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Abstract

We propose an integrated model for the Duty Assignment and the Crew
Rostering problem. Both problems are part of the crew planning process at
Netherlands Railways; The Duty Assignment problem consists of finding a
‘fair’ allocation (according to some measure) of the duties among the roster
groups. The Crew Rostering problem is well known in literature, and consists
of finding good rosters given a set of duties.

Our model integrates the above two problems, and hence involves large scale
optimization (since all duties have to be assigned simultaneously). Our re-
search evaluates the effectiveness of an integrated approach compared to e.g.,
a sequential approach. We also propose a second model to counter the prob-
lem of weak lower bounds, a problem well known for rostering problems. We
show that this new model leads to promising results.

Keywords: Duty Assignment, Crew Rostering, Netherlands Railways, Inte-
grated Crew Planning
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Chapter 1

Introduction

1.1 Netherlands Railways

Netherlands Railways (abbreviated as NS, from the Dutch name Nederlandse Spoor-
wegen) is the major public transport operator in the Netherlands, with more than a
million passengers on an average working day. Originally, NS was the only operator
on the Dutch railway network. In 1995 NS was split up into a number of companies,
among which ProRail (a state-owned company responsible for the railway network)
and NS as it is currently known (that is, solely as a public transport operator). Al-
though NS is not the only railway operator, it is by far the largest; approximately
90% of the passengers travel with NS.

NS Reizigers (NSR) is the daughter company of NS which operates the trains.
They are concerned with the design of the timetable, the dispatching of rolling
stock and the planning of the crew, among other things. These are all challenging
problems, which are further complicated by the high density of demand in the
Netherlands. It is therefore no surprise that Operations Research (OR) techniques
are used intensively to support decision making at NS.

1.2 Planning Problems at NS

To give a general idea of the planning problems at NS, and their relation with OR,
we will give a brief overview of the planing process. For a thorough discussion of
the planning problems, we refer to e.g., Huisman et al. [2005], Kroon et al. [2009]
and Abbink [2014]. We classify the problems into four different groups (see Abbink
[2014]).
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Integrated Duty Assignment and Crew Rostering Chapter 1

Strategic Planning Problems

The first type are strategic planning problems. These problems concern long term
decision making (say numerous years), such as investing in new rolling stock. An-
other example of a strategic planning problem at NS is the creation of the line plan
(i.e., where and with which frequency trains are operated). It is clear that this prob-
lem is not only difficult from an optimization perspective, but also heavily depends
on good forecasts of passenger demand. Another example of a long term planning
problem is whether or not to hire new train crew. Again, this process depends on
forecasts (i.e., whether additional crew members are necessary) but also contains
many practical considerations, since training new staff is expensive.

Tactical Planning Problems

The second group are the tactical planning problems. These problems often consider
planning periods from a few months up to a year. Two important tactical planning
problems are creating the timetable and scheduling the crews. The timetabling
problem considers making a basic hour pattern for the timetable, which, because NS
works with a cyclic timetable, can be used as a framework for the daily timetables.
It is important to note that a timetable is not complete without a specification of
how trains are routed through the station; due to the high density of the railway
infrastructure in the stations such problems are far from trivial.

The crew scheduling problem refers to the process of creating a final set of rosters
for the personnel given the set of tasks (i.e., the smallest amount of work that can
be assigned to an employee). The schedules should satisfy numerous complex labor
rules, as well as provide a ‘fair’ allocation of the workload over all employees. The
crew scheduling problem is decomposed into duty scheduling (i.e., creating duties
from the tasks) and crew rostering (i.e., assigning the duties to rosters). We will
discuss the crew planning process in more detail in Chapter 2.

Operational Planning Problems

The third type of planning problems are operational planning problems. These
problems already concern very detailed planning. The time span for such problems
is roughly every month. One could think of these problems as finding adjustments
to the somewhat general solutions obtained in the tactical phase. As an example,
one would consider timetabling for specific days, instead of the more general weekly
timetable. As a consequence, the timetable can be made more specific and take
special events into account. Similarly, one considers crew scheduling on a more
detailed level.

2
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Operational Control Problems

The fourth and final category is called operational control problems, or short term
planning problems, and is sometimes omitted in the classification. Such problems
consist of reacting real-time to e.g., delays, thereby adjusting, say, the timetable
that is operated. Another example would be updating the crew schedule due to a
canceled train.

It is clear that every planning phase has unique characteristics and hence calls for
different solution approaches. In the strategic planning, for example, forecasting is
of utmost importance, whereas in many other planning phases parameters can be
assumed to be fixed. In the tactical planning phase, on the other hand, we already
consider a lot of detail and hence computationally difficult problems arise. It is
therefore no surprise that the tactical planning problems are strongly represented
in OR literature. The final planning phase, on the other hand, concerns real-time
problem solving, and is therefore often approached using heuristic approaches or
even simple ‘rules of thumb’.

1.3 An Integrated Approach to Crew Planning

In this thesis we will develop an integrated approach for the Crew Rostering prob-
lem. Currently, duties are generated for a number of bases throughout the country
(e.g., Utrecht, Amsterdam) which in turn divide their duties among a number of
roster groups. A roster group is a group of employees with similar characteristics,
i.e., they are able to perform the same set of duties. For each of these groups a
roster is made. At this moment, both the allocation of duties to roster groups and
the rostering per group are done manually; the allocation is done by an auction
among representatives of the groups (often taking multiple days), while the latter
is done by each of the roster groups manually, thereby using e.g., old rosters. It is
clear that from an optimization perspective the above is far from optimal: In both
phases possible good solutions are lost.

This motivated Abbink [2014] and Hartog et al. [2009] to develop mathematical
models to support the rostering process at NS. Their results were promising, and
showed that better rosters could be obtained. These rosters were not only better
from a mathematical point of view, but were also perceived as more desirable by
the employees. In their approach the duties are first allocated to the roster groups,
then for each roster group a roster is created. In contrast, we will consider an
integrated approach. That is, we develop a method to obtain good rosters, in
which we directly take into account that the duties are fairly allocated among the
different roster groups.

The lay-out of the thesis is as follows. In Chapter 2 we formalize our problem
and embed it in the larger framework of crew rostering problems. We will discuss
the relevant literature and give an overview of the labor restrictions that need
to be taken into account. In Chapter 3 we consider a mathematical model for
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the Duty Assignment problem. This model is based on the work of Hartog et al.
[2009] and Abbink [2014]. Then, in Chapter 4, we discuss the model for the cyclic
crew rostering problem. We also show how the two problems (duty allocation and
crew rostering) can be integrated. In Chapter 5 we propose an additional model,
which assigns multiple duties at once. Then, in Chapter 6 we discuss our solution
approaches. In Chapter 7 we apply our models to the rostering process at base
Utrecht. We conclude with a general conclusion and our ideas for further research
in Chapter 8.

4



Chapter 2

Problem Description

In this chapter we formalize the integrated duty assignment and crew rostering
problem. We start with a more detailed discussion of the crew planning process at
NS in Section 2.1. Thereafter, in Section 2.2, we motivate our integrated approach
and show how this changes the structure of the planning process.

2.1 Crew Planning at NS

Recall that the rosters for NS employees are made for roster groups, which in turn
have a base from which they operate. Given the set of tasks, i.e., indivisible building
blocks of work, the goal of the crew planning phase is to create rosters for all em-
ployees that satisfy numerous rules. These rules concern not only single employees
(e.g., a maximum workload), but also the division of, say, aggression work among
the bases. The current overall planning process is schematically visualized in Figure
2.1.

From the set of tasks, which is regarded as input, numerous duties are constructed
in the Crew Scheduling phase. These duties are then allocated to the different roster
groups. Then, a roster is made for each group. Note that the approach is sequential
and hence loss of optimality is unavoidable. There is, of course, still a certain level
of interaction between the different phases (i.e., certain constraints are taken into
account to assure feasible solutions and desirable properties in later phases). We
will now discuss the separate parts of the scheme in more detail.

Crew Scheduling

The first step is Crew Scheduling, i.e., creating a set of duties that cover the set of
tasks. Formally, a duty is a sequence of tasks that can be executed by an employee.
Hence, a duty should satisfy many labor rules. Examples of such rules are a minimal
meal break time, a maximum duty length or sufficient route knowledge.

5
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Tasks

Crew Scheduling

Duties

Duty Assignment

Duties per Group

Crew Rostering

Roster per Group

Figure 2.1: Schematic Overview Rostering process.

In Figure 2.2 we give a stylized example of a set of duties. Each duty is a sequence
of trips, and can have a varying intensity, i.e., the first duty has a lot smaller
workload than the second. For each of the duties a break is specified (indicated by
a star). The braces show the minimum break length and maximum duty length,
respectively. Note that each duty must end at the starting station.

A popular model for the Crew Scheduling problem is a set covering formulation
which is often solved using e.g., Lagrangian Relaxation in combination with Column
Generation (see e.g., Caprara et al. [1997], Huisman et al. [2005], Abbink et al.
[2011], and references therein).

Duty Assignment

The next step in the Crew Planning process is the assignment of duties to the roster
groups, i.e., the Duty Assignment problem. Note that a duty already has a specified
base. As mentioned previously, the current approach to this problem is an auction
among representatives. This can take multiple days and is thus rather inefficient.
Furthermore, because not all representatives are equally skilled, it might also lead
to ’unfair’ allocations (i.e., a skilled representative claims the best duties for its
group).

Therefore, a mathematical model for solving the Duty Assignment problem was
proposed in Abbink [2014] and Hartog et al. [2009]. For each duty the following is
assumed to be known:

• The start and end of the duty.
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Gvc Asd ? Asd Gvc

Rtd Gvc Gvc Hlm ? Hlm Vs Vs Rtd

Ut Rtd Rtd Ut Ut Hfd ? Hfd Ut

06:00 12:00 18:00

Figure 2.2: Example Duties.

• The length of the duty. Each duty has a length between 6 and 9.5 hours.

• The length of the break.

• Other properties (e.g., rolling stock types, possible aggression).

These properties allow NS to formally specify what a fair allocation looks like. Fur-
thermore, it allows the specification of labor rules. For example, in our experiments,
a ‘fair’ allocation assures that the sets of duties assigned to each roster group adhere
to, among others, the rules:

• At least 35% of the work should be on A-trains (i.e., high quality work).

• The average duty length is not allowed to exceed 8 hours.

The goal of the assignment problem is to find a solution that not only satisfies all
these constraints, but is also optimal in some sense. The model proposed in Abbink
[2014] does this by minimizing the dis-balance of the solution, i.e., we try to find
a solution where all groups have approximately the same percentages of certain
attributes. We note that optimizing ‘fairness’ of duties and rosters is a relatively
new research topic (see e.g., Zimmermann et al. [2012]).

