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Abstract

This paper follows the same procedure as Vidović et al. (2014). We present solution approaches
for the multi-product multi-period Inventory Routing Problem (IRP) in fuel delivery. A homogeneous
fleet of vehicles with trailers is used for the distribution of full compartments of fuel from a single
depot to a set of fuel stations. The daily fuel consumptions follow a discrete probability function.
To solve the IRP, a Mixed Integer Programming (MIP) model is proposed. To observe the impact of
the fleet size costs on the obtained solutions we propose heuristics with and without fleet size costs.
The heuristics model is based on constructive heuristics and is further improved with two search
types: a local intra-period and a large intra-period neighborhood search. By testing on some of the
assumptions made in Vidović et al. (2014), we question some of the results they presented in their
paper.
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1 Introduction

In the world as we know it today there are vehicles everywhere, in fact we can’t imagine a world without
them anymore. All these vehicles run on a certain type of fuel, like diesel for example. If we run out of
fuel we just buy some new one at a nearby fuel station. Those fuel stations also do not have unlimited
fuel, they have a maximum fuel capacity. For a logistic manager it would be preferable to deliver the
fuel at his stations just before he runs out of it. This is quite complicated because most of the vehicles,
delivering fuel, visit more than one station per day. They drive a certain route visiting a couple of
stations. It is of course preferred for all vehicles to leave the depot fully loaded and arrive empty at the
end of the day but that is a difficult problem concerning the supply and demand of fuel. Furthermore, it
would be a waste of money if the route the truck driver needs to drive would be longer than needed. In
fact, the route distance needs to be minimized. So in the supply chain there must be an interrelationship
between the inventory allocation and the vehicle routing. In logistics this problem is known as the
integrated Inventory Routing Problem (IRP) and its objective is finding a balance between the inventory
and routing costs such that the total costs are minimized. This integrated IRP can be found in many
industries, supermarkets for example or other industrial industries like Liquefied Natural Gas. Vidović
et al. (2014) tries to tackle a practical problem of the transportation of different fuel types from a single
depot location to a set of petrol stations during a predefined planning horizon. The IRP in this paper
is known as a so called multi-product multi-period deterministic IRP. To solving this problem a Mixed
Integer Programming (MIP) model is proposed and a heuristic is used for a case with and without fleet
size cost. The purpose of the distinction of two cases is observing the impact of the fleet size cost on the
already obtained solutions. After the heuristic there are two improvement techniques used, a large inter-
period neighborhood search and a local intra-period search. After solving the heuristic and improvement
techniques the results are compared to the MIP model on a set of small-size test examples. Furthermore,
some conclusions are drawn from the obtained results. With this conclusions Vidović et al. (2014) solve a
set of large-size problems using the same heuristic and improvement techniques. In our paper we remake
the MIP models and the heuristic approach. We evaluate and question some of the results presented by
Vidović et al. (2014) and implement some extensions. We have organized the paper in the following way.
A literature review is presented in Section 2. In Section 3 the problem and heuristics are formulated
and the MIP models are introduced. Also the searches of improvement are introduced here. In Section
4 the results are evaluated and compared to the results of Vidović et al. (2014). Some results are based
on the questions that arise after reading the paper of Vidović et al. (2014). Finally, Section 5 presents
some concluding remarks and directions for further research.



2 LITERATURE REVIEW 2

2 Literature review

Bell et al. (1983) were among the first papers who introduced the IRP. The IRP in its original form and
the metered version discussed in Herer and Levy (1997) are both closely related to the Vehicle Routing
Problem (VRP). Toth and Vigo (2001) covers three main variants of VRP and extends it with time
windows, backhauls and pickup and delivery. The VRP is all about ‘vehicle scheduling’ and solving this
in different ways, like the methods in Christofides (1976) and Gendreau et al. (1994). IRP however, also
includes the inventory concerns and can therefore be interpreted as an extension of the VRP (see Ball
(1998)).

There are two kinds of IRP’s, a strategic IRP and a tactical IRP (see Webb and Larson (1995)). In our
paper we implement both strategic and tactical and define it as IRP and IRPF. The IRP is implemented
in all kinds of branches, like supermarkets. Gaur and Fisher (2004) describes and implements a system
to solve a periodic IRP at a leading supermarket chain in the Netherlands. But also in other industrial
areas like the Liquefied Natural gas (LNG) industry IRP is used (see Grønhaug et al. (2010)) or the
less familiar satellite industry (see Bard et al. (1998)). In our paper we assume that there is never a
stock-out, by declaring a minimum fuel capacity. However, Federgruen and Zipkin (1984) took the cost
per unit shortage at location i into consideration. Huang and Lin (2010) also implemented stock-out
costs but with uncertain demand. The conventional ant colony optimization (ACO) algorithm is used to
optimize the tradeoff between transportation costs and stock-out costs. In Herer and Levy (1997) they
also took the stock-out costs into consideration and combined this with the use of a concept of temporal
distances, which was already introduced by Herer (1996). In Herer and Levy (1997) they also used the
heuristic developed by Clarke and Wright (1964), who attempt to solve the clustering of customers to
trucks and finding the best route together. Our assignment heuristic is also based on Clarke and Wright
(1964). Last but not least, Herer and Levy (1997) also considered vehicle outsourcing, meaning that
every route incurs at a fixed cost when hiring a vehicle. We make use of this idea in the IRPF model,
but we use a heuristic in such way that there is never outsourcing needed. When deliveries to customers
are made by more than one vehicle it is named a “split delivery”. Dror and Trudeau (1989) was the
first to introduce the split delivery. This could be needed when there is a very large demand at some
day. In this paper the VRP constraint that every customer is served by only one vehicle is relaxed. Yu
et al. (2008) developed a model which also incorporated split delivery. Bertazzi et al. (2013) applied an
order-up-to-level policy and proposed a hybrid roll-out algorithm to solve it. In our models we only work
with one depot but also a multi-depot petrol station heuristic is possible, which can be seen in Cornillier
et al. (2012). They look at a multi-depot petrol station replenishment problem with time windows and
assume a heterogeneous fleet. It is also possible to propose an algorithm based on the allocation of first
route second strategy. In Moin et al. (2011) they proposed a hybrid genetic algorithm for solving this.
At last, in our paper we make a simplification of the reality by defining a discrete probability density
function for the daily fuel consumption but in Kleywegt et al. (2004) they formulate a Markov decision
process model with stochastic demand.
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3 Methodology

