Erasmus School of Economics – August 2015

Master Thesis

The Impact of Energy Dependency on the Promotion of Renewable Energy Sources

Niklas Josten – 406586 Supervisor: Prof. Elbert Dijkgraaf

Table of Contents

1. Introduction	3
2. Review of Existing Research and Contemporary Energy Concepts	4
2.1. Review of Existing Research	4
2.2. Contemporary Energy Concepts	6
3. Theory: Energy Security	8
3.1. Definitions of Energy Security	8
3.2. Evaluating and Measuring Energy Security	9
3.2.1. Evaluating Energy Security: Time Dimension	9
3.2.2. Evaluating Energy Security: Causes and Consequences	9
3.2.3. Measuring Energy Security	10
4. Empirics: Current and Future Energy Situation	11
4.1. Current Situation: Physical, Economic and Political Background	11
4.1.1. Current Physical Situation: Reserves, Production and Consumption	11
4.1.2. Current Physical Situation: Infrastructure	13
4.1.3. Current Economic Situation	14
4.1.4. Current Political Situation and Threats to Supply	14
4.2. Future Situation: Supply and Demand	15
4.2.1. Future Situation: Supply-Side	15
4.2.2. Future Situation: Demand-Side	17
4.3. Opposing Concepts of Global Energy Architecture	18
5. Conclusion and Policy Implications	19
5.1. Conclusion on Status of Energy Security	19
5.2. Policy Alternatives	21
5.2.1. Non-RE-Based Policies	21
5.2.2. RE-Based Policies	24
5.3. Conclusion on Policy Alternatives	26
6. Hypothesis	27
7. Operationalization and Dataset	28
7.1. Dependent Variable	28
7.1.1. Group I: Count of Renewable Energy Policies	28
7.1.2. Group II: Share of Renewable Energy Sources	29
7.2. Independent Variables: Explanatory Variables	29

7.2.1. Indicators for State Relations	
7.2.2. Combination of Trading Patterns and Relation Value	
7.3. Independent Variables: Controlling Variables	
8. Model Specification and Testing Procedure	
8.1. Testing Procedure	40
8.1.1. Multicollinearity	40
8.1.2. Unit Roots	40
8.1.3. Heteroskedasticity and Autocorrelation	40
8.2. Estimators	41
9. Results	42
10. Model Extensions	43
10.1. Including a Time-Lag	44
10.2. Using Reserve, Consumption and Production Statistics	45
10.3. Testing for Time Consistent Parameters	49
11. Conclusion	53
12. Case Study: German RE legislation	55
13. Future Research	56
14. Bibliography	58
15. Appendix	63

1. Introduction

"Global energy security is a vital part of America's national security." (Biden, 2014)

"The country that owns green, that dominates that industry, is going to have the most energy security, national security, economic security, [...]" (Friedman, 2014)

These quotes suggest a superficial relation: Energy security is important and can be improved by promoting renewable energy (RE) sources. The fact that energy security is important becomes clear once highlighting that basically all aspects of modern human life are dependent on energy as a source of power, heat or mobility (Bielecki, 2002) and that a lack of energy supply inevitably leads to severe social and economical disruptions. However, it is questionable whether the interaction of energy security and renewable energy is as straight forward as appearing in these quotes. What are the aspects that have to be considered when judging on the above and what is the actual empirical finding on the topic? Importantly, environmental concerns as potential drivers for the promotion of RE sources are not subject of this paper.

This paper distinguishes between RE based and fossil fuel based approaches to improve the level of energy security. It derives that the current and future level of energy security is insufficient and RE-based measures are best suited to overcome this issue. Finally, the hypothesis that a higher degree of perceived import dependency can be regarded a major determinant of RE promotion is assessed empirically.

Within the subsequent model, values of perceived import dependency are regressed on measures of the promotion of RE sources. In short, the former is calculated by combining approximations for the quality of state relations with energy supply patterns. The latter is utilizing measures for RE-policy implementations and RE-shares. The panel data set contains 32 countries from 1990 to 2010.

Ultimately, this paper does provide evidence for the hypothesis in some cases, whereas the majority of estimations in the main model reject the hypothesis in favour of the null-hypothesis. Still, especially the model extensions prove to be insightful and encourage further research in this field.

The paper is structured according to the following four parts: Firstly, section 2 aims to derive insights on the usage of RE sources as a counter to energy insecurity. This is done two-fold: Considering existing research on the topic and analysing the actual energy concepts of the US and European Union. Secondly, the theoretical and empirical frame (section 3-4) and potential policy options are described (section 5) in order to logically derive the conclusions that are necessary to establish the aforementioned hypothesis. The third part begins with a testable hypothesis (section 6). Further, section 7 describes the respective variables that should be employed in a model, followed by section 8 which depicts the econometrical methodology applied. The last part shows the empirical results of this paper (section 9) and illustrates two extensions of the model (section 10), concludes on the findings (section 11), evaluates a case study for a particular RE-legislation in Germany (section 12) and gives an overview on potential future research (section 13).

2. Review of Existing Research and Contemporary Energy Concepts

This section will provide an overview on the existing research on the topic and examine contemporary energy concepts of major OECD countries. Both is undertaken with the goal to identify (within the literature or within the actual energy concepts) whether RE-based policies are used as a tool to counter energy insecurity.

2.1. Review of Existing Research

Most of the related literature, such as Bird et al., (2005); Gan et al., (2007); Ragwitz et al., (2012) and Harmelink et al., (2006) amongst others, is of qualitative nature and focussed on RE-policy design and policy impact. Further, for example Dijkgraaf et al., (2014); Marques et al., (2012); Carley, (2009); Menz & Vachon, (2006) and Haas et al., (2011) amongst others, estimate the *success* of different RE-policies empirically. However, literature on the actual *determinants*¹ of RE-promotion or RE-usage is scarce, as confirmed by Marques et al., (2010), Aguirre & Ibikunle (2014) and Schaffer & Bernauer (2014). Generally, many authors (for example van Dijk et al., (2003); Menegaki, (2006); Ellabban et al., (2014) and Gan et al., (2007); only to name a few) loosely mention energy security as a general driver for RE utilization, however neither providing a detailed qualitative analysis of the interplay of energy security and RE utilization in particular (as it is done in section 4 of this paper), nor performing a quantitative research focussed on the impact of energy dependency.

In order to keep the literature overview as slim as possible, the following will give an overview only on those papers that are closely related to the subject of this research, namely investigating whether energy security can be regarded as a major driver for the promotion of RE sources. The order of presentation is logically structured from being less closely to being more closely related to the specific subject of this paper.

Marques & Fuinhas (2011)

In a panel data time series with 24 European countries from 1990 to 2006 and employing dynamic estimators, the authors cannot find evidence that *"social awareness about climate change mitigation and CO2 reduction is enough [...] to motivate the switch from traditional to renewable energy sources*" (Marques & Fuinhas, (2011): p.1607). Income and fossil fuel price effects are identified² but found to be not decisive due to sign changes across the models. The authors thus conclude that not market-based, but other factors determine the usage of RE sources. This general suggestion is encouraging the research focus of this paper.

Schaffer & Bernauer (2014)

This panel data setup containing IEA member countries, ranging from 1990 to 2010 is not directly aimed at identifying drivers for RE usage, but rather aimed at explaining the choice of policies to promote RE sources (market-based versus non-market-based policies). After including domestic and international factors the authors claim that "[...] characteristics of the existing

¹ Some of the aforementioned papers do include controlling variables when analysing the effect of RE policies, but are not focussing their analysis on those other potential drivers [see for example Carley, (2009) or Menz & Vachon, (2006)] and thus not derive general determinants of RE usage.

² All effects presented in this section are found to be statistically significant by the authors, if not mentioned otherwise.

energy supply system, a federalist structure of the political system, and EU membership" (Schaffer & Bernauer, (2014): p.25) are main drivers for a market-based policy approach. On the international level, policy diffusion, approximated by the membership status of the EU, is identified to have an effect, whereas trade and proximity measures are considered insignificant.

Both of the above papers do not include import dependency as a potential determinant and thus cannot present a finding on that issue. While still not focussing on it, the following papers do at least consider import dependency as a potential influence and are thus content-wise located more closely to this work.

Popp et al., (2011)

Popp et al. approach the subject from a slightly different perspective than this work and the following papers, as it is approximating investments into RE sources by utilizing data on patent registrations instead of actual RE shares. The model employs a data set on 26 countries from 1991 to 2004 and cannot identify a statistically significant effect of import dependency on the level of RE-focussed patent registrations. Instead, the authors conclude that *"the primary driver behind renewable investments appears to be reducing carbon emissions"* (Popp et al., (2011): p.662).

Jenner et al., (2012)

The authors run a EU27 sample from 1990 to 2010 to identify major determinants of RE policy adoption. The potential determinants included are grouped by private interest determinants (measuring solar-, nuclear- oil-, gas- and coal industry and market concentration), public interest determinants (GDP, Electricity Price, Energy Dependency, Unemployment Rate and Air Pollution) and some controlling variables. The paper finds strong evidence for the hypothesis that private lobbying has an important influence on the development of RE sources – positively (solar industry lobby) as well as negatively (fossil fuel energy lobby). With respect to energy dependency, the results are not significant but suggest a negative relation. The overall conclusion of this paper is that private interests are by trend more important than public interests. However, this conclusion is weakened by the fact that for example the unemployment rate has a statistically significant impact. Also, it is somehow contradicting Popp et al., (2011) who identify public aspects to be more important than private aspects.

Marques et al., (2010)

The authors employ a similar panel set as Marques & Fuinhas, (2011) to identify major determinants of RE use by including political, socioeconomic and country specific factors. Main findings, similar to Jenner et al., (2012), are that lobby pressure from traditional energy sources and CO₂ emissions have a significant effect. The impact of income differs in sign according to membership status with the EU; environmental concerns are found to be insignificant. Effects of fossil fuel prices are visible, but not consistent across different types of fossil fuels. Thus, this paper confirms the findings of Marques & Fuinhas, (2011) in the sense that income and fossil fuel price effects are found to be inconclusive. Relevant for this work is the finding, that energy dependency has a positive impact on the use of RE.

An important consideration presented by the authors is the suggestion that after 2006 changes in the overall background situation have emerged that might be considered in future research (reflected in a model extension in section 10.3.). In addition, they suggest further research to more intensively focus on political reasons, amongst others, which is encouraging the main purpose of this paper.

Aguirre & Ibikunle (2014)

Aguirre & Ibikunle present the paper that is most recent and most closely related to this work. The authors claim to add significant extensions to the existing literature by including a larger sample size of 38 OECD and BRIC countries and 21 years (1990 – 2010), which is intended to address the heterogeneity of countries. By including a longer time horizon, Aguirre & Ibikunle (2014) respond on the research suggestion by Marques et al., (2010) as described above. Also with respect to the range of indicators, the authors claim to be more holistic than previous research for example by including improved approximations for country-level RE potential. The following indicators are employed: A set of political factors (Count of public policies promoting RE, Ratification of the Kyoto protocol, energy import dependency), a set of socioeconomic factors (carbon dioxide emissions, fossil fuel and electricity prices, welfare, contribution of traditional energy sources to electricity generation, energy needs) and finally a set of country specific factors (renewables potential, deregulation of the electricity market an continuous commitment).

The results indicate that "[...] CO_2 emission levels are significant indicators of renewables participation, while energy import level is not. This suggests that environmental concerns are more relevant than energy security for countries [...]" (Aguirre & Ibikunle (2014): p.382). It is questionable, to what extent CO_2 emissions can be used as a proxy for environmental concerns, but this does not affect the finding on energy security. Interestingly, "energy use is negatively linked to renewable energy participation, implying that under high pressure to ensure the energy supply, countries have a tendency to employ less renewable energy [...]", which provides some implication for the research of this paper as high pressure on energy supply also holds the need to import energy – which in turn would suggest a complementary relation between RE utilization and energy imports. The data set has kindly been provided by the authors and is used to retrieve controlling variables: 12 indicators have showed significant effects across the different estimators and are thus included in the models later on.

Concluding, the papers above have opposing and mostly insignificant results with respect to the impact of energy dependency on RE usage. Thus, the existing literature ultimately does not provide a conclusive evaluation for the topic of this paper. Also, it cannot be derived whether determinants from the public or private space are more important, as some papers identify e.g. environmental concerns (a public interest) to be most relevant, whereas other claim that for example industry lobbying (a private interest) is the most important driver.

2.2. Contemporary Energy Concepts

The following section will give a rough overview on the actual energy concepts that are found in the US and Europe in order to identify whether RE-based measures are seen as a vital tool to improve energy security within the actual existing legislations. This approach is extended within the case study in section 12.

Historically, legislations targeting energy security were subject to changing motivations and drivers. Historic events that pushed energy security in its various facets to the political agenda were for example the shift of power source of the Royal British Navy from domestic coal to imported oil in the eve of World War I (Yergin, 2006). Also, health-related issues such as the 1948 coal-combustion deaths in Pennsylvania and the extreme smog in London in 1952 (Valentine, 2011) played an important role. The oil crises in the 70s again influenced energy security policy making and led to substantial diversification efforts of consumer countries (Bielecki, 2002). RE policies were for the first time more seriously considered a potential solution to energy insecurity during that time (Van Dijk et al., 2003). From the 80s on, increasing price volatility and according economic consequences played a major role for energy security legislations as well (Aguirre & Ibikunle, 2014).

In Europe, a holistic energy concept was not explicitly developed until the Russian-Ukraine gas crisis in 2005, which in turn motivated the setup the "European Energy Action Plan" in 2007. However, this legislation is not solely aimed at promoting energy security, but also concerned with addressing rising concerns on climate change (Umbach, 2010 and Duffield, 2009). Core points were the liberalization and homogenisation of the European internal market for gas and electricity, the definition of a common approach to external energy policy with a global dimension as well as energy efficiency and conservation. With respect to RE sources, the nowadays well-known "20-20-20" aims were born: Emissions should be increased by 20%, the energy mix should contain 20% RE sources and energy efficiency should be increased by 20%. A review of the aforementioned document in 2008 brought more concrete measures on external energy security, such as diversification of energy supply, focussing on external energy relations and the implementation of oil and gas stocks for short-term responses on energy supply crises (Umbach, 2010). Other European strategy papers such as the "A European Strategy for sustainable, competitive and secure energy" focus on similar measures and combine both, RE-based and non-RE-based measures (Bahgat, 2006).

With respect to the subject of this paper, an analysis of these EU policies is rather ambiguous: On the one hand, they do promote RE-measures as a tool to increase energy-security, which would be in line with the hypothesis stated in section 6. On the other hand, they do explicitly name climate change as a motivation and also promote non-RE-based measures to improve energy security. Consequently, it cannot be clearly derived that RE-based measures are actually implemented due to security concerns or due to environmental concerns. Further, literature is coherent in the evaluation that most European countries are still lacking the political will to implement the agreed policies (Umbach, 2010) – which is making any derivations from these declared intentions difficult anyway.

With respect to energy security legislation in the US, a similar picture emerges. On the one hand, the "Energy Independency and Security Act" of 2007 clearly stated RE-based measures to decrease dependency on foreign energy imports – however, within the final process of deriving concrete legislations, the intended goals were watered down substantially (Bang, 2010). Also, other resolutions that passed congress, such as the "Energy Policy Act" in 2005 tend to promote nuclear and coal-based measures to reduce import dependency. Another example of non-RE-based legislations are relaxed legal requirements for shale gas extraction, which allowed for a boom of shale gas extraction within the US – illustrated by an increased share of shale gas in total US natural gas production from 1.6 percent by 2000 to 23.1 percent by 2010 (Richardson et

al., 2013). Interestingly, the federal U.S. department of energy does mention enhanced energy security as one of the main drivers for the intensified extraction of shale gas (U.S. Department of Energy, 2015b).

Within the literature, it is generally undisputed that – unlike for the European Union – dependency on foreign energy imports always played a major role for US energy policy making – which in recent years even increased due to growing hostility of Middle East supplying countries (Bang, 2010). However, consensus on the means how to achieve a decrease of dependency was never existent among the political parties. Consequently, generalised findings with respect to a utilization of RE-based measures against energy import dependency can again not be derived.

Concluding sections 2.1. and 2.2., the interaction of (a lack of) energy security and the promotion of RE sources cannot be evaluated without leaving questions open. This encourages further analysis and research as done subsequently.

3. Theory: Energy Security

To clearly define the core subject of this work, the following section will give an overview on different possible definitions and approaches to measure energy security. Later on, these theoretical considerations play an important role in deriving conclusions that are crucial to the hypothesis.

3.1. Definitions of Energy Security

Existing definitions of energy security can roughly be divided into two groups: A first that is concerned with security of energy supply and a second group that defines energy security via the consequences of (a lack of) energy supply.

(I) A very basic example for the first group is given by the International Energy Agency, (2001) and also employed by numerous authors, e.g. Bielecki, (2002): "Energy security, the reliable supply of energy at an affordable price". In general similar but a bit more sophisticated with respect to implicitly involving a free-market component and giving a more detailed price perception is the definition used by the European Commission, (2001): "ensuring [...] the uninterrupted physical availability of energy products on the markets, at a price which is affordable for all consumers (private and industrial)".

(II) The second group is well illustrated by a definition proposed by Löschel et al., (2010): "energy security exists if the energy sector does not cause major welfare-reducing frictions in the economy at national and global levels" (Löschel et al., (2010): p.1666). Many similar definitions exist that are also focussing on economic and welfare implications of physical supply or price disruptions. An interesting facet is added by the IEA, as it also involves the *risk* of supply disruptions and potential consequences from the existence of such risk (IEA, 2007a).

None of the definitions stated above can be considered perfect, as some terms always remain rather blurred and leave room for interpretation – but are crucial for the definitions: What exactly is *"reliable"* or *"affordable"*? What is a *"major"* welfare reduction? Another critique is added by Grubb et al., (2006), who claim that most definitions are geared towards the imports of energy sources, thereby overlooking the security of domestic energy infrastructure and supply.

A common ground can be found in all of these definitions: All involve a physical and economic dimension, namely the *availability* and *affordability* of energy sources. Both of these dimensions require a certain balance of supply and demand – importantly, a balance that is not economically induced by unrealistically high or low prices but instead a balance of actual, undisturbed supply and demand.³

A first observation important for the subject of this work has to be pointed out here: The concept of energy security is located in different spaces, namely the political and economic space. Standard economics have difficulties incorporating political motives that can be irrational sometimes – whereas strategic-political decisions may fail to account for basic economic requirements (Löschel et al., 2010). Both spaces are subject to very different motives, mechanisms and goals and combining both complicates exact research.

3.2. Evaluating and Measuring Energy Security

Based on the definitions presented above, the level of energy security can be evaluated according to several criteria. According to these criteria, potential threats can be identified.

3.2.1. Evaluating Energy Security: Time Dimension

A first, high-level differentiation of evaluation criteria can be found in the time dimension: Short-term versus long-term energy security. In the short term, main concern is the likelihood of unanticipated, sudden supply disruptions and following sharp increases in market prices, whereas the long-term view is concerned with stability and sustainability of supply flows and long-term price trends (Costantini et al., 2007). Clearly, threats in both time dimensions are relevant for the subject of this work as both would imply potential motivations to set up according policies.

3.2.2. Evaluating Energy Security: Causes and Consequences

Another differentiation of evaluation criteria can be found within the different aspects of energy security: Aspects that *cause* energy (in-)security and aspects that weaken (strengthen) the *consequences* of energy (in-)security.

The first – aspects that cause energy (in-) security – comprises physical and economic aspects. Physical availability may be constrained by exhaustion, production shortfalls or transport interruptions. In turn, these can be caused by physical depletion, technical failure of production and transportation facilities, political-strategic decisions, external attacks on energy infrastructure, natural disasters, etc. Economically, the functioning of energy markets may be limited by erratic price fluctuations (caused by anticipated or actual imbalances of supply and demand) or speculative market agents. Further, political actions such as trade embargoes or direct bilateral negotiations that reduce the overall size of the market can have a direct economic impact. Costantini et al., (2007) point out a connection to the time-dimension outlined above by noting that in the long run, physical aspects tend to dominate economic aspects.

The second set of aspects – consequences of energy (in-) security – covers social and environmental aspects. Measuring the level of vulnerability in the social space is not included into this research, as all countries in the panel are socially highly dependent on a steady supply of energy – thus, a differentiation of this dimension would not add explanatory power to the

³ Of course, this is blurred and difficult to define again.

model.⁴ Environmental aspects of energy security are generally not part of the underlying hypothesis of this (except of being included as a controlling variable), as further elaborated in section 6. Thus, relevant for this research are only aspects that *cause* energy (in-) security.

3.2.3. Measuring Energy Security

As there is no general consensus on the basic definition, also quantifying energy security is difficult. In addition, it is being complicated by a weak data base e.g. with respect to energy trading flows or reserves. Several possible indicators are focussing on different aspects of energy security. The following have been proposed within the literature:

- Implying that large domestic reserves may act as a buffer against disruptions in energy supply, reserve estimates may be employed – thereby also implying that domestic production may be subject to less supply disruptions than import flows, which is likely but not necessarily true. Significant drawback of this type of indicators is the high uncertainty that is underlying estimates on reserves and extraction potentials, on which a general consensus has not yet been achieved. Further, the absolute figure on reserves has limited meaning if not set in relation to production or consumption. Due to these drawbacks, the indicator is not employed in the following model.
- Based on a similar rationale the existence of buffer capacity reserve-to-production (R/P) ratios can be calculated by setting estimates on domestic reserves in relation to estimates on domestic production. Despite being more realistic due to the inherent relativization, uncertainty is even higher, as also production capacities are only estimates in most cases. Further figures on *consumption* may play a more important role than figures on *production* for energy security. Both are employed in a model extension in section 10.
- Also coming from a similar rationale is to employ **import dependency** as a measure of energy security. Usually, the ratio of net energy imports to total energy consumption is employed to track the degree of vulnerability to foreign energy supplies. A related approach is used within the methodology of this research as described in section 7.2.
- Addressing the security of supply, several diversity indices have been developed. Diversification of supply is generally – regardless of the respective market – a powerful tool against market power of a single market agent and can thus be utilized as a indicator for security of supply. Due to the complexity in calculating a meaningful diversity index for the energy market,⁵ utilizing this indicator to proxy energy security is left for further research, as elaborated in section 13.
- Not tracking the diversity of supply, but tracking the reliability of supply is to incorporate **political stability of supplying countries**. This principle plays a role in the suggested hypothesis and is employed via two different models later on.
- **Energy prices** may be employed as an indicator of the balance of global supply and demand, where high energy prices indicate a shortfall of supply and thus a low level of

⁴ In the sense that the level of social vulnerability is high enough in all countries to create pressure to ensure a secure supply of energy.

⁵ Theoretically, any diversity index ideally comprises three aspects: Number of categories (variety), spread across categories (balance) and degree of differences across categories (disparity). The degree of disparity cannot be quantified for the energy market as the substitutability of different energy sources cannot be quantified sufficiently. Therefore, only incomplete diversity indices can potentially be employed (Kruyt, 2009).

energy security. However, next to supply and demand, energy prices are affected by many other factors such as speculation or strategic communication and may thus not properly approximate the true level of energy security of a country. Due to this expected approximation inaccuracy, this indicator is not employed.

Lastly, demand-side indicators – measuring for example the energy intensity of any economy – may quantify the size of the impact of energy shortages (Kruyt, 2009). However, as mentioned in section 3.2.2., the vulnerability to energy supply disruptions is regarded to be sufficiently high to induce policy implementations for all countries in the panel employed. Therefore, demand-side indicators are note utilized in the subsequent model, as they are not regarded to add explanatory power to the model. This could be different in a panel with greater heterogeneity with respect to economic development stage of the included countries – where vulnerability to energy supply is likely to differ more.

A few more complex indicators do exist, as elaborated by Kruyt (2009). However, to the best knowledge of the author, so far no attempt has been made to combine measures on the quality and/or reliability of state relations with import patterns to receive indicators for energy security,⁶ as done within the subsequent model.

4. Empirics: Current and Future Energy Situation

After having defined energy security concepts and approaches to measure it, the following sections will give an overview on the current and future situation of the global energy market and resulting challenges.

4.1. Current Situation: Physical, Economic and Political Background

4.1.1. Current Physical Situation: Reserves, Production and Consumption

The most important but very basic physical observation that cannot be overrated in importance is the finding that production and consumption especially of crude oil and natural gas is characterized by an enormous spatial discrepancy. This spatial discrepancy is the driver for the high complexity the global energy trading system has developed to.

As illustrated in table 1 below, the Middle East alone holds 47,7% of crude oil reserves and 42,7% of natural gas reserves – while coal is mostly concentrated in North America, Europe and Eurasia and the Asia Pacific Region. It has to be noted oil and gas shares of the Middle East are even increasing by trend since the 1990s as other regions are depleting their reserves faster (CIEP, 2004).

As a result, the Middle East and Africa are by far the most important regions for crude oil and natural gas not only in terms of physical reserves but also in terms of production capacities. This holds to be true despite the import diversification efforts and increase of domestic production capacities of the consuming countries in the aftermath of the oil crises in the late 70s and early 80s (Costantini et al., 2007). On the consumption side, OECD countries are consuming far more than they are producing which naturally leads to high import volumes of nearly all OECD countries.

⁶ Except of the incorporation of state stability as mentioned above.

Table 1 further illustrates the most recent figures (2014) on production and consumption patterns of fossil fuel reserves and makes the enormous global discrepancy in production and consumption visible.

<u>Table 1</u>

	Crude Oil						
	Resei	Reserves Production				tion	
	Billion Barrels	Share	Thousand Barrels/d	Share	Thousand Barrels/d	Share	
Total North America	232,5	13,7%	18721	20,5%	23347	24,3%	
Total S. & Cent. America	330,2	19,4%	7613	9,3%	7125	7,8%	
Total Europe & Eurasia	154,8	9,1%	17198	19,8%	18252	20,4%	
Total Middle East	810,7	47,7%	28555	31,7%	8706	9,3%	
Total Africa	129,2	7,6%	8263	9,3%	3800	4,3%	
Total Asia Pacific	42,7	2,5%	8324	9,4%	30856	33,9%	
Total World	1700,1	100,0%	88673	100,0%	92086	100,0%	
of which:							
OECD	248,6	14,6%	22489	24,6%	45057	48,3%	
Non-OECD	1451,5	85,4%	66184	75,4%	47029	51,7%	
OPEC	1216,5	71,6%	36593	41,0%			
Non-OPEC	341,7	20,1%	38278	43,0%			
European Union #	5,8	0,3%	1411	1,6%	12527	14,1%	
Former Soviet Union	141,9	8,3%	13802	16,0%	4443	4,9%	
			Natur	ral Gas			
	Resei	Reserves		tion	Consump	tion	
	Trillion cub. mtr.	Share	Billion cub. mtr.	Share	Billion cub. mtr.	Share	
Total North America	12,1	6,5%	948,4	27,7%	949,4	28,3%	
Total S. & Cent. America	7,7	4,1%	175,0	5,0%	170,1	5,0%	
Total Europe & Eurasia	58,0	31,0%	1002,4	28,8%	1009,6	29,6%	
Total Middle East	79,8	42,7%	601,0	17,3%	465,2	13,7%	
Total Africa	14,2	7,6%	202,6	5,8%	120,1	3,5%	
Total Asia Pacific	15,3	8,2%	531,2	15,3%	678,6	19,9%	
Total World	187,1	100,0%	3460,6	100,0%	3393,0	100,0%	
of which:							
OECD	19,5	10,4%	1248,2	36,3%	1578,6	46,7%	
Non-OECD	167,6	89,6%	2212,4	63,7%	1814,3	53,3%	
European Union	1,5	0,8%	132,3	3,8%	386,9	11,4%	
Former Soviet Union	54,6	29,2%	760,3	21,9%	568,5	16,7%	

Pocorvo-	Production_ and	d Consumption	- Estimatos for	Crudo Oil	Natural Gas and Coa	
Reserve-,	Production- and	a consumption	i estimates ior	Crude Oil,	, Natural Gas and Coa	

	Coal						
	Rese	rves	Produc	tion	Consump	tion	
	Million Tonnes Share		Mtoe	Share	Mtoe	Share	
Total North America	12,1	6,5%	948,4	27,7%	949,4	28,3%	
Total S. & Cent. America	7,7	4,1%	175,0	5,0%	170,1	5,0%	
Total Europe & Eurasia	58,0	31,0%	1002,4	28,8%	1009,6	29,6%	
Total Middle East	79,8	42,7%	601,0	17,3%	465,2	13,7%	
Total Africa	14,2	7,6%	202,6	5,8%	120,1	3,5%	
Total Asia Pacific	15,3	8,2%	531,2	15,3%	678,6	19,9%	
Total World	187,1	100,0%	3460,6	100,0%	3393,0	100,0%	
of which:							
OECD	19,5	10,4%	1248,2	36,3%	1578,6	46,7%	
Non-OECD	167,6	89,6%	2212,4	63,7%	1814,3	53 <i>,</i> 3%	
European Union	1,5	0,8%	132,3	3,8%	386,9	11,4%	
Former Soviet Union	54,6	29,2%	760,3	21,9%	568,5	16,7%	

Source: BP Statistical Review, (2014)

When considering figures on reserves, production and consumption it has to be highlighted that those figures are only estimations, implying that they do exhibit uncertainty.⁷ Especially figures on reserves are highly questionable as firstly the amount of undiscovered reserves is difficult to approximate and secondly figures on proven reserves are influenced by political motives sometimes. In particular, the size of reserves in the Black Sea and Caucasian region are highly disputed – but are politically interesting as they could provide the opportunity for significant supply diversification (Costantini et al., 2007).

4.1.2. Current Physical Situation: Infrastructure

With respect to global energy infrastructure three facts may be important for the subject of this paper. At first, due to technical requirements and the size in volume and geographical reach, the global energy system exhibits an enormous complexity – with respect to technical infrastructure as well as interconnected dependencies and supply chains. This leads to the requirement of capital intensive maintenance and the fact that relatively small interruptions are quickly amplified to a global scale.

Secondly, with respect to market maturity, the global market for crude oil is technically and administratively well established and proven to be functionally working – whereas the global market for natural gas is only in development and cannot be regarded fully mature yet. Liquefaction of natural gas, which is required for international shipment, is technically complex and requires specific Liquefied Natural Gas (LNG) processing stations which have only recently been build in some exporting and importing countries (Umbach, 2010).

⁷ A good example to illustrate this uncertainty are reserve estimations published by Costantini et al., 2007, which claim the Middle East to hold roughly 65% of global crude oil reserves in 2002.

Thirdly, spare oil production capacities have significantly decreased from 15% to 2-3% of total production capacity since the mid 80s due to significant underinvestment and constantly increasing demand. During recent years, OPEC production even operated at an average of 99% of total capacity (Umbach, 2010). Next to *production* capacities, also global *refinery* capacity to convert crude oil into middle distillates such as diesel, jet fuel or heating oil, is lacking behind global demand (Yergin, 2006). Both exhibits the risk that future sudden supply disruptions may have significantly more severe impacts than previous disruptions, as there is hardly any buffer left to replace supply shortfalls in the short-term.

4.1.3. Current Economic Situation

Energy prices have remained relatively steady throughout most of the 20s century averaging at roughly 25\$ per barrel and encountering major fluctuations only in times of global economic disruptions (e.g. recessions or significant growth periods influencing energy demand) or political and military crises (influencing energy supply). This has changed significantly since the mid 90s at which time prices started to escalate sharply.⁸ The US department of energy projects cost of oil to be in range of 135\$ per barrel constantly in 2035 (Valentine, 2011 and IEA, 2007a). A generally increasing trend in prices is also confirmed by Shafiee & Topal, (2010). Relevance of high energy prices for the overall economy is illustrated by the fact that the price level as of 2006 resulted in an energy bill of around €250 billion each year for the European Union, which was roughly 2.3% of total GDP by then (Bahgat, 2006).

Further, not only did the level of prices increase significantly, but so did the price volatility, reflecting a high level of uncertainty in the market. This also manifests in the size increase of the futures market for energy products that is used to hedge against price fluctuations (Costantini et al., 2007). The increased volatility in energy prices can partly be explained by the inelasticity of demand for energy products, leading to more pronounced price movements as a result of supply changes. This inelasticity is especially apparent within the transport sector and – coupled with the growth forecasts for the Asian transport sector – expected to intensify in the future (Bielecki, 2002; Costantini et al., 2007 and IEA, 2007a).

Importantly, Umbach (2010) adds the general finding that previous price developments were dominated mainly by temporary supply shortfalls, whereas the recent price increases are induced by structural weaknesses of the energy market – and will thus not be resolved by market forces alone (Umbach, 2010).

4.1.4. Current Political Situation and Threats to Supply

Politically, the global energy system is characterized by a certain degree of polarisation among supplying and receiving countries, institutionalised by the OPEC cartel on the supplying side and the OECD network on the receiving side – of course, important exceptions such as the People's Republic of China, which is among the largest importers but not part of the OECD, do exist. This polarisation leads to an atmosphere of rivalry and competition for resources, firstly among supplying and receiving countries and secondly among OECD and non-OECD receiving countries.

⁸ The recent drop in energy prices due to the global economic slowdown in the course of the recent financial crisis is generally not regarded to bring energy prices back to a low level for a longer time and will not break the trend of relatively high energy prices in the future.

Further, some authors identify a tendency to a so-called "petro-authoritarianism" that is apparent among many fossil fuel supplying countries.⁹ Petro-authoritarian states are loosely defined to be dependent on revenues from oil exports while at the same time lacking strong institutions – with the effect that a significant loss of oil revenues may lead to severe political and economic repercussions and consequently also unreliability of supply to the world market (Friedman, 2006). Umbach, (2010) showed that the decline in oil prices during the Asian financial crisis in 1998 played a significant role in the regime changes in Algeria, Brunei, Indonesia, Nigeria and Venezuela. This effect may even be exaggerated by higher oil price fluctuations in the future. Authoritarian states also generally exhibit the risk of potential domestic instability and politically motivated export decisions.

