
Erasmus University Rotterdam

Operations Research and Quantitative Logistics

Master’s thesis

Robust Heuristics for a Multi-Constrained
Stochastic Team Orienteering Problem with

Heterogeneous Resources

Author: Martin van Meerkerk (416298)

Supervisors:
Dr. D. Huisman (EUR)
Dr. A.I. Barros (TNO)

Ir. A.A.F. Bloemen (TNO)

Second reader:
Dr. R. Spliet (EUR)

October 20, 2015

Abstract

In many practical applications, tasks have to be assigned to multiple resources.
In a standard Team Orienteering Problem (TOP), the aim is to assign tasks
to resources in such a way that the value of the scheduled tasks is maximized.
We consider an extensive variant of the TOP, which incorporates constraints
regarding time windows and endurance, and for which the heterogeneous re-
sources are allowed to recharge at their depots during their routes. For this
problem, we propose a heuristic that combines Lagrangian Relaxation and Col-
umn Generation (LRCG), and a Tabu Search heuristic. The latter heuristic can
handle resource-dependent values and sets of recurrent tasks with a non-linear
profit function as well.

Due to stochasticity of travel and service times, we need to take the robustness
of solutions into account as well. For this purpose, we introduce the risk function
as a new robustness concept, which aims to avoid the execution of tasks with a
low value at the cost of having to remove a more important task in the future.
As an additional robustness concept, we discuss setting a lower bound on the
worst-case performance of a solution. We generate regular and robust solutions
using the Tabu Search heuristic, applied to several test instances. For adjusting
the generated solutions in real-time scenarios implied by simulations of travel
and service times, we apply passive rescheduling policies.

The results show that incorporating the risk function leads to a significant im-
provement of the real-time performance. In particular, a higher objective value
is obtained and fewer tasks have to be removed. Moreover, important tasks
are performed in an early stage of the route more often. For some instances,
combining the risk function with a requirement on the worst-case performance
improves the real-time results even further. When applying the LRCG heuristic
to the deterministic problem, improvements of the subgradient algorithm lead
to better feasible solutions and stronger upper bound estimators for the optimal
objective value.

Preface

After completing my master’s studies in Mathematics, I decided to enroll for the
master Operations Research and Quantitative Logistics at the Erasmus Univer-
sity of Rotterdam (EUR), combined with a part-time job at the Decision Sup-
port department of KLM. In a seminar at the EUR, the subject of this thesis
was introduced. It was a pleasure to follow this seminar, thanks to the challeng-
ing problem and the successful cooperation with Ravi, Gerhard, and Thomas.
I am grateful that TNO has given me the opportunity to continue working on
this subject at the Military Operations department.

In particular, I would like to thank Ana and Axel for their useful feedback during
our weekly meetings, especially in the phase of developing methodologies to
tackle the problem. I would like to thank Dennis for his valuable comments on
earlier versions of this thesis and for reminding me that I could only accomplish
a part of my ideas in the limited time period. Furthermore, I would like to
thank Remy for his time to read my thesis. Last, but not least, I would like to
thank my wife Petra for supporting me during the entire thesis project.

Contents

1 Introduction 4

2 Problem description 7
2.1 Security Routing problem . 7
2.2 Extended Security Routing problem 9

3 Literature review 10
3.1 Classification of the problem . 10
3.2 Extended Security Routing problem 11

3.2.1 Resource-dependent values 11
3.2.2 Recurrent tasks . 11

3.3 Lagrangian Relaxation and Column Generation 13
3.4 Handling stochastic travel and service times 13

4 LRCG for the original problem 15
4.1 ILP formulation . 16
4.2 Lagrangian Relaxation . 17

4.2.1 Lagrangian Subproblem 17
4.2.2 Lagrangian Dual problem 18

4.3 Column generation . 20
4.3.1 Pricing problem . 20

4.4 Upper bound estimator on total task value 23
4.5 Generating feasible solutions . 23

5 Tabu Search for the extended problem 25
5.1 Neighborhood and tabu list . 27
5.2 Schedules . 28

5.2.1 Time variables . 28
5.2.2 Constructing a feasible schedule for a given route 30

5.3 Fast feasibility check for task insertions 32
5.3.1 Check for a fixed location sequence 32
5.3.2 Handling the positions of recharging depots 34

5.4 Intensification and diversification 34
5.4.1 Intensification: reorder tasks within routes 35

2

5.4.2 Diversification: random perturbation 36
5.5 Speed-ups . 37

6 Robustness concepts 38
6.1 Working example . 39
6.2 Risk function . 40

6.2.1 Construction of blocks . 42
6.2.2 Delayed travel and service times 43
6.2.3 Feasibility check of sub-blocks 48
6.2.4 Remarks . 50

6.3 Worst-case fraction . 51

7 Generating robust solutions with Tabu Search 53
7.1 Final extension of depot visits . 53
7.2 Incorporating the risk function 54
7.3 Incorporating the worst-case fraction 55

8 Rescheduling policies for the online problem 57
8.1 Passive rescheduling policies . 58

8.1.1 Rescheduling policy for a given route 58
8.1.2 Adjustments when using the risk function 61
8.1.3 Rescheduling policy for a given solution 61

8.2 Active rescheduling policy . 62

9 Data description 63
9.1 Instances for the original problem 63
9.2 Instances for the extended problem 66
9.3 Simulation of travel and service times 66

10 Results 67
10.1 Results for the original problem 67

10.1.1 Tabu Search and robustness concepts 67
10.1.2 LRCG results . 74

10.2 Results for the extended problem 77

11 Conclusions and further research 82
11.1 Conclusions . 82
11.2 Further research . 84

A Terminology and variables 86

B Additional results 88

Chapter 1

Introduction

In many practical applications, such as preparing military missions and schedul-
ing police forces, tasks have to be assigned to resources. In addition to limited
availability of resources, operational constraints and capabilities complicate the
problem. For instance, a helicopter cannot perform traffic regulation tasks and
might only have fuel for at most three consecutive hours. Moreover, tasks often
have a limited time window in which they can be addressed. Therefore, often
only a subset of the available tasks can be performed. Another complicating fac-
tor is the uncertainty of travel and service times in practice. For instance, travel
times might vary due to traffic jams or bad weather conditions, and a task to
find a certain person might turn out to be easier or harder than expected.

In our problem, to which we refer as the Security Routing problem, we want to
assign tasks to heterogeneous resources in such a way that the resulting task
values are maximized, while satisfying operational constraints like time windows.
For each task, there is a set of resources capable of performing the task, each
with a different expected service time. The resources also differ in travel speed,
base depot, and endurance. We allow each resource to return to its depot for
recharging, and to continue performing tasks after staying at the depot for some
minimal rest time. However, we require all resources to be back at their depots
at the end of some planning horizon. The problem is stochastic in the sense
that travel and service times might deviate from their expected values.

We also study an extended problem, to which we refer as the Extended Se-
curity Routing problem, in which resource-dependent task values and recurrent
tasks are incorporated. Resource-dependent task values reflect that one resource
might be better in handling a certain task than another resource. For instance,
patrolling an area by foot might be better than by helicopter if a part of the
search area is indoor. Recurrent tasks reflect that it might be desirable to re-
turn to the same location multiple times. For instance, for observing whether
a road surface changes over time in order to detect if mines have been placed

4

alongside the road, it is valuable to take pictures at different times at the exact
same location. Since having only one or a few pictures might not be reliable, it
makes sense to model the advantages of multiple visits as a non-linear convex
profit function for such tasks.

Because of the stochastic nature of the Security Routing problem, an offline stage
and an online stage can be distinguished. The offline stage refers to the initial
assignment of tasks to resources. In addition to the total value of the scheduled
tasks, the robustness of the solution has to be taken into account in this stage.
In particular, the aim of the offline stage is to address as many important tasks
as possible, while limiting the vulnerability of the solution against delays. The
online stage refers to adjusting the generated solution in real-time, based on
realizations of stochastic travel and service times. The aim of the online stage
is to maximize the total value of completed tasks, while sticking to the original
plan as much as possible.