3.1 Problem Formulation

For all t days in the planning horizon T we define a certain set of I petrol stations each offering J fuel
types. For each of these fuel types, customers have a certain daily demand qij. The intensity of the
demand varies for each station i and type j but we assume the demand to be constant for all days through
the entire planning horizon T. Every petrol station is equipped with J underground reservoir tanks, one
for each type. It is not allowed for inventory levels for any type of fuel to fall below their defined daily
consumption qij nor above the maximum capacity Qij. It is not allowed for inventory levels for any type
of fuel to fall below qij to prevent negative inventory. It can be seen as an extra approximation. At the
beginning of the planning horizon the tanks have a certain S0

ij stock level left. Since most of the time
the daily demand over the planning horizon is more than the stock level, fuel needs to be delivered to
the stations. Delivery is done by one type of vehicle, which has two compartments (K = 2). This truck
can tow a trailer with two additional compartments. Therefore, in one route, at most four compartments
(K = 4) can be delivered. The capacity is assumed to be equal for all compartments and only full
compartments are delivered to the stations. So a vehicle towing a trailer can visit either one, two, three
or four stations per route. For the sake of simplicity, stations can be served only once per day.

3.1.1 IRP MIP model

The routing costs (RC) depends on the distance all vehicles need to travel, whereas the inventory costs
(IC) depend on the sum of the average stock levels on each day of the planning horizon. The complete
model of the minimization of the total costs (IC+RC) is described in Vidović et al. (2014). Since it is
too hard to minimize the IC and RC at the same time, we relax the inventory routing problem (IRP)
in such way that we first minimize the inventory costs. This relaxation is referred to as the relaxed MIP
model. Given the solution of this minimization we use the same heuristic as described in Vidović et al.
(2014). Before we make use of this heuristic we first need to create the original fuel delivery plan. This
is done using a route construction method, which we will describe later on. On this delivery plan we
run the heuristic and try to lower the total costs by creating more optimal delivery routes. We therefore
first introduce the relaxed MIP model and propose the heuristic afterwards. For the complete model
of minimizing the routing cost (RC) and the inventory cost (IC) at the same time we refer to Vidović
et al. (2014).

3.1.2 Mathematical formulation of the relaxed IRP MIP model

Indices:
i fuel stations (i ∈ {1,2,...,I})
j fuel types (j ∈ {1,2,...,J})
t,z time period or day in the planning horizon t,z (j ∈ {1,2,...,J})
k compartment number (k ∈ {1,2,...,K})

Decision variable:

Xijtk =

{
1, if fuel station i is supplied with fuel type textbfj in time period t with k compartments

0, otherwise

S0
ij stock level of fuel type j at station i at the beginning of the planning horizon

qij consumption of the fuel type j at station i
cinv inventory carrying costs per day
Qij capacity of the underground reservoir for the fuel type j at station i

Objective function:

I∑
i=1

J∑
j=1

T∑
t=1

((S0
ij − t · qij +

qij
2

) +

t∑
z=1

K∑
k=1

xijzk · dk) · cinv (1)
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Subject to:

S0
ij +

t∑
z=1

K∑
k=1

xijzk · dk −
z−1∑
t=1

qij 6 Qij ∀i ∈ I, ∀j ∈ J, ∀z ∈ T (2)

S0
ij +

t∑
z=1

K∑
k=1

xijzk · dk −
z∑
t=1

qij > qij ∀i ∈ I, ∀j ∈ J, ∀z ∈ T (3)

J∑
j=1

K∑
k=1

xijzk · dk 6 K ∀i ∈ I, ∀z ∈ T (4)

xijzk ∈ {0, 1} ∀i ∈ I, ∀j ∈ J, ∀t ∈ T, ∀k ∈ K (5)

The objective function (1) attempts to minimize the total inventory costs of the stored fuel in all of
the underground reservoir tanks during the whole planning horizon. The storage fluctuates due to the
amount of daily demand and whether there will be a fuel delivery or not. Constraint (2) makes sure that
the maximum quantity of the stored fuel in the reservoir tanks will not exceed the reservoir capacity.
Constraint (3) is the exact opposite, it makes sure there is always sufficient fuel to meet the daily
demand. Since we assumed the fuel delivery to a station only done once per day, constraint (4) is needed
to prohibit multiple direct deliveries. At last, Constraint (5) defines the decision variable to be binary.

3.1.3 IRPF MIP model

The fuel delivery route will be constructed by assigning utilities to all possible delivery routes. This
will result into a set of routes for all days that needs to be driven by the truck drivers. However, each
delivery company has only a limited number of vehicles and truck drivers. This is not taken into account
in the IRP MIP model. To include this the previous model is extended by including the fleet size and
the corresponding fleet size costs (FC). We assume that it takes the truck driver the whole day to finish
the route. So each route represents one vehicle that is used during the whole day. Therefore, the fleet
size of day t in the observed planning horizon T equals the maximum number of delivery routes. The
required fleet size on the planning horizon T equals the maximum of the daily required fleet sizes. In
reality it is often the case that there are not enough vehicles available to satisfy the required fleet size.
To include this fact into our model we define a number of dummy vehicles such that the required fleet
size is met. For the sake of simplicity we assume that the number available truck drivers are equal to
the available fleet size.

3.1.4 Additional mathematical formulations for the IRPF MIP model

The IRPF model minimizes the inventory, routing and fleet size cost simultaneously. The formulation is
added to the already proposed IRP model. We first introduce the additional required notations.

