction of the subgradient. Setting the
parameter α0 relatively large (small) results in taking relatively big (small)
steps in the direction of the subgradient, whereas assigning γ a large (small)
value leads to relatively slow (fast) decline of the step size. In this sensitivity
analysis we consider the values α0 = 0.5, 0.8, 1.0, 1.5 and γ = 1, 3, 5, 7, 10, 15.
The results of which can be found in Figure 2 and Figure 3. From the two
figures it is obvious that there exist trade-offs for both parameters, where the
trade-off for α0 is the most apparent. In both cases we find that an increase
in solution quality requires an increase in computation time.

6.2.2 Heuristic results

Considering the results of the sensitivity analysis, we ultimately decide upon
the following parameter values: nmax = 500, α0 = 1.0, γ = 7, ε = 0.000001.
Next, we would like to visually summarize the proposed Lagrangian heuris-
tic by means of Figure 4. In this figure, which was made by applying the
heuristic to an instance with four depots and 1500 tasks, we see that the
lower bound increases non-monotonically, which is typical for subgradient
methods. Nevertheless, the lower bound does seem to converge to a partic-
ular value. Also interesting to note is that the upper bound seems to have a
tendency to decrease. Small experiments have shown that the quality of the
upper bound tends to the quality of the lower bound. Which means that if
the lower bound is of poor quality, the upper bound also tends to be poor.
Our last observation is that looking at the best available upper bounds, we
see that after a certain number of iterations, it is not very rewarding to let
the heuristic continue.

Finally, using the aforementioned parameter values, we run the Lagran-
gian heuristic for all test instances and compare the results with the heuristics
in Pepin et al. (2009). In accordance to Pepin et al. (2009), we subtract the
fixed vehicle costs from the objective value and use the result for comparison
purposes.

Table 4 and Table 5 show the results of the comparison for the 4-depot
and 8-depot instances. The abbreviations for the heuristics are as follows:

– CLGR: Column generation;

– LGRH: Lagrangian heuristic. Note that Pepin et al. (2009) use an
unknown method to solve the transportation problem;

– LNS: Large neighborhood search;

– TBnC: Truncated branch-and-cut;

17

6.2 Lagrangian heuristic 6 COMPUTATIONAL RESULTS

α

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

C
os

ts

×106

1.2794

1.2795

1.2795

1.2796

1.2796

1.2797

1.2797

1.2798

1.2798

(a)

α

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

T
im

e

368

370

372

374

376

378

380

382

384

386

(b)

Figure 2: Graphs where various values for α0 are plotted against (a) mean
total costs, and (b) mean computation time in seconds. For both graphs, the
mean is taken over the five instances with four depots and 500 tasks.

18

6.2 Lagrangian heuristic 6 COMPUTATIONAL RESULTS

γ

0 5 10 15

C
os

ts

×106

1.2792

1.2794

1.2796

1.2798

1.28

1.2802

1.2804

1.2806

1.2808

1.281

1.2812

(a)

γ

0 5 10 15

T
im

e

50

100

150

200

250

300

350

400

(b)

Figure 3: Graphs where various values for γ are plotted against (a) mean
total costs, and (b) mean computation time in seconds. For both graphs, the
mean is taken over the five instances with four depots and 500 tasks.

19

6.2 Lagrangian heuristic 6 COMPUTATIONAL RESULTS

iteration
0 50 100 150 200 250 300 350 400 450 500

co
st

×106

3.55

3.555

3.56

3.565

3.57

3.575

3.58

3.585

3.59

3.595

3.6

Lower bound
Upper bound
Best upper bound
Best available solution

Figure 4: Typical behavior of the Lagrangian heuristic. This graph was made
applying the heuristic on an instance with four depots and 1500 tasks.

Table 4: Average best scaled solutions for the 4-depot instances. The best
scoring heuristic is used as reference.