Crew Rostering

When the duties are assigned to the different depots, the rosters for the differ-
ent roster groups per depot are created. Recall that a roster group is a group of
employees with similar characteristics, hence they are all able to execute similar
duties. The problem of rostering the assigned duties is known as the Crew Roster-
ing problem and is known to be NP-hard (see e.g., Mesquita et al. [2013], which
prove NP-hardness for the Driver Rostering problem, a specific case). As with the
Crew Scheduling problem, many complex labor rules are involved in the rostering of
duties, such as a maximum total workload for each employee (i.e., the total amount
of work in one week is not allowed to exceed a certain value).

7
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At NS, and in general, many restrictions regarding rostering are specified using a
higher level concept, which we will call the type of a duty. Main motivation for this
is that many duties are ‘almost identical’, in the sense that they, say, all start early.
Hence, it makes sense to say, for example, that we do not want an early duty after
a late duty in our roster. It is clear that such requirements are best defined using
duty types.

We consider a total of three different duty types: early duties, late duties and night
duties. These types are denoted by V, L and N, respectively. The duty types are
based on the start and end times of the duties. For a given duty d, we denote the
type of the duty by τ(d).

In the roster there are also other types of days such as reserve days and rest days.
These types of days are important due to the collective labor agreement (i.e., there
should be a balance between those types of days). We note that, at NS, besides
rest days, which are indicated by R, there are also WTV, RO and CO days. These
types of days can be seen as ‘compensation days’, and in our approach are treated
simply as rest days. For more details, see e.g., Hartog et al. [2009]. We will refer to
the set of all types a day in the roster can have (i.e., V, L, N, reserve, rest, WTV,
RO and CO days) as the set of roster day types.

In general, the Crew Rostering problem, abbreviated CRP, can be divided into
two types, which are a cyclic and non-cyclic variant. We refer to these variants
as CCRP and NCCRP, respectively. As the names suggest, the CCRP consists of
finding one roster for multiple employees, where each employee cycles through the
roster. An example of a cyclic roster is shown in Figure 2.3.

1 CO L L L WTV R R

2 L L L L R L L

3 L WTV R N N N R

k L WTV L R N N R

Figure 2.3: Example Cyclic Crew Rostering.

Here we see a cyclic roster for k employees, where only the roster day types are
shown. Each of the employees executes a week of the roster, and thereafter continues
to the next week (as indicated by the arrows). Note that in such a roster the number
of weeks should equal the number of employees, since each employee cycles among
the weeks. In the NCCRP, on the other hand, we try to find a separate roster for

8
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each employee. This would imply, for example, that the roster in Figure 2.3 would
be for one single employee, and that the remaining k−1 employees have an entirely
different roster.

The CCRP is a problem that often occurs in rostering for railway companies, while
the NCCRP is a problem often arising in e.g., the airline industry. It is clear that
both variants have their advantages. The CCRP, for example, allows us to reduce
the number of rosters that need to be constructed, since each of the employees cycles
through the same roster. For the NCCRP, on the other hand, a roster for all days
has to be generated for all employees. This, however, also exposes the weakness of
using a cyclic roster, since it is less flexible and we are not able to take employee
specific preferences into account (at least not fully). From hereon we will focus on
the CCRP, for solution approaches for the NCCRP see, for example, Xie and Suhl
[2014] and references therein.

Formally, we are given a set of duties D, where each duty has a certain duty type,
e.g. a late duty. Note that in the CCRP it is assumed that the duties are already
assigned to the different roster groups (i.e., this problem is solved after the duty
assignment problem). Hence, the duties need to be executed by groups of employees,
where the set of all groups is denoted by G. Each of these groups can have different
characteristics. For each group we determine a roster; let T be the set of days, and
k the number of weeks in the roster for a given group (note that |T | = 7k). The
goal is to assign the duties to the days (for all groups) such that all restrictions are
satisfied or a certain objective is minimized.

The approach proposed by Hartog et al. [2009] splits the problem up in two phases.
First, for each of the groups a roster is created which specifies for each day the
roster day type, e.g., a late duty, instead of the exact duty that is executed. Similar
to Emden-Weinert et al. [2001] and Xie and Suhl [2014] we call such a roster a rota
schedule. Note that Figure 2.3 is an example of a rota schedule. Because we only
consider roster day types, it is not as complex as assigning the duties directly to
the days, but we can still take many constraints into account. Note that a rota
schedule also specifies e.g., the rest days in the roster.

In the second step the actual duties are assigned to the days in the rota schedule.
In this step the restrictions related to, for example, variations in work and exact
work length are taken into account. This approach, i.e., splitting the problem up
in these two phases, was first considered in Sodhi and Norris [2004].

Another possible way of formulating the problem is as a (multi-commodity) flow
problem. One could construct a graph where the nodes represent combinations
of duties and days, and hence a roster is represented by a path in this graph.
Restrictions can now be modeled using the arc set or by defining certain subsets of
nodes that can not be visited in the same path. Such a formulation is proposed both
in Xie and Suhl [2014] and Mesquita et al. [2013]. The former considers both a two-
step approach as in Sodhi and Norris [2004], as well as an integrated approach. They
define sequences of nodes for which a penalty is given. In Mesquita et al. [2013],
on the other hand, the more complex restrictions are taken care of by considering

9
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a multi-commodity flow formulation with a large number of commodities. The
remaining restrictions can then be modeled using only the arc set.

2.2 An Integrated Approach

Our main contribution is to integrate the Duty Assignment and Crew Rostering
problem on the depot level. That is, we want to take the balancing of the different
duty properties into account simultaneously with the rostering of the different roster
groups. Note that current models (Hartog et al. [2009], Abbink [2014], Xie and Suhl
[2014], Mesquita et al. [2013]) assume that the duties are already assigned to the
roster groups before the rostering starts or do not consider any restrictions on the
allocation to the roster groups. We do assume that the duties are already assigned
to the different depots. In Figure 2.4 we visualize this approach.

Tasks

Crew Scheduling

Duties Rota Schedule

Integrated Duty Assignment
and Crew Rostering

Balanced Roster per Group

Figure 2.4: Schematic Overview Integrated Rostering approach.

As can be seen from the figure, the integrated approach merges two layers of the
solution approach, thereby trying to obtain better rosters (which we simply call
balanced rosters), in which the duties are balanced fairly among the employees.
The dotted Rota Schedule block indicates that we will assume these to be fixed and
given. Note that, otherwise, the rota schedules are determined based on the set of
duties.

Because we assume that the rota schedules are given, our approach to the rostering
problem is slightly different. This follows from the fact that we preserve the structure
of the rota schedule, i.e., we assure that the roster days of a created roster match the
rota schedule exactly. Because our input are rosters as they are currently operated,

10
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this implies that we only assign duties to days in which a duty was assigned in the
given rosters. This approach is illustrated in Figure 2.5, where the first four weeks
of a roster are shown. We obtain the rota schedule for this group by determining
the duty type for all duties. The underlined days are the ones we consider variable,
i.e., to which we need to assign a duty. We do not consider assigning duties to days
to which no duty was assigned in the first place.

101 RO 104 120 L R R

134 144 RO R R 103 105

R 113 132 104 RO R R

CO 108 139 RO R 109 117

N RO N L L R R

L L RO R R N N

R N L N RO R R

CO N L RO R N N

Figure 2.5: Example Rota Construction.

Motivation for our integrated approach can be best illustrated using an example.
Consider a set of restrictions which impose that e.g., each driver should start his
week on the same type of rolling stock. Clearly, such restrictions will lead to a
skewed assignment of duties with respect to fairness, since some rolling stock types
are simply more desirable than others. Hence, in a sequential approach it would of-
ten be difficult, if not impossible, to find a roster that satisfies the above constraints.
This is because the different types of rolling stock will be assigned equally over the
roster groups (since we minimize the dis-balance of the assignment) . Although we
could take such restrictions (partially) into account when we assign the duties to
the groups, it is clear that this would become very difficult when more restrictions
of this type are considered.

Furthermore, we are able to obtain a better roster for the whole set of groups. Be-
cause we schedule all duties at once, we are able to obtain a better allocation of
the duties to the groups. Note that the CCRP often considers finding good rosters
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for each employee, i.e., per week, while the duty assignment problem considers the
group as a whole. Therefore, the non-integrated approach might lead to good distri-
butions over the groups, but an integrated approach also assures a good distribution
of the duties over the weeks. This is, however, also one of the main challenges of
this type of solution method, since the number of duties that need to be scheduled
simultaneously greatly increases.

12



Chapter 3

Duty Assignment Problem

In this chapter we discuss the mathematical formulation for the Duty Assignment
problem, abbreviated as DAP, which was proposed in Abbink [2014]. In this model
desirable attributes of the duties are to be allocated as fairly as possible over dif-
ferent roster groups. In Section 3.1 we formalize the model. In Section 3.2 we show
how this model changes when rota schedules are assumed to be known. Finally, we
conclude this chapter by briefly discussing the attributes in Section 3.3.

3.1 Sequential DAP

In Abbink [2014] the following model is considered for allocating the different duties
to the groups (note that this model does not explicitly consider the rosters). This
model assumes the set of duties to be known, but does not consider any detailed
information about the rosters. We therefore say that this model is sequential; the
rota schedules and rosters are made in a later phase.

The binary variable πdg indicates whether duty d ∈ D is assigned to group g ∈ G.
The set M is the set of all combinations of duty types and weekdays (e.g., early and
Monday). Parameters nmg state the maximum number of duties of type m that can
be allocated to group g. These parameters are used to assure a high probability for
a feasible solution to the overall problem (i.e., obtaining rosters). In the DAP these
parameters are assumed to be known (they are e.g., based on the old rosters). Let
Dm be the set of duties that match the duty type and weekday of m ∈M .

Every duty d has a certain score a(d) for some attribute a ∈ A. Let ηg be the
number of duties we need to roster for group g (we assume these parameters are
known beforehand). Because the roster groups can have different sizes we compare
the average score of the groups. Formally, we introduce the variables va and za
indicating the minimum and maximum average score over all groups on attribute
a, respectively. The goal of the allocation is to minimize a weighted sum of the
‘spreads’ between the scores on different attributes. We also introduce a lower
bound lag and upper bound uag for the total score of group g on attribute a. Again,

13
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such restrictions can be used to ‘guarantee’ a feasible roster. In our case, we bound
the averages of each of the groups, i.e., for every group g, the bounds lag and uag
can be written as ηgla and ηgua, for some la and ua. Note that this implies that
the lower and upper bounds la and ua can be directly enforced upon the variables
va and za (i.e., we can add va ≥ la and za ≤ ua). We will refer to this problem as
DAP (Duty Assignment Problem).