Instability of supplying states and regional crises also caused supply disruptions on several other occasions. Only to name a few: Country-wide strikes in Venezuela in 2002-03 led to a decline from 3 million barrel per day to 0.4 million barrel per day, thereby pushing up oil prices above \$30 per barrel or the suspension of Iraqi oil exports in 2001 with a gross supply loss of 2.1 million barrel per day (Löschel et al., 2010). Especially Middle Eastern countries are seen as instable and unreliable due to ethnic conflicts or ideological premises (Bahgat, 2006).

Another important strategic issue and source for major disruptions that is apparent in the present global energy system is the general vulnerability of the energy infrastructure to terrorism, especially with respect to transport facilities such as pipelines – which are nearly impossible to protect (Asif & Muneer, 2007). Globally, terrorist attacks on oil and gas infrastructure have increased – the most spectacular example probably being the suicidal attacks on the French super tanker "*Limburg*" – but so far lacking a global impact on supply of fossil fuels (Umbach, 2010).

Other major supply disruptions have been caused by natural disasters in the past, for example did the hurricanes *"Katrina"* and *"Rita"* shut down 27% of oil production and 21% of refinery capacity in the US – resulting in a global price effect (Umbach, 2010).

All of these examples demonstrate that major interruptions in fossil fuel supply have happened in the past and as the underlying reasons are not expected to diminish but will intensify by trend, expectation on future supply interruptions on a global scale are rather certain.

4.2. Future Situation: Supply and Demand

This section will give an overview on the expected developments on the supply- as well as the demand side of global fossil fuels.

4.2.1. Future Situation: Supply-Side

With respect to future developments on the supply side of fossil fuels, two main issues are important for this work: How long will fossil fuels be physically available and how will production shares be distributed in the future?

4.2.1.1. Depletion Estimates

With respect to physical availability, it has to be stated that not only reserve estimations exhibit uncertainty. Also scenarios on consumption are highly dependent on future price developments,

⁹ As is the case for example for Russia, Iran, Venezuela, Nigeria, Sudan, etc.

economic development, climate saving policies, potential technological efficiency gains and political behaviour of the OPEC cartel (Shafiee & Topal, (2009) and Costantini et al., (2007)). This leads to very different depletion scenarios as illustrated in table 2 below.

However, a certain consensus exists on the fact that oil will be depleted earlier than gas and the utilization of non-conventional reserves¹⁰ will significantly shift the depletion date backwards for both types of fossil fuels. When combining conventional and non-conventional reserves and resources,¹¹ 12 (11) out of 13 studies focussed on depletion estimates predict a sufficient supply of oil (gas) until 2100, as shown in table 2. This illustrates that physically, oil and gas can continue to supply the world for a long time, however only with remarkable financial and technical efforts – of course, security issues accompanying the growing scarcity will emerge long before the final depletion date. This is illustrated by a considerable amount of studies which predict conventional oil reserves to be depleted by 2030 (10 out of 13 studies).

Global coal depletion scenarios, which are not included in table 2, are more optimistic and lie in a range of up to 155 years. However the reserves-to-production ratio for coal has decreased by more than 40% between 2000 and 2005, mainly due to the increased Chinese and Indian demand for coal as a source of electricity (Valentine, 2011).

Table 2

Breakdown of scenarios by the year until which oil and gas demand would be fulfilled by reserves/resources

Last Voar of		Rese	erves		Resources			
Last real of			Conven	tional &			Conven	tional +
Availability	Conve	ntional	Noncon	ventional	Conve	ntional	Noncon	ventional
	Oil	Gas	Oil	Gas	Oil	Gas	Oil	Gas
2020	2	1	-	_	Ι	1	1	1
2025	6	1	-	_	Ι	1	1	1
2030	2	3	-	_	Ι	1	1	1
2035	1	4	-	_	Ι	1	1	1
2040	2	5	-	_	1	1	1	1
2045	-	1	1	1	1	Ι	Ι	1
2050	_	1	1	1	4	1	1	1
2055	_	1	1	1	1	1	1	1
2060	_		3	1	1	1	-	-
2065	_		1	1	2	-	-	-
2070	_	_	1	3	1	3	-	_
2075	_	_	1	-	-	-	-	-
2080	_	1	2	2	Ι	2	1	1
2085	_	1	-	_	Ι	1	1	1
2090	-	-	-	1	-	2	-	1
Beyond 2100	_	_	2	2	2	4	12	11
Total # Scenarios	13	13	13	13	13	13	13	13

Source: Costantini et al., (2007)

¹⁰ That are proven reserves which cannot be easily accessed by nowadays conventional extraction techniques and are therefore more expensive to utilize

¹¹ That are undiscovered reserves that are expected to be economically exploitable

Next to figures on physical availability of fossil fuels, it remains a widespread concern, whether the global energy industry will invest into new and existing production facilities in a timely and adequate manner (Correlje & van der Linde, 2006 and Umbach, 2010). If this fails to be the case, significant physical supply shortages can emerge even without the actual reserves being close to depletion.

4.2.1.2. Development of Production Share

With respect to the development of production shares less uncertainty on the overall trends exist. Consensus exists on the fact that OECD oil and gas production shares will continue to cease, whereas OPEC oil and gas production shares will continue to increase, for oil from 42% in 2006 to 52% in 2030 (Umbach, 2010) – with the result that many players which are relevant today will lose their relevance in the coming 20 years (Asif & Muneer, 2007).¹² Despite opposing views are expressed within the literature as well, some authors even go as far as stating that the Middle East supplying countries will need to accommodate any increase in oil demand (at least in foreseeable future), as it is the only region that possesses large known reserves with the ability to scale up production relatively easy (Bielecki, 2002 and Costantini et al., (2007)).

Most significant increases in production capacity of gas will become manifest in Africa and – given the respective countries are politically stable enough for such long-term and large-scale investments – Middle East again. Some authors even express concerns on the rise of "gas-OPEC" as a consequence of the foreseeable concentration of gas production (Finon, 2007).

Overall, it is undisputed that current importing countries will become *more* dependent on *less* supplying countries (Costantini et al., 2007).

4.2.2. Future Situation: Demand-Side

According to the IEA reference scenario, global energy demand is expected to increase significantly in the future, namely about 55% until 2025/2030 if the present trend continues (IEA, 2007b) – subject to all the uncertainties described in section 4.2.1.1. above. The increase in demand is generally fuelled by the expected growth in global population (Asif & Muneer, 2007) and in particular by the increase of demand from the Asia-Pacific region (Costantini et al., 2007). Especially China and India are of tremendous importance, for example being responsible for 80% of the increase in coal demand until 2030 (Umbach, 2010). In general, shares in energy demand will shift according to overall expected economic development – that is from north to south, OECD becoming less important and the Asia-Pacific region gaining importance. This will most likely develop towards a situation of increasing rivalry and competition for global energy reserves, where receiving countries are not unified and thus cannot make us of their full potential in bargaining power (Bahgat, 2006 and Correlje & van der Linde, 2006).

Speaking in terms of the different types of fossil fuels, oil is expected to remain the fuel of choice for transportation worldwide and will therefore remain to be relatively inelastic. Its demand will thus be heavily dependent on the global development and policies within the transportation sector (Costantini et al., 2007). The market for natural gas will expand significantly in all regions and will most likely become a mature market as the market for oil is today (Umbach, 2010). This is due to new technologies that let natural gas become attractive for electricity generation in recent years – reflected in an increase from 20% to 25% in worldwide

¹² According to Asif & Muneer (2007), that may be the case for Russia, Mexico, US, Norway, China, Brasil.

energy usage share from 2005 to 2020 (Costantini et al., 2007). Some authors argue that demand for natural gas will outpace supply, then leading to a sharp escalation of gas prices worldwide (Valentine, 2011). Clearly, huge investments into pipelines and LNG harbours will be necessary in any case. However, the largest increase in global energy demand will become manifest for coal, which is expected to increase by 73% between 2005 and 2030, again driven mainly by increased demand from China and India (Umbach, 2010 and Bang, 2010).

Summarizing these figures, fossil fuels will by far remain the most important source of energy, covering approximately 83% of the increase in global energy demand until 2030 (Umbach, 2010). This also implies that RE sources will not play a significant role for global energy supply and demand until 2030 – even in optimistic scenarios, all RE sources (including hydro-energy) will account for only 17% of the global energy mix. Only for the electricity generation sector could RE sources become the second largest contributor (Umbach, 2010). However, predictions on the development of the share of RE sources within the energy mix are explicitly subject to high uncertainty, as RE promoting polices are capable to increase the share of RE sources significantly more than expected (Bielecki, 2002).

4.3. Opposing Concepts of Global Energy Architecture

This section will give an overview on the existing forces and mechanisms shaping the contemporary global energy architecture and the resulting implications for the subject of this work.

Basically all developments of the global energy architecture can be analysed within the dichotomy of "market-based" versus "strategy-based". The approach of most OECD countries is largely dominated by relying on market forces to balance out supply and demand in the most efficient way possible. This does work considerably well for highly integrated markets such as the European and North American home markets.¹³ This market-based policy is regarded to be the outcome of a general global trend of liberalization and in particular a result of the oil crises in the 70s, after which OECD countries aimed at separating energy decisions from political considerations (Correlje & van der Linde, 2006 and Umbach, 2010). Of course, this policy has the consequence that decisions within the energy sector are taken based on profit maximization, thereby not necessarily considering long-term strategic interests and also lacking a single agent that takes up overall responsibility for reliable supply chains (Umbach, 2010).

On the other side, many supplying countries tend to regard energy exports as a tool of foreign policy – thereby denoting those decisions to very different considerations than agents acting according to the market-based approach. This can be illustrated for example by the Russian-Ukrainian gas conflict in 2005 and other blackmailing efforts of Russia against former states of the Soviet Union (Bahgat, 2006 and Umbach, 2010) or the concerted decision of the OPEC to restrain oil production in 1998-1999 (Bielecki, 2002) – only to name a few. The issue becomes even clearer when comparing company ownership structures from receiving and supplying countries. The formerly so powerful privately-owned "seven sisters"¹⁴ nowadays control less than 10% of global oil and gas reserves – Saudi Arabia's "Aramco" holds 20 times more oil and

¹³ However, domestic market structures have not developed away from the existing oligopolistic structure that is still apparent in many OECD energy systems.

¹⁴ After mergers and acquisitions, only six are left today: ExxonMobil, Chevron, BP, Royal Dutch Shell, Conoco Philips, Total1

gas reserves than its biggest private rival, ExxonMobil (Financial Times, 2007). In recent years, state-owned energy companies have increasingly bought energy infrastructure and licences outside of their domestic market without considering economic profitability but instead intending to create pricing power for political forces, which has resulted in an asymmetric power-relation among privately- and state-owned energy companies (Umbach, 2010).

This set-up has several implications relevant for the subject of this work. Firstly, the clash of motivations, market-based on the one side and strategy-based on the other side, results in a market where participants are acting according to different long-term goals and assumptions, which induced unpredictability and potential unreliability to the market. Secondly, the political-strategic orientation of supplier countries led to the effect that important investments into production capacities have been neglected, in part because foreign direct investments and utilization of western extraction know-how have not been accepted due to political reasons (Accenture, 2006).¹⁵ Lastly, transparency has suffered from politically controlled production companies, resulting in overstated reserve figures and minimized production problems (Simmons, 2006).

5. Conclusion and Policy Implications

The following section will provide a conclusion on the current status of energy security of importing countries and further provide an overview and concluding evaluation of potential policy implications.

5.1. Conclusion on Status of Energy Security

The above sections have highlighted several issues that are important for a final conclusion whether importing countries should set up policies to enhance energy security or whether the current level of energy security is sufficient. The following issues may be highlighted as a summary:

Issues within the space of supply and demand:

- Generally, spatial discrepancy of reserves, production and consumption is overwhelming (section 4.1.1.) and is becoming even more significant in the future, subsequently leading to intensified physical dependency of consuming countries (section 4.2.1.2.). In itself, this does not necessarily exhibit adverse effects, but firstly supply disruptions have more severe impacts and secondly, does increased dependency come along with a shift in power-relations and bargaining power.¹⁶
- Depletion estimates are generally not alarming for the near future however high uncertainty of scenarios and resulting wide range of predictions (section 4.2.1.1.) do not allow for a qualified risk analysis in that dimension.
- Demand for fossil fuels will undoubtedly continue to increase mainly in developing countries that do not maintain close political ties with traditional consuming countries, thereby building up a potential rivalry and competition for existing supply (section

¹⁵ Notably, neglecting Western know how does also lead to a decline in technical advantage of Western companies, as largest projects are realized by state-owned companies nowadays – as visible in the deal among Total and Gazprom on the Shtokman gas field (Milov et al., 2008).

¹⁶ This is true for the energy system in particular but also generally holds for any system of relations.

4.2.2.). Thus, consequences for traditional importing countries are two-fold: Firstly, the desired resource is becoming scarcer and secondly, bargaining power is undermined.

Issues within the space of infrastructure and economic background:

- Again more generally, the energy system has become highly complex and interconnected to an extent that minor disruptions can propagate through the system and have implications on a global scale (section 4.1.2.) increasing the likelihood of events with global impact.
- Spare oil and gas production and refinery capacities have diminished in recent years, leaving no buffer for unexpected supply disruptions and thereby increasing the likelihood of short-term imbalances in the global energy market (section 4.1.2.) – implying obvious adverse effects within the economic and political space.
- Resulting in part from the above, price levels and volatility have increased and will continue to do so in the future (section 4.1.3.),¹⁷ thereby increasing the overall costs of energy supply and affecting energy security adversely in the space of affordability.

Issues within the political space:

- Generally, a far-reaching dichotomy of market participant's motives and long-term goals

 market-based versus strategy-based has been identified (section 4.3.) which holds
 adverse consequences for market reliability and predictability of other participant's
 behaviour.
- The tendency to so called "Petro-authoritarianism" (section 4.1.4.) is accompanied with a potential lack of political stability and politically influenced decisions on energy exports.
- The rise of global terrorism poses a thread as energy infrastructure has reportedly been in focus of attacks and even small scale attacks on vulnerable aspects of the global energy systems (such as marine transport routes and pipelines) can have a significant impact¹⁸ (section 4.1.4).

The above illustrates the wide variety of issues the contemporary global energy architecture exhibits. Linking those to the theoretical background presented earlier, it becomes clear that all dimensions of energy security definitions and according evaluation criteria (section 3.1. and 3.2.) are affected adversely for importing countries: Affordability and reliability as desired goals of energy security cannot be assured. Political, physical and economic dimensions as potential sources of energy security cannot be regarded well suited for achieving the aforementioned goals. Also with respect to the time dimension, threads exist for the short- as well as for the long-term horizon.

The following three points have to be noted to present a holistic picture of the current situation of energy security:

¹⁷ To what extent changes in price level and volatility can be attributed to the aforementioned characteristics or more to the general financialisation of commodity markets shall not be addressed here – important is the identification of these economic developments as an issue to a country's energy security.

¹⁸ This has to be viewed in combination with the increased complexity of energy systems as mentioned earlier.

(I) Vulnerability to energy supply disruptions is differing from sector to sector as for example the transportation sector, which is almost completely dependent on fossil fuels, is more vulnerable to energy supply disruptions than the electricity production sector, which has a more diverse supply base (Bauen, 2006).

(II) Vulnerability is also differing from source to source. This is reflected in the fact that the above issues are mainly concerned with oil and gas supply security, less so with coal. Coal is not considered critical by many authors as it is available plentiful, spread relatively even globally (as illustrated within the reserve figures in section 4.1.1.) and largest reserves are located in politically stable countries.

(III) Two opposing expectations about the future development of the international political atmosphere hold different implications: A trend towards cooperation, multilateralism and functioning energy markets would shift attention of energy security towards the physical availability and affordability as the dependence on other country's exports in itself would not be regarded problematical. Contrary, a trend towards increased competition and rivalry would shift attention more towards independence and long-term accessibility of fossil fuels (Kruyt, 2009 and Correlje & van der Linde, 2006). Sections 4.1.4. and 4.3. have illustrated that the latter describes expectation on international politics more accurately.

Still, in all scenarios a great pressure for improving the (future) energy security situation of consuming countries by setting up according policies can be identified. This concluding analysis is also shared within the literature, for example by the authors Kruyt, (2009); Correlje & van der Linde, (2006); Bielecki, (2002); Yergin, (2006); Costantini et al., (2007) and Umbach, (2010) to name a few.¹⁹

5.2. Policy Alternatives

After having identified the need to set up policies that enhance energy security, the following sections will present an overview on potential policy options – divided by non-RE-based and RE-based policies – and will finally provide a weighting of advantages and disadvantages of the various options.

5.2.1. Non-RE-Based Policies

Non-RE-based policies can be structured according to the following categories.

Strategic Reserves

A tool that is already commonly used is the setup of strategic reserves. Those can be utilized to substitute short-term supply interruptions and can thus be seen two-fold: As an infrastructural tool that balances out short-term supply interruptions based on technical difficulties, natural disasters, terrorist attacks, etc. and further as a tool of deterrence against politically motivated supply stops (U.S. Department of Energy, 2015a). Strategic reserves are in place for the US as well as for the EU, Asian countries are also starting to build up similar facilities (Bielecki, 2002).

¹⁹ As a side-note to this general conclusion: Even when analysing the need for market-intervening policies based upon *neoclassical, economic* assumptions, a certain degree of market failure can be identified that provides the questioned justification. This becomes apparent for example with respect to monopolistic pricing power of supplying countries or the fact that energy security as a good – just like environmental concerns – is not yet properly priced by the market (Bielecki, 2002; Bauen, 2006 and Löschel et al., 2010).

This tool can clearly only be seen as a short-term measure and thus does not help to significantly improve long-term energy security – except of its function as a deterrence tool, exhibiting the potential to increase long-term reliability of more hostile countries (Bauen, 2006).

Measures to Increase Reliability of Supplying Countries

There is a broad set of potential tools that are designed to ultimately increase the reliability of supply flows. Firstly a set of measures that rely on a general atmosphere of cooperation in international relations is described, followed by a set of measures appropriate for a more rivalling international atmosphere:

Organizations which are supporting or setting rules and norms for the international trade in energy such as the International Energy Forum (IEF), the International Energy Agency (IEA), the World Trade Organization (WTO), amongst others or also more bilateral efforts such as the "EU-Russia Energy Dialogue" or the "Interstate Oil and Gas Transport to Europe Dialogue" with countries neighbouring the Caspian Sea can be strengthened in order to ease the general cooperation.

To increase technical reliability, promoting foreign direct investments is the main tool to disseminate technology and improve production and transportation capacities (Correlje & van der Linde, 2006) – given the target country is economically open.

More designed towards rivalling supply countries, a strategy of creating mutual dependency can be implemented for example by promoting non-energy exports to supplying countries, thereby deterring those from cutting off energy exports as the result would be a mutual trade embargo (Bahgat, 2006 and Costantini et al., 2007).

Further, the establishment of strong national energy companies that can economically compete against the existing national energy companies of supplying countries could help gaining more direct access to reserves (Correlje & van der Linde, 2006). Of course, this strategy is limited by the geographical location of resources as even the strongest company cannot buy oil or gas field licenses if the owning country does not allow such a transaction.

Very drastically, military capacity can be build up and focussed more towards intervening in countries that possess fossil fuel reserves or – more friendly – guaranteeing their safety and stability (Correlje & van der Linde, 2006). Military intervention under the presumption of securing access to energy reserves has been undertaken by the US in the Middle East for a long time – it is difficult to examine whether this strategy has strengthened or weakened the regions stability and could thus be regarded successful or not. However, it has been estimated that it came along with a cost of approximately US \$6.8 trillion between 1976 and 2007 for the US (Valentine, 2011), highlighting the tremendous efforts such a strategy is linked with.

Not following the dichotomy of a generally cooperative or rivalling international atmosphere, energy policy can in any case be put more in focus of international foreign relations – especially international trade policies – denoting it to strategic considerations (thereby changing the currently dominating market-based doctrine of the west) (Correlje & van der Linde, 2006).

All those measures to increase reliability of supply flows are unquestionable aimed at increasing long-term energy security and have been used in the last century to a certain degree, varying from country to country – with considerable success, as the overall stable supply of energy

demonstrates. However, they are naturally limited by certain boundaries: Ideologically motivated regimes will perhaps not be significantly influenced by mutual trade dependency, international organizations or strong energy companies and will not allow foreign controlled investments into their energy sector – the same limitations arise for ethnically or politically instable countries. Thus, this set of measures is most effective for countries that are requiring a "push to the right direction", but cannot fundamentally change preconditions for reliable supply flows.

Reducing Demand

The most direct way to achieve a lower level of demand for supplies – which is coming along with a lower level of import dependency – would be to increase domestic production, of course subject to the availability of reserves and extraction potential.²⁰ Further, improvements in energy efficiency and energy conservation can play a significant role in reducing overall demand.²¹ For both – improvements in efficiency and conservation – a wide variety of policies are at hand, e.g. insulation improvements for real estate, encouraging mass transit and enhancing industrial efficiency. Related measures have already been widely implemented in the past, showing considerable success (Bahgat, 2006 and Sovakool, 2007). Therefore, it is expected that in the long run, improvements in energy efficiency and conservation will be one of the main pillars of any successful energy security architecture (IEA, 2006).

However, those policies are again subject to technical and social constrains – illustrated for example by the unbroken dependence on fossil fuels of the transportation sector. Also, demand reductions may in part be substituted by higher economic activities and living standards and may also not necessarily reduce demand from the actual source that is problematic in terms of energy security (for example do efficiency gains in electricity devices not decrease dependency on oil for heating and transport) (Hughes, 2009).

Increasing Diversity

Increasing diversity of supply can be done in different dimensions, namely by *origin* and by *source*. The most realistic options for diversification of *origin* is seen by utilizing new oil and gas reserves that are expected within the Caspian Sea and Black Sea, in part also within West Africa and South America (Bielecki, 2002 and Bahgat, 2006). Diversification by *source* would imply utilizing different sources of fossil fuels. This is mainly possible for the electricity generation sector, where technical options are more mature than for other sectors. Especially coal (Umbach, 2010) and uranium (Valentine, 2011) are considered to be the most realistic options, as the former is plentiful available and the latter located in politically stable countries.

Diversification efforts are naturally constrained by the physical availability of fossil fuels, availability and security of transportation and production infrastructure, technical compatibility (especially with respect to refinery capacities as for example oil refineries are highly specialized on the type of crude oil and cannot be easily enhanced to process other types of crude oil) and

²⁰ The recent boom in shale gas extraction in the US has demonstrated the enormous potential of increasing domestic production.

²¹ The example of Denmark illustrates the enormous potential of increased energy efficiency: Over a period of 30 years, GDP has increased by 70% whereas primary energy consumption has remained the same (Liu et al., 2011)

political relations to the supplying countries (Vivoda, 2009).²² With respect to diversification to coal and uranium, environmental concerns have to be added to the list (Valentine, 2011 and IEA, 2007a). With respect to diversification to gas, the aforementioned development of a global gas market, requiring enormous infrastructural investments, is a precondition for any diversification efforts as the currently prevailing gas trade via pipelines is inflexible and thus not diversifiable (Costantini et al., 2007; Dorian et al., 2006 and Umbach, 2010). Further, among the most important limitations of a diversification strategy is the fact that it cannot provide any safety against economic spill-over effects once the global market for fossil fuels is affected as a whole (Kruyt, 2009).

As the overall reliability of supply genuinely increases if more sources are at hand, diversification efforts can in general be regarded very effective to increase energy security. However, due to the constrains illustrated above, in fact there are very limited options for diversification for most countries – in addition, one should keep in mind that current existing options are even diminishing in the future, as the increasing concentration of global reserves and rising demand is working against the goal of diversification (Umbach, 2010 and Bang, 2010). Also, it has to be noted that the largest oil importers already have sophisticated diversification policies in place but failed to significantly reduce dependency on Middle East oil (Vivoda, 2009).

5.2.2. RE-Based Policies

On the background of this work, RE-based policies are basically regarded to be all those policies that promote the utilization of RE sources for energy production – ranging from economic incentive schemes, support for RE research to legally binding quotas. RE sources differ with respect to their technical characteristics (wind, solar, hydro, geothermal, wave and tide, etc.).²³ To keep the paper slim, please refer to Van Dijk et al., (2003) and Jacobson (2009) for a detailed description of policy-schemes and technical details.

Before analysing pro's and con's of RE sources, the following has to be considered: Almost all economically and technically mature options of RE sources are designed towards generating electricity – which provides substitutive effects for natural gas, coal and uranium as those are heavily used for electricity generation as well, but which does not directly reduce demand for oil imports in the contemporary world, as oil is not significantly used for electricity generation. A substitutive effect for oil would occur, if electricity would become increasingly important for the transportation and heating sector where oil is more heavily used – fostering this can of course be an integral part of a RE-based policy strategy. The only exception is apparent for thermal RE sources (based on solar or geothermal energy), that could directly replace oil as a source for heating. Still, global demand for electricity is expected to increase sharply in the future and energy used for electricity generation is thus of tremendous importance with respect to direct import dependency (Valentine, 2011).

²² Especially the political situation surrounding the Caspian Sea exhibits high conflict potential, as the legal status of the fossil reserves below the Caspian Sea has remained subject to disputes for decades (Bahgat, 2006).

²³ The different policy-options will not be evaluated in detail, as the subject of this work is not focussing on the effectiveness of the individual policy options, but whether the promotion of RE in general is a vital tool to enhance energy security. Also, the different technical options for RE sources will only be evaluated as far as the technical characteristics have implications for the goal of enhancing energy security.

RE sources exhibit a wide range of advantages and disadvantages. A main argument against the utilization of RE sources are the high costs for infrastructure enhancements,²⁴ as the electricity system would need to be equipped for balancing out an increasingly dynamic supply²⁵ that is coming along with a larger share of RE sources²⁶ – for example by increasing buffer capacities and extending the geographical reach of the grid. Further, a general risk emerges as variations in supply could potentially add up to an extent that cannot be buffered any more, resulting in temporary power shortages. Another disadvantage that is difficult to evaluate is concerning the maturity of technologies, as many RE-based technologies are rather new compared to historically proven fossil-fuel based technologies – the major exception being hydro- and wind-energy, which is regarded to be relatively mature. Finally, a natural limitation for the utilization of RE technologies exists as those also require certain natural preconditions e.g. with respect to the degree of solar radiation or wind intensity. Especially increasing demand for biomass could lead to the moral dilemma of clean energy versus food supply (Johansson, 2013). Related to this point is the fact that some rare elements²⁷ are increasingly used for RE technologies, having the potential to form a bottleneck if RE capacity is continuously being increased globally.

On the other side, the following major advantages can be identified: Utmost important is the potential to increase domestic supply of energy up to an autarkic supply, thereby directly reducing demand and dependency on foreign energy. A more autarkic energy supply also holds the great advantage that economic spill-over effects of global supply and demand imbalances are to some extent buffered (Kruyt, 2009). Despite the limitation with respect to natural preconditions given above holds to be true, OECD countries do have far more potential to exploit RE sources than they do exhibit fossil fuel reserves. This is illustrated on a global scale in table 3 within the appendix. Also, once developed, RE sources are - unlike fossil fuels exploitable in an infinite time horizon. Another advantage that shall be highlighted is the decentralised character of an energy system based on many small units of RE-sources.²⁸ As a consequence of this decentralisation, vulnerability to a wide range of external shocks such as natural disasters, technical failures or terrorist attacks is reduced as the likelihood that all units fail at the same time is drastically reduced (Valentine, 2011; IEA, 2007a and Jacobson, 2009). Economically, incremental production costs for RE sources are trending downwards as technology progresses and no fuels are required during the production, whereas fossil fuel based technologies are trending upwards due to the growing scarcity of their inputs (Asif & Muneer, 2007; Duffield, 2009 and Valentine, 2011). Also, the common argument that utilization of fossil fuels is still cheaper than utilizing RE sources is increasingly challenged by calculating

²⁴ However, large-scale switches in energy infrastructure have been successfully performed in the past already, as demonstrated for example by the switch from coal to gas and nuclear power in the UK, driven by miners strikes in the early 80s or the global switch from oil to coal and nuclear due to the rising oil costs in the 70s (both with respect to electricity generation) (Hughes, 2009).

²⁵ Hydro-plants may even hold a RE-based technique to balance out short term supply fluctuations, as hydroelectric power plants have a reaction time of 15-30 seconds when being operated in spinning-reserve mode (Jacobson, 2009).

²⁶ Despite this being true, it should be mentioned that for example US coal plants are down due to unscheduled maintenance for 6.5% of their producing times. Pure technical availability ratios – not considering low winds – of wind turbines is far better (Jacobson, 2009).

²⁷ tellurium, ruthenium and indium for solar energy, lithium for batteries, platinum for fuel cell vehicles and neodymium in modern wind power plants (Johansson, 2013)

²⁸ A major exception here being large hydro-dams, which provide a similar quantity of energy as large conventional power plants and are thus evenly vulnerable to external shocks.

levelized costs – as illustrated in table 4 within the appendix. Pricing in externalities of fossil fuels (such as decommissioning costs of nuclear power plants or adverse environmental effects) further increase economic attractiveness of RE sources (Valentine, 2011). Consequently, Sovakool (2008), concludes that "...the sheer difficulty with promoting renewables is not economic but social and political." (Sovakool, 2008: p.27). This view is also shared by Ernst & Young, (2014).

5.3. Conclusion on Policy Alternatives

To reach a general conclusion on whether RE-based policies provide a more effective tool to improve energy security than non-RE-based policies do, the extent to which the issues summarized in section 5.1. are addressed has to be evaluated.

It is crucial to understand that the effect of both options – RE-based and non-RE-based – is very different in nature. Non-RE-based options may improve one or several of the identified issues, whereas RE-based options open a fundamentally new dimension within the space of energy security: A (potentially) autarkic supply – coming along with great advantages, but also with new challenges. Also, promotion of RE is in fact just a more radical type of diversification (as long as energy supply is not solely based on RE sources).

If achieved, an autarkic energy supply would solve most of the issues mentioned in section 5.1. at once: Issues coming along with spatial discrepancy of supply and demand, depletion of reserves, increasing demand from rivalling countries, to some extent energy price increases and fluctuations and – due to the lack of imports – also all issued from the political space (energy blackmailing, petro-authoritarianism, etc.). On the other side, new issues would be created that in part do replace existing issues, mainly with respect to the infrastructural space: Complexity and vulnerability of the global energy system would be converted into complexity of the domestic or regional energy system. The lack of spare production and refinery capacity would be replaced with an increased fluctuation in supply. Finally, high costs of setting up a new infrastructure (considering RE-based transportation policies) or extending the existing infrastructure (considering enhancements of the electricity system) would need to be accounted for – therefore replacing costs for international military interventions (referring especially to the US) and similar costs for enhancing existing fossil fuel based infrastructure (especially with respect to the developing gas market). Another disadvantage of RE-based policy options clearly is the long time horizon they do require to show significant effects.

On the other side, non-RE-based policies do not have this far reaching potential for improving energy security as all of the options come along with serious shortfalls and limitations, as described in section 5.2.1. Admittedly, a mix of all of these options with a focus on efficiency and conservation gains and diversification of supply may significantly increase energy security in the short- to medium-term, but in the long run, the fundamental aspects will overrule any of such policies.

Following these considerations, RE-based-policies can be regarded superior to non-RE-based policies in terms of enhancing energy security – given the following assumptions:

- 1. Long-term energy security is valued more than short-term security improvements.
- 2. Costs for infrastructural changes and incremental production costs of RE sources behave as predicted and stay in acceptable boundaries.

- 3. Developed and emerging economies as well as supplying and receiving countries keep competing for existing resources and do not reach a status of cooperation and multilateralism.
- 4. Unexpected²⁹ fossil fuel reserves that significantly prolong global depletion estimates while being easily exploitable and located in stable countries will not be discovered.

The conclusion that RE-based policies are superior to fossil-fuel-based policies is shared in the literature (e.g. Menegaki, 2011 amongst others) – nicely formulated for example by Valentine (2011): *"Fossil fuel is no longer in a symbiotic relationship with energy security; the relationship has become parasitic."* (Valentine, 2011: p.4577).

6. Hypothesis

The hypothesis of this paper is based upon the following two crucial conclusions, which have been derived in this work and stated in section 5.1. and 5.3.:

- 1. The current and prospective status of energy security holds sufficient social, economic and political pressure on consuming countries to set up policies targeted at improving energy security.
- 2. Given the assumptions stated above, RE-based policy measures are superior in reaching this goal than non-RE-based policies.

Based on the above conclusions and the fact that energy supply of the countries in focus is largely achieved by energy imports, the following hypothesis is formulated:

"The more a country is dependent on fossil fuel imports from unreliable countries, the more it will promote RE sources."

The according null-hypothesis:

"The extent to which a country is dependent on fossil fuel imports from unreliable countries has no effect on the promotion of RE sources."

Importantly, the suggested underlying mechanism is of political-strategic nature³⁰ and involves human decision making: The less reliable energy imports are perceived to be, the more does the political process generate RE-promoting policies. Following this, the dependent variable needs to approximate the promotion of RE sources, whereas the explanatory variable needs to approximate the level of perceived import dependency. Some indicators later on are geared

²⁹ "Unexpected", not in the sense of not being discovered yet but in the sense of not even being expected to be discovered. Example: Reserves below the Arctic Ocean are expected, but not yet fully discovered.

³⁰ As a side-note to this: Potential private-economy mechanisms – such as big energy consuming companies participating in wind farms to circumvent expected energy supply shortfalls – could be present as well but are not considered relevant – neither in the literature, nor within this analysis. In fact, from the private-economy perspective import dependency is not considered to be a dramatic issue as otherwise political actions would not be necessary in the first place.

specifically towards detecting *perceived* and not *actual* import dependency³², which makes it important to highlight the difference of both at this point.

7. Operationalization and Dataset

The following section describes how the variables derived in section 6 will be operationalized. Source references for all data are available in within the bibliography, section 14. Section 7.1. describes the dependent variables employed on the left hand side of the final estimation equation, whereas section 7.2. and 7.3. describe the independent variables employed on the right hand side of the final estimation equation (as defined in the formula in section 8).

