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Abstract

Using data on 14 EU countries from 1980-2007, this paper measures the role inno-

vation has had in increasing capital intensity in Europe. A supply side system of the

normalised CES production function and its two first order conditions are used to esti-

mate the parameters using NLSUR. The results show innovation has not been capital

biased, instead it has mitigated the rise of capital intensity in the region and improved

the share of labour in production.
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1 Introduction

Since the 1970s, the share of income from labour has declined relative to capital in

the EU (European Commission, 2007). Owing to the concentrated ownership of capital

assets, this divergence in capital and labour is believed to be supporting a rise in income

inequality in the developed world (Piketty, 2014). Karabarbounis and Neiman (2013)

and others have cited the rise of cheap labour in Asia, the decline in the cost of capital,

development of IT and computers and weaker unions as reasons why the capital share

has risen relative to labour in output. Another possible cause is a bias of innovation

in production, where new techniques developed to produce goods are creating more

productive capital relative to labour. This paper studies this effect, whether innovation

in Europe is contributing to higher capital intensity and hence income inequality in the

region.

The impact of inequality at the social level has been clearly documented1, how-

ever, new theory studying its impact on economic growth shows a link between higher

inequality and weaker, less sustainable growth. For example, the theory of secular stag-

nation revived by Summers (2013) argues that the higher savings rate of the wealthy

and higher inequality act to subdue economic activity if savings are higher than pro-

ductive investment. Other examples such as Kumhof et al. (2015) and Rajan (2012)

argue that inequality leads to a credit boom, which then raises the chances of financial

crisis.

To study whether innovation in production is itself contributing to the rise in capital

intensity, innovation for capital and labour are estimated. For the period of 1980-2007,

the evolution of capital and labour intensity are measured, with changes attributed to

changing volumes of the inputs, or technical progress. As an addition from previous

literature, production functions for the primary, secondary, tertiary and quaternary

industries are estimated to better understand where the evolution of technical bias has

occurred.

This paper uses the constant elasticity of substitution (CES) production function to

estimate innovation for the four sectors of the economy. A three equation supply side

model is developed based on the first order conditions (FOCs) and production function

of the EU economy. The production function will also be normalized, to allow for a more

accurate interpretation of the parameters measured. The results show that innovation

is not capital biased, in fact, innovation has been capital saving between 1980 and 2007.

This result rejects the hypothesis that innovation has acted to increase capital intensity

in the region, instead, it has acted to mitigate it. Estimates are consistent across each

sector of the economy, however, the functional forms of innovation for capital and

1See Molinas (1998) for the impact of inequality on community solidarity, Wilkinson (2006) for its impact
on health and longevity and Duncan and Murnane (2011) on its impact on education and job opportunity.
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labour differ. In the primary sector, innovation is constant, in the secondary, tertiary

and quaternary sectors, innovation follows an exponential functional form.

In section 2 the CES production function is introduced and theories of technical

innovation are discussed. Section 3 reviews previous empirical findings of innovation.

Section 4 introduces the model behind the analysis and section 5 discusses the source of

the data and the development of the dataset used for analysis. Section 6 examines the

results of the paper and section 7 provides some robustness checks for the model used.

Section 8 discusses the broader implications of this analysis and avenues for further

research. Finally, section 9 draws conclusions for the paper.

2 Theoretical Background

Innovation in this paper is measured by technical change in production, which is con-

sistent with Binswanger and Ruttan (1978). It is defined as a change in the techniques

of production at the individual firm, industry or economy level caused by developments

from learning by doing, or through research and development.2 There is a cost to in-

novation but once completed, the dissemination of the innovation is relatively costless.

To measure the bias of technical change Hicks (1963) uses a more instructive definition

for estimation - the response of the share of an input in the value of output to a change

in the level of technology.

This paper aggregates factors to a two factor production function; labour and cap-

ital, where labour is the human contribution to output and capital accounts for the

goods used in production, such as a hammer used in the production of pins. Tech-

nical change is therefore biased towards labour (capital) if the focus of the technique

is labour (capital) intensive. For example, a new managerial technique that improves

the productivity of workers in a manufacturing company is a labour augmenting tech-

nical change. It is important to note however, that although technical change may

be biased in one direction, in reality, technical change tends to save both capital and

labour simultaneously. This section discusses a formal exposition of technical change,

before discussing theories of technical bias based on either market power, or perfect

competition.

2.1 A Normalised CES Production Function

In a production function, a firm’s output is separated into the factor inputs and tech-

nical progress. In this case, output is a function of capital, labour and technical change

for capital and labour.

2R&D creates new blueprints, new seeds etc.
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Y = F (AKK,ALL) (1)

Where output is Y , K is capital, L is labour and technical change for capital and

labour are defined as AK and AL. A function which allows for a broad estimate of

the EU’s production is the CES production function developed by Arrow et al. (1961).

This production function assumes a constant elasticity of substitution between capital

and labour, but technical change can take various forms. The elasticity defines the rate

of substitution between factors, depending on a change in their prices and ranges from

0 to ∞. An elasticity of less than unity means factors are gross complements, which

means a rise in the cost of one input leads to a decline in the use of both inputs. An

elasticity above unity means factors are gross substitutes, which means a rise in the

cost of one input leads to a reduction in the use of that input and an increase in the

use of the other input. In a CES production function, this rate of substitution remains

fixed and production can be written as follows:

Y = C
[
π(AKK)

1−σ
σ + (1− π)(ALL)

1−σ
σ

] σ
1−σ

(2)

Where C is the efficiency parameter of the factor inputs and determines how ef-

ficiently factors are used in production, π is the capital share of output, which lies

between 0 and 1 and σ is the elasticity of substitution between capital and labour.

A development in estimating the CES production function has been to normalise

the equation. The elasticity of substitution is estimated as a point elasticity, where

factors substitute for one another in production at a given rate at a given time. So to

be able to compare the other parameters with this elasticity of substitution, the entire

production function is fixed at a benchmark point too. De La Grandville (1989) shows

that there is a point of tangency across a family of CES production functions where the

only parameter that differs, is the elasticity of substitution. It is therefore preferable

to estimate at this point of tangency so that the technical change of labour in a certain

period is comparable to technical change in capital and the elasticity of substitution in

that same period. To estimate from this tangency, or benchmark point, the variables of

the production function must be normalised. The normalisation requires a benchmark

point for capital deepening (K0) and a given level of production (Y0), which are both

averages of the capital and production time series. On top of this, a benchmark capital

share in output is required (π0), where π0 is defined by the following equation.

π0 =
r0K0

p0Y0
(3)

Where r0 is the benchmark rental rate of capital and p0 is the benchmark price for

output for the sample.
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In this exposition the functional form of technical progress is assumed and technical

progress is proxied by time. It is assumed that technical change develops from year

to year and hence progress in technical change can be measured as progress through

time. For the initial exposition, it is assumed factor augmenting technical progress is

constant and takes the following form.

AKt = AK0 e
γK(t−t0) (4)

ALt = AK0 e
γL(t−t0) (5)

Where γK is technical progress for capital, γL is technical progress of labour and t

represents time and t0 is the average time over the sample, used to normalise technical

change. At the benchmark point, technical progress of both capital and labour are 0.

Following Klump and de La Grandville (2000), for technical progress to have the

same fixed point as the elasticity of substitution, it must also be normalised with respect

to the corresponding output and factor input average.

AK0 =
Y0

K0

( 1

1− π0

)1/C
(6)

AL0 =
Y0

K0

( 1

π0

)1/C
(7)

The resulting production function, takes the following form if we assume the bench-

mark output level is the efficiency parameter.

