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Abstract  

A cyclic ordering strategy is selected to minimize transport costs for a Mexican distribution company 

specialized in industrial lubricants. Simulations we made first following the modified algorithm of Goyal. 

Several scenarios changing major and minor setup cost were compared with a method from Chopra & 

Goyal that agglomerates around the most ordered product. Goyal algorithm proved to generate lower 

average costs every time. Following this procedure other restrictions related to the company operations 

were introduced. First a method from Porras & Dekker is applied to include minimum order quantities. 

Then to include truck capacity restrictions Goyal algorithm is applied and the ordering is changed to 

improve the average percentage of filling from the trucks. Finally a non-cyclic strategy is used to compare 

the results and show the limitations from cyclic strategies. 
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1. Problem definition 
A Mexican distribution company Merdiz needs to optimize its distribution policy. The company has a 

portfolio specialized in industrial and transport lubricants. The basic parameters that characterize the 

market and operations are: 

 Portfolio is composed of 83 products with roughly 950 pallets ordered per year. 

 There is a minimum ordering quantity of 1 pallet per product. 

 There is a truck capacity of 24 pallets. 

 Products are sold in 6 types of presentations: Drums, buckets, IBC, bottles, kegs and boxes. 

A model is needed that will take the parameters of interest from the operation and can deliver an optimal 

strategy that could be used as a guideline to be updated into the company system. This guideline will be in 

terms of scheduling of trucks and product ordering.  

Several scenarios will be tried to understand the effects of changes in the economic parameters and the 

limitations in including a cyclic strategy for the company. 

Relevance to the subject and motivation 

The Joint replenishment problem is a complex theoretical mathematical problem with a direct application 

to logistic companies. The company becomes more difficult as we include other restrictions like truck 

capacities and minimum order quantities. The application leads to immediate cost savings if the economics 

parameter are measured properly and the models are applied carefully. 

Now the company has a system which has been updated and followed for the last two years for the purposes 

of financial reports and taxes. However there is not a guideline for improving truck efficiency or holding 

cost, basically the company follows an individual approach for the products and the trucks are filled as 

much as possible. Having a guideline that follows the status for each product with a joint approach would 

lead to a strategy that will minimize transport cost and will increase help to convert the system as a tool to 

enhance productivity in the logistics of the company too. 

Models to approach the problem 

Two papers were found to compare the basic joint replenishment problem. Later another paper is used to 

include the minimum order quantity and finally an approach is proposed to take care of the truck capacity 

problem. 

The classic approach for the Joint Replenishment Problem using a cyclic policy is found on Goyal (1974), 

which published an iteration that later was modified by van Eijs (1993). The method uses an algorithm in 

which two bounds are found for the optimal ordering schedule. From there different combinations for the 

individual product ordering are tried until an optimum is reached. 

Another approach is tested to compare it with the Goyal algorithm. This method is obtained from Chopra 

& Meindl (2012). It is a simpler method that could be compared to the basic JRP. It uses the same formula 

to obtain the optimal waiting time between orders. However it does not follow an exhaustive algorithm 

that tries all combinations of product ordering until finding an optimum. What it does is aggregates orders 

for smaller demands around the most ordered product to reduce costs. 

Those last methods were compared and the modified algorithm from Goyal find a better solution each 

time. However the savings and distribution saving are very small, most of them less than 1% and the reason 



1. Problem introduction 

2 

is both method use the same formula for the waiting time between orders. However the comparison helps 

to show the relation between the parameters used and introduce the problem to extend it later with more 

complex restrictions. 

We introduce a method from Porras & Dekker (2008) that uses MOQ, this approach uses the algorithm 

from Goyal but includes a restriction for the product ordering and analyses the jumps in the total cost 

generated by this restriction. The limitation with this model is that we have to relax the results to include 

mixed pallets, given that even if there is a minimum ordering, once the order surpasses the restriction the 

results can give orders that are not integers or multiples of the minimum ordering. That is a more complex 

restriction that we will not analyze in this report but will be interesting to have for further research. 

Finally an approach that includes the truck capacity is proposed. This method uses the definition of average 

truck to correct the total cost (Oudenes, 2015). Using the Goyal algorithm again and assuming the 

possibility of mixed pallets the individual optimal product schedule is fixed and the time between orders is 

variated. The objective is maximizing the average filling percentage of the trucks moving the size of the 

orders. The method delivered savings in total costs compared to Goyal algorithm for the scenarios tested. 

Evaluating measures and economic parameters 

 The JRP analyzed for this report uses a cyclic policy that assumes an equal ordering for each product each 

time. The variables are in terms of how much will be ordered and when it will be ordered. Once selected 

the optimal strategy we expect to have an ordering schedule will have a cyclic pattern. That cyclic pattern 

will be used to measure the total cost based in the next three definitions. 

 Holding Cost: This cost is linear depending on the average of orders, this definition depends on 

the assumption of a constant known demand. 

 Major Setup Costs: This is the number of times a truck is required. However it involves as well 

administrative cost like setting up the orders together and updating the data on the system. 

 Minor Setup Costs: This is the cost for getting a certain product in the truck. It does not depend 

on how much is loaded on the truck but if the product is loaded or not. Each product would have 

a different minor cost depending on their size. It will be measured as the labor cost involved with 

the loading/unloading of the product when the truck arrives. 

For testing all the models and test the relations between the variables and the parameters we use an 

approach with 4 products from the company. All the products have a certain type of presentation as we 

said before, so we took the total demand for IBC, buckets, drums and the rest of the products. The 

parameters are obtained through weighted averages, so that they recommend  

Once we test all models we wanted to use an approach that is a closer guideline to the company scenario, 

so we used the 19 most demanded products and a 20th product that will aggregate the rest of the product 

demand. That is made to include orders that are greater that one pallet which is the company operation 

restriction, and allow to find out a better redistribution on the trucks. We find that the method proposed 

optimizing the truck filling leads to interesting savings compared with Goyal algorithm. 

Finally the results are compared with a non-cyclical policy. What this method does is distributing the trucks 

in several orders, instead of having several trucks ordered at a time. What was found is that this method 

gives and improvement over Goyal algorithm, but not over the Goyal algorithm with the filling percentage 

of trucks optimized. This application gives an idea of cyclic strategies limitations and non-cyclic strategies 

complexity. 



 

 

3 

 
 

2. Background Information  

System description and Data extraction. 
The company Merdiz has a website that updates information over level of stock, sells and orders. The 

system however was started in 2013 and that is why there is not a possibility of extracting older information. 

Once log-in was allowed the data had to be accessed product by product. The information came to the 

level of transaction and it had to be sorted to be useful. The basic filters that had to be changed where: 

 Type of operation: the transaction could be sell, an order, or an update in stock created by 

cancelation, lost merchandise or theft. The information needed from the products was the demand, 

then only the sells where selected. 

 Category of product: The transactions came in individual packages, so the data had to be setup in 

pallets according to the type of product selected. 

 Date of operation: On this case we just use the total demand during the 2 years of analysis however 

the date will help us to show how the demand behaves in the next figures 2 and 3. 

 

Figure 1. Update from Company System 

 

 

On figure 2 we can observe that there are several peaks on the demand, and there is not a cyclical behavior 

leaning towards specific months. Talking to the managers of the company they commented that the demand 

is depending on a few big clients and the competence in the branch is creating big uncertainty because there 

are no long term contracts. That is not only bad news for the company, but also for the research because it 

makes forecasting of the demand more difficult. On this study we are taking a total constant known demand 

and that generates input for the models. However much still can be done in terms of forecasting for 

application on this company on further research. 
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On the other side the ordering is much more flat, we can see a peak on the beginning of this year because 

there was a big deal with a new client. However the company have only limited resources every month and 

it has to select according to the risk of an uncertain demand.  

 

When the demand of the product is compiled, filtered and converted into pallets. It can be seen that the 

demand is centered in a few products with high demand and for the rest there is a very irregular demand. 

A monthly demand and standard deviation is measured to get the coefficient of variance  𝑐𝑣 = 𝜎/𝜇. The 

graph shows that there is big uncertainty for most of the products involved. 
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Market Description 
We can understand why the demand of the company has such variance by looking at the customers. Most 

of the market is based on industrial manufacturers that require lubricants for their processes, there are also 

transport or distribution companies, which have a fleet of trucks that need to be maintained. Construction 

and government companies need special lubricants for construction machinery. The rest of the companies 

are dedicated to distribution to smaller companies or individual that do not get a discount on volume. For 

the next graph we see that there are a lot of sells done by individuals. However this is only the number of 

customers, but the percentages change when we look at the selling.  

 

 

When we take a closer look to the sells number we can see that even if all the costumers are individuals, 

the market is own by the distribution and industry companies that sell the lubricants to smaller costumers 

or to industries with enough scale to be direct consumers. All the other markets look small in comparison 

and they are used to diminish risk because close to 50% of all sells are divided in approximately 10 

companies. 
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Another interesting fact from the company is how they are being supplied. They have a contract with Shell 

and the supply is done from Houston, Texas while the warehouses are located in the center of Mexico. 

There is a lag in the ordering period of 5 to 7 days. There are two ways to pass the border, one is on the 

side of Laredo and the other on Brownsville, depending on how busy the customs agents are on each side. 

A truck would take around 2-3 days to do the trip. However the load always stays between 2 to 4 days on 

customs depending on how busy the season is or if there was a problem with the regulation in terms of 

import taxes or loading and packaging. 

In the border the trucks need to be switched. In United States the regulation for supplying this type of 

products only allows to have 24 pallets in the truck. On Mexico that regulation is more lax but the import 

is done from Houston so the truck capacity is 24 and later will be used as input for the models. 

Figure 7. Route from the Supplier to the Warehouse 

 

Once the service is done in Pachuca, the data is uploaded on the system and the product could stay in that 

city for direct service with costumers or it can be sent to other warehouses in other states in Mexico. So far 

those locations are in Puebla, Tula and Toluca. These warehouses are shown on the next figure to give an 

idea of the extension of the market. Shell makes arrangements with the distributors to obtain the 

distribution of a certain territory. The company cannot distribute to Mexico City because that area is 

assigned to a different distributor. However deals between distributors can be made to increase market 

recognition and joint sells. 

Figure 8. Routes from the central warehouse to the selling points 
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Presentation of the products and Demands 
As we already stablished there is a minimum order quantity of 1 pallet for all the products. However the 

products come in different presentations that vary in weight, maneuverability and volume. All of them are 

unloaded with a forklift but once they are requested from a customer they are unpacked and wrapped 

together. That means different operation times and manpower that involves different labor cost. That 

information will be used to define the minor ordering cost, needed as input for the simulations. 

Figure 9. Presentation of Products. 

                 Packaging available     Pails 19 liters  

 

 

 

 

 

 

 

             Drums 208 liters     IBC 1040 liters  

 

 

 

 

 

 

 

                Bottles 1 liter     Bottles 4 liters  
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                          Box (Depending on Product)        Keg 50 liters  

 

 

 

 

 

 

 

 

 



 

 

9 

 
 

3. Literature review 
Khouja and Goyal (2008) made a summary of this literature on the last 20 years on Joint replenishment 

problem. It is especially helpful as guideline for this review, because the paper applied from this report is 

also from Goyal. 

The joint replenishment problem is generally and objective function to minimize costs while satisfying 

demand. This function is composed by two parts: 

 Setup or ordering costs: For this case we divide this cost into major setup cost and minor setup 

cost. The first being the fixed cost for ordering a truck service and the second the individual cost 

of setting up a product inside the truck. 