(DAP) min
∑
a∈A

ba (za − va) (3.1)

s.t.
∑
g∈G

πdg = 1 ∀d ∈ D (3.2)∑
d∈Dm

πdg ≤ nmg ∀m ∈M, g ∈ G (3.3)

ηgva ≤
∑
d∈D

a(d)πdg ≤ ηgza ∀a ∈ A, g ∈ G (3.4)

za ≤ ua ∀a ∈ A (3.5)

va ≥ la ∀a ∈ A (3.6)

πdg ∈ B ∀d ∈ D, g ∈ G (3.7)

va, za ∈ R+ ∀a ∈ A. (3.8)

The objective (3.1) expresses that we minimize a weighted sum of the ‘spreads’,
where ba are the weights. Constraint (3.2) assures all duties are assigned to exactly
one group. Furthermore, constraint (3.3) enforces that we do not exceed the upper
bound nmg. Constraints (3.4), (3.5) and (3.6) set the correct values of the spread
variables and enforce the bounds, respectively. Finally, constraints (3.7) and (3.8)
specify the domain of the decision variables.

We note that the DAP closely resembles the Generalized Load Balancing problem
(GLBP), see e.g., Caragiannis [2008] and Zhu et al. [2014]. In this optimization
problem, the goal is to divide a number of items over a set of machines such that
the cost is divided as ‘fair as possible’, i.e., to minimize the maximum score over
the machines. This problem is often approached in an online manner, which means
items are to be assigned on the fly. In general, the GLBP is NP-hard (see Cara-
giannis [2008], and references therein). The DAP can be seen as an extension of
the GLBP, because we also need to enforce certain lower and upper bounds as well
as take the duty types into account.

3.2 DAP with Rota Schedule

If we assume a rota schedule to be given, we know in more detail how the duties
should be assigned to the groups.
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Formally, let a rota schedule δ for k employees (hence T = 7k days) be a mapping
of the set of days {1, 2, ..., T} to set of roster day types (recall Figure 2.3). For
this problem it is sufficient to represent a roster, and hence a rota schedule, by the
set of values δm that specify how often a combination m occurs in the mapping δ.
This representation is sufficient only because constraints (3.1) - (3.6) are invariant
under any permutation of the duties in Dm in the roster, i.e., we are only interested
in whether an assigned duty is in Dm, but it is of no importance to exactly which
week it is assigned.

Let δmg denote the number of duties of type m in the rota schedule of group g. As
explained above, instead of assigning a maximum number of duties nmg for each
m ∈M and g ∈ G, we now require that∑

d∈Dm

πdg = δmg ∀m ∈M, g ∈ G. (3.9)

That is, we assure that our allocation exactly matches the rota schedule. The
remainder of the model stays the same, hence by replacing constraints (3.3) with
constraints (3.9), the complete model reads as follows.

(DAPR) min
∑
a∈A

ba (za − va) (3.10)

s.t.
∑
g∈G

πdg = 1 ∀d ∈ D (3.11)∑
d∈Dm

πdg = δmg ∀m ∈M, g ∈ G (3.12)

ηgva ≤
∑
d∈D

a(d)πdg ≤ ηgza ∀a ∈ A, g ∈ G (3.13)

va ≥ la ∀a ∈ A (3.14)

za ≤ ua ∀a ∈ A (3.15)

πdg ∈ B ∀d ∈ D, g ∈ G (3.16)

va, za ∈ R+ ∀a ∈ A. (3.17)

We will refer to this model as DAPR (Duty Assignment Problem with Rotas).
In Chapter 4 we show how this model can be integrated into the crew rostering
problem.

3.3 Duty Attributes

We will now discuss the set of attributes used in our experiments. Each of the
attributes represents a certain (un)desirable property of a duty. We consider the
following five attributes:

1. Duty length. For each of the duties the length is defined as the difference
between the end and start time, minus the break length.
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2. Percentage on type-A rolling stock. Trips on type-A rolling stock are desirable,
and hence need to be fairly distributed. For each of the duties the percentage
of work on type-A rolling stock is given.

3. Percentage Aggression work. Unfortunately, certain trips have a higher chance
of passenger aggression. Clearly, such trips are undesirable and need to be
fairly distributed. For each duty the percentage of aggression work is given.

4. Percentage on double decker trains. Similar to the type-A and Aggression
percentages, we want to distribute the percentage of work on double decker
trains as equally as possible.

5. RWD values. Finally, we consider the Repetition Within Duty (RWD) values,
which are defined as the total number of routes divided by the total number
of distinct routes in the duty. From an employee point of view, variation is
desirable, and hence we want to balance the RWD values as well.

The distribution of these values is often peaked around certain values, and skewed.
For illustrative purposes, we will discuss two of the attributes in more detail, for an
overview of all attributes we refer to Appendix A.

In Figure 3.1 the distribution of the duty lengths is shown. There is a large peak
around nine hours, and then many duties spread between 6 and 8.5. The average
duty length equals 7.97 hours. We require that the average duty length per group
is at most 8 hours.
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Figure 3.1: Histogram duty lengths.
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In Figure 3.2 we show the different percentages of A-work in the duties. We see
two clear peaks, one at 0% and the other at 100 %. In between the distribution is
rather uniform. Based on the mean value of 41.6, we add the additional constraint
that each roster group has at least 35% work on A-trains.
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Figure 3.2: Histogram percentage work on type A-trains.
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Chapter 4

Cyclic Crew Rostering Problem

In this chapter we propose a model for the CCRP. The model we propose is based
on the work of Abbink [2014] and Hartog et al. [2009]. They consider a model in
which the duties are assigned to the different days whilst taking into account the
occurrence of certain patterns. A pattern is an undesirable property of a roster, e.g.,
an early duty after a late duty, and can be modeled as constraints in the mathemat-
ical formulation. We describe the model of Abbink [2014] and Hartog et al. [2009]
in Section 4.1. In Section 4.2 we propose an extended model to allow for multiple
roster groups. In Section 4.3 we show how the DAPR model of Chapter 3 can be
integrated in this extended model. We conclude this chapter with a discussion of
the roster patterns we considered in our experiments in Section 4.4.

4.1 CCRP Single Roster Group

We will first discuss the model for solely one roster group. As before, let T be the
set of days. Furthermore, let T ′ ⊆ T be the set of days to which a duty needs to
be assigned (recall the example of Section 2.2). We will use the decision variable
wdt indicating whether duty d is assigned to day t. Clearly these variables are only
relevant for feasible combinations of d and t, hence we define Ω as all pairs that
represent a valid assignment of a duty and a day. Ω(τ) denotes the subset of those
pairs where τ(d) = τ (recall that τ(d) denotes the duty type of duty d). Note that
we assume that for each day t ∈ T ′ a duty type has already been specified, which
we will denote by δt.

The undesirable properties of the rosters are penalized using patterns, which can
be expressed as linear restrictions. The set of patterns is denoted by P . The
variables yp indicate whether, or to what extent, pattern p is violated. For notational
convenience, let W denote the vector of all decision variables wdt. We denote with
fp(W ) the (linear) restriction corresponding to pattern p. Because all patterns are
expressed using different constraints we will use this generic notation. For the same
reason, we denote with Yp the domain of the decision variable yp. Throughout we
assume that all Yp consider only non-zero values (i.e., a violation is never negative)
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and that zero is included (i.e., it is possible to have ‘no violation’). Clearly these
assumptions are not restrictive from a modeling perspective. One can imagine that
some patterns are expressed using binary variables (i.e., a solution has a certain
property or not), while others are real numbers (i.e., the size of a certain violation).
We discuss the patterns in detail at the end of this chapter, first we focus on the
mathematical formulation.

Using the above definitions, the model now reads as follows.

min
∑
p∈P

cpyp (4.1)

s.t.
∑

d:(d,t)∈Ω(δt)

wdt = 1 ∀t ∈ T ′ (4.2)

∑
t:(d,t)∈Ω

wdt = 1 ∀d ∈ D (4.3)

yp ≥ fp(W ) ∀p ∈ P (4.4)

wdt ∈ B ∀(d, t) ∈ Ω (4.5)

yp ∈ Yp ∀p ∈ P. (4.6)

The objective (4.1) minimizes the penalties incurred from the patterns. Constraints
(4.2) and (4.3) assure that every day is assigned a duty of the correct type and that
every duty is assigned exactly once. Constraint (4.4) models the different patterns.
Finally, constraints (4.5) and (4.6) specify the decision variables.

4.2 CCRP Multiple Roster Groups

We now show how the model first proposed by Abbink [2014] and Hartog et al.
[2009] can be extended to multiple roster groups. As mentioned earlier, we will
assign a large set of duties to multiple groups at once. This means that we assign
duties to multiple rosters, and hence we not only have to decide to which day we
assign a duty, but also to which group. We can model this as follows. We consider
the decision variable wgdt indicating whether duty d is assigned to group g on day
t. For each group the set T ′g represents the set of days for that group to which a
duty needs to be assigned. Similarly, we group all patterns in |G| groups, denoted
by Pg for each g ∈ G. The set Pg contains all patterns relevant for only group g.
Furthermore, the set P contains all patterns. We also extend the set Ω to contain
triples (d, t, g) indicating that duty d can be assigned to group g at day t. Ω(τ)
is now the set of triples for which τ(d) = τ . Also the parameters δt are now per
group, i.e., we now have parameters δtg specifying the duty type for each day and
each group.

The above can be expressed by replacing constraints (4.4) by the following con-
straints (here Wg denote the subset of W related to group g)
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yp ≥ fp(Wg) ∀p ∈ Pg. (4.7)

Note that the above restrictions are separable per group.

We also need to replace constrains (4.2) and (4.3) with

∑
d:(d,t,g)∈Ω(δtg)

wgdt = 1 ∀g ∈ G, t ∈ T ′g (4.8)

∑
(t,g):(d,t,g)∈Ω

wgdt = 1 ∀d ∈ D, (4.9)

that is, we assure that each group has for each day a duty of the correct type and
that each duty is assigned exactly once.

For clarity we now give the complete model, to which we will refer to as CCRP
(Cyclic Crew Rostering Problem).

(CCRP) min
∑
p∈P

cpyp (4.10)

s.t.
∑

d:(d,t,g)∈Ω(δtg)

wgdt = 1 ∀g ∈ G, t ∈ T ′g (4.11)

∑
(t,g):(d,t,g)∈Ω

wgdt = 1 ∀d ∈ D (4.12)

yp ≥ fp(Wg) ∀g ∈ G, p ∈ Pg (4.13)

wgdt ∈ B ∀(d, t, g) ∈ Ω (4.14)

yp ∈ Yp ∀p ∈ P. (4.15)

4.3 Integrated CCRP

Recall that in Chapter 3 we specified constraints which the allocation of duties must
satisfy, and we also specified a cost for a given allocation of duties. Some of these
restrictions are important because they guarantee (or give a very high probability)
that a feasible roster exists for all groups. Clearly, such constraints are no longer
relevant, since we assign the duties directly to the different days (and hence take
care of feasibility). There are, however, also restrictions that deal with concepts
such as “fairness” of the allocation. As an example, some duties are more desirable
than others, and hence need to be balanced between the groups.