In this thesis, we propose solution methods for both stages. Since the Security
Routing problems extends the Team Orienteering Problem (TOP), which was
shown to be NP-hard in Golden et al. [1987], we devised heuristics rather than
exact methods. For the offline stage, we propose a heuristic based on Lagrangian
Relaxation and Column Generation (LRCG) based on Fisher [1981] and Pirk-
wieser and Raidl [2009], and a Tabu Search heuristic inspired by Xu and Chiu
[2001] and Cordeau and Laporte [2005]. The LRCG heuristic addresses the orig-
inal Security Routing problem, while the Tabu Search heuristic can be applied
to the Extended Security Routing problem as well.

For the trade-off between the maximum task value and the robustness of solu-
tions in the offline stage, we propose two robustness concepts. We introduce the
concept of a risk function, of which the main idea is to allow the assignment
of a task to a resource only if the risk of having to remove a more important
task for this resource in real-time remains acceptably low, where the acceptance
threshold depends on the ratio of the corresponding task values. We also discuss
a worst-case fraction, which sets a requirement on the performance of a solution
in the worst-case scenario.

We incorporate these robustness concepts in the Tabu Search heuristic for the
offline stage. For investigating the effect of these robustness concepts in real-
time, we generate offline solutions with and without these concepts. We compare
their performance by applying rescheduling policies for the online stage to these
solutions, based on real-time scenarios implied by simulations of travel and
service times. We propose passive rescheduling policies in the sense that the
only action is to delete tasks, in order to allow for a fair judgement of the effect
of the robustness concepts.

The Security Routing problem is an extensive version of the TOP, which in-
corporates time windows for tasks, heterogeneity and recharging possibilities
for resources, and stochasticity of travel and service times. These individual
aspects have been discussed in other articles, but to the best of our knowledge,

5

the TOP induced by the combination of all of these aspects does not appear
in existing literature. Resource-dependent task values and recurrent tasks have
hardly been discussed in existing literature either, and only few articles propose
solution approaches for both the offline and the online stage. Moreover, a ma-
jor contribution of this thesis is the introduction of the risk function as a new
robustness concept.

The outline of the thesis is as follows. In Chapter 2, we describe the Security
Routing problem and the Extended Security Routing problem in more detail.
In Chapter 3, we review the literature related to our problem. Afterwards, we
proceed with solution methods and robustness concepts for the offline stage, of
which an overview can be found in Figure 1.1.

In Chapters 4 and 5, we discuss the LRCG heuristic and the Tabu Search heuris-
tic, respectively, of which only the latter is suitable for the Extended Security
Routing problem. In these chapters, we focus on the optimal objective value in
a deterministic setting. In Chapter 6, we propose two robustness concepts that
address the stochasticity of travel and service times: the risk function and the
worst-case fraction. In Chapter 7, we discuss how to generate robust solutions
with the Tabu Search heuristic. In particular, we explain how to incorporate
the robustness concepts. Afterwards, we switch to the online stage and discuss
rescheduling policies in Chapter 8.

In Chapter 9, we describe the data instances that we used for our experiments
to test the quality of the solution methods and robustness concepts. The results
of these experiments are discussed in Chapter 10. Finally, in Chapter 11, we
summarize the thesis and point to directions for further research.

Figure 1.1: An overview of the solution methods and robustness concepts for
the offline stage of the (Extended) Security Routing problem.

6

Chapter 2

Problem description

In this chapter, we formalize the Security Routing problem and the Extended
Security Routing problem. The general idea is to assign tasks to heterogeneous
resources in such a way that operational constraints are satisfied and resulting
task values are maximized.

In Section 2.1, we introduce some terminology and formalize the constraints
for the Security Routing Problem. Furthermore, we pay special attention to
the stochasticity of travel and service times. In Section 2.2, we discuss the
Extended Security Routing problem, in which resource-dependent task values
and recurrent tasks appear.

2.1 Security Routing problem

A location j refers to either a task or a depot. For each resource, we determine a
route that consists of an ordered sequence of locations. Moreover, we construct
a schedule for visiting the locations in the route. We allow each resource to
recharge at its depot and to resume performing tasks afterwards. We define
a trip as the subroute between two depot visits, with no other depot visit in
between. A solution consists of the set of routes and corresponding schedules
for all resources. In Appendix A, a graphical representation of these notions is
shown, as well as an overview of a selection of variables.

For each task i ∈ I, a geographical location, a time window [Li, Ui], and a value
vi are specified. For each resource r ∈ R, the travel speed, the base depot, the
endurance Er, and the minimal rest time Rr are specified. The endurance can
be interpreted as the maximum trip duration. To each depot, a time window
[0, T] is associated, where T is the end of the planning horizon.

For each combination of a task i and a resource r, an expected service time s̄ir

7

is given, provided that resource r can perform task i. For a resource r and any
two locations i and j, an expected travel time t̄ijr can be computed based on
the travel speed of r and the Euclidean distance between i and j.

For each resource, we need to determine a route and a corresponding schedule.
Each schedule must satisfy the following constraints:

• Time windows: Each task i should start within its time window [Li, Ui].

• Endurance: Each trip should last at most Er.

• Minimal rest time: Each rest period should last at least Rr.

• Planning horizon: The schedule should start and end within the planning
horizon [0, T].

A solution is feasible if and only if all of its routes have a feasible corresponding
schedule and each task appears at most once in the solution.

Stochasticity of travel and service times

Notice that a feasible schedule that is based on expected travel and service
times might become infeasible in real-time, due to the stochasticity of travel
and service times. As in Evers et al. [2014a] and Ke et al. [2013], we assume
interval data for the uncertain travel and service times, i.e. realizations will
deviate at most some fixed percentage from their expected values. We denote the
corresponding fractions by σTT and σST , respectively. Because of the stochastic
travel and service times, we divide the Security Routing problem into an offline
stage and an online stage.

In the offline stage, we construct a feasible solution, of which the quality is
determined by the total value of the scheduled tasks and the robustness of the
schedules. The robustness of a solution can be determined by its performance in
the online stage, in which the solution is adjusted based on a realized scenario
with respect to travel and service times. The quality of a realized solution for
the online stage is determined by the total value of the completed tasks and its
closeness to the initial solution, which reflects the wish to stick to the original
plan as much as possible in practice.

We assume that tasks can be aborted, but that we only obtain a value for
completed tasks. We stress that in this stochastic problem, the performance of
solutions in the online stage is more important than the theoretical objective
value in the offline stage.

8

2.2 Extended Security Routing problem

Additional ingredients of the Extended Security Routing problem are resource-
dependent task values and the presence of recurrent tasks.

As in the original problem, each task i has some base value vi. However, in the
extended problem, we let the actual value for the task depend on the resource
to which it is assigned. If resource r can handle task i with a quality qir, then
the value of assigning task i to resource r is now given by vir = qirvi. Thus,
assigning a task i to some resource r might yield a higher value than assigning
task i to another resource r′.

We define a recurrent task to be a task that has the same location as some
other task. We define a recurrent set to be a set of recurrent tasks with the
same location. The character of recurrent tasks (e.g. road observation tasks)
is such that it makes little sense to perform two recurrent tasks with the same
location immediately after each other. Therefore, we require that recurrent
tasks with the same location have disjoint time windows.

We assume that if k out of |S| tasks of a recurrent set S ⊂ I are scheduled,
then their total value is given by

v(S) =
k

2|S| − k
∑
i∈S

∑
r∈R

xirvir.

In this formula, xir = 1 if task i ∈ S is assigned to resource r ∈ R, and
0 otherwise. Observe that visiting a subset of the tasks from a recurrent set
contributes to the objective in a non-linear fashion, which reflects that partial
information might not be that useful. See Figure 2.1 for a simple example in
which all tasks from the recurrent set have the same value.

Figure 2.1: Example for the fractions k/(2|S| − k) and the total value v(S) for
a recurrent set S with 5 tasks, each with value vir = 1.