 Holding costs: Involves the opportunity cost of holding the product on inventory while it is sold. 

For this case this cost is linear. 

A first thing that we have to specify when we calculate with a JRP problem is what kind of inventory policy 

is followed. A periodic review in which we assign a vector 𝒌 that specifies turns for a constant ordering. Or 

a continuous review that is called a can policy. For this policy there is a minimum level product 

replenishment and a can level. So that if a minimum level is reached, all the products with levels between 

the minimum and can level are ordered up to level, so we can have different orders every period (Johansen 

and Melchiors, 2003). For this case the company uses a periodic review and the papers applied use the same 

policy.  

There are first two ways of dealing with a joint distribution problem in terms of the objective function: 

Indirect group strategy (IGS): The most straightforward solution to this problem is to use of an EOQ for 

every product. That would lead to take the transport cost as individual instead of shared. It is obvious that 

this strategy is non-optimal and will not be followed on this report. 

Direct group strategy (DGS): The other possibility is taking all of the products in account in the objective 

function, which will give different subsets of products for each shipment. Aggregating small orders with 

larger ones that need to be flowing more often. These are the joint methods that we will compare on the 

study. 

The first interpretation of the DGS concept uses the EOQ as the IGS. First finding the most ordered 

product, then the rest of the products are allocated around that product with a vector 𝒌. Once done that, 

the vector of optimal frequency relative to the most ordered product is calculated taking into account its 

cost and the minor and holding cost related to the vector 𝒌 (Chopra & Meindl, 2012). This method is used 

on the report to compare it with the rest of the models. 

The traditional approach for this problem was developed by Goyal (1974). In this paper an iteration is 

developed that takes as variables the length of time until each truck is ordered 𝑇 and a vector of variables 

𝒌 that assign how much each product has to wait to get into the truck. First the formulas that optimize the 

objective function are obtained for each variable. Now, given that the formula for the cost is monotone 

decreasing in 𝒌, a maximum value of 𝑇 is taken when the vector 𝒌 is all one. Then a lower bound is 

generated and following an algorithm a finite number of sets are compared until the optimum is found. 

This general algorithm was later revised by several papers for using different bounds that would come faster 

to a result or that will include all possible scenarios. Van Eijs (1993) improved this algorithm to include 
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scenarios in which the minimum 𝑘𝑖 > 1. That is when there are orders of trucks that go empty. This 

corrected algorithm is the one used on the report. 

Several restriction and special applications are developed from this algorithm. What is especially interesting 

for us is Porras & Dekker (2006), which developed an algorithm based on van Eijs revision that includes 

minimum order quantities. The problem with this restriction is that it generates some jumps in the minimum 

total cost function. They resolve using a quadratic equation to get both bounds in which one side includes 

the total cost with the 𝑇 that has to be defined, and the other side is the total cost with 𝑇 using a vector of 

𝒌 = 1 and a vector of 𝒌 that includes the minimum order restrictions. 

Another paper was needed that takes care of the capacity restriction from the models. Some papers where 

spotted like Sindhuchau et al (2005) or Minner & Silver (2005). However they use dynamic models that are 

too complex to develop for the limited time of this research. Another simpler approach is used by Hoque 

(2006) that takes individual restrictions on capacity and investment. However this paper is not taken for the 

report because the applications involve problems with the capacity in the warehouse and the real problem 

with the company is the truck capacities. 

A simpler approach is used in the report, first the average trucks used according to capacity are used to 

correct the total cost (Oudenes, 2015). This approach uses the vector 𝒌 from Goyal algorithm and changes 

𝑇 to optimize the filling of the trucks. This method proved to reduce the average cost once costs are 

measured properly. 
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4. Data 
The data is obtained from a Mexican distribution company named Merdiz specialized on industrial and 

transport lubricants. The portfolio consist of 250 products, with 134 products with positive demand and 

83 with at least 1 pallet of demand. As we already stablished the minimum ordering quantity is 1 pallet.  

We assume prices and transport costs are stable during this period to facilitate calculation. The prices are 

expressed in pallets and are updated to the month march 2015 without any discounts. As all other 

parameters prices are expressed in pallets. 

The system in the business keeps track of any orders and supplies in the last 2 years. On this regard we 

have 2 years of information on sales from March 2013 to March 2015. This is the general information from 

the total demand. 

Table 1. General overview from data Description 

Period of Study March 2013-March 2015 

Total value of demand during the period 4,048,794 euros 

Amount of pallet demand 1946 

Number of products 134 

 

The system from the company has an individual update of demand, which means all parameters from 

our study have to be converted to pallets. Each product has a standardized size according to their 

application. That involves having different pallet setting. On the table below we can see that relation. 

This information will be used later to find the minor cost per product on section 6. 

Table 2. Set-up of pallets. 

Unit 
Liters per 
product 

Products per 
Pallet 

Layers in 
Pallet 

Products per 
Layer 

Drum 200 4 1 4 

Pail 19 42 3 14 

Tote 1040 30 1 1 

12 Bottles 11.35 48 4 12 

Box - 100 4 0 

IBC 1000 1 1 1 

Keg 50 9 2 4 

 

As it was shown on figure 6, most of the clients are industrial, transport or distribution companies. Those 

companies demand bigger sizes for their customers. On the next table we can see how relatively big are the 

demands for drums, IBC and buckets compared to the smaller presentations. When we arrive to the 

calculation of the parameters, we will see that first we will use 4 products and then 20 products to calculate 

the results. For getting the economic parameters as we will see in further detail in section 6, first we are 

summing the demands from the types and using weighted averages from the demand. We use 4 products 

to test all models that represent drums, pails, IBC and the rest of the products. The reason for doing that 

is the small percentage represented by the rest of the products as we can see on table 3. Those small 
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demands are handled together to get the results and then the results will be used as a guideline, from which 

the rest of the products will be handled individually. 

Table 3. Percentage of total value of 
demand 

Units 
% of Total 
Value 

Drum 77.41% 

Pail 7.49% 

12 Bottles 0.30% 

Box 0.17% 

IBC 14.43% 

Keg 0.19% 

 

Another reason to have s fewer sample of products that represent the total demand is the variation between 

the demands, not only between the types of products but between products as well. We can observe that 

the demand is centered in a few big sized products. 

 Table 4. Distribution of products according 
to value of total demand. 

Number of Products 
 in the Range 

Total Value of  
Product Demand 

37 0 to 1000 € 

13 1000 to 3000 € 

6 3000 to 5000 € 

12 5000 to 10000 € 

8 10000 to 50000 € 

6 50000 to 100000 € 

2 more than 100000 € 

 

Table 5. Distribution of products by number of pallets 

Number  
of Products 

 in the Range 
Total demand 

 in pallets 2013-2015 

44 1 to 5 

10 6 to 10 

11 11 to 20 

7 20 to 50 

5 50 to 100 

6 more than 100 
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5. Models 
The models will be based on the basic approach of the joint replenishment problem model made by Goyal 

(1976) and its revision by van Eijs (1993). To compare we use a different approach from Chopra & Meindl 

(2012) that relies on increase efficiency by conglomerating products around the most ordered product. 

Later we take an application of Goyal algorithm with the case of minimum order quantity, using the paper 

of Porras & Dekker (2008). Finally the major setup cost is corrected using the average trucks in a cycle. To 

include an analysis for truck capacity restriction. 

Assumptions 

 Holding costs are linear 

 There is not backlog 

 Demand is constant and known 

 Initial inventory is assumed to be 0 

 There are no price discounts 

 Mixed pallets are allowed 

Parameters for the Model. 

𝑆𝑜 major ordering cost 

𝐷𝑖 total demand rate in pallets for item 𝑖 per year 

𝑠𝑖 minor ordering cost 

ℎ𝑖 holding cost in per year 
 

General Concepts and problem formulation 

In both models the basic two variables are the length of time between each order 𝑇𝑜 and the multiplier 𝑘𝑖 

that generates vector 𝒌 and describes the length of time between each product order 𝑇𝑖. 

𝑇𝑖 = 𝑘𝑖𝑇𝑜  
 

(1.1) 

From this follows that the ordering for each product will be. 

𝑄𝑖 = 𝑇𝑖𝐷𝑖 
 

(1.2) 

To know exactly what units this variables represent we proceed with an example. If the unit period we are 

using is 1 year then we have: 

 𝑇𝑜 = 1 4⁄  of a year, 𝐷𝑖 = 8 pallets per year and 𝑘𝑖 = 2 for a product then: 

1
𝑇𝑜

⁄ = 4 orders per year, 1 𝑇𝑖
⁄ =Product i will be ordered 2 times per year, 𝑄𝑖 = 4 pallets per order.  

We always start distribution in period 0 for all products, then the ordering would be [4,0,4,0]. It is worth 

saying that the cycle of the product will be [4,0,4]. The cycle is when the ordering repeats itself. However, 

now we are just giving a general overview of the variables. In the problem with truck capacity restriction a 

more detailed ordering schedule example will be included with the products from the company. 

𝑇𝑜 is always a fraction of the period of time we are studying, so for expressing it in days. 



5. Models 

14 

𝑇𝑜 ∗ (365 𝑑𝑎𝑦𝑠) = 91.25 days between orders. 

Now once we understand the general concept of the variables, we formulate the general objective function 

that will be used to handle the joint replenishment problem. It includes the minor and major setup cost and 

a linear holding cost. All of those changed by two variables: 𝑇𝑜 and the vector of 𝑘𝑖 which we call 𝒌. This 

equation will be referenced several times during the report. Given that the problems part from the same 

equation, and assign additional restrictions like minimum order quantities or truck capacity. This function 

is defined as the average cost per time unit given. 

Min 𝑇𝐶𝑇𝑜,𝑘1,…,𝑘𝑛
=

1

𝑇0
(𝑆𝑜 + ∑ 𝑠𝑖

𝑘𝑖
⁄𝑛

1 ) + 𝑇𝑜
1

2
∑ ℎ𝑖𝐷𝑖𝑘𝑖

𝑛
1  (1.3) 

Joint replenishment model 
From Goyal (1976) we take that (1.3) can be minimized. If we take a fixed (𝑘1, … , 𝑘𝑛) then the basic cycle 

that optimizes TC is: 

  𝑇∗ = √
2(𝑆𝑜+∑

𝑠𝑖
𝑘𝑖

𝑛
1 )

∑ 𝐷𝑖ℎ𝑖𝑘𝑖
𝑛
1

  

 

(2.1) 

Once 𝑇∗ is substituted in (1.3) the optimal average total cost is found. This will be the outcome for 

comparing different models and the changes between parameters. 

  𝑇𝐶∗ = √2 (𝑆𝑜 + ∑
𝑠𝑖

𝑘𝑖

𝑛
1 ) (∑ 𝐷𝑖ℎ𝑖𝑘𝑖

𝑛
1 )  

 

(2.2) 

Goyal (1976) proved that for a fixed T, the variable cost of item 𝑖 is minimized by selecting an integer 𝑘𝑖(𝑇) 

which satisfies: 

  𝑘𝑖(𝑇)(𝑘𝑖(𝑇) − 1) <
2𝑠𝑖 𝐷𝑖ℎ𝑖⁄

𝑇2 ≤ 𝑘𝑖(𝑇)(𝑘𝑖(𝑇) − 1) 

 

(2.3) 

Originally this procedure (Goyal, 1974) obtains a maximal and minimal values of T for which a delimited 

number of scenarios has to be tested to find the optimum. From Van Eijs (1993) this two boundaries are 

corrected to include all scenarios, including 𝑘1 > 1 for all 𝑖. 