Many of such constraints are difficult, if not impossible, to express as patterns and it
would often be very inefficient to do so. We therefore extend the CCRP model from
the previous section with the, slightly modified, constraints of the DAPR model.
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That is, we add the following restrictions. As before let πdg indicate whether duty
d is assigned to group g. Note that

πdg =
∑

t:(d,t,g)∈Ω

wgdt ∀d ∈ D, g ∈ G. (4.16)

First, we note that constraints (3.11) and (3.12) of the DAPR are already enforced
by constraints (4.11) and (4.12) of the CCRP. We can use the same restrictions
as earlier for the spread variables and bounds. Using (4.16) to eliminate the πdg
variables, these constraints read as

ηgva ≤
∑
d∈D

a(d)
∑

t:(d,t,g)∈Ω

wgdt ≤ ηgza ∀a ∈ A, g ∈ G (4.17a)

va ≥ la ∀a ∈ A (4.17b)

za ≤ ua ∀a ∈ A. (4.17c)

The integrated problem is a bi-objective optimization problem, since we want to
find rosters with low cost, but we also want a ‘fair’ allocation of duties to the
roster groups. We therefore state the problem as a bi-objective optimization prob-
lem.

The complete model now reads as follows:

(ICCRP) min
∑
p∈P

cpyp (4.18)∑
a∈A

ba (za − va) (4.19)

s.t.
∑

d:(d,t,g)∈Ω(δtg)

wgdt = 1 ∀g ∈ G, t ∈ T ′g (4.20)

∑
(t,g):(d,t,g)∈Ω

wgdt = 1 ∀d ∈ D (4.21)

yp ≥ fp(Wg) ∀g ∈ G, p ∈ Pg (4.22)

ηgva ≤
∑
d∈D

a(d)
∑

t:(d,t,g)∈Ω

wgdt ≤ ηgza ∀a ∈ A, g ∈ G (4.23)

va ≥ la ∀a ∈ A (4.24)

za ≤ ua ∀a ∈ A (4.25)

wgdt ∈ B ∀(d, t, g) ∈ Ω (4.26)

yp ∈ Yp ∀p ∈ P (4.27)

va, za ∈ R+ ∀a ∈ A. (4.28)

We will refer to this model as ICCPR (Integrated Cyclic Crew Rostering Prob-
lem).
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4.4 Roster Patterns

In the model above we represent patterns as generic linear restrictions. Because
the patterns form the main body of the above formulation, it is important exactly
which patterns are considered in our real-world instances. We therefore discuss all
different patterns in this section. We state the patterns as if there is only one roster
group; it is clear how to apply the patterns to each of the roster groups separately.
We note that in general, a pattern corresponds to a certain day in the roster, e.g.,
a pattern considers the duty at a certain day, plus the duties on the two following
days.

The patterns we consider range from ‘hard patterns’, in the sense that they are
not allowed to occur, to ‘soft patterns’, thereby meaning that they are undesirable
but not forbidden. For each of the patterns we briefly discuss how they can be
modeled to fit the formulation, i.e., how they can be modeled as yp ≥ fp(W ), with
yp ∈ Yp.

Rest Patterns

The first type of patterns we consider model the rest times of the employees. After
a duty we require that an employee has a certain minimum time to rest; we call the
methods penalizing such violations rest patterns. We require that for a night duty
the rest time is at least 14 hours, while for the other types of duties it is at least
12 hours. For the sake of illustration, consider the pattern p that models the rest
time after duty d ∈ D assigned to day t ∈ T ′g for group g ∈ G. Suppose d is a night
duty and let Od be the set of duties for which the start time is less than 14 hours
after the end time of duty d, provided it is rostered at day t + 1. The constraint
that expresses whether or not rest pattern p is violated (i.e., we neglect the size of
the violation) can be modeled as

yp ≥ wdt +
∑
d′∈Od

wd′,t+1 − 1. (4.29)

because we want to enforce that such patterns never occur in a roster, we set
Yp = {0}. For non-night duties the patterns are defined similarly.

Although some combinations of duties do not violate the above rest patterns, they
can still be undesirable. Therefore, we also add rest patterns that indicate if the
rest time is less than 16 hours (by modifying the set Od). Because such patterns
are allowed, but not desired, we set Yp = B, i.e., we penalize if they occur.

Rest Day Patterns

Similar to rest patterns, we want to assure that when there is a rest day in the
roster, the length of the rest period is sufficiently long. If two work days have one
rest day in between we require that there is at least 30 hours between the end of
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the first duty and the start of the second. Furthermore, for each additional rest day
that is between the duties, another 24 hours is desired. For illustrative purposes,
consider two work days with two rest days in between. This implies that the end
and start times of the duties must differ by at least 30 + 24 = 54 hours. Given
a day t and duty d, let R2

d be the set of duties that violate these 54 hours when
rostered at day t+ 3 (note that t+ 1 and t+ 2 are the rest days). We can express
the above as

yp ≥ wdt +
∑
d′∈R2

d

wd′,t+3 − 1. (4.30)

because we want to enforce that such patterns never occur in a roster, we set
Yp = {0}. Work days with a different number of rest days in between are modeled
similarly.

Workload Patterns

We also want to assure that no employee works too many hours in one week; we
require that the total workload in one week should not exceed 45 hours. Here, and
in the upcoming sections, a week is always to be interpreted as from Monday to
Sunday (i.e., not a ‘rolling week’). For a reserve duty a workload of 7.5 hours is
taken into account (which is the average length minus the break). Similar to the
previous patterns, we could model this as follows. Let l(d) be the duty length of
duty d, i.e., the difference between start and end time minus the break length. Let
Tp be the set of days relevant for the workload pattern (i.e., the days in Tp form a
week in the roster). A workload pattern p would be modeled as

yp ≥
∑
t∈Tp

l(d)wdt − 45, (4.31)

and, because a violation is not allowed, we have Yp = {0}.

Variation Patterns

The final type of patterns we consider are variation patterns. These patterns are
used to balance the duty attributes among the weeks, i.e., we want that an employee
has approximately the same weeks in his or her roster. Note the similarity with
the DAPR constraints discussed earlier. We consider the same attributes as for the
DAPR. Furthermore, we also penalize if there is more than one duty of length at
least 9 hours in a week. Finally, we also want to balance desirable and undesirable
routes over the weeks.

All variation patterns are penalized in a linear way (i.e., the penalty equals the
violation times a certain weight). This implies that for all variation patterns p
we set the domain of yp as R+. Let Tp be the set of days that are relevant for the
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variation pattern (in our instance this is the week to which the pattern corresponds).
A variation pattern, concerning some attribute a, is expressed as

yp ≥
∑
t∈Tp

a(d)wdt − ā, (4.32)

and Yp = R+. Here ā is the target value of the pattern (i.e., the boundary value
for which we start penalizing) and a(d) the coefficient of duty d for this pattern.
For the attributes we consider, ā would be the average value, and a(d) would be
the score of the duty for this attribute divided by the total number of duties in the
week.
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Chapter 5

A Higher-Level Formulation for
the CCRP

In this chapter we propose a second, more general, formulation for the CCRP. The
main idea is that we model the problem on a ‘higher-level’, i.e., instead of assigning
single duties to single days, we propose assigning multiple duties to multiple days
at once. This implies that many pattern violations can be modeled implicitly;
in Section 5.5 we prove that, under general conditions, this leads to a stronger
formulation.

5.1 Preliminaries

We develop a model in which we directly assign a set of duties to numerous days.
The general idea of this formulation is that we ‘cut’ a roster in a set of smaller
‘pieces’, which we will call clusters, and that each cluster is assigned a correct set
of duties.

Formally, a cluster k is a subset of T ×G. We will denote the set of all clusters by
K. In order for K to be correctly specified, it should be a partition of the set T ×G,
that is

⋃
k∈K k = T × G and k ∩ k′ = ∅, for every two clusters k, k′ ∈ K. These

requirements assure that we cover all duties, and also that no day in the roster is
assigned multiple duties. Note that the model of Chapter 4 is simply a special case
of this cluster formulation (i.e., the clusters are simply the days that need to be
rostered). We assume that the set K can be partitioned in sets Kg, where each Kg

contains clusters solely considering clusters for group g ∈ G.

We will call an assignment of a set of duties to a cluster a duty sequence. Intuitively,
a duty sequence is a feasible assignment of the duties to the days in a cluster such
that all duty types match the prespecified types. Formally a duty sequence, or
simply a sequence, is a subset of Ω, i.e., the set of feasible pairs (d, t), that satisfy
the predefined roster day types. Thus, for a sequence s ⊆ Ω it holds that for
each (d, t) ∈ s we have (d, t) ∈ Ω(δt). Furthermore, no duty or day should occur
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twice in a sequence. It is clear how this concept generalizes to multiple roster
groups. We define Sk as the set of sequences that can be assigned to cluster k
and let S =

⋃
k∈K Sk. Furthermore, for notational convenience, we define Sg as⋃

k∈Kg
Sk.

The main motivation for our higher-level formulation is that we are able to remove
certain patterns from the model. This follows from the fact that, if a pattern only
considers the days of a certain cluster, the pattern violation can be modeled a priori,
i.e., it only depends on whether or not we select a certain sequence. The generality of
this model also allows for ‘tailor-made’ approaches, since the clusters can be chosen
in such a way as to maximize the number of patterns we can remove (without
making the clusters too large). As an example, the majority of our patterns, as
discussed in Chapter 4, concern the weeks in the roster. Therefore, it makes sense
to consider a cluster formulation where the clusters are weeks. In Chapter 7 we
show that this indeed reduces the computation time.

5.2 Modeling Roster Patterns

Because clusters can concern multiple days we need to take a slightly more sophis-
ticated approach in modeling the roster patterns. Intuitively, we try to remove as
many patterns from the formulation as possible by modeling violations as pattern
costs.

Formally, we proceed as follows. Define Pk ⊆ P as the set of all patterns that
depend solely on the days in cluster k ∈ K and let PK =

⋃
k∈K Pk. It is clear that

the cost of these patterns can be incorporated into the duty sequence costs and
hence can be determined a priori solving the model. For each p ∈ Pk we define for
each sequence s ∈ Sk the cost cps as the violation of pattern p in sequence s. Note
that this cost is equal to cpyp, if we determine yp based on the duties as assigned
in s. By definition, we say cps = 0 if s 6∈ Sk. The total cost cs of sequence s is now
given by

∑
p∈PK

cps.