All of the variables described have been gathered for 32 OECD countries³⁴ from 1990 to 2010 and the respective country-pairs evolving from the identified energy trading patterns. A summary of the data is given in table 5 within the appendix.

7.1. Dependent Variable

As discussed, the promotion of RE sources needs to be tracked as the dependent variable. This is achieved two-fold: Capturing the effect in a direct manner (group I), the implementation of REpromoting policies is tracked. However, as implementation of policies does not necessarily correctly approximate a country's actual effort – 10 weak policies can be less effective than 1 strong policy – also the share of RE sources (group II) is utilized, assuming that a country's effort manifests in a higher share of RE sources. The latter is tracking the hypothesis more indirectly and exhibits a certain time lag. This time lag is addressed in a model extension in section 10.1.

7.1.1. Group I: Count of Renewable Energy Policies

Data on policies directed towards the promotion of RE sources are extracted from the IEA/IRENA Global Renewable Energy Policies and Measures Database, made available by the International Energy Agency. Two different dependent variables are calculated from that source:

- i. The total sum of active RE policies (amount of established minus amount of discontinued policies) for the respective year and country. Henceforth, the variable is named *TOTALPOL*.
- ii. The second variable is calculated from the implementation of Feed-in-tariffs or Green Certificates. As soon as one of these types of policies has been implemented, the binary indicator for the respective country switches to one. Henceforth, this variable is named *FITORCERT*.

Both indicators are utilized to allow for the possibility that perhaps not the total amount of policies is correctly approximating a country's effort, but rather the implementation of those

³² See for example those indicators capturing differences in culture or religion, which do not necessarily affect the actual import dependency but which potentially influence the import dependency as it is perceived by political decision makers.

³⁴ Namely Austria, Australia, Belgium, Canada, Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Israel, Italy, Japan, Korea, Luxembourg, Mexico, Netherlands, Norway, New Zealand, Poland, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey, United Kingdom, United States

economic incentive schemes which are regarded to be most important within the literature, namely Feed-in-tariffs and Green Certificates (Schaffer & Bernauer, 2014 and REN21, 2012). In particular feed-in-tariffs have proven to be very effective, as shown empirically by Dijkgraaf et al., (2014) and are also mentioned to be the most commonly used incentive scheme globally (van Dijk et al., 2003 and REN21, 2012).

7.1.2. Group II: Share of Renewable Energy Sources

The following indicators are employed in the models capturing the share of RE sources:

- i. Contribution of renewables to total primary energy supply. Data are extracted from the OECD Factbook 2010 and OECD Factbook 2011-2012.³⁵ RE sources include the primary energy equivalent of hydro (excluding pumped storage), geothermal, solar, wind, tide and wave and energy derived from solid biofuels, biogasoline, biodiesels, other liquid biofuels biogases, and the renewable fraction of municipal waste. Henceforth, this variable is called *SUPSHARE*.
- ii. Share of renewable energy in electricity consumption. Data are provided by Eurostat utilizing the SHARE (SHort Assessment of Renewable Energy Sources) tool, which has been designed to achieve a harmonized reporting of RE shares among EU member states. RE source shares have been calculated according to accounting rules defined in the Directive 2009/287EC (European Commission, 2009). The numerator includes electricity generated from hydro, wind, bio liquids, biogases, geothermal, solar, tide and wave, renewable municipal waste and solid bio fuels. The denominator is defined as the gross electricity consumption, which is the total electricity production from all energy sources plus imports and minus exports of electricity. Henceforth, this variable is called *CONSHARE*.

Both RE share indicators are employed, as the former covers a greater set of countries and a larger timeframe and therefore ultimately allows for a larger data sample, whereas the latter provides an advantage in terms of harmonized calculation, thereby decreasing the risk of inconsistent data collection. Utilizing both is also encouraged by the fact that they do exhibit considerable differences for some countries, indicating that the different estimation methodologies do affect the data.

7.2. Independent Variables: Explanatory Variables

The explanatory variables form the core contribution of this work to existing research and vary for each of the models employed in section 8. As discussed in section 6, the explanatory variable ultimately needs to quantify a degree of perceived import dependency for each year and country. Based on the assumption that perceived import dependency is determined by the reliability of energy exports from supplying to receiving countries, quantifying a degree of perceived import dependency for the quality and/or reliability of state relations (henceforth called "relation indicator") with energy supply patterns. Every relation indicator will be evaluated within a separate econometric model to avoid inferences.

³⁵ Both issues of the OECD Factbook have to be utilized, as they provide a broader time horizon when combined. Method of data collection is equal over both issues and therefore data can be combined to one set without problems of consistency.

For the sake of completeness, it has to be mentioned that *quantifying* the *quality* of state relations will be never be flawless, irrespective of the indicator employed. This potential weakness is two-folded: Firstly, it is difficult to define which dimensions are actually relevant for the quality of state relations and secondly, measuring these dimensions is difficult as well. Utilizing different concepts of state relations and employing most reliable data sources is attempting to overcome this potential issue.

7.2.1. Indicators for State Relations

Different relation indicators are employed to account for different possible concepts that may determine the quality of relations among states. All different relation indicators result in a single value per country pair³⁶ – henceforth called "relation value". To receive the final dependency value, the relation values are ultimately averaged over all country pairs of a single importing country and its supplying countries, weighted by the respective energy import volumes. This process is described in detail in section 7.2.2.

To keep the methodology as simple as possible, the relation values are refined in a way that the final calculation of dependency values is done similar for all indicators. The according refinement is outlined per indicator in sections 7.2.1.1. – 7.2.1.3. below. Further, relation values are consistent in the sense of reflecting weak (strong) or unreliable (reliable) country relations with high (low) values. This allows for a consistent interpretation of signs across different types of indicators in the evaluation of regression results in section 9.

The relation indicators can be roughly grouped into three different types: Stability and reliability of the supplying state (I), trust and social proximity among supplying and receiving country (II) and strength of ties among supplying and receiving country (III).

7.2.1.1. Indicator I: Stability and Reliability

Stability and reliability of the energy supplying country play a crucial role in evaluating whether dependency on energy supply may be perceived to be problematic or not. Potential threads to energy security of the receiving country are explained straight forward: Unexpected supply disruptions that may be caused by social unrest or a lack of investment into production capacities of the supplying country. The hypothesis underlying this group of relation indicators claims that the more politically or socially unstable a country is, the more likely it is that such supply interruptions emerge. Being supplied by very unstable countries thus should increase the pressure to decrease dependency on fossil fuel imports.

To quantify stability and reliability of a country, the following indicators are employed:

Violations of Human Rights

The situation of human rights may very generally track the socioeconomic stability of a country – based on the assumption that the less human rights are respected, the more likely social unrest and resulting domestic crises emerges. Further, a lack of human rights is often coinciding with a lack of functioning institutions – admittedly, there are some major exceptions that do not match these assumptions such as Saudi Arabia or the Russian Federation, which posses a high value for violations of human rights but can generally be considered as relatively stable countries.

³⁶ In the case of time-variant indicators also varying per year

Data have been obtained from the "CIRI Human Rights Data Project" which provides quantified measures of several dimensions relevant for human rights. Most relevant for the purpose of this paper is the physical integrity index, which is composed from measures on torture, extrajudicial killing, political imprisonment, and disappearance indicators.

The following data refinement has been performed:

- 1. Scale has been turned around to reflect a bad human rights situation with a high value.
- 2. To avoid multiplication with zeros, "0"-values have been transformed to ="0,1".
- 3. To receive relative values, ³⁷ individual observations are divided by the average of observations.
- 4. 73 missing observations have been replaced with the value of the preceding year.

Country Stability and Governance

This indicator tracks a somehow broader perspective on a country's stability than the human rights situation does, as it takes more dimensions into account and also accounts for the quality of governance. On the one hand this provides the advantage of getting a more holistic view which might be capable of mirroring a country's overall situation more accurately than focusing only on the situation of human rights – and therefore avoids exceptions as appearing within the human rights indicator (such as Saudi Arabia or the Russian Federation, as mentioned). On the other hand, some of the dimensions included – such as "Voice and Accountability" – might not cause a thread to a country's stability per se, as it depicts a rather "soft" dimension.

Data are provided by the Worldbank through the "Worldwide Governance Indicators" project. The following six dimensions are quantified: Voice and Accountability (approximating the extent of freedom of expression, freedom of association, existence of free media and citizens ability to participate in governmental elections), Political Stability and Absence of Violence/Terrorism (approximating the likelihood of political instability or politically-motivated violence), Government Effectiveness (approximating the quality of public services, civil services and policy implementation and its independence of political pressure), Regulatory Quality (approximating the soundness of policies and regulations with respect to private sector development), Rule of Law (approximating the confidence of agents in rules of society, in particular contract enforcement, property rights, the police and courts) and Control of Corruption (approximating the extent to which public power is misused for private gains). A more detailed description on these dimensions can be found online as indicated within the references.

The following data refinement has been performed:

- 1. The six dimensions mentioned above have been averaged to one value per country and year.
- 2. Scale has been turned around to reflect a bad stability situation with a high value.
- 3. To avoid negative values, all values have been increased by two.
- 4. To receive relative values, individual observations are divided by average observation.

³⁷ As a side-note to this process of relativization: Of course, referring to McCune & Grace, (2002), different options to achieve a relativization of observations are at hand, however dividing by the average is regarded to be most reasonable as it doesn't flaw the data and creates comparable measures across all indicators.

5. Missing values for 1997, 1999 and 2001 have been replaced with the average of the preceding and succeeding year.

The following table provides an overview of data from indicator group I after the refinements mentioned above (but before calculation of relative values and replacement of missing values):

		No. of Observatio	Min	Max	Δνσ	
Indicator	Countries	Time-frame	Total Observations	Value	Value	Value
Human Rights – Physical Integrity Index	80	For most countries: 1990 – 2011	1687	0,10	8,00	2,85
Country Stability and Governance	83	1996 – 2013	1245	0,01	4,23	1,79

7.2.1.2. Indicator II: Trust and Cultural Proximity

This group of indicators approximate perceived import dependency through a rather indirect mechanism by assuming that a general existence of trust and social or cultural proximity is beneficial for the quality of country relations. This can hold through a variety of channels, may it be ease of political negotiations through better mutual understanding or general strength of public and individual ties that are fostered through trust and cultural proximity. The resulting underlying hypothesis is that countries which do exhibit a high level of trust and cultural proximity amongst each other are less likely to use energy exports as a tool of foreign policy and thus are perceived to be less problematic to be dependent upon. Consequently, being supplied by non-trustworthy and culturally dissimilar countries thus should increase the pressure to decrease dependency on fossil fuel imports.

To quantify trust and cultural proximity of two countries, the following indicators are employed:

Differences in Religion

Potentially a very insightful approximation for differences in values and the perception of mutual trust and cultural proximity is the difference of the religious composition of two societies – not only taking into account different types of faith such as Christianity, Islam or Judaism but also the share of religious versus non-religious population. Advantage of this type of measurement is the relatively simple matter – usually religious affiliation is defined clearly and unquestionable – which should ensure a flawless dataset. Disadvantageous for this indicator is the fact that religious affiliation might only reflect a limited share of what defines a societies set of values and thus might erroneously return high (low) cultural differences for countries with different (similar) religions whereas in reality they have a good (bad) trust base.

Data have been obtained from the "World Religion Project" which provides share-wise information on the composition of religious affiliation of a broad set of countries. To avoid high difference values for different religious streams, the aggregate figures for Christianity, Judaism, Islam and Buddhism have been used – instead of their individual streams such as Catholicism or Evangelism.

The following data refinement has been performed:

1. Hindus and Sikhs have been added to "Other Religions" for simplicity.

2. Five-yearly observations have been averaged for simplicity.³⁹

in religious shares according to the following example:								
	Christians	louve	Maclama	Duddhisto	Othors	Non-		
	Christians Jews Nos		wosiems Buddhists		Others	Religious		
Netherlands	0,68	0,00	0,05	0,01	0,01	0,25		
Germany	0,72	0,00	0,04	0,00	0,02	0,22		
Absolute Difference	0,04	0,00	0,01	0,01	0,01	0,03		
Final Difference Value	Sum of differences = 0,04+0,01+0,01+0,01+0,03 = 0,08							

3. The difference value per country pair is calculated by adding up the absolute differences in religious shares according to the following example:

4. To receive relative values, individual differences are divided by the average difference.

Cultural Differences

A second indicator employed to measure cultural proximity is the "Gert Hofstede Cultural Dimensions" index. Clear advantage of this indicator is the holistic approach as it attempts to fully capture cultural characteristics within a number of dimensions and thus is potentially able to provide more accurate measures of cultural proximity than religious affiliation. The index exhibits a weakness in terms of country coverage, as not all countries of interest have been fully analyzed, thereby decreasing the sample size of the respective model.

Data have been obtained from the Gert-Hofstede-Centre. Six dimensions that determine a country's culture are quantified according to standardized criteria for a set of countries. These dimensions are Power Distance (approximating "the degree to which the less powerful members of a society accept and expect that power is distributed unequally"), Individualism (approximating "preference for a loosely-knit social framework in which individuals are expected to take care of only themselves and their immediate families"), Masculinity (approximating "a preference in society for achievement, heroism, assertiveness and material rewards for success"), Uncertainty Avoidance (approximating "the degree to which the members of a society feel uncomfortable with uncertainty and ambiguity"), Long Term Orientation versus Short Term Normative Orientation (approximating how "societies prioritize these two existential goals differently") and Indulgence versus Restraint (approximating the extent to which "a society [...] allows relatively free gratification of basic and natural human drives" versus "a society that suppresses gratification of needs and regulates it by means of strict social norms") (all quotes of this paragraph: http://geert-hofstede.com/national-culture.html). A detailed description on the composition of the different culture dimensions is provided online as indicated within the references.

The following data refinement has been performed:

- 1. Arabian countries⁴⁰ which do not have their individual measurement have been given the values from the aggregate observation "Arab countries".
- 2. Final difference value per country pair is calculated similar as for the culture indicator described in above.

³⁹ This does not significantly reduce explanatory power as religious composition is changing only incrementally over the period covered.

⁴⁰ United Arab Emirates, Kuwait, Libya, Oman, Qatar, Yemen, Tunisia, Syrian Arab Republic. For Iraq, Saudi Arabia and Jordan, only the first four dimensions were missing.

3. To receive relative values, individual differences are divided by the average difference.

		No. of Observation	Min	Max	Δυσ		
Indicator	Country Pairs ⁴¹	Time-frame	Total Observations	Value	Value	Value	
Religious Composition	2706	Time invariant	2706	0,00	2,54	0,92	
Cultural Dimensions	1734	Time invariant	1734	18,88	313,11	154,36	

The following table provides an overview of data of indicator group II after the refinements mentioned above (but before calculation of relative values):

7.2.1.3. Indicator III: Strength of Ties

Whereas indicator group II measures dimensions that may form the foundation for a trustworthy or friendly relation of countries, the following indicator group aims at capturing the actual existence of such relations – not taking into account why these good relations may have developed. Perceived import dependency is thus affected through a straight forward hypothesis: A country is more confident with being dependent on energy supply from a country to which it has good and intense relations with – except of trading fossil fuels.

To quantify strength of ties of two countries, the following indicators are employed:

Trading Volume

Strong economic relations may be an indicator for robust and reliable country relations in a variety of ways. Firstly, trading always comes along with a certain level of trust in the business partner's reliability, e.g. with respect to contractual agreements and functioning of long term supply chains. Further, the existence of large trading volumes is more likely if the economies of both trading partners are generally stable and political relations are not hampering economic activity – the latter being the case for example among Iran and the United States. This indicator exhibits weakness in the sense that high trading volumes may simply have emerged through existing economic opportunities in terms of supply and demand (e.g. cheap manufacturing products from China and respective demand within Europe) and in that case may not accurately express the existence of good and reliable country relations. Also, the sheer size of a country's economy and regional adjacency is influencing the trading volume but does not necessarily express strong country relations as well. To circumvent the trading figure being influenced by the energy trade volume, only exports of the energy receiving country have been utilized.

Data on trading volume is obtained from the "Correlates of War Project's Trade Data Set" that provides trade volumes for a large set of country pairs and time period.

The following data refinement has been performed:

 To measure the relative importance of the energy supplying country for the energy receiving country, individual export volumes are set in relation to total export volumes according to the following example:⁴²

⁴¹ Not all country pairs will be utilized for regression as they don't appear within the energy trade relations.

⁴² Only using the exports of the energy receiving country also ensures that the actual energy trade volume is not affecting the trade volume.

Situation: Germany is supplying natural gas to the Netherlands (Year: 2000) Export volume Netherlands to Germany in 2000: 44109 (current US million \$) Total export volume Netherlands in 2000: 229742 (current US million \$) Relative importance of Germany for Netherlands: 44109 / 229742 = **0**,**19**

 To receive higher values for less important countries, the value of relative importance is subtracted from one. Following the example above: 1 - 0,19 = 0,81

Diplomatic Representation

The most immediate materialization of good relations among two countries is reflected through official diplomatic representation. Countries that recognize each other and dispatch ambassadors or similar high officials to the partner country do have more reliable and functioning relations than countries that do not officially recognize each other. Clear advantage of this relation indicator is, similar to the religious indicator, the unambiguous status and the resulting flawless data set – either two countries dispatch diplomats to each other or they don't, not leaving any room for interpretation. On the contra side it has to be mentioned that firstly, diplomatic representation is a basic requirement of international politics, which only for extremely bad relations or very small countries is not given. This exhibits the econometrical difficulty that only differences on the extreme end are captured, not accounting for any subtleties and thus loosing explanatory power. Secondly, at first sight it should be doubted that two countries that do not even recognize each other would trade significant amounts of fossil fuels, thus inducing a bias in the dataset. However, interestingly the data show that there is a considerable set of country pairs that do not recognize each other but still appear in the set of country pairs trading fossil fuels intensively. Please see table 6 within the appendix for a list of those country pairs.

Data for diplomatic representation have been obtained from the "Correlates of War Diplomatic Exchange Data Set" and capture – amongst others – mutual diplomatic representation in a binary variable turning to one if at least one country has dispatched official diplomatic staff to the respective other country.

The following data refinement has been performed:

1. To receive a higher value for non-existing diplomatic representation, the binary variable has been transformed to 0,5 for existing diplomatic representation and 2 for non-existing diplomatic representation.

The following table provides an overview of data of indicator group III after the refinements mentioned above and before calculation of relative importance in case of trade volumes:
	1	No. of Observati	ons	Min	Max	Δνσ	
Indicator	Country Pairs	Time-frame	Total Observations	Value	Value	Value	
Trade Volumes	1567	1990 - 2009	29725	0,0	235479	1359	
Diplomatic Representation	647	1990, 1995, 2000, 2005	2487 ⁴³	0,5	2	0,68	

7.2.2. Combination of Trading Patterns and Relation Value

After having introduced the different relation indicators, the following part is concerned with the combination of the relation value with energy trading patterns. This ultimately aims at creating the final dependency value per receiving country per year. In short, this is achieved by calculating the weighted average of relation values of all country pairs that trade fossil fuels intensively. Weighting is undertaken according to relative import volumes of the five largest supplying countries per type of fossil fuel. Calculation is illustrated in detail in two main steps below. As noted, the following is performed similarly for all relation indicators employed.

For simplicity, only crude oil, natural gas and coal as fossil fuel imports are considered. Data on respective import volumes are obtained from OECDiLibrary. For all types of fossil fuels, import volumes are the result of a flow balance calculation which is described in detail within the OECD statistical documentation. Figures on coal imports are the sum of hard coal and brown coal import volumes.

7.2.2.1. Step 1: Identification of Largest Suppliers and Calculation of Weighed Import Volumes

Based on the raw import volumes, the five largest supplying countries for each type of fossil fuels are identified per destination country and year, which results in a maximum of 15 different country pairs per year per destination country.

To account for their relative importance, each export volume is weighed against the total imports of the five largest importers of the respective type of fossil fuel. This step aims at reflecting the assumption that countries which are providing a relatively large share of another country's energy imports influence the perceived import dependency of that country more than countries with a lower share – as the inherent thread of supply disruptions would cause more severe problems.

In total, 75 different supplying countries appear, combining to 665 individual country pairs with the 32 receiving countries. The following example illustrates the calculation:

⁴³ The odd number of observations is explained by some countries not having observations for all four years.

Destination Country: Netherlands Year: 2010									
Fossil Fuel Type: Crude Oil									
	1 st Largest	2 nd Largest	3 rd Largest	4 th Largest	5 th Largest	Total			
	Supplier	Supplier	Supplier	Supplier	Supplier	Supply			
Supplying Country	Russian Federation	United Kingdom	Norway	Saudi Arabia	Nigeria	/			
Export Volume (000 metric tons)	16.939	6.351	5.869	4.202	3.675	37.036			
Relative Weight	16.939/	6.351/	5.869/	4.202/	3.675/	37.036/			
(Formula)	37.036	37.036	37.036	37.036	37.036	37.036			
Relative Weight (Value)	<u>0,46</u>	<u>0,17</u>	<u>0,16</u>	<u>0,11</u>	<u>0,10</u>	<u>1</u>			

7.2.2.2. Step 2: Calculation of Relation Value

Subsequently, the relation indicators measuring the quality of state relations as described in sections 7.2.1.1. – 7.2.1.3. are included into the calculation in two steps of aggregation. First, the relation value is multiplied with the respective weight of the country pair and summed up per type of fossil fuel. The following example illustrates the calculation for crude oil (calculation for natural gas and coal is done in a similar manner).

Destination Country: Netherlands									
Year: 2010									
Fossil Fuel Type: Crude Oil									
	Relation Inc	licator: Human	Rights	1					
Country Pair	NL – Russian Federation	NL – United Kingdom	NL – Norway	NL – Saudi Arabia	NL — Nigeria				
Relative Weight (copied from table above)	0,46	0,17	0,16	0,11	0,10				
Relation Value (example: Human Rights)	2,17	0,36	0,36	2,53	2,17				
Weighed Relation Value (Formula)	2,17*0,46	0,36*0,17	0,36*0,16	2,53*0,11	2,17*0,1 0				
Weighed Relation Value (Value)	1,00	0,06	0,06	0,28	0,22				
Crude Oil Relation Value	Sum o	f Results = (1,00	0+0,06+0,06+	-0,28+0,22) = <u>1,(</u>	<u>62</u>				

Secondly, the resulting final relation values for the three types of fossil fuel are averaged to receive one single value for the relative import dependency per destination country per year, as following:

	Relation Value						
Fossil Fuel Type	Crude Oil	Natural Gas	Coal				
Relation Value (see table above)	1,62	0,65	1,00				
Final Relation Value	Average of Relation Values = (1,62+0,65+1,00)/3 = 1,09						

Consequently, 1,09 is included into the regression model to quantify the perceived import dependency for the Netherlands in 2010 when considering the situation of Human Rights as a proxy for the quality of state relations. This value changes if a different indicator for the quality of state relations is employed. In case of missing observations⁴⁴ or no imports at all, a "1" has been included. Due to the relativization, this is a neutral number in the framework of this paper. If an observation is missing systemically for specific years, the observation is left out from the analysis.

The methodology outlined above allows for quantification of perceived import dependencies, weighed by the relative importance of supplying countries. Core advantages are that on the one hand it reflects that some countries are more or less problematic in terms of strategic dependency than others by including a proxy for the quality of a relation between two countries. On the other hand, it accounts for the relative importance the respective country possesses in the supply mix of the destination country – in our example, the human rights situation within the Russian Federation is influencing the relation value for oil imports for the Netherlands much stronger than the human rights situation within Saudi Arabia, as the Russian Federation supplies much more oil to the Netherlands than Saudi Arabia.

For completeness, it has to be mentioned that data on energy import patterns exhibit a potential weakness as they are suspected to be influenced by political considerations that could avoid transparent documentation of international energy flows. Still, the data employed are the most reliable source available.

7.2.2.3. Combination of Relation Value and Import Volumes: Formula

The following describes the methodology in formula.

$$Perceived Import Dependency = \frac{RV Coal + RV Oil + RV Gas}{3}$$

with:

$$\begin{aligned} Relation \, Value \, (RV) Coal \\ &= \left(RV_{A,C_1} W_{C_1} \right) + \, \left(RV_{A,C_2} W_{C_2} \right) + \left(RV_{A,C_3} W_{C_3} \right) + \, \left(RV_{A,C_4} W_{C_4} \right) + \left(RV_{A,C_5} W_{C_5} \right) \end{aligned}$$

Relation Value (RV) Oil

$$= (RV_{A,O_1}W_{O_1}) + (RV_{A,O_2}W_{O_2}) + (RV_{A,O_3}W_{O_3}) + (RV_{A,O_4}W_{O_4}) + (RV_{A,O_5}W_{O_5})$$

Relation Value (RV) Gas

$$= \left(RV_{A,G_1}W_{G_1} \right) + \left(RV_{A,G_2}W_{G_2} \right) + \left(RV_{A,G_3}W_{G_3} \right) + \left(RV_{A,G_4}W_{G_4} \right) + \left(RV_{A,G_5}W_{G_5} \right)$$

with:

$$RV_{A,X_i} = Relation Value for Countrypair A and X (determined by relation indicator)$$

⁴⁴ Importantly, replacement of missing values at this stage is not to be confused with replacement of missing values at the indicator-stage (as described in the respective sections in detail). Here, for some country-pairs the respective indicator has just not been defined at all, which is why the true value cannot be approximated – as is done for the missing observations within the indicator values.

$$W_{X_i} = \frac{EV_{X_i}}{\sum_{k=1}^{5} EV_{X_k}} = Weight of Country X among Top Five Suppliers of Country A$$

with:

 $EV_{X_i} = Export Volume Country i to Country A for Fossil Fuel X$

 $i \in (1, ..., 5) = Top Five Supply Countries$

 $X \in (C, O, G) = Different Types of Fossil Fuels$

7.3. Independent Variables: Controlling Variables

As mentioned in section 2.1., the paper from Aguirre & Ibikunle, 2014 which is most closely related to this work, is used to retrieve controlling variables. All predictor variables that have showed a significant impact on RE utilization are being incorporated into all of the models employed. These are (variable names in brackets): CO₂ emissions (*CO2*), ratification of the Kyoto protocol (*KYOTO*), energy use (*ENEUSE*), contribution of traditional energy sources to the energy mix (coal (*COALPART*), gas (*GASPART*), nuclear (*NUCLEARPART*) and oil (*OILPART*)), country-specific RE potential (biomass (*BIOMASS*), solar (*SOLAR*) and wind (*WIND*)), industrial electricity prices (*INDUSTRY*) and continuous commitment (*CONTCOM*). For a more detailed description on their composition, please refer to Aguirre & Ibikunle, (2014).

8. Model Specification and Testing Procedure

As the data set covers multiple countries over multiple years, panel data techniques can be employed. This allows controlling for unobservable characteristics that differ across countries as well as unobservable effects that change over time and affect all countries simultaneously (Torres-Reyna, 2007). Further, the utilization of panel data naturally leads to a higher number of observations and thus higher robustness of results and also reduces the problem of multicollinearity (Caporale & Cerrato, 2004).

The final regression equation is dependent on the respective indicator and dependent variable that is employed. The general form is as following:

$$\gamma_{it} = \beta_0 + \beta_1 x_{it} + \beta_2 z_{it} + \alpha_i + b_t + u_{it}$$

γ _{it}	= dependent variable:
	CONSHARE, SUPSHARE, TOTALPOL <u>or</u> FITORCERT
β ₀	= intercept (not used for Fixed Effect estimator)
β1	= coefficient for explanatory variable
x _{it}	= explanatory variable according to indicator:
	CULTUREDIF, RELIGIOUSDIF, STABILITY, HUMANRIGHTS, TRADE <u>or</u> DIPLOMREP
β ₂	= coefficient for controlling variables
z _{it}	= vector of controlling variables as defined in section 7.3.
α_i	= country random or fixed effects (not used for OLS estimator)
b _t	= year fixed effect
u _{it}	= error term (refined according to section 7.1.3.)

To avoid any interference, all of the dependent and explanatory variables are employed separately which results in a total number of 24 models being regressed. Taking into account the different estimators, a total of 72 regressions have been performed in the main model.

8.1. Testing Procedure

The following econometric tests have been performed.

8.1.1. Multicollinearity

The appearance of multicollinearity has adverse effects on reliability of the regression output, as it inflates the variance of estimated coefficients. Multicollinearity is present, if independent variables are highly correlated among each other (Harshada, 2012 and Menz & Vachon, 2006). Testing for multicollinearity is usually done by checking Variance Inflation Factors, which is not possible for the particular type of regression employed in the models later on.⁴⁵ Therefore, a correlation matrix of all involved explanatory and controlling variables has been created. Based on the correlation figures presented in table 7 within the appendix, the presence of multicollinearity can be rejected, as none of the correlation coefficients is sufficiently high enough.⁴⁶

8.1.2. Unit Roots

As correct estimation of coefficients requires the data series to be stationary, the dependent variables are being tested for the presence of unit roots. For panel data, several specific unit root tests have been developed according to different asymptotic assumptions. For the data employed in this paper, the Harris-Tzavalis fits best, as it assumes a higher number of entities (in this case 32 countries) than time horizon (in this case 21 years). The results as presented in table 8 in the appendix indicate the presence of a unit root for *TOTALPOL* and *CONSHARE*, whereas the other variables are found to be stationary.

To solve the issue of unit roots, first differences of the affected variables are created ($D_TOTALPOL$ and $D_CONSHARE$). Another Harris-Tzavalis test (appendix: table 8) with $D_TOTALPOL$ and $D_CONSHARE$ shows that the problem of unit root has indeed been solved by this procedure

Further, the detection of unit roots in the data sample has motivated the utilization of a First-Difference estimator for the affected variables.

8.1.3. Heteroskedasticity and Autocorrelation

Heteroskedasticity is present, if the variation of the error term differs across the observations. While the estimator still remains unbiased, heteroskedasticity may lead to flawed significance levels. All of the models applied later on have positively been tested for the presence of heteroskedasticity by using a modified Wald-test for group wise heteroskedasticity.⁴⁷

⁴⁵ For the Random Effects and Fixed Effects models, a "xtreg" regression is employed in Stata, which does not allow for a subsequent analysis of Variance Inflation Factors.

⁴⁶ "Close to unity" is used in the literature as indicating a critical correlation value for multicollinearity (Harshada, 2012).

⁴⁷ Stata procedure: xttest3

Autocorrelation is present, if co-variances of the different error terms are not equal to zero, again with adverse effect on significance levels (Hoechle, 2007). By applying the Wooldridge-test⁴⁸, some of the models are positively tested for the presence of autocorrelation.

To avoid the adverse effects of heteroskedastic and autocorrelated error terms, models have been calculated either with "clustered" standard errors⁴⁹ (solving for both, heteroskedasticity and autocorrelation) or "robust" standard errors⁵⁰ (solving only for heteroskedasticity) where necessary as indicated in the table of results below. As a side-note: Utilization of robust and clustered standard errors has decreased the amount of significant coefficients remarkably.

8.2. Estimators

The following different estimators are utilized to calculate the variables coefficients.

The Fixed Effects (FE) estimator automatically controls for effects of time-invariant characteristics on predictor variables and thus ignores characteristics that differ statically from country to country, such as political system or geographical location (Torres-Reyna, 2007). Therefore, *"estimated coefficients cannot* [...] *be biased because of omitted time-invariant characteristics."* (Torres-Reyna, 2007: p.23). As a consequence, all of the time-invariant control variables that are included (namely potential for wind, solar radiation and biomass) are automatically ignored in the Fixed Effects estimations later on.

The Random Effects (RE) estimator assumes instead that the variation across entities is random and uncorrelated with the independent variables. Therefore, time-invariant characteristics are allowed to play a role as independent variables. Of course, this is only possible if those characteristics are specified, as is the case for controlling variables approximating the RE potential.

Lastly, a simple pooled Ordinary Least Squares (OLS) estimator may be employed. In this procedure, all observations are regarded to be originating from the same entity and thus the data set is treated as a cross-section data set. This may potentially cause the coefficients to be biased.

To identify which of the different estimators is most applicable for the individual models employed later on, a Hausman-test⁵¹ and a Breusch-Pagan⁵² test have been performed for every model. The results are being indicated in table of results below.

Lastly, a fourth estimator is employed in order to account for the detection of unit-roots in the variables *TOTALPOL* and *CONSHARE*. The first-differences (FD) estimator calculates the first differences of all variables before applying a standard OLS estimation on the differenced variables. The FD estimator is only employed for the affected variables⁵³ as indicated below.

⁴⁸ Stata procedure: xtserial

⁴⁹ Stata option: cluster ()

⁵⁰ Stata option: robust

⁵¹ Stata procedure: hausman

⁵² Stata procedure: xttest0

⁵³ Of course, the FD estimator has been employed on the original, un-differenced variable as the differencing is inherent in the estimation process, as described.

9. Results

To keep the presentation of results slim, coefficients of controlling variables as well as t-statistics are not displayed. Significance levels are indicated with stars (*). The full results of the main model can be found in the appendix.

The following table shows the regression results for dependent variable group I and all groups of indicators.

	Dependent Variables	D_CONSHARE				SUPSHARE			
Explanatory Variables		OLS	FE	RE	FD	OLS	FE	RE	
Indicator	CULTUREDIF	<u>-0,960</u>	<u>-2,995*</u>	-1,048	1,889	2,903***	<u>-1,127</u>	<u>-1,360</u>	
Group A	RELIGIOUSDIF	<u>-0,714</u>	<u>-0,161</u>	-0,766	-0,980	-0,413	0,726	<u>-0,017</u>	
Indicator	STABILITY	-0,867	<u>-0,708</u>	<u>-0,883*</u>	0,262	0,814	<u>-2,710***</u>	<u>-2,200**</u>	
Group B	HUMANRIGHTS	-0,337	<u>0,184</u>	<u>-0,337</u>	0,361	0,573*	-0,325	<u>-0,425</u>	
Indicator Group C	TRADE	<u>-10,501</u>	5,372	<u>-9,687</u>	-18,379	7,146	<u>2,666</u>	<u>3,907</u>	
	DIPLOMREP	0,327	/	/	/	-0,090	<u>0,309</u>	<u>0,096</u>	

Table of Results – 1 (Main Model)

= significant (10% level), ** = significant (5% level), *** = significant (1% level)

0,322 = estimator suggested by Hausmann-test or Breusch-Pagan-test

/ = stata error: insufficient observations

Standard errors employed, equally for all indicators: "robust" for D_CONSUMPTION, "clustered" for OECDSHARE

The results show inconsistent pattern. Most coefficients of the different indicators are insignificant, thus suggesting a rejection of the hypothesis and instead supporting the null hypothesis, namely that there is no effect of the relation of supplying and receiving states on the share of RE sources.