9

Chapter 3

Literature review

In this chapter, we review the existing literature related to our problem and pro-
posed methods. First of all, we classify the Security Routing problem in Section
3.1. In Section 3.2, we discuss existing literature on the additional ingredients
for the Extended Security Routing problem, namely resource-dependent values
and recurrent tasks. In Section 3.3, we discuss the combination of Lagrangian
Relaxation and Column Generation. In Section 3.4, we cover concepts to handle
stochastic travel and service times.

3.1 Classification of the problem

The Security Routing problem can be regarded as several closely related prob-
lems. On a global level, the problem can be seen as a variant of the Vehicle
Routing Problem (VRP). In a recent survey of Rich VRPs by Caceres-Cruz et al.
[2014], a wide variety of variants to the VRP is discussed. Archetti et al. [2014]
identify the Orienteering Problem (OP), the Profitable Tour Problem, and the
Prize Collecting Traveling Salesman Problem as the main three basic single-
vehicle routing problems with profits. The authors state that little research
has been devoted to multiple-vehicle routing problems with profits, such as the
Team Orienteering Problem (TOP), introduced by Chao et al. [1996].

The Orienteering Problem was introduced by Tsiligirides [1984] and was shown
to be NP-hard by Golden et al. [1987]. In the survey of the (T)OP by Vansteen-
wegen et al. [2011], special attention is given to the variants with time windows,
abbreviated by (T)OPTW. Compared to the standard TOPTW, the additional
ingredients of the Security Routing problem are endurance, multiple depots, het-
erogeneous resources, multi-trips, and stochastic travel and service times.

To the best of our knowledge, no research has been conducted yet to such an
extensive variant of the TOPTW, although some articles consider a subset of

10

the additional problem aspects. Since the Security Routing problem extends the
TOPTW, which it itself an extension of the OP, the Security Routing problem
is NP-hard.

3.2 Extended Security Routing problem

In the Extended Security Routing problem, resource-dependent task values
and recurrent tasks with a non-linear profit function are incorporated. In
this section, we focus on the literature regarding these additional problem as-
pects.

3.2.1 Resource-dependent values

Most articles on the OP assume a fixed profit for visiting a node. However, some
articles assume time-dependent profits (e.g. Tang et al. [2007]) or stochastic prof-
its (e.g. İlhan et al. [2008]). To the best of our knowledge, resource-dependent
profits are only addressed in the following two articles.

Xu and Chiu [2001] discuss a Field Technician Scheduling Problem (FTSP) in
which resource-dependent values are constructed using base values for jobs and
skill levels of technicians for certain jobs, analogous to the procedure discussed
in Section 2.2. The authors propose a Local Search (see e.g. Lenstra [2003])
heuristic with the local moves Addition, Swap, Change, and Exchange. The
latter two moves are concerned with moving tasks to different resources, which
makes these moves suitable for handling resource-dependent values. Therefore,
we adopt these four moves in our Tabu Search algorithm.

Flushing et al. [2014] assume that tasks can be partially completed. The com-
pletion rate of a task, and hence the associated collected profit, depends on the
time an agent spends on the task and on the efficacy with which the agent can
perform the task. Since we assume that a task only contributes to the objective
if it is fully completed, this model does not fit our problem setting.

3.2.2 Recurrent tasks

Most articles on the OP assume a linear objective function, but there are some
exceptions. In the Generalized Orienteering Problem (GOP) discussed by Wang
et al. [2008], the objective is a nonlinear function of the node scores on different
attributes, like beauty and cultural significance in a context of visiting cities. In
the Orienteering Problem with Variable Profits (OPVP) in Erdogan and Laporte
[2013], each node i has a collection parameter αi ∈ [0, 1]. For each node visit,
which requires a fixed service time, a value of 100αi percent of the remaining
profit is obtained. Erdogan and Laporte [2013] also discuss an alternative model,

11

similar to the one in Flushing et al. [2014] in the sense that the value obtained
from a node depends on the time spent in the node. If either none or all of
the recurrent tasks from a set should be performed, Disjunctive Programming
techniques (see Grossmann [2002]) could be useful.

In the Satellite Orbit Problem in the ROADEF challenge of 2003, a schedule
along Earth observation requests needs to be constructed for a single satellite.
See ROADEF [2002] for a formal problem description. A request can be a single
target or a polygon that consists of multiple ‘strips’. Since partial images have
little value, the profit of a polygon profit is a convex function. The problem is
similar to an Orienteering Problem with Time Windows, but with a non-linear
objective now. The aim is to select a subset of requests with maximum profit.
Note that no stochasticity is involved in this problem.

Kuipers [2003] won the challenge by using a Simulated Annealing (see e.g. van
Laarhoven and Aarts [1987]) algorithm, in which a candidate solution is con-
structed by removing/inserting a (limited) random number of random requests,
while the number of removed/inserted strips in a polygon request is random as
well. Cordeau and Laporte [2005] finished second by proposing a Tabu Search
algorithm that allows infeasible solutions during search, with a self-adjusting
penalty parameter that increases (decreases) while the solution is infeasible (fea-
sible). They propose to restart at a perturbed version of the best known solu-
tion after some iterations without improvement, and to periodically reorder jobs
within a route. We incorporate both procedures in our Tabu Search heuristic.
We extend the perturbation procedure by adding a random number of recur-
rent tasks in order to help recurrent tasks to appear in the solution, inspired by
Kuipers [2003].

Bianchessi et al. [2007] generalize this Tabu Search approach to multiple satel-
lites performing multiple pre-fixed orbits and apply a branch-and-price approach
to obtain upper bounds to their linear objective function. Their problem prob-
ably resembles our problem setting most of all existing articles, but still differs
in several important respects. A major difference is that the orbits are pre-fixed
regarding time and location, so that endurance constraints do not play a role
here. In particular, recharging moments and departure times from a depot do
not have to be chosen, as opposed to our multi-trip problem. Furthermore, no
stochasticity is involved in their problem either and they assume homogeneous
satellites with respect to speed, profits and service times. On the other hand,
they do consider compulsory priority requests that and they require strips of a
single polygon to be performed consecutively by a single satellite.

12

3.3 Lagrangian Relaxation and Column Gener-
ation

Combining Lagrangian Relaxation and Column Generation (LRCG) is a rather
recent solution approach to solve large-scale problems. It has been applied
successfully in several domains, including crew scheduling (see e.g. Kroon and
Fischetti [2001] and Abbink et al. [2011]). In Huisman et al. [2005], the approach
is discussed in detail within a Dantzig-Wolfe decomposition framework.

As in the LRCG approaches of Potthoff et al. [2010] and Veelenturf et al. [2014],
we will formulate the Security Routing problem as a Set Covering Problem with
additional constraints and the possibility to leave some tasks uncovered, and
relax the covering constraints. For the Lagrangian Dual problem, we use the
well known subgradient method (see e.g. Fisher [1981]). For the pricing problem,
which will be an elementary shortest path problem with resource constraints, we
use a labeling algorithm based on the one applied to a VRP with time windows
in Pirkwieser and Raidl [2009].

3.4 Handling stochastic travel and service times

Due to stochastic travel and service times, we need to take robustness of the
schedules into account when determining the quality of a solution, in addition
to the task values. Two classical ways to handle uncertainties are Robust Op-
timization (see e.g. Ben-Tal et al. [2009]) and Stochastic Programming (see e.g.
Birge and Louveaux [2011]). For Robust Optimization, a solution should be fea-
sible for every scenario within a pre-defined scenario set. The aim of Stochastic
Programming is to maximize the expected profit over all possible scenarios.
In Evers et al. [2012], Robust Optimization and Stochastic Programming are
compared for the OP under uncertainty.

Even though stochastic travel and service times are very common in practice,
little research has been conducted to (T)OP variants under uncertainty. Both
Evers et al. [2014a] and Evers et al. [2014b] consider an OP with stochastic travel
and service times, which they solve using a Robust Optimization approach and a
Stochastic Programming approach, respectively. To the best of our knowledge,
no research has been conducted yet to such an extensive variant of the TOP
with stochastic travel and service times as the Security Routing problem.