Yt = Y0

[
π0

(eγK(t−t0)Kt

K0

) 1−σ
σ

+ (1− π0)
(eγL(t−t0)Lt

L0

) 1−σ
σ

] σ
1−σ

(8)

This production function studies the factor inputs in production, the technical bias

of production and the complementarity or substitutability of the factors in production.

The FOCs are derived to create the three equation system. This system of equations

has two distinct advantages over a single equation approach to estimating technical

change. Firstly, by using the FOCs, firms are assumed to be optimising agents, which

is an assumption of the data (León-Ledesma et al., 2010). Secondly, cross-equation

parameter constraints are imposed when the system is regressed, this should result in

more accurate estimates of the parameters.

∂Yt
∂Kt

= π0

(
Y0

K0
eγK(t−t0)

)σ−1
σ
(
Yt
Kt

) 1
σ

(9)
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∂Yt
∂Lt

= (1− π0)

(
Y0

L0
eγL(t−t0)

)σ−1
σ
(
Yt
Lt

) 1
σ

(10)

At this point, the impact of technical change can be demonstrated, through its

impact on the marginal products of inputs. The clearest way of understanding the

effect of technical change is by looking at the relative marginal product of capital to

labour, which can be defined as follows:

MPK
MPL

=
1− π0

π0

(
L0

K0
e(γK−γL)(t−t0)

)σ−1
σ
(
Lt
Kt

) 1
σ

(11)

From this equation, it is clear that the impact of technical change of either capital

or labour depends on the elasticity of substitution, therefore normalising the system to

compare the parameters in each period is key for interpreting the results. If σ is greater

than unity (factors are substitutes), then an increase in technical progress of capital for

example, increases the relative marginal product of capital. On the other hand, if σ

is below unity (factors are complements), then an increase in technical change reduces

the relative marginal product of capital. In the case where σ is 1, then technical change

has no impact on the relative marginal products of either capital or labour.

Where σ < 1 capital augmenting technical improves the relative marginal product

of labour. This counter intuitive result is caused by the complementarity of factors.

The rise in the productivity of capital leads to a rise in demand for labour that is larger

than the rise in demand for capital. As a result of this higher demand, the marginal

product of labour increases more than the marginal product of capital. Therefore a rise

in capital augmenting technical change actually increases the relative marginal product

of labour (Acemoglu, 2002). When σ < 1, capital augmenting technical change also

reduces the income share of capital.3

The interpretation is therefore as follows, if the elasticity of substitution is above

unity then if γi > 0 the technical change is factor augmenting and if γK > γL and

γK > 0 then technical change is capital biased. In the alternative case, where σ < 1, a

positive technical change is factor saving and biased towards the other factor. Finally,

when γi < 0, with a below unity σ, technical progress is biased towards that factor.

It is therefore clear that capital augmenting technical change does not necessarily lead

to a capital bias in technical change. Only when the elasticity of substitution is above

unity does positive technical change of capital lead to a capital bias.

Equation (11) also shows that an increase in the relative volume of capital reduces

the relative marginal product of capital. This is a common finding that creates the

downward sloping demand curve for factor inputs.

The system of equations assumes profit maximisation so the second order conditions

3The same reasoning is used and is discussed in detail in León-Ledesma et al. (2010).
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are checked to make sure the estimates will correspond to a maximum, rather than a

minimum. This is done by differentiating the partial derivatives again, the following

result occurs:

∂2Yt
∂K2

t

= − 1

σ
π0

(
Y0

K0
eγK(t−t0)

)(
Yt
Kt

) 1
σ

K−1 (12)

∂2Yt
∂L2

t

= − 1

σ
(1− π0)

(
Y0

L0
eγL(t−t0)

)(
Yt
Lt

) 1
σ

L−1 (13)

All variables in these second order conditions are positive values, as a result, the val-

ues of the equation are necessarily negative. This means the estimated values represent

maximums, consistent with profit maximisation of the firm.

2.2 Theories of Technical Bias

This section discusses the development of the theory of factor biased technical change.

The theory began with Hicks in the 1930s and developed slowly over the 20th Century

before being revived by Acemoglu in 2002. Capital augmenting technical growth can

now be fitted into neoclassical growth theory models, which have traditionally relied

on labour augmenting technical change only to allow markets to clear.

Hicks (1963) first proposition was that technical innovation occurs to minimise the

cost of the relatively expensive factor in production. A profit maximising company will

innovate to reduce its use of the relatively scarce factor inputs in production, due to the

high cost and instead, use the lower cost factor input more abundantly in production.

For example, if wages presented a higher cost than the user cost of capital, the firm

would look for new innovation that reduces the use of labour relative to capital, to

reduce their costs of production. This cost minimization approach is consistent across

the theories that follow.

The next step was the theory of induced technical change of the 1960s and 70s, with

Drandakis and Phelps (1966) formalising the role of factor saving technical bias caused

by the price of capital and labour. A paper by Kennedy (1964) introduced the idea

of the innovation possibilities frontier, which determined the direction of the technical

change based on the factor shares in production. If for example, the labour share

rose, innovation would occur until the factor shares returned to a previous equilibrium.

Binswanger and Ruttan (1978) summarises the theory, where a finite set of resources

are used to invest in either capital or labour saving research projects by the firm. The

finite set of resources assumption is key as it creates a trade off between research for

capital or labour augmenting technical change. The share of investment in capital or

labour augmenting research projects depends on the benefits expected to be derived
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from the projects - the discounted sum of cost savings caused by the innovation in

each year of its use (Binswanger and Ruttan, 1978). Where the cost saving is the

savings of factor inputs in production, multiplied by the price of the factor. Research

in technical innovation is therefore a function of the price of inputs, but crucially, it is

also a function of the volume of inputs used in production. The theory was however

criticized due to the lack of reasoning as to why firms would enact technical progress

and whether innovation was exogenous or endogenous to firms. For example, Salter

(1966) argued firms were interested in cost reductions overall, not reductions specific to

a factor. The solution to these issues only developed in endogenous growth models such

as Romer (1989) later in the 1980s and 90s, using the formal introduction of market

power.

2.2.1 Theories with Market Power

Directed technical change theory (Acemoglu, 2002) is currently the predominant theory

of technical change and developed the previous theory by using concepts from endoge-

nous growth models. The theory uses the assumption of market power from Romer

(1989) to justify the cost of R&D investment for firms. Market power allows for a

markup over costs and so innovation is therefore countered by higher profits caused by

the innovation.4 As with previous theory finite resources and internal development of

technical change are also assumed.5

In this framework, two forces drive technical change for a profit-maximising firm:

the price effect and the market size effect. Firstly, the price effect occurs if there is an

increase in the price of one of the inputs. For example, if the user cost of capital rose

by 10% in a year relative to wages in a firm, the higher cost of the capital input would

provide an incentive for the firm to invest in innovation that improves the productivity

of capital. This technical change therefore reduces the amount of capital required in

production, reducing the cost of production for the firm. Secondly, the market size effect

creates a bias of technical progress towards the input that is used most in production.

For example, if the firm’s production requires 125 units of capital and 100 units of

labour and the price of each good is equal, then the firm has an incentive to improve

the productivity of the relatively more abundant good: capital. In this case a 1%

improvement in the productivity of capital has a larger impact on overall productivity

than the same rise in productivity of labour. In the real world, of course, technical

progress is caused by a combination of these effects and so interpretation is less clear

cut.

4Technical change would reduce the costs of production, while not affecting prices, allowing for a markup
to arise and hence higher profits.