Significant coefficients can be found for *CULTUREDIF* and *STABILITY* for both dependent variables, *D_CONSHARE* ad *SUPSHARE*. However, their negative signs suggest a mechanism opposite as is proposed by the hypothesis, namely that the more the energy supplying countries exhibit instability or show larger cultural differences to the receiving county, the less does the receiving country utilize RE sources. Positive, significant coefficients of *CULTUREDIF* and *HUMANRIGHTS* are not indicated to be the preferred model and thus exhibit limited relevance.

The following table displays regression results for dependent variable group II and all groups of indicators.

	Dependent Variables		D_TOTALPOL				FITORCERT			
Explanatory Variables		OLS	FE	RE	FD	OLS	FE	RE		
Indicator	CULTUREDIF	<u>0,135</u>	3,409	<u>0,429</u>	4,102	-0,284**	0,240	<u>0,155</u>		
Group A	RELIGIOUSDIF	<u>-0,521</u>	-1,222	<u>-0,508</u>	2,267	-0,158***	-0,286**	<u>-0,204**</u>		
Indicator	STABILITY	<u>-0,301</u>	1,812	<u>-0,088</u>	4,322	-0,082	0,268	<u>0,120</u>		
Group B	HUMANRIGHTS	<u>0,365</u>	1,455	<u>0,547</u>	1,173*	0,055	0,102*	<u>0,103*</u>		
Indicator Group C	TRADE	<u>-8,493</u>	58,353*	<u>-0,327</u>	-18,379	0,017	-1,113	<u>-0,932</u>		
	DIPLOMREP	<u>1,179</u>	3,343	<u>1,179</u>	/	<u>0,333***</u>	-0,149	<u>0,252**</u>		

Table of Results – 2 (Main Model)

= significant (10% level), ** = significant (5% level), *** = significant (1% level)

<u>0,322</u> = estimator suggested by Hausmann-test **or** Breusch-Pagan-test

0.322 = estimator suggested by Hausmann-test and Breusch-Pagan-test

= stata error: insufficient observations

Coefficients for almost all indicators with respect to *D_TOTALPOL* are insignificant and thus reject the hypothesis and support the null-hypothesis. Significant results for *TRADE* (Fixed Effects) are significant, but are not indicated to be the preferred model and are thus limited in relevance. Only *HUMANRIGHTS* with a First Differences estimator is with a significant positive coefficient supporting the hypothesis when utilizing *D_TOTALPOL* as the dependent variable.

For *FITORCERT* a lot more significant coefficients can be found. For indicator group A – that are *CULTUREDIF* and *RELIGIOUSDIF* – the results suggest a relation opposite to the hypothesis. Contrary to that, *HUMANRIGHTS* and *DIPLOMREP* show a positive and significant coefficient for *FITORCERT*, thereby supporting the hypothesis. Their relevance is strengthened by the fact that they are also tested to be the preferred models.

Summarizing the above, it can be concluded that the results only provide limited evidence of any effect of the relation indicators – neither on the share of RE sources, nor on the total number of RE policies implemented. For RE shares, significant results even suggest a relation opposite to the hypothesis. The hypothesis is thus rejected in the majority of models.

The only evidence to support the hypothesis can be found for *FITORCERT*, suggesting that the implementation of the most important RE policies is influenced by *HUMANRIGHTS* and *DIPLOMREP*. However, as other significant results support an opposite relation for *FITORCERT*, further research is needed.

Further, it shall be highlighted that *HUMANRIGHTS* also exhibits a significant positive relation with *TOTALPOL*, encouraging further research also with respect to that particular indicator.

10. Model Extensions

As the following considerations only depict additions to the more extensive research design above, subsequent description of the econometric models and testing is kept at a minimum.

10.1. Including a Time-Lag

The motivation for this extension is as following: The hypothesis described in section 6 does involve a political aspect, namely the setup of RE-promoting policies as a response to weak or unreliable relations to energy supplying countries. To account for the time consuming process that is accompanying the implementation of policies (e.g. identifying the issue, creation of a political will to solve the issue, the definition of a useful policy design and subsequently passing respective laws in parliament does consume considerable time), the model has been designed with a time lag for explanatory variables.

This setup implies that earlier observations of explanatory variables are regressed on later observations of dependent variables. A time lag of five years has been included, which is regarded a reasonable timing for the implementation of energy policies by the author of this paper.

	Dependent Variables		D_CONSHARE			SUPSHARE				
Explanatory Variables		OLS	FE	RE	OLS	FE	RE			
Indicator	L5_CULTUREDIF	3,228	-6,433	3,228	-1,121	3,150	2,044			
Group A	L5_RELIGIOUS DIF	0,702	3,590	0,702	-0,568	10,477**	0,145			
Indicator	L5_STABILITY	-3,346	16,593**	-3,346	4,176	-11,139	-0,652			
Group B	L5_HUMAN RIGHTS	0,207	9,891***	0,207	-1,760	2,190	0,773			
Indicator Group C	L5_TRADE	-25,261	382,125***	-25,261	27,214	26,074	30,678			
	L5_DIPLOMREP	-0,193	1,565	-0,193	0,555	1,984	0,790			

Table of Results – 3 (Model Extension: Time Lag)

* = significant (10% level), ** = significant (5% level), *** = significant (1% level)

The results are mostly insignificant and are therefore mainly not supporting the hypothesis with respect to RE shares. However, *L5_STABILITY, L5_HUMANRIGHTS* and *L5_TRADE* are significant and positive for *D_CONSHARE* when applying a Fixed Effects model and thus provide some evidence to support the hypothesis. The same applies for *L5_RELIGIOUSDIF*, being regressed on *SUPSHARE*, again within a Fixed Effects model.

	Dependent Variables		D_TOTALPO)L		FITORCERT			
Explanatory Variables		OLS	FE	RE	OLS	FE	RE		
Indicator	L5_CULTUREDIF	-9,905*	-5,665	-9,905***	0,307	-0,722	0,515		
Group A	L5_RELIGIOUS DIF	-0,291	2,569	-0,291	0,157	1,867***	0,179		
Indicator	L5_STABILITY	3,313	-13,721	3,313	0,267	-0,428	0,553		
Group B	L5_HUMAN RIGHTS	0,018	4,267	0,018	-0,273	0,060	-0,349		
Indicator	L5_TRADE	6,552	-337,266	6,552	-2,721	3,561	-2,577		
Group C	L5_DIPLOMREP	0,025	2,805	0,025	0,459***	0,149	0,401**		

Table of Results – 4 (Model Extension: Time Lag)

* = significant (10% level), ** = significant (5% level), *** = significant (1% level)

Results for the dependent variables measuring the implementation of RE promoting policies are, similar to above, often non-significant and thus mostly promote a rejection of the hypothesis and support the according null-hypothesis of no effect at all. The existing significant coefficients of *L5_CULTUREDIF* on *D_TOTALPOL* suggest a relation opposite as proposed by the hypothesis. *L5_RELIGIOUSDIF* and *L5_DIPLOMREP* show significant, positive coefficients for *FITORCERT*, thereby supporting the hypothesis.

Concluding the results for this model extension, the hypothesis is again mostly rejected in favour of the null-hypothesis. However, all indicators except of *L5_CULTUREDIF* show significant positive coefficients for at least one of the dependent variable employed, thereby generally supporting the hypothesis. This model extension thus proves to be slightly more promising to support the hypothesis than the main research design presented before. Also, similar as in the main model, *FITORCERT* confirms to be a promising dependent variable, as it again shows significant positive coefficients.

10.2. Using Reserve, Consumption and Production Statistics

Another extension to the model has been estimated based on a different approach to measure the perceived import dependency. The indicators utilized within the main research design are "outward-looking" as they are considering the quality of relations with supplier states. However, it could be argued that a more "inward-looking" indicator could be reasonable to be employed as well, as the perceived import dependency may also be influenced by the degree to which a country has the possibility to switch from imports to domestic supply.

Country-specific figures on reserves, production and consumption (as displayed in table 1) have been used to calculate Reserve-to-Production and Reserve-to-Consumption ratios for Crude Oil and Natural Gas for all 11 OECD countries that do exhibit resources.⁵⁴ In a second step, the two ratios calculated for crude oil and natural gas have been aggregated to one average ratio per country. Thus, the ability to meet domestic energy demand with domestic energy production is

⁵⁴ Namely Australia, Canada, Denmark, Germany, Italy, Mexico, Netherlands, Norway, Poland United Kingdom and United States.

approximated by a Reserve-to-Consumption (*CONSRATIO*) and a Reserve-to-Production (*PRODRATIO*) ratio for each country. Testing procedures with respect to heteroskedasticity and autocorrelation as described in section 8.1. have been executed and robust standard errors have been applied accordingly where necessary. The same applies for utilizing Hausman- and Breusch-Pagan tests.

The following table presents the regression results.

		тот	ALPOL		FITORCERT			
	OLS	FE	RE	FD	OLS	FE	RE	FD
PROD RATIO	<u>0,480***</u>	<u>0,977***</u>	0,480***	-0,014	<u>0,015***</u>	<u>0,014***</u>	0,015***	0,001
CONS RATIO	<u>0,011</u>	<u>-0,052</u>	0,011	-0,022	<u>-0,003***</u>	<u>-0,002</u>	-0,003***	0,000
		CONS	SHARE		SUPSHARE			
PROD RATIO	<u>-0,377***</u>	<u>-0,262**</u>	-0,378***	-0,008	<u>-0,038</u>	<u>0,031</u>	-0,038	0,026
CONS RATIO	<u>0,165***</u>	<u>0,097***</u>	0,165***	-0,031	<u>0,029***</u>	<u>0,02</u>	0,029***	-0,008

Table of Results – 5 (Model Extension: Reserve-Ratios)

= significant (10% level), ** = significant (5% level), *** = significant (1% level)

0,322 = estimator suggested by Hausmann-test **or** Breusch-Pagan-test

The results indicate a positive and highly significant effect of *PRODRATIO* on both measures of the implementation of RE-policies. With respect to RE share measures as the dependent variable, the effect of *PRODRATIO* on *CONSHARE* is highly significant as well, but negative, whereas it does not prove any effect on *SUPSHARE*.

The effect of *CONSRATIO* is similarly inconsistent: Significant negatively on *FITORCERT*, but significantly positive on *CONSHARE* and *SUPSHARE*.

It has to be highlighted that all coefficients that have been estimated with the First-Differences-Estimator are insignificant, suggesting that the presence of unit root indeed induces a bias into the other coefficients. Further, this setup exhibits an important limitation with respect to the hypothesis of this paper: The presence of domestic reserves does affect the utilization of RE sources through several channels, out of which perceived import dependency is only one. For example, it is reasonable to claim that the sheer existence of fossil fuel based alternatives to RE sources does affect the utilization of RE sources simply due to private-economy driven decisions.⁵⁵ Consequently, despite the availability of domestic reserves may play a role in the level of perceived import dependency, it is difficult to assess its true impact.

Overall, the highly significant results for this model extension are not providing a clear conclusion with respect to the hypothesis of this paper but are at least promising in the sense

⁵⁵ Based on the assumption that currently, real (not levelized) fossil fuel based energy is still cheaper than RE based energy

that applying reserve related ratios to investigate the effect of energy security on the development of RE sources may be promising for further research.

Following the above research suggestion, a further extension of the model is prepared. Driven by the assumption that countries that do exhibit fossil fuel reserves may react differently to perceived import dependency than those countries without fossil fuel reserves, the following model is created.

The group of countries in focus is split up in two groups according to the existence of fossil fuel reserves: The 11 countries exhibiting fossil fuel reserves (as included above) form group I, whereas the remaining 21 countries⁵⁶ without fossil fuel reserves form group II. Then, the same regressions as in the main model are performed for each group separately, trying to identify differences in the response to perceived import dependency.

The following table shows the regression results for countries having reserves:

Dependent			D_CONSHA	RE		SUPSHARE	
Explanator	ry	OLS	FE	RE	OLS	FE	RE
Indicator	CULTUR EDIF	-3,092	1,251	-3,092*	-0,672	-6,820***	-0,672
Group A	RELIGIO USDIF	-0,784	-5,283***	-0,784	-3,705***	-0,639	-3,705***
Indicator	STABIL ITY	-0,524	-0,252	-0,524	-7,647***	-7,969**	-7,647***
Group B	HUMAN RIGHTS	2,631	2,747	2,631	1,834***	1,444*	1,834***
Indicator	TRADE	-77,181	-92,424**	-77,181***	-51,090***	0,453	-51,090***
Group C	DIPLOM REP	/	/	/	/	/	/
			D TOTALPO)L		FITORCERT	
		OLS	FE	RE	OLS	FE	RE
Indicator	CULTURE	OLS 12,046	FE 3,876	RE 12,046	OLS 0,139	FE 0,657	RE 0,139
Indicator Group A	CULTURE DIF RELIGIOU SDIF	OLS 12,046 2,459	FE 3,876 1,146	RE 12,046 2,459	OLS 0,139 0,102	FE 0,657 1,230*	RE 0,139 0,102
Indicator Group A Indicator	CULTURE DIF RELIGIOU SDIF STABILIT Y	OLS 12,046 2,459 3,398	FE 3,876 1,146 -1,033	RE 12,046 2,459 3,398	OLS 0,139 0,102 0,902	FE 0,657 1,230* 0,666	RE 0,139 0,102 0,902***
Indicator Group A Indicator Group B	CULTURE DIF RELIGIOU SDIF STABILIT Y HUMANR IGHTS	OLS 12,046 2,459 3,398 -0,949	FE 3,876 1,146 -1,033 -2,864	RE 12,046 2,459 3,398 -0,949	OLS 0,139 0,102 0,902 -0,492	FE 0,657 1,230* 0,666 -0,237	RE 0,139 0,102 0,902*** - 0,492**
Indicator Group A Indicator Group B	CULTURE DIF RELIGIOU SDIF STABILIT Y HUMANR IGHTS TRADE	OLS 12,046 2,459 3,398 -0,949 7,225	FE 3,876 1,146 -1,033 -2,864 248,979	RE 12,046 2,459 3,398 -0,949 7,225	OLS 0,139 0,102 0,902 -0,492 19,067	FE 0,657 1,230* 0,666 -0,237 -1,260	RE 0,139 0,102 0,902*** - 0,492** 19,067***

Table of Results – 6 (Model Extension: Countries with Reserves)

* = significant (10% level), ** = significant (5% level), *** = significant (1% level)

/ = stata error: insufficient observations

⁵⁶ Namely Austria, Belgium, Czech Republic, Finland, France, Greece, Hungary, Iceland, Ireland, Israel, Japan, Korea, Luxembourg, New Zealand, Portugal, Slovak Republic, Slovenia, Spain, Sweden, Switzerland, Turkey

Regression results for the group of countries possessing fossil fuel reserves show many significant negative coefficients for *SUPSHARE* and *D_CONSHARE*, namely from *CULTUREDIF*, *RELIGIOUSDIF*, *STABILITY* and *TRADE*, thereby rejecting the hypothesis in favour of the opposite relation. Only *HUMANRIGHTS* supports the hypothesis by showing significant positive coefficients.

For the dependent variables tracking the implementation of RE promoting policies, far less significant coefficients appear, in turn suggesting no relation among the relation indicators and the promotion of RE source. Only for *FITORCERT*, some coefficients are significant, however showing inconsistent sign.

Overall, the results do mostly reject the hypothesis. For those dependent variables tracking the RE share of receiving countries (*D_CONSHARE* and *SUPSHARE*) even a relation opposite to the hypothesis is suggested. On the policy side, only *FITORCERT* shows some measurable influence, whereas the majority of results are more supporting the null-hypothesis of no influence.

	Dependent		D_CONSHA	RE		SUPSHARE	
Explanator Variables	y Y	OLS	FE	RE	OLS	FE	RE
Indicator	CULTUR EDIF	0,029	-1,284	0,029	7,102***	5,322*	6,205**
Group A	RELIGIO USDIF	0,673	0,855	0,672**	-1,448***	0,534	0,272
Indicator	STABIL ITY	1,040	0,248	1,040	3,070**	-0,577	0,451
Group B	HUMAN RIGHTS	0,790	0,901	0,790	-0,0363	0,288	0,157
Indicator	TRADE	42,151**	40,370	42,151***	67,411***	10,104	15,544*
Group C D	DIPLOM REP	/	/	/	/	/	/
			D_TOTALPO	OL		FITORCERT	
		OLS	FE	RE	OLS	FE	RE
Indicator	CULTURE DIF	-2,636	-4,718	-2,636***	-0,292	-0,007	-0,049
Group A	RELIGIOU SDIF	-0,426	0,154	-0,426	-0,119**	-0,505	-0,403*
Indicator	STABILIT Y	-3,726 [*]	0,680	-3,726**	-0,461*	-0,764	-0,200
Group B	HUMANR IGHTS	1,877	1,195	1,877	0,375**	0,244	0,257*
Indicator	TRADE	28,771	53,496**	28,771***	-4,623***	-3,611	-3,916**
Group C	DIPLOMR EP	/	/	/	/	/	/

Table of Results – 7 (Model Extension: Countries without Reserves)

* = significant (10% level), ** = significant (5% level), *** = significant (1% level)

/ = stata error: insufficient observations

Results for the group of countries possessing no fossil fuel reserves are rather ambiguous. Interestingly, *TRADE* shows many significant positive coefficients, thereby supporting the hypothesis – the only outlier here is *FITORCERT*. Except of the aforementioned effect of *TRADE* and one other estimation of *RELIGIOUSDIF*, no significant coefficient appears for *D_CONSHARE*. For *SUPSHARE*, *D_TOTALPOL* and *FITORCERT*, many significant coefficients throughout all indicators appear.

Among those significant coefficients, a general pattern is visible with respect to being mostly positive for the dependent variables tracking RE shares (*D_CONSHARE and SUPSHARE*), whereas most significant coefficients for the policy variables (*D_TOTALPOL* and *FITORCERT*) are negative. This provides evidence that this particular model extension weakly supports the hypothesis for actual RE shares, whereas it suggests an opposite relation for the implementation of RE policies.

Comparing the results for the group of countries exhibiting reserves to the group of countries which do not exhibit reserves, it shall be highlighted that most of the significant coefficients of the relation indicators differ in sign for the dependent variables tracking the RE shares ($D_CONSHARE$ and SUPSHARE) – consistently across the two country groups: Negative for countries with reserves and positive for countries without reserves. This supports the conclusion that countries which do exhibit their own fossil fuel reserves react on high energy insecurity with a lower share of RE sources, whereas countries without domestic reserves show the opposite pattern. In turn, this suggests that once a country has the option to support domestic fossil fuels to counter energy insecurity, it will do so. Only countries without domestic reserves fall back to promoting RE sources. This result could be taken as an indication that RE sources are indeed seen as a potential solution to energy insecurity, however only as soon as the option to promote domestic fossil fuels is not available. A good example for this would be the recent promotion of shale gas production within the US, as mentioned in section 2.2.

With respect to the implementation of RE-based policies, the two country groups differ in the sense that there is nearly no effect of the relation indicators for the group of countries with domestic reserves whereas the group of countries without domestic reserves does show an effect, but with inconsistent sign. This does not allow for a clear evaluation and further research is needed.

10.3. Testing for Time Consistent Parameters

The last model extension is testing whether the relation of energy dependency and the promotion of RE sources is characterized by a break or trend over time. The underlying assumption claims that the fundamental aspects that shape the energy market and also the implementation of energy security policies might have altered over time. This could be characterized either by abrupt events, inducing a break into the relation, or by developments over time, inducing a trend into the relation.

Indication for the existence of the former – a break of the relation at a certain point in time – is to be found for example within the case study in section 12, which claims that the general energy policy focus of the German parliament did change drastically towards focussing more on the issue of import dependency between the debates in 2000 and 2006. As elaborated more in section 12, this is most certainly due to an increased awareness of the threats of politically motivated supply interruptions due to the Russian-Ukrainian gas crises 2005/2006. This event is

likely to be influencing enough to have an impact on the whole sample of countries in the dataset as well. Further, as mentioned in section 2.1., Marques et al., (2010) more generally suggest further research to focus on the post-2005 period as important aspects such as the "(*i*) oil price boom and bust; (*ii*) increase of social and political pressure for fast developments in clean energy; and (*iii*) financial crisis which requires adequate government measures to stimulate the economy." (Marques et al., (2010): p.6885) did significantly gain importance after 2005.

Indication for the existence of the latter – a trend in the relation over time – can be found for example within the slowly increasing rivalry for supplies on the global energy market, induced by rapidly developing economies such as China and India (as mentioned in section 4.2.2.). Also the rise in energy prices (as mentioned in section 4.1.3.) or the increasing utilization of energy exports as a tool of foreign policy (as mentioned in section 4.3.) can more be regarded a trending development rather than a certain event in time, in slight contrast to above.

To test for the former, the data of the six relation indicators have been refined to show the value "0" for all years up to 2005 and the original value for the years thereafter. This new variable is then regressed together with the original variable containing all the original values in order to compare the results.

To test for the latter, a similar approach is performed. This time, the observations of the six relation indicators are multiplied with a factor increasing steadily over time – from "1" in 1990 to "2" in 2010. This attributes to the assumption that the more recent any given observation of an explanatory variable is, the stronger is its effect on the dependent variables.

The following results have been estimated. All six indicators – this time with two different data series as described above – are regressed separately on the four dependent variables. Therefore, similar to the main model, a total of 72 regressions have been performed. Variables with data only after 2005 are named 2005_"Original Variable", so e.g. 2005_CULTREDIF.

	Dependent Variables		D_CONSHAR	RE	SUPSHARE			
Explanatory Variables		OLS	FE	RE	OLS	FE	RE	
	CULTUREDIF	-1,009	-2,953	-1,114	2,796***	-1,295	-1,408	
Indicator	2005_ CULTUREDIF	0,074	-0,029	0,052	0,389	0,372*	0,111	
Group A	RELIGIOUSDIF	-0,854*	-0,295	-0,895*	-0,508	0,676	-0,034	
	2005_ RELIGIOUSDIF	0,201	0,153	0,182	0,468	0,097	0,104	
	STABILITY	-0,998*	-0,826	-1,001**	0,618	-2,722***	-2,219**	
Indicator	2005_ STABILITY	0,161	0,109	0,160	0,761**	0,213	0,134	
Group B	HUMANRIGHT	-0,544	0,070	-0,544**	0,371	-0,356	-0,433	
	2005_ HUMANRIGHT	0,181*	0,073	0,181**	0,667	0,084	0,023	

Table of Results – 8 (Model Extension: Testing for a Break in the Relation)

	TRADE	-10,648	5,419	-9,782	6,725	2,066	3,655
Indicator	2005_TRADE	0,188	-0,033	0,147	0,459	0,277	0,107
Group C	DIPLOMREP	/	/	0,326	-0,090	0,308	0,095
	2005_ DIPLOMREP	/	/	/	/	/	/
			D_TOTALPO)L		FITORCERT	
		OLS	FE	RE	OLS	OLS FE	
	CULTUREDIF	-0,183	3,024	0,072	-0,288**	0,215	0,124
Indicator	2005_ CULTUREDIF	1,134*	0,899	1,113*	0,019	0,055	0,070
Group A	RELIGIOUSDIF	-,734**	-1,698	-,716**	-0,169***	-0,345**	-0,240**
	2005_ RELIGIOUSDIF	1,000*	0,885	0,980	0,053	0,118***	0,112***
	STABILITY	-0,618	1,740	-0,389	-0,090	0,261	0,177
Indicator	2005_ STABILITY	1,237**	1,231**	1,264**	0,033	0,117***	0,115***
Group B	HUMANRIGHT	0,037	1,062	0,230	0,052	0,083	0,082
	2005_ HUMANRIGHT	1,039**	0,989*	1,048**	0,009	0,053*	0,058*
	TRADE	-10,366	52,130**	-2,377	-0,017	-1,280	-1,121
Indicator	2005_TRADE	1,550**	1,304	1,535*	0,037	0,077	0,085*
Group C	DIPLOMREP	1,178	3,343	1,178	0,333***	-0,149	0,251**
	2005_ DIPLOMREP	/	/	/	/	/	/

* = significant (10% level), ** = significant (5% level), *** = significant (1% level)

/ = stata error: insufficient observations

Analysing the results with respect to shares of RE as dependent variables (*D_CONSHARE* and *SUPSHARE*), the different data series of the relation indicators do not exhibit a consistently differing pattern. *CULTUREDIF, STABILITY* and *HUMANRIGHTS* and their respective 2005_er-counterparts all show significances, without a clear distribution of these significances at either of the series. A possible outlier is the finding that the significant estimation of 2005_STABLITY is supporting the hypothesis (positive coefficient), whereas the significant estimations of *STABILITY* are all rejecting the hypothesis (negative coefficient) with respect to *SUPSHARE*. For *RELIGIOUSDIF*, only the original data series shows significances. *TRADE* shows no significances at all, *DIPLOMREP* does consistently not have enough observations to be employed in a regression.

The analysis is quite different when taking the promotion of RE policies as dependent variables (*D_TOTALPOL* and *FITORCERT*). Very consistently, 2005_STABILITY and 2005_HUMANRIGHTS exhibit positive significances and thus support the hypothesis for both, *D_TOTALPOL* and

FITORCERT, whereas their original counterparts, *STABILITY* and *HUMANRIGHTS* are insignificant throughout the different estimators. This strongly suggests that indicator group B, which is approximating the stability of the supplying countries, does indeed have an effect only when measured after 2005. Further, all significant coefficients of *2005_RELIGIOUSDIF* are positive, whereas all significant coefficients of *RELIGIOUSDIF* are negative, indicating that the hypothesis is supported only for observations after 2005. Both, the effect of indicator group B as well as the effect of religious differences do support that 2005 marks a break in the proposed relation and thus support the assumption of this model extension. Again similar to above, the other relation indicators do not show a clearly differing pattern among original and amended data series and are thus not interpreted in further detail.

The following table shows results for the data structure that is testing for the existence of a trend within the relation of import dependency and RE promotion:

	Dependent Variables	D	_CONSHAR	E		SUPSHARE	'SHARE	
Explanator Variables	ry	OLS	FE	RE	OLS	FE	RE	
	CULTUREDIF	0,434	2,439	0,768	3,412**	-2,001	-1,096	
Indicator	TREND_ CULTUREDIF	-0,759	-2,421*	-1,012	-0,317	0,502	-0,153	
Group A	RELIGIOUSDIF	-0,684	3,352	-0,258	-1,159	0,645	-0,147	
	TREND_ RELIGIOUSDIF	-0,016	-1,869	-0,283	0,485	0,055	0,103	
	STABILITY	-0,456	2,637	-0,456	-4,388**	-4,538***	-4,128***	
Indicator	TREND_ STABILITY	-0,220	-1,696	-0,220	3,104***	1,136*	1,158*	
Group B	HUMANRIGHT	-0,483	3,406	-0,450	-0,999	-0,314	-0,188	
	TREND_ HUMANRIGHT	0,074	-1,556	0,060	0,945*	-0,006	-0,133	
	TRADE	-15,765**	1,521	-15,029*	7,241	1,585	4,977	
Indicator	TREND_TRADE	2,683***	1,453	2,596**	-0,051	0,244	-0,266	
Group C	DIPLOMREP	/	/	/	0,404	-0,670	0,232	
	TREND_ DIPLOMREP	0,186	/	/	-0,343	0,693	-0,094	

Table of Results – 9 (Model Extension: Testing for a Trend in the Relation)

* = significant (10% level), ** = significant (5% level), *** = significant (1% level)

/ = stata error: insufficient observations

Results for those models using data series that are increasing by trend show less significant coefficients than the models before – thereby rejecting the hypothesis in general. Relevant to be mentioned is the fact that *TREND_TRADE* and *TREND_STABILITY* do support the hypothesis with significant positive coefficients, whereas *TRADE* and *STABILITY* suggest the opposite relation with significant negative coefficients (for *D_CONSHARE* and *SUPSHARE*, respectively). This is

strengthening the assumption that the relation of energy dependency and RE promotion did change by trend over time. However, the underlying considerations do not provide an explanation why the relation should actually be *turned around* over time, thereby weakening the relevance of this particular finding to some extent.

Results for the dependent variables tracking the implementation of RE policies (*D_TOTALPOL* and *FITORCERT*) are not displayed as they are consistently highly significant – mostly at the 1%-level – for *all* different indicators across *all* different estimators. This overwhelming significance is highly unrealistic and most certainly due to the fact that also *FITOCERT* and *TOTALPOL*⁵⁷ are increasing by trend over time, leading to a correlation with the new data series now trending over time as well. A similar result emerges when utilizing a trend up to the factor five at 2010.

Summarizing the third model extension, it can be said that especially those time series incorporating only observations from 2005 on clearly support the existence of a break in the relation of energy dependency and RE promotion in the sense that the stability of supplying countries does play a more important role after 2005 than before.

11. Conclusion

After a detailed analysis of the current situation of energy security and according potential solutions, the first part of this paper concludes that the current and prospective level of energy security is insufficient and that RE-based policies show the most desirable characteristics to address this issue. The second part of this paper developed several indicators to quantify the quality of state relations and tested whether countries which are dependent on relatively unreliable supplying countries are promoting RE sources with greater efforts than other countries. The models employ a panel data set with 32 countries over a maximum of 21 years, differing from model to model.

Within the main research, the majority of results do reject the hypothesis and support the nullhypothesis with respect to RE shares as the dependent variable ($D_CONSHARE$ and SUPSHARE). Further, some estimations even suggest a relation opposite as proposed by the hypothesis. Also, the relation indicators do not show any evidence to have an effect on the total number of RE policies being implemented ($D_TOTALPOL$).

In slight contrast to that, the results for those regressions using the implementation of the most important RE policies as their dependent variable (*FITORCERT*) do support the hypothesis in some cases: The variable tracking the status of diplomatic representation among supplying and receiving countries (*DIPLOMREP*) as well as the variable tracking the situation of human rights within the supplying country (*HUMANRIGHTS*) show significant positive coefficients.

To shed further light on the issue, three model extensions have been performed: Including a lag for the independent variable, taking into account that a country's reaction on an insufficient level of energy security requires a certain time period (i), analysing the effect of the existence of

⁵⁷ As I am employing first differenced *D_TOTALPOL* and not *TOTALPOL*, it has to be mentioned that not only the absolute number of total policies does increase over time, but also does the growth appear mostly in recent years, thus exhibiting a weak trend as well. Consequently, significances are less prominent (but still highly unrealistic) for *D_TOTALPOL* than they are for *FITORCERT*.

domestic fossil fuel reserves (ii) and testing for the presence of a break or trend in the relation among energy dependency and RE promotion (iii)

Concluding the first model extension, the results are again mostly insignificant and thus promote the null-hypothesis. However, evidence to support the hypothesis is sounder than in the main model, as most indicators show significant positive coefficients at least once. Especially the effect of relation indicators on the implementation of the most important RE policy types (*FITORCERT*) is again being confirmed. All in all, this model extension proves the inclusion of a time lag a promising aspect for further research.

With respect to the second model extension, the results are inconsistent, but promising. Regressing the level of Reserve-to-Consumption/Production on RE shares and RE policy implementation showed many highly significant coefficients – despite the inconsistent sign, these results are promising in the sense that there is a measurable effect within the data.

Based on the above, a further analysis compares countries with and without domestic fossil fuel reserves. The results indicate that countries with domestic reserves are reacting in an opposite manner on a higher level of energy insecurity than countries without domestic reserves: RE sources are only promoted, if the utilization of domestic fossil fuel reserves does not provide an alternative solution. Again, this proves to be a promising field for further research related to the determinants of RE promotion.

The last model extension revealed strong support for the assumption that the relation of import dependency and RE promotion did change significantly after 2005 with respect to the stability of supplying countries. The results testing for a trend in the aforementioned relation are less clear but still do support the existence of such a trend for some cases.

As an overall summary, the hypothesis is being supported by some particular cases within the main model, whereas being rejected in the majority of cases. The model extensions, especially testing for the existence of a break in the relation and also the utilization of information on domestic reserves, do show promising results to further solve the puzzle. Also, the effect of the relation indicators employed on the implementation of most important RE policies (*FITORCERT*) could be confirmed in different setups.

It has to be added that the rejection of the hypothesis in favour of the null-hypothesis in many cases of the main model – as mentioned above – is not sufficiently *proving*, but only *suggesting* this relation does in fact not exist. This is due to the issue that a "non-existent" relation is theoretically difficult to prove, as it ultimately cannot be confirmed based on evidence unless one takes all possible observations into account.

Potential explanations for the rejection of the hypothesis in most of the models could be the following four points:

1. The hypothesis of this paper involves political mechanisms, whereas official, quantifiable policies are not necessarily the result of political-strategic decisions. For example,

energy security could also be enhanced by non-official measures or agreements which are not captured within the policy-variables.⁵⁹

- 2. The true underlying mechanism could be of such nature that countries with a generally large energy demand will show both: Large energy imports as well as a large share of RE sources.⁶⁰ This would provide an explanation especially for those cases, where coefficients are significant but negative.
- 3. The majority of countries in the sample employed are members of the European Union which is attempting to influence the domestic energy policies of its member states.⁶¹ If this supranational agenda setting is dominating the domestic agenda setting, the perceived import dependency of the European Union as a whole would be relevant, rather than the dependency of the individual countries.
- 4. Contrary to one of the assumptions stated in section 5.3., short term improvements in energy security could be valued over long term security improvements within democracies, which is disadvantaging RE-based measures that require a long time horizon to become effective. This point is strengthens by a comment from Mathews & Tan, (2007), who claims that China is using RE sources much more with the long term goal to increase energy security than other countries do.