In Breugem et al. [2015], the concept of t-recoverability is introduced, which
builds on the concepts of recoverable robustness (see Liebchen et al. [2009])
and quasi-robustness (see Veelenturf et al. [2014]). A route is defined to be
t-recoverable if it has a feasible mean-case schedule, and a feasible worst-case
schedule for a reduced route that is obtained by deleting all tasks below a certain
threshold value. However, this concept has some limitations.

13

First of all, the concept was designed for a problem with strict priority distinc-
tions, in the sense that a task with value vi is more important than the set of all
tasks with a lower value than vi. For more general values, the construction of
a reduced route makes less sense, since the deleted tasks might only be slightly
less important than the other tasks.

Furthermore, the construction of two different schedules causes some problems
when translating the concept to a rescheduling policy. When we use the mean-
case schedule, any decision to perform a lower priority task can lead to infeasi-
bilities for subsequent high priority tasks, even with the smallest delay. When
we start with the worst-case schedule for the reduced route, it is not obvious
that low priority tasks can be reinserted even in favourable scenarios, since the
mean-case schedule can be significantly different.

A major contribution of this thesis is the introduction of the risk function. The
main idea is to skip a task with low value if the risk of having to skip a more
important task in the future is too high. This concept can be applied to any
value structure and has an immediate translation to a rescheduling policy. Thus,
the risk function can be regarded as a generalization and improvement of the
t-recoverability concept.

We also propose the use of a worst-case fraction, which sets a lower bound on
the obtained objective value in the worst-case scenario in real-time. It can be
regarded as a lower bound on a normalized multiple-route version of the Profit
At Certainty (with α = 1) as defined in Evers et al. [2014b].

14

Chapter 4

LRCG for the original
problem

For the original Security Routing problem, a procedure that combines La-
grangian Relaxation and Column Generation (LRCG) was proposed by Breugem
et al. [2015]. In addition to generating feasible solutions, this approach is used to
generate upper bound estimators on the optimal objective value. In this chap-
ter, we build further on this LRCG approach and propose some adjustments
that might improve these results.

In Lagrangian Relaxation (see e.g. Fisher [1981]) of a Linear Programming (LP)
problem, a complicating constraint set is incorporated in the objective of the LP
problem. Column generation (see e.g. Desaulniers et al. [2006]) is used to handle
problems with a huge solution space, by only considering promising columns
that might improve the current objective value. These two methods have been
successfully combined into a LRCG approach in several articles, including Kroon
and Fischetti [2001] and Abbink et al. [2011].

In Section 4.1, we provide an integer linear programming (ILP) formulation for
the original Security Routing problem. As the number of possible feasible routes
explodes for larger instances, it is untractable to solve the ILP by standard
procedures, which motivates the use of the LRCG approach. In Section 4.2,
we discuss the Lagrangian Subproblem and the Lagrangian Dual problem. In
Section 4.3, we discuss the restricted master problem and the pricing problem.
In Section 4.4, we explain how the LRCG approach can be used to obtain upper
bound estimators on the maximum total task value that can be obtained. In
Section 4.5, we discuss a greedy heuristic to obtain feasible solutions for the
original ILP, which is necessary because solutions to Lagrangian Subproblems
are generally infeasible for the original ILP.

The LRCG approach we propose is different from the one in Breugem et al.

15

[2015] in several aspects. First of all, the parts related to the t-recoverability
concept are removed. Furthermore, we introduce an adapted subgradient algo-
rithm for the Lagrangian Dual problem.

We stress that we will only combine the Tabu Search algorithm (see Chapter
5) with the robustness concepts and rescheduling policies that we propose in
Chapters 6 and 8. Thus, the focus of this LRCG approach is on the deterministic
version of the original Security Routing problem. Furthermore, we ignore the
planning horizon constraint in this chapter.

4.1 ILP formulation

In the Security Routing problem, we need to assign a feasible route to each
resource, while maximizing the total value of the scheduled tasks. Let R be the
set of resources and let Kr be the set of feasible routes for resource r ∈ R. Let
I be the set of tasks and let a value vi be defined for each task i ∈ I. The
binary decision variables xkr indicate which routes appear in the solution. In
particular, xkr is 1 if route k is assigned to resource r, and 0 otherwise. Let
a binary parameter aikr be 1 if task i is assigned to a route k for resource r,
and 0 otherwise. Let a penalty zi be 1 if task i remains unscheduled, and 0
otherwise. Using this notation, we can formulate the Security Routing problem
as the following ILP:

min
∑
i∈I

vizi (4.1)

s.t.
∑
r∈R

∑
r∈Kr

aikrxkr + zi ≥ 1 ∀i ∈ I (4.2)

∑
k∈Kr

xkr = 1 ∀r ∈ R (4.3)

xkr ∈ {0, 1} ∀r ∈ R, k ∈ Kr (4.4)

zi ∈ {0, 1} ∀i ∈ I (4.5)

The objective (4.1) indicates that we minimize the value of the tasks that re-
main unscheduled, which is equivalent to maximizing the value of the scheduled
tasks. Constraints (4.2) indicate that each task is assigned to at most one re-
source. Constraints (4.3) inidicate that exactly one route is assigned to each
resource.

Notice that the ILP is formulated as a Set Covering Problem with additional
constraints, with the possibility to leave some tasks unscheduled, as in Potthoff
et al. [2010].

16

4.2 Lagrangian Relaxation

We apply Lagrangian relaxation to turn the ILP into a Lagrangian Subproblem
that is easy to solve, as we discuss in Section 4.2.1. The Lagrangian Subproblem
is repeatedly solved for different sets of Lagrangian multipliers in the Lagrangian
Dual problem, which we discuss in Section 4.2.2.

In the LRCG algorithm, we iteratively solve the Lagrangian Dual problem and
generate new columns. In particular, both the Lagrangian Subproblem and the
Lagrangian Dual problem are solved using a restricted subset of columns. In
this section, suppose that in the n-th iteration in the LRCG algorithm, a subset
of columns Kn

r for each resource r is given, of which we denote the union by
Kn = ∪r∈RKn

r .

4.2.1 Lagrangian Subproblem

The ILP is difficult to solve, due to the constraints that each task should be
assigned to at most one resource. Therefore, we relax constraints (4.2) in a
Lagrangian way, which yields the following Lagrangian subproblem for a given
set of Lagrangian multipliers Λ = (λi)i∈I :

Θn(Λ) = min
∑
i∈I

λi +
∑
i∈I

(vi − λi) zi

+
∑
r∈R

∑
k∈Kn

r

(
−
∑
i∈I

λiaikr

)
xkr (4.6)

s.t. (4.3)− (4.5)

Observe that the reduced costs of a route k ∈ Kr are given by:

ζkr(Λ) = −
∑
i∈I

λiaikr. (4.7)

The optimal solution for the Lagrangian subproblem can be found easily. To
each resource r, we assign the route with minimal reduced cost, which is equiva-
lent to the route with maximum task value. That is, we set xk̂r = 1 for the route

k̂ = arg min{ζkr(Λ) | k ∈ Kn
r }, and xkr = 0 for all k ∈ Kn

r \{k̂}. Furthermore,
we set zi = 1 if and only if vi − λi < 0.

In general, solutions to the Lagrangian Subproblem will tend to include tasks
with high value in multiple routes. Therefore, the solutions are typically infea-
sible for the original ILP, due to violation of the constraints (4.2).

17

4.2.2 Lagrangian Dual problem

As the Lagrangian Subproblem is a relaxation of the original ILP, solutions to
the Lagrangian Subproblem can be used as a lower bound for the objective
value that can be obtained in the original ILP, restricted to the current subset
of columns Kn in the n-th LRCG iteration. The aim of the Lagrangian Dual
problem is to find the strongest of these lower bounds:

Θ∗n = max
Λ≥0

Θn(Λ) (4.8)

There is no analytical solution for this problem to find the maximum objective
value for a Lagrangian Subproblem over all possible multipliers Λ ≥ 0. There-
fore, we are forced to approximate Θ∗n by an estimator Θ̂n. The approximation
is made by using a subgradient algorithm, based on Fisher [1981]. The procedure
is shown in Algorithm 1, of which we explain the steps below.