5This is consistent with Pavitt (1984) who finds that in the majority of industrial sectors, within firm
innovation is dominant, as the innovation is specific to the production process of the firm.
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Acemoglu shows that the elasticity of substitution defines which of the two effects

dominates in production. When the elasticity of substitution between capital and

labour is low, the price effect dominates, when the elasticity of substitution is larger,

the market size effect dominates. A number of results are borne out of this model, the

first is what is termed the“weak induced bias hypothesis” where irrespective of the value

of the elasticity of substitution6, an increase in the abundance of a factor will create

some technical bias towards that factor. The“strong induced bias hypothesis” states

that with a sufficiently large elasticity of substitution - breaching a threshold that is

between 1 and 2 - demand for the abundant factors can become upward sloping, due to

the increasing returns to scale caused by the non rivalry nature of technical change. In

this case, technical change can create a bias in production which persistently increases

the income share of that factor. This is an important result, as it means technical

change may lead to an ever increasing capital share of income and mean technical

progress will contribute to a higher income share for capitalists.

The two hypothesis of directed technical change are represented in figure 1, where

σ is assumed to be greater than 1. Without endogenous technical change, a shift in

the capital abundance relative to labour, pushes the economy from point A to point B,

the marginal product of capital (r) declines, shifting the equilibrium downwards. How-

ever, with endogenous technology, the weak induced bias hypothesis leads to technical

change which favours capital, this shifts the constant (short term) technology demand

curve outwards, mitigating some of the decline in the user cost of capital and shifting

production to point C, creating a flatter long term endogenous technology curve. In

the case of the strong induced bias, technical progress of the factor is sufficient to move

the economy from A to D, causing an upward sloping technology curve. At this point,

the return on this factor rises.

Basing theory on directed technical change, Acemoglu embeds short term capital

biased technical change into the neoclassical growth theory in an alternative paper

(Acemoglu, 2003). In this paper, he argues that in the long run, technical change

remains labour augmenting only and that capital augmenting technical change is a

transitory phenomenon not present when the economy is on its balanced growth path

(BGP).7 In the neoclassical model, capital deepening and labour augmenting technical

growth combine to maintain a consistent capital and labour income share in production,

allowing the economy to achieve a BGP. A crucial assumption made by the author is

that capital and labour are complements, that σ < 1. As a result, Acemoglu argues an

increase in the user cost of capital, or a rise in the supply of capital causes technical

6As long as the elasticity of substitution between capital and labour differs from unity.
7Where the balanced growth path of the neoclassical growth model is defined as growth that is consistent

with the Kaldor facts of a constant capita-output ratio and capital, labour share in national output (Solow,
1956).
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Figure 1: Technical Change

Source: Acemoglu (2002)

change which brings the economy back to the BGP and balanced factor shares.

Acemoglu further argues that there two avenues through which capital intensity

rises; via capital augmenting technical change and capital accumulation, while labour

intensity only rises through technical change, as a labour stock cannot be accrued.

Therefore, the author argues there is a natural bias in technical change towards labour.

It is then argued that this bias means in the long run, technical change is purely labour

augmenting and that capital augmenting technical change is a transitory phenomenon.

2.2.2 Theory with perfect competition

Previous theory on technical change has relied on market power to justify the high

sunk cost of investment. However, a paper by Boldrin and Levine (2008) introduces

a model where price taking firms justify innovation due to capacity constraints. The

capacity constraints create a cost to disseminating information, creating a scarcity of

the new innovation in initial periods of its use, this creates an advantage to innovating

firms in their market. The authors cite a number of examples in the paper that are

consistent with this theory, include the USA’s agricultural innovation in the 1950s

and the 1960s, where new plant varieties and animal species were not patentable and

the seed nurseries were highly decentralised, innovation remained high and spurned

the Green Revolution in the 1970s. Another example is the Indian pharmaceuticals

industry, which does not recognize many patents from the western world. Even with

these issues, Indian reproduction of the patented drugs is still delayed due to production
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and market constraints.

The theory of technical change depends on a set of conditions, which include internal

innovation, scarce resources and in some cases, a below unity elasticity of substitution.

Research from Pavitt (1984) has proven these assumptions to be consistent with reality,

while the estimates of the elasticity of substitution are also consistent with the theory

and discussed below.

3 Literature Review

Measurement of technical bias has developed largely along two lines; estimation using

the CES production function or the translog production function. Attempts have been

made to use varying elasticity of substitution models and other production functions8,

however results have been less robust. The two main approaches are therefore discussed

in turn.

3.1 CES Production Function Estimates

Since Arrow et al. (1961) developed the CES production function, it has been used to

estimate technical change. This approach uses either the production function itself,

the FOCs with respect to capital and labour, or a combination of the two to estimate

technical bias. This model is useful as the constant elasticity of substitutions allows

for a clear interpretation of the technical bias for capital and labour. However, as

mentioned above, the constant elasticity of substitution between capital and labour is

an assumption that abstracts away from the real world.

A system of equations has been used in the majority of recent analysis to measure

technical change. First of all, Antras (2004) uses a six equation specification using

both a CES production function and the FOCs, as well as the three reverse equations

to measure the elasticity of substitution between capital and labour and the bias of

technical change. The paper uses private sector aggregate data for the USA between

1948 and 1998 from the National Income and Production Accounts and both labour

and capital are measured in real terms. The author first estimates the elasticity of

substitution with neutral technical change that does not augment either capital or

labour, however, the author finds that without variable technical change, the elasticity

of substitution is biased towards one. Alternatively, the functional form of the technical

bias is assumed to be exponential for both labour and capital. The results of technical

bias shows a negative technical change coefficient for capital and a positive one for

labour. This means technical change is labour saving and capital using with an elasticity

8See Zellner (1962) as an example.
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of substitution below one. As a result, the author estimates an annual capital bias in

technical progress of approximately 3%.

The system of equations was augmented by the normalisation procedure. Klump

et al. (2007) introduced the normalised CES production function for a more accurate

analysis of the elasticity of substitution. This model is discussed in the theoretical back-

ground section of this paper, but two important empirical findings are made regarding

the USA. Using a system of equations that includes the markup for imperfectly com-

petitive markets and non-linear seemingly unrelated regressions (NLSUR), technical

change is found to be largely labour augmenting. Labour augmenting technical change

is estimated to be 1.5% compared to a capital augmenting technical change of just

0.4%. With an elasticity of substitution of less than one, this means technical change

is more labour saving than capital saving. The second is that in their model they use a

flexible form of the factor augmenting technical growth, using a Box-Cox formulation.

Using this model they find capital biased technical progress follows a hyperbolic form

and labour biased technical progress is exponential. This is consistent with Acemoglu’s

theory that capital biased technical change is a transitory phenomenon.

For the European Union, Klump et al. (2008) uses a slightly altered normalized

CES production function from Klump et al. (2007) with perfect competition to derive

a three equation system. This paper uses quarterly statistics from the Area Wide Model

and Eurostat, these statistics are economy wide aggregates only and cannot be broken

down to the industry level. Using NLSUR to estimate the system, they find technical

change is predominantly capital augmenting, with a 1.0% technical change value and

a 0.3% labour augmenting value, while the elasticity of substitution is estimated to be

0.6. As a result, technical change has a labour bias in the case of the EU. The Box-Cox

transformation is not instructive in this case, so the functional form of technical change

is assumed. The authors however identify a structural break in the statistics in 1997,

after which, capital augmenting technical progress accelerates.

All of the papers discussed find an elasticity of substitution between capital and

labour that is below unity. Jalava et al. (2006) on the other hand uses a much longer

time period for Finland - between 1902 and 2003 - and find the production function is

Cobb-Douglas9 in the very long term. Only in a shorter period - between 1945 and 2003

– is the elasticity of substitution below unity. In this paper, only the FOCs are used,

however, this allows them to use an error correction model to deal with cointegration

of the variables, they also impose AR(2) on the model to deal with autocorrelation.

Results show technical change is capital using and labour saving, with values of -0.3%

for capital augmenting technical change and 4% for labour. This is relatively consistent

with neoclassical theory due to the small capital bias and large bias for labour in

9Where the elasticity of substitution is 1 and the factor shares in production are constant.
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technical change.