The formula of 𝑇∗ in (2.1) is monotone decreasing in (𝑘1, … , 𝑘𝑛) so 

 𝑇𝑚𝑎𝑥 occurs in 𝑇∗ with (𝑘1, … , 𝑘𝑛) = (1, … ,1) then: 

  𝑇𝑚𝑎𝑥 = √
2(𝑆𝑜+∑ 𝑆𝑖)𝑛

1

∑ 𝐷𝑖ℎ𝑖
𝑛
1

 

 

(2.4) 

According to Andres and Emmons (1974), if we take 𝑇𝐶∗ from (2.2) the minimum value of T should be 

𝑇𝑚𝑖𝑛 =
2𝑆𝑜

𝑇𝐶∗  

Yet in the first approach we only have an approximation of 𝑇𝐶∗ using (2.3) and (2.4). Once we have the 

boundaries in which the optimal values can be found. We proceed to follow an iterative procedure that will 

select a 𝑘𝑗 on each iteration to be summed as  𝑘𝑗 = 𝑘𝑗 + 1. Then 𝑇  and 𝑇𝐶∗ are calculated again and the 

iteration repeats until an optimum is reached.  The procedure is the next: 
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Modified algorithm of Goyal 
Step 1: Initialization 

a) (𝑘1
∗, … , 𝑘𝑛

∗ ): = (1, … ,1)  

Use (2.2) to get 𝑇𝐶∗ ≔ 𝑇𝐶(1, … ,1) 

b) Set 𝑇𝑚𝑎𝑥:= 𝑇𝐶∗ ∑ 𝐷𝑖ℎ𝑖
𝑛
1⁄  

Determine (𝑘1, … , 𝑘𝑛): = (𝑘1(𝑇𝑚𝑎𝑥), … , 𝑘𝑛(𝑇𝑚𝑎𝑥)) with (2.3) 

Determine 𝑇𝐶(𝑘1, … , 𝑘𝑛) with (2.2) 

c) If 𝑇𝐶(𝑘1, … , 𝑘𝑛) < 𝑇𝐶∗, then 

(𝑘1
∗, … , 𝑘𝑛

∗ ) ≔ (𝑘1, … , 𝑘𝑛)  

𝑇𝐶∗ ≔ 𝑇𝐶(𝑘1, … , 𝑘𝑛)  

Go back to step 1(b) 

Else got to step 1(d) 

d) Set 𝑇𝑚𝑖𝑛 ≔ 2𝐴/𝑇𝐶∗ 

Set 𝑇𝑐ℎ ≔ √2𝑠𝑖/(𝐷𝑖ℎ𝑖𝑘𝑖(𝑘𝑖 + 1)). This is the value that denotes the product that will change 𝑘𝑖 

for 𝑘𝑖 + 1 

Step 2: Set 𝑇 ≔ 𝑚𝑎𝑥𝑖𝑇𝑐ℎ(𝑖) 

 If 𝑇 ≤ 𝑇𝑚𝑖𝑛, then go to Step 4 

 Else go to Step 3 

Step 3: Evaluation of the cost in the new order 

 Set 𝑝 ≔ 𝑎𝑟𝑔𝑖𝑚𝑎𝑥𝑇𝑐ℎ(𝑖) (where p is the item that change from 𝑘𝑖 𝑡𝑜 𝑘𝑖 + 1) 

 Set 𝑘𝑝 ≔ 𝑘𝑝 + 1 and Set 𝑇𝑐ℎ(𝑝) = √2𝑠𝑝/(𝐷𝑝ℎ𝑝𝑘𝑝(𝑘𝑝 + 1)) 

 Calculate 𝑇𝐶(𝑘1, … , 𝑘𝑛) with (2.2) 

 If 𝑇𝐶(𝑘1, … , 𝑘𝑛) < 𝑇𝐶∗ then 

(𝑘1
∗, … , 𝑘𝑛

∗ ) ≔ (𝑘1, … , 𝑘𝑛)  

 𝑇𝐶∗ ≔ 𝑇𝐶(𝑘1, … , 𝑘𝑛) 

 𝑇𝑚𝑖𝑛 ≔ 2𝐴/𝑇𝐶∗ 

 Go back to Step 2 

Step 4. Termination of the algorithm 

 The optimal strategy is (𝑇∗; 𝑘1
∗, … , 𝑘𝑛

∗ ) and 𝑇𝐶∗. Final 𝑇∗ is obtained from (2.1) with vector 𝒌. 

 

JRP with Minimum Order Quantity Restriction 
This formulation is obtained from Porras & Dekker (2008). In this paper the original total cost function is 

changed with a correction factor ∆(𝒌). Which refers to the fraction of non-empty replenishments arising 

to correct when the smallest 𝑘𝑖 > 1.  

So we will take equation (1.3) than defines the general JRP. However on Porras & Dekker (2008) they do 

not use minor setup cost for the algorithm, because they work with full containers. So the cost per product 

is only expressed on the holding cost. We will follow their concept even if it will reflect on the outcome 

from the model. The minor cost for the company on this report are very low given the small labor cost in 

Mexico so the comparison with and without MOQ will still be valid. 
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𝑇𝐶(𝑇, 𝒌) =
𝐴∆(𝒌)

𝑇
+

1

2
𝑇 ∑ ℎ𝑖𝑘𝑖𝐷𝑖

𝑛
1   

 

(3.1) 

This correction factor functions with the idea that there are setup cost that will not be charged because of 

the gaps created when 𝑘𝑖 > 1. Then those gaps are counted using the principle of inclusion-exclusion. 

Adding a series that includes each product, pairs, triples and so on. The operator lcm denotes the least 

common multiple of all those combinations. 

∆(𝒌) = ∑ (−1)𝑖+1𝑛
1 ∑ (𝑙𝑐𝑚(𝑘𝛼1, … , 𝑘𝛼1))−1

{𝛼⊂{1,…,𝑛}:|𝛼|=𝑖}   

∆(𝒌) = ∑
1

𝑘𝑖

𝑛
1 − ∑

1

(𝑙𝑐𝑚(𝑘𝑖,𝑘𝑗))(𝑖,𝑗)⊆{1,…,𝑛} + ∑
1

(𝑙𝑐𝑚(𝑘𝑖,𝑘𝑗,𝑘𝑘))
− ⋯(𝑖,𝑗,𝑘)⊆{1,…,𝑛} + (−1)𝑛+1 1

(𝑙𝑐𝑚(𝑘1,…,𝑘𝑛))
  

 

(3.2) 

Porras & Dekker (2008) found proof that if at least one of the 𝑘𝑖 = 1 then ∆(𝒌) = 1. This concept is 

quickly commented for its implications but will not be used on the model given that almost all cases have 

at least one product with 𝑘𝑖 = 1. The idea of having a correction factor is especially useful when there are 

MOQ, given that the iteration arrives to high values for the vector 𝒌. This actually happened for 2 scenarios 

on this report that include extreme measures on low major setup cost and very high MOQ. However when 

we have at least one 𝑘𝑖 = 1 the results are the same with or without correction factor.  

We formulate the problem with the minimum order quantity restriction (MOQ) 

𝑀𝑖𝑛 𝑇𝐶(𝑇, 𝒌) =
𝐴

𝑇
+

1

2
𝑇 ∑ ℎ𝑖𝑘𝑖𝐷𝑖

𝑛
1   (3.3) 

𝑠. 𝑡.  𝑘𝑖𝐷𝑖𝑇 ≥ 𝑀𝑂𝑄𝑖 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖   

𝑇 > 0  

𝑘𝑖 ≥ 1 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝑓𝑜𝑟 𝑖 = 1, … , 𝑛  

 

Now for a fixed vector 𝒌 = (𝑘1, … , 𝑘𝑛), the T value minimizing TC is: 

𝑇∗ = √
2𝐴

∑ ℎ𝑖𝑘𝑖𝐷𝑖
𝑛
1

  

 

(3.4) 

For a fixed T, the optimal value of 𝒌 is: 

𝑘𝑖(𝑇) = ⌈
𝑀𝑂𝑄𝑖

𝐷𝑖𝑇
⌉  𝑓𝑜𝑟 𝑖 = 1, … , 𝑛  

 

(3.5) 

With this values Porras & Dekker (2008) generate the first approach to the bounds using 𝑇∗ with a vector 

of (𝒌) = (1, … ,1) 

𝑇𝑢𝑛𝑐
∗ = √

2𝐴

∑ ℎ𝑖𝐷𝑖
𝑛
1

  

 

(3.6) 

Then a vector 𝒌(𝟎) is defined with that value 𝑇𝑢𝑛𝑐
∗  

𝒌𝒊
(𝟎)

= ⌈
𝑀𝑂𝑄𝑖

𝐷𝑖𝑇𝑢𝑛𝑐
∗ ⌉  𝑓𝑜𝑟 𝑖 = 1, … , 𝑛  

 

(3.7) 



5. Models 

17 

Now for generating the bounds a quadratic function with the total cost function is set for getting both 

limits. First 𝑇𝐶𝑙𝑜𝑤 is defined as the cost curve with vector (𝒌) = (1, … ,1). This value has to be equal to 

the total cost that contains the MOQ restrictions, the solution from that equation will be the bounds: 

𝑇𝐶𝑙𝑜𝑤(𝑇) = 𝑇𝐶(𝑇𝑢𝑛𝑐
∗ , 𝑘(0))  

The same expression is shown extended below. 

𝐴

𝑇
+

1

2
𝑇 ∑ ℎ𝑖𝑘𝑖𝐷𝑖

𝑛
1 =

𝐴

𝑇𝑢𝑛𝑐
∗ +

1

2
𝑇𝑢𝑛𝑐

∗ ∑ ℎ𝑖 ⌈
𝑀𝑂𝑄𝑖

𝐷𝑖𝑇𝑢𝑛𝑐
∗ ⌉ 𝐷𝑖

𝑛
1   

 

(3.8) 

Where the lower value of T will be 𝑇𝑙𝑜𝑤
0  and the upper bound 𝑇𝑢𝑝𝑝

0 . 

The same procedures that we find in Goyal and van Eijs are followed for the iteration, just that for this 

case the definition of the bounds and the optimal 𝑘𝑖 and T are changed by the minimal order quantity, we 

follow the notation of the paper. But the concept will be the same, finding two bounds that will contain 

the optimal value and make those bounds closer until an optimum is found. 