500 tasks 1000 tasks 1500 tasks

Heuristic Time (s) Objective Time (s) Objective Time (s) Objective

CLGR 77 1.0000 651 1.0016 2203 1.0019
LGRH∗ 85 1.0535 700 1.0408 2300 1.0536
LGRH 85 1.0294 700 1.0370 2300 1.0531
LNS 85 1.0201 700 1.0124 2300 1.0182

TBnC 81 1.0013 1287 1.0000 4149 1.0000
TS 85 1.1073 700 1.0812 2300 1.1054

∗: Own implementation

20

6.2 Lagrangian heuristic 6 COMPUTATIONAL RESULTS

Table 5: Average best scaled solutions for the 8-depot instances. The best
scoring heuristic is used as reference.

500 tasks 1000 tasks 1500 tasks

Heuristic Time (s) Objective Time (s) Objective Time (s) Objective

CLGR 119 1.0000 857 1.0091 3085 1.0000
LGRH∗ 125 1.0770 900 1.0960 3200 1.1021
LGRH 125 1.0494 900 1.0597 3200 1.0923
LNS 125 1.0262 900 1.0265 3200 1.0283

TBnC 612 1.0014 6207 1.0000 – –
TS 125 1.1722 900 1.1896 3200 1.1981

∗: Own implementation

– TS: Tabu search.

The truncated branch-and-cut has no value for the 8-depot cases with 1500
tasks, because it failed to find a solution within 10 hours computation time for
some of the instances. We have omitted our implementation of the truncated
branch-and-cut heuristic because of the extremely poor performance. For all
test instances we have adopted the same run times as Pepin et al. (2009), for
fair comparison. As such, for the 4-depot case, our heuristic ran for 85, 125,
and 700 seconds for the 500, 100, and 1500 task instances, respectively. For
the 8-depot case, these run times are 125, 900, and 3200 seconds.

From Table 4 and Table 5 we can conclude that performance-wise, our im-
plementation of the Lagrangian heuristic is outperformed by all other heuris-
tics, except tabu search. As our implementation has quite different perfor-
mance as compared to the implementation by Pepin et al. (2009), and the
fact that the machine used in this thesis is more powerful, we must conclude
that our implementation is poorly optimized.

21

7 CONCLUSION

7 Conclusion

In this thesis we gave a detailed account on two heuristics based on math-
ematical programming techniques which can be used to solve the MDVSP.
Although the truncated branch-and-cut heuristic does not provide acceptable
solutions, we think this is caused by the root node heuristics implemented in
CPLEX.

For the Lagrangian heuristic, we have thoroughly described methods to
solve the Lagrangian dual problem and how to transform a solution of such
problem to a feasible solution for the MDVSP. Note that other methods may
be used. For instance, one could opt to solve the Lagrangian dual problem
with CPLEX, or another method could be used to transform the solution of
the dual problem.

Comparing the results of our implementation of the Lagrangian heuristic
to heuristics proposed by Pepin et al. (2009), we see that ours is rather
lackluster, beating only the tabu search heuristic in terms of solution quality.
This lackluster performance is most likely caused by poor optimization of the
code. This does not mean that our implementation is not suited for practical
issues, as the optimality gap (not subtracting fixed-costs) does not exceed
1% for all test instances considered.

22

A FORWARD/REVERSE AUCTION ITERATIONS FOR THE SDVSP

A Forward/reverse auction iterations for the

SDVSP

This appendix is dedicated to give a thorough enough description of the
forward and reverse auction iterations for implementation purposes. For the
validity of the upcoming algorithms we refer the reader to Freling et al.
(1997).

First we introduce some terminology. Let the set of all arcs in the SDVSP
be A. Let A(i) = {j : (i, j) ∈ A, j ∈ T ∪ d}, where d is the end vertex of
the depot, be the set of successor vertices of i. Similarly, let B(j) = {i :
(i, j) ∈ A, i ∈ T ∪ o}, where o is the start vertex of the depot, be the
set of predecessor vertices of j. As is custom with auction terminology, we
consider the SDVSP as a maximization problem by replacing the costs cij
with aij = −cij. Also, when (i, j) ∈ A is included in the solution, we call
i and j forward and backward assigned, respectively. Next, let π and p be
vectors of dual variables corresponding to the linear assignment formulation
of the SDVSP. In auction terminology πi is the vector of profits of forward
assigning task i and pj is the price of backward assigning task j. Finally, let
fij = aij−pj where i and j are both tasks, and let fid = aid +ε, where ε > 0.
Here, fij represents the amount task i bids for task j. It can be shown that
when ε < 1

|T | , the auction algorithm terminates with the optimal solution.
Pseudo-code for the forward auction iteration can be seen in Algorithm A.1.