12. Case Study: German RE legislation

The following case study is performed to gain further insights into the topic in addition to the conclusion presented above. Subject is the introduction and various amendments of the German "Erneuerbare-Energien-Gesetz (EEG)", one of the main RE-promoting legislations within Germany. In order to gain insights on whether reducing energy import dependency has been one of the motivations to set up the EEG, the respective public debate in parliament has been analysed. To capture potential changes of motivations over time, three debates in parliament have been analysed: 25.2.2000 (Introduction), 28.9.2006 (Amendment) and 27.6.2014 (Amendment). In total, 29 speeches have been analysed – held by politicians of all parties in parliament (Deutscher Bundestag, 2000; Deutscher Bundestag, 2006 and Deutscher Bundestag, 2014)

As expected, a large share of the discussions is concerning party-related conflicts, usually along the line of governing and opposing parties. Further, another major share of the individual speeches is concerned with detailed, content-related considerations, varying in focus from debate to debate depending on the actual matter.⁶² A third topic that is appearing frequently in all debates is the interaction of German and European norms. All of those aspects are not relevant for the topic of this paper and have thus been ignored in the following evaluation.

⁵⁹ To some extent, that effect is captured by also including the actual share of RE sources (which would increase, if those non-official measures would be aimed at promoting RE sources, in line with the hypothesis of this paper), however some uncertainty remains.

⁶⁰ For completeness, it has to be added that this point does not directly affect the methodology of this paper as not the *level* of imports but the *quality and reliability* of relations among the supplying and receiving states is approximated. Still, it induces a factor which is originally not considered to be relevant within the framework of this paper.

⁶¹ At least since the European Energy Action Plan in 2007, as discussed in section 2.2.

⁶² To illustrate this point: The 2000er debate is largely concerned with the interplay of the EEG and the existing "Energieeinspeisegesetz", on which the EEG is build upon. Contrary to that, the 2014er debate is more focussed on how to distribute the increased costs of EEG related RE-promotion.

A first finding is that for all three debates, environmental- and climate change concerns have consistently been stated as the most important driver by every speaker who contemplates motivations behind the EEG – notably similar across all parties.⁶³ Secondly, with similar consistency, almost all speakers have stressed the opportunity of job creation⁶⁴ – within the domestic economy, but also with respect to a future technology leadership and accompanying export revenues. These two motivations can be regarded to be the most important drivers of this legislation in Germany.⁶⁵

With respect to dependency on imported fossil fuels, an interesting and very significant finding can be pointed out: In the 2000er and 2014er debate, reducing fossil fuel import dependency as a motivation is not mentioned at all - only the goal of reducing dependency on fossil fuels in general is mentioned rarely,⁶⁶ however not clarifying if the underlying driver is of environmental or of security-related nature. However, this is fundamentally different in the 2006er debate where half of the speakers (three out of six)⁶⁷ explicitly mention the achievements of the existing EEG legislation with respect to reducing fossil fuel import dependency and also clearly express their concerns on the current level of German energy security. A potential explanation of such an isolated, short term attention on this particular aspect is likely to be explained with the Russian-Ukrainian gas crisis in 2005/2006, as mentioned earlier in section 2.2. The following quote accurately illustrates this circumstance: "But only in the aftermath of the winter 2005–2006 gas conflict between Russia and Ukraine, the future security of European energy supplies has become the focus of a broader debate" (Umbach, 2010: p. 1230). This is clearly supported in the EEG debate 2006.

Ultimately concluding this case study, one can claim that RE-based approaches are indeed regarded to be suitable to address an insufficient level of energy security among the leading politicians – thereby confirming the factual analysis in sections 4 and 5. However, as this aspect did not play a role for the initial establishment of the law in 2000, it remains disputable on how influential this aspect may be for policy creation. In general, this case study does to some extent confirm the econometrical result that energy security cannot generally be regarded as a important driver for RE-promotion – possibly, except of the era after 2005, which is left for future research.

13. Future Research

As the literature review already revealed and as confirmed again by this work, additional research is needed on this topic.

Incorporating any measure on the quality of relations among supplying and receiving countries does appear promising to me – potentially it proves to be even more insightful in different setups, with respect to time horizon or countries included. Also, the relation indicators and the

⁶³ 2000er debate: Mosdorf, Grill, Hustedt, Bullinger-Schröter, Scheer, Ruck, Fell, Flach, Jung, Schauerte, Trittin, Austermann, Möller; 2006er debate: Gabriel, Kauch, Flachsbarth, Hill, Fell, Bülow; 2014er debate: Gabriel, Heil, Pfeiffer, Nüßlein

⁶⁴ 2000er debate: Mosdorf, Grill, Hustedt, Scheer, Ruck, Trittin, Möller; 2006er debate: Garbiel, Kauch, Flachsbarth, Fell, Bülow; 2014er debate: Gabriel, Pfeiffer, Nüßlein

⁶⁵ Assuming the parliamentary debate actually reflects the true motivations.

⁶⁶ 2014er debate: Mosdorf, Grill, Schröter, 2014er debate: Gabriel

⁶⁷ Namely Gabriel, Flachsbarth & Hill

methodologies of refinement employed in this analysis exhibit room for further refinements. A quick example would be to get more detailed data on diplomatic representation, e.g. with respect to the size of embassies rather than having a binary variable on the status of representation. But there are many other details that can improve the indicators to more accurately approximate the quality of state relations. Also, the model extensions provided indicate where intensified research could be worthwhile. Finally, the methodology of aggregation could be amended, for example with respect to relativization and weightings.

Great potential for improvements exist on the data side. Transparent and holistic databases on energy flows would surely proof to be helpful in that context – at least for confirming, that import dependency cannot be regarded to be one of the main determinants of RE promotion.

Further, as described in section 3.2.3., there are other indicators of a country's level of energy security which might be more accurate and could thus be employed to determine a country's efforts towards the promotion of RE. In particular, deriving a meaningful indicator of supply diversity incorporating one of the relation indicators employed in this paper is promising.

14. Bibliography

The references are separated for literature and data references.

Literature References

Accenture. "The National Oil Company – Transforming the Competitive Landscape for Global Energy." (2006). Retrieved in June 2015: <u>www.accenture.com</u>

Aguirre, Mariana, and Gbenga Ibikunle. "Determinants of renewable energy growth: A global sample analysis." *Energy Policy* 69 (2014): 374-384.

Asif, Muhammad, and Tariq Muneer. "Energy supply, its demand and security issues for developed and emerging economies." *Renewable and Sustainable Energy Reviews* 11.7 (2007): 1388-1413.

Bahgat, Gawdat. "Europe's energy security: challenges and opportunities." *International affairs* 82.5 (2006): 961-975.

Bang, Guri. "Energy security and climate change concerns: Triggers for energy policy change in the United States?" *Energy Policy* 38.4 (2010): 1645-1653.

Bauen, Ausilio. "Future energy sources and systems – acting on climate change and energy security." *Journal of Power Sources* 157.2 (2006): 893-901.

Biden, Joe. "Remarks by Vice President Joe Biden on European Energy Security to the Atlantic Council Energy and Economic Summit" *The White House.* (2014). Retrieved in July 2015: https://www.whitehouse.gov/the-press-office/2014/11/22/remarks-vice-president-joe-bideneuropean-energy-security-atlantic-counc

Bielecki, Janusz. "Energy security: is the wolf at the door?" *The quarterly review of economics and finance* 42.2 (2002): 235-250.

Bird, Lori, et al. "Policies and market factors driving wind power development in the United States." *Energy Policy* 33.11 (2005): 1397-1407.

BP. "Statistical Review of World Energy 2014", *British Petroleum* 63rd Edition (2014): Retrieved in July 2015: <u>http://www.bp.com/en/global/corporate/about-bp/energy-economics/statistical-review-of-world-energy.html</u>

Caporale, Guglielmo Maria and Mario Cerrato. "Panel Data Tests of PPP - A Critical Overview." (2004). Retrieved in June 2015: <u>http://web.cenet.org.cn/upfile/58162.pdf</u>

Carley, Sanya. "State renewable energy electricity policies: An empirical evaluation of effectiveness." *Energy Policy* 37.8 (2009): 3071-3081.

Chien, Taichen, and Jin-Li Hu. "Renewable energy: An efficient mechanism to improve GDP." *Energy Policy* 36.8 (2008): 3045-3052.

CIEP (Clingendael International Energy Programme). "EU Energy Supply Security and Geopolitics." (2004). Retrieved in July 2015: http://www.clingendaelenergy.com/publications/publication/study-eu-energy-supply-security-

http://www.clingendaelenergy.com/publications/publication/study-eu-energy-supply-securityand-geopolitics Correlje, Aad, and Coby Van der Linde. "Energy supply security and geopolitics: A European perspective." *Energy Policy* 34.5 (2006): 532-543.

Costantini, Valeria, et al. "Security of energy supply: comparing scenarios from a European perspective." *Energy Policy* 35.1 (2007): 210-226.

Deutscher Bundestag. "Stenographischer Bericht – 91. Sitzung" (2000). Retrieved in July 2015: <u>www.bundestag.de</u>

Deutscher Bundestag. "Stenographischer Bericht – 54. Sitzung" (2006). Retrieved in July 2015: www.bundestag.de

Deutscher Bundestag. "Stenographischer Bericht – 44. Sitzung" (2014). Retrieved in July 2015: www.bundestag.de

Djikgraaf, Elbert, Tom van Dorp and Emiel Maasland. "On the Effectiveness of Feed-in Tariffs in the Development of Photovoltaic Solar." *Tinbergen Institute:* Discussion Paper (2014).

Dorian, James P., Herman T. Franssen, and Dale R. Simbeck. "Global challenges in energy." *Energy Policy* 34.15 (2006): 1984-1991.

Duffield, John S. "Germany and energy security in the 2000s: Rise and fall of a policy issue?" *Energy Policy* 37.11 (2009): 4284-4292.

Ellabban, Omar, Haitham Abu-Rub, and Frede Blaabjerg. "Renewable energy resources: Current status, future prospects and their enabling technology." *Renewable and Sustainable Energy Reviews* 39 (2014): 748-764.

Ernst & Young. *"Renewable energy assets: An interesting investment proposition for European insurers."* (2014). Retrieved in June 2015: <u>http://www.ey.com/Publication/vwLUAssets/EY-renewable-energy-assets/\$FILE/EY-renewable-energy-assets.pdf</u>

European Commission. "Green Paper - Towards a European strategy for the security of energy supply." (2001). Retrieved in June 2015: <u>http://eur-lex.europa.eu/legal-</u> content/EN/TXT/?uri=CELEX:52000DC0769

European Commission. "Directive 2009/287EC." (2009). Retrieved in June 2015: <u>http://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX:32009L0028</u>

Financial Times. "The new Seven Sisters: oil and gas giants dwarf Western rivals." *The Financial Times Online* (2007).

Finon, Dominique. "Russia and the 'Gas-OPEC': Real or Perceived Threat?." *Russie. Nei. Visions* 24 (2007).

Friedman, Thomas. "The first law of petropolitics." Ecologist – London and Wadebridge then Slinfold then London 36.6 (2006): 24.

Gan, Lin, Gunnar S. Eskeland, and Hans H. Kolshus. "Green electricity market development: Lessons from Europe and the US." *Energy Policy* 35.1 (2007): 144-155.

Grubb, Michael, Lucy Butler, and Paul Twomey. "Diversity and security in UK electricity generation: The influence of low-carbon objectives." *Energy policy* 34.18 (2006): 4050-4062.

Haas, Reinhard, et al. "A historical review of promotion strategies for electricity from renewable energy sources in EU countries." *Renewable and sustainable energy reviews* 15.2 (2011): 1003-1034.

Harmelink, Mirjam, Monique Voogt, and Clemens Cremer. "Analysing the effectiveness of renewable energy supporting policies in the European Union." *Energy Policy* 34.3 (2006): 343-351.

Harshada, Joshi. "Multicollinearity Diagnostics in Statistical Modeling and Remedies to deal with it using SAS" (2012). Retrieved in July 2015: <u>http://www.cytel.com/hubfs/0-library-</u>0/pdfs/SP07.pdf

Hoechle, Daniel. "Robust standard errors for panel regressions with cross-sectional dependence." *Stata Journal* 7.3 (2007): 281.

Hughes, Larry. "The four 'R's of energy security." *Energy policy* 37.6 (2009): 2459-2461.

IEA. "Energy Technology Perspectives 2006: Scenarios and Strategies to 2050" *International Energy Agency* (2006).

IEA. "Contribution of renewables to energy security." International Energy Agency (2007a).

IEA. "World Energy Outlook 2007." International Energy Agency (2007b).

Jacobson, Mark Z. "Review of solutions to global warming, air pollution, and energy security." *Energy & Environmental Science* 2.2 (2009): 148-173.

Jenner, Steffen, et al. "What drives states to support renewable energy?" *Energy Journal* 33.2 (2012): 1-12.

Johansson, Bengt. "Security aspects of future renewable energy systems—A short overview." *Energy* 61 (2013): 598-605.

Johnstone, Nick, Ivan Haščič, and David Popp. "Renewable energy policies and technological innovation: evidence based on patent counts." *Environmental and Resource Economics* 45.1 (2010): 133-155.

Kruyt, Bert, et al. "Indicators for energy security." *Energy Policy* 37.6 (2009): 2166-2181.

Liu, Wen, et al. "Potential of renewable energy systems in China." *Applied Energy* 88.2 (2011): 518-525.

Löschel, Andreas, Ulf Moslener, and Dirk Rübbelke. "Indicators of energy security in industrialised countries." *Energy Policy* 38.4 (2010): 1665-1671.

Marques, António C., José A. Fuinhas, and JR Pires Manso. "Motivations driving renewable energy in European countries: a panel data approach." *Energy Policy* 38.11 (2010): 6877-6885.

Marques, António Cardoso, and José Alberto Fuinhas. "Are public policies towards renewables successful? Evidence from European countries." *Renewable Energy* 44 (2012): 109-118.

Marques, António Cardoso, and José Alberto Fuinhas. "Drivers promoting renewable energy: A dynamic panel approach." *Renewable and sustainable energy reviews* 15.3 (2011): 1601-1608.

Mathews, John A., and Hao Tan. "Manufacture renewables to build energy security." *Nature* 513.11 (2014): 166-168.

McCune and Grace. "Data Transformation" (2002). Retrieved in July 2015: <u>http://www.umass.edu/landeco/teaching/multivariate/readings/McCune.and.Grace.2002.chapt</u> er9.pdf

Menegaki, Angeliki N. "Growth and renewable energy in Europe: A random effect model with evidence for neutrality hypothesis." *Energy Economics* 33.2 (2011): 257-263.

Menz, Fredric C., and Stephan Vachon. "The effectiveness of different policy regimes for promoting wind power: Experiences from the states." *Energy policy* 34.14 (2006): 1786-1796.

Milov, Vladimir, Andrew Kuchins, and Thomas Gomart. "Russia and the West: the Energy factor." *CSIS* (2008).

Popp, David, Ivan Hascic, and Neelakshi Medhi. "Technology and the diffusion of renewable energy." *Energy Economics* 33.4 (2011): 648-662.

Ragwitz, Mario, et al. "RE-Shaping: Shaping an effective and efficient European renewable energy market." *Final Report of the Intelligent Energy Europe project re-shaping* (2012).

REN21. "Renewables 2012: Global Status Report." *REN21 – Renewable Energy Policy Network for the 21st Century*: Annual Report (2012)

Richardson, Nathan et al. "The State of State Shale Gas Regulation." (2013). Retrieved in August 2015: <u>http://www.rff.org/rff/documents/RFF-Rpt-StateofStateRegs_Report.pdf</u>

Schaffer, Lena Maria, and Thomas Bernauer. "Explaining government choices for promoting renewable energy." *Energy Policy* 68 (2014): 15-27.

Shafiee, Shahriar, and Erkan Topal. "A long-term view of worldwide fossil fuel prices." *Applied energy* 87.3 (2010): 988-1000.

Shafiee, Shahriar, and Erkan Topal. "When will fossil fuel reserves be diminished?." *Energy policy* 37.1 (2009): 181-189.

Simmons, Matthew R. "Twilight in the desert: the coming Saudi oil shock and the world economy." *John Wiley & Sons* (2006).

Sovacool, Benjamin K. "Renewable energy: economically sound, politically difficult." *The Electricity Journal* 21.5 (2008): 18-29.

Sovacool, Benjamin K. "Solving the oil independence problem: Is it possible?." *Energy Policy* 35.11 (2007): 5505-5514.

Torres-Reyna, Oscar. "Panel data analysis." (2007). Retrieved in June 2015: <u>http://www.princeton.edu/~otorres/Panel101.pdf</u>

Umbach, Frank. "Global energy security and the implications for the EU." *Energy Policy* 38.3 (2010): 1229-1240.

U.S. Department of Energy. "Strategic Petroleum Reserve." (2015a). Retrieved in July 2015: <u>http://energy.gov/fe/services/petroleum-reserves/strategic-petroleum-reserve</u>

U.S. Department of Energy. "Why is Shale Gas Important?" (2015b). Retrieved in August 2015: <u>http://energy.gov/fe/downloads/why-shale-gas-important</u>

Valentine, Scott Victor. "Emerging symbiosis: Renewable energy and energy security." *Renewable and Sustainable Energy Reviews* 15.9 (2011): 4572-4578.

van Dijk, A. L., et al. "Renewable energy policies and market developments." *ECN-Energy Research Centre of the Netherlands, march, ECNC03-029* (2003).

Vivoda, Vlado. "Diversification of oil import sources and energy security: A key strategy or an elusive objective?" *Energy Policy* 37.11 (2009): 4615-4623.

Yergin, Daniel. "Ensuring energy security." FOREIGN AFFAIRS-NEW YORK- 85.2 (2006): 69.

Data References

Dependent Variables: IRENA Database. Retrieved in June 2015: http://www.iea.org/policiesandmeasures/renewableenergy/

OECDa. Retrieved in June 2015: <u>http://www.oecd-ilibrary.org/economics/oecd-factbook-2010_factbook-2010-en</u>

OECDb. Retrieved in June 2015: <u>http://www.oecd-ilibrary.org/economics/oecd-factbook-2011-</u> 2012_factbook-2011-en

Eurostat – SHARES Tool. Retrieved in June 2015: http://ec.europa.eu/eurostat/web/energy/data/shares

Explanatory Variables: CIRI Human Rights Project. Retrieved in June 2015: http://www.nsd.uib.no/macrodataguide/set.html?id=3&sub=1

Worldbank - Worldwide Governance Indicators. Retrieved in June 2015: <u>http://info.worldbank.org/governance/wgi/index.aspx#reports</u>

Zeev Maoz and Errol A. Henderson. *"The World Religion Dataset, 1945-2010: Logic, Estimates, and Trends." International Interactions (2013): 39: 265-291.* Retrieved in June 2015: http://www.correlatesofwar.org/data-sets/world-religion-data

Geert Hofstede. *National Culture Dimensions*. Retrieved in June 2015: <u>http://geert-hofstede.com/national-culture.html</u>

Barbieri, Katherine and Omar Keshk. *"Correlates of War Project Trade Data Set Codebook"*, (2012): Version 3.0. Retrieved in June 2015: <u>http://correlatesofwar.org/data-sets/bilateral-trade</u>,

Bayer, Reşat. *"Diplomatic Exchange Data set, v2006.1." (2006)*. Retrieved in June 2015: <u>http://correlatesofwar.org/data-sets/diplomatic-exchange</u>

Data on Oil, Gas and Coal Trade Flows OECD. Retrieved in June 2015: <u>http://www.oecd-ilibrary.org/energy</u>

15. Appendix

Table 3

Worldwide available energy potential

				Worldwide	
		Technical		capacity	Current
	Available	potential	Current	factor of	electricity
	energy / PWh	energy / PWh	Installed	technology in	generation /
Technology	yr	yr	power (GW)	place	TWh yr
Solar PV	14.900	< 3.000	8.7	0.1–0.2	11.4
	9250 –				
CSP	11.800	1.05–7.8	0.354	0.13-0.25	0.4
Wind	630	410	94.1	0.205-0.42	173
Geothermal	1390	0.57–1.21	9	0.73	57.6
Hydroelectric	16.5	< 16.5	778	0.416	2840
Wave	23.6	4.4	0.00075	0.21-0.25	0.0014
Tidal	7	0.18	0.26	0.2–0.35	0.565
	4.1–122 for				
Nuclear	90–300 yrs	< 4.1–122	371	0.808	2630
	11 for 200				
Coal-CCS	yrs	< 11	0	0.65–0.85	0

Source: Jacobson, (2009)

Table 4

Levelized Cost of Electricity (LCOE) for the United States

	LCOE (before internalizing	LCOE (after internalizing
Technology	externalities) US¢/kWh	externalities) US¢/kWh
	(\$2007)	(\$2007)
Offshore wind	2.6	3.0
Onshore wind	5.6	6.0
Geothermal	6.4	7.1
Hydroelectric	2.8	7.8
Landfill Gas	4.1	10.8
Biomass (combustion)	6.9	13.6
Advanced Nuclear	4.9	16.0
Advanced Gas and Oil		
Combined Cycle (AGOCC)	8.2	20.2
AGOCC with Carbon Capture	12.8	24.8
Integrated Gasification		
Combined Cycle (IGCC)	6.7	25.9
Scrubbed Coal	7.2	26.3
IGCC with carbon capture	8.8	27.9
Solar photovoltaic	39.0	39.9

Source: Valentine, (2011)

<u>Table 5</u>

Summary of Data

Variable	Obs.	Mean	Std. Dev.	Min.	Max.	
CULTUREDIF	768	0,9298105	0,1684679	0,3472345	1,284701	
RELIGIOUSDIF	768	0,8554563	0,4319569	0,2020674	2,511745	
STABILITY	480	0,996298	0,2903079	0,3509558	1,596638	
HUMANRIGHTS	704	1,173025	0,420739	0,2377723	2,49891	
DIPLOMATICREP	128	0,895168	0,3564806	0,5	1,882922	
TRADE	640	0,9882758	0,0218418	0,8520163	1	
CONSHARE	200	15,658	15,53826	0,9	65,9	
SUPSHARE	672	12,50497	15,21384	0,2	85,3	
TOTALPOL	672	18,09077	24,16712	0	193	
FITORCERT	672	0,4151786	0,4931198	0	1	
CONTCOM	672	0,1875	0,3906031	0	1	
CO2	672	9,437104	4,292753	2,694517	27,51671	
ENEUSE	672	4306,137	2203,489	945,8874	16904,9	
OILPART	672	7,248518	10,99137	0	53,57701	
GASPART	672	16,61139	17,97181	0	93,90463	
COALPART	672	31,02406	25,74621	0	97,49284	
NUCLEARPART	672	18,44953	21,15373	0	79,07605	
WIND	672	192686,5	598405,3	0	2712417	
SOLAR	672	2,80E+09	6,82E+09	4484425	2,51E+10	
BIOMASS	672	19470,6	32180,96	1,428571	171760,2	
КҮОТО	672	0,3839286	0,4867031	0	1	
INDUSTRY	672	76,89437	36,44683	8,4	289,8	

Source: Stata Output

Please note: The summary of data presented above shows the final variables as used in the models. Figures for independent variables are not equal to the figures presented within section 8.2., as those depict preliminary data, as indicated in the text.

Table 6

Country pairs that trade fossil fuels intensively but do not maintain diplomatic relations.

Country pair	Year	Country pair	Year
Australia & United Arab Emirates	1990	Italy & Iraq	2000
Australia & United Arab Emirates	1995	Luxembourg & South Africa	1990
Chile & Angola	2000	Luxembourg & South Africa	1995
Chile & Angola	2005	Luxembourg & South Africa	2000
Chile & Congo	2005	Luxembourg & South Africa	2005
Chile & Gabon	2005	New Zealand & Qatar	2000
Chile & Nigeria	2000	New Zealand & United Arab Emirates	1990
Chile & Nigeria	2005	New Zealand & United Arab Emirates	2000
Czech Republic & Azerbaijan	2005	New Zealand & United Arab Emirates	2005
Denmark & Colombia	2005	Norway & Algeria	1995
Finland & Kazakhstan	1995	Norway & Colombia	1995
Finland & Kazakhstan	2005	Norway & Colombia	2000
Finland & Oman	1990	Poland & Uzbekistan	2000
France & Iraq	2000	Portugal & Indonesia	2000
Hungary & Turkmenistan	2005	Portugal & Malaysia	2000
Iceland & Colombia	2000	Slovenia & Algeria	1995
Iceland & Poland	1995	Slovenia & Algeria	2000

Iceland & Poland	2000	Slovenia & Algeria	2005
Iceland & Poland	2005	Slovenia & Indonesia	1995
Ireland & Colombia	1990	Slovenia & Indonesia	2000
Ireland & Colombia	1995	Slovenia & Indonesia	2005
Ireland & Colombia	2000	Spain & Trinidad and Tobago	2000
Ireland & Colombia	2005	Switzerland & Kazakhstan	2005
Ireland & Indonesia	2000	Turkey & Colombia	2005
Ireland & Indonesia	2005	Turkey & South Africa	1990

Source: Own Calculations

Table 7

Correlation Matrix

	CULT URE DIF	RELI GIOU SDIF	STAB ILITY	HUM ANRI GHTS	DIPL OMA TICR EP	TRAD E	CON TCO M	CO2	ENE USE	OILP ART	GASP ART	COAL PART	NUCL EARP ART	WIN D	SOLA R	BIO MAS S	күот О	INDU STRY
CONT- COM	0,18	0,01	0,08	0,02	-0,08	0,13	1,00											
CO2	-0,17	-0,12	-0,17	-0,11	-0,06	-0,20	-0,16	1,00										
ENEUSE	-0,09	-0,29	-0,38	-0,36	-0,06	-0,15	0,12	0,63	1,00									
OILPART	0,14	0,16	0,02	0,03	0,00	0,18	-0,14	-0,27	-0,46	1,00								
GASPART	0,11	-0,02	-0,08	0,01	0,07	0,17	0,12	0,24	-0,06	0,16	1,00							
COAL PART	-0,11	0,24	0,37	0,33	-0,06	-0,06	-0,23	0,21	-0,30	0,07	-0,20	1,00						
NUCLEAR PART	0,04	-0,10	-0,06	-0,08	0,11	-0,20	-0,16	-0,18	0,00	-0,30	-0,32	-0,25	1,00					
WIND	-0,55	-0,29	-0,28	-0,12	-0,27	-0,44	-0,14	0,58	0,47	-0,13	-0,14	0,06	-0,05	1,00				
SOLAR	-0,29	-0,12	-0,17	-0,08	-0,25	-0,37	-0,17	0,61	0,36	-0,05	-0,13	0,27	-0,13	0,82	1,00			
BIOMASS	-0,11	-0,23	-0,15	-0,02	-0,08	-0,69	-0,17	0,36	0,22	-0,02	-0,12	0,19	0,13	0,58	0,62	1,00		
КҮОТО	0,18	-0,03	-0,03	0,03	0,05	0,09	0,03	-0,11	-0,02	0,04	0,12	-0,14	0,04	-0,12	-0,18	-0,11	1,00	
INDUS- TRY	0,26	0,36	0,13	0,17	-0,10	0,09	0,04	-0,07	-0,05	0,12	0,49	-0,15	-0,10	-0,21	-0,22	-0,19	0,53	1,00

Source: Stata Output

Table 8

Results of Harris-Tzavalis Unit Root Tests

H₀=Panels contain unit roots

H_a= Panels are stationary

	Statistic	z	p-value						
Dependent Variables									
FITORCERT	0,560	-3,187	0,001						
TOTALPOL	0,757	2,328	0,990						
CONSHARE	1,011	7,966	1,000						
SUPSHARE	0,368	-8,528	0,000						
Independent Variables									
CULTUREDIF	0,766	-5,165	0,000						
RELIGIOUSDIF	0,783	-4,384	0,000						
STABILITY	0,512	-8,839	0,000						
HUMANRIGHTS	0,555	-13,148	0,000						
TRADE	0,522	-12,837	0,000						
DIPLOMATICREP	0,613	-10,325	0,000						
Test after taking first differences									
D_CONSHARE	-0,115	-5,049	0,000						
D_TOTALPOL	0,201	-12,264	0,000						

Source: Stata Output

Full Results of Main Model

Full results are displayed sorted by dependent variable employed. Next level sorting is according to the relation indicator employed.

Dependent Variable: D_CONSHARE

CULTUREDIF

Linear regression	Number of obs	=	120
	F(11, 107)	=	•
	Prob > F	=	•
	R-squared	=	0.1335
	Root MSE	=	.78516

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
CULTUREDIF	9595368	.7714225	-1.24	0.216	-2.488792	.5697183
CONTCOM	.1512981	.2101145	0.72	0.473	2652293	.5678255
CO2	0140524	.0743811	-0.19	0.851	1615043	.1333995
ENEUSE	0000406	.0001748	-0.23	0.817	000387	.0003059
OILPART	028422	.0208312	-1.36	0.175	0697175	.0128735
GASPART	0122928	.0062962	-1.95	0.054	0247743	.0001886
COALPART	0128143	.0055898	-2.29	0.024	0238954	0017332
NUCLEARPART	0106808	.0047644	-2.24	0.027	0201256	0012359
WIND	-1.42e-06	2.63e-06	-0.54	0.590	-6.63e-06	3.79e-06
SOLAR	-5.85e-11	2.13e-10	-0.28	0.784	-4.80e-10	3.63e-10
BIOMASS	4.98e-06	5.30e-06	0.94	0.349	-5.52e-06	.0000155
KYOTO	0	(omitted)				
INDUSTRY	.0035315	.0019346	1.83	0.071	0003036	.0073666
_cons	2.420331	1.066688	2.27	0.025	.305747	4.534915

Fixed-effects (within) regression	Number of obs	=	120
Group variable: Country	Number of groups	=	20
R-sq: within = 0.2235	Obs per group: min	=	6
between = 0.0036	avg	=	6.0
overall = 0.0005	max	=	6
	F(9,19)	=	18.02
corr(u_i, Xb) = -0.9896	Prob > F	=	0.0000

(Std. Err. adjusted for 20 clusters in Country)

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
	2 004096	1 650777	1 0 0	0 0 0 7	6 468030	4700650
COLIOREDIE	-2.994900	1.059///	-1.80	0.087	-0.400939	.4/09039
CONTCOM	.852595	.4253384	2.00	0.059	0376485	1.742838
C02	.5121748	.5042636	1.02	0.323	543261	1.567611
ENEUSE	0024137	.0016642	-1.45	0.163	0058968	.0010694
OILPART	0300742	.0196673	-1.53	0.143	0712383	.0110899
GASPART	0024037	.0398127	-0.06	0.952	0857326	.0809252
COALPART	.0270202	.0382003	0.71	0.488	0529341	.1069744
NUCLEARPART	.0313198	.0831987	0.38	0.711	1428172	.2054567
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	0	(omitted)				
INDUSTRY	.00512	.0030805	1.66	0.113	0013275	.0115676
_cons	7.035255	4.155242	1.69	0.107	-1.661767	15.73228
	2 2460471					·····
sigma_u	3.34604/1					
sigma_e	.7389218					
rho	.95349994	(fraction	of varia	nce due t	co u_i)	

Random-	-effects	GLS regression	Number of obs	=	120
Group v	variable:	: Country	Number of group	s =	20
R-sq:	within	= 0.0876	Obs per group: 1	min =	6
	between	= 0.4541		avg =	6.0
	overall	= 0.1326	1	max =	6
			Wald chi2(11)	=	
corr(u_	_i, X)	= 0 (assumed)	Prob > chi2	=	•

(Std. Err. adjusted for 20 clusters in Country)

D_CONSHARE	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
CULTUREDIF	-1.04812	.7015973	-1.49	0.135	-2.423225	.3269859
CONTCOM	.1708365	.0993841	1.72	0.086	0239528	.3656258
CO2	.0023389	.0701326	0.03	0.973	1351184	.1397962
ENEUSE	0000831	.0001912	-0.43	0.664	0004579	.0002917
OILPART	0317235	.0178247	-1.78	0.075	0666593	.0032122
GASPART	013654	.0042444	-3.22	0.001	0219729	0053351
COALPART	0143279	.006381	-2.25	0.025	0268345	0018213
NUCLEARPART	0107604	.0030402	-3.54	0.000	0167191	0048017
WIND	-1.26e-06	1.30e-06	-0.97	0.333	-3.82e-06	1.29e-06
SOLAR	-6.88e-11	1.58e-10	-0.44	0.662	-3.78e-10	2.40e-10
BIOMASS KYOTO	5.37e-06 0	3.17e-06 (omitted)	1.69	0.090	-8.42e-07	.0000116
INDUSTRY	.0038248	.001684	2.27	0.023	.0005242	.0071255
_cons	2.57583	1.136724	2.27		.3478924	4.803767
sigma_u sigma_e rho	.22165233 .7389218 .08255226	(fraction	of varia	nce due '	to u_i)	

RELIGIOUSDIF Linear regression

Number of obs	=	120
F(11, 107)	=	•
Prob > F	=	
R-squared	=	0.1336
Root MSE	=	.7851

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
RELIGIOUSDIF	7140909	.524308	-1.36	0.176	-1.75347	.3252886
CONTCOM	.1336198	.1972058	0.68	0.500	2573177	.5245574
CO2	.0514634	.0743205	0.69	0.490	0958683	.198795
ENEUSE	0001448	.000171	-0.85	0.399	0004838	.0001942
OILPART	0126424	.0225237	-0.56	0.576	0572931	.0320083
GASPART	0191031	.0065582	-2.91	0.004	032104	0061022
COALPART	0122702	.0054418	-2.25	0.026	0230578	0014825
NUCLEARPART	0110932	.004434	-2.50	0.014	0198832	0023032
WIND	-2.50e-06	3.04e-06	-0.82	0.414	-8.53e-06	3.53e-06
SOLAR	3.49e-10	2.95e-10	1.18	0.239	-2.35e-10	9.33e-10
BIOMASS	-1.87e-06	5.91e-06	-0.32	0.752	0000136	9.84e-06
КУОТО	0	(omitted)				
INDUSTRY	.0049648	.0022014	2.26	0.026	.0006007	.0093289
_cons	1.788268	.7357225	2.43	0.017	.3297836	3.246752