Estimates of capital and labour bias in technical innovation are not consistent across

papers. This is in part due to the different approaches used, however, the technical bias

parameters seem highly sensitive to the different time periods used in each paper. León-

Ledesma et al. (2010) analyses the appropriate model to use in estimating technical

change by testing the different models using Monte-Carlo simulations. They take a

CES production function and measure the accuracy of the estimations using single

equation estimations, a two equation FOC estimation and finally the full three system,

normalised approach. They report that the single and two equation models deliver poor

estimates and are not robust, suffering from non convergence issues when the value of

the coefficients are not restricted. On top of this, non-normalized systems have a strong

tendency to estimate an elasticity of substitution that is unity, affecting the technical

bias estimates. This may have been one of the issues with Jalava’s analysis, as the

equations in this model are not normalised. The paper concludes that the normalised

system of equation model provides the most accurate and robust results.

3.2 Translog Production Function Estimates

The translog price function summarised in Jorgenson et al. (2005) uses an alternative

functional form of production that allows for many factor inputs to be included in pro-

duction. The strength of these models is that the technical bias can be measured, as

well as the deceleration of technical change, which shows whether the rate of techni-

cal change is decelerating, or accelerating. It is important to note however, that the

translog price function is not a measure of induced technical change, rather a myopic

maximisation function. On top of this, León-Ledesma et al. (2010) argues that consid-

erable issues arise in the calculation of the time varying elasticity of substitution, which

are compounded when including technical progress.

The introduction of the multifactor translog production function was developed by

Binswanger (1974) to measure the technical bias of as many inputs in production as

available. Using factor augmenting technical change and constant returns to scale, the

author derives a set of time series matrices of the FOCs. With these FOCs, which

are estimated using generalized least squares, the author can measure the technical

bias of production. In the paper, the author measures technical change in agriculture

in the USA between 1948 and 1964 with five factor inputs – fertilizer, land, labour,

machinery and other. In his analysis, he finds that fertilizer and machinery are the two

factors that rise at the largest rate when controlling for price changes. Between the

period of 1948 and 1964, Binswanger estimates that the factor share in production for

machinery rose by between 6.9 percentage points and 8.5 percentage points as a result

of technical change. Technical change towards labour on the other hand is negative
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at a rate between 15.1 and 11.4 percentage points. This means, technical change was

capital biased.

A paper by Jin and Jorgenson (2010) introduced a new approach to modeling tech-

nical change using the translog price function and a Kalman filter for the USA for

35 industries.10 Between 1960 and 2005, heavy industry, such as coal mining and

petroleum refining had the highest capital augmenting technical change, which peaked

at 0.25 for coal mining Unsurprisingly, services had a marginally negative technical

change for capital. Conversely, food products and textile and paper production had

high labour augmenting technical change, with coal mining having the largest negative

change, the range of technical change was between -0.1 and 0.1. The majority of indus-

tries therefore had a capital bias in technical change. On top of this, the authors find

the impact technical change had on changing the factor’s share in output was similar

to the impact prices had on factor shares. A benefit of the Kalman filter is that it

can be used to make future predictions, as such the paper concludes by arguing future

technical change is likely to be capital biased.

As mentioned, the results of previous research differ significantly depending on the

region analysed, time period and model estimated. Although the bias of technical

change remains unclear, the elasticity of substitution for the aggregate economy has

been consistently below unity using these two approaches.

4 Methodology

The normalised CES production function is the starting point of this analysis. It is

favoured over the translog or varying elasticity of substitution functions to allow for

more accurate estimates and interpretation of technical progress. On top of this, the

CES function allows the functional form of the technical progress to be changed easily.

The methodology used here is similar to the methodology applied by Klump et al.

(2007) and León-Ledesma et al. (2010), but this system assumes perfect competition.

Reliable estimates of the markup for the EU economy and each sector of the economy

are not available, so this is a simplifying assumption to fit the statistics. The three

other major assumptions of the system are that the elasticity of substitution does not

change over the sample period, that technical change can be proxied by time and that

labour and capital are perfectly elastic - that inputs can be changed in each period.

The system uses the log linearised CES production function of equation (8) in per

capita form, as well as slightly altered log linearised FOCs that account for the use of

nominal values of output and factor inputs.11

10These are consistent with the ISIC sector and subsector.
11See appendix I for a full transformation of CES function into the three equation model.
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The geometric means of the variables are used to normalise the system. The geo-

metric mean is used because the variables are not independent of one another; output

or wages in one year are not independent from output or wages in other years. It

also measures the central tendency of the parameters (Almkvist and Berndt, 1988), so

appropriate for normalization. As such, the normalised parameters are transformed to

averages (e.g. π̄) and the system of equations takes the following form:

log

(
Yt
Lt

)
= β0 + log

(
Ȳ

L̄

)
+ γL(t− t̄)

− σ

1− σ
log

[
π̄e(γL−γK)(t−t̄)

(
Kt/K̄

Lt/L̄

) 1−σ
σ

+ (1− π̄)

]
+ εt (14)

log

(
wtLt
ptYt

)
=β1 + log(1− π̄) +

1− σ
σ

[
log

(
Yt/Ȳ

Lt/L̄

)
− γL(t− t̄)

]
+ εt (15)

log

(
rtKt

ptYt

)
=β2 + log(π̄) +

1− σ
σ

[
log

(
Yt/Ȳ

Kt/K̄

)
− γK(t− t̄)

]
+ εt (16)

The FOCs of the model measure changes in capital and labour intensity by the

volume of each of the inputs, the volume of output and a time trend. The time trend

then corresponds to technical change of the factor. The rest of the variables included

are constants and can collapse into the constant term of β1 and β2.

The NLSUR approach is used to estimate the resulting system, with cross equation

restrictions imposed on variables present in more than one equation. The NLSUR

approach is more efficient than OLS if the error terms are believed to be correlated

(Zellner, 1962), which is the case in this system, so this method is preferred. The

system is estimated using constant technical progress as shown in equation (15)12 and

also estimated with an exponential functional form. The exponential form is based on

the Box-Cox transformation of Klump et al. (2007) and takes the following form.

Ait = Ai0exp
γit̄

0.5

[
( t
t̄
)0.5−1

]
(17)

This equation replaces the constant technical progress of equations (4) and (5) and

so replaces the functional form of the exponential in equation (14), as well as replacing

the technical change parameters of equations (15) and (16). The full specification is

defined in the appendix I. The parameter changes the relationship between technical

12Technical progress is defined as γK(t− t̄)
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progress and the share of the factor in output. In the exponential case, technical

change follows an exponential form and so the impact of technical change accelerates

over time. This differs from the interpretation of the constant technical progress, which

means technical change has a constant impact on the share of the factor in production.

There are a number of issues that need to be addressed in the system. Firstly, the

variables of this model have a unit root and are I(1) stationary. Phillips and Durlauf

(1986) show that simultaneous equation bias or measurement error bias arise for non

stationary regressors. If regressions include non stationary variables, the estimates of

their effects are spurious, unless cointegration - which means variables have the same

long term trend - is present. If cointegration is present, estimators are super consis-

tent and they converge more rapidly to the true value as the number of observations

increases, so the biases disappear (Phillips and Durlauf, 1986).

In theory, cointegration should be present between the variables of this system,

therefore two tests for cointegration are undertaken. The first is the Johansen test for

cointegration, a test that can be done prior to estimation of the system.13 The Johansen

test tests if there is a linear combination of the regressors which sum to zero (Johansen,

1988). If there are combinations which are zero, then these regressors are cointegrated.