Fa fleet size that is available on each day t on the planning horizon T
Ft required number of vehicles per each time period t on the planning horizon T
F required fleet size to satisfy the fleet size on the planning horizon T
cv fixed cost of the available fleet size per truck per day
cm fixed cost of the dummy vehicles fleet

Objective function: IC + RC + FC, where

FC =

T∑
t=1

Fa · cv + (F − Fa) · cm (6)

I∑
p=1

(ypt+

I∑
q=p+1

(ypqt+

I∑
w=q+1

(ypqwt+

I∑
e=q+1

ypqwet))) = Ft ∀t ∈ T (7)

F ≥ Ft ∀t ∈ T (8)

F ≥ Fa
(9)
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The IRPF model is solved through the same iterative procedure as described in Vidović et al. (2014).
In the first iteration we set Fa equal to zero, since Fa must be defined to be less than the fleet size that is
sufficient to realize all the deliveries. In this case only dummy vehicles are used for the deliveries. Since
this value is not adequate enough for satisfying all of the deliveries without using the dummy vehicles,
we increase Fa by one vehicle and solve the model again. We repeat this procedure until no dummy
vehicles are used.

3.2 Heuristic approach

By solving the relaxed MIP model we minimize the total inventory costs for all days of the planning
horizon. Minimizing the inventory costs forces delivery of the smallest possible quantities, in our case
one full compartment, at the latest possible day. We use a heuristic approach to route the vehicles also
as good as possible. If we would construct the vehicle routes directly on the obtained delivery plan, the
travel distances would be far from optimal because the minimization of the inventory cost does not take
the distance between stations into account.

Since we also need to minimize the routing cost we make use of a heuristic. In this heuristic we at-
tempt to change the delivery plan by moving the deliveries of quantities to one or a few days earlier.
This is possible since the relaxed MIP model forced delivery at the latest possible time period. However,
each delivery that will be moved earlier in the planning horizon will give additional inventory cost and
has influence on the routing of vehicles. This influence is not only on the day where the delivery is
moved from but also on the day where the delivery is moved to If the movement is possible and it leads
to a lower total cost, we expect not only to see a decline in the routing cost but also an increase in the
inventory cost. However the increase in the inventory cost has to be lower comparing to the decline in
the routing cost. Since it could be very time-consuming if we just calculated the possible benefits on
every potential transfer Vidović et al. (2014) only observed the E most eligible transfers. An eligibility
calculation is used for this, which runs for all stations over the planning horizon.

3.2.1 Eligibility calculation

The eligibility calculation is the same as described in Vidović et al. (2014) and is based on the values of
the three criteria V αitδ, which is a measurement of the effects if we transfer a single compartment from
station i on day t to day t-δ, where α ∈{1,2,3} describes the type of criteria. We define Kit as the
number of compartments to be delivered to petrol station i, on day t.

(I) The value of the first criterion V 1
itδ defines if it is even possible to move the delivery from

station i from day t to day t-δ. If transfer is possible, Kit > 0
⋂
Kit−δ < 4 set V 1

itδ = 1;
otherwise set V 1

itδ = 0.
(II) The value of the second criterion V 2

itδ is based on the change in the number of “to be served”
fuel stations incurred by the transfer of the compartment from day t to t-δ

Case 1: Kit = 1
⋂

0 < Kit−δ < 4, then V 2
itδ = 2

This is the best option, since station i will be deleted from the route on day t and its delivery
quantity will be added to the already existing route on day t-δ
Case 2: Kit > 1

⋂
0 < Kit−δ < 4, then V 2

itδ = 1
The number of stations that needs to be served on day t and t-δ remain the same.
Case 3: Kit = 1

⋂
Kit−δ = 0, then V 2

itδ = 1.
Station i will be deleted from the route on day t but this station will then be added to the route
on day t-δ

Otherwise set V 2
itδ = 0.

(III) The value of the third criterion V 3
itδ is based on the routing distance. The idea is to find a

station on day t which is the most isolated for the other stations on the delivery route. It must
be so isolated that it is closer to a station in day t-δ. This has a high potential for generating
savings in the routing costs. The psuedo code for the calculation of the value of the third criterion
is given in table 1.
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1 For every station i
2 if Kit > 0
3 Find the largest distance rip where p ∈ Ii\i such that Kpt > 0
4 Find the shortest distance riq where q ∈ Ii\i such that 0 < Kpt < 4
5 V 3

itδ = rip - riq

Table 1: Pseudo code for the calculation of the third criterion V 3
itδ

To determine the most eligible stations we first sort the first criterion in non-increasing order. Since
the value of the first criterion varies only between a zero and a one, many transfer possibilities will be
of equal value. To this end, we put the the possible transfers with the first criterion equal to zero in a
matrix and the transfers equal to one in another matrix. Next, for both matrices we sort the stations
on the second criterion again in non-increasing order. Because the second criterion again has different
values (two, one and zero), we put them again in new matrices, now each with equal values for criterion
one and two. At last, all matrices are sorted in non-increasing order by the third criterion. To get the
most eligible transfers we make one large matrix combining all these matrices. The first rows of the
matrix has now the highest criterion values and the last rows the lowest criterion values. So, the E most
eligible transfers are in the first rows of the matrix and are selected for calculating the actual transfer
benefits. To calculate the benefit of the transfer we need to construct the routes.

3.2.2 Route construction using assignment heuristics

Now it is time to construct the delivery routes for the trucks. We base the construction on the value of
assignment utilities, which is inspired by savings concept described in Clarke and Wright (1964). This
is the same algorithm as used in Herer and Levy (1997). The procedure for route construction has to be
done for every day t in the planning horizon T.

Let us first define the vehicle utilization. The vehicle utilization depends on the number of compartments.
Therefore we define ε = {0.25, 0.5. 0.75, 1} corresponding to one, two, three or all four compartments.
So, a vehicle with all four compartments filled give a higher utilization than a vehicle with only one
full compartment. The distance from the depot to station i is represented as ri (i = p, q, w or e, i
∈ I). The distance rpq represents the distance between station p and q, which is calculated using the
Euclidean distance. The distance between three or four stations (rpqw and rpqwe is a little bit more
complicated. To calculate the minimum lengths for three and four stop routes we use enumeration. We
just enumerate every route possibility. For example to calculate the minimum lengths for a three stop
route, the route is given as follows:

depot - station p - station q - station w - depot

If we now change the place of station p and q we get the following:

depot - station q - station p - station w - depot

This gives most of the time a different route length, since the distance from station q to the depot is
most of the time different to the distance from station p to the depot. If we now try every possible
combination given the stations p, q and w we enumerate every route possibility. Finally we select the
route with minimum length. The same idea holds for a four stop route.