The remainder of the patterns (i.e., the set P \PK) still needs to be incorporated into
the model. This is done by adding the constraints yp ≥ hp(S) for all p ∈ P \PK . The
linear function hp is directly obtained from fp by substituting the assignment vari-
ables wgdt with

∑
s∈Sg

s(d, t)xs. Here xs is the decision variable indicating whether

sequence s is chosen and s(d, t) equals one if duty d is assigned to day t in sequence
s. For a single sequence s, we let hp(s) denote the value of hp(S) if we only set
xs = 1, i.e., hp(s) represents the function value for solely sequence s.

5.3 New CCRP Multiple Roster Groups

We are now able to formulate the new model. Let Sd ⊆ S be the set of all sequences
containing duty d ∈ D. The model, to which we will simply refer as CCRP2, reads
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as follows.

(CCRP2) min
∑
s∈S

csxs +
∑

p∈P\PK

cpyp (5.1)

s.t.
∑
s∈Sk

xs = 1 ∀k ∈ K (5.2)∑
s∈Sd

xs = 1 ∀d ∈ D (5.3)

yp ≥ hp(S) ∀p ∈ P \ PK (5.4)

xs ∈ B ∀s ∈ S (5.5)

yp ∈ Yp ∀p ∈ P \ PK . (5.6)

The objective function (5.1) expresses that we minimize the total cost of penalties
occurring in the clusters plus the penalties of the remaining patterns. Constraints
(5.2) and (5.3) assure that we assign a sequence to each cluster and that all duties
are assigned, respectively. Constraints (5.4) enforce the remainder of the patterns.
Finally, Constraints (5.5) and (5.6) define the decision variables.

5.4 Integrated CCRP2

Similar to the ICCRP of Chapter 4, the restrictions from the DAPR can be added
in a straightforward way.

Recall that πdg indicates whether duty d is assigned to group g. Let a(s) =∑
d∈Ds

a(d), where Ds are the duties assigned in cluster s, i.e., a(s) is simply the
total score of all duties in sequence s. Note that

∑
d∈D

a(d)πdg =
∑
s∈Sg

a(s)xs ∀g ∈ G, (5.7)

hence, similar to the CCRP, we can eliminate the πdg variables using (5.7). Adding
the DAPR constraints to the CCRP2, we obtain the cluster version of the ICCRP,
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which we refer to as ICCRP2, as an alternative to the ICCRP of Chapter 4.

(ICCRP2) min
∑
s∈S

csxs +
∑

p∈P\PK

cpyp (5.8)

∑
a∈A

ba (za − va) (5.9)

s.t.
∑
s∈Sk

xs = 1 ∀k ∈ K (5.10)∑
s∈Sd

xs = 1 ∀d ∈ D (5.11)

yp ≥ hp(S) ∀p ∈ P \ PK (5.12)

ηgva ≤
∑
s∈Sg

a(s)xs ≤ ηgza ∀a ∈ A, g ∈ G (5.13)

va ≥ la ∀a ∈ A (5.14)

za ≤ ua ∀a ∈ A (5.15)

xs ∈ B ∀s ∈ S (5.16)

va, za ∈ R+ ∀a ∈ A. (5.17)

5.5 Theoretical Support ICCRP2

Our main motivation for the ICCRP2 is that it allows us to incorporate pattern
costs implicitly into the model. Intuitively, this will lead to a stronger formulation.
In this section we prove that this is indeed the case; under very general conditions,
going from a set of small clusters to a set of large clusters tightens the formulation.
One of the interesting properties of this result is that it gives a good indication
about which sets of clusters will lead to strong formulations, without needing very
large clusters.

Intuition Behind the Proof

We illustrate the idea behind the proof by comparing a formulation where the
clusters are the days of the roster, with another formulation where the clusters are
the weeks of the roster. Let K be the the set of week clusters and K ′ the set of day
clusters. Note that we compare the LP-relaxations of both formulations, i.e., a day
can be assigned multiple duties with a fractional value.

We want to assure a certain ‘gain’ by assigning duties to weeks instead of assigning
duties to days. Consider one of the variation patterns for, say, duty length. As
discussed in Chapter 4, we incur a penalty from these patterns equal to the amount
the average duty length for a week exceeds the average duty length over all duties.
For notational convenience, let this average duty length over all duties be denoted
by ā.

30



Chapter 5 Integrated Duty Assignment and Crew Rostering

Let k ∈ K be an arbitrary week in the roster. Suppose that we assign a set of
duties to the days in k, such that their average duty length exactly equals ā. Here
we assume some of the duties are assigned fractionally, i.e., multiple different duties
are assigned to the same day with fractional values. It is clear that if we consider
the set of clusters K ′, i.e., the days, we incur no penalty for this assignment. This is
because the penalty is enforced by a constraint in the model which simply averages
the length of all duties assigned to the week k (see Equation (4.32)).

Consider now, however, the model with the set of clusters K, i.e., the weeks. It is
very likely that for every set of sequences we are able to construct with the assigned
set of duties, at least one of the sequences has an average duty length above ā. This,
in turn, would imply we incur a penalty, since the sequence costs are determined
a priori, i.e., sequences with an average above ā have a positive cost, while those
with an average below ā have zero cost.

The above implies that the same fractional solution, in terms of the actual roster,
leads to a higher penalty for the set of clusters K, i.e., the weeks, compared to the
set of clusters K ′, i.e., the days. Or, in other words, the penalty variable for this
week and this variation pattern is enforced a higher value due to using the clusters
K. This is equivalent to saying that certain solutions with low penalties are not
feasible when we use the clusters K, or in other words that using the weeks as
clusters leads to a stronger formulation than using the days as clusters.

Formal Proof

The above example illustrates a general relation between sets of clusters. We now
formalize this example and prove that it holds for sets of clusters in general ; in the
remainder of this section we assume we are comparing two sets of clusters K and
K ′. We refer to their corresponding sets of duty sequences as S and S ′ and to their
respective polytopes as P and P ′. Without loss of generality, we assume that all
patterns have unit cost, i.e., cp = 1, for all patterns p.

For notational convenience, we refer to the sets of decision variables as vectors
x, x′, y, v and z, i.e., x = {xs : s ∈ S} and x′ = {x′s′ : s′ ∈ S ′}. In order to compare
the two formulations we define a mapping between P and P ′. We will assume
that K ‘extends’ K ′, which means that, among other things, every sequence s ∈ S
consists of numerous sequences s′ ∈ S ′ (e.g., a week consists of numerous days). We
will formally define the idea of extension later on in this section.

First, we note that any solution x̄ can be expressed as a solution x̄′ by setting
x̄′s′ =

∑
s∈S s(s

′)x̄s for all s′ ∈ S ′. Here s(s′) indicates if sequence s′ is included in
s. We will denote this solution x̄′ by φ(x̄). It is important to note that for multiple
x̄ vectors we may have φ(x̄) = x̄′, e.g., for a given assignment of duties to days we
can construct multiple different sets of weeks.

We note that the formulation P contains less y variables, since the set of patterns
PK \PK′ is modeled implicitly in the sequence costs. Let Sp be the set of sequences
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relevant for pattern p, i.e, any sequence with non-zero coefficient in hp. We add the
additional, redundant, constraints

yp ≥
∑
s∈Sp

cpsxs PK \ PK′ (5.18)

to the formulation P ; this assures we are able to compare the two formulations.
Note that the constraints (5.18) simply express the costs of the additional patterns
we were able to model implicitly.

We are now able to prove that the ICCRP2 leads to a tighter formulation. We do
this by showing that φ(P) ( P ′, where φ(P) is defined as

φ(P) ≡ {(φ(x), y, v, z) : (x, y, v, z) ∈ P} . (5.19)

That is, the set φ(P) are the solutions in P expressed in the set of smaller clusters
S ′.

With the above definitions, we are able to translate the example of days and weeks
into a set of sufficient conditions. We say that if the two sets of clusters K and K ′

satisfy these conditions, the set K extends the set K ′.

Definition 5.1. The set of clusters K extends K ′ if

1. For each k ∈ K there are clusters K∗ ⊆ K ′ such that k =
⋃
k∗∈K∗ k

∗.

2. There is at least one pattern p in PK \PK′ and a feasible solution (x̄′, ȳ, v̄, z̄) ∈
P ′ with the following property; for every x̄ that satisfies φ(x̄) = x̄′, there are
two sequences s1, s2 ∈ Sp such that

I. Both x̄s1 and x̄s2 are assigned non-zero values in x̄.

II. For the two sequences s1 and s2 it holds that hp(s1) > 0 and hp(s2) < 0.

Property 1 assures that PK ⊇ PK′ . Property 2 formalizes the idea expressed in
the example; it assures that the penalty incurred from pattern p is strictly higher
when using the set of clusters K (in terms of the example, note that hp(s1) > 0
corresponds to an average length higher than ā, and hp(s2) < 0 to an average
length lower than ā). Put more general, property 2 assures that there is at least
one pattern for which the yp values are not trivially enforced by hp.

We are now able to prove the main result.

Theorem 5.1. Let K and K ′ by two sets of clusters. Furthermore, let P and P ′
be their respective polytopes. Given that K extends K ′, P is a stronger formulation
than P ′. That is,

φ(P) ( P ′.

Proof. Consider an arbitrary solution (x̄, ȳ, v̄, z̄) ∈ P . For notational convenience,
let x̄′ = φ(x̄). We will first show that (x̄′, ȳ, v̄, z̄) ∈ P ′.
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We claim that the above values of x̄′, v̄ and z̄ are feasible with respect to P ′. To
prove this it is sufficient to show that the DAPR constraints are equivalent. Note
that a(s) =

∑
d∈Ds

a(d) and hence a(s) =
∑

s′∈s a(s′) for all a ∈ A. Here summing
over all s′ ∈ s is shorthand notation for summing over all s′ for which s(s′) = 1,
i.e., all sequences s′ included in s. This implies we have∑

s∈Sg

a(s)x̄s =
∑
s∈Sg

x̄s
∑
s′∈s

a(s′) (5.20a)

=
∑
s∈Sg

x̄s
∑
s′∈S′g

s(s′)a(s′) (5.20b)

=
∑
s′∈S′g

a(s′)
∑
s∈Sg

s(s′)x̄s (5.20c)

=
∑
s′∈S′g

a(s′)x̄′s′ , (5.20d)

which justifies the above claim.