After initializing the parameters (Step 0), we repeatedly solve the Lagrangian
subproblem for different Lagrangian multipliers Λj = (λji)i∈I (Step 1). The
multipliers for the next iteration are determined using the subgradient yj that
indicates in which direction the optimum can be found (Step 2).

In Breugem et al. [2015], the step size parameter α was decreased every time
that no improvement of Θ̂n was found for γ consecutive iterations, which is
the classical approach (see e.g. Fisher [1981]). However, a drawback of this
procedure is that the step size might become very small too quickly. Since a
small step size leads to small differences between Lagrangian multipliers over
different iterations, having a small step size implies that Θ̂n will probably not be
improved significantly anymore, and the subgradient algorithm is terminated. If
this happens too quickly, this leads to a significant underestimation of Θ∗n.

Caprara et al. [1999] propose to update α periodically after p iterations, based
on the best and worst obtained lower bounds in this period. Inspired by this
procedure, we propose a periodic update procedure based on the obtained lower
bounds as well (Step 3), which allows us to guide the search process better.
After each period of p iterations, we check whether the obtained lower bound
has improved sufficiently, and we only decrease α if this is not the case.

Note that this is different from just increasing the parameter γ. In fact, in-
creasing γ could cause that the step size parameter remains too high too long,
as the obtained lower bounds often fluctuate over different iterations, especially
when the step size is still large. By comparing the average lower bounds over
the first few iterations and the last few iterations, we aim to compensate for
this effect.

Another measure that protects against terminating the search too early and
underestimating Θ∗n, is taken in the termination criteria (Step 4). If α drops
below a threshold value ε, we only stop the search if there was not enough
improvement over the last p′ iterations.

18

Algorithm 1 Subgradient algorithm to solve Lagrangian Dual

1: Step 0: Initialization
2: Initialize parameters jmax, δ, ε,Λ

0, UB, acceptPerc.
3: Initialize parameters α0, p, p′, avgIts,minImprove, decrFactor.

4: Step 1: Solve Lagrangian subproblem
5: Compute lower bound Θn(Λj) with optimal solution xj and zj .
6: Compute subgradient yji = 1−

∑
r∈R

∑
k∈Kn

r
aikrx

j
kr − z

j
i

7: Step 2: Compute Lagrangian multipliers

8: Compute λj+1
i = λji + αj UB−Θn(Λj)∑

i∈I(yj
i)2

yji

9: Step 3: Update step size parameter
10: if j = kp for some k ∈ N then

11: Compute begin =
∑(k−1)p+avgIts−1

q=(k−1)p Θn(Λq).

12: Compute end =
∑kp

q=kp−avgIts+1 Θn(Λq).
13: Compute perc = sign(begin) ∗ (end− begin)/begin.
14: if perc < minImprove then
15: Set αj+1 = decrFactor ∗ αj .
16: end if
17: end if

18: Step 4: Termination criteria

19: if
∑

i∈I(yji)2 ≤ δ, j ≥ jmax or |UB−Θn(Λj)|
Θn(Λj) < acceptPerc then

20: Stop.
21: else
22: if αj < ε and j ≥ p′ then

23: Compute avgBegin =
∑j−p′+avgIts

q=j−p′+1 Θn(Λq)/avgIts.
24: Compute maxEnd = max{Θn(Λq) | q > j − p′}.
25: Compute perc = sign(avgBegin) ∗ (maxEnd− avgBegin)/avgBegin.
26: if perc < minImprove then
27: Stop.
28: end if
29: end if
30: Return to step 1.
31: end if

19

4.3 Column generation

Due to the large number of possible routes for large instances, it is untractable to
solve the ILP over all possible routes. Therefore, we apply Column Generation
in order to only consider the most promising columns. Below, we give a global
overview of the LRCG algorithm, after which we discuss the pricing problem in
more detail in Section 4.3.1.

In the n-th column generation iteration, we solve the Restricted Master Problem
(RMP) of the relaxed ILP over the current subset Kn = (Kn

r)r∈R of generated
columns. Afterwards, we extend Kn by generating new promising columns in
the pricing problem, in which the quality of columns is based on Lagrangian
multipliers λ obtained in the Lagrangian Dual problem. We terminate the
LRCG algorithm if we are unable to generate additional promising columns in
the pricing problem.

4.3.1 Pricing problem

In the pricing problem, we aim to find columns that can form a valuable addition
to the current subset of columns. After describing how to measure the quality
of a column, we define when we consider a column to be profitable. Afterwards,
we explain how to construct and solve the pricing problem.

Profitable columns

The quality of a column can be measured by its reduced costs with respect to the
Lagrangian multipliers λ that correspond to the strongest lower bound obtained
in the Lagrangian Dual problem. Recall from equation (4.7) that the reduced
costs of a route k for resource r are given by ζkr(Λ) = −

∑
i∈I λiaikr.

As we consider a minimization problem, we aim for the columns with minimal
reduced costs. As in Potthoff et al. [2010], we consider a generated column k
for resource r to be profitable if and only if k is better than the current columns
for resource r, i.e. if ζkr(Λ) < ζk′r(Λ) for all routes k′ in the current subset
Kn

r .

Constructing the pricing problem graph

The pricing problem is separable per resource and can be modeled as an elemen-
tary shortest path problem with resource constraints (ESPPRC). In particular,
we need to construct a graph in which a path corresponds to a route, which
should satisfy the constraints regarding time windows and endurance.

We search for a shortest path in a graph in which the nodes represent tasks
and depots. A path through this graph corresponds to a route, as it defines a

20

Figure 4.1: Taken from Breugem et al. [2015]: An example of a pricing problem
graph, with depot nodes v0, v4 and task nodes v1, v2, v3.

sequence of locations. This route should be feasible with respect to time windows
and endurance. Furthermore, we require each path to start at the node v0 that
represents the starting depot, and to be elementary in the sense that each task
is visited at most once. The number of visits to depot nodes is not restricted,
in order to allow for recharging depot visits in multi-trip routes.

In each path, an arc (i, j) indicates that node j is visited after node i in the
corresponding route. By setting cij = −λi for tasks i and cij = 0 for depots,
we ensure that the length of the path is equal to the reduced costs of the
corresponding route. Consequently, the shortest path in the graph corresponds
to the route with minimal reduced costs. Since we require paths to be elementary
in the sense that each task is visited at most once, the shortest path is well-
defined, even though the arc weights cij can be negative.

In Figure 4.1, we show a small example of a graph for the pricing problem. In
this example, the aim is to find an elementary shortest path from depot node
v0 to the duplicate depot node v4, of which the corresponding route must be
feasible with respect to time windows and endurance.

Solving the elementary shortest path problem with resource con-
straints

For solving the above problem, we use a dynamic programming approach based
on Pirkwieser and Raidl [2009]. In this algorithm, partial paths are extended
using a labelling approach. Since the problem is NP-hard, due to the constraints
on time windows and endurance, we use a heuristic dominance rule to eliminate
unpromising partial paths in an early stage. Note that this might lead to a
sub-optimal result, in the sense that we miss the route with minimal reduced
costs, due to eliminating a corresponding partial path too early.

21

To each partial path, we assign a label that contains information about the
corresponding route. When we extend the partial path [p] by an arc (vi, vj), we
update this label by the equations below:

Vj([p] ∪ vj) = Vi([p]) ∪ vj (4.9)

Cj = Ci + cij (4.10)

arrj = arri + waiti + s̄ir + t̄ijr (4.11)

waitj = max{0, Lj − arrj} (4.12)

startj = max{arrj , Lj} (4.13)

Wj = Wi + waitj (4.14)

Fj = min{Fi,Wj + (Uj − startj)} (4.15)

Dj = startj −min{Fj ,Wj} (4.16)

For the obtained partial path with end node vj , Vj and Cj represent the visited
nodes and the cost of this partial path, respectively. Assuming that we leave
depot v0 at time 0, arrj , waitj and startj represent the arrival time, waiting
time, and starting time at node j, respectively.