Fixed-effects (within) regression	Number of obs	=	120
Group variable: Country	Number of groups	=	20
R-sq: within = 0.2122	Obs per group: min	=	6
between = 0.0040	avg	=	6.0
overall = 0.0004	max	=	6
	F(9,19)	=	18.95
corr(u_i, Xb) = -0.9896	Prob > F	=	0.0000

(Std. Err. adjusted for 20 clusters in Country)

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
RELIGIOUSDIF	1607554	1.382005	-0.12	0.909	-3.053325	2.731814
CONTCOM	.6125068	.2692406	2.27	0.035	.0489796	1.176034
C02	.5634838	.5524208	1.02	0.321	5927462	1.719714
ENEUSE	0025819	.0017761	-1.45	0.162	0062994	.0011355
OILPART	0267259	.0218306	-1.22	0.236	0724177	.018966
GASPART	0045422	.0401245	-0.11	0.911	0885238	.0794394
COALPART	.026684	.039592	0.67	0.508	0561831	.1095511
NUCLEARPART	.0314797	.0861293	0.37	0.719	148791	.2117503
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	0	(omitted)				
INDUSTRY	.0052307	.0031463	1.66	0.113	0013547	.011816
_cons	4.594788	3.839229	1.20	0.246	-3.440811	12.63039
sigma u	3.3067995					
sigma e	.74424231					
rho	.95178821	(fraction	of varia	nce due t	co u_i)	
Random-effects GLS regression	Number of obs =	120				
-------------------------------	----------------------	-----				
Group variable: Country	Number of groups =	20				
R-sq: within = 0.0882	Obs per group: min =	6				
between = 0.4395	avg =	6.0				
overall = 0.1327	max =	6				
	Wald chi2(11) =					
corr(u_i, X) = 0 (assumed)	Prob > chi2 =	•				

D_CONSHARE	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
RELIGIOUSDIF	7656392	.5852445	-1.31	0.191	-1.912697	.3814189
CONTCOM	.1193367	.0966887	1.23	0.217	0701697	.308843
C02	.0685155	.0950661	0.72	0.471	1178107	.2548417
ENEUSE	0001965	.0002216	-0.89	0.375	0006309	.0002379
OILPART	018353	.0175094	-1.05	0.295	0526708	.0159649
GASPART	0204689	.0076153	-2.69	0.007	0353946	0055432
COALPART	0138834	.0060783	-2.28	0.022	0257966	0019701
NUCLEARPART	0116613	.0033115	-3.52	0.000	0181517	0051708
WIND	-2.63e-06	1.88e-06	-1.40	0.161	-6.31e-06	1.04e-06
SOLAR	3.83e-10	2.48e-10	1.54	0.123	-1.04e-10	8.70e-10
BIOMASS	-2.24e-06	4.29e-06	-0.52	0.602	0000106	6.17e-06
KYOTO	0	(omitted)				
INDUSTRY	.0051145	.0017322	2.95	0.003	.0017194	.0085096
_cons	1.977408	.8650417	2.29	0.022	.281958	3.672859
sigma u	.21792378					
sigma e	.74424231					
rho	.07896869	(fraction	of varia	nce due t	co u_i)	

STABILITY

Linear regression

Number of obs = 120 F(11, 107) = . Prob > F = . R-squared = 0.1557 Root MSE = .77502

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
STABILITY	8668337	.5286915	-1.64	0.104	-1.914903	.1812355
CONTCOM	.1057807	.19305	0.55	0.585	2769183	.4884798
CO2	.0227404	.0674246	0.34	0.737	110921	.1564017
ENEUSE	0001202	.0001664	-0.72	0.471	0004501	.0002096
OILPART	0249919	.0201149	-1.24	0.217	0648674	.0148835
GASPART	0190963	.0053607	-3.56	0.001	0297233	0084692
COALPART	0127014	.0054888	-2.31	0.023	0235824	0018204
NUCLEARPART	0131292	.0043827	-3.00	0.003	0218173	0044411
WIND	-4.35e-06	3.78e-06	-1.15	0.253	0000118	3.15e-06
SOLAR	2.79e-10	2.52e-10	1.11	0.271	-2.20e-10	7.78e-10
BIOMASS	-1.37e-06	5.21e-06	-0.26	0.794	0000117	8.97e-06
КУОТО	0	(omitted)				
INDUSTRY	.0037807	.0019047	1.98	0.050	4.77e-06	.0075566
_cons	2.649644	1.053324	2.52	0.013	.561553	4.737736

Fixed-effects (within) regression	Number of obs	=	120
Group variable: Country	Number of groups	=	20
R-sq: within = 0.2140	Obs per group: min	=	6
between = 0.0032	avg	=	6.0
overall = 0.0006	max	=	6
	F(9,19)	=	20.34
corr(u_i, Xb) = -0.9889	Prob > F	=	0.0000

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
STABILITY	7079262	1.217731	-0.58	0.568	-3.256666	1.840814
CONTCOM	.5519712	.2228394	2.48	0.023	.0855629	1.018379
CO2	.5423468	.5187123	1.05	0.309	5433306	1.628024
ENEUSE	0025253	.001709	-1.48	0.156	0061023	.0010517
OILPART	0318949	.0192571	-1.66	0.114	0722005	.0084106
GASPART	0043932	.0397851	-0.11	0.913	0876645	.078878
COALPART	.0276866	.0393955	0.70	0.491	0547692	.1101424
NUCLEARPART	.0293528	.0849312	0.35	0.733	1484102	.2071158
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	0	(omitted)				
INDUSTRY	.0051302	.0030339	1.69	0.107	0012199	.0114803
_cons	5.225976	4.132029	1.26	0.221	-3.42246	13.87441
sigma u	3.1965201					
sigma e	.74342456					
rho	.94868538	(fraction	of varia	nce due t	to u_i)	

Random-effects GLS regression	Number of obs	= 120
Group variable: Country	Number of groups	= 20
R-sq: within = 0.0941	Obs per group: min	= 6
between = 0.5761	avg	= 6.0
overall = 0.1556	max	= 6
	Wald chi2(11)	
corr(u_i, X) = 0 (assumed)	Prob > chi2	

D_CONSHARE	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
STABILITY	8834427	.4848186	-1.82	0.068	-1.83367	.0667843
CONTCOM	.1027763	.1219348	0.84	0.399	1362116	.3417642
CO2	.0276963	.06486	0.43	0.669	0994269	.1548194
ENEUSE	0001356	.0001714	-0.79	0.429	0004715	.0002003
OILPART	026985	.0155011	-1.74	0.082	0573666	.0033967
GASPART	019565	.0053226	-3.68	0.000	0299972	0091329
COALPART	0131977	.0053835	-2.45	0.014	0237493	0026462
NUCLEARPART	0133235	.0032712	-4.07	0.000	0197349	0069121
WIND	-4.40e-06	2.24e-06	-1.96	0.049	-8.80e-06	-1.08e-08
SOLAR	2.87e-10	1.72e-10	1.67	0.095	-4.99e-11	6.23e-10
BIOMASS	-1.44e-06	2.45e-06	-0.59	0.556	-6.24e-06	3.35e-06
KYOTO	0	(omitted)				
INDUSTRY	.0038633	.0014567	2.65	0.008	.0010082	.0067184
_cons	2.712188	1.149844	2.36	0.018	.4585339	4.965841
sigma_u	.12257422					
sigma_e	.74342456					
rho	.02646525	(fraction	of varia	nce due t	to u_i)	

HUMANRIGHTS

Linear regression

Number of obs = 120 F(11, 107) = . Prob > F = . R-squared = 0.1307 Root MSE = .78642

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
HUMANRIGHTS	3370871	.3613796	-0.93	0.353	-1.05348	.3793059
CONTCOM	.0697535	.2006515	0.35	0.729	3280147	.4675217
CO2	.0020023	.0691172	0.03	0.977	1350144	.1390191
ENEUSE	0000825	.0001636	-0.50	0.615	0004068	.0002418
OILPART	025237	.0207993	-1.21	0.228	0664692	.0159952
GASPART	0141743	.0054807	-2.59	0.011	0250391	0033094
COALPART	0113656	.0057771	-1.97	0.052	022818	.0000869
NUCLEARPART	0111262	.0044956	-2.47	0.015	0200383	0022142
WIND	-2.94e-06	3.82e-06	-0.77	0.443	0000105	4.63e-06
SOLAR	1.33e-10	2.40e-10	0.56	0.580	-3.42e-10	6.09e-10
BIOMASS	1.46e-06	5.11e-06	0.29	0.776	-8.67e-06	.0000116
КУОТО	0	(omitted)				
INDUSTRY	.00334	.0019682	1.70	0.093	0005618	.0072418
_cons	2.065537	.980353	2.11	0.037	.1221015	4.008973

Fixed-effects (within) regression	Number of obs	=	120
Group variable: Country	Number of groups	=	20
R-sq: within = 0.2133 between = 0.0057 overall = 0.0002	Obs per group: min avg max	= =	6 6.0 6
corr(u_i, Xb) = -0.9898	F(9,19) Prob > F	=	20.99 0.0000

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
HUMANRIGHTS	.1842833	.5997108	0.31	0.762	-1.070926	1.439492
CONTCOM	.6312985	.2616618	2.41	0.026	.0836342	1.178963
CO2	.580432	.5480913	1.06	0.303	5667363	1.7276
ENEUSE	0025995	.0018336	-1.42	0.172	0064372	.0012382
OILPART	0247595	.0212586	-1.16	0.259	0692543	.0197353
GASPART	0029339	.0430586	-0.07	0.946	0930565	.0871887
COALPART	.0259826	.0391022	0.66	0.514	0558591	.1078244
NUCLEARPART	.0347704	.0923707	0.38	0.711	1585636	.2281044
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	0	(omitted)				
INDUSTRY	.0051294	.0030988	1.66	0.114	0013565	.0116154
_cons	4.053926	4.320888	0.94	0.360	-4.989796	13.09765
sigma u	3.342683					
sigma e	.74374853					
rho	.95282882	(fraction	of varia	nce due t	co u_i)	

Random-effects GLS regression	Number of obs	= 120
Group variable: Country	Number of groups	= 20
R-sq: within = 0.0546	Obs per group: min	= 6
between = 0.5657	avg	= 6.0
overall = 0.1307	max	= 6
	Wald chi2(11)	= .
corr(u_i, X) = 0 (assumed)	Prob > chi2	

D_CONSHARE	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
HUMANRIGHTS	3368246	.2558879	-1.32	0.188	8383557	.1647065
CONTCOM	.0697658	.1110863	0.63	0.530	1479594	.2874909
CO2	.0020537	.0574458	0.04	0.971	1105381	.1146455
ENEUSE	0000826	.0001475	-0.56	0.575	0003717	.0002064
OILPART	0252542	.0154175	-1.64	0.101	055472	.0049636
GASPART	0141764	.0039376	-3.60	0.000	021894	0064588
COALPART	0113703	.0042889	-2.65	0.008	0197764	0029642
NUCLEARPART	0111257	.0026665	-4.17	0.000	0163518	0058995
WIND	-2.94e-06	1.97e-06	-1.49	0.136	-6.80e-06	9.23e-07
SOLAR	1.33e-10	1.43e-10	0.93	0.352	-1.48e-10	4.14e-10
BIOMASS	1.46e-06	2.17e-06	0.67	0.502	-2.80e-06	5.72e-06
KYOTO	0	(omitted)				
INDUSTRY	.0033411	.001489	2.24	0.025	.0004226	.0062596
_cons	2.065349	.8587171	2.41	0.016	.3822948	3.748404
sigma_u	.01130929					
_ sigma e	.74374853					
rho	.00023116	(fraction	of varia	nce due †	to u_i)	

TRADE

Source	SS	df	MS		Number of obs	= 100
					F(12, 87)	= 4.16
Model	17.3422057	12 1.44	518381		Prob > F	= 0.0000
Residual	30.2393938	87 .347	579239		R-squared	= 0.3645
					Adj R-squared	= 0.2768
Total	47.5815995	99 .480	622217		Root MSE	= .58956
D_CONSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TRADE	-10.50069	6.541807	-1.61	0.112	-23.50324	2.501857
CONTCOM	0328022	.2225999	-0.15	0.883	4752436	.4096392
CO2	0090702	.0598509	-0.15	0.880	1280304	.10989
ENEUSE	000065	.0001341	-0.48	0.629	0003315	.0002015
OILPART	036532	.0241871	-1.51	0.135	0846064	.0115424
GASPART	0152089	.0054442	-2.79	0.006	0260297	004388
COALPART	019419	.0060561	-3.21	0.002	0314562	0073819
NUCLEARPART	0166527	.0046765	-3.56	0.001	0259477	0073577
WIND	-7.98e-07	1.82e-06	-0.44	0.663	-4.42e-06	2.83e-06
SOLAR	-2.16e-11	2.26e-10	-0.10	0.924	-4.71e-10	4.27e-10
BIOMASS	5.33e-06	4.59e-06	1.16	0.249	-3.80e-06	.0000145
КУОТО	0	(omitted)				
INDUSTRY	.0032599	.0020023	1.63	0.107	00072	.0072398
CODS	12 47642	6 60146	1 89	0 062	- 6446947	25 59754
	12.1/092	0.001-0	1.09	0.002	.011001/	20.00/04

Fixed-effects (within) regress	sion Number of obs =	100
Group variable: Country	Number of groups =	20
R-sq: within = 0.2559	Obs per group: min =	5
between = 0.2811	avg =	5.0
overall = 0.1376	max =	5
	F(8,72) =	3.10
$corr(u_i, Xb) = -0.9720$	Prob > F =	0.0047

D_CONSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TRADE	5.371663	25.29386	0.21	0.832	-45.05073	55.79406
CONTCOM	0	(omitted)				
CO2	.2175652	.4279781	0.51	0.613	6355936	1.070724
ENEUSE	0005922	.0011674	-0.51	0.614	0029194	.0017351
OILPART	0286261	.0470484	-0.61	0.545	1224154	.0651632
GASPART	0749225	.0403267	-1.86	0.067	1553122	.0054672
COALPART	0889925	.045278	-1.97	0.053	1792525	.0012675
NUCLEARPART	1007738	.0552137	-1.83	0.072	2108404	.0092927
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	0	(omitted)				
INDUSTRY	.0069097	.0034602	2.00	0.050	.0000118	.0138075
_cons	1.556601	25.60148	0.06	0.952	-49.47902	52.59222
sigma u	1.8736897					
sigma e	.56072139					
rho	.91780432	(fraction	of varian	nce due t	:o u_i)	
F test that a	ll u_i=0:	F(19, 72) =	1.40)	Prob >	F = 0.1538

Random-effects GLS regression	Number of obs	=	100
Group variable: Country	Number of groups	=	20
R-sq: within = 0.1995	Obs per group: mi	.n =	5
between = 0.7000	av	'g =	5.0
overall = 0.3624	ma	x =	5
	Wald chi2(11)	=	
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	

D_CONSHARE	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
TRADE	-9.687316	8.252456	-1.17	0.240	-25.86183	6.487201
CONTCOM	0553878	.2724011	-0.20	0.839	5892841	.4785084
CO2	0097627	.0761061	-0.13	0.898	1589279	.1394025
ENEUSE	0000731	.000171	-0.43	0.669	0004083	.0002621
OILPART	0428147	.0273891	-1.56	0.118	0964964	.0108671
GASPART	0161729	.0068583	-2.36	0.018	0296149	0027309
COALPART	0201959	.0076748	-2.63	0.009	0352382	0051535
NUCLEARPART	0177537	.0057639	-3.08	0.002	0290507	0064566
WIND	-8.93e-07	2.26e-06	-0.40	0.692	-5.32e-06	3.53e-06
SOLAR	4.57e-12	2.87e-10	0.02	0.987	-5.58e-10	5.68e-10
BIOMASS	5.27e-06	5.89e-06	0.89	0.371	-6.28e-06	.0000168
KYOTO	0	(omitted)				
INDUSTRY	.0041688	.0022552	1.85	0.065	0002513	.0085888
_cons	11.69278	8.340787	1.40	0.161	-4.654864	28.04042
	.22713927					
sigma e	.56072139					
rho	.14096214	(fraction	of varia	nce due t	o u_i)	

DIPLOMREP

Linear regression

Number of	obs	=	20
F(11,	7)	=	
Prob > F		=	
R-squared		=	0.7662
Root MSE		=	.45694

D_CONSHARE	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
DIPLOMREP	.3267701	.364508	0.90	0.400	5351544	1.188695
CONTCOM	.2600318	.4390608	0.59	0.572	778182	1.298246
CO2	.0502117	.1340221	0.37	0.719	2667002	.3671235
ENEUSE	0000713	.0003422	-0.21	0.841	0008803	.0007378
OILPART	0114765	.043212	-0.27	0.798	1136566	.0907036
GASPART	0183335	.0099323	-1.85	0.107	0418197	.0051527
COALPART	013989	.0102203	-1.37	0.213	0381562	.0101782
NUCLEARPART	0115163	.0098648	-1.17	0.281	0348428	.0118103
WIND	5.58e-06	4.91e-06	1.14	0.293	-6.02e-06	.0000172
SOLAR	-3.94e-10	2.73e-10	-1.44	0.192	-1.04e-09	2.51e-10
BIOMASS	.0000104	7.53e-06	1.39	0.208	-7.37e-06	.0000283
KYOTO	0	(omitted)				
INDUSTRY	.0059277	.0054841	1.08	0.316	0070402	.0188955
_cons	.3558646	1.564672	0.23	0.827	-3.343996	4.055725

. xtreg \$ylist \$xlist, fe robust insufficient observations

. xtreg \$ylist \$xlist, re robust note: KYOTO omitted because of collinearity insufficient observations

Dependent Variable: SUPSHARE

CULTUREDIF

. reg \$ylist \$xlist, cluster ()

Source	SS	df	MS	Number of obs = 672
				F(13, 658) = 1284.28
Model	149421.401	13	11493.9539	Prob > F = 0.0000
Residual	5888.92471	658	8.94973361	R-squared = 0.9621
				Adj R-squared = 0.9613
Total	155310.325	671	231.460992	Root MSE = 2.9916

SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
CULTUREDIF	2.902763	1.01472	2.86	0.004	.9102837	4.895243
CONTCOM	.3338696	.3543095	0.94	0.346	361844	1.029583
C02	-1.967828	.0607158	-32.41	0.000	-2.087048	-1.848608
ENEUSE	.0043037	.0000999	43.08	0.000	.0041075	.0044998
OILPART	3508242	.0134944	-26.00	0.000	3773214	3243269
GASPART	3603681	.0100004	-36.04	0.000	3800048	3407315
COALPART	2589376	.0076485	-33.85	0.000	273956	2439192
NUCLEARPART	4452494	.0071699	-62.10	0.000	459328	4311708
WIND	-3.90e-06	4.91e-07	-7.94	0.000	-4.86e-06	-2.94e-06
SOLAR	2.19e-10	3.48e-11	6.30	0.000	1.51e-10	2.88e-10
BIOMASS	.0000242	5.10e-06	4.73	0.000	.0000141	.0000342
KYOTO	.4017016	.2866062	1.40	0.162	1610714	.9644745
INDUSTRY	0080819	.0039639	-2.04	0.042	0158653	0002985
_ ^{cons}	34.7014	1.030689	33.67	0.000	32.67756	36.72523

Fixed-effects (within) regression	Number of obs	=	672
Group variable: Country	Number of groups	=	32
R-sq: within = 0.5607	Obs per group: mi	n =	21
between = 0.9324	av	g =	21.0
overall = 0.9176	ma	x =	21
	F(10,630)	=	80.42
corr(u_i, Xb) = 0.8513	Prob > F	=	0.0000

SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
CULTUREDIF	-1.127016	1.196267	-0.94	0.346	-3.47617	1.222137
CONTCOM	1.22993	.7454893	1.65	0.099	2340151	2.693874
CO2	7014779	.0866111	-8.10	0.000	8715592	5313966
ENEUSE	.0015862	.0001006	15.77	0.000	.0013887	.0017837
OILPART	1736743	.0177774	-9.77	0.000	2085844	1387642
GASPART	2008854	.0144577	-13.89	0.000	2292765	1724944
COALPART	1863393	.0160222	-11.63	0.000	2178027	1548759
NUCLEARPART	2399087	.0237504	-10.10	0.000	2865482	1932693
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.5979297	.1694997	3.53	0.000	.265077	.9307824
INDUSTRY	.012839	.0025943	4.95	0.000	.0077444	.0179335
_cons	26.69489	1.634188	16.34	0.000	23.48578	29.90401
sigma u	8.0225317					
sigma e	1.416569					
rho	.96976438	(fraction	of varia	nce due t	:o u_i)	
F test that a	ll u_i=0:	F(31, 630)	= 86.2	12	Prob >	F = 0.0000

Random-effects GLS regression	Number of obs	= 672
Group variable: Country	Number of groups	= 32
R-sq: within = 0.5455	Obs per group: min	= 21
between = 0.9423	avg	= 21.0
overall = 0.9296	max	= 21
	Wald chi2(12)	= .
corr(u_i, X) = 0 (assumed)	Prob > chi2	

SUPSHARE	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
CULTUREDIF	-1.359584	1.328555	-1.02	0.306	-3.963504	1.244336
CONTCOM	2.037435	.709732	2.87	0.004	.6463857	3.428484
CO2	7789055	.0858673	-9.07	0.000	9472024	6106087
ENEUSE	.0020706	.0001126	18.39	0.000	.0018499	.0022913
OILPART	2892883	.0173267	-16.70	0.000	323248	2553285
GASPART	3090572	.013429	-23.01	0.000	3353776	2827368
COALPART	2874904	.0140094	-20.52	0.000	3149483	2600325
NUCLEARPART	3633324	.018434	-19.71	0.000	3994624	3272025
WIND	-3.05e-06	1.34e-06	-2.27	0.023	-5.67e-06	-4.21e-07
SOLAR	8.29e-11	1.15e-10	0.72	0.472	-1.43e-10	3.09e-10
BIOMASS	.0000126	.0000173	0.73	0.466	0000213	.0000466
KYOTO	.5309421	.1969608	2.70	0.007	.144906	.9169782
INDUSTRY	.0088741	.0030258	2.93	0.003	.0029437	.0148046
_cons	33.89346	1.701772	19.92	0.000	30.55804	37.22887
sigma u	1.9410783					
sigma e	1.416569					
rho	.65249212	(fraction	of varia	nce due t	o u_i)	

RELIGIOUSDIF

	1					
Source	SS	df	MS		Number of obs	= 672
Model Residual	149363.073 5947.25226	13 114 658 9.	89.4672 0383773		Prob > F R-squared	= 1271.19 = 0.0000 = 0.9617
Total	155310.325	671 231	.460992		Adj R-squared Root MSE	= 0.9610 = 3.0064
SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
RELIGIOUSDIF	4126399	.3212626	-1.28	0.199	-1.043463	.2181835
CONTCOM	.6485276	.3489444	1.86	0.064	0366511	1.333706
CO2	-1.915123	.0591835	-32.36	0.000	-2.031334	-1.798911
ENEUSE	.004279	.0001015	42.16	0.000	.0040797	.0044783
OILPART	3403973	.01318	-25.83	0.000	3662774	3145173
GASPART	3690833	.0099408	-37.13	0.000	3886028	3495639
COALPART	2643416	.0074271	-35.59	0.000	2789253	2497579
NUCLEARPART	4456668	.0072085	-61.83	0.000	4598213	4315123
WIND	-4.94e-06	3.83e-07	-12.89	0.000	-5.69e-06	-4.18e-06
SOLAR	2.55e-10	3.45e-11	7.38	0.000	1.87e-10	3.23e-10
BIOMASS	.0000271	5.00e-06	5.42	0.000	.0000173	.0000369
KYOTO	.4819831	.2864617	1.68	0.093	0805062	1.044472
INDUSTRY	0043712	.0042052	-1.04	0.299	0126283	.003886
_cons	37.26689	.6786151	54.92	0.000	35.93437	38.5994

Fixed-effects (within) regression	Number of obs	=	672
Group variable: Country	Number of groups	=	32
R-sq: within = 0.5610	Obs per group: min	=	21
between = 0.9321	avg	=	21.0
overall = 0.9171	max	=	21
	F(10,630)	=	80.50
corr(u_i, Xb) = 0.8515	Prob > F	=	0.0000

SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
RELIGIOUSDIF	.7255812	.6527883	1.11	0.267	556323	2.007485
CONTCOM	1.211212	.7443364	1.63	0.104	2504686	2.672893
CO2	6992203	.086537	-8.08	0.000	8691561	5292844
ENEUSE	.0015908	.0001005	15.83	0.000	.0013935	.0017882
OILPART	1711657	.0179157	-9.55	0.000	2063474	135984
GASPART	1996768	.0143665	-13.90	0.000	2278888	1714647
COALPART	1870446	.0160513	-11.65	0.000	2185651	1555241
NUCLEARPART	2386598	.023606	-10.11	0.000	2850157	1923039
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.5564952	.1639683	3.39	0.001	.2345047	.8784856
INDUSTRY	.0126656	.0025842	4.90	0.000	.0075908	.0177403
_cons	24.98072	1.209182	20.66	0.000	22.60621	27.35523
sigma u	8.0552196					
sigma e	1.4161786					
rho	.97001797	(fraction	of varia	nce due t	to u_i)	
F test that a	ll u_i=0:	F(31, 630)	= 101.	39	Prob >	F = 0.0000

Random-effects GLS regression	Number of obs	=	672
Group variable: Country	Number of groups	=	32
R-sq: within = 0.5457	Obs per group: min	=	21
between = 0.9417	avg	=	21.0
overall = 0.9289	max	=	21
	Wald chi2(12)	=	
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	•

SUPSHARE	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
RELIGIOUSDIF	0173893	.6346721	-0.03	0.978	-1.261324	1.226545
CONTCOM	1.968413	.7120202	2.76	0.006	.5728786	3.363946
C02	7714329	.086024	-8.97	0.000	9400369	6028289
ENEUSE	.0020463	.0001122	18.24	0.000	.0018264	.0022661
OILPART	2847049	.0174162	-16.35	0.000	3188401	2505697
GASPART	3026735	.013363	-22.65	0.000	3288644	2764825
COALPART	282362	.0141411	-19.97	0.000	3100782	2546459
NUCLEARPART	3568419	.0186271	-19.16	0.000	3933503	3203334
WIND	-2.54e-06	1.34e-06	-1.90	0.058	-5.16e-06	8.16e-08
SOLAR	6.57e-11	1.19e-10	0.55	0.581	-1.68e-10	2.99e-10
BIOMASS	9.33e-06	.0000179	0.52	0.601	0000257	.0000443
КУОТО	.4857117	.1904284	2.55	0.011	.1124788	.8589445
INDUSTRY	.0087838	.0029934	2.93	0.003	.0029168	.0146509
_cons	32.31638	1.268504	25.48	0.000	29.83016	34.80261
sigma u	2.0249002					
sigma e	1.4161786					
rho	.67153074	(fraction	of varia	nce due t	co u_i)	

STABILITY

Source	SS	df	MS		Number of obs	= 480
					F(13, 466)	= 1003.55
Model	108566.506	13 835	1.26972		Prob > F	= 0.0000
Residual	3877.91402	466 8.3	2170391		R-squared	= 0.9655
					Adj R-squared	= 0.9646
Total	112444.42	479 234	.748268		Root MSE	= 2.8847
SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
STABILITY	.8137951	.5408815	1.50	0.133	2490737	1.876664
CONTCOM	.1674849	.4029407	0.42	0.678	6243209	.9592906
CO2	-1.861766	.0691173	-26.94	0.000	-1.997587	-1.725946
ENEUSE	.0041798	.0001069	39.08	0.000	.0039696	.0043899
OILPART	3389777	.0180688	-18.76	0.000	374484	3034713
GASPART	3546064	.0113528	-31.24	0.000	3769154	3322975
COALPART	2644769	.0085701	-30.86	0.000	2813176	2476362
NUCLEARPART	4399553	.0083417	-52.74	0.000	4563472	4235633
WIND	-4.69e-06	4.28e-07	-10.97	0.000	-5.53e-06	-3.85e-06
SOLAR	2.34e-10	3.92e-11	5.96	0.000	1.57e-10	3.11e-10
BIOMASS	.0000293	5.62e-06	5.21	0.000	.0000182	.0000403
КУОТО	.6760188	.3100489	2.18	0.030	.0667517	1.285286
INDUSTRY	0073361	.0045709	-1.60	0.109	0163183	.001646
_cons	35.78857	.9196698	38.91	0.000	33.98136	37.59578

Fixed-effects (within) regression	Number of obs	=	480
Group variable: Country	Number of groups	=	32
R-sq: within = 0.5360	Obs per group: min	=	15
between = 0.8792	avg	=	15.0
overall = 0.8679	max	=	15
	F(10,438)	=	50.60
corr(u_i, Xb) = 0.7684	Prob > F	=	0.0000

SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
STABILITY	-2.710097	.8676601	-3.12	0.002	-4.415392	-1.004803
CONTCOM	1.113807	.7295405	1.53	0.128	3200281	2.547642
C02	7518864	.1224395	-6.14	0.000	9925284	5112444
ENEUSE	.0015759	.0001241	12.69	0.000	.0013319	.0018199
OILPART	1256847	.0250969	-5.01	0.000	1750099	0763594
GASPART	1432888	.0194163	-7.38	0.000	1814494	1051282
COALPART	1852688	.022836	-8.11	0.000	2301505	140387
NUCLEARPART	2189262	.0298762	-7.33	0.000	2776446	1602077
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.4905319	.1788393	2.74	0.006	.139042	.8420218
INDUSTRY	.0123112	.0029967	4.11	0.000	.0064215	.0182009
_cons	27.11054	1.690377	16.04	0.000	23.78828	30.4328
sigma u	8.5883181					
sigma e	1.3618359					
rho	.97547277	(fraction	of varia	nce due	to u_i)	
F test that a	ll u_i=0:	F(31, 438)	= 72.2	2 6	Prob > 1	F = 0.0000

Random-effects GLS regression	Number of obs = 480
Group variable: Country	Number of groups = 32
R-sq: within = 0.5059	Obs per group: min = 15
between = 0.9322	avg = 15.0
overall = 0.9209	max = 15
	Wald chi2(12) =
$corr(u_i, X) = 0$ (assumed)	Prob > chi2 = .