Since we have a maximum of four compartments there are only four different routes possible: direct
delivery, two station delivery, three station delivery and four station delivery. For every station we cal-
culate, if possible, all the route types. This results in the following utilities:

up = Kpt · rp − ε · rp (10)

upq = Kpt · rp +Kqt · rq − ε · rpq (11)

upqw = Kpt · rp +Kqt · rq +Kwt · rw − ε · rpqw (12)

upqwe = Kpt · rp +Kqt · rq +Kwt · rw +Ket · re − ε · rpqwe (13)
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Every fuel station has now been given more than one utility. Our objective is to construct a delivery
route with the highest possible utility for every station. We do this by making a utility matrix with the
calculated utilities sorted in non-increasing order. Afterwards we select the delivery with the highest
utility. All stations in this route will be set in the set of routes but first we need to delete all these
stations in the other utilities. We do this until there is no more station left in the utility matrix. The
pseudo code is given in table 2.

0 Input: Kit, up, upq, upqw, upqwe,
1 Set of routes all days = []
2 for day in planning horizon:
3 Set of routes = []
4 Utility = [up; upq;upqw; upqwe]
5 Sort Utility in descending order
6 while Utility is not empty
7 set the Set of routes equal to the first row of Utility
8 for station in Set of routes
9 for route in Utility
10 if station in route
11 delete route from Utility
12 insert Set of routes to Set of routes all days

Table 2: Pseudo code of the route construction

Before we try to decrease the total cost we need to calculate the routing cost immediately after the
relaxed MIP. We call this the original total cost. For the E most eligible transfers we rerun the route
construction code. Before we do this we have to check if by switching the delivery from day t to day t-δ
the inventory restrictions are still met. If there is no violation then we compare the obtained total cost
to the original cost. If the obtained total cost is lower we replace the original total cost in this total cost
and the delivery schedule is updated. The whole heuristic algorithm is shown in figure 1.



3 METHODOLOGY 8

Solution from relaxed MIP model

Route construction; 
Calculate original total cost

δ = 1

t = |T| 

For all stations i with delivery in day t calculate 
eligibility for given δ and add it to Elig_set

If t = δ +1
NO

YES

t = t-1 

Sort Elig_set in decreasing order

Elig_set = Elig_set[0:E]

For all transfers in Elig_set check if the inventory 
restrictions are not violated for each type j. Run 
route construction for the remaining transfers. 
Calculate the benefit in total cost

At least 
one transfer 
incurs lower 
total costs

YES

Execute transfer 
with highest 
benefit; update 
total cost; 
update the 
delivery matrix

NO

If t = |T|-1 NO
δ = δ +1 

YES

STOP

Figure 1: Heuristic algorithm
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3.3 Local and large neighborhood searches

3.3.1 Local neighborhood searches

In Vidović et al. (2014) the local variable neighborhood search (LVS) and the large variable neighborhood
search (LNS) are part of the heuristic. In this paper these searches are left out of the heuristic, since it
is an improvement of the heuristic. It could give a wrong indication of the performance of the heuristic.
If in Vidović et al. (2014) the heuristic does not succeed in finding a more optimal solution and the
combination of LVS and LNS do, it will look like the heuristic overall did perform well.

The local search is divided in three neighborhood structures each trying to improve the routing cost
(and therefore the total cost) of deliveries on every day in the planning horizon. To check whether the
solution can be improved by the local search on day t there must be at least 2 routes on day t. The
first local search (1) interchanges a single station between two routes on the same day. The second local
search (2) removes a single station from one route and inserts it into another route on the same day.
The third local search (3) removes two arcs, a connection between either two stations or a station and
a depot, and tries to find the best possible reconnection. There will only be one arc removed per route.
For all local search structures it must hold that the solution is feasible. So we verify for each day in
the planning horizon if the inventory levels are still above the daily fuel consumption qij and below the
maximum reservoir capacity Qij .Next, one station cannot have more than K compartments on a single
day and on a single route a maximum of K compartments can be delivered.

There are two ways to implement the local variable neighborhood search (LVS), the first implemen-
tation is the same as Vidović et al. (2014) and is given in table 3. (in the remainder of this paper,
referred to as LVS). LVS tries to find a more optimal solution with local search structure (1). If there is
no improvement, structure (2) is used and if that also does not lead to an improvement structure (3) is
used.

Another way is a procedure we came up ourselves and will be referred to as local variable extension
neighborhood search (LVE). This procedure differ from LVS since we try to improve the solution with
all three local searches and do not stop the improvement of local search (3) if we found an improvement
of local search (1). The pseudo-code for the three structures are given in tables 4, 5 and 6.
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0 Input: Heuristic solution
1 while improvement
2 improvement = False
3 Procedure: Stations interchange of a single station between two routes on the same day
4 for each pair of routes in all routes of day t
5 for all feasible swaps of a pair of stations from two routes
6 if the interchange gives shorter routes and therefore lower routing costs
7 improvement = True
8 update Heuristic solution
9 break while loop
10 Procedure removal/insertion of one route
11 for route from in all routes of day t
12 for all stations in route from
13 for route to in all route
14 remove station from route from and insert into route to
15 if solution is feasible and gives shorter routes (lower routing costs)
16 improvement = True
17 update Heuristic solution
18 break while loop
19 Procedure: removal of two arcs
20 for route 1 in all routes of day t
21 for route 2 in all routes of day t
22 for arc 1 in route 1
23 for arc 2 in route 2
24 delete arc 1 and delete arc 2
25 make all feasible reconnections possible
26 if there exists a reconnection with shorter routes (lower routing cost)
27 improvement = True
28 update Heuristic solution
29 break while loop

Table 3: Pseudo code LVS, which is the same as Vidović et al. (2014)

0 Input: Heuristic Solution
1 for day t in planning horizon T:
2 if number of routes > 2
3 while improvement = false
4 for each pair of routes (i,j) on day t
5 for each station x on route i
6 for each station y on route j
7 if swap (x,y) is feasible
8 calculate the new routing cost of routes (i,j)
9 if interchange incurs lower routing cost
10 Heuristic solution = heuristic solution with stations interchange
11 improvement = true
12 break the algorithm