Wj represents the total waiting time in the current trip to j. Fj represents
the forward time slack, introduced in Savelsbergh [1992], which is the maximum
duration by which the previous depot visit can be extended. By reducing waiting
times, this can lead to a shorter duration Dj of the current trip to j. If the node
vj is a depot, a trip is completed. After recharging at this depot, the partial
path may be extended further by an arc (vj , vk) for some task vk. Therefore,
we reset the labels Wj , Fj and Dj at the end of each trip.

If vj is a task, we do not consider extension by the arc (vi, vj) for partial paths
[p] that already contain task vj , in order to avoid visiting the same task twice.
The extension of [p] by the arc (i, j) is infeasible if its time window is violated
or if the duration of the current trip to j exceeds the endurance of the resource,
i.e. if arrj > Uj or if Dj > Er. In that case, we delete the obtained label.

In order to keep the number of stored labels limited, we use dominance rules.
If a partial path [p]1 dominates a partial path [p]2 that ends at the same node
vj , we delete the label for [p]2. We use the following rules to indicate that [p]1

dominates [p]2:

1. [Cj]
1 ≤ [Cj]

2 ∧ [Dj]
1 ≤ [Dj]

2

2. [Cj]
1 ≤ [Cj]

2 ∧ [Dj]
1 ≤ [Dj]

2 ∧ [startj]
1 ≤ [startj]

2

Rule 1 states that [p]1 dominates [p]2 if it has lower cost and a lower duration.
Rule 2 requires additionally that the starting time at node vj is earlier for [p]1.
Since using an exact dominance rule leads to excessive running times, we use
the heuristic dominance rules above, although this might imply that we miss
the shortest path.

We summarize the complete algorithm for the pricing problem below. We keep

22

track of a set U of uncompleted partial paths, which initially only contains the
empty path {v0}. In each iteration of the dynamic programming algorithm, we
choose a partial path [p] ∈ U . For each possible extension by an arc, we update
the label of [p] if the extension is feasible. Furthermore, for a given dominance
rule, we check whether the new label is dominated by another partial path or
dominates other partial paths itself. During this procedure, each partial path
that ends at a depot is added to the set P of completed paths. When no
uncompleted partial paths remain, the algorithm returns the path from P with
the lowest costs. We add the corresponding route k to the current subset of
columns for this resource if and only if the column is profitable. If no profitable
column can be found when using rule 1, we might want to repeat the above
process with the less strict dominance rule 2.

4.4 Upper bound estimator on total task value

Recall from Section 4.2.2 that in the n-th column generation iteration, each
solution to a Lagrangian Subproblem is a lower bound for the objective value of
the original ILP, restricted to the current subset of columns Kn. The approxi-
mation Θ̂n obtained by the subgradient algorithm is the strongest lower bound
in the n-th iteration. However, Θ̂n cannot be used as a lower bound on the
original ILP over all columns, as the addition of new columns typically leads to
a decreased value Θ̂n+1 < Θ̂n in a subsequent iteration.

If we would be able to guarantee that we always find the route with minimal
reduced costs in the pricing problem, we could use the obtained Lagrangian Dual
solution Θ̂N in the final column generation iteration N as a lower bound on the
objective value of the original ILP over all possible routes. However, due to the
use of heuristic dominance rules in the pricing problem, we cannot provide this
guarantee. Nevertheless, Θ̂N is still useful as a lower bound estimator for the
optimal objective value for the original ILP, in which we aim at minimizing the
total value of all unassigned tasks. For the equivalent maximization problem of
maximizing the total value of all scheduled tasks, we can use (

∑
i∈I vi) − Θ̂N

as an upper bound estimator for the optimal objective value.

4.5 Generating feasible solutions

In each iteration of the subgradient algorithm for the Lagrangian Dual prob-
lem, we generate a solution by solving a Lagrangian Subproblem. In general,
this solution is infeasible for the original ILP, due to violation of the covering
constraints (4.2). Given Lagrangian multipliers Λ, we use the following greedy
procedure to obtain feasible solutions for the original ILP:

23

1. For the remaining resource r ∈ R with the lowest travel speed, choose the
route k (i.e. set xkr = 1) with minimal reduced costs ζkr(Λ).

2. For all tasks i in route k, set λi = 0. Delete resource r from R. If R is
still non-empty, return to Step 1. Otherwise, go to Step 3.

3. For each task i, set zi = 0 if task i is assigned to some resource, and set
zi = 1 otherwise.

We apply this procedure once in every iteration of the subgradient algorithm.
We sort the resources in increasing order of travel speed, since faster resources
typically have a larger set of tasks which they can perform within their en-
durance. Therefore, faster resources are typically more flexible when searching
for a route that complements the already chosen routes well.

In Step 2, we set λi = 0 for chosen tasks i in order to reflect that performing a
task only contributes to the total task value at most once. However, this does
not imply that tasks cannot appear multiple times in solutions obtained by the
above procedure.

24

Chapter 5

Tabu Search for the
extended problem

In this chapter, we discuss a Tabu Search algorithm that can be used for the
Extended Security Routing problem. Obviously, it can handle the original Secu-
rity Routing problem as well. The aim of this heuristic is to find good solutions
quickly, especially compared to the running time for the LRCG algorithm.

A Tabu Search algorithm is an extended version of Local Search algorithms
(see e.g. Lenstra [2003]). In Local Search algorithms, one iteratively updates
a solution by searching for a better solution in the neighborhood of the current
solution, which contains solutions that are close to the current solution in some
(problem-specific) sense. A basic Local Search algorithm terminates when no
improving solution can be found in the neighborhood.

In Tabu Search algorithms (see e.g. Glover and Laguna [2013]), moves that
deteriorate the objective value of the solution are allowed. The introduction of a
tabu list prevents cycling in the sense of returning to previously visited solutions
quickly. Typically, this tabu list contains more specific information than entire
solutions, because of memory issues. The aim of allowing deteriorating moves
and avoiding cycling is to escape from local optima.

In Section 5.1, we discuss the neighborhood and the tabu list we use. In Section
5.2, we discuss the construction of a feasible schedule for a given route. In
Section 5.3, we discuss a fast feasibility check for task insertions, suitable for
our multi-trip and multi-constrained problem. Intensification and diversification
mechanisms are discussed in Section 5.4. We finalize this chapter in Section 5.5
by describing some speed-ups of the algorithm.

In Algorithm 2, we provide a global overview of our Tabu Search heuristic to
tackle the Extended Security Routing problem. This heuristic extends the one
proposed in Breugem et al. [2015] significantly. We incorporate a reordering

25

procedure of tasks and we pay special attention to recurrent tasks in a random
perturbation procedure. Regarding the schedules, we incorporate latest return
times to avoid endurance and planning horizon violations, and we allow for
extended depot visits in order to repair endurance problems. Moreover, we
propose a fast feasibility check for task insertions, which includes a framework
to handle the multi-trip character of routes.

Algorithm 2 Tabu Search heuristic for constructing offline solutions

1: Input: Task set I and resource set R.
2: Input: List routeList that contains an empty route for each resource r ∈ R.
3: Output: An offline solution for the Extended Security Routing problem.

4: Initialize best solution in (sub)search: subBest = best = routeList
5: while maximum running time is not reached do
6: for all local move types in the neighborhood (Section 5.1) do
7: Sort moves in decreasing order of potential objective gain (Section 5.5).
8: for all moves do
9: if move has potential to yield best solution of iteration then

10: Randomly choose insertion position and alternative route.
11: Apply fast feasibility check for task insertion(s) (Section 5.3.1).
12: if move is feasible then
13: Construct a feasible schedule (Section 5.2)
14: Update best solution of iteration and go to next local move type.
15: else
16: Try different insertion positions and alternative routes.
17: end if
18: end if
19: end for
20: end for

21: Update current routeList according to the performed move.
22: Update tabu list (Section 5.1) and alternative routes (Section 5.3.2).
23: If improved, update subBest and best.