Algorithm Joint Replenishment Problem with MOQ 

Step 0. Evaluate 𝑇𝑙𝑜𝑤
0  and 𝑇𝑢𝑝𝑝

0  determine 𝒌(𝟎) with (3.7) 

Set 𝑇(0) = min
𝑖

{𝑇𝑖
(0)

} 

Where 

𝑇𝑖
(0)

= {

𝑀𝑂𝑄𝑖

𝐷𝑗

1

𝑘
𝑗
(0)

−1
 𝑖𝑓  𝑘𝑗

(0)
> 1,

               ∞              𝑖𝑓   𝑘𝑗
(0)

= 1 
  

Set 𝑇𝐶𝑚𝑖𝑛
(0)

= ∞ and 𝑛 = 1 

 

Step 1. For 𝒌(𝒏−𝟏) determine 𝑇(𝑛) from: 

𝑇(𝑛) = max
𝑗

{
𝑀𝑂𝑄𝑖

𝐷𝑖𝑘
𝑗
(𝑛−1)} and set: 𝐽(𝑛) = {𝑖: max

𝑖=1,…,𝑛
{

𝑀𝑂𝑄𝑖

𝐷𝑖𝑘
𝑗
(𝑛−1)}} 

Evaluate 𝑇𝑛−1
∗  using (3.4) with 𝒌(𝒏−𝟏) 

Set 𝑇𝐶𝑚𝑖𝑛
(𝑛)

= {
𝑚𝑖𝑛 {𝑇𝐶𝑚𝑖𝑛

(𝑛−1)
, 𝑇𝐶(𝑇𝑛−1

∗ , 𝒌(𝒏−𝟏)}  𝑖𝑓 𝑇𝑛−1
∗ ∈ [𝑇(𝑛), 𝑇(𝑛−1)] 

𝑚𝑖𝑛 {𝑇𝐶𝑚𝑖𝑛
(𝑛−1)

, 𝑇𝐶(𝑇(𝑛), 𝒌(𝒏−𝟏)), 𝑇𝐶(𝑇(𝑛), 𝒌(𝒏))}  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where 

𝑘𝑗
(𝑛)

= {
𝑘𝑗

(𝑛−1)
+ 1 𝑓𝑜𝑟 𝑗 ∈ 𝐽(𝑛)

𝑘𝑗
(𝑛−1)

 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  

 

Step 2. If  𝑇(𝑛) ≤ 𝑇𝑙𝑜𝑤
0  STOP and set 𝑇𝐶𝑚𝑖𝑛 = 𝑇𝐶𝑚𝑖𝑛

(𝑛)
. Otherwise set 𝑛 = 𝑛 + 1 and Go to Step 1 

End of algorithm 
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Joint Replenishment Problem adjusting to most ordered product 
For this method first all products are calculated separately to look for the most ordered product. The 

individual orders are taken from the economic order quantity formula (EOQ) from Chopra & Meindl 

(2012). However the cost have to be changed, instead of just ordering cost we have the minor and major 

setup cost per product. 

𝑆𝑖
∗ = 𝑠𝑖 + 𝑆𝑜 

 

(4.1) 

Then EOQ formula comes from solving the simplest replenishment problem that includes only holding 

cost and ordering costs. 

𝑇𝐶𝑖 = (
𝐷𝑖

𝑄𝑖
) (𝑆𝑖

∗) + (
𝑄𝑖

2
) ℎ𝑖 ∀𝑖 

We find the optimal order quantity by taking first order derivatives. 

𝑄𝑖
∗ = √

2𝐷𝑖𝑆𝑖
∗

ℎ𝑖
  ∀𝑖  

Finally for the ordering frequency for each product, we just divide the demand by the optimal quantity. The 

notation 1 𝑇𝑖⁄  was chosen instead of just 𝑛𝑖 to be comparable with the last models shown. 

1

𝑇𝑖

̅
=

𝐷𝑖

𝑄𝑖
∗ = √

𝐷𝑖ℎ𝑖

2𝑆𝑖
∗  ∀𝑖  

 

(4.2) 

Now, the most ordered product is selected to be a reference for the other products which will be ordered 

with it. 

  
1

𝑇

̅
=

1

𝑇𝑖
∗

̅
= 𝑚𝑎𝑥 {

1

𝑇𝑖

̅
, 𝑖 = 1, … , 𝑛} 

 

(4.3) 

The ordering from the rest of the product is calculated again with a minimum boundary that includes only 

the minor setup cost. 

1

𝑇𝑖

̿
= √

𝐷𝑖ℎ𝑖

2𝑆𝑖
 ∀𝑖  

 

(4.4) 

A multiple 𝑘𝑖 will be referencing the relative ordering. The most ordered product will get 𝑘𝑖
∗=1, given that 

is ordered every time. The rest of the products will follow this formula. 

  𝑘𝑖 = ⌈
1

𝑇

̅ 1

𝑇𝑖

̿
⁄ ⌉ ∀𝑖 

 

(4.5) 

Now to get the final ordering cycle or the ordering from the most ordered product. We use equation (2.1) 

which is obtained from Goyal (1974). 

  
1

𝑇𝑜
= √

∑ ℎ𝑖𝑘𝑖𝐷𝑖
𝑛
1

2(𝑆𝑜+∑
𝑠𝑖
𝑘𝑖

𝑛
1 )

 

 

(4.6) 

Finally the ordering per each product is corrected following 1 𝑇𝑜⁄ . 
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1

𝑇𝑖
= (

1

𝑇𝑜𝑘𝑖
) ∀𝑖  

 

(4.7) 

Now we have a simpler procedure for solving JRP. If we can observe the essence of the method is following 

also an iterative process. It gives a maximum and minimum boundaries for the product ordering and 

finishes with Goyal formula. However it will not give the optimal because the results are only corrected 

once. 

Joint Replenishment Model with Truck Capacity 
 

The problem once we incorporate truck capacity is that more than one truck is needed to refill stock, then 

the cost is not properly measured because the major setup cost is just the fixed cost of one truck. Oudenes 

(2015) uses the average trucks used per order 𝑩. Then those extra trucks are included in the input of the 

model. If we recall the model from equation (1.3) with this change we have equation (5.1). 

Min 𝑇𝐶𝑇𝑜,𝑘1,…,𝑘𝑛
=

1

𝑇0
(𝐵𝑆𝑜 + ∑ 𝑠𝑖

𝑘𝑖
⁄𝑛

1 ) + 𝑇𝑜
1

2
∑ ℎ𝑖𝐷𝑖𝑘𝑖

𝑛
1  

 

(5.1) 

The same algorithm from Van Eijs (1993) will be used to get the output and compare the cost with the new 
major cost. However for getting the results we need to know how to get the truck schedule. The way to do 
it is taking each cycle. That means the pattern that shows when all the orders have been delivered. It is a 
cycle because that pattern will repeat itself during the period chosen, which in this case will be 2 years. 
First we will take a specific result from Goyal that will be shown in the next section. We will take the setting 

shown below for the input. The variable 𝑤 is the number of workers are needed for the shift on the truck 
unloading, which will affect the minor setup cost. 
 

𝑆𝑜 = 500     𝑤 = 5 
 

Once we run the algorithm the result for the vector 𝒌 is: 
 

Table 6. Outcome 𝒌 

k1   k2   k3   k4  

1 2 1 6 

 

For getting the length of the cycle we have to take the least common multiple (lcm) of the vector 𝒌. That 
means for this case we will have a pattern of distribution that will repeat itself until the demand is met. This 
pattern will give us the average of trucks. First, we show in which periods there will be an order from a 
product with a binary matrix. 
 

Table 7. Decision ordering schedule 

Product\Period 0 1 2 3 4 5 6 

1 1 1 1 1 1 1 1 

2 1 0 1 0 1 0 1 

3 1 1 1 1 1 1 1 

4 1 0 0 0 0 0 1 
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From this distribution schedule we need to get the ordering following equation (1.2), the numbers for each 
product are. 
 

Table 8. Ordering quantity per product 

Product D T k O 

1 1,539 0.025 1 38.5 

2 170 0.025 1 4.3 

3 223 0.025 1 5.6 

4 14 0.025 4 1.4 

 
 
In table 9 we see the decision matrix multiplied by the ordering matrix for each product, this will be the 
pallet ordering schedule for the cycle. 
 
Table 9. Pallet ordering schedule 

Product\Period 0 1 2 3 4 5 6 

1 38.5 38.5 38.5 38.5 38.5 38.5 38.5 

2 4.3 0 4.3 0 4.3 0 4.3 

3 5.6 5.6 5.6 5.6 5.6 5.6 5.6 

4 1.4 0 0 0 0 0 1.4 

Total 49.8 44.1 48.4 44.1 48.4 44.1 49.8 

 
 
We sum the number of pallets for each order and adjust the number of trucks according to the capacity. 

For this case if we take a truck capacity of 24 pallets, and the average from the cycle is 2.5 trucks, which 

come from the number of trucks ordered. That will be the value for 𝑩 to adjust the major setup cost. To 

define this variable 𝐵 is the average number of trucks over all cycles. 

Table 10. Truck schedule 

Product\Period 0 1 2 3 4 5 6 

Number of trucks needed 2.07 1.84 2.01 1.84 2.01 1.84 2.07 

Number of trucks ordered 3 2 3 2 3 2 3 

 

So far we have the parameter that will help us to correct the total cost using equation (5.1). This parameter 

however cannot be used inside Goyal algorithm because 𝐵(𝐶𝑎𝑝; 𝑇; 𝑘1, … , 𝑘𝑛) depends on 𝑇 and vector 

𝒌, as well as the capacity of the truck. Then if we want to use it in Goyal algorithm we will be disrupting 

equation (2.1) that leads to an optimal 𝑇. Several iterations were tried and even if the 𝑇∗ is replaced by 𝑇𝑐ℎ 

or 𝑇𝑚𝑖𝑛 the results are an overall increase in cost. And that is given due to the fact that by adding truck 

capacity, if we use any 𝐵 to correct cost, then the cost will increase and that will lead to less orders with 

more pallets each time. That will increase the number of trucks but it does anything to improve the truck 

filling efficiency. That is why the next procedure is proposed in which the average filling percentage of the 

trucks should be maximized modifying the final 𝑇.  

So we will run the normal Goyal algorithm and in Step 4 instead of selecting 𝑇∗ from equation (2.1). We 

follow the next simple procedure, first we define. 
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𝑂𝑖𝑡(𝑘𝑖)  This variable indicates if a certain product has an order in a certain ordering period. This 

is a binary variable depending on 𝑘𝑖 

𝐷𝑖  Demands in pallets per year 

𝑇  Time in between orders, this will be the variable to define in the next method 

𝑇∗  Optimal time between orders chosen by Goyal algorithm 

(𝑘1
∗, … , 𝑘𝑛

∗ )  Optimal vector 𝒌 obtained from Goyal algorithm 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 The capacity of trucks in pallets 

 𝑙𝑐𝑚  Least common multiple from vector (𝑘1, … , 𝑘𝑛) 

Now we first give a formal definition of 𝐵. We had already shown manually how the variable is constructed, 

so for getting the formal definition, we need the average in a cycle of the rounded up numbers of the pallets 

ordered in every period divided by the capacity of the trucks. We have that a cycle is the period in which at 

least all products are ordered twice. As we see we have 𝑙𝑐𝑚(𝑘1, … , 𝑘𝑛) + 1 because we start at period 0, 

where all the products are ordered. 

 

𝐵 =
∑ (⌈

∑ 𝑂𝑖𝑡𝐷𝑖𝑇𝑘𝑖
𝑛
𝑖=1

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
⌉)𝑙𝑐𝑚

𝑡=0

𝑙𝑐𝑚(𝑘1,…,𝑘𝑛)+1
  

 

(5.2) 

Now what we want to improve is the efficiency in the truck filling, so for getting that we need to get the 

average of the division between the pallets ordered and the pallet capacity from the trucks ordered. 