Table 4: Pseudo code local search structure 1: Stations interchange
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0 Input: Heuristic Solution
1 for day t in planning horizon T:
2 if number of routes > 2
3 while improvement = false
4 for each pair of routes (route from,route to) on day t
5 for each station x on route from
6 for each station y on route to
7 remove station x from route from and insert in route to
8 if solution is feasible
9 calculate the new routing cost of routes (i,j)
10 if removal/insertion incurs lower routing cost
11 Heuristic solution = heuristic solution with removal/insertion
12 improvement = true
13 break the algorithm

Table 5: Pseudo code local search structure 2: Removal/insertion

0 Input: Heuristic Solution
1 for day t in planning horizon T:
2 if number of routes > 2
3 while improvement = false
4 for each pair of routes (i,j) on day t
5 for each station x on route i
6 for each station y on route j
7 for each arc 1 in route i
8 for each arc 2 in route j
9 delete arc 1 and arc 2
10 make all possible reconnections
11 if there exists reconnection
12 calculate the new routing cost of routes (i,j)
13 if removal of two arcs incurs lower routing cost
14 Heuristic solution = heuristic solution with removal of two arcs
15 improvement = true
16 break the algorithm

Table 6: Pseudo code local search structure 3: Removal of two arcs

3.3.2 Large neighborhood search

The large neighborhood search (LNS) is the final step in obtaining the best possible solution of the
problem. For this search all delivery quantities of a single stations are removed from one day and are
moved to another day in the planning horizon. If a shorter route exist and therefore a lower total cost
is obtained, we do the same feasibility verification check as done in the local search procedure. If the
solution is feasible, the move is realized. This procedure continues with searching until no improvement
can be found. The LNS is the same as given in Vidović et al. (2014) and is shown in table 7.
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0 Input: Heuristic Solution
1 while improvement:
2 improvement = False
3 Procedure: removal/insertion of stations
4 for day from in planning horizon T
5 for day to in planning horizon T
6 for station in day from
7 remove station from day from
8 insert station in day to
9 if solution is feasible with lower total cost
10 improvement = True
11 update Heuristic solution
12 Go to line 1

Table 7: Pseudo code for the LNS

4 Results

Before we get to the results, we first have to define a couple of things. All of the following characteristics
are equal to those described in Vidović et al. (2014):

• Number of fuel stations I equals 10 in the small scale problem and 50 in the large scale.
• 3 different fuel types J=3
• All vehicles tow a trailer, so there are four compartments K = 4. Each compartment has 8
tons of capacity.
• The fuel stock level S0

ij at the beginning of the planning horizon is randomly, based on the
uniform distribution, generated between 2 and 10 ton.
• The daily fuel consumption qij are generated using a discrete probability density function. With
a probability of p1 = 0.4 it takes the value of 1 ton, with p2 = 0.5 2 tons and 3 tons with a
probability of p3 = 0.1.
• Reservoir capacities Qij are equal to the size of 20 tons or 30 tons, which are randomly, based
on the uniform distribution, assigned to fuel stations for all types.
• The distance coordinates of the stations are randomly, based on the uniform distribution, gen-
erated. Both x and y coordinates can take any value in the interval [-50 50]km. We assume the
depot to be located at (0,0)km.
• The day cost of carrying inventory cinv = 1.09 e/t.
• The cost per traveled kilometer is cr = 2 e/km.
• The fixed cost of fleet size is cv = e200 per vehicle per day for the available vehicles.
• The fixed cost of fleet size is cm = e1000 per vehicle per day for the dummy vehicles.

At last we define the planning horizon length T equal to 5. In Vidović et al. (2014) they make use of
different planning horizon lengths, but we try to be as consistent as possible.

The first step in our procedure is to solve the relaxed IRP MIP model. The obtained solution has
to give a minimum inventory cost. Furthermore, since we did not take the routing cost into account, it
seems logical that the routing cost can be reduced. As mentioned before we use a couple parameters as
input with a given value, these values need to be declared in advance. The values for one instance is
given in table 8.
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I qi1 qi2 qi3 S0
i1 S0

i2 S0
i3 Qi1 Qi2 Qi2 xi yi

1 1 2 1 4 7 2 30 20 20 -47 -32
2 1 2 1 10 4 4 30 30 30 25 -26
3 2 2 2 5 7 9 30 30 20 0 39
4 1 2 2 3 8 2 20 30 30 -2 -48
5 3 2 2 10 3 10 20 20 30 41 -1
6 1 1 2 10 3 8 30 20 30 11 -34
7 1 1 1 5 4 6 30 20 30 12 48
8 1 2 2 3 4 7 20 30 20 36 21
9 1 1 2 4 5 4 20 20 30 31 0
10 1 2 2 5 6 6 30 30 20 8 -3

Table 8: Parameters used as input for one instance of problem (qij [t], S0
ij [t], Qij [t], (x,y) [km])

4.1 Standard Case

In Vidović et al. (2014) is described that to speed up the process of finding a better solution, only the E
most Eligible candidates are used for further benefit calculation. Since they set E=3 in the case of 10
different stations, we do the same in our standard case. We compare the obtained costs with the solution
when running the heuristic. Afterwards, we also calculate the heuristic solution combined with the local
search presented in Vidović et al. (2014) (LSV) or the local search extension (LSE). Finally, we calculate
the heuristic solution combined with one of the two different local search procedures combined with a
large neighborhood search. For obtaining a good average result, we did the heuristic for 50 different
input combinations. The results are given in table 9.
Notice: the original case is the relaxed IRP MIP model without making use of the heuristic. H LSV is
the heuristic solution combined with the LSV and H LSE LNS is the heuristic solution combined with
the LSE and the LNS.