For the reverse auction there are some small changes, but the main idea
stays the same. Task j now makes a reverse bid rij = aij−πi where i is a task,
and roj = aoj + ε where o is the start vertex of the depot. The pseudo-code
for the reverse auction iteration is depicted by Algorithm A.2.

23

A FORWARD/REVERSE AUCTION ITERATIONS FOR THE SDVSP

Algorithm A.1 Algorithm for the forward auction iteration.

1: procedure Forward(p, π, ε, S)
2: for i ∈ T : (i, j) 6∈ S do
3: ji ← arg maxj∈A(i) fij
4: βi ← fiji
5: if |A(i)| > 1 then
6: γi ← maxj∈A(i),j 6=ji fij
7: else
8: γi ← −∞
9: end if

10: if ji 6= d then
11: pji ← pji + βi − γi + ε = aiji − γi + ε
12: πi ← aiji − pj
13: S ← S ∪ (i, ji)
14: if ji already assigned, then remove that assignment
15: else
16: πi ← aid
17: S ← S ∪ (i, d)
18: end if
19: end for
20: end procedure

24

A FORWARD/REVERSE AUCTION ITERATIONS FOR THE SDVSP

Algorithm A.2 Algorithm for the reverse auction iteration.

1: procedure Reverse(p, π, ε, S)
2: for j ∈ T : (i, j) 6∈ S do
3: ij ← arg maxi∈B(j) rij
4: βj ← fijj
5: if |B(j)| > 1 then
6: γj ← maxi∈B(j),i 6=ij rij
7: else
8: γj ← −∞
9: end if

10: if ij 6= o then
11: πij ← πij + βj − γj + ε = aijj − γj + ε
12: pj ← aijj − πi
13: S ← S ∪ (ij, j)
14: if ij already assigned, then remove that assignment
15: else
16: pj ← aoj
17: S ← S ∪ (o, j)
18: end if
19: end for
20: end procedure

25

B FORWARD/REVERSE AUCTION ITERATIONS FOR THE AAP

B Forward/reverse auction iterations for the

AAP

The auction iterations used in this thesis for the AAP are very much alike
the ones in Appendix A. We therefore refer the reader to Appendix A for the
relevant notation.

The following forward and reverse auction iterations are proposed by
Bertsekas (1998). They are only adapted in terms of notation. Let a forward
bid be defined as fpk = apk − pk where apk = −ckp, p is path, and k is
a depot. This means that in this case, paths bid on depots. Similarly,
a reverse bid is defined as rpk = apk − πp, where similarly depots bid on
paths. Furthermore, we introduce a new scalar, defined after one forward
iteration as λ = mink:(p,k)∈S pk. Finally, the optimality criterion in this case
becomes ε < |P |. The entire forward and reverse iterations can be found in
Algorithm B.1 and Algorithm B.2

Algorithm B.1 Forward auction iteration for the asymmetric assignment
problem.

1: procedure Forward(p, π, ε, S, λ)
2: for p ∈ P : (p, k) 6∈ S do
3: kp ← arg maxk∈A(p) fpk
4: βp ← fpkp
5: if |A(p)| > 1 then
6: γp ← maxk∈A(p),k 6=kp fpk
7: else
8: γp ← −∞
9: end if

10: pk ← max{λ, apkp − γp + ε}
11: πp ← γp − ε
12: if λ ≤ apkp − γp + ε then
13: S ← S ∪ (p, kp)
14: if k was already assigned, remove that assignment from S
15: end if
16: end for
17: end procedure

26

B FORWARD/REVERSE AUCTION ITERATIONS FOR THE AAP

Algorithm B.2 Reverse auction iteration for the asymmetric assignment
problem.