 

𝐹𝑖𝑙𝑙%𝑇𝑟𝑢𝑐𝑘𝑠 =

∑
(

∑ 𝑂𝑖𝑡𝐷𝑖𝑇𝑘𝑖
𝑛
𝑖=1

⌈
∑ 𝑂𝑖𝑡𝐷𝑖𝑇𝑘𝑖

𝑛
𝑖=1

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
⌉𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

)
𝑙𝑐𝑚
𝑡=0

𝑙𝑐𝑚(𝑘1,…,𝑘𝑛)+1
  

 

(5.3) 

If we take 𝐹𝑖𝑙𝑙%𝑇𝑟𝑢𝑐𝑘𝑠 as the objective function, we have that we will maximize the filling percentage of 

the trucks in a cycle. The variable to optimize the objective function will be 𝑇. The key restriction will be 

that the total average cost has to be bigger than the one with the optimal variables obtained with the Goyal 

algorithm. The results from this problem are solved with Excel Solver.  

 

 

max
𝑇

∑
(

∑ 𝑂𝑖𝑡𝐷𝑖𝑇𝑘𝑖
𝑛
𝑖=1

⌈
∑ 𝑂𝑖𝑡𝐷𝑖𝑇𝑘𝑖

𝑛
𝑖=1

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
⌉𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦

)
𝑙𝑐𝑚
𝑡=0

𝑙𝑐𝑚(𝑘1,…,𝑘𝑛)+1
      

 

s.t.  𝑇𝐶𝑅(𝑇; 𝑘1
∗, … , 𝑘𝑛

∗ ) ≤ 𝑇𝐶𝑅(𝑇∗; 𝑘1
∗, … , 𝑘𝑛

∗ ),  𝑘𝑗 ≥ 1 , 𝐷𝑗 ≥ 0 , 𝑂𝑖𝑡 = {0,1}, 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ≥ 1  

 

 

This function is not continuous so the problem is difficult to maximize. However the formal definition of 

the problem is complete and the results show improvements in cost while increasing filling efficiency. The 
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lcm has to be also restricted, if it is larger than the number of orders in a time period, then the number of 

orders will be used to obtain the averages for 𝐵 and 𝐹𝑖𝑙𝑙 %𝑇𝑟𝑢𝑐𝑘𝑠. 
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6. Calculation of economic parameters 
 

In the result section we use the data first from 4 products to show clearly the vector 𝒌 and all the procedures 

explained before (Goyal, MOQ and truck capacity). Later we expand these results for 20 products to include 

the Goyal algorithm with truck capacity restriction. We use the next methods to obtain the economic 

parameters. 

 

Parameters per product 

Extraction of parameters for 4 products 
 

The products that are selected are not specific but 4 types of products: drums, buckets, IBC and the rest 

types with smaller demands. We define the next variables to show the formal method to obtain the 

parameters. 

𝑖   Product 𝑖 
𝑗  Type of product 𝑗 according to product 𝑖 
𝐷𝑖𝑗   Annual demand in pallets per product with a certain type of product. 

𝑝𝑖𝑗   Price per pallet of a certain product with a certain type of product 

𝑠𝑖𝑗   Minor setup cost per pallet of a certain product with a certain type of product 

 
A new demand is proposed that will be the total demand for each type of product 
 

𝐷𝑗 = ∑ 𝐷𝑖𝑗
𝑛
𝑖=1    for each 𝑗 

 
The price is calculated with a weighted average according to the demand of each type 
 

𝑝𝑗 = ∑
𝐷𝑖𝑗𝑝𝑖𝑗

𝐷𝑗

𝑛
𝑖=1   for each 𝑗 

 
The minor setup cost is calculated in the same way as the price 
 

𝑠𝑗 = ∑
𝐷𝑖𝑗𝑠𝑖𝑗

𝐷𝑗

𝑛
𝑖=1    for each 𝑗 

 
On Appendix 1 we can see the product parameters once we used this procedure for the 4 types of products. 
 

Extraction of parameters for 20 products 

For the last case on the result section we use 20 products instead of 4. The case shown is Goyal method 
with truck capacity restriction. The reason for using 20 products instead of 83 is that when we use the 83 
products the results for most of the products are less than 1 pallet which does not reflect the operation of 
the company that needs at least 1 pallet. So what is done instead is select the 19 products with the greatest 
annual demand per pallet with their respective demands and prices. For the 20th product an aggregation is 
made with the rest of the products with smaller demand. The same procedure as before is used with a 
weighted average depending on demand. For practical purposes if we want to get the complete truck 
schedule with 83 products, we can manage the rest of the products individually with a guideline already set. 
On appendix 2 we can observe the data we used for obtaining the results. 
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Minor Setup Cost  
 

We assume that the minor setup cost each product has is related to the wage cost of unloading the 
product and setting it up for the customers. We need to define how much time in minutes that operation 
takes. The idea behind it is that the size of the product will involve different handlings. When a pallet is 
unloaded it always will be done with a forklift, for all products that will be the same. However the handling 
of the product when is opened and setup for distribution will take different times according to its size and 
number. There is also a number of workers required during the operation that will change the cost.  
 

𝐴𝑣𝑟𝑔𝑖  Average time in minutes for handling a unit of product 

𝑃𝑎𝑙𝑙𝑒𝑡𝑖  Number of products that fit in a pallet 

𝑊𝑎𝑔𝑒  Wage per minute of a warehouse worker in the company 

𝑊𝑜𝑟𝑘𝑒𝑟𝑠 Amount of workers used during the operation   
 
Then the minor cost will be defined as. 
 

𝑆𝑖 = 𝐴𝑣𝑒𝑟𝑔𝑖 ∗ 𝑃𝑎𝑙𝑙𝑒𝑡𝑖 ∗ 𝑊𝑎𝑔𝑒 ∗ 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 
 
The next table shows how the calculation done depending on the kind of presentation the product has. 

 
 

 

General parameters 

The general parameters changed to test the models will be the major and minor setup costs, minimum 

ordering quantities and capacities of the trucks. All the rest of the parameters will remain constant. In the 

next table we show the ranges on which we will test the different scenarios for the economic parameter and 

the justification why those values are reasonable. 

Table 12. Description of general economic parameters  

Parameter Justification Value range 

𝑆𝑜 The average value per truck the company faces is around 610 euros {50, 250, 500, 750, 1000} 

𝑟 The interest rate requested to Mexican companies for loans {16%} 

𝑊𝑜𝑟𝑘𝑒𝑟𝑠 The number of workers in operation changes proportionally the minor setup 
cost. For a normal operation 5 workers are available 

{1, 3, 5, 7, 10} 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 The capacity of the trucks from the company are 24 pallets and on some 
exceptions smaller trucks are used 

{5, 10, 20, 24} 

𝑀𝑂𝑄 The minimum ordering quantity from the provider is 1 pallet per product {1, 3, 5, 7, 10} 

 

Table 11. Minor setup cost setting 

Unit Liters 
Packages 
per Pallet 

Average 
Time Unit 
(Minutes) 

Wage per 

minute € 

Workers needed 
during operation 

Minor Cost 

Pallet € 

Drum 200 4 16 0.06 1 3.94 

Pail 19 42 6 0.06 1 15.53 

IBC 1000 1 20 0.06 1 1.23 

Rest - - 16 0.06 1 11.69 
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7. Results 
7.1 Examples to represent all models (4 products) 
As we explained in previous sections in the first part of the results we took 4 products that represent the 4 

different categories of products: Drums, buckets, IBC and the rest. The reason is to have a setting that will 

allow us to test all models and be more transparent showing the vector 𝒌. The calculation of parameters 

for the 4 products can be reviewed in section 6 and the data used for the results is on Appendix 1. On table 

13 we can observe the results from Goyal on the left side and on the right side from Chopra. The two 

parameters changed are the major setup cost and the amount of workers needed in the unloading operation 

(this variable affects minor setup cost, refer to section 6). By observing the results on costs from Goyal 

algorithm are always equal or slightly less than the one obtained with the Chopra & Meindl (2012), and the 

annual orders are almost the same.  

However percent changes are really small. The reason for that is both use the same formulas for adjusting 

𝑇, and in this case the minor costs are relatively small so a change in vector 𝒌 does not reflect in a large 

change in total costs. 

Even if the results are tied for both methods we can see that the next effects are observed while changing 

the parameters: 

 When the major setup cost increases and we fix the minor setup cost. The time between orders 

increases and the number of order decreases. Also 𝑘𝑖 increases which means the products will be 

ordered together more often given that number of orders decrease. 

 When the minor setup cost increases and we fix the major setup cost. 𝑘𝑖 increases and that means 

some products will be delayed with a higher order. Also the number of orders will decrease given 

that now is more expensive to load products on the truck. 

Table 13. Results 4 products. Changing major and minor setup costs 

So w(Si) Goyal Chopra & Meindl % ∆TRC 

    Orders TRC  k1   k2   k3   k4  Orders TRC  k1   k2   k3   k4   

50 1 53.2 6,900 1 2 1 6 53.2 6,900 1 2 1 6 0.00% 

 3 48.6 8,262 1 3 1 9 48.6 8,262 1 3 1 9 0.00% 

 5 43.3 9,323 1 3 1 10 46.2 9,350 1 4 1 10 0.29% 

 7 42.6 10,246 1 4 1 12 42.6 10,246 1 4 1 12 0.00% 

 10 38.3 11,456 1 4 1 13 38.3 11,456 1 4 1 13 0.00% 

               

250 1 24.6 13,504 1 1 1 3 24.6 13,504 1 1 1 3 0.00% 

 3 22.8 14,645 1 1 1 4 24.7 14,690 1 2 1 4 0.31% 

 5 23.8 15,429 1 2 1 6 23.8 15,429 1 2 1 6 0.00% 

 7 22.8 16,122 1 2 1 6 22.8 16,122 1 2 1 6 0.00% 

 10 21.6 17,098 1 2 1 7 23.2 17,154 1 3 1 7 0.33% 

               

500 1 17.7 18,639 1 1 1 2 17.7 18,639 1 1 1 2 0.00% 

 3 17.0 19,521 1 1 1 3 17.0 19,521 1 1 1 3 0.00% 

 5 16.4 20,327 1 1 1 4 17.7 20,496 1 2 1 4 0.83% 
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 7 17.3 21,042 1 2 1 5 17.3 21,042 1 2 1 5 0.00% 

 10 16.8 21,821 1 2 1 6 16.8 21,821 1 2 1 6 0.00% 

               

750 1 14.6 22,635 1 1 1 2 14.6 22,635 1 1 1 2 0.00% 

 3 14.2 23,390 1 1 1 3 14.2 23,390 1 1 1 3 0.00% 

 5 13.8 24,078 1 1 1 3 13.8 24,078 1 1 1 3 0.00% 

 7 13.5 24,736 1 1 1 4 14.5 24,988 1 2 1 4 1.02% 

 10 14.2 25,662 1 2 1 5 14.2 25,662 1 2 1 5 0.00% 

               

1000 1 12.6 26,014 1 1 1 1 12.7 26,025 1 1 1 2 0.04% 

 3 12.4 26,690 1 1 1 2 12.4 26,704 1 1 1 3 0.05% 

 5 12.2 27,309 1 1 1 3 12.2 27,309 1 1 1 3 0.00% 

 7 11.9 27,901 1 1 1 3 12.0 27,910 1 1 1 4 0.03% 

  10 11.6 28,746 1 1 1 4 12.5 28,986 1 2 1 4 0.83% 

 

In the next table we observe that the slight changes in vector 𝒌 between models does not reflect much in 

the cost and they correct themselves with the holding costs. We include the average CPU time to compare 

it with the model from Porras & Dekker, now we will see this times are relatively small for all scenarios. 

We can see the next observations as the parameters are changed: 

 If the parameter for major setup cost increases fixing the minor setup cost parameter. Then the 

total minor setup cost decreases. The reason for that is the vector 𝒌 decreases and number of 

orders as well. That means bigger and less frequent orders are made for most of the products. 