Next, we consider the variables ȳ. Recall that Sp is the set of all sequences relevant
for pattern p. We can write the constraint yp ≥ hp(S

′) of P ′ in the extended form

yp ≥
∑
s′∈S′p

αps′x̄
′
s′ − βp., (5.21)

where α and β are the coefficients of the linear function hp. By substituting x̄′s′ =∑
s∈S s(s

′)x̄s into (5.21), we obtain

yp ≥
∑
s′∈S′p

αps′
∑
s∈S

s(s′)x̄s − βp. (5.22)

Next, note that s(s′) = 0 if s 6∈ Sp and s′ ∈ S ′p. Hence, combined with rewriting,
we obtain

yp ≥
∑
s∈Sp

x̄s
∑
s′∈S′p

αps′s(s
′)− βp. (5.23)

or, with minimal notation,

yp ≥
∑
s∈Sp

x̄s
∑
s′∈s

αps′ − βp. (5.24)

Using this expression we analyze the possible values for the decision variables ȳ.
Note that we only consider decision variables y for the set of patterns P \PK′ , as all
patterns p ∈ PK′ are modeled implicitly in both models; it is clear we incur similar
costs in both formulations for each of the patterns p ∈ PK′ .

Next, consider a pattern p ∈ P \PK . For these patterns, the value of ȳp is enforced
explicitly by a constraint in both models. One can imagine such a pattern as
e.g., spanning multiple weeks, if we relate it to the example in the beginning of
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this section. Note that, by definition of hp, the coefficient of xs in hp(S) can be
expressed as

∑
s′∈s αps′ . It follows from (5.24) that if p ∈ P \ PK the value of yp

is bounded by the exact same constraint in both models, hence ȳp is feasible with
respect to P ′.

Finally, consider a pattern p ∈ PK \ PK′ . For such a pattern, the constraint in P is
given by

yp ≥
∑
s∈Sp

cpsx̄s. (5.25)

In P ′, however, the pattern costs of p are not modeled implicitly. Thus in this case,
the constraint is given by yp ≥ hp(S

′), which, as we derived earlier, can be written
as

yp ≥
∑
s∈Sp

x̄s
∑
s′∈s

αps′ − βp. (5.26)

Note that this situation was illustrated with the duty length example, i.e., con-
straint (5.25) penalizes every week that has an average above the target value,
while constraint (5.26) only penalizes if the average over all duties assigned to the
week is above the target value. Because p ∈ PK we know that

∑
s∈Sp

xs = 1 and

hence we may write (5.26) as

yp ≥
∑
s∈Sp

x̄s

(∑
s′∈s

αps′ − βp

)
. (5.27)

Note that cps ≥ max{0,
∑

s′∈s αps′−βp}, due to the non-negativity of pattern costs.
Hence, the value of yp in P is at least as high as in P ′. This implies that ȳp is
feasible with respect to P ′. It follows that φ(P) ⊆ P ′.

To show that φ(P) is a strict subset of P ′ we use Property 2 of definition 5.1. We
claim Property 2 implies there is a pattern p ∈ PK \PK′ and a solution (x̄′, ȳ, v̄, z̄) ∈
P ′ such that there is no solution (x̄, ȳ, v̄, z̄) ∈ P with φ(x̄) = x̄′, i.e., every solution
in P , with φ(x̄) = x̄′, incurs higher pattern costs (that is, the value of ȳp is not
feasible for any of these solutions). Here, we assume without loss of generality, that
the ȳ values are always set as low as possible (i.e., we do not penalize whenever
this is not enforced by the constraints). Note that our claim is exactly what we
illustrated in the example: we assigned a set of duties to days, such that any set of
weeks constructed from these duties would incur higher pattern costs.

To prove our claim, we reason as follows. Consider any of the solutions in P with
φ(x̄) = x̄′. We know from Property 2 of Definition 5.1 there are two sequences s1

and s2 for which both x̄s1 and x̄s2 are assigned non-zero values. Furthermore, we
know that hp(s1) > 0 and hp(s2) < 0. Because x̄s1 > 0 and hp(s1) > 0 we know
that the penalty incurred for pattern p is strictly larger than zero. Furthermore,
because x̄s2 > 0 and hp(s2) < 0 we have∑

s∈Sp

cpsx̄s >
∑
s∈Sp

x̄s

(∑
s′∈s

αps′ − βp

)
. (5.28)
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Combining these two observations it follows that the penalty for pattern p enforced
in P ′ is strictly lower than the penalty enforced in P or, in other words, it follows
that the solution (x̄′, ȳ, v̄, z̄) 6∈ φ(P). The main result follows.
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Chapter 6

Solution Approaches

In this chapter we discuss our solution approaches for the integrated crew rostering
problem. In Section 6.1 we show how we deal with the bi-objective formulation
of the ICCRP. In Section 6.2 we then discuss the different approaches we consid-
ered. In Section 6.3 we consider different trade-off curves to analyze the different
approaches.

6.1 Budget Constraints

The first step in solving the ICCRP is deciding how to reduce the model from a
bi-objective model to a single-objective model.

Recall that the ICCRP is formulated as a bi-objective optimization problem where
we want to minimize the two objectives∑

p∈P

cpyp (6.1a)∑
a∈A

ba(za − va). (6.1b)

Because multi-dimensional optimization is computationally difficult, we use the con-
cept of budget constraints to reduce the problem to a one-dimensional optimization
problem. A budget constraint eliminates one of the objective functions by adding it
as a constraint to the model, i.e., we can bound the DAPR objective by a parameter
γ by adding the budget constraint∑

a∈A

ba(za − va) ≤ γ (6.2)

to the model. Similarly, we can bound the CCRP objective by a parameter β by
adding the constraint ∑

p∈P

cpyp ≤ β (6.3)
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to the model. Using such constraints allows us to make a trade-off between the two
objectives.

6.2 Solution Approaches ICCRP

When dealing with the integrated version of the crew planning problem, i.e., duty
assignment and crew rostering, one ideally would like to solve the bi-objective ver-
sion of the ICCRP. As mentioned above, this is computationally difficult and hence
the concept of budget constraints was used. We note, however, that adding budget
constraints to the model implicitly leads to a trade-off between the two objectives,
i.e., once one of the budget constraints is added, the optimal value of the remaining
objective can severely increase. It is therefore important to carefully apply such
constraints, since they can have a large influence on the found solutions,. To an-
alyze this effect, we consider multiple approaches to the ICCRP. Our main goal is
to analyze the different solutions found with these approaches, and to analyze in
detail the possible trade-off between the two objectives.

In our initial experiments we found that proving optimality, when minimizing either
of the two objectives, was very difficult (it could take up to more than an hour for
relatively small instances). We also found, on the other hand, that ‘good’ solutions
were found quickly for most instances. We therefore decided to limit the solution
time per optimization step. This leads to a different comparison of the approaches;
although certain approaches might be inferior in theory, it is very well possible they
perform best in reasonable time.

We now state our different approaches to the ICCRP. We group them based on which
budget constraint was used, e.g., an approach that uses a γ-constraint first mini-
mizes the DAPR objective, and thereafter minimizes the CCRP objective, whilst
enforcing constraint (6.2).

Approaches with γ-constraint

We start with the approaches that first obtain a good solution in terms of the duty
assignment objective, and then minimize the rostering objective.

1. We first minimize the DAPR objective to obtain a set of assignment variables
π∗ with objective value γ∗. Now, we fix π∗ and solve the CCRP problem
per group. Note that this is the sequential approach of Hartog et al. [2009]
and Abbink [2014], while taking into account the existence of a feasible roster
(since the ICCRP formulation is used). We bound the time for minimizing
the DAPR objective by 15 minutes, while the subproblems per group are
bounded by 3 minutes (almost all subproblems can be solved to optimality in
this time). We denote this approach by DAPR + CCRP.

2. Similar to the DAPR + CCPR, we first minimize the DAPR objective to
obtain a set of assignment variables π∗ with objective value γ∗. We then,
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however, solve the ICCRP whilst enforcing that γ = γ∗. Note that, in contrast
to the first approach, the duty assignment variables π∗ are not fixed after the
first step. The solution time for the respective minimization problems is set to
at most 15 and 30 minutes, respectively. We denote this approach by DAPR
+ ICCRP.

3. The third approach is very similar to the DAPR + ICCRP. In fact, we consider
the exact same steps. We now also, however, post-process the solution by
trying to improve the rostering objective for each of the groups separately.
We refer to this approach as DAPR + ICCRP∗.

4. The final approach we consider in this category is used only for the largest
instance, i.e., when we solve the ICCRP for all roster groups simultaneously.
Again, we first minimize the DAPR objective to obtain a set of duty assign-
ment variables π∗ with objective value γ∗. Now, however, we decompose the
problem in smaller subproblems of multiple groups. For each of these sets of
groups we then solve the ICCRP whilst enforcing a bound γ = γ∗ on the duty
assignment objective. We note that this might lead to a higher γ measured
over all groups, as the spread measured over all groups is in generally larger
than the spread measured per subset of groups. We decomposed the large set
of groups into groups of four, we therefore refer to this approach as DAPR +
4-ICCRP. The rostering time per subset of groups is limited to 7.5 minutes
(to match the 30 minutes for the ICCRP).

Approaches with β-constraint

We now turn to the approaches that first obtain a good solution in terms of the
rostering objective, and then try to minimize the duty assignment objective. That
is, we reverse the approach. Note that these types of approaches are possible due
to the ICCRP model, as in general the rostering objective can not be taken into
account while solving the duty assignment problem.

5. We first minimize the CCRP objective to obtain a set of rosters with objective
value, say, β∗. Thereafter, we minimize the DAPR objective while enforcing
a bound of β∗ on the rostering objective. As before, we limit the CCRP to 30
minutes and the DAPR to 15 minutes. Note that this approach can be seen
as the ‘reversed’ version of approach 2. We denote this approach by CCRP
+ DAPR.

6. In this approach we again consider post-processing the found set of rosters.
That is, we first minimize the CCRP objective. Therafter, we try to improve
the solution by trying to reduce the rostering objective for each of the groups
separately. For the solution obtained after this post-processing, we again
minimize the DAPR objective while enforcing a bound of β∗ on the rostering
objective. The solution time per groups is again limited by 3 minutes. We
refer to this approach as CCRP∗ +DAPR.
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7. Finally, we consider the reversed variant of the DAPR + 4-ICCRP approach
for large instances. That is, we first minimize the CCRP objective for each of
the sets of groups (note that this implies the duties are also split into groups).
Thereafter, we minimize the DAPR constraint considering all groups. Again,
a time bound of 7.5 per subset of groups is used. For the DAPR we limit the
solution time to 15 minutes. We refer to this approach as 4-CCRP + DAPR.

Motivation Approaches

Our motivation for the approaches presented above is twofold. First, we want to
analyze in detail the impact of the sequence of optimization. That is, we want
to analyze how much a difference it makes whether we first minimize the DAPR
objective or whether we first minimize the CCRP objective. Secondly, we want
to analyze the performance of ‘large scale’ optimization (i.e., solving the ICCRP
for all groups at once) versus ‘small scale’ optimization (i.e., rostering per group
or per multiple groups). Especially since we consider bounded running times, it is
interesting to analyze which approaches perform best in which circumstances.