Standard case Total Costs Routing Cost Inventory Cost
E = 3 avg min max stdev avg min max stdev avg min max stdev
original 3764 2671 5709 590 2778 1728 4700 575 987 889 1070 39.4
Heuristic 2932 2071 3703 306 1849 1012 2661 294 1082 950 1245 62.7
H LSV 2877 1999 3537 304 1795 940 2495 290 1082 950 1245 62.7
H LSE 2829 1907 3553 302 1747 848 2511 287 1082 950 1245 62.7
H LSV LNS 2753 2046 3292 259 1592 917 2132 239 1161 979 1331 81.1
H LSE LNS 2761 1907 3269 272 1644 847.8 2201 259 1117 957 1280 74.0

Table 9: results based on the characteristics of Vidović et al. (2014)

The LSV gives a higher average cost than the LSE. To calculate whether these costs differ significantly
we make us of the so called Welch-Satterthwaite t-test as given in Moser and Stevens (1992). This t-test
is known as the so called unequal variance t-test. All the information we need is already given in table
9. The t-statistic is calculated as:

t =
µ1 − µ2√
s21
n1

+
s22
n2

(14)

And the calculation of the corresponding degrees of freedom (v) is given by:

v =
( 1
n1

+ u
n2

)2

1
n2
1(n1−1)

+ u2

n2
2(n2−1)

, where u =
s22
s21

(15)

If we calculate (t,v) for the LSV compared to the LSE we conclude that these values do not differ
significantly on a 95% confidence interval, since (t,v) equals (0.792 ,97.5). So the LSE does not perform
significantly better. But if we look in figure 2 we see that the LSE is never worse than the LSV. With this
in mind and knowing that the corresponding calculation times are very close to each other, namely 2.3
seconds for LSE and 1.9 seconds for LSV, we have reason enough to leave the LSV behind and continue
the paper with only LSE. One remark however, is that the heuristic combined with the LSV and LNS
gives a slightly lower cost. The gap is not as large as with the comparison just described and far from
significant ((t,v) = (-0.151, 97.3)). An explanation could be that the LSV and the LSE give different
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Figure 2: The solutions of the heuristic in combination with the LSV or LSE for 50 different instances

solutions and therefore different set of routes for all days to deliver compartments. Therefore it could
be the case that a removal and insertion is feasible in one large search and in the other it is not. This
could give a slightly lower total cost in the end. So, it has more to do with how well the LNS performs
instead of the performance of LSV versus LSE.

4.2 Is E = 3 enough/too much?

The next question that arises is whether the use of the 3 most eligible (E = 3) in Vidović et al. (2014)
is correct, since it is not based on any scientific result. To verify if E = 3 is not enough, enough or too
much, we run the same 50 input combinations putting E equal to 1, 3 and higher until we see no more
improvement or a change. The results of the heuristic with different values of eligibility are shown in
table 10 and the results of the heuristic combined with the LSE and LNS is given in table 11.

Our primary focus lies on the solutions of the heuristic, which are given in table 10. We immedi-
ately see that there is a reasonable decline in total cost if we set E = 3 instead of 1, in fact the difference
is significant ((t,v) = (2.115,83.6)), so E = 1 is rejected. If we continue we see that after E = 6 the
average total cost increases. This is a result, which we did not expect to see. A reason behind this
could be that at some point the seventh most eligible transfer give a lower total cost in the heuristic,
but because of this transfer change another, more beneficial solution, would have given an even lower
total cost. Due to the fact that the seventh most eligible transfer is already changed, the other transfer
change is not longer possible. This could happen when δ equals 1 and the seventh most eligible transfer
happens to a station i on day 3. After the change the fuel delivery to station i will now be done on day
2. If we continue our heuristic we set δ equal to 2, there could be no more benefit calculation on day 2,
but if E was not equal to 7 there was a transfer possible from station i, which would lead to an even
lower total cost.

Since the best possible solution is when the E = 6 and since there is just a small average calcula-
tion time difference between the solutions with E = 3 and E = 6, we decide to continue to work with a
E equal to 6.
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Heuristic Total Cost Routing Cost Inventory Cost
avg min max stdev avg min max stdev avg min max stdev

E = 1 3100 2039 4848 471 2040 980 3778 472 1060 953 1186 53
E = 3 2932 2071 3703 306 1849 1012 2661 294 1082 951 1245 63
E = 4 2894 2071 3551 306 1809 1012 2457 287 1085 966 1245 60
E = 5 2889 2070 3551 315 1805 1012 2457 293 1084 966 1219 55
E = 6 2883 2071 3551 314 1799 1012 2457 291 1084 966 1236 56
E = 7 2889 2071 3438 309 1805 1012 2396 285 1084 966 1236 57
E = inf 2886 2071 3551 322 1804 1012 2457 304 1082 966 1227 51

Table 10: Results of the heuristic for 50 different input combinations and different values of E

Heuristic +
LSE + LNS

Total Cost Routing Cost Inventory Cost avg. calc.

avg min max stdev avg min max stdev avg min max stdev time (s)
E = 1 2828 2008 3628 362 1715 949 2608 369 1113 953 1340 93 2.7
E = 3 2761 1907 3269 272 1644 848 2201 259 1117 957 1280 74 2.3
E = 4 2765 196 3466 272 1608 848 2354 259 1136 966 1306 86 2.3
E = 5 2748 1907 3345 298 1637 848 2251 267 1112 966 1276 72 3.4
E = 6 2740 1907 3345 291 1633 848 2251 261 1107 966 1276 73 3.6
E = 7 2776 1976 3344 286 1633 848 2127 259 1129 966 1280 80 4.0
E = inf 2776 1907 3394 305 1676 848 2347 287 1100 966 1288 67 7.8

Table 11: Results of the heuristic combined with LSE and LSV with 50 different input combinations and
different values of E.

4.3 Evaluation of different heuristic procedures

Our problem consist of a couple of pieces. We have our relaxed MIP model, the heuristic, the local
searches (both LSV and LSE) and the large neighborhood search. As a result, we can make different
kind of heuristic combinations and compare there solutions. All the different combinations possible are
given in table 12. The worst possible solution is the ‘original solution’ from the relaxed IRP MIP model.
If we immediately construct the routes for this delivery plan, the routing cost will be far from optimal.
As explained before, this is because it does only take the inventory costs into account. The best possible
solution is the heuristic with E = 6 including the LSE and LNS. We define this solution as the ‘lower
bound’. The heuristic algorithm without further improvement methods is defined as ‘H’. The ‘standard
case’ is based on Vidović et al. (2014), where E = 3, but with the LSE instead of the LSV.

To get an idea of the performance of the different procedures, we calculated the percentual difference
between the heuristic combination and the lower bound. This is given in table 12 as HS-LB(%).