The Johansen test is highly sensitive to the lag structure of the estimation and is

affected significantly by small sample sizes, as the confidence intervals are based on an

asymptotic distribution (Cheung and Lai, 1993). This means the more cointegrating

relationships being tested, the worse it performs, as each additional relationship adds

restrictions to the test and so takes up degrees of freedom. The entire system is therefore

not tested at once, rather cointegration is tested for in each of equations (14)-(16)

separately. The system shows cointegration consistently in all but the labour FOC

and although this may be an issue, it may just be a failure of the test. Therefore

the Engle-Granger test for cointegration is also checked to make sure cointegration is

present once the system of equations is regressed. This is a test that can be completed

after the system is estimated. For this test, regressors must be I(1) and the error terms

of the estimated system must be stationary, if this is the case cointegration is present

(Engle and Granger, 1987).

Although cointegration is present in this system, in small samples, convergence may

still be an issue and biases may still arise (Dolado et al., 1990). Due to the severity

of autocorrelation in this system, AR(2) terms are imposed on the equations.14 This

improves the stability of the model and convergence is more rapid in this case.

The presence of cointegration means the statistics for measuring the stationarity

of the error terms include nuisance terms (MacKinnon, 2010), as such, the standard

critical values don’t apply for the augmented Dickey-Fuller test. Critical values from

13See table 3 in appendix II for results.
14See appendix I for model specification including the AR(2) variables.
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MacKinnon (2010) are therefore used to measure the significance of cointegration re-

sults.15

Finally, the system of equations can include priors to direct the estimation. Conver-

gence does not occur consistently if the elasticity of substitution and technical change

take extreme values, therefore priors are used. Klump et al. (2007) note that their

system converges at more than one point, depending on the priors of the elasticity of

substitution. This implies there are local maxima. As a result, a range of values of the

elasticity are used as priors for each estimation of this system16 to check if the system

also has local equilibrium points. In addition, in some cases where convergence is af-

fected by technical growth parameters, the FOCs are estimated alone as a first stage of

the regression to adjust the priors, after which, the full system is estimated.

5 Data

To analyse the model of (14)-(16), statistics for each variable are taken from the EU

KLEMS database. The database takes statistics from each country’s statistics office

and then harmonises and aggregates across countries at the industry level. The benefit

of these statistics is that they can be aggregated up to the primary, secondary, tertiary

and quaternary sectors.17 The statistics are annual and the time series runs between

1980 and 2007; the time period is restricted to the period in which capital volumes

are calculated for all fourteen countries.18 Finally, the statistics are aggregates of

EU countries that have growth accounting statistics available, which excludes newer

members.1920 Labour and capital compensation, equivalent to wL and rK are available

at the ISIC industry and division level, output (pQ) is taken as gross value added and

finally the labour volume is also available in the dataset.

The capital volume index (K) and value added volume index (Q) are calculated by

aggregating the ISIC industry level statistics to the sector level. To compute the sector

level values of K and Q, the volume indexes of each industry are weighted depending

15the values are noted in table 6 in the appendix II.
16σ = 0.1, 0.5, 1.5, 2.0
17The classifications are derived from the three sector measurement of the ISIC classification and quaternary

industries are separated from the tertiary sector using Kenessey (1987) classification.
18Although this a relatively short time period, amounting to 27 observations León-Ledesma et al. (2010)

show that using a system of equations improves the accuracy of estimations and as a result, estimations are
relatively unaffected by sample size variation, with the confidence intervals, rather than estimates benefiting
from higher numbers of observations in the model.

19Austria, Belgium, Denmark, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg, Netherlands,
Portugal, Spain, Sweden, United Kingdom.

20In 2007, according to Eurostat, these countries accounted for 93.0% of the GDP of the European Union
and so estimations are a relatively good approximation of the EU as a whole.
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on the value size of each industry in the following way.

Volume Index =

n∑
i=1

Volume Indexi · Compensationi

n∑
i=1

Compensationi

i = 1, ..., n (18)

Where in this illustration, i represents each industry included in the sector, num-

bered from 1 to n.21 For example, n represents the 12 industries in the tertiary sector.

Compensation is measured as rK for the capital volume index and pQ for the measure

of output volume.

Total hours worked by persons engaged is the volume index of labour used in esti-

mation. For the labour input measurement, the number of hours worked is preferred

to persons engaged, as job sharing and part time working means persons engaged may

overestimate labour input in production. There are also two choices for hours worked in

the database, hours worked by persons engaged is preferred over hours worked by em-

ployees because hours worked by persons engaged includes informal labour, completed

outside of contracted employment. An example of the discrepancy in an industry is

in “private households with employed persons”, where hours worked by employees was

30% that of hours worked by persons engaged in 2007.

Measurement of self-employed individual’s incomes creates an issue in the statistics

because all income is counted as labour income. To improve the accuracy of labour and

capital compensations, the distribution of income is altered for the industry “private

households with employed persons”. This changes the income distribution for the ter-

tiary sector and total economy. There are two common ways in which this is done; the

first is by using the hourly wage for the rest of the services sector as a shadow wage

for wages of this industry, which then accounts for labour income when multiplied by

hours worked (Klump et al., 2007). However, this methodology does not work for this

set of statistics as the average hourly wage of services is consistently too high, hence

it overestimates labour compensation to the point where it exceeds total compensation

for the industry in some years of the sample. As a result, a simpler approach is used,

where two thirds of compensation are distributed to labour and one third to capital,

consistent with historical distribution of capital and labour compensation.22

Figure 2 shows the capital share of income on the left hand axis and the labour

share of income on the right hand axis, it is clear that the shares have diverged, with

capital intensity rising in Europe over the sample period. Without a trend variable in

the equation, both capital and labour share are non-stationary when tested using the

Augmented Dickey Fuller (ADF) test, but are integrated to order 1. This differs from

21see Appendix II for list of industries per sector
22This is consistent with previous literature (Klump et al., 2007)
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the assumptions of many theoretical growth models, including the model of Acemoglu

(2003), as the Kaldor condition of constant income shares between capital and labour

is violated.

Figure 2: Capital and Labour Share in Output

Source: EU KLEMS

The capital share in output averaged 32.8% over the sample period for the total

economy and the highest capital intensity is present in the quaternary sector, followed

by the tertiary sector. This is due to the proliferation of ICT capital in these sectors,

which led to rapid increases in the volume of capital used. The capital share of income

increased by an average by 7.4 percentage points and rose in every sector between 1980

and 2007. Although capital intensity is highest in the services sectors, the increase was

the most pronounced in the primary sector, where the share of capital rose from 19.5%

in 1980 to 33.5% in 2007.

The rise in capital intensity is the result of the rapid increase in the volume of capital

compared to labour, not the marginal products of the inputs. Wages increased by

145.8% for the total economy, compared to only a 53.1% rise in the user cost of capital.

The increase in wages was largest in manufacturing. This industry has developed

to produce high tech products requiring high skilled production, while heavier, lower

skilled manufacturing has been exported to Eastern Europe and other regions of the

world (Veugelers, 2013). In nominal terms, wages increased in this sector by 222.6%

between 1980 and 2007, while hours worked fell by 35.2%. According to the theory

of directed technical change, the weak induced bias should lead to capital augmenting

technical change, while the price effect could cause some incentive for labour augmenting

technical change.

Hours worked in the total economy rose by 8.4%, a small amount relative to capital
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volume growth, however, the trends differed significantly across sectors. Hours worked

declined in both the primary and secondary sectors, by 49.1% and 35.2% respectively.

The tertiary and quaternary sectors on the other hand saw a rise in hours worked.

This should mean labour-augmenting technical change differs across the sectors, as the

abundance of labour rose or fell.

It is clear for the total economy, that the rise in the capital share, combined with

the market size effect points towards capital augmenting technical progress. However,

the rise in wage costs may mean the price effect impacts on technical progress for

labour, this is particularly important for industries that have a relatively low elasticity

of substitution, as Acemoglu (2002) notes that the price effect has a larger impact on

technical progress if the elasticity of substitution is low.