 If the parameter for minor setup cost increases fixing the parameter for major setup cost, the 

holding cost increases. Given that less orders are made for some products, the orders are getting 

bigger on average and that increases holding costs. 

Table 14. Breakdown of average total costs on table 13 

So w(Si) Goyal Chopra & Meindl % ∆TRC 

  

TRC 
Major 
setup 
cost 

Minor 
setup 
cost 

Holding 
cost 

𝑇∗ 

Average 
CPU 
time 

TRC 
Major 
setup 
cost 

Minor 
setup 
cost 

Holding 
cost 

𝑇∗ 

Average 
CPU 
time 

 

50 1 6,900 2,659 792 3,450 0.019 0.67 6,900 2,659 792 3,450 0.019 - 0.00% 

 3 8,262 2,431 1,700 4,131 0.021 0.96 8,262 2,431 1,700 4,131 0.021 - 0.00% 

 5 9,323 2,166 2,495 4,662 0.023 0.89 9,350 2,311 2,364 4,675 0.022 - 0.29% 

 7 10,246 2,131 2,992 5,123 0.023 1.17 10,246 2,131 2,992 5,123 0.023 - 0.00% 

 10 11,456 1,915 3,813 5,728 0.026 1.33 11,456 1,915 3,813 5,728 0.026 - 0.00% 

               

250 1 13,504 6,147 605 6,752 0.041 0.33 13,504 6,147 605 6,752 0.041 - 0.00% 

 3 14,645 5,705 1,617 7,323 0.044 0.36 14,690 6,171 1,175 7,345 0.041 - 0.31% 

 5 15,429 5,945 1,770 7,715 0.042 0.56 15,429 5,945 1,770 7,715 0.042 - 0.00% 

 7 16,122 5,689 2,372 8,061 0.044 0.48 16,122 5,689 2,372 8,061 0.044 - 0.00% 

 10 17,098 5,396 3,153 8,549 0.046 0.60 17,154 5,792 2,785 8,577 0.043 - 0.33% 
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500 1 18,639 8,850 470 9,320 0.056 0.31 18,639 8,850 470 9,320 0.056 - 0.00% 

 3 19,521 8,505 1,255 9,760 0.059 0.36 19,521 8,505 1,255 9,760 0.059 - 0.00% 

 5 20,327 8,221 1,942 10,163 0.061 0.39 20,496 8,845 1,403 10,248 0.057 - 0.83% 

 7 21,042 8,667 1,854 10,521 0.058 0.70 21,042 8,667 1,854 10,521 0.058 - 0.00% 

 10 21,821 8,407 2,503 10,910 0.059 0.58 21,821 8,407 2,503 10,910 0.059 - 0.00% 

               

750 1 22,635 10,931 387 11,318 0.069 0.35 22,635 10,931 387 11,318 0.069 - 0.00% 

 3 23,390 10,647 1,048 11,695 0.070 0.30 23,390 10,647 1,048 11,695 0.070 - 0.00% 

 5 24,078 10,343 1,696 12,039 0.073 0.36 24,078 10,343 1,696 12,039 0.073 - 0.00% 

 7 24,736 10,133 2,234 12,368 0.074 0.33 24,988 10,883 1,611 12,494 0.069 - 1.02% 

 10 25,662 10,660 2,171 12,831 0.070 0.71 25,662 10,660 2,171 12,831 0.070 - 0.00% 

               

1000 1 26,014 12,599 408 13,007 0.079 0.25 26,025 12,676 337 13,013 0.079 - 0.04% 

 3 26,690 12,360 984 13,345 0.081 0.30 26,704 12,434 918 13,352 0.080 - 0.05% 

 5 27,309 12,159 1,496 13,655 0.082 0.29 27,309 12,159 1,496 13,655 0.082 - 0.00% 

 7 27,901 11,901 2,049 13,950 0.084 0.40 27,910 11,975 1,980 13,955 0.084 - 0.03% 

 10 28,746 11,626 2,747 14,373 0.086 0.36 28,986 12,509 1,984 14,493 0.080 - 0.83% 

 

Results minimum order quantities (4 products) 

Once we tested the efficiency of the Goyal algorithm, we now test the application with MOQ. For this case 

Porras & Dekker (2008) method is used, which does not use minor setup cost in their algorithm. However, 

when the average total cost is calculated, we take the resulting 𝒌 vector and use equation (2.2) of total 

average cost that does include minor setup cost. So when we calculate with Goyal algorithm we take a level 

of 𝑊𝑜𝑟𝑘𝑒𝑟𝑠 = 5 to define the minor setup cost for the input in Goyal algorithm, but also to compare the 

average total cost. 

We variate the major setup cost and MOQ. As we can see from 1 pallet there is already an increase in the 

average cost compared to the same scenarios run with the normal Goyal algorithm. The cost increases in 

great measure as the MOQ increases. However, for the case that we are studying which is 𝑀𝑂𝑄 = 1 pallet, 

the distribution does not increases the cost a lot for a normal level of major setup cost. Porras & Dekker 

method gives an optimal strategy for this case without increasing cost in great measure. 

Table 15. Results for 4 products with MOQ. Changing major setup cost and MOQ 

So w(Si) MOQ Goyal Porras & Dekker % ∆TRC 

      Orders TRC  k1   k2   k3   k4  Orders TRC  k1   k2   k3   k4   

50 5 1 43.3 9,323 1 3 1 10 59.1 12,342 1 1 1 11 32.4% 

 5 3 43.3 9,323 1 3 1 10 81.1 11,501 1 4 4 49 23.4% 

 5 5 43.3 9,323 1 3 1 10 102.3 13,275 1 9 7 98 42.4% 

 5 7 43.3 9,323 1 3 1 10 130.9 15,230 2 14 10 160 63.4% 

 5 10 43.3 9,323 1 3 1 10 170.0 18,766 3 24 18 285 101.3% 

                

250 5 1 23.8 15,429 1 2 1 6 25.9 15,957 1 1 1 5 3.4% 
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 5 3 23.8 15,429 1 2 1 6 27.8 15,805 1 2 1 15 2.4% 

 5 5 23.8 15,429 1 2 1 6 33.1 18,180 1 3 3 33 17.8% 

 5 7 23.8 15,429 1 2 1 6 37.1 19,983 1 5 4 51 29.5% 

 5 10 23.8 15,429 1 2 1 6 43.5 23,110 1 8 6 87 49.8% 

                

500 5 1 16.4 20,327 1 1 1 4 18.2 20,464 1 1 1 3 0.7% 

 5 3 16.4 20,327 1 1 1 4 18.6 20,670 1 1 1 10 1.7% 

 5 5 16.4 20,327 1 1 1 4 21.1 22,433 1 2 2 20 10.4% 

 5 7 16.4 20,327 1 1 1 4 23.4 24,553 1 3 3 33 20.8% 

 5 10 16.4 20,327 1 1 1 4 26.3 27,305 1 5 4 52 34.3% 

                

750 5 1 13.8 24,078 1 1 1 3 14.9 24,148 1 1 1 3 0.3% 

 5 3 13.8 24,078 1 1 1 3 15.1 24,353 1 1 1 8 1.1% 

 5 5 13.8 24,078 1 1 1 3 16.0 25,107 1 2 1 14 4.3% 

 5 7 13.8 24,078 1 1 1 3 17.3 27,108 1 2 2 23 12.6% 

 5 10 13.8 24,078 1 1 1 3 19.8 30,563 1 4 3 39 26.9% 

                

1000 5 1 12.2 27,309 1 1 1 3 12.8 27,391 1 1 1 2 0.3% 

 5 3 12.2 27,309 1 1 1 3 13.1 27,563 1 1 1 7 0.9% 

 5 5 12.2 27,309 1 1 1 3 13.3 27,950 1 1 1 12 2.3% 

 5 7 12.2 27,309 1 1 1 3 14.9 30,763 1 2 2 20 12.6% 

  5 10 12.2 27,309 1 1 1 3 16.5 33,906 1 3 3 33 24.2% 

 

As we said before the total cost are compared with the equation (1.3) that describes the basic JRP, the total 

cost are compared with the optimal 𝑇 and vector 𝒌 from each method. What we see is on one side an 

increase in MOQ increases the number of orders, but also increases 𝑘𝑖, which means the orders are less 

frequent for some products. So the only way to see if the orders are bigger or smaller is with the holding 

cost. We can see that the holding cost are getting bigger while MOQ increases and that means the orders 

are getting bigger, so in other words orders are less frequent. On the same line, the minor setup cost 

decrease because some products now are ordered less frequently, but the major cost are up because the 

ordering overall increases. 

Table 16. Breakdown of average total costs on table 15 

So w(Si) MOQ Goyal Porras & Dekker % ∆TRC 

     TRC 
Major 
setup 
cost 

Minor 
setup 
cost 

Holding 
cost 

𝑇∗ 

Average 
CPU 
time 

TRC 
Major 
setup 
cost 

Minor 
setup 
cost 

Holding 
cost 

𝑇∗ 

Average 
CPU 
time 

 

50 5 1 9,323 2,166 2,495 4,662 0.023 0.71 12,342 2,955 6,432 2,955 0.017 0.49 32.4% 

 5 3 9,323 2,166 2,495 4,662 0.023 0.66 11,501 4,054 3,394 4,054 0.012 3.61 23.4% 

 5 5 9,323 2,166 2,495 4,662 0.023 0.71 13,275 5,113 3,049 5,113 0.010 8.78 42.4% 

 5 7 9,323 2,166 2,495 4,662 0.023 0.71 15,230 6,543 2,144 6,543 0.008 14.48 63.4% 

 5 10 9,323 2,166 2,495 4,662 0.023 0.71 18,766 8,502 1,761 8,502 0.006 25.12 101.3% 
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250 5 1 15,429 5,945 1,770 7,715 0.042 0.44 15,957 6,484 2,988 6,484 0.039 0.30 3.4% 

 5 3 15,429 5,945 1,770 7,715 0.042 0.45 15,805 6,949 1,907 6,949 0.036 0.71 2.4% 

 5 5 15,429 5,945 1,770 7,715 0.042 0.46 18,180 8,272 1,635 8,272 0.030 2.21 17.8% 

 5 7 15,429 5,945 1,770 7,715 0.042 0.46 19,983 9,287 1,409 9,287 0.027 3.96 29.5% 

 5 10 15,429 5,945 1,770 7,715 0.042 0.47 23,110 10,878 1,354 10,878 0.023 8.00 49.8% 

                

500 5 1 20,327 8,221 1,942 10,163 0.061 0.30 20,464 9,111 2,241 9,111 0.055 0.25 0.7% 

 5 3 20,327 8,221 1,942 10,163 0.061 0.30 20,670 9,316 2,038 9,316 0.054 0.43 1.7% 

 5 5 20,327 8,221 1,942 10,163 0.061 0.28 22,433 10,536 1,360 10,536 0.047 1.15 10.4% 

 5 7 20,327 8,221 1,942 10,163 0.061 0.38 24,553 11,699 1,156 11,699 0.043 2.33 20.8% 

 5 10 20,327 8,221 1,942 10,163 0.061 0.38 27,305 13,154 997 13,154 0.038 4.01 34.3% 

                

750 5 1 24,078 10,343 1,696 12,039 0.073 0.44 24,148 11,159 1,830 11,159 0.067 0.42 0.3% 

 5 3 24,078 10,343 1,696 12,039 0.073 0.43 24,353 11,339 1,675 11,339 0.066 0.50 1.1% 

 5 5 24,078 10,343 1,696 12,039 0.073 0.50 25,107 12,002 1,102 12,002 0.062 0.99 4.3% 

 5 7 24,078 10,343 1,696 12,039 0.073 0.43 27,108 12,998 1,112 12,998 0.058 1.93 12.6% 

 5 10 24,078 10,343 1,696 12,039 0.073 0.40 30,563 14,859 846 14,859 0.050 3.87 26.9% 

                

1000 5 1 27,309 12,159 1,496 13,655 0.082 0.61 27,391 12,843 1,705 12,843 0.078 0.30 0.3% 

 5 3 27,309 12,159 1,496 13,655 0.082 0.41 27,563 13,051 1,460 13,051 0.077 0.50 0.9% 

 5 5 27,309 12,159 1,496 13,655 0.082 0.43 27,950 13,256 1,437 13,256 0.075 0.67 2.3% 

 5 7 27,309 12,159 1,496 13,655 0.082 0.34 30,763 14,901 962 14,901 0.067 1.50 12.6% 

  5 10 27,309 12,159 1,496 13,655 0.082 0.36 33,906 16,544 818 16,544 0.060 2.85 24.2% 

 

Results truck capacity restriction (4 products) 

Now we take the final comparison that is including the truck capacity by correcting the major setup cost. 