Model Total cost RC IC avg. Calc.
avg stdev HS-LB (%) avg stdev avg stdev time (s)

Upper bound 3764 590 37.17% 2778 575 987 39 0.4
Heuristic (H) 2883 314 5.20% 1799 291 1084 56 2.0
LSV 3728 594 35.80% 2741 578 987 39 6.6
LSE 3566 607 29.88% 2580 592 987 39 6.9
LNS 2941 354 7.32% 1738 336 1203 89 1.7
H + LS 2778 310 1.32% 1694 285 1084 56 3.2
H + LNS 2770 276 1.17% 1613 256 1156 82 2.7
LSE + LNS 3060 379 11.76% 1929 392 1131 127 7.3
Standard case 2761 272 0.87% 1644 259 1117 74 2.3
Lower bound 2741 291 0.00% 1633 261 1107 73 3.2

Table 12: Heuristic solutions that were obtained by different improvement procedures for 50 instances

As we can see in table 12 the upper bound and the lower bound differ quite allot. The local searches
without the heuristic performs not so much better than the upper bound and are quite time consuming
compared to the rest of the combinations. The heuristic on its own performs pretty well since it differs
5.2% from the best possible solution. Also, the LNS procedure comes quite close (7.32%) to the lower
bound without any previous calculation of the heuristic but if we combine the LSE with the LNS it does
not come as close as the LNS procedure on its own. There is not any real explanation for this and the
result differs from Vidović et al. (2014). But what we do see that the LNS performs very well compared
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to the heuristic on its own and the calculation time is not significantly higher, the calculation is even
lower. Another fact is that the LNS in Vidović et al. (2014) is even lower compared to the heuristic.
So we do question the quality of the heuristic procedure. Therefore, we plotted the upper bound (UB),
lower bound (LB) and large neighborhood search (LNS) for all 50 instances. The results are shown in
figure 3.
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Figure 3: UB, LB and LNS solutions of 50 different instances

What we do see is that the LNS most of the time comes very close. It has just a couple of outliers.
This allows us to question the quality of the heuristic even more.

4.4 Large scale problem

In Vidović et al. (2014) they run the heuristic on two kinds of problems, a small-scale and a large-scale
problem. The small-scale problem has 10 different fuel stations and the large-scale problem has 50. In
the limited time for this research a large scale problem was not possible to do. But we do evaluate the
decision of Vidović et al. (2014) to eliminate the delivery of four stations per single route (ypqwe). Before
the elimination was possible they evaluated the calculation time and the quality of the IRP and IRPF
models with different maximum allowed numbers of stations per single routes. They define a quadruple,
triple and double assignment of stations per route. Which means that in case of a triple assignment
at most three stations can be visited per route. The maximum number of compartments delivered per
route however stay the same because the maximum capacity of the vehicles stay the same. The results
of the different assignments are given in table 13. The same procedure is used as in Vidović et al.
(2014), namely the heuristic combined with the searches is used. The only difference is that we used
LSE instead of LSV. The results match with the results and conclusion of Vidović et al. (2014). The
triple assignment gives solutions that are very much negligible different, whereas the computational time
is significantly lower than for the quadruple assignment. Therefore, the model can be restrained to the
triple assignment, which enables the testing on a large-scale problem. The solutions of the IRPF MIP
model on a 5-day horizon are compared to the solutions of the IRPF model in table 3 of Vidović et al.
(2014) quite higher. We will discuss the quality of these solutions later on.
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IRP IRPF
Quad. triple doub. Quad. triple doub.
assign. assign. assign. assign. assign. assign.

avgIC 1107.36 1109.98 1161.25 1119.92 1107.01 1196.66
avgRC 1633.29 1627.44 1557.10 2274.77 2367.62 1370.45
avgFC - - - 2540.00 2460.00 2980.00
avg total 2740.65 2737.42 2718.35 5934.69 5934.63 5547.11
avg. Calc.
time (s) 3.65 1.73 0.83 12.14 5.55 1.73

Table 13: A comparison of the results for the quadruple, triple and double assignment of the MIP IRP
and IRPF models for 50 instances with 10 petrol stations and a 5-day planning horizon.

However, in our opinion the quality of the heuristic is based on the heuristic without the LSE/LSV
and the LSN. So to really compare the results for the quadruple, triple and double assignment of the
MIP IRP and IRPF models, the LSE and LSN are left out. The results are shown in table 14 and are
different. For the IRP MIP model the quadruple and triple assignment still are close, but less closer
than before but most significant difference is at the IRPF MIP model. For the IRPF model the triple
and double assignment are now negligible close to each other. This was not a problem if the quadruple
assignment where close to them. However, the quadruple assignment of the IRPF model is not really
close to the other assignments. This questions the correct rejection of the quadruple assignment for the
large-scale problem.

IRP IRPF
Quad. triple doub. Quad. triple doub.
assign. assign. assign. assign. assign. assign.

avgIC 1084.17 1079.29 1101.78 1067.60 1067.43 1109.46
avgRC 1693.71 1709.74 1710.12 2569.41 2455.88 2233.53
avgFC - - - 2580.00 2540.00 2720.00
avg total 2777.88 2789.02 2811.90 6217.01 6063.30 6062.99
avg. Calc.
time (s) 3.24 1.36 0.73 10.78 3.95 1.41

Table 14: A comparison without LSE and LSN of the results for the quadruple, triple and double
assignment of the MIP IRP and IRPF models for 50 instances with 10 petrol stations and a 5-day
planning horizon.

4.5 Demand extension

In reality the daily fuel consumption qij fluctuates far more than the discrete probability function as
described in the computational results of Vidović et al. (2014). To make it more realistic we focus on the
fact that it is possible that on a day t on the planning horizon a large fuel consumption arises. A reason
could be that it is the start of a holiday season for the whole country and the station is close to the
country border. Another possibility could be a very large event, like the world championship football,
taking place close to the fuel station. To include this we redefine the daily fuel consumption qij as a
discrete probability density function, taking the values of 1 ton with a probability of p1 ≈ 0.3967, 2 tons
with a probability of p2 ≈ 0.4967, 3 tons with a probability of p3 ≈ 0.967 and 6 tons with a probability
of p4 = 0.01.