6 Results

Tables 1 and 2 show the estimates for exponential technical growth and constant tech-

nical growth respectively. Each table includes the elasticity of substitution, technical

growth for capital and labour and the average capital intensity. On top of this, the ADF

test for a unit root for each of the three equations is summarised. Finally, the speed

of convergence is also included in the tables. Column T represents the total economy,

column 1, 2, 3, 4 represent the primary, secondary, tertiary, quaternary sectors of the

economy respectively.

The ADF test is undertaken on the residuals of each of the equations to test for

cointegration between the variables. The ADF test tests whether the lagged values of

the dependent variable are able to explain the dependent variable, after the difference of

the dependent variable is controlled for (Stock and Watson, 1988). The null hypothesis

in this test is that the lagged values have no explanatory power of the dependent variable

and hence the time series has a unit root. If this is rejected, the time series is stationary.

If the ADF test rejects the null, cointegration is present and means estimations are not

spurious. The results show that in almost all cases, cointegration is present.

For the total economy, technical change is capital saving and labour using. Taking

constant technical change as an example, the interpretation is as follows; with annual

capital augmenting technical change of 3.0% and an elasticity of substitution of 0.589,

the capital share of income declines by 2.1% thanks to capital augmenting technical

change23, ceteris paribus. Technical change for labour on the other hand is negative,

which means technical change for labour has improved the labour share of income. The

elasticity of substitution is below unity in both the constant and exponential function

case for the total economy, with technical change differing marginally across the two

23The decline in the income share is calculated in the following way: (−0.030) ∗
(

1−0.589
0.589

)
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Table 1: CES Production Function with Exponential Technical Growth
Parameter T 1 2 3 4
σ 0.589*** 0.890*** 0.638*** 0.611*** 0.458***

(0.015) (0.040) (0.015) (0.011) (0.012)
γK 0.030*** 0.057*** 0.020*** 0.036*** 0.013***

(0.021) (0.005) (0.003) (0.002) (0.005)
γL -0.024*** -0.008** -0.033*** -0.021*** -0.017***

(0.001) (0.004) (0.005) (0.001) (0.001)
π 0.328 0.293 0.278 0.338 0.380

Stationarity
ADFFOCK -3.451* -4.527*** 5.044*** -4.849*** -5.121***
ADFFOCL -5.546*** -4.233*** 4.838*** -5.222*** -4.920***
ADFY/L -3.796** -5.486*** 4.823*** -5.128*** -4.579***

Convergence
(No. of iterations) Yes (26) Yes (508) Yes (21) Yes (19) Yes (26)
Note: standard errors in parentheses: *** p <0.01, ** p <0.05, * p <0.1
Critical values of ADF adjusted to MacKinnon (2010)

forms. Convergence is rapid in both cases, implying stability within the system of

equations. An important note for the total economy with constant technical growth is

that the ADF test for the FOC of capital cannot be rejected at the 5% or 10% level.

Although the Johansen test shows integration is present, interpretation should be done

with caution in this case.

The objective of this paper is to see whether capital biased technical change is

present in the EU, which requires a positive γK and crucially, an above unity elasticity

of substitution. The central finding of these estimates is therefore that capital biased

technical change is not present and is not exacerbating inequality between factors of

production.

In three of the four economic sectors, the estimates of exponential technical progress

converge more consistently and more rapidly, so this form of progress is favoured. On

top of this, no local maxima are found for any of the sectors of the economy. For the

majority of the sectors of the economy, the elasticity of substitution is below unity,

technical change is capital saving thanks to the positive γK and labour using thanks to

the negative γL. Technical change is most capital saving in the primary and tertiary

industry and labour using at the highest rate in the quaternary industry. These results

are consistent with the weak induced bias hypothesis of Acemoglu (2002), as the rise

in the capital share of income has resulted in technical change that is acting to reduce

capital intensity.
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Table 2: CES Production Function with Constant Technical Growth
Parameter T 1 2 3 4
σ 0.818*** 1.214*** 0.558*** - 0.974***

(0.030) (0.046) (0.008) (0.024)
γK 0.030*** -0.093*** 0.013*** - -0.015

(0.006) (0.010) (0.002) (0.111)
γL -0.024*** 0.002 -0.029*** - 0.007

(0.004) (0.002) (0.001) (0.068)
π 0.328 0.293 0.278 0.380

Stationarity
ADFFOCK 3.312 -4.874*** 4.771*** - -4.730***
ADFFOCL 4.025** -4.793*** -5.393*** - -4.633***
ADFY/L 4.395*** -5.155*** -5.679*** - -5.164***

Convergence
(No. of iterations) Yes (22) Yes (62) Yes (10) No No
Note: standard errors in parentheses: *** p <0.01, ** p <0.05, * p <0.1
Critical values of ADF adjusted to MacKinnon (2010)

The estimates for each sector are relatively consistent, except in the case of the

primary sector. This sector is the only one to have more stable estimates in the constant

technical progress case. On top of this, the elasticity of substitution is 1.2, so a 1%

increase in the marginal product of an input leads to a 1.2% increase in the total share

of output. Although the sector differs, technical progress is biased towards labour here

too. This is consistent with the theory, as producers are mitigating the rise in the

capital share with technical progress that increases labour intensity.

Disentangling the price effect and market size effect for each of the sectors is difficult

and the following examples are only a partial comparison of the sector estimates. How-

ever, the market size effect can be seen when the tertiary and quaternary sectors are

compared. Both industries saw similar growth in the user cost of capital and wages, but

the relative growth in the volume of capital was larger in the tertiary sector. The theory

would then argue the tertiary sector should show technical change which is more capital

saving, this is the case, with technical change for capital of 2.3% and 1.5% respectively.

The price effect on the other hand is less obvious from these results. The best

comparison is between the secondary and quaternary industry, the relative change in

the volume of capital to labour is similar in both sectors, but wage growth is much more

pronounced relative to the user cost of capital in the case of the secondary industry.

As a result, the price effect should mean technical change is significantly more labour

saving in the case of the secondary industry, as the elasticity of substitution is relatively

low in both cases. Technical change in the secondary industry is less labour using than
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the quaternary sector, however, the difference is small, perhaps due to the larger volume

effect in the secondary sector, as hours worked declined by half.

To conclude, the hypothesis that technical change is capital biased is rejected, due

to the below unity elasticity of substitution. Therefore technical progress is not one of

the causes of growing capital intensity in the EU. The results are consistent with the

theory of directed technical change and are similar across each industry. However, the

market size effect seems to have been larger than the price effect in these estimates.

These findings are tested for robustness in the following section.

7 Robustness Checks

Table 7 in appendix II includes additional robustness checks to measure the sensitivity

of the estimates to alternative measures of labour, capital, alternative functional forms,

as well as to different periods of time. For brevity, the robustness checks are undertaken

on the total economy only, with the favoured exponential functional form of technical

growth.

The first robustness check takes an alternative value of labour that measures hours

worked by employees, rather than hours worked by persons engaged. The statistics

for hours worked by employees are more accurately reported by statistics offices, so

the changes in the volume of labour each year should be more accurate in this case.

However, it assumes only employees contribute to output, a strong assumption. This

alternative measure differs only slightly from the previous, so the impact on estimates

should be relatively small. The estimates are marginally different, the elasticity of

substitution changes by a small amount and technical change becomes slightly less

capital saving.