6.3 Empirical Trade-off Curves

We note that the above approaches do, in some sense, not fully exploit the ‘in-
tegrated’ part of the ICCRP model. By this we mean that they minimize both
objectives in a sequential manner, and hence are destined to find solutions at the
boundaries (in terms of the objective values). We therefore also consider a Pareto-
alike analysis.

In this analysis we enforce a γ-bound on the solution, for varying γ, and use the
different approaches to find solutions that satisfy this bound. To be more precise,
we proceed as follows. Given γ, we minimize the DAPR objective until a solution
is found with assignment variables π∗ and objective value γ∗ such that γ∗ ≤ γ. We
stop the optimization process once such a solution is found, i.e., the found solution
is considered ‘good enough’.

Once this solution is found we minimize the CCRP objective. The first curve is
based on the DAPR + CCRP approach; we fix the assignment variables π∗ and
minimize the rostering objective per group separately. Note that this approach
depends heavily on the found solution, as the variables π∗ are fixed in the rostering
part. Hence, we expect that such a solution will not be able to benefit, in terms of
the CCRP objective, from higher γ values, as the rostering objective is not taken
into account in the first step. We note that this curve represents the solutions found
if the sequential approach would be applied in practice.

The remaining curves are constructed in three different ways, similar to approaches
2 to 4. That is, we minimize the ICCRP while enforcing a γ-bound of γ∗ (denoted
by Curve ICCRP), we consider the post-processing solution approach (denoted by
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Curve ICCRP∗) and, finally, we consider for the large instance the 4-ICCRP ap-
proach, where we enforce a bound γ∗ for each of the subsets of groups. These
approaches solely use the solution found in the first step as an initial solution for
the optimization process, and thereafter consider an integrated approach. These
approaches, therefore, are expected to benefit, in terms of the CCRP objective,
from higher γ values.

Using these empirical curves we are able to analyze the trade-off between ‘good
rosters’ and ‘fair allocations’. In particular, these curves will help us analyze what
the true benefit is from the ICCRP model compared to e.g., the sequential approach
proposed in Abbink [2014].
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Chapter 7

Rostering Base Utrecht

In this chapter we show the results of our case study; we applied our mathematical
models to the rostering process at base Utrecht. In Section 7.1 we give a general
overview of the different roster groups at base Utrecht. We also state the parameters
used in the optimization. In Section 7.2 we analyze the performance of the CCRP
and CCRP2 model. In Section 7.3 we discuss the performance of the different
optimization approaches discussed in Chapter 6.

7.1 Data

We apply the different approaches of Chapter 6 to the crew rostering process at
base Utrecht. The roster groups we consider are groups of guards. In total, there
are 714 duties to be rostered. We will use 625 of the duties in our optimization (we
leave out duties that lack information, and only consider duties that are present in
the given rota schedules). The duties are divided over 16 roster groups of varying
size (i.e., number of employees). We have 4 groups of 6 employees, 2 groups of 8
employees, 9 groups of 12 employees and 1 group of 14 employees. On average, they
work slightly less than 4 days a week. An overview of the groups is given in Table
7.1.

Table 7.1: Number of duties per group.

Group Nr. Weeks Nr. Duties

1 12 49
2 8 30
3 12 46
4 6 26
5 6 23
6 12 49
7 12 46
8 12 50

Group Nr. Weeks Nr. Duties

9 12 49
10 12 49
11 12 50
12 8 22
13 12 43
14 6 23
15 6 17
16 14 53
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Attributes

Recall from Chapter 3 that the quality of the allocation of the duties to the roster
groups is evaluated using a set of attributes, i.e., some aspects of the duties in a
roster that are desirable or not. One of the goals of the optimization is to divide the
duties over the group such that the obtained rosters differ as little as possible in these
attributes. As discussed in Chapter 3 we consider the following attributes:

1. Average duty length.

2. Percentage on type-A rolling stock.

3. Percentage Aggression trains.

4. Percentage on double decker trains.

5. RWD values.

In Table 7.2 we show the bounds and weights for all considered attributes.

Table 7.2: Bounds and weights DAPR model.

Attribute la ua ba

Duty length 0 8 30
Perc. Type-A 35 100 1

Perc. Aggression 0 18 1
Perc. Double Decker 0 40 1

RWD 0 2.5 25

We penalize all attributes considering percentages in a similar way, i.e., a spread of
2% in aggression work is equal to a spread of 2% of type A-train work. Furthermore,
we give violations in duty length a penalty of 30, hence a ten minute violation equals
one of 5%. For the RWD we set a weight of 25 (i.e., a 0.2 deviation equals a 5%
deviation).

Patterns

As discussed in Chapter 4 the quality of the roster is expressed using patterns. We
summarize the patterns and their respective costs in Table 7.3. For the variation
patterns we consider the same attributes as for the DAPR model. Furthermore,
we penalize the occurrence of certain routes, and duties longer than 9 hours. Since
the number of different routes is large, we only consider a few; we want to divide
the desirable routes Groningen-Leeuwarden and Maastricht- Sittard and the routes
trajectories Hoofddorp - Weesp and Baarn - Utrecht evenly over all weeks.

We also stated the remaining patterns. Note that the ‘forbidden’ patterns (i.e., the
strict rest, rest day and workload patterns) do not have a cost, since they are not
allowed to be present in any roster. Here the strict rest pattern models the rest
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time that is not allowed to be violated, while the rest pattern penalizes the rest
times less than 16 hours.

Table 7.3: Cost and Domain CCRP patterns.

Pattern Yp cp

Variation Patterns

Duty length R+ 30
Perc. Type-A R+ 1

Perc. Aggression R+ 1
Perc. Double Decker R+ 1

RWD R+ 25
Duty Length > 9 R+ 1

Routes R+ 1

Rest Pattern B 30
Strict Rest Pattern {0} -

Rest Day Pattern {0} -
Workload Pattern {0} -

We now turn to the results of our analysis. All results are obtained using CPLEX
12.5.1 on a computer with a Intel Xeon E5 3.10 GHz processor. We set the CPLEX
emphasis to focus on finding good feasible solutions.

7.2 Comparison CCRP and CCRP2

In this section we compare the CCRP and CCRP2 formulations of Chapters 4 and
5. Recall that the main motivation for the CCRP2 model was to obtain a tighter
formulation, and hence less difficulty in finding the optimal solution. We therefore
analyzed the solution time and the relative gap (i.e., the relative difference between
the upper and lower bound) for both models over time. For the CCRP2 model we
used the weeks as clusters (recall the example of Chapter 5).

Because the number of possible duty sequences increases exponentially, we consider
instances of reasonable size; we roster both groups 4, 5 and 6 simultaneously as well
as groups 9 and 10. Both sets of groups contain a total of 98 duties that need to
be assigned to 24 weeks. We note that for larger instances one could consider e.g.,
a Column Generation approach to circumvent this issue. The results are shown in
Table 7.4.

We allowed CPLEX to run for at most 30 minutes on both instances. The Pre-
CPLEX time indicates the time needed to generate all feasible duty sequences. The
Final Gap is the gap between the best solution found as we terminate the algorithm,
and the best found lower bound so far. As can be seen in Table 7.4 the CCRP2 is
able to find an optimal solution very quickly for both instances. The CCRP, on the
other hand, is not able to prove optimality for both instances within 30 minutes.

45



Integrated Duty Assignment and Crew Rostering Chapter 7

Table 7.4: Comparison CCRP and CCRP2

Groups Model Pre-CPLEX CPLEX Solution Value Final Gap

4, 5 and 6 CCRP - 30m 284.41 36.47%
4, 5 and 6 CCRP2 20m 138.5s 253.48 optimal
9 and 10 CCRP - 30m 394.40 7.51%
9 and 10 CCRP2 11m 7.25s 394.40 optimal

Interestingly, the CCRP did find the optimal solution for groups 9 and 10, although
there was still a relative gap of 7.51%.

In Figure 7.1 we plotted the relative gap between the best feasible solution and the
lower bound for the CCRP over time. We see that for both sets of groups, there
first is a sharp decrease of the gap, and thereafter it almost remains constant. This
means that a ‘good’ solution is found quickly, but improving this solution, or the
lower bound, turns out to be difficult. The implicit pattern costs of the CCRP2
seem to be a great advantage in this respect.

We conclude that the CCRP2 is a good addition to the CCRP. For instances of
reasonable size it outperforms the CCRP, not only in solution time, but we are
also able to prove optimality for both instances. It would therefore be interesting
to consider more advanced solution methods (e.g., Column Generation) in order to
apply the CCRP2 to larger instances.
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Figure 7.1: Relative Gap CCRP over Time
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7.3 Results Integrated Crew Rostering

Next, we turn to the result of the overal crew rostering process. We consider each
of the solution approaches as discussed in Chapter 6. We consider two instances;
a medium sized instance involving only the first four roster groups and a large
instance involving all roster groups.

Case 1: Roster Groups 1 to 4

For our first instance we solve the ICCRP for the first four roster groups. This gives
us a total of 151 duties that need to be rostered. As mentioned in Chapter 6, we
limit the solution times.

We consider all approaches of Chapter 6, except approaches 4 and 7, which we
only consider for rostering all groups. Similarly, we construct all empirical curves
discussed in Chapter 6, except the curve for the 4-ICCRP. Based on the results
of the different approaches, we constructed the curves for γ ∈ {2, 4, 6, 8, 10}. The
results are shown in Figure 7.2.
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Figure 7.2: Results First Four Groups.

Let us first focus on the single points in Figure 7.2. As expected, we see there is
a sharp distinction between the approaches with a γ-constraint (i.e., the black and
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white symbols) versus the approaches with a β-constraint (i.e., the solid symbols).
(We omitted the DAPR+ICCRP∗ as it coincided with the DAPR+ICCRP, i.e.,
an additional optimization per group did not lead to a decrease in the objective
value.) This sharp distinction is evidence that one should be careful in the type
of approach considered, i.e., whether to first minimize the DAPR objective or the
CCRP objective.

Interestingly, we see that the DAPR + CCRP outperforms the DAPR + ICCRP.
We found that the second step, i.e., solving the ICCRP, did not lead to better rosters
compared to the rosters found in the first optimization step. This is likely caused
by the tight γ-bound we impose on the ICCRP in this approach. Similarly, the
effect of a tight β-bound can be observed by considering the CCRP + DAPR and
the CCRP∗ + DAPR; the small gain we obtain from post-processing the solution,
in terms of the CCRP objective, implies that we are not able to reduce the DAPR
objective in the second phase, as opposed to the CCRP + DAPR, where a small
reduction was possible compared to the rosters found in the first step.