4.6 Most optimal cases

Now that we have evaluated the different kind of local searches and use of different eligibility transfers,
we finally can calculate our most optimal cases. We distinguish the solutions with the demand extension
and without the demand extension. We set E equal to 6 and we use the LSE to get our best results.
The results are shown in table 15.
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Demand MIP TC RC IC FC Avg. calc.
avg min max stdev avg min max stdev avg min max stdev avg time (s)

No IRP 2741 1907 3345 291 1633 848 2251 261 1107 966 1276 73 - 3.65
IRPF 5935 4397 11779 1212 2275 891 8258 1222 1120 966 1305 81 2540 12.14

Yes IRP 2877 2109 4456 540 1772 1257 3096 438 1105 791 1482 152 - 1.42
IRPF 6304 4158 9277 1300 2568 707 5348 1246 1076 791 1423 159 2660 8.61

Table 15: most optimal heurtic results for 50 instances with 50 fuel stations and a 5-day planning horizon

To evaluate the quality of the solution with respect to the routing and inventory segment as already
described in Campbell et al. (2001) and in Vidović et al. (2014) some metrics are used. We used the
same metrics as described in Vidović et al. (2014) but we made some extra metrics to further evaluate
the quality of the solution. aRMAX - the average of the maximum number of routes from the set of all
of the days in the planning horizon, which is in case of the IRPF model equal to the fleet size. aR-
the average total vehicle stops. aD- the average total travel distance in km. adD- the average distance
from the depot to the station or vice versa. adD is an important addition to the metrics of Vidović
et al. (2014) to evaluate the solution quality because if this value is very high the location of the depot
is wrong or could be better. asD- the average distance from a station to the next station. This is also
an addition to the already existing metrics. aQPERD- the average quantity of fuel per traveled distance
(t/km). aIBEFJI- the average of the inventory level per station per fuel type. In this paper the aIBEF
is given for all the types, for a better insight in the solutions. The solutions are given in table 16 and
in case of the IRP model match quite good with the solutions in table 5 of Vidović et al. (2014). A
suggestion why the solutions of the IRPF model are much higher compared to the solutions in Vidović
et al. (2014) might be that the average total travel distance aD is way higher. The fleet size however, do
match pretty well. The average distance between the depot and the first/last station on the route seems
to be quite large compared to the average distance between two stations on the route. This suggest that
it could be profitable to look at a multi depot problem or at another location of the depot.

Demand MIP J1 J2 J3
aRmax aR aS aD aDperS adD asD aQperD aIbef aIaft aIbef aIaft aIbef aIaft

No IRP 2.94 8.30 16.18 842.65 52.39 37.99 17.41 0.26 0.27 1.56 0.34 1.31 0.23 1.62
IRPF 2.52 7.66 16.66 2266.20 137.54 39.26 20.02 0.10 0.37 1.37 0.45 1.43 0.32 1.44

Yes IRP 2.84 8.56 16.64 919.02 55.01 39.04 18.93 0.25 0.65 1.82 0.70 1.90 0.51 1.72
IRPF 2.66 8.44 17.98 2511.54 140.28 39.95 22.25 0.09 0.68 1.46 0.75 1.76 0.51 1.45

Table 16: comparison of the metrics for the MIP models

5 Conclusions

This paper follows the same procedure as Vidović et al. (2014). We present the solutions of two MIP
models, namely the IRP and IRPF, for the multi-product multi-period IRP in fuel delivery. We also
present the heuristics approach for the IRP and IRPF. The MIP models are formulated as the assignment
of fuel stations to individual routes. This formulation also takes the inventory costs into consideration.
We begin the heuristic by relaxing the routing costs of the MIP model to obtain an initial solution with
minimum inventory costs. This is done since it is too hard to minimize the inventory and routing costs
at the same time. As a result of minimum inventory costs, the delivery of fuel compartments is done at
the latest possible time period and with the lowest quantity. In obtaining a more optimal routing cost,
the heuristic tries to transfer deliveries over one or more time periods earlier. This incurs an increase in
the inventory costs but a (larger) decrease in routing costs. To optimize the solution even further, local
and large neighborhood searches are used.

An interesting conclusion can be drawn from the comparison of the local searches in the standard
case. Our own local search seems to outperform the local search of Vidović et al. (2014). Next, the
use of a maximum of 3 most eligible transfers is questioned. We conclude that it is not based on any
scientific result and find that the use of a maximum of 6 most eligible transfers incurs even lower to-
tal costs. Since our heuristic procedure consists of a variety of parts, we evaluate different heuristic
procedure combinations. The main conclusion is that the LNS procedure performs quite similar to the
main heuristic procedure. Since the LNS in Vidović et al. (2014) even outperforms the main heuristic
procedure and the computation time is not much larger, sometimes even lower, we question the quality
of the heuristic procedure. In Vidović et al. (2014) they also calculate a large-scale problem with 50
different fuel stations. Because of a large calculation time for a problem of this size, they first compare
the assignment of a different maximum number of stations per route. The conclusion of removing the
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quadruple assignment is questioned in this paper. If the heuristic is combined with the local and large
neighborhood search, we come to the same conclusion as Vidović et al. (2014). However, if we leave out
the local and large neighborhood search, since they try to improve the heuristic and are not part of it, we
can not conclude anything anymore. This allows us to question the paper by Vidović et al. (2014) even
more. Finally we make the discrete probability density function a little more realistic, by introducing a
large demand. With all the previous results we calculate the most optimal cases, using E = 6 and the
LSE. To evaluate the quality of the solution with respect to the routing and inventory segment, the same
metrics of Vidović et al. (2014) are introduced. We even introduce some of our own metrics.
Further research can be concerned with transforming the homogeneous fleet into a heterogeneous fleet,
since the problem of Vidović et al. (2014) is concerned with vehicles with two compartment who can tow
a trailer of another two compartments. A distinction needs to be made between those two. To make
the daily consumption of fuel function more realistic a stochastic model needs to be used instead of a
discrete. At last, it could be profitable to compare the results of a single depot problem to a multi depot
problem, since the distance between a station and a depot seems to be quite large.
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