24: if no improvement of subBest or best in last few iterations then
25: if subBest has not been reordered before then
26: Intensification: apply reorder procedure to subBest (Section 5.4.1).
27: else
28: Diversification: apply random perturbation to best (Section 5.4.2).
29: end if
30: Start new subsearch, with updated subBest and tabu list.
31: end if
32: end while

26

5.1 Neighborhood and tabu list

We start the search with empty routes for each resource. In each iteration, we
move to the best non-tabu solution in our neighborhood. This neighborhood
consists of the following local moves, adopted from the Local Search heuristic
in Xu and Chiu [2001]:

• Addition: add an unscheduled task to a route

• Swap: swap a scheduled task with an unscheduled task

• Change: change the resource by which a task is performed

• Exchange: exchange two tasks currently assigned to different resources

See Figure 5.1 for a graphical representation of the local moves. Observe that
the moves Change and Exchange are perfectly suitable for handling resource-
dependent values.

If task i leaves resource r after a Change or Exchange move, we declare all
solutions that assign i to r tabu for some fixed number of iterations. Similarly,
if task i leaves the set of unscheduled tasks after an Addition or Swap move, we
declare leaving i unscheduled tabu for a while.

Figure 5.1: The local moves for the Tabu Search algorithm.

27

5.2 Schedules

In this section, we discuss the construction of a feasible schedule for a given
route, assuming a mean-case scenario in which the realized travel and service
times are equal to their expected values. First, we introduce some notation and
corresponding formulas of time variables in Section 5.2.1. These time variables
include maximum shift variables that will be used for a fast feasibility check
for task insertion (see Section 5.3), and latest return times to a depot in order
to avoid violations of constraints on endurance and the planning horizon. In
Section 5.2.2, we describe an exact procedure to generate a feasible schedule,
which includes the option to extend depot visits in order to repair endurance
problems.

5.2.1 Time variables

We introduce several time variables that we determine when constructing a
schedule. For the corresponding formulas below, recall from Section 2.1 that
t̄ijr denotes the expected travel time from location i to location j for resource r,
s̄ir denotes the expected service time for task i and resource r, and Lj denotes
the release time of task j. Furthermore, recall that a location can refer to either
a task or a depot.

For tasks, we assume that we never wait longer than required by its release time
and that we immediately leave the task after completing it. This yields the
following formulas for a task j that immediately follows a location i:

Arrival time : arrj = depi + t̄ijr (5.1)

Waiting time : waitj = (Lj − arrj)+ (5.2)

Starting time : startj = arrj + waitj (5.3)

Departure time : depj = startj + s̄jr (5.4)

The validity of above formulas for a depot j depends on its position. For the
first depot visit, arrival and starting times are not defined, while we initialize
its waiting time and departure time by setting them both to be zero. For any
recharging depot j, the above formulas for arrj , startj and depj are still valid
when we let sjr refer to the minimal rest time Rr. Initially, the waiting time is
set to zero again, although it might be useful to set waitj > 0 for a depot visit
j that is not the final depot visit. For the final depot visit, the above formula
for the arrival time is valid, while none of the other times is defined.

Additionally, we define the maximum shifts msTW
i and msEND

i to be the maxi-
mum time by which the starting time of location i can be delayed, while preserv-
ing feasibility with respect to time windows and endurance, respectively. These
maximum shifts can be regarded as the multi-trip and multi-constraint versions
of the ones proposed by Vansteenwegen et al. [2009]. They are determined while
constructing a schedule, as described in Section 5.2.2.

28

Latest return times

Recall that for a resource r with endurance Er, each trip duration should be
at most Er. In practice, it is highly undesirable to violate this constraint. For
instance, an unmanned aerial vehicle (UAV) should not go out of fuel above
hostile territory. Although some buffers are used in practice, it is important to
keep a sharp eye on trip durations. Similarly, violating the planning horizon
is undesirable as well. For instance, resources with a secret mission at night
should be back at the depot before dawn.

Therefore, we introduce latest return times for endurance and planning horizon,
denoted by LRTEND and LRTHOR, respectively. For both constraints, we
require for each task that we can still arrive at the depot in time after completion
of the task, assuming a worst-case travel time to the depot. Consider a trip from
depot d to depot d′, in a route for resource r with endurance Er and planning
horizon T . For each task i in the trip, the latest return times are given by:

LRTEND
i = depd + Er − (1 + σTT)t̄id′r (5.5)

LRTHOR
i = T − (1 + σTT)t̄id′r (5.6)

Recall from Section 2.2 that σTT represents the maximum deviation fraction for
travel times. LRTEND

i and LRTHOR
i represent the latest departure time from

task i at which we can guarantee a timely arrival at depot d, with respect to
endurance and the planning horizon, respectively. To be feasible with respect
to endurance and the planning horizon, we require that a schedule satisfies
depi ≤ LRTEND

i and depi ≤ LRTHOR
i for all tasks i.

It does not suffice to put this restriction only on the last task of each trip for
endurance and only on the last task of the route for the planning horizon. For
succeeding tasks i and j in the same route, it is possible that depi > LRTi and
depj ≤ LRTj . This can especially occur if σTT is large and i is far from the
depot while j is not, as in Figure 5.2.

Due to imposing these additional requirements on a schedule, we can obtain a
lower total task value in general. On the other hand, violating the constraints
on endurance and the planning horizon becomes highly unlikely. Furthermore,
performing tasks far from the depot at the end of a trip is discouraged, since
these tasks have a large worst-case travel time to the depot.

Figure 5.2: Tasks i and j in a trip to depot D.

29

5.2.2 Constructing a feasible schedule for a given route

We propose a constructive algorithm to generate a feasible schedule for a given
route. In this algorithm, we start from scratch at time 0 and add the locations
of the route one by one. After each addition, we check whether the schedule
remains feasible. The algorithm is exact in the sense that if it fails to find a
feasible schedule, there cannot exist a feasible schedule. In Algorithm 3, the full
procedure is shown. We discuss the algorithm below, in which the line numbers
refer to specific parts of Algorithm 3.

After an initialization step for the first depot visit, we loop through all other
locations j in the candidate route. If j is a task, we check whether we arrive
before its deadline and whether we depart in time compared to its latest return
time for the planning horizon. If not, the route is infeasible (line 12-15).

If j is a depot, we check whether the trip to j is feasible with respect to endurance
(line 24-30). Initial violations might be repaired by extending the visit to the
previous depot d, since the trip duration becomes smaller when this extension
leads to lower waiting times in the trip. For each task i ∈ Tripj , a violation of
the latest return time LRTEND

i can be repaired by extending the visit to d if
and only if the extension removes a sufficient amount of waiting time before i
and preserves feasibility with respect to time windows.

If an extension is necessary, we extend the visit to d by the minimal feasible
extension size (line 31). This ensures that we can immediately terminate the
algorithm in case of a time window violation, since the preceding depot visit(s)
cannot be reduced and hence, the arrival time cannot be decreased. Algorithm
4 shows the corresponding update of time variables, taking into account that
the extension delay decreases over the trip due to reduced waiting times.

Maximum shifts

Before explaining how to determine the maximum shifts, we introduce some
terminology. The time window buffer of a task j with planned arrival time arrj
is given by Uj − arrj . Similarly, the endurance buffer and planning horizon
buffer are given by LRTEND

j − arrj and LRTHOR
j − arrj , respectively.

As we mentioned, the maximum shifts are determined during the construction
of the schedule. When the loop in Algorithm 3 arrives at a depot j, we first
compute msTW

j′ by backward recursion (line 17-22). We loop over all locations
j′ before depot j, since the maximum shift for a location might be affected by a
small time window or planning horizon buffer for some later location, even if the
later task is part of a different trip. This step is performed before the endurance
check, since msTW

d serves as an upper bound on the extension size of the visit to
depot d. For the update formula, notice that msTW incorporates buffers with
respect to the planning horizon (line 19) and that waiting times are included
(line 20), since delays might (partially) vanish due to waiting times.

30

Algorithm 3 Constructing a feasible schedule

1: Input: Planning horizon [0, T], maximal travel time deviation fraction σTT .
2: Input: Resource r with endurance Er.
3: Input: Candidate route with ordered location set L, with subsets Tripj ⊂
L that contains all tasks in a trip to depot j.