A second test changes the user cost of capital to alter the volume of capital used in

production. The user cost of capital is measured in two ways, either ex-ante using data

from outside statistics and ex-post, where the user cost is estimated within sample, using

the assumption that the sum of returns is equal to total profits (Schreyer and Pilat,

2001). The ex-post approach is preferred (Oulton, 2007) and used for the EU KLEMS

statistics, however, it assumes perfect foresight of producers. The alternative cost of

capital uses an ex-ante approach, using statistics that are available to firms during the

period where investment decisions are completed. This measure does however have

drawbacks, as the expected cost is not necessarily the real cost that is paid. The new

user cost is calculated in the following way:

r =
i+ δ

1− τ
(19)

Where i is the nominal interest rate, δ is the depreciation rate and τ is the corporate
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tax rate.24 This new user cost of capital alters the volume of capital variable for the

system, while total compensation remains the same. Due to volatility of the user cost

of capital, the volume of capital becomes highly volatile, which tests the assumption of

perfectly elastic capital volumes to the extreme. Convergence of the full system cannot

be achieved, but the results from the FOCs alone are shown.25 The system estimates the

Cobb-Douglas production function, with technical change being insignificantly different

from zero. León-Ledesma et al. (2010) show that estimating the FOCs only creates a

bias in the elasticity of substitution towards unity, which is borne out in these results.

The assumptions of constant and exponential technical progress of the system is

consistent with previous empirical literature. However, a functional form of technical

progress is also tested that is consistent with the theoretical model of Acemoglu (2003).

In this theory, technical change for capital is transitory, so is defined as following a

log form26, while technical change for labour is exponential. In this case, the system

does not converge, as capital augmenting technical change does not follow a log form.

Consistent with Klump et al. (2008), this result means capital augmenting technical

change is not simply transitory.

Finally, the assumption of the same functional form of technical progress over the

entire period is tested by looking at the fit of exponential and constant growth in

different periods. Klump et al. (2008) note a structural break in the statistics for

the EU in the year 1997. This date is tested as it coincides with the convergence of

eurozone country currencies to the euro, which is likely to have affected access to capital

as investor confidence rises for eurozone countries, 11 of which are in this sample. It

must be stressed that the short time periods and the insignificant ADF values means

any interpretation of the truncated time period estimates should be taken with caution.

In both periods, the exponential form of technical progress is preferred, as constant

technical progress estimates do not converge fully. As a result, only the exponential

forms are shown in the results. Modifying the sample period does however lead to

different estimates of technical progress. The elasticity of substitution remains below

unity so the interpretation of the technical change coefficients remains the same, but

technical change is larger between 1980 and 1997. The difference between estimates is

the result of higher inflation between 1980 and early 1995, which has led to a larger

price effect in the first period. The rapid rise in the cost of capital during the 1980s is

likely to have been one of the causes of the larger technical bias, while a more steady

24The long term interest rate is taken from Eurostat’s real time database and is an aggregate across the
European Union, as country specific interest rates are not available for the full time period. The depreciation
rate - taken from EU KLEMS - is assumed to be constant over time and across countries. The tax rate is
taken from the OECD tax database.

25Estimation using the FOCs along are used in a number of papers see León-Ledesma et al. (2010) and
Binswanger and Ruttan (1978) for examples, and is instructive for assessing the performance of the system.

26Technical progress for capital takes the following form: AK
t = AK

0 e
γKt̄

0.001

[
( t
t̄
)0.001−1

]
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rise in wages across the period means its relative price fell. This is consistent with the

weak induced bias hypothesis of directed technical change.

8 Discussion

The central result of this paper is that capital augmenting technical growth has not

supported the rise in the capital income share in output. As a result, technical progress

is not leading to more inequality of inputs in the production of goods. The result holds

across all sectors of the economy. These findings are consistent with the theory of

directed technical change and previous empirical literature on Europe.27 Apart from

the total economy, the error terms are stationary in all cases, which means cointegration

is present and hence the results are not spurious.

These results have implications for the discourse on capital intensity and inequality.

Piketty (2014) argues that the rise in capital accumulation is self reinforcing, an increase

in the stock of capital owned by the wealthy leads to higher returns on their capital as

the return on capital outstrips the growth in the economy. However, the results of this

paper show that the rise in capital intensity leads to technical change that mitigates

the rise in inequality, improving the share of income in labour at the expense of capital.

Only if the elasticity of substitution is above unity, would Piketty’s argument hold.

Therefore a continued rise in capital intensity would only occur if the trends affecting

capital and labour continue, IT capital must continue to proliferate, trade union power

must continue to deteriorate or competition for labour outside of Europe must continue

to rise for capital intensity to continue to grow.

Neoclassical growth theory is also impacted by the results of this paper. The use

of the Cobb-Douglas production function is inconsistent with estimates of production

in Europe. Therefore the broader CES function, with both capital and labour aug-

menting technical progress should be preferred in general equilibrium models due to

the below unity elasticity of substitution found in empirical analysis. The results of

this paper also have implications in solving endogenous growth models, which rely on a

production function with only labour augmenting technical growth, or transitory cap-

ital augmenting technical growth to be solved (Romer and Chow, 1996). Supporting

previous empirical literature, this research shows capital augmenting technical progress

is present in the economy over the longer term, so the assumption used in growth theory

is questionable.

The methodology of this paper is consistent with previous analysis and theory,

however, the supply side system used does have a number of drawbacks. The first

is the constant elasticity of substitution between capital and labour over the sample

27See Klump et al. (2008), McAdam and Willman (2013) for examples.
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period, a major assumption which may cause bias in the results. The other assumption

made for this analysis is perfect competition in the markets. The number of firms

present in the EU is large, however, market power in some of the primary industries

and especially in industries such as energy - where production is government run in

many cases - means this assumption may break down. On top of this, the imposition

of the autoregressive structure to deal with the issue of autocorrelation does affect the

structural nature of the estimates.

The results show that technical change itself has not supported a rise in capital

intensity, however, the growth in the tertiary and quaternary sectors will. These sectors

have the highest capital intensity of the economy, therefore as output shifts to these

sectors, capital intensity in the total economy will also rise.

8.1 Further Research

The natural progress for the estimation of technical change would be to introduce

estimation methods with a time varying elasticity of substitution between capital and

labour. It may be the case that the elasticity of substitution differs at different points

of the business cycle, with a larger elasticity of substitution and more labour biased

technical growth during periods when the economy is at capacity and a smaller elasticity

of substitution and less labour biased technical growth after downturns in the economy.

A model like this may provide some insight into the rise of inequality that has occurred

in the USA and Europe after the financial crisis of 2007 and 2008. It would also

improve understanding of how production impacts the recovery and whether production

exacerbates or mitigates the jobless recoveries that have occurred since 1990 in the USA

and elsewhere (Schreft et al., 2003).

An implicit assumption when using the CES production function is that capital

is perfectly elastic; that it can be changed in each period. Further research into the

firm level production function, with a modified FOC for capital could be made that

includes more inelastic capital. For example, a vintage model of capital accumulation

(Boucekkine et al., 2011) may improve modeling of the investment decisions and how

technical change develops for each factor.

Another alternative would be to study how regulation is affecting the technical bias

in production. For example, whether the persistently low interest rates imposed in

2007/08, after the financial crisis in Europe and the USA has impacted production.

Or how the lower financial regulation in the western world since the 1970s has affected

production in the economy. The second question would be particularly interesting to

study as banking regulation tightens with the introduction of Basel III.
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9 Conclusion

This paper estimates the bias of technical change in the EU and asks whether it is

exacerbating the rise in inequality of factor income shares or not. Using a normalised

CES production function and its two FOCs, estimates of factor augmenting technical

change over the period of 1980-2007 show that it is not capital biased. The estimates

show that technical change is capital saving and labour using, which means technical

change has acted to mitigate the rise in capital intensity in the EU, rather than worsen

it. This result contributes to the literature on technical change as it looks at production

functions for each sector of the economy. Even in the sectors with the largest rise in

the capital share, technical progress has acted to reduce capital intensity. An elasticity

of substitution below unity confirms previous research and shows using Cobb-Douglas

production functions in theoretical models is inaccurate.