In table 17 we compared scenarios with a constant level 𝑊𝑜𝑟𝑘𝑒𝑟 = 5 to fix the minor setup cost. The 

major setup cost and capacity of the trucks are changed. The method starts on the left side, we take the 

first example 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 5 and 𝑆𝑜 = 50 to explain the results.  

By using that input we obtain that 50% 𝑘𝑗 are equal to one, which means half of the products are ordered 

every period. With the optimal value of 𝑇 we find the number of order is 43.3 with equation (1.2).  We 

calculate the average number of trucks 𝐵1 with equation (5.2), and then we have the total cost correcting 

by the number of trucks 18,756. 

Now with the same 𝒌 vector we select with solver a new 𝑇 that maximizes the average filling percentage 

from the trucks. That new T gives a value of 35.2 orders and a corrected 𝐵2 = 5.8. Now, as we remember 

the method does not change the value of the 𝒌 vector, just the number of orders that defines the number 

of trucks. The new cost shows improvements in cost, with a filling capacity improved. The same procedure 

is repeated for the rest of the scenarios with similar results. We see that the results improve as the capacity 

is larger, given that the misused space in trucks becomes larger. 
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We observe that the difference between 𝐵1 and 𝐵2 is very small, the reason is even if we are changing the 

value of 𝑇, the formula of 𝐵 is based on rounded numbers and jumps on average are difficult to make, 

however the decrease in ordering by increasing the truck filling is decreasing the cost. 

There is not a regular relation between the major setup cost parameter and the savings produced by the 

method because the ordering will lead to an arbitrary setting for the filling of the trucks depending on the 

truck capacity. The method will only correct for the number of orders when there is enough space in the 

trucks for doing that. 

Table 17. Results 4 products with truck capacity restriction. Changing truck capacity and major setup cost 

Capacity So 

Goyal  Goyal adjusting for T with B 

% ∆TRC 
% Fill 
Trucks 

Avrg 
trucks 

𝐵1 

Orders 
TRC 

𝑆𝑜 

TRC 
𝐵1𝑆𝑜 

%𝑘 = 1 
% Fill 
Trucks 

Avrg 
trucks 

𝐵2 

Orders 
TRC 
𝐵2𝑆𝑜 

5 50 84% 5.4 43.3 9,323 18,756 50% 97% 5.8 35.2 17,927 4.6% 

 250 94% 8.9 23.8 15,429 62,138 50% 98% 9.1 22.0 60,262 3.1% 

 500 96% 12.4 16.4 20,327 114,046 75% 98% 13.0 15.3 112,043 1.8% 

 750 98% 14.5 13.8 24,078 163,708 75% 98% 14.5 13.8 163,659 0.0% 

 1000 97% 16.5 12.2 27,309 215,774 75% 98% 16.5 12.1 214,279 0.7% 

             

10 50 75% 3.0 43.3 9,323 13,655 50% 84% 3.4 34.7 13,637 0.1% 

 250 91% 4.6 23.8 15,429 36,661 50% 98% 4.6 22.0 35,119 4.4% 

 500 93% 6.4 16.4 20,327 64,720 75% 95% 6.4 16.1 63,757 1.5% 

 750 95% 7.5 13.8 24,078 91,307 75% 95% 7.5 13.8 91,284 0.0% 

 1000 95% 8.5 12.2 27,309 118,502 75% 95% 8.5 12.1 117,779 0.6% 

             

20 50 57% 2.0 43.3 9,323 11,489 50% 71% 2.0 34.7 11,289 1.8% 

 250 83% 2.6 23.8 15,429 24,771 50% 89% 2.6 22.0 24,119 2.7% 

 500 89% 3.4 16.4 20,327 40,057 75% 91% 3.4 16.1 39,632 1.1% 

 750 88% 4.0 13.8 24,078 55,107 75% 99% 4.0 12.3 51,962 6.1% 

 1000 90% 4.5 12.2 27,309 69,866 75% 91% 4.5 12.1 69,529 0.5% 

             

24 50 75% 1.4 43.3 9,323 10,092 50% 85% 1.4 36.7 10,222 -1.3% 

 250 87% 2.0 23.8 15,429 21,374 50% 91% 2.0 22.8 21,132 1.1% 

 500 82% 3.0 16.4 20,327 36,769 75% 98% 3.0 13.8 34,433 6.8% 

 750 98% 3.0 13.8 24,078 44,764 75% 99% 3.0 13.7 44,621 0.3% 

  1000 84% 4.0 12.2 27,309 63,786 75% 99% 4.0 10.3 58,512 9.0% 

 

We observe that for every case the correction in 𝐵 leads to a more efficient filling of the trucks which 

expresses in less orders that at the same time lowers the major and minor setup cost. We have to remember 

that the same vector 𝒌 is used, then the difference here only comes from the number of orders. That is the 

reason why we do not have a change in holding cost across capacities. The formula for holding cost is 

0.5𝑇 ∑ 𝐷𝑖𝑘𝑖
𝑛
1 . Then the capacity of the trucks really does not change the holding costs because the orders 
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stays the same just the number of trucks changes when we have a different capacity. Now from the left side 

to the right we see an increase in holding cost and that is generated by the method that decreases orders 

and that leads to bigger orders. 

Table 18. Breakdown of average total costs on table 17 

Cap. 
Pallet 

So 

Goyal Goyal adjusting for T with B 

% ∆TRC 

TRC 
Major 
setup 
cost 

Minor 
setup 
cost 

Holding 
cost 

𝑇∗ 

Average 
CPU 
time 

TRC 
Major 
setup 
cost 

Minor 
setup 
cost 

Holding 
cost 

5 50 18,756 11,599 2,495 4,662 0.023 0.89 17,927 10,163 2,028 5,737 4.6% 

 250 62,138 52,653 1,770 7,715 0.042 0.56 60,262 50,286 1,638 8,338 3.1% 

 500 114,046 101,941 1,942 10,163 0.061 0.39 112,043 99,300 1,805 10,938 1.8% 

 750 163,708 149,973 1,696 12,039 0.073 0.36 163,659 149,920 1,696 12,043 0.0% 

 1000 215,774 200,624 1,496 13,655 0.082 0.29 214,279 199,031 1,484 13,764 0.7% 

             

10 50 13,655 6,498 2,495 4,662 0.023 0.89 13,637 5,814 1,996 5,827 0.1% 

 250 36,661 27,176 1,770 7,715 0.042 0.56 35,119 25,143 1,638 8,338 4.4% 

 500 64,720 52,615 1,942 10,163 0.061 0.39 63,757 51,467 1,900 10,390 1.5% 

 750 91,307 77,572 1,696 12,039 0.073 0.36 91,284 77,545 1,696 12,043 0.0% 

 1000 118,502 103,352 1,496 13,655 0.082 0.29 117,779 102,531 1,484 13,764 0.6% 

             

20 50 11,489 4,332 2,495 4,662 0.023 0.89 11,289 3,466 1,996 5,827 1.8% 

 250 24,771 15,286 1,770 7,715 0.042 0.56 24,119 14,143 1,638 8,338 2.7% 

 500 40,057 27,951 1,942 10,163 0.061 0.39 39,632 27,342 1,900 10,390 1.1% 

 750 55,107 41,372 1,696 12,039 0.073 0.36 51,962 36,975 1,516 13,471 6.1% 

 1000 69,866 54,716 1,496 13,655 0.082 0.29 69,529 54,281 1,484 13,764 0.5% 

             

24 50 10,092 2,935 2,495 4,662 0.023 0.89 10,222 2,602 2,112 5,508 -1.3% 

 250 21,374 11,889 1,770 7,715 0.042 0.56 21,132 11,375 1,693 8,064 1.1% 

 500 36,769 24,663 1,942 10,163 0.061 0.39 34,433 20,688 1,629 12,116 6.8% 

 750 44,764 31,029 1,696 12,039 0.073 0.36 44,621 30,813 1,684 12,124 0.3% 

  1000 63,786 48,636 1,496 13,655 0.082 0.29 58,512 41,083 1,263 16,165 9.0% 

 

7.2 Simulation to represent company scenario (20 products) 
Now we apply the same method to include truck capacity including 20 products from the company instead 
of 4 to approximate a real scenario. As we explained in section 6, the most demanded products where 
selected and then the products with low demand where aggregated in the 20th product with weighted 
parameters. We have the same total demand, however we take the first 19 most ordered product and the 
rest of the products are aggregated in one, which account for 16% of total demand. 
The reason we take 20 products instead of 83 is that with 83 products the results show orders that are less 
than a pallet and that is a restriction from the company.  
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The problem could be solved also with Porras & Dekker method by applying a minimum order quantity 

for all 83 products. However that leads to a minimum 𝑘𝑗 > 1 and then a correction factor has to be used. 

It was decided that given that 84% of the demand is in the first 19 products, the results would be reasonable 
using 20 product aggregating the rest of the products in one with weighted parameters. Later for an 
application the rest of the products can be handled individually. In appendix 2 the parameter used are 
shown and on section 6 the method to acquire the parameters is explained on further detail. 
Now in table 19 we take the real company operation restrictions, with a truck capacity of 24 pallets and a 
level of 5 workers per operation. The only changing parameter will be the major setup cost. We see a saving 
of 6.36% of the average cost per year when the cost is 750 euros, which is a cost similar to the 610 euros 
the company is facing per truck. 
As before we see some interesting savings but they are less than in the case for 4 products. In general we 
see the same trend as in the last example, an increase in the filling from the trucks, a decrease in the orders 
and there is no relation between the major setup cost and the percentage of saving. 
 