4: Input: Locations i ∈ L (tasks and depots) with time windows [Li, Ui].
5: Input: For locations i, j ∈ L and resource r: expected travel times t̄ijr,

expected service times s̄ir.
6: Input: Previous depot d, previous location i, and tripWaiti is the total

waiting time in the trip up to and including task i.
7: Output: A feasible schedule for the route or an infeasibility message.

8: Initialize: d = i = firstDepot, waiti = depi = tripWaiti = 0.

9: for all j ∈ L\{firstDepot} do
10: Set arrj = depi + t̄ijr and LRTHOR

j = T − (1 + σTT)t̄id′r.
11: if j is a task then
12: if arrj > Uj or arrj > LRTHOR

j − s̄jr then
13: Stop. Route is infeasible w.r.t. time windows or planning horizon.
14: end if
15: Set waitj = (Lj − arrj)+ and tripWaitj = tripWaiti + waitj .
16: else
17: Set msTW

j = T − startj and nextLoc = j.
18: for all locations j′ ∈ L before j do
19: Set taskSpacej′ = min{Uj′ , LRT

HOR
j′ − s̄jr} − startj′ .

20: Set msTW
j′ = min{taskSpacej′ , waitnextLoc +msTW

nextLoc}.
21: Set nextLoc = j′.
22: end for
23: Compute LRTEND

t = depd+Er−(1+σTT)t̄ijr for each task t ∈ Tripj .
24: for all tasks i ∈ Tripj do
25: Set violation violi = depi − LRTEND

i .
26: if tripWaiti < violi or msTW

d < violi then
27: Stop. Route k is infeasible w.r.t. endurance.
28: end if
29: end for
30: Extend visit to depot d by size (min{violi | i ∈ Tripj})+.
31: Set msEND

i = LRTEND
i − depi and nextTask = i.

32: for all tasks i′ ∈ Tripj before i do
33: Set msEND

i′ = min{LRTEND
i′ − depi′ , waitnextTask +msEND

nextTask}.
34: Set nextTask = i′.
35: end for
36: Set d = j and tripWaitj = 0.
37: end if
38: Set i = j and depi = arri + waiti + s̄ir.
39: end for

31

Algorithm 4 Extending a depot visit

1: Input: Trip from depot d to depot j with task set Tripj .
2: Input: Current partial schedule up to the end of the trip.
3: Input: Extension size extendBy of the visit to depot d.
4: Output: Updated time variables arr, wait,msTW .

5: Set waitd = waitd + extendBy and msTW
d = msTW

d − extendBy.
6: Set ∆ = extendBy.
7: for all tasks j′ ∈ Tripj do
8: Set oldWait = waitj′ .
9: Set waitj′ = (oldWait−∆)+ and arrj′ = arrj′ + ∆.

10: Set ∆ = (∆− oldWait)+ and msTW
j′ = msTW

j′ −∆.
11: end for

If the endurance check is successfully passed, we use a similar backward recursion
to compute the maximum shifts for endurance (line 31-35). Contrary to msTW ,
we only consider the tasks in the trip to j, since the latest return times are
measured with respect to the departure time from the previous depot. Moreover,
while delays can have a negative effect on time window buffers in a next trip,
this is impossible for endurance buffers, since the entire trip is shifted.

5.3 Fast feasibility check for task insertions

A fast check whether a task insertion is feasible is indispensable to have a quick
Tabu Search algorithm, because we search for the best solution in the entire
neighborhood in each iteration and an attempt to insert the task can be made
for any position in the current route. An even more important reason specific
to our multi-trip problem is that when trying to add a task to a route, there
are many possibilities regarding the positions of recharging depots, even if the
order of the present tasks remains fixed.

In Section 5.3.1, we discuss a fast feasibility check for task insertion at a specific
position in an otherwise fixed route. A framework to handle the positions of the
recharging depots is discussed in Section 5.3.2.

5.3.1 Check for a fixed location sequence

The feasibility of an insertion might be checked by constructing a new schedule
from scratch, using Algorithm 3 from Section 5.2.2. However, this is rather
time-intensive, especially since we check a huge amount of insertions in each
iteration, of which a large fraction is infeasible. Therefore, we would benefit
from a procedure to judge the feasibility of an insertion at an early stage.

32

For this purpose, we propose a fast feasibility check that builds on the maxi-
mum shift variables. It can be considered as the multi-trip and multi-constraint
version of the check proposed by Vansteenwegen et al. [2009]. It covers the
constraints on time windows, endurance, and the planning horizon. In this sub-
section, we discuss attempts to insert a task a specific position in a fixed route.
In particular, we do not reorder tasks or change the amount or positions of
recharging depots in this stage.

Consider inserting a task j between visits i and k in a route for resource r.
This insertion is feasible if and only if the inserted task j satisfies the following
conditions:

• The inserted task j satisfies its own time window and latest return times.

• The delay for the visits after j does not lead to an infeasibility with respect
to time windows and endurance.

For the first condition, we compare the expected arrival time arrj = depi +
t̄ijr to the time window deadline Uj . Furthermore, we compare the expected
departure time depj = max{arrj , Lj}+ s̄jr to the latest return times LRTEND

j

and LRTHOR
j , computed by equations (5.5) and (5.6). The first condition is

satisfied if and only if the following two conditions hold:

arrj ≤ Uj (5.7)

depj ≤ min{LRTEND
j , LRTHOR

j } (5.8)

For the second condition, use waitj = (Lj − arrj)+ to define the delay caused
by inserting a task j between i and k by

Delayijkr = (t̄ijr + t̄jkr − t̄ikr) + waitj + s̄jr.

Inserting task j between i and k delays the arrival time at visit k by exactly
Delayijkr. The key of the fast feasibility check is that by the recursive con-
struction of the maximum shift variables, it suffices to compare the delay only
to the maximum shift of the next task k. In particular, the second condition is
satisfied if and only if the following two conditions hold:

Delayijkr ≤ waitk +msTW
k (5.9)

Delayijkr ≤ waitk +msEND
k (5.10)

Thus, inserting j between i and k is feasible if and only if conditions (5.7) -
(5.10) hold. If a time window check fails, the insertion is infeasible. If only an
endurance check fails, the insertion is feasible if and only if the depot visit before
j can be extended sufficiently. After successfully passing the feasibility check
(and before any robustness check), we are sure that a feasible schedule exists for
the extended route, which we construct using Algorithm 3. If the insertion is
infeasible, we try another insertion position of j. If we find a feasible insertion,
we do not try other insertion positions for this task anymore.

33

5.3.2 Handling the positions of recharging depots

The above feasibility check suffices for single-trip problems, when performed for
any possible insertion position. However, in our multi-trip problem, failing this
feasibility check does not necessarily mean that the task sequence is infeasible.
In particular, the insertion might actually be feasible for a different structure for
recharging depots in the route, regarding their amount and their positions. Try-
ing all possible amounts and positions for every initially infeasible task sequence
would significantly slow down the search process, since this can boil down to
checking a huge number of routes with the same task sequence.

As an alternative, we introduce a set Ar of alternative routes for resource
r. This set consists of feasible routes with the same task sequence as the cur-
rent route in the search process, but with different amounts and positions of
recharging depots. In order to keep the size of the set limited, we only allow
‘reasonable’ amounts of recharging depots in the sense that they differ at most
one from the amount of recharging depots in the current route.

After each search iteration, we update the set of alternative routes for each
changed route. For each reasonable amount d of recharging depots and any
possible insertion position(s) of these depot visits, we try to construct a feasible
schedule by Algorithm 3. The set of alternative routes consists of all such routes
for which we find a feasible schedule. Additionally, for each task i in a changed
route for resource r, we apply the same procedure as above to find a set Air of
alternative routes after removal of this task i.

In the next search iteration, the generated routes are used for checking the
feasibility of task insertions. In particular, adding a task to a route for resource
r by an Addition and Change move is feasible if and only if the task can be
inserted in any route in Ar. Adding a task j to a route for resource r after
removal of a task i, by a Swap or Exchange move, is feasible if and only if j can
be inserted in any route in Air.

One of the main advantages of the alternative routes framework is that we
discard the positions of recharging depots that are already infeasible before
inserting any task. Hence, we significantly reduce the amount of options to try
for a task insertion. Moreover, the