Next, we analyze the empirical curves. As can be seen from Figure 7.2 the Pareto-
alike analysis shows the effectiveness of the integrated approach. (We remark that
for γ = 8 all approaches found solutions around γ = 6.) Both the ICCRP and the
ICCRP∗ approaches are able to exploit higher values of γ. Note that the curves
are not necessarily decreasing because we do not solve the subproblems to optimal-
ity. The CCRP curve, on the other hand, seems not to be able to exploit these
higher values at all. This is no surprise, as this curve represents the sequential
approach, i.e., the allocation we find in the first step does not consider the rostering
objective, and thereafter we assume the allocation as fixed. Comparing the ICCRP
and ICCRP∗ curves we see that the benefit from post-processing is small for this
instance, i.e., the solutions found by the ICCRP are not improved easily.

Summarizing, we observed that the use of the integrated approach was effective for
this instance. The approaches with tight γ and β bounds found solution at the
boundaries. The use of the ICCRP model, however, allowed us to find solutions in
between to bridge this gap.

Case 2: All Roster Groups

For our second instance we solve the ICCRP for all 16 roster groups. This gives
a total of 625 duties that need to be rostered. We now consider all approaches an
curves as discussed in Chapter 6. For the 4-CCRP and 4-ICCRP The four groups
are constructed simply on their index (e.g., groups 1 to 4, 5 to 9). The results are
shown in Figure 7.3.

First, we look at the single points in Figure 7.3, i.e., the solutions founds by the
approaches 1 to 7 discussed in Chapter 6. We see that the approaches that consider
the large scale rostering problem perform poorly; both the DAPR + ICCRP and
the CCRP + DAPR have a high rostering objective compared to the other solution
approaches. In case of the DAPR + ICCRP we were not able to improve the
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Figure 7.3: Results All Groups.

solution found in the first step (therefore the DAPR + ICCRP∗ is omitted in the
figure). This indicates that solving the whole instance all at once is not efficient for
the allowed time, as no good solutions are found. Again, we see that their is a clear
distinction between the approaches with a γ-constraint (i.e., the black and white
symbols) versus the approaches with a β-constraint (i.e., the solid symbols) in terms
of the duty assignment objective. In terms of the rostering objective, however, this
distinction is less clear. This can probably be attributed to the fact that the large
scale rostering approaches had much trouble with finding good solutions.

Interesting to see is that the DAPR + 4-ICCRP and the 4-CCRP + DAPR out-
perform the DAPR + CCRP and the CCRP∗ + DAPR, in terms of the rostering
objective. In this case, minimizing the rostering objective for the subsets of groups
simultaneously is beneficial, compared to minimizing it for all groups separately.
This was also observed for the first instance. We note that the DAPR + 4-ICCRP
violates the γ-bound opposed (note that it is located right form the other two ap-
proaches with the γ-constraint). This is, as mentioned in Chapter 6, due to the
fact we oppose the bound on each of the sets of four groups separately. We observe,
however, that the violation is relatively small.

Next, we analyze the empirical curves. Based on the results of the singular ap-
proaches we considered γ ∈ {10, 15, 30, 40}. We omitted the curve for the ICCRP∗

as it coincided with the curve for the CCRP, i.e., the ICCRP was not able to im-
prove any of the solutions when a γ-bound was enforced. We observe an interesting
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phenomenon in Figure 7.3, which was not visible in the results of the first instance.
As mentioned, the ICCRP was not able to exploit the higher γ to improve the
rostering objective. Similarly, we see that the curve for CCRP remains somewhat
constant, as the sequential approach is not able to directly use the higher γ values in
the solution process. Interesting is that the 4-ICCRP lies strictly below the CCRP
curve; rostering multiple groups simultaneously allows us to obtain rosters with a
lower objective value. We also see that this is the only curve that decreases in
terms of γ, i.e., per set of four groups the higher γ values allow us to obtain better
rosters. Again, we note that the desired γ is often not met, one could circumvent
this issue by setting e.g., lower targets for each of the subsets of groups. Finally,
we note that the curve contains points below the 4-CCRP + DAPR solution; this
is possible because both solution approaches start with a certain fixed assignment
of duties to the groups, hence a higher γ does not necessarily imply we find rosters
with lower cost.

Summarizing, we found that for the large instance decomposing the problem into
smaller problems greatly outperforms solving the problem as a whole. Due to the
limited solution time, rostering many duties at once leads to very poor solutions.
There is, however, a gain in considering subsets of groups instead of all groups
separately. Such an approach still allows us to benefit from the ICCRP formulation,
as was clearly visible in the first instance. We also note that the distinction between
the approaches with a γ-constraint and a β-constraint is less clear in terms of the
rostering objective. This, however, can be attributed to the difficulty in finding
good rosters for all groups at once.
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Chapter 8

Conclusion and Further
Research

In this thesis we developed two mathematical models for the Integrated Duty As-
signment and Crew Rostering problem. This problem consists of allocating duties
to different roster groups in a ‘fair’ manner while minimizing the cost of the ros-
ters. This problem is one of the many problems Netherlands Railways deals with
in practice. We considered multiple solution approaches to this problem.

In Chapter 3 we discussed the model for the Duty Assignment problem as was
proposed in Abbink [2014]. We showed how this model changes as the rota schedules
are assumed to be known. This assumption is often satisfied in practice, as it is
desirable for employees to have a certain level of predictability in their roster. In
Chapter 4 we developed a mathematical model for the Crew Rostering problem,
based on the work of Hartog et al. [2009] and Abbink [2014]. We extended this
model to multiple roster groups and finally proposed the ICCRP model, in which
we integrated the Duty Assignment and Crew Rostering problem. The model is
formulated as a bi-objective optimization problem.

In Chapter 5 we proposed an alternative to the ICCRP model, which we referred to
as the ICCRP2 model. This model is a ‘higher-level’ formulation of the problem, in
the sense that large clusters of duties are assigned simultaneously. Our motivation
for this model was that it gives a tighter formulation of the ICCRP; in Section 5.5
we proved this rigorously.

In Chapter 6 we proposed multiple approaches to solve the bi-objective version of
the ICCRP. In our approaches we focused mainly on the trade-off between the two
objectives, i.e., which objective we minimize first, as well as possible decompositions
of the problem, e.g., solving the problem separately per group.

We applied our approaches to the rostering process at base Utrecht. Our results
were promising, and showed possible avenues for further research. The CCRP2
was compared to the CCRP model on instances of approximately 100 duties. The
results showed that the CCRP2 was able to find optimal solutions in reasonable
time, a major improvement compared to the CCRP for these instances.
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When applying our solution approaches to larger instances the results where some-
what divided. For four roster groups, i.e., roughly 150 duties, we obtained good
results with our integrated approach. We saw a clear distinction between the so-
lutions of approaches that either minimized the duty assignment objective first, or
the rostering objective first. This was expected, and was, in fact, a motivation for
our integrated approach. We observed that, using the ICCRP model, we were able
to bridge the gap between such methods, i.e., we obtained good rosters, while still
enforcing a certain level of the allocation.

When rostering all groups at once, the results were not as good. Especially the
integrated approach failed to improve the found solutions. We did find evidence
that decomposing the problem is beneficial in this case; especially our method
that divided the set of 16 roster groups in sets of 4 groups was able to find good
solutions, from a rostering perspective. We must note that we focused on finding
good solutions in reasonable time.

In terms of further research, especially the ICCRP2 model seems promising. It
would be interesting to combine this model with e.g., a Column Generation ap-
proach in order to apply it to larger instances. It is very likely that such an al-
gorithm outperforms the current ICCRP model. Another interesting avenue for
research would be the use of decomposition approaches. We note that the ICCRP
is especially well suited for such approaches, as the patterns can be decomposed
per group. In our research we only used this marginally, by solving the rostering
problems for groups separately. We think, however, it would be fruitful to consider
more advanced approaches.

Furthermore, as the different approaches showed, the ICCRP seems to be a good
candidate for a more advanced neighborhood search algorithm. We note that our
approaches can be seen as ‘naive’ versions of such algorithms, as we first optimize
globally and thereafter try to improve locally (e.g., we first minimized the duty
assignment objective, and then try to improve the roster per group). It would be
interesting to consider such approaches in a larger framework of algorithms in which
we fix e.g., only certain weeks in the roster and then re-optimize.

Finally, a thorough analysis of the relation between certain patterns would be an
interesting new direction for research. In our approach, and many other approaches
to rostering problems, the constraints are considered fixed and we try to find the
best possible roster given those constraints. It could, however, be very fruitful to
analyze how certain combinations of constraints influence the optimal solution, i.e.,
one can imagine that certain combinations can have a very big impact while others
have very little impact. Such an analysis could have great practical value for e.g.,
Netherlands Railways.
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jver, A.I. Steenbeek, and R. Ybema. The New Dutch Timetable: The OR Revo-
lution . Interfaces, 39(1):6–17, 2009.

M. Mesquita, M. Moz, A. Paias, and M. Pato. A decomposition approach for the
integrated vehicle-crew-roster problem with days-off pattern. European Journal
of Operational Research, 229(2):318–331, 2013.

M. Sodhi and S. Norris. A flexible, fast, and optimal modeling approach applied
to crew rostering at London Underground. Annals of Operations Research, 127
(1-4):259–281, 2004.

L. Xie and L. Suhl. Cyclic and non-cyclic crew rostering problems in public bus
transit. OR Spectrum, 37(1):99–136, 2014.

X. Zhu, Q. Li, W. Mao, and G. Chen. Online vector scheduling and generalized

53



Integrated Duty Assignment and Crew Rostering Bibliography

load balancing. Journal of Parallel and Distributed Computing, 74(4):2304–2309,
2014.

B. Zimmermann, M. C. Schippers, and L. G. Kroon. Railway Crew Rostering and
its Effects on the Planned Workforce. Technical report, 2012.

54



Appendix A

Distributions of Attribute
Values

In this Appendix we show for all attributes the distribution of the values. In each
of the figures the mean value is indicated.

In Figure A.1 the distribution of duty lengths is shown.
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Figure A.1: Histogram duty lengths.
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In Figure A.2 we show the distribution of the percentages of type-A rolling stock
in the duties.
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Figure A.2: Histogram percentage work on type A-trains.

In Figure A.3 we show the distribution of the percentages of aggression work in the
duties.
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Figure A.3: Histogram percentage aggression work.

56



Appendix A Integrated Duty Assignment and Crew Rostering

In Figure A.4 the distribution of work on double decker trains is shown.
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Figure A.4: Histogram percentage work on Double Decker trains.

Finally, we show in Figure A.5 the distribution of the values of the Repetition
Within Duty (RWD) coefficient for the duties.
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Figure A.5: Histogram RWD values.
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