SUPSHARE	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
STABILITY	-2.200228	.9228399	-2.38	0.017	-4.008961	3914948
CONTCOM	1.726547	.7476608	2.31	0.021	.2611584	3.191935
CO2	7721841	.1148852	-6.72	0.000	9973551	5470132
ENEUSE	.0022331	.0001395	16.00	0.000	.0019596	.0025065
OILPART	2789502	.0240642	-11.59	0.000	3261151	2317853
GASPART	2851223	.0174972	-16.30	0.000	3194163	2508284
COALPART	2969314	.0183191	-16.21	0.000	3328362	2610267
NUCLEARPART	3671376	.0217826	-16.85	0.000	4098308	3244444
WIND	-3.67e-06	1.44e-06	-2.55	0.011	-6.49e-06	-8.51e-07
SOLAR	1.02e-10	1.30e-10	0.79	0.430	-1.52e-10	3.56e-10
BIOMASS	.0000162	.0000192	0.84	0.398	0000214	.0000537
KYOTO	.5770333	.2184039	2.64	0.008	.1489696	1.005097
INDUSTRY	.0065527	.0036098	1.82	0.069	0005223	.0136277
_cons	33.99844	1.701046	19.99	0.000	30.66445	37.33243
sigma u	2.0489383					
sigma e	1.3618359					
rho	.69359406	(fraction	of varia	nce due t	co u_i)	

HUMANRIGHTS

Source	SS	df	MS		Number of obs	= 672
Model Residual	149374.591 5935.73467	13 1149 658 9.02	90.3531 2087336		F(13, 658) Prob > F R-squared	= 12/3.75 = 0.0000 = 0.9618
Total	155310.325	671 231.	.460992		Adj K-squared Root MSE	= 0.9610 = 3.0035
SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
HUMANRIGHTS	.5729657	.3347451	1.71	0.087	0843317	1.230263
CONTCOM	.4964603	.34849	1.42	0.155	1878262	1.180747
CO2	-1.930808	.0590448	-32.70	0.000	-2.046747	-1.814869
ENEUSE	.0043408	.0001033	42.03	0.000	.004138	.0045435
OILPART	3398822	.0131737	-25.80	0.000	3657498	3140147
GASPART	3647073	.0098588	-36.99	0.000	3840658	3453489
COALPART	2659514	.007459	-35.65	0.000	2805978	251305
NUCLEARPART	4448152	.0072059	-61.73	0.000	4589645	430666
WIND	-4.82e-06	3.72e-07	-12.95	0.000	-5.55e-06	-4.09e-06
SOLAR	2.45e-10	3.37e-11	7.28	0.000	1.79e-10	3.12e-10
BIOMASS	.0000277	4.94e-06	5.60	0.000	.000018	.0000374
KYOTO	.4480272	.2877215	1.56	0.120	1169358	1.01299
INDUSTRY	0082526	.0040943	-2.02	0.044	0162921	0002132
_cons	36.42865	.7285093	50.00	0.000	34.99816	37.85913

Fixed-effects (within) regression	Number of obs	=	672
Group variable: Country	Number of groups	=	32
R-sq: within = 0.5611	Obs per group: min	=	21
between = 0.9344	avg	=	21.0
overall = 0.9195	max	=	21
	F(10,630)	=	80.55
corr(u_i, Xb) = 0.8549	Prob > F	=	0.0000

SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
HUMANRIGHTS	3259161	.270747	-1.20	0.229	8575919	.2057597
CONTCOM	1.193029	.7439774	1.60	0.109	267947	2.654004
C02	6942177	.0865995	-8.02	0.000	8642764	5241591
ENEUSE	.0015854	.0001005	15.77	0.000	.0013881	.0017828
OILPART	1750872	.017808	-9.83	0.000	2100574	140117
GASPART	1999243	.0143688	-13.91	0.000	2281409	1717078
COALPART	1862421	.0160048	-11.64	0.000	2176712	154813
NUCLEARPART	236645	.0235701	-10.04	0.000	2829304	1903595
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
КУОТО	.5986668	.1674462	3.58	0.000	.2698466	.9274869
INDUSTRY	.0133558	.0026532	5.03	0.000	.0081456	.018566
_cons	25.85627	1.123189	23.02	0.000	23.65062	28.06191
	8.0086403					
sigma e	1.4159391					
rho	.96968875	(fraction	of varia	nce due t	co u_i)	
F test that a	F test that all u_i=0: F(31, 630) = 101.04 Prob > F = 0.0000					

Random	-effects GLS regression	Number of obs	=	672
Group	variable: Country	Number of groups	=	32
R-sq:	within = 0.5465	Obs per group: mi	n =	21
	between = 0.9415	av	rg =	21.0
	overall = 0.9288	ma	- x	21
		Wald chi2(12)	=	
corr(u	_i, X) = 0 (assumed)	Prob > chi2	=	•

SUPSHARE	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
HUMANRIGHTS	4251291	.3135842	-1.36	0.175	-1.039743	.1894847
CONTCOM	1.989274	.7095547	2.80	0.005	.5985725	3.379976
CO2	775103	.0858229	-9.03	0.000	9433128	6068932
ENEUSE	.0020478	.0001124	18.22	0.000	.0018276	.0022681
OILPART	2875482	.0173432	-16.58	0.000	3215402	2535562
GASPART	304431	.0133095	-22.87	0.000	3305172	2783448
COALPART	2833642	.0139777	-20.27	0.000	31076	2559684
NUCLEARPART	3587369	.0184965	-19.39	0.000	3949895	3224844
WIND	-2.63e-06	1.30e-06	-2.01	0.044	-5.18e-06	-6.99e-08
SOLAR	7.01e-11	1.17e-10	0.60	0.548	-1.59e-10	2.99e-10
BIOMASS	.0000101	.0000175	0.58	0.563	0000242	.0000445
KYOTO	.5419966	.1953051	2.78	0.006	.1592057	.9247875
INDUSTRY	.0096744	.0030824	3.14	0.002	.0036329	.0157159
_cons	32.8272	1.176588	27.90	0.000	30.52113	35.13327
	1.988704					
sigma_e	1.4159391					
rho	.6636004	(fraction	of varia	nce due t	co u_i)	

TRADE

Source	SS	df	MS		Number of obs	= 640
Model Residual	141297.721 5455.07823	13 1080 626 8.73	69.0555 1418247		F(13, 626) Prob > F R-squared	= 1247.28 = 0.0000 = 0.9628
Total	146752.799	639 229	.660092		Adj R-squared Root MSE	= 0.9621 = 2.952
SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TRADE	7.145976	7.390407	0.97	0.334	-7.367015	21.65897
CONTCOM	.4995636	.352197	1.42	0.157	1920671	1.191194
CO2	-2.000719	.0607117	-32.95	0.000	-2.119942	-1.881496
ENEUSE	.0044698	.0001061	42.11	0.000	.0042613	.0046782
OILPART	3375056	.0132973	-25.38	0.000	3636184	3113928
GASPART	3638379	.0100248	-36.29	0.000	3835242	3441516
COALPART	2577578	.0075718	-34.04	0.000	272627	2428885
NUCLEARPART	4440984	.0072489	-61.26	0.000	4583336	4298632
WIND	-4.82e-06	3.83e-07	-12.59	0.000	-5.57e-06	-4.07e-06
SOLAR	2.47e-10	3.44e-11	7.19	0.000	1.80e-10	3.15e-10
BIOMASS	.0000302	5.92e-06	5.11	0.000	.0000186	.0000419
KYOTO	.4670262	.288581	1.62	0.106	0996778	1.03373
INDUSTRY	0072445	.0040604	-1.78	0.075	0152182	.0007293
_cons	29.67055	7.371869	4.02	0.000	15.19396	44.14714

Fixed-effects (within) regression	Number of obs	=	640
Group variable: Country	Number of groups	=	32
R-sq: within = 0.5458	Obs per group: min	n =	20
between = 0.9387	avo	g =	20.0
overall = 0.9235	maz	K =	20
	F(10,598)	=	71.86
corr(u_i, Xb) = 0.8756	Prob > F	=	0.0000

SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TRADE	2.666251	6.415344	0.42	0.678	-9.933093	15.26559
CONTCOM	1.074486	1.00479	1.07	0.285	8988603	3.047833
CO2	7136067	.0859373	-8.30	0.000	8823824	544831
ENEUSE	.0015894	.0001043	15.24	0.000	.0013845	.0017942
OILPART	1551663	.0180415	-8.60	0.000	1905987	1197339
GASPART	1864771	.0143832	-12.96	0.000	2147249	1582293
COALPART	1677089	.0162834	-10.30	0.000	1996885	1357294
NUCLEARPART	2261301	.0234842	-9.63	0.000	2722516	1800085
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.5766958	.1585433	3.64	0.000	.2653265	.8880651
INDUSTRY	.0124908	.0025527	4.89	0.000	.0074775	.0175041
_cons	21.9539	6.494546	3.38	0.001	9.199006	34.70879
sigma u	8.3769158					
sigma e	1.3377492					
 rho	.9751318	(fraction	of varia	nce due t	to u_i)	

test that all u_i=0:	F(31, 598) = 107.39	Prob > F = 0.0000	
----------------------	---------------------	-------------------	--

Random-effects GLS regression	Number of obs	=	640
Group variable: Country	Number of groups	=	32
R-sq: within = 0.5289	Obs per group: mi	n =	20
between = 0.9385	av	g =	20.0
overall = 0.9266	ma	х =	20
	Wald chi2(12)	=	
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	

SUPSHARE	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
TRADE	3.907369	7.480913	0.52	0.601	-10.75495	18.56969
CONTCOM	2.608324	.8560671	3.05	0.002	.930463	4.286185
CO2	7635741	.0870573	-8.77	0.000	9342033	592945
ENEUSE	.0020741	.0001188	17.46	0.000	.0018413	.002307
OILPART	274241	.0177647	-15.44	0.000	3090592	2394227
GASPART	2968704	.0134672	-22.04	0.000	3232656	2704752
COALPART	27368	.0143728	-19.04	0.000	3018502	2455099
NUCLEARPART	3496776	.0188841	-18.52	0.000	3866897	3126655
WIND	-2.37e-06	1.34e-06	-1.78	0.076	-5.00e-06	2.47e-07
SOLAR	5.63e-11	1.20e-10	0.47	0.638	-1.78e-10	2.91e-10
BIOMASS	9.58e-06	.0000182	0.53	0.599	0000262	.0000453
KYOTO	.5178109	.1877458	2.76	0.006	.1498359	.885786
INDUSTRY	.0091068	.003021	3.01	0.003	.0031858	.0150278
_cons	27.50612	7.579742	3.63	0.000	12.6501	42.36214
sigma u	2.0088449					
sigma e	1.3377492					
rho	.69277882	(fraction	of varia	nce due t	to u_i)	

DIPLOMREP

Source	SS	df	MS		Number of obs	= 128
Model Residual	29018.1258 1080.53104	13 2232 114 9.47	2.16352 7834246		F(13, 114) Prob > F R-squared	= 235.50 = 0.0000 = 0.9641
Total	30098.6568	127 236.	.997298		Adj R-squared Root MSE	= 0.9600 = 3.0787
SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
DIPLOMREP	0901813	.8380889	-0.11	0.914	-1.750429	1.570066
CONTCOM	.1479224	.812322	0.18	0.856	-1.461281	1.757126
CO2	-2.391134	.1581834	-15.12	0.000	-2.704494	-2.077774
ENEUSE	.0053555	.000302	17.73	0.000	.0047571	.0059538
OILPART	3146588	.029369	-10.71	0.000	3728385	2564791
GASPART	3625074	.0256313	-14.14	0.000	4132829	3117319
COALPART	2435887	.0181946	-13.39	0.000	2796321	2075454
NUCLEARPART	4544389	.0168365	-26.99	0.000	4877919	4210859
WIND	-5.20e-06	8.96e-07	-5.80	0.000	-6.97e-06	-3.42e-06
SOLAR	2.94e-10	7.97e-11	3.69	0.000	1.36e-10	4.52e-10
BIOMASS	.0000265	.0000116	2.28	0.024	3.49e-06	.0000496
KYOTO	.6996078	.7134953	0.98	0.329	7138209	2.113036
INDUSTRY	0143971	.0108129	-1.33	0.186	0358174	.0070231
_cons	36.71711	1.685844	21.78	0.000	33.37746	40.05675

Fixed-e	effects (within) regression	Number of obs	=	128
Group v	variable: Country	Number of groups	=	32
R-sq:	within = 0.4412	Obs per group: min	1 =	4
	between = 0.9039	avg	r =	4.0
	overall = 0.8930	max	<u> </u>	4
		F(9,87)	=	7.63
corr(u_	_i, Xb) = 0.8380	Prob > F	=	0.0000

SUPSHARE	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
DIPLOMREP	.3089716	.8557404	0.36	0.719	-1.391905	2.009848
CONTCOM	0	(omitted)				
CO2	5331178	.2663801	-2.00	0.048	-1.062577	0036584
ENEUSE	.0017147	.0004228	4.06	0.000	.0008742	.0025551
OILPART	1581212	.0480031	-3.29	0.001	2535325	0627099
GASPART	1893849	.0396066	-4.78	0.000	2681072	1106626
COALPART	1773269	.040069	-4.43	0.000	2569684	0976854
NUCLEARPART	2013429	.0640003	-3.15	0.002	3285505	0741353
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.3195071	.446906	0.71	0.477	5687669	1.207781
INDUSTRY	.0135731	.0088607	1.53	0.129	0040385	.0311846
_cons	22.26792	2.764329	8.06	0.000	16.77351	27.76232
sigma u	9.063787					
sigma e	1.4703771					
rho	.97435773	(fraction	of varia	nce due t	o u_i)	
F test that a	ll u_i=0:	F(31, 87) =	18.50)	Prob >	F = 0.0000

Random-effects GLS regression	Number of obs	=	128
Group variable: Country	Number of groups	=	32
R-sq: within = 0.4062	Obs per group: min	1 =	4
between = 0.9645	avo	g =	4.0
overall = 0.9514	maz	< =	4
	Wald chi2(12)	=	
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	

SUPSHARE	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
DIPLOMREP	.0958603	.9891949	0.10	0.923	-1.842926	2.034647
CONTCOM	1.723379	1.617873	1.07	0.287	-1.447593	4.894351
CO2	-1.540971	.233684	-6.59	0.000	-1.998983	-1.082959
ENEUSE	.0038481	.0004278	9.00	0.000	.0030097	.0046866
OILPART	3204506	.040691	-7.88	0.000	4002035	2406978
GASPART	3503942	.0311873	-11.24	0.000	4115203	2892681
COALPART	2794529	.0285889	-9.77	0.000	3354862	2234196
NUCLEARPART	4238855	.0322407	-13.15	0.000	487076	360695
WIND	-4.42e-06	1.86e-06	-2.39	0.017	-8.06e-06	-7.89e-07
SOLAR	1.91e-10	1.64e-10	1.16	0.244	-1.30e-10	5.13e-10
BIOMASS	.0000219	.0000245	0.89	0.371	0000261	.0000698
KYOTO	.3756815	.5681297	0.66	0.508	7378323	1.489195
INDUSTRY	.0071873	.0108012	0.67	0.506	0139827	.0283573
_cons	33.95695	2.563207	13.25	0.000	28.93316	38.98074
sigma_u	2.2620589					
sigma_e	1.4703771					
rho	.70297667	(fraction	of varia	nce due t	to u_i)	

Dependent Variable: D_TOTALPOL

CULTUREDIF

Linear regression

Number of obs	=	640
F(12, 626)	=	•
Prob > F	=	•
R-squared	=	0.1227
Root MSE	=	4.1323

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
CULTUREDIF	.1352945	1.334387	0.10	0.919	-2.485123	2.755712
CONTCOM	4063238	.4408657	-0.92	0.357	-1.272079	.4594309
CO2	0269929	.0694725	-0.39	0.698	1634202	.1094345
ENEUSE	0000169	.0000798	-0.21	0.832	0001736	.0001398
OILPART	0373304	.0136299	-2.74	0.006	0640963	0105645
GASPART	.0285297	.0139106	2.05	0.041	.0012126	.0558469
COALPART	.0007939	.0087298	0.09	0.928	0163494	.0179372
NUCLEARPART	.0165838	.0089526	1.85	0.064	0009969	.0341645
WIND	-1.31e-07	1.05e-06	-0.12	0.901	-2.20e-06	1.93e-06
SOLAR	1.39e-10	9.46e-11	1.47	0.141	-4.62e-11	3.25e-10
BIOMASS	.0000218	.0000112	1.95	0.052	-1.85e-07	.0000439
KYOTO	.2738517	.4254664	0.64	0.520	5616625	1.109366
INDUSTRY	.0053585	.0048032	1.12	0.265	0040737	.0147908
_cons	.4941653	1.269855	0.39	0.697	-1.999525	2.987856

Fixed-effects (within) regression	Number of obs	=	640
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0327	Obs per group: min	=	20
between = 0.0043	avg	=	20.0
overall = 0.0011	max	=	20
	F(10,31)	=	5.28
corr(u_i, Xb) = -0.7393	Prob > F	=	0.0002

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
CULTUREDIF	3.409485	4.61379	0.74	0.465	-6.000401	12.81937
CONTCOM	.5126905	1.159004	0.44	0.661	-1.851114	2.876495
CO2	.1063052	.2584487	0.41	0.684	4208044	.6334148
ENEUSE	.0002574	.0002298	1.12	0.271	0002112	.0007261
OILPART	0669674	.0507596	-1.32	0.197	1704923	.0365575
GASPART	.0129117	.0575426	0.22	0.824	1044472	.1302706
COALPART	0368966	.0453634	-0.81	0.422	1294158	.0556227
NUCLEARPART	0627831	.084917	-0.74	0.465	2359724	.1104062
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	1374244	.4256641	-0.32	0.749	-1.005572	.7307232
INDUSTRY	.0062352	.0074332	0.84	0.408	0089248	.0213953
_cons	-1.171943	4.900948	-0.24	0.813	-11.16749	8.823607
sigma u	2.7300634					
sigma_e	4.1046588					
rho	.30669939	(fraction	of varia	nce due t	co u_i)	

Random-effects GLS regression	Number of obs	=	640
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0264 between = 0.6900 overall = 0.1226	Obs per group: min avg max	r = : =	20 20.0 20
corr(u_i, X) = 0 (assumed)	Wald chi2(12) Prob > chi2	=	

		Robust				
D_TOTALPOL	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
CULTUREDIF	.4294389	1.977526	0.22	0.828	-3.44644	4.305318
CONTCOM	4408081	.5184868	-0.85	0.395	-1.457024	.5754073
CO2	0397386	.084468	-0.47	0.638	2052928	.1258155
ENEUSE	4.41e-06	.0000894	0.05	0.961	0001708	.0001796
OILPART	0390458	.0204215	-1.91	0.056	0790713	.0009797
GASPART	.0311001	.0220996	1.41	0.159	0122143	.0744144
COALPART	.0017047	.0105151	0.16	0.871	0189045	.0223139
NUCLEARPART	.0161499	.0096946	1.67	0.096	0028512	.0351511
WIND	-5.03e-08	9.15e-07	-0.05	0.956	-1.84e-06	1.74e-06
SOLAR	1.38e-10	3.72e-11	3.71	0.000	6.50e-11	2.11e-10
BIOMASS	.0000216	9.24e-06	2.34	0.019	3.48e-06	.0000397
KYOTO	.245343	.3396785	0.72	0.470	4204146	.9111006
INDUSTRY	.0054029	.0057226	0.94	0.345	0058131	.016619
_cons	.2066665	1.628979	0.13	0.899	-2.986074	3.399408
sigma u	.73381543					
sigma e	4.1046588					
rho	.03097108	(fraction	of varia	nce due t	o u_i)	

RELIGIOUSDIF Linear regression

Т

Number of obs	=	640
F(12, 626)	=	•
Prob > F	=	•
R-squared	=	0.1245
Root MSE	=	4.128

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
RELIGIOUSDIF	5205861	.3388846	-1.54	0.125	-1.186074	.1449022
CONTCOM	311006	.4076206	-0.76	0.446	-1.111475	.4894633
CO2	015292	.0605088	-0.25	0.801	1341169	.1035329
ENEUSE	0000412	.0000787	-0.52	0.601	0001957	.0001134
OILPART	0354751	.0123053	-2.88	0.004	0596397	0113105
GASPART	.0253185	.0126915	1.99	0.046	.0003954	.0502416
COALPART	.0008891	.0078258	0.11	0.910	0144788	.016257
NUCLEARPART	.0162308	.0089047	1.82	0.069	001256	.0337176
WIND	-3.19e-07	9.47e-07	-0.34	0.736	-2.18e-06	1.54e-06
SOLAR	1.52e-10	9.43e-11	1.62	0.107	-3.28e-11	3.37e-10
BIOMASS	.0000208	.0000112	1.85	0.065	-1.28e-06	.0000429
KYOTO	.2349871	.418365	0.56	0.575	5865817	1.056556
INDUSTRY	.00788	.004787	1.65	0.100	0015205	.0172806
_cons	.92685	.7774571	1.19	0.234	5998897	2.45359

Fixed-effects (within) regression	Number of obs	=	640
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0319 between = 0.0010 overall = 0.0041	Obs per group: min avg max	= =	20 20.0 20
corr(u_i, Xb) = -0.7410	F(10,31) Prob > F	=	6.09 0.0000

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
RELIGIOUSDIF	-1.221782	1.351034	-0.90	0.373	-3.977235	1.533671
CONTCOM	.5945815	1.087302	0.55	0.588	-1.622985	2.812148
CO2	.1032972	.2605129	0.40	0.694	4280223	.6346167
ENEUSE	.0002452	.0002298	1.07	0.294	0002235	.000714
OILPART	0706992	.0517646	-1.37	0.182	1762738	.0348755
GASPART	.0084663	.0572428	0.15	0.883	1082812	.1252139
COALPART	0373605	.0449212	-0.83	0.412	1289779	.0542568
NUCLEARPART	0694928	.0834563	-0.83	0.411	2397031	.1007176
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	0092679	.4684138	-0.02	0.984	9646042	.9460684
INDUSTRY	.0069095	.0067461	1.02	0.314	0068492	.0206681
_cons	3.235852	3.125457	1.04	0.309	-3.138559	9.610264
sigma u	2.7086022					
sigma e	4.1063881					
rho	.3031754	(fraction	of varia	nce due t	co u_i)	

Random-effects GLS regression	Number of obs	= 640
Group variable: Country	Number of groups	= 32
R-sq: within = 0.0261	Obs per group: min	= 20
between = 0.7047	avg	= 20.0
overall = 0.1245	max	= 20
	Wald chi2(12)	= .
$corr(u_i, X) = 0$ (assumed)	Prob > chi2	

D_TOTALPOL	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
RELIGIOUSDIF	5083024	.3436487	-1.48	0.139	-1.181842	.1652367
CONTCOM	3385955	.427882	-0.79	0.429	-1.177229	.5000377
CO2	0253448	.0628719	-0.40	0.687	1485715	.097882
ENEUSE	0000206	.0000835	-0.25	0.805	0001842	.000143
OILPART	0365574	.0194199	-1.88	0.060	0746197	.001505
GASPART	.0278128	.0194486	1.43	0.153	0103058	.0659314
COALPART	.0013559	.0087854	0.15	0.877	0158631	.018575
NUCLEARPART	.0159261	.0094418	1.69	0.092	0025794	.0344316
WIND	-3.25e-07	5.65e-07	-0.58	0.565	-1.43e-06	7.83e-07
SOLAR	1.53e-10	3.20e-11	4.79	0.000	9.04e-11	2.16e-10
BIOMASS	.0000209	9.07e-06	2.31	0.021	3.14e-06	.0000387
KYOTO	.2355051	.3577585	0.66	0.510	4656888	.9366989
INDUSTRY	.0074542	.0048426	1.54	0.124	0020371	.0169454
_cons	.9137792	.9105122	1.00	0.316	8707919	2.69835
sigma u	.63932028					
sigma e	4.1063881					
rho	.0236655	(fraction	of varia	nce due t	to u_i)	

STABILITY

Linear regression

Т.

Т

Number of obs	=	480
F(12, 466)	=	•
Prob > F	=	
R-squared	=	0.1182
Root MSE	=	4.5738

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
STABILITY	3012969	.7777461	-0.39	0.699	-1.829621	1.227027
CONTCOM	3421973	.5212259	-0.66	0.512	-1.366442	.682047
CO2	0787662	.0776484	-1.01	0.311	2313505	.0738181
ENEUSE	0000507	.0000952	-0.53	0.594	0002378	.0001363
OILPART	0463417	.0216226	-2.14	0.033	0888316	0038518
GASPART	.0297776	.015777	1.89	0.060	0012251	.0607804
COALPART	.0011211	.0106056	0.11	0.916	0197195	.0219617
NUCLEARPART	.0232431	.0116466	2.00	0.047	.0003567	.0461295
WIND	-2.06e-07	1.22e-06	-0.17	0.866	-2.60e-06	2.19e-06
SOLAR	2.07e-10	1.20e-10	1.72	0.086	-2.93e-11	4.43e-10
BIOMASS	.0000173	.0000142	1.22	0.221	0000105	.0000452
KYOTO	3065319	.4988995	-0.61	0.539	-1.286903	.6738394
INDUSTRY	.0061903	.0056927	1.09	0.277	0049962	.0173769
_cons	1.877106	1.316551	1.43	0.155	7100062	4.464218

Fixed-effects (within) regression	Number of obs	=	480
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0220 between = 0.1742	Obs per group: min avg	=	15 15.0
overall = 0.0172	max	=	15
corr(u_i, Xb) = -0.8503	F(10,31) Prob > F	= =	1.61 0.1515

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
STABILITY	1.812202	2.341916	0.77	0.445	-2.964167	6.58857
CONTCOM	.6016716	.9952966	0.60	0.550	-1.428249	2.631593
CO2	3601205	.355327	-1.01	0.319	-1.084815	.3645736
ENEUSE	.0002138	.000198	1.08	0.289	0001901	.0006176
OILPART	020653	.0631651	-0.33	0.746	149479	.1081731
GASPART	.0522289	.0569915	0.92	0.367	0640061	.1684639
COALPART	05695	.0761748	-0.75	0.460	2123096	.0984096
NUCLEARPART	0512647	.1043501	-0.49	0.627	2640882	.1615588
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	5094472	.4833726	-1.05	0.300	-1.495292	.4763976
INDUSTRY	.0012143	.0079389	0.15	0.879	0149772	.0174057
_ ^{cons}	4.987692	4.164073	1.20	0.240	-3.504991	13.48038
sigma_u	3.8081786					
sigma_e	4.5324973					
rho	.41380829	(fraction	of varia	nce due t	to u_i)	

Random-effects GLS regression	Number of obs =	480
Group variable: Country	Number of groups =	32
R-sq: within = 0.0126	Obs per group: min =	15
between = 0.6414	avg =	15.0
overall = 0.1180	max =	15
	Wald chi2(12) =	
corr(u_i, X) = 0 (assumed)	Prob > chi2 =	•

D_TOTALPOL	Coef.	Robust Std. Err.	Z	P> z	[95% Conf.	Interval]
STABILITY	0880647	.8655195	-0.10	0.919	-1.784452	1.608322
CONTCOM	3978988	.5306578	-0.75	0.453	-1.437969	.6421713
CO2	102285	.1124103	-0.91	0.363	3226051	.1180351
ENEUSE	0000198	.0000922	-0.22	0.830	0002006	.0001609
OILPART	0461203	.0334007	-1.38	0.167	1115845	.0193439
GASPART	.033946	.0205793	1.65	0.099	0063888	.0742808
COALPART	.0006527	.0121375	0.05	0.957	0231364	.0244418
NUCLEARPART	.023321	.0118728	1.96	0.050	.0000508	.0465912
WIND	-1.79e-07	7.04e-07	-0.25	0.799	-1.56e-06	1.20e-06
SOLAR	2.11e-10	4.92e-11	4.30	0.000	1.15e-10	3.08e-10
BIOMASS	.0000175	.0000108	1.62	0.106	-3.72e-06	.0000387
KYOTO	2982614	.4346629	-0.69	0.493	-1.150185	.5536622
INDUSTRY	.0053953	.0057392	0.94	0.347	0058533	.0166439
_cons	1.73288	1.56804	1.11	0.269	-1.340423	4.806182
sigma_u	.92229076					
sigma_e	4.5324973					
rho	.03975947	(fraction	of varian	nce due t	:o u_i)	

HUMANRIGHTS

Т

Linear regression

Number of obs	=	640
F(12, 626)	=	
Prob > F	=	
R-squared	=	0.1235
Root MSE	=	4.1303

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
HUMANRIGHTS	.3652356	.4948081	0.74	0.461	6064492	1.33692
CONTCOM	4495193	.4050027	-1.11	0.267	-1.244848	.3458092
CO2	029647	.0613059	-0.48	0.629	1500371	.0907432
ENEUSE	9.57e-06	.0000849	0.11	0.910	0001572	.0001764
OILPART	0358545	.0124653	-2.88	0.004	0603333	0113757
GASPART	.029584	.0128056	2.31	0.021	.0044369	.054731
COALPART	0003836	.0080227	-0.05	0.962	0161382	.0153711
NUCLEARPART	.0169535	.0088997	1.90	0.057	0005235	.0344304
WIND	-1.74e-07	9.34e-07	-0.19	0.852	-2.01e-06	1.66e-06
SOLAR	1.41e-10	9.32e-11	1.51	0.131	-4.22e-11	3.24e-10
BIOMASS	.0000218	.0000109	1.99	0.047	3.10e-07	.0000433
КУОТО	.2400663	.4386752	0.55	0.584	6213868	1.101519
INDUSTRY	.0042135	.0045446	0.93	0.354	0047111	.0131381
_cons	.2248548	.945602	0.24	0.812	-1.632081	2.081791

Fixed-effects (within) regression	Number of obs	=	640
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0362 between = 0.0086 overall = 0.0009	Obs per group: min avg max	= =	20 20.0 20
corr(u_i, Xb) = -0.7403	F(10,31) Prob > F	=	6.60 0.0000

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
HUMANRIGHTS	1.455328	.9173594	1.59	0.123	4156386	3.326295
CONTCOM	.6132282	.9700297	0.63	0.532	-1.365161	2.591617
C02	.0789412	.2655129	0.30	0.768	4625759	.6204583
ENEUSE	.0002636	.0002302	1.15	0.261	0002059	.000733
OILPART	0601539	.0486852	-1.24	0.226	1594479	.0391401
GASPART	.0103469	.052122	0.20	0.844	0959567	.1166504
COALPART	0363209	.0441959	-0.82	0.417	1264591	.0538173
NUCLEARPART	0764603	.0827768	-0.92	0.363	2452848	.0923641
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	1825645	.4724904	-0.39	0.702	-1.146215	.781086
INDUSTRY	.0038986	.0067435	0.58	0.567	0098549	.017652
_cons	.9466843	2.78042	0.34	0.736	-4.72402	6.617388
sigma u	2.7604035					
sigma_e	4.0972011					
rho	.31219993	(fraction	of varia	nce due t	co u_i)	

Random-effects GLS regression	Number of obs	=	640
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0295 between = 0.6780 overall = 0.1233	Obs per group: min avg max	= =	20 20.0 20
$corr(u_i, X) = 0$ (assumed)	Wald chi2(12) Prob > chi2	=	

		Robust				
D_TOTALPOL	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
HUMANRIGHTS	.5468585	.5521871	0.99	0.322	5354083	1.629125
CONTCOM	4790895	.442021	-1.08	0.278	-1.345435	.3872557
CO2	0377256	.0727098	-0.52	0.604	1802342	.1047829
ENEUSE	.0000378	.0001017	0.37	0.710	0001615	.0002371
OILPART	0362728	.0186274	-1.95	0.052	0727819	.0002363
GASPART	.0315365	.0206974	1.52	0.128	0090296	.0721025
COALPART	000612	.0095951	-0.06	0.949	019418	.018194
NUCLEARPART	.01663	.009982	1.67	0.096	0029344	.0361944
WIND	-1.83e-07	5.23e-07	-0.35	0.726	-1.21e-06	8.42e-07
SOLAR	1.42e-10	3.12e-11	4.55	0.000	8.06e-11	2.03e-10
BIOMASS	.0000218	8.02e-06	2.72	0.007	6.10e-06	.0000375
KYOTO	.1973953	.397115	0.50	0.619	5809359	.9757264
INDUSTRY	.0039754	.0044163	0.90	0.368	0046803	.0126312
_cons	0078622	1.165891	-0.01	0.995	-2.292966	2.277241
sigma_u	.68981381					
sigma_e	4.0972011					
rho	.02756449	(fraction	of varia	nce due t	co u_i)	

TRADE

Linear regression

Т

Number of obs	=	608
F(12, 594)	=	•
Prob > F	=	
R-squared	=	0.1552
Root MSE	=	4.0485

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
TRADE	-8.493144	12.10165	-0.70	0.483	-32.26036	15.27408
CONTCOM	5313005	.4085132	-1.30	0.194	-1.333606	.2710054
C02	0371532	.0635563	-0.58	0.559	1619756	.0876692
ENEUSE	.0000218	.0000838	0.26	0.795	0001427	.0001864
OILPART	0363443	.0127382	-2.85	0.004	0613617	0113269
GASPART	.0328205	.0133637	2.46	0.014	.0065746	.0590664
COALPART	.0016918	.0081575	0.21	0.836	0143291	.0177128
NUCLEARPART	.0184269	.0092834	1.98	0.048	.0001947	.0366591
WIND	-4.56e-07	9.33e-07	-0.49	0.626	-2.29e-06	1.38e-06
SOLAR	1.83e-10	9.02e-11	2.03	0.043	6.06e-12	3.60e-10
BIOMASS	.0000194	.0000113	1.71	0.089	-2.93e-06	.0000416
KYOTO	.4481711	.4084303	1.10	0.273	3539719	1.250314
INDUSTRY	.004814	.004851	0.99	0.321	0047131	.0143411
_cons	8.867396	12.08256	0.73	0.463	-14.86233	32.59712

Fixed-effects (within) regression	Number of obs	=	608
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0464	Obs per group: mir	n =	19
between = 0.1693	avo	g =	19.0
overall = 0.0113	mas	K =	19
	F(9,31)	=	
corr(u_i, Xb) = -0.8546	Prob > F	=	•

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
TRADE	58.3525	28.95999	2.01	0.053	7118027	117.4168
CONTCOM	1.756727	.3052134	5.76	0.000	1.13424	2.379214
CO2	.0007499	.2712659	0.00	0.998	5525005	.5540003
ENEUSE	.0002392	.0002467	0.97	0.340	000264	.0007423
OILPART	0689394	.0501971	-1.37	0.179	1713171	.0334382
GASPART	.0123724	.0586276	0.21	0.834	1071992	.1319441
COALPART	0296449	.0355734	-0.83	0.411	1021973	.0429074
NUCLEARPART	0826836	.0786039	-1.05	0.301	2429972	.07763
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.1396367	.5331844	0.26	0.795	9478001	1.227074
INDUSTRY	.0081987	.007329	1.12	0.272	0067489	.0231464
_cons	-54.84298	29.36321	-1.87	0.071	-114.7296	5.043693
sigma u	3.8626576					
sigma e	3.993162					
rho	.48339214	(fraction	of varian	nce due t	co u_i)	

Random-effects GLS regression	n Number of obs =	608
Group variable: Country	Number of groups =	32
R-sq: within = 0.0322	Obs per group: min =	19
between = 0.7160	avg =	19.0
overall = 0.1544	max =	19
	Wald chi2(12) =	
$corr(u_i, X) = 0$ (assumed)	Prob > chi2 =	

D_TOTALPOL	Coef.	Robust Std. Err.	Z	₽> z	[95% Conf.	Interval]
TRADE	3268433	12.74071	-0.03	0.980	-25.29817	24.64449
CONTCOM	5348771	.5101508	-1.05	0.294	-1.534754	.4650001
CO2	0531536	.0783328	-0.68	0.497	2066832	.1003759
ENEUSE	.0000388	.0001008	0.39	0.700	0001587	.0002364
OILPART	0405372	.0213448	-1.90	0.058	0823722	.0012978
GASPART	.0346787	.023854	1.45	0.146	0120743	.0814317
COALPART	.002675	.0088954	0.30	0.764	0147596	.0201096
NUCLEARPART	.0178688	.0095195	1.88	0.061	0007891	.0365267
WIND	-3.75e-07	6.05e-07	-0.62	0.536	-1.56e-06	8.12e-07
SOLAR	1.79e-10	3.62e-11	4.93	0.000	1.08e-10	2.49e-10
BIOMASS	.0000231	.0000127	1.82	0.068	-1.72e-06	.000048
KYOTO	.3917507	.441765	0.89	0.375	4740928	1.257594
INDUSTRY	.0055449	.0055971	0.99	0.322	0054253	.016515
_cons	.7432732	12.68387	0.06	0.953	-24.11665	25.6032
sigma_u	.79502337					
sigma e	3.993162					
rho	.03812793	(fraction	of varia	nce due t	to u_i)	

DIPLOMREP

Linear regression

Number of obs	=	96
F(12, 82)	=	
Prob > F	=	
R-squared	=	0.1574
Root MSE	=	3.927

		Robust				
D_TOTALPOL	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
· · · · · · · · · · · · · · · · · · ·						
DIPLOMREP	1.178855	1.099567	1.07	0.287	-1.008535	3.366245
CONTCOM	3065116	1.039717	-0.29	0.769	-2.374841	1.761817
CO2	1289541	.1433927	-0.90	0.371	4142078	.1562996
ENEUSE	0000278	.0002636	-0.11	0.916	0005523	.0004967
OILPART	050371	.0325348	-1.55	0.125	115093	.014351
GASPART	.0379145	.0306583	1.24	0.220	0230746	.0989036
COALPART	.0069999	.0198694	0.35	0.726	0325266	.0465265
NUCLEARPART	.0398075	.0214066	1.86	0.067	0027771	.0823921
WIND	-1.37e-06	2.94e-06	-0.47	0.643	-7.23e-06	4.49e-06
SOLAR	2.13e-10	3.68e-10	0.58	0.564	-5.20e-10	9.46e-10
BIOMASS	.0000178	.000022	0.81	0.420	0000259	.0000616
KYOTO	.2300262	.672428	0.34	0.733	-1.107647	1.5677
INDUSTRY	0072243	.0118334	-0.61	0.543	0307646	.016316
_cons	1.052392	2.007626	0.52	0.602	-2.941416	5.0462