1: procedure Reverse(p, π, ε, S, λ)
2: for k ∈ K : (p, k) 6∈ S, pk > λ do
3: pk ← arg maxp∈B(k) rpk
4: βk ← rkpp
5: if |B(k)| > 1 then
6: γk ← maxp∈B(k),p 6=pk rpk
7: else
8: γk ← −∞
9: end if
10: if λ ≥ βk − ε then
11: pk ← λ
12: continue
13: else
14: δ ← min{βk − λ, βk − γk + ε}
15: pk ← βk − δ
16: πpk ← πpk + δ
17: S ← S ∪ (pk, k)
18: if p was already assigned, remove that assignment from S
19: end if
20: end for
21: end procedure

27

REFERENCES REFERENCES

References

D.P Bertsekas. Network Optimization: Continuous and Discrete Models.
Athena Scientific, 1998.

D.P Bertsekas and D.A Castañon. A Forward/Reverse Auction Algorithm
for Asymmetric Assignment Problems. Computational Optimization and
Applications, 1, 1992.

R. Freling, A.P.M. Wagelmans, and J.M.P. Paixão. Models and Algorithms
for Vehicle Scheduling. Working paper, 1997.

R. Freling, A.P.M. Wagelmans, and J.M.P. Paixão. Models and Algorithms
for Single-Depot Vehicle Scheduling. Transportation Science, 35(2), 2001.

R.E. Gomory. An algorithm for integer solutions to linear programs. In R.L
Graves and P. Wolfe, editors, Recent advances in mathematical program-
ming. McGraw-Hill, 1963.

B. Guta. Subgradient Optimization Methods in Integer Programming with an
Application to a Radiation Therapy. PhD thesis, Technische Universität
Kaiserslautern, 2003.

A. Hadjar, O. Marcotte, and F. Soumis. A Branch-and-Cut Algorithm for
the Multiple Depot Vehicle Scheduling Problem. Operations Research, 54
(1), 2006.

D. Huisman, R. Freling, and A.P.M. Wagelmans. Multiple-Depot Integrated
Vehicle and Crew Scheduling. Transportation Science, 39(4), 2005.

N. Kliewer, T. Mellouli, and L. Suhl. A time-space network based exact
optimization model for multi-depot bus scheduling. European Journal of
Operational Research, 175, 2006.

N. Kliewer, B. Amberg, and B. Amberg. Multiple depot vehicle and crew
scheduling with time windows for scheduled trips. Public Transport, 3,
2012.

B. Laurent and J-K. Hao. Iterated local search for the multiple depot vehi-
cle scheduling problem. Computers & Industrial Engineering, 57:277–286,
2009.

A. Löbel. Optimal Vehicle Scheduling in Public Transit. PhD thesis, Tech-
nische Universität Berlin, 1997.

28

REFERENCES REFERENCES

J.E. Mitchell. Branch-and-Cut Algorithms for Combinatorial Optimization
Problems. In P.M. Pardalos and M.G.C. Resende, editors, Handbook of
Applied Optimization, pages 65–77. Oxford University Press, 2002.

T. Otsuki and K. Aihara. New variable depth local search for multiple depot
vehicle scheduling problems. Journal of Heuristics, 2014.

A. Pepin, G. Desaulniers, A. Hertz, and D. Huisman. A comparison of five
heuristics for the multiple depot vehicle scheduling problem. Journal of
Scheduling, 12:17–30, 2009.

C.C. Ribeiro and F. Soumis. A column generation approach to the multiple-
depot vehicle scheduling problem. Operations Research, 42, 1994.

29

	Introduction
	Problem description
	Literature overview
	Model formulation
	Overview of heuristics
	Truncated branch-and-cut
	Lagrangian heuristic
	Computing the lower bound
	Obtaining a feasible solution and an upper bound
	An algorithm for the Lagrangian heuristic

	Computational results
	Truncated branch-and-cut
	Lagrangian heuristic
	Sensitivity analysis
	Heuristic results

	Conclusion
	Forward/reverse auction iterations for the SDVSP
	Forward/reverse auction iterations for the AAP