Using a normalised production function has augmented the results of this analysis.

The normalisation provides more meaningful estimations, allowing the parameters to be

properly compared with one another. The results are robust, significant and are consis-

tent with the theory of directed technical change, but not with neoclassical endogenous

growth theory. Estimates for each economic sector are also consistent, with the ex-

ponential functional form of technical progress favoured in all cases but the primary

sector.

The rise of capital intensity in the EU is an issue for policy makers concerned

with income inequality in the region. The rise in capital incomes and the squeezing

of labour income will worsen the rising inequality of the developed world. However,

technical change is acting to reduce the difference in factor income shares, rather than

worsen it.
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A Appendix I: Derivation of log linearised sys-

tem of equations

Firms are assumed to be profit maximising, so the FOCs with respect to capital and

labour are the marginal products of capital and labour:

∂Yt
∂Kt

= π0

(
Y0

K0
eγK(t−t0)

)σ−1
σ
(
Yt
Kt

) 1
σ

(20)

∂Yt
∂Lt

= (1− π)

(
Y0

L0
eγL(t−t0)

)σ−1
σ
(
Yt
Lt

) 1
σ

(21)

In neoclassical theory and under perfect competition, the marginal product of labour

and capital is the real wage and real user cost of capital respectively. Using the nominal

wage and nominal user cost of capital, the marginal products are the following:

∂Yt
∂Kt

=
rt
pt

(22)

∂Yt
∂Lt

=
wt
pt

(23)

Where r is the nominal user cost of capital, w is the nominal wage and p is the price

level. Combining equations (20) with (22) and multiplying both sides by Kt/Yt and

combining (21) with (23) and multiplying both sides by Lt/Yt leads to the final FOCs

that are represented as the labour and capital share in output. By transforming the

FOCs so that they are based on the capital and labour share of output, EU KLEMS

data can be used without the need for calculating the price level. This specification is

consistent with Klump et al. (2008).

rtKt

ptYt
= π0

(
Y0

K0
eγK(t−t0)

)σ−1
σ
(
Yt
Kt

) 1−σ
σ

(24)

wtLt
ptYt

= (1− π)

(
Y0

L0
eγL(t−t0)

)σ−1
σ
(
Yt
Lt

) 1−σ
σ

(25)

These FOCs are log linearised and the CES production function is transformed to a

log linear, per capita function as shown below. Log linearisation is done to create an ad-

ditive, rather than multiplicative relationship between the technical change parameter

and other parameters in the equation, this simplifies estimation.

Yt = Ȳ

[
π̄
(eγK(t−t̄)Kt

K̄

) 1−σ
σ

+ (1− π̄)
(eγL(t−t̄)Lt

L̄

) 1−σ
σ

] σ
1−σ

(26)

32



If we then log linearise and factorise with respect to
(
eγL(t−t̄)Lt

L̄

) 1−σ
σ

the following

equation is derived

log(Yt) = log(Ȳ )−log
(
Lte

γL(t−t̄)

L̄

)
−
(

σ

1− σ

)
log

[
π̄

(
eγK(t−t̄)Kt

K̄

) 1−σ
σ
/(

eγL(t−t̄)Lt
L̄

) 1−σ
σ

+(1−π̄)

]
(27)

Taking the log(Lt) to the right hand side, the log linearised form is derived.

log
Yt
Lt

= log
( Ȳ
L̄

)
+γL(t−t̄)− σ

1− σ

[
π̄e

σ−1
σ

[
γL(t−t̄)−γK(t−t̄)

]
Kt/K̄

Lt/L̄

1−σ
σ

+(1−π̄)

]
+εt (28)

These equations define the log linearised system of equations.

A.1 System with exponential functional form of technical

progress

log

(
Yt
Lt

)
= β0 + log

(
Ȳ

L̄

)
+
γLt̄

0.5

[
(
t

t̄
)0.5 − 1

]
− σ

1− σ
log

[
π̄e

(
γLt̄

0.5

[
( t
t̄
)0.5−1

]
− γKt̄

0.5
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( t
t̄
)0.5−1

])(
Kt/K̄

Lt/L̄

) 1−σ
σ

+ (1− π̄)

]
+ εt (29)

log

(
wtLt
ptYt
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= β1 + log(1− π̄) +

1− σ
σ

[
log

(
Yt/Ȳ

Lt/L̄
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− γLt̄

0.5

[( t
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− 1
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+ εt (30)

log

(
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− 1
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+ εt (31)

A.2 System with AR(2) structure
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(
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= β3 + log(1− π̄) +
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B Appendix II: Tables

B.1 Methodology

Table 3: Johansen test for cointegration
Cointegration (lag structure)

Equation T 1 2 3 4

FOCK Yes (2) Yes(5) Yes(1) Yes(1)* No
Trace Statistic 0.583 3.761 3.256 1.721 -
FOCL Yes(2) No Yes(2) No Yes(4)
Trace Statistic 2.610 - 3.751 - 0.310
CES Yes (3) Yes(5) Yes(3) Yes(1) Yes(5)
Trace Statistic 3.021 0.442 0.609 3.138 1.171
Note: 5% value of trace statistic for cointegration : 3.842
*cointegration found at the 10% level only
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B.2 Data

Table 4: Industry Breakdown

ISIC Code Industry Level

A-C Primary

A Agriculture and Hunting
B Forestry and Fishing
C Mining and Quarrying

D Secondary - Manufacturing

E-I Tertiary

E Electricity, Gas and Water Supply
F Construction
G Wholesale and Retail Trade
H Hotels and Restaurants
I Transport and Storage and Communication

J-P Quaternary

J-K Finance, Insurance, Real Estate and Business Services
L-Q Community Social and Personal Services
P Private Households with Employed Persons

Table 5: Summary Statistics
Sample Period: 1980-2007 T 1 2 3 4

Average Capital Share (π) 0.33 0.29 0.28 0.34 0.38
Capital share growth (pp) 7.42 15.82 5.65 9.37 4.16
r growth (%) 53.10% 20.74% 45.39% 54.78% 59.84%
Capital volume growth (%) 145.78% 59.32% 90.28% 162.05% 161.93%
w growth (%) 146.80% 67.61% 222.68% 125.69% 127.31%
Hours worked growth (%) 8.40% -49.10% -35.19% 12.77% 53.98%
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B.3 Results

Table 6: McKinnon Critical Values for ADF

Significance Level Critical Value
1% 4.294
5% 3.741
10% 3.452

B.4 Robustness Checks

Table 7: Robustness Checks: Total Economy
Parameters Hours worked

employees
Alt User Cost# Log K# 1980-1997 1998-2007

σ 0.586*** 1.001*** 1.103*** 0.712*** 0.550***
(0.020) (0.003) (0.146) (0.031) (0.070)

γK 0.029*** 0.070*** 3.914 -0.060 0.026***
(0.003) (11.824) (0.094) (0.017) (0.009)

γL -0.022*** 9638.710 -1.954 -0.028*** 0.023
(0.001) (58244.07) (2.810) (0.002) (0.043)

π 0.328 0.328 0.328 0.328 0.328

Stationarity
ADFFOCK -2.898 -3.654* -3.675** -2.804 N/A
ADFFOCL -4.659*** -3.669* -4.430*** -2.662 N/A
ADFY/L -3.897* N/A N/A -2.797 N/A

Convergence
(No. of iterations) Yes(57) Yes(22) Yes(18) Yes(14) Yes(19)
Note: standard errors in parentheses: *** p <0.01, ** p <0.05, * p <0.1
Critical values of ADF adjusted to MacKinnon (2010),
Insufficient observations for ADF test between 1998-2007
# System of FOCS estimated only
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