Fixed-effects (within) regression	Number of obs	=	96
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0491 between = 0.0443	Obs per group: min	=	3 3.0
overall = 0.0213	max	=	3
corr(u_i, Xb) = -0.8368	F(9,31) Prob > F	=	1.90 0.0899

(Std.	Err.	adjusted	for	32	clusters	in	Country)

D_TOTALPOL	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
DIPLOMREP	3.343411	2.805768	1.19	0.242	-2.378991	9.065812
CONTCOM	0	(omitted)				
CO2	427247	1.224764	-0.35	0.730	-2.92517	2.070676
ENEUSE	.0012645	.0016789	0.75	0.457	0021596	.0046885
OILPART	1009827	.1156654	-0.87	0.389	3368837	.1349184
GASPART	.0039345	.1176135	0.03	0.974	2359398	.2438088
COALPART	0172911	.1299541	-0.13	0.895	2823343	.2477521
NUCLEARPART	.081046	.1542846	0.53	0.603	2336196	.3957115
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	1674787	.7980562	-0.21	0.835	-1.795125	1.460168
INDUSTRY	0047911	.0200859	-0.24	0.813	0457566	.0361744
_cons	-2.128256	5.985135	-0.36	0.725	-14.33502	10.07851
sigma_u	4.0140214					
sigma_e	4.305202					
rho	.46504189	(fraction	of varia	nce due t	to u_i)	

Random-effects GLS regression	Number of obs	=	96
Group variable: Country	Number of groups	=	32
R-sq: within = 0.0308	Obs per group: mi	n =	3
between = 0.4793	av	g =	3.0
overall = 0.1574	ma	x =	3
	Wald chi2(12)	=	
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	

Т

(Std. Err. adjusted for 32 clusters in Country)

		Robust				
D_TOTALPOL	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
DIPLOMREP	1.178855	.9764765	1.21	0.227	7350035	3.092714
CONTCOM	3065116	.9900215	-0.31	0.757	-2.246918	1.633895
CO2	1289541	.1366313	-0.94	0.345	3967466	.1388384
ENEUSE	0000278	.0002485	-0.11	0.911	000515	.0004593
OILPART	050371	.0316217	-1.59	0.111	1123484	.0116065
GASPART	.0379145	.0286497	1.32	0.186	0182379	.0940669
COALPART	.0069999	.0178713	0.39	0.695	0280271	.042027
NUCLEARPART	.0398075	.0217894	1.83	0.068	002899	.082514
WIND	-1.37e-06	6.65e-07	-2.06	0.039	-2.67e-06	-6.75e-08
SOLAR	2.13e-10	5.31e-11	4.01	0.000	1.09e-10	3.17e-10
BIOMASS	.0000178	7.57e-06	2.36	0.018	3.00e-06	.0000327
KYOTO	.2300262	.6428407	0.36	0.720	-1.029918	1.489971
INDUSTRY	0072243	.0127574	-0.57	0.571	0322284	.0177798
_cons	1.052392	1.961689	0.54	0.592	-2.792449	4.897233
sigma u	0					
 sigma e	4.305202					
rho	0	(fraction	of varia	nce due t	o u_i)	

Dependent Variable: FITORCERT

CULTUREDIF

Source	SS	df	MS	Number of obs =	672
				F(13, 658) =	28.88
Model	59.2784994	13	4.55988457	Prob > F =	0.0000
Residual	103.886679	658	.157882491	R-squared =	0.3633
				Adj R-squared =	0.3507
Total	163.165179	671	.243167181	Root MSE =	.39734

FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
CULTUREDIF	2836051	.1347746	-2.10	0.036	5482453	0189649
CONTCOM	1146777	.0470592	-2.44	0.015	207082	0222733
C02	.0226787	.0080642	2.81	0.005	.0068439	.0385134
ENEUSE	0000392	.0000133	-2.96	0.003	0000653	0000132
OILPART	0053839	.0017923	-3.00	0.003	0089033	0018646
GASPART	.004212	.0013283	3.17	0.002	.0016038	.0068201
COALPART	0009285	.0010159	-0.91	0.361	0029232	.0010662
NUCLEARPART	.0029637	.0009523	3.11	0.002	.0010938	.0048337
WIND	-1.15e-07	6.52e-08	-1.76	0.079	-2.43e-07	1.34e-08
SOLAR	3.25e-12	4.62e-12	0.70	0.482	-5.83e-12	1.23e-11
BIOMASS	-5.14e-07	6.78e-07	-0.76	0.448	-1.85e-06	8.17e-07
KYOTO	.3801967	.0380669	9.99	0.000	.3054494	.4549439
INDUSTRY	.0019419	.0005265	3.69	0.000	.0009081	.0029757
_cons	.3253927	.1368956	2.38	0.018	.0565877	.5941977

Fixed-effects (within) regression	Number of obs	=	672
Group variable: Country	Number of groups	=	32
R-sq: within = 0.4110	Obs per group: min	n =	21
between = 0.0073	avo	g =	21.0
overall = 0.0865	mas	κ =	21
	F(10,630)	=	43.96
corr(u_i, Xb) = -0.5406	Prob > F	=	0.0000

FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
CULTUREDIF	.2399771	.2605342	0.92	0.357	2716435	.7515977
CONTCOM	3165513	.1623596	-1.95	0.052	6353828	.0022803
CO2	.0117246	.018863	0.62	0.534	0253173	.0487665
ENEUSE	-9.58e-06	.0000219	-0.44	0.662	0000526	.0000334
OILPART	0125551	.0038717	-3.24	0.001	0201581	004952
GASPART	0020837	.0031487	-0.66	0.508	008267	.0040995
COALPART	0104558	.0034895	-3.00	0.003	0173082	0036034
NUCLEARPART	0137419	.0051726	-2.66	0.008	0238995	0035843
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.3540285	.0369152	9.59	0.000	.2815367	.4265203
INDUSTRY	.0008438	.000565	1.49	0.136	0002658	.0019533
_cons	.6854311	.3559087	1.93	0.055	0134798	1.384342
sigma u	.43973078					
 sigma e	.30851359					
rho	.67013452	(fraction	of varia	nce due	to u_i)	

Random-effects GLS regression	Number of obs	= 672
Group variable: Country	Number of groups	= 32
R-sq: within = 0.4040	Obs per group: min	= 21
between = 0.1232	avg	= 21.0
overall = 0.2949	max	= 21
	Wald chi2(12)	= .
corr(u_i, X) = 0 (assumed)	Prob > chi2	= .

FITORCERT	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
CULTUREDIF	.1549765	.2313152	0.67	0.503	298393	.608346
CONTCOM	2680246	.1148452	-2.33	0.020	4931171	0429321
CO2	.0073848	.0143711	0.51	0.607	0207821	.0355517
ENEUSE	0000241	.0000198	-1.21	0.225	000063	.0000148
OILPART	0075507	.0029135	-2.59	0.010	013261	0018403
GASPART	.0034526	.0022099	1.56	0.118	0008787	.0077838
COALPART	0040906	.0022458	-1.82	0.069	0084924	.0003112
NUCLEARPART	0021632	.0028223	-0.77	0.443	0076947	.0033684
WIND	-5.97e-08	1.91e-07	-0.31	0.755	-4.34e-07	3.15e-07
SOLAR	2.27e-12	1.60e-11	0.14	0.888	-2.92e-11	3.37e-11
BIOMASS	8.03e-08	2.41e-06	0.03	0.973	-4.64e-06	4.80e-06
KYOTO	.3662475	.0354196	10.34	0.000	.2968262	.4356687
INDUSTRY	.0009275	.0005446	1.70	0.089	0001399	.0019948
_cons	.3115499	.2824304	1.10	0.270	2420035	.8651033
sigma u	.31547928					
sigma e	.30851359					
rho	.51116169	(fraction	of varia	nce due 1	to u_i)	

RELIGIOUSDIF

Source	SS	df	MS		Number of obs	=	672
Model Residual	60.7783483 102.38683	13 4. 658 .1	67525756 55603086		Prob > F R-squared	=	0.0000
Total	163.165179	671 .2	43167181		Adj K-squared Root MSE	=	.39447
FITORCERT	Coef.	Std. Err	. t	P> t	[95% Conf.	In	terval]
RELIGIOUSDIF	1584614	.0421526	-3.76	0.000	2412312		0756917
CONTCOM	1137165	.0457847	-2.48	0.013	2036181		0238148
CO2	.021091	.0077654	2.72	0.007	.0058431		.036339
ENEUSE	0000462	.0000133	-3.47	0.001	0000724		0000201
OILPART	0058976	.0017293	-3.41	0.001	0092933		0025019
GASPART	.0039897	.0013043	3.06	0.002	.0014286		0065509
COALPART	0002758	.0009745	-0.28	0.777	0021893		0016377
NUCLEARPART	.0028684	.0009458	3.03	0.003	.0010112		0047256
WIND	-6.90e-08	5.03e-08	-1.37	0.170	-1.68e-07	2	.97e-08
SOLAR	4.29e-12	4.53e-12	0.95	0.344	-4.61e-12	1	.32e-11
BIOMASS	-1.26e-06	6.56e-07	-1.93	0.055	-2.55e-06	2	.46e-08
КУОТО	.3554526	.0375864	9.46	0.000	.2816489		4292563
INDUSTRY	.0025002	.0005518	4.53	0.000	.0014168		0035836
_cons	.2014331	.0890405	2.26	0.024	.0265954		3762708

Fixed-effects (within) regression	Number of obs	=	672
Group variable: Country	Number of groups	=	32
R-sq: within = 0.4140	Obs per group: mir	n =	21
between = 0.0012	avo	g =	21.0
overall = 0.0893	max	< =	21
	F(10,630)	=	44.51
corr(u_i, Xb) = -0.5765	Prob > F	=	0.0000

FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]	
RELIGIOUSDIF	286218	.1418476	-2.02	0.044	5647694	0076667	
CONTCOM	3163516	.1617406	-1.96	0.051	6339675	.0012643	
CO2	.0113458	.0188041	0.60	0.546	0255804	.048272	
ENEUSE	0000109	.0000218	-0.50	0.619	0000538	.000032	
OILPART	0135454	.003893	-3.48	0.001	0211902	0059006	
GASPART	0022852	.0031218	-0.73	0.464	0084156	.0038451	
COALPART	0100433	.0034879	-2.88	0.004	0168926	0031941	
NUCLEARPART	0137433	.0051295	-2.68	0.008	0238162	0036704	
WIND	.0107100	(omitted)	2.00	0.000	.0200102		
SOLAR	0	(omitted)					
BIOMASS	0	(omitted)					
KXOLO	3630553	0356295	10 19	0 000	2930884	4330222	
TNDUGTOV	000874	0005615	1 56	0.120	- 0002287	0019768	
INDOSIRI	1 15/125	2627401	1 20	0.120	6201547	1 670005	
	1.134123	.2027491	4.59	0.000	.0301347	1.070095	
eigma u	45234336						
sigma_u	2077205						
sigma_e	.3077203				• 、		
rho	.08361/65	(Iraction	or varia	nce due t	to u_1)		
F test that all u_i=0:		F(31, 630)	= 15.0	0 0	Prob >	Prob > F = 0.0000	
Random-effects GLS regression	Number of obs	=	672				
-------------------------------	--------------------	-----	-----				
Group variable: Country	Number of groups	=	32				
R-sq: within = 0.4065	Obs per group: min	=	21				
between = 0.1620	avg	= 2	1.0				
overall = 0.3099	max	=	21				
	Wald chi2(12)	=					
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	•				

FITORCERT	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
RELIGIOUSDIF	204364	.1011519	-2.02	0.043	402618	00611
CONTCOM	2549096	.1125784	-2.26	0.024	4755591	03426
CO2	.0073952	.0141669	0.52	0.602	0203715	.0351619
ENEUSE	0000265	.0000198	-1.34	0.179	0000652	.0000122
OILPART	0077151	.0028857	-2.67	0.008	0133709	0020592
GASPART	.0035	.0021567	1.62	0.105	0007271	.0077271
COALPART	0036095	.0022053	-1.64	0.102	0079318	.0007128
NUCLEARPART	002088	.0027555	-0.76	0.449	0074886	.0033126
WIND	-1.64e-07	1.76e-07	-0.93	0.351	-5.08e-07	1.81e-07
SOLAR	8.14e-12	1.56e-11	0.52	0.602	-2.24e-11	3.87e-11
BIOMASS	-2.64e-07	2.33e-06	-0.11	0.910	-4.83e-06	4.30e-06
КҮОТО	.3710828	.0344811	10.76	0.000	.303501	.4386646
INDUSTRY	.0010421	.0005411	1.93	0.054	0000184	.0021026
_cons	.6220714	.1997346	3.11	0.002	.2305989	1.013544
	.30542605					
sigma e	.3077285					
rho	.49624498	(fraction	of varia	nce due t	to u_i)	

STABILITY

STABILITY						
Source	SS	df	MS		Number of obs	= 480
					F(13, 466)	= 17.24
Model	38.719097	13 2.97	839207		Prob > F	= 0.0000
Residual	80.5288197	466 .172	808626		R-squared	= 0.3247
					Adj R-squared	= 0.3059
Total	119.247917	479 .248	951809		Root MSE	= .4157
FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
STABILITY	0819273	.0779433	-1.05	0.294	2350911	.0712365
CONTCOM	103418	.0580654	-1.78	0.076	2175206	.0106845
CO2	.0180083	.0099601	1.81	0.071	0015639	.0375806
ENEUSE	0000463	.0000154	-3.00	0.003	0000766	000016
OILPART	0075105	.0026038	-2.88	0.004	0126271	0023939
GASPART	.005507	.001636	3.37	0.001	.0022922	.0087218
COALPART	.0000902	.001235	0.07	0.942	0023366	.0025171
NUCLEARPART	.0052399	.0012021	4.36	0.000	.0028777	.007602
WIND	-2.66e-08	6.17e-08	-0.43	0.666	-1.48e-07	9.46e-08
SOLAR	5.84e-12	5.65e-12	1.03	0.302	-5.26e-12	1.69e-11
BIOMASS	-2.16e-06	8.10e-07	-2.66	0.008	-3.75e-06	-5.66e-07
KYOTO	.2717186	.0446793	6.08	0.000	.1839207	.3595166
INDUSTRY	.001814	.0006587	2.75	0.006	.0005196	.0031084
cons	.2492984	.1325283	1.88	0.061	0111286	.5097254
—						

Fixed-effects (within) regression	Number of obs	=	480
Group variable: Country	Number of groups	=	32
R-sq: within = 0.3241	Obs per group: mi	n =	15
between = 0.0075	av	'g =	15.0
overall = 0.0799	ma	x =	15
	F(10,438)	=	21.00
corr(u_i, Xb) = -0.4497	Prob > F	=	0.0000

FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
STABILITY	.2679839	.189507	1.41	0.158	1044721	.6404399
CONTCOM	2446821	.1593401	-1.54	0.125	5578482	.0684841
C02	0237144	.0267422	-0.89	0.376	0762734	.0288445
ENEUSE	0000362	.0000271	-1.34	0.182	0000895	.0000171
OILPART	0048336	.0054814	-0.88	0.378	0156068	.0059396
GASPART	.0032267	.0042407	0.76	0.447	0051081	.0115614
COALPART	0082622	.0049876	-1.66	0.098	0180649	.0015405
NUCLEARPART	0073489	.0065253	-1.13	0.261	0201737	.0054759
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.2912662	.0390606	7.46	0.000	.2144967	.3680356
INDUSTRY	.000364	.0006545	0.56	0.578	0009223	.0016504
_cons	.8637221	.3691978	2.34	0.020	.1381026	1.589342
sigma u	.43737791					
sigma e	.29744068					
rho	.68377298	(fraction	of varia	nce due t	to u_i)	
F test that a	ll u_i=0:	F(31, 438)	= 15.7	7 6	Prob >	F = 0.0000

Random	-effects GLS regression	Number of obs	=	480
Group	variable: Country	Number of groups	=	32
R-sq:	within = 0.3172	Obs per group: mi	n =	15
	between = 0.1842	av	g =	15.0
	overall = 0.2473	ma	х =	15
		Wald chi2(12)	=	
corr(u	_i, X) = 0 (assumed)	Prob > chi2	=	

FITORCERT	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
STABILITY	.1995355	.1523545	1.31	0.190	0990738	.4981449
CONTCOM	2215779	.1219664	-1.82	0.069	4606277	.0174719
CO2	0040998	.0186211	-0.22	0.826	0405965	.0323968
ENEUSE	0000387	.0000236	-1.64	0.101	000085	7.51e-06
OILPART	0048733	.0039631	-1.23	0.219	0126408	.0028941
GASPART	.004949	.0028343	1.75	0.081	000606	.010504
COALPART	0041208	.0028915	-1.43	0.154	009788	.0015464
NUCLEARPART	.0015207	.0033558	0.45	0.650	0050566	.0080979
WIND	-1.57e-08	2.10e-07	-0.07	0.940	-4.27e-07	3.95e-07
SOLAR	1.17e-11	1.89e-11	0.62	0.536	-2.53e-11	4.87e-11
BIOMASS	-1.31e-06	2.78e-06	-0.47	0.637	-6.76e-06	4.14e-06
KYOTO	.2894023	.0378116	7.65	0.000	.2152929	.3635116
INDUSTRY	.0006242	.0006234	1.00	0.317	0005976	.0018461
_cons	.4102273	.2743272	1.50	0.135	1274441	.9478987
sigma u	.36830776					
sigma e	.29744068					
rho	.60525459	(fraction	of varia	nce due t	coui)	
	1				_	

HUMANRIGHTS

Source	SS	df	MS		Number of obs	= 672
Model Residual	58.8251213 104.340057	13 4.52 658 .158	500933 571516		F(13, 658) Prob > F R-squared	= 28.54 = 0.0000 = 0.3605 = 0.3470
Total	163.165179	671 .243	167181		Root MSE	= .39821
FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
HUMANRIGHTS	.0552486	.0443816	1.24	0.214	031898	.1423951
CONTCOM	1473073	.0462039	-3.19	0.001	2380321	0565824
CO2	.0174521	.0078284	2.23	0.026	.0020805	.0328237
ENEUSE	0000347	.0000137	-2.53	0.012	0000615	-7.77e-06
OILPART	0061494	.0017466	-3.52	0.000	009579	0027198
GASPART	.0050527	.0013071	3.87	0.000	.0024861	.0076193
COALPART	0005055	.0009889	-0.51	0.609	0024474	.0014364
NUCLEARPART	.0030318	.0009554	3.17	0.002	.0011558	.0049077
WIND	-2.42e-08	4.93e-08	-0.49	0.624	-1.21e-07	7.27e-08
SOLAR	7.05e-13	4.47e-12	0.16	0.875	-8.08e-12	9.49e-12
BIOMASS	-9.33e-07	6.55e-07	-1.42	0.155	-2.22e-06	3.54e-07
КУОТО	.3622681	.038147	9.50	0.000	.2873636	.4371727
INDUSTRY	.0015762	.0005428	2.90	0.004	.0005103	.0026421
_cons	.0449678	.096588	0.47	0.642	1446901	.2346257

Fixed-effects (within) regression	Number of obs	=	672
Group variable: Country	Number of groups	=	32
R-sq: within = 0.4131	Obs per group: min	=	21
between = 0.0094	avg	=	21.0
overall = 0.0846	max	=	21
	F(10,630)	=	44.34
corr(u_i, Xb) = -0.5417	Prob > F	=	0.0000

FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
HUMANRIGHTS	.1027287	.0588897	1.74	0.082	0129152	.2183725
CONTCOM	3089671	.1618212	-1.91	0.057	6267412	.0088071
C02	.0097245	.0188361	0.52	0.606	0272646	.0467137
ENEUSE	-9.05e-06	.0000219	-0.41	0.679	000052	.0000339
OILPART	0121102	.0038734	-3.13	0.002	0197165	0045039
GASPART	0022316	.0031253	-0.71	0.475	0083689	.0039057
COALPART	0104108	.0034812	-2.99	0.003	0172469	0035747
NUCLEARPART	0144939	.0051267	-2.83	0.005	0245614	0044264
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
KYOTO	.3496737	.0364209	9.60	0.000	.2781526	.4211948
INDUSTRY	.0006594	.0005771	1.14	0.254	0004739	.0017926
_cons	.8328755	.2443029	3.41	0.001	.353129	1.312622
	.44137915					
sigma e	.30797836					
rho	.67255185	(fraction	of varia	nce due '	to u_i)	
F test that all u_i=0: F(31, 630) = 15.39 Prob > F = 0.0000						

Random-effects GLS regression	Number of obs	=	672
Group variable: Country	Number of groups	=	32
R-sq: within = 0.4063	Obs per group: mir	n =	21
between = 0.1318	avo	g =	21.0
overall = 0.3011	mas	K =	21
	Wald chi2(12)	=	
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	

FITORCERT	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
HUMANRIGHTS	.1032933	.0562927	1.83	0.067	0070384	.213625
CONTCOM	2672769	.1149313	-2.33	0.020	4925381	0420157
CO2	.0081127	.0143653	0.56	0.572	0200428	.0362683
ENEUSE	0000213	.0000199	-1.07	0.284	0000603	.0000177
OILPART	0073753	.0029204	-2.53	0.012	0130991	0016514
GASPART	.0031139	.0021907	1.42	0.155	0011798	.0074077
COALPART	0045709	.0022377	-2.04	0.041	0089567	000185
NUCLEARPART	0024384	.0028346	-0.86	0.390	0079941	.0031174
WIND	-9.99e-08	1.80e-07	-0.55	0.580	-4.54e-07	2.54e-07
SOLAR	3.20e-12	1.61e-11	0.20	0.842	-2.83e-11	3.48e-11
BIOMASS	2.75e-07	2.41e-06	0.11	0.909	-4.45e-06	5.00e-06
KYOTO	.3572853	.0353501	10.11	0.000	.2880004	.4265703
INDUSTRY	.0007234	.0005562	1.30	0.193	0003668	.0018136
_cons	.3628729	.1908826	1.90	0.057	0112502	.7369959
sigma u	.31994917					
sigma e	.30797836					
rho	.51905708	(fraction	of varia	nce due t	co u_i)	

TRADE

Source	SS	df	MS		Number of obs	=	640
					F(13, 626)	=	25.18
Model	52.5986878	13 4.	04605291		Prob > F	=	0.0000
Residual	100.595062	626 .1	60694987		R-squared	=	0.3433
					Adj R-squared	=	0.3297
Total	153.19375	639.2	39739828		Root MSE	=	.40087
FITORCERT	Coef.	Std. Err	. t	₽> t	[95% Conf.	In	terval]
TRADE	.016929	1.00359	0.02	0.987	-1.953881	1	.987739
CONTCOM	1527413	.047827	-3.19	0.001	2466621		0588204
CO2	.0175969	.0082444	2.13	0.033	.0014068		.033787
ENEUSE	0000361	.0000144	-2.50	0.013	0000644	-7	.76e-06
OILPART	0062236	.0018057	-3.45	0.001	0097696		0026776
GASPART	.0050302	.0013613	3.70	0.000	.0023569		0077035
COALPART	0002476	.0010282	-0.24	0.810	0022668		0017716
NUCLEARPART	.0029112	.0009844	2.96	0.003	.0009781		0048443
WIND	-2.84e-08	5.20e-08	-0.55	0.585	-1.30e-07	7	.37e-08
SOLAR	1.30e-13	4.67e-12	0.03	0.978	-9.05e-12	9	.31e-12
BIOMASS	-7.40e-07	8.04e-07	-0.92	0.358	-2.32e-06	8	.39e-07
КУОТО	.3596865	.0391882	9.18	0.000	.2827303		4366428
INDUSTRY	.0018016	.0005514	3.27	0.001	.0007188		0028844
_cons	.0729588	1.001072	0.07	0.942	-1.892908	2	.038825

Fixed-effects (within) regression	Number of obs	=	640
Group variable: Country	Number of groups	=	32
R-sq: within = 0.3890	Obs per group: mir	n =	20
between = 0.0079	avo	1 =	20.0
overall = 0.0747	max	<u>x</u> =	20
	F(10,598)	=	38.08
corr(u_i, Xb) = -0.5472	Prob > F	=	0.0000

FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
TRADE	-1.113243	1.487754	-0.75	0.455	-4.035101	1.808616
CONTCOM	3333034	.2330165	-1.43	0.153	7909335	.1243267
CO2	.0081962	.0199294	0.41	0.681	0309438	.0473362
ENEUSE	-2.24e-06	.0000242	-0.09	0.926	0000498	.0000453
OILPART	0123248	.0041839	-2.95	0.003	0205418	0041079
GASPART	0018644	.0033356	-0.56	0.576	0084152	.0046864
COALPART	0101747	.0037762	-2.69	0.007	017591	0027585
NUCLEARPART	0137358	.0054461	-2.52	0.012	0244317	00304
WIND	0	(omitted)				
SOLAR	0	(omitted)				
BIOMASS	0	(omitted)				
КУОТО	.3520778	.0367671	9.58	0.000	.2798695	.4242861
INDUSTRY	.0009173	.000592	1.55	0.122	0002454	.0020799
_cons	1.992431	1.506122	1.32	0.186	9654994	4.950362
siama u	.44025567					
sigma e	.31023152					
rho	.66820407	(fraction	of varia	nce due t	co u_i)	
	L					
F test that a	ll u_i=0:	F(31, 598)	= 14.5	54	Prob >	F = 0.0000

Random	-effects GLS regressio	n Number of obs =	640
Group	variable: Country	Number of groups =	32
R-sq:	within = 0.3823	Obs per group: min =	20
	between = 0.1428	avg =	20.0
	overall = 0.2885	max =	20
		Wald chi2(12) =	
corr(u	i, X) = 0 (assumed)	Prob > chi2 =	

FITORCERT	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
TRADE	9315776	1.393123	-0.67	0.504	-3.662049	1.798893
CONTCOM	2819708	.1342261	-2.10	0.036	5450491	0188926
C02	.005272	.0150266	0.35	0.726	0241796	.0347235
ENEUSE	000017	.0000219	-0.78	0.436	0000599	.0000258
OILPART	0070871	.0030701	-2.31	0.021	0131045	0010698
GASPART	.0038385	.0022664	1.69	0.090	0006036	.0082806
COALPART	0037658	.0023339	-1.61	0.107	0083402	.0008085
NUCLEARPART	0019569	.002916	-0.67	0.502	0076721	.0037583
WIND	-1.14e-07	1.83e-07	-0.62	0.534	-4.72e-07	2.45e-07
SOLAR	4.10e-12	1.63e-11	0.25	0.801	-2.79e-11	3.61e-11
BIOMASS	-8.17e-08	2.51e-06	-0.03	0.974	-5.01e-06	4.84e-06
KYOTO	.3594656	.0355321	10.12	0.000	.289824	.4291072
INDUSTRY	.0009784	.0005704	1.72	0.086	0001395	.0020963
_cons	1.349097	1.405568	0.96	0.337	-1.405767	4.10396
sigma u	32336265					
sigma_a	31023152					
rho	.52071593	(fraction	of varia	nce due t	coui)	

DIPLOMREP

Source	SS	df	MS		Number of obs	= 128
Model Residual	10.4303897	13 .802	2337671		F(13, 114) Prob > F B-squared	= 0.0000 = 0.3793
					Adi R-squared	= 0.3085
Total	27.5	127 .210	6535433		Root MSE	= .38695
	•					r
FITORCERT	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
DIPLOMREP	.3333512	.1053376	3.16	0.002	.1246783	.5420241
CONTCOM	1357165	.102099	-1.33	0.186	3379738	.0665408
CO2	.005074	.0198817	0.26	0.799	0343115	.0444596
ENEUSE	0000355	.000038	-0.94	0.352	0001107	.0000397
OILPART	0069573	.0036913	-1.88	0.062	0142698	.0003552
GASPART	.006763	.0032215	2.10	0.038	.0003812	.0131449
COALPART	-2.98e-06	.0022868	-0.00	0.999	0045332	.0045272
NUCLEARPART	0005509	.0021161	-0.26	0.795	004743	.0036411
WIND	7.67e-08	1.13e-07	0.68	0.498	-1.47e-07	3.00e-07
SOLAR	-3.48e-12	1.00e-11	-0.35	0.729	-2.33e-11	1.64e-11
BIOMASS	-3.86e-07	1.46e-06	-0.26	0.792	-3.28e-06	2.51e-06
КУОТО	.3861219	.0896777	4.31	0.000	.2084711	.5637726
INDUSTRY	.001549	.001359	1.14	0.257	0011432	.0042413
_cons	0811811	.21189	-0.38	0.702	5009336	.3385714

Fixed-	effects (within) regression	Number of obs	=	128
Group	variable: Country	Number of groups	=	32
R-sq:	within = 0.4065	Obs per group: min	n =	4
	between = 0.0520	avo	g =	4.0
	overall = 0.0226	max	< =	4
		F(9,87)	=	6.62
corr(u	(i, Xb) = -0.7431	Prob > F	=	0.0000

1494942	.2039412	-0.73	0.466	5548494	.255861
0	(omitted)				
0217182	.0634841	-0.34	0.733	1478997	.1044632
0000503	.0001008	0.50	0.619	00015	.0002506
0151658	.0114402	-1.33	0.188	0379044	.0075727
0020024	.0094391	-0.21	0.832	0207636	.0167588
0123906	.0095493	-1.30	0.198	0313709	.0065897
0054353	.0152526	-0.36	0.722	0357516	.024881
0	(omitted)				
0	(omitted)				
0	(omitted)				
4643437	.1065072	4.36	0.000	.252649	.6760383
0018733	.0021117	-0.89	0.377	0060705	.0023239
.108267	.6587985	1.68	0.096	2011663	2.417701
54001809					
35042219					
0368921	(fraction o	of varia	nce due t	o u_i)	
	0 .0217182 .0000503 .0151658 .0020024 .0123906 .0054353 0 0 .0054353 0 0 .0054353 .00 .0018733 1.108267 	0 (omitted) .0217182 .0634841 .0000503 .0001008 .0151658 .0114402 .0020024 .0094391 .0123906 .0095493 .0054353 .0152526 0 (omitted) 0 (omitted) 0 (omitted) .4643437 .1065072 .0018733 .0021117 1.108267 .6587985 .6587985 .64001809 .85042219 .0368921 (fraction .	0 (omitted) .0217182 .0634841 -0.34 .0000503 .0001008 0.50 .0151658 .0114402 -1.33 .0020024 .0094391 -0.21 .0123906 .0095493 -1.30 .0054353 .0152526 -0.36 0 (omitted) 0 (omitted) 0 (omitted) .0018733 .0021117 -0.89 1.108267 .6587985 1.68 .001809 .00368921 (fraction of varian	0 (omitted) .0217182 .0634841 -0.34 0.733 .0000503 .0001008 0.50 0.619 .0151658 .0114402 -1.33 0.188 .0020024 .0094391 -0.21 0.832 .0123906 .0095493 -1.30 0.198 .0054353 .0152526 -0.36 0.722 0 (omitted) 0 (omitted) 0 (omitted) .0018733 .0021117 -0.89 0.377 1.108267 .6587985 1.68 0.096 .001809 .00368921 (fraction of variance due t	0 (omitted) .0217182 .0634841 -0.34 0.7331478997 .0000503 .0001008 0.50 0.61900015 .0151658 .0114402 -1.33 0.1880379044 .0020024 .0094391 -0.21 0.8320207636 .0123906 .0095493 -1.30 0.1980313709 .0054353 .0152526 -0.36 0.7220357516 0 (omitted) 0 (omitted) 0 (omitted) .0018733 .0021117 -0.89 0.3770060705 1.108267 .6587985 1.68 0.0962011663 .001809 .00368921 (fraction of variance due to u_i)

Random-effects GLS regression	Number of obs	=	128
Group variable: Country	Number of groups	=	32
R-sq: within = 0.3480	Obs per group: mir	n =	4
between = 0.4336	avo	g =	4.0
overall = 0.3731	max	< =	4
	Wald chi2(12)	=	-
corr(u_i, X) = 0 (assumed)	Prob > chi2	=	•

FITORCERT	Coef.	Std. Err.	Z	₽> z	[95% Conf.	Interval]
DIPLOMREP	.2517975	.122174	2.06	0.039	.0123408	.4912541
CONTCOM	1562477	.1287208	-1.21	0.225	4085359	.0960405
C02	.0024153	.0239823	0.10	0.920	0445891	.0494197
ENEUSE	0000276	.0000458	-0.60	0.547	0001174	.0000622
OILPART	0062028	.0043878	-1.41	0.157	0148026	.0023971
GASPART	.0076657	.0036523	2.10	0.036	.0005072	.0148241
COALPART	0002624	.0028073	-0.09	0.926	0057646	.0052398
NUCLEARPART	0004888	.0026797	-0.18	0.855	005741	.0047634
WIND	4.80e-08	1.44e-07	0.33	0.739	-2.34e-07	3.30e-07
SOLAR	-3.42e-12	1.28e-11	-0.27	0.789	-2.85e-11	2.16e-11
BIOMASS	-2.44e-07	1.88e-06	-0.13	0.897	-3.92e-06	3.44e-06
KYOTO	.4052769	.0882409	4.59	0.000	.2323279	.578226
INDUSTRY	.0005534	.0014882	0.37	0.710	0023635	.0034704
_cons	.0408097	.2573312	0.16	0.874	4635502	.5451696
sigma u	.16968115					
sigma e	.35042219					
rho	.1899346	(fraction	of varia	nce due t	to u_i)	