Table 19. Results for 20 products with truck capacity restriction. Changing major cost  

So 

Goyal with input So Goyal with input  

% ∆TRC 
TRC 

𝑆𝑜 

TRC 
𝐵1𝑆𝑜 

% Fill 
Trucks 

Avrg 
trucks 

𝐵1 

Orders %𝑘 = 1 
TRC 
𝐵2𝑆𝑜 

% Fill 
Trucks 

Avrg 
trucks 

𝐵2 
  

Orders 
  

50 16,643 18,055 77% 2.1 25.3 50% 18,117 81% 2.2 22.9 -0.35% 

250 20,740 29,558 78% 3.0 17.6 65% 29,320 90% 3.3 14.1 0.80% 

500 24,716 40,938 89% 3.3 14.2 75% 40,765 90% 3.3 14.0 0.42% 

750 28,033 55,853 84% 4.0 12.4 75% 52,515 96% 4.0 10.8 6.36% 

1000 30,913 63,725 94% 4.0 10.9 90% 62,289 98% 4.0 10.4 2.31% 

 
On the breakdown of cost we see that the holding cost increase because the orders are now getting bigger. 
The minor and major setup cost on the other hand are decreasing because of the less frequent ordering. 
 

Table 20. Breakdown of average total cost on table 19 

So 

Goyal with input So Goyal with input   

% ∆TRC 
TRC 

Major 
setup 
cost 

Minor 
setup 
cost 

Holding 
cost t* 

Average 
CPU 
time 

TRC 
Major 
setup 
cost 

Minor 
setup 
cost 

Holding 
cost 

 

50 18,055 2,679 7,055 8,321 0.039 1.92 18,117 2,529 6,363 9,225 -0.35% 

250 29,558 13,227 5,961 10,370 0.057 0.54 29,320 11,590 4,769 12,962 0.80% 

500 40,938 23,319 5,261 12,358 0.07 0.47 40,765 23,068 5,204 12,492 0.42% 

750 55,853 37,094 4,743 14,016 0.081 0.84 52,515 32,281 4,127 16,106 6.36% 

1000 63,725 43,750 4,519 15,456 0.091 0.41 62,289 41,792 4,317 16,180 2.31% 
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7.3 Improving results with a non-cyclic policy 
Now we propose a different method with a non-cyclic strategy to distribute the truck schedule and compare 

it with the scenarios on the last table to test the results. We choose the next parameters for the case of 20 

products. 

𝑆𝑜 = 750     𝑊𝑜𝑟𝑘𝑒𝑟𝑠 = 5     𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 = 24 

From those parameters we can see on table 21 the vector 𝒌 and 𝑇 from Goyal algorithm expressed in a 

truck schedule, we can observe that there is an ordering of 4 trucks each order in a cycle, which leads to a 

high holding cost. Now the idea proposed is the truck schedule will be manipulated to have 1 truck each 

time. The most ordered products will have a lower holding cost because they will be ordered less. And the 

least ordered products will be adjusted to have more than one pallet, so that the schedule follows the 

operation restriction, and the total average cost will decrease by reducing minor setup cost. 

 

Table 21. Distribution with all trucks in an order 

   Orders in a cycle  

Product K Orders 0 1 2 

Total  
ordered 
 in cycle 

1 1 18.8 18.8 18.8 18.8 56.3 

2 1 6.4 6.4 6.4 6.4 19.2 

3 1 5.8 5.8 5.8 5.8 17.5 

4 1 5.0 5.0 5.0 5.0 15.0 

5 1 4.2 4.2 4.2 4.2 12.6 

6 1 4.0 4.0 4.0 4.0 11.9 

7 1 3.4 3.4 3.4 3.4 10.2 

8 1 3.1 3.1 3.1 3.1 9.2 

9 1 2.7 2.7 2.7 2.7 8.2 

10 1 2.5 2.5 2.5 2.5 7.5 

11 2 3.1 3.1  3.1 6.1 

12 1 1.5 1.5 1.5 1.5 4.4 

13 1 1.4 1.4 1.4 1.4 4.1 

14 1 1.3 1.3 1.3 1.3 3.9 

15 1 1.1 1.1 1.1 1.1 3.2 

16 2 1.8 1.8  1.8 3.6 

17 2 1.6 1.6  1.6 3.2 

18 2 1.6 1.6  1.6 3.2 

19 2 1.6 1.6  1.6 3.2 

20 1 12.8 12.8 12.8 12.8 38.3 

Truck Used 4 4 4 12 

Avrg%Fill 87.0% 76.9% 87.0%  

 

On table 22 we observe the setting for the same cycle. Now the first order in table 21 correspond to orders 

0 to 3 from table 22, the second order in table 21 correspond to orders 4 to 7 and so on. The truck schedule 

now correspond to 1 truck per order. The new schedule is manipulated manually to fit in the trucks. This 

scenario was selected on purpose with a vector 𝒌 with values of 1 or 2. That makes much easier the 

manipulation because the cycle is small, however that manipulation becomes exponentially intricate as the 

lcm from the 𝒌 vector becomes larger. 
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Table 22. Non-cyclical distribution with 1 truck in an order  

Prod. 
Previous 

order 
Divided 

by 
New 

Orders 

Orders in a cycle Total  
ordered 
 in cycle 0 1 2 3 4 5 6 7 8 9 10 11 

1 18.8 4 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 4.7 56.4 

2 6.4 4 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 19.2 

3 5.8 4 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 17.4 

4 5.0 4 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 15.0 

5 4.2 4 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 12.6 

6 4.0 4 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 12.0 

7 3.4 3 1.1 1.1  1.1 1.1 1.1  1.1 1.1 1.1  1.1 1.1 10.2 

8 3.1 3 1.0 1.0 1.0  1.0 1.0 1.0  1.0 1.0 1.0  1.0 9.3 

9 2.7 2 1.4 1.4  1.4  1.4  1.4  1.4  1.4  8.1 

10 2.5 2 1.3  1.3  1.3  1.3  1.3  1.3  1.3 7.5 

11 3.1 3 1.0 1.0 1.0 1.0      1.0 1.0 1.0  6.2 

12 1.5 1 1.5 1.5    1.5    1.5    4.5 

13 1.4 1 1.4 1.4    1.4    1.4    4.2 

14 1.3 1 1.3  1.3    1.3    1.3   3.9 

15 1.1 1 1.1  1.1    1.1    1.1   3.3 

16 1.8 1 1.8   1.8        1.8  3.6 

17 1.6 1 1.6   1.6        1.6  3.2 

18 1.6 1 1.6    1.6        1.6 3.2 

19 1.6 1 1.6    1.6        1.6 3.2 

20 12.8 4 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 3.2 38.4 

Truck Used 1 1 1 1 1 1 1 1 1 1 1 1   

Average filling % of Trucks 90 83 88 87 86 79 70 74 90 83 88 87   

 

To compare the total cost the whole schedule was calculated to get the major, minor and holding cost. 

When we compare the results we see that the non-cyclical method proposed improves cost comparing to 

Goyal algorithm but not as much as the cyclical method proposed. The non-cyclical method however 

depends on the trade-off between the holding cost and minor setup cost, it could be that for smaller setup 

cost parameters the results could improve more. However the calculation for the rest of the scenarios gets 

much more complicated because lcm become greater. The point here is to show that cyclical methods can 

be improved by non-cyclycal methods however the complexity associated with them usually makes really 

difficult scaling the problem for application. 

Table 23. Comparison of total average cost between models 

 
Goyal 

algorithm 
Goyal correcting 

Fill%Trucks 
Goyal correcting with 

non-cyclic policy 

Orders 12.4 10.8 49.6 

Major setup cost 37,094 32,281 36,750 

Minor setup cost 4,743 4,127 13,184 

Holding setup cost 14,016 16,106 4,935 

Total average cost 55,853 52,515 54,870 
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8. Conclusions, discussion and limitations 
The problem observed on this work was the distribution system from a Mexican distribution company 

specialized in industrial and transport lubricants. The problem on the literature is defined as the joint 

replenishment problem, in which we have different products with a parameter setting in terms of demand, 

price and setup cost. The company faces major and minor setup cost for uploading the trucks and the 

products and a holding cost. Also there are some restrictions that the company has that are special to the 

operations of the company, like minimum order quantities and truck capacity limitations that we have to 

take in consideration. 

Two models where used to compare the normal JRP model. On the literature on operation research was 

found first a model from Chopra & Meindl (2012) that increases efficiency by agglomerating the products 

with less demand around the most ordered product. On a different from Van Eijs (1993) based on an 

algorithm proposed in Goyal (1974), an iterative approach is used. The procedure first takes two bounds in 

which the optimal number of orders could be selected. From there a finite number of combinations has to 

be tested that includes the time that has to be waited to order trucks and the time that has to be waited to 

fit a product in a certain truck schedule. Several scenarios were run changing the major and minor setup 

and for all of them the Goyal modified algorithm delivered equal or better average cost results, however 

the improvements over Chopra & Meindl are very small, and the reason for that is that the formula for 

getting the optimal waiting time between orders is the same and the small improvements are achieved with 

the Goyal method because it uses an exhaustive method that tests more scenarios..  

On an application related to the company, a paper from Porras & Dekker (2008) is followed that applies 

Van Eijs approach to include the case of minimum ordering quantities. In the case of the company the 

minimum ordering quantity is a pallet of product. The results as expected are an increase in cost in terms 

of both last approaches, however the results for just a pallet does not increases more than 3% the cost of 

the product. However the results for this paper just give orders that are bigger than a certain limit but it 

does not give results orders in closed multiples of the minimum order quantities, so that restriction has to 

be relaxed and does not reflect a larger increase in cost that would involve having closed orders that are 

only multiples of MOQ. 

A model was introduced that includes the problem for the limited truck capacity. The idea is first to get the 

optimal times for ordering of trucks and products with the Goyal algorithm. The average filling percentage 

of the trucks per period is calculated according to the capacity. According to that distribution the number 

of orders is variated to maximize the filling percentage of the trucks. The problem however is not linear 

because it involves a function with rounded up numbers. Once the results were calculated, savings were 

generated with the method. 

Finally a non-cyclical method is used to compare results with the previous method and the original cyclical 

truck capacity method showed a better result for the scenario compared. The non-cyclical methods offer 

several improvements to the cyclical counterparts, however scaling the method gets very complex very 

quickly and a more systematic approach is needed to include non-cyclical approaches. 

On the limitations of the method also we can include the measurement of the minor cost. What was done 

is to try to measure the labor cost related to unpack and repack the pallets from the trucks, according to 

the type and size of product that will take more or less minutes and also a number of people will be required 

during the operation. This measurement however could be improved and maybe more characteristics of 

the operation should be included because the minor setup cost are very low relatively and that influences 

the results.  
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Appendix 
 

Appendix 1. Setting of product parameters 4 products 

Product 
Demand 
in pallets 

Average Price 

p/pallet (€) 

Minor setup 

price p/ pallet (€) 

Drum 1,539 2,037 3.94 

Pail 170 2,086 15.53 

IBC 223 2,621 1.23 

Rest 14 1,926 11.69 

 

 

Appendix 2. Setting of product parameters 20 products 

Product 
Demand 
in pallets 

Average Price 

p/pallet (€) 

Minor setup 

price p/ pallet (€) 

1 232 1,683 19.7 

2 79 2,797 6.2 

3 72 1,949 19.7 

4 62 1,951 19.7 

5 52 3,662 19.7 

6 49 1,823 19.7 

7 42 1,384 19.7 

8 38 2,891 19.7 

9 34 1,765 19.7 

10 31 2,014 19.7 

11 19 1,974 77.6 

12 18 1,698 19.7 

13 17 1,490 19.7 

14 16 2,214 6.2 

15 13 2,139 6.2 

16 11 2,396 77.6 

17 10 1,718 19.7 

18 10 1,733 19.7 

19 10 1,866 19.7 

20 158 2,343 41.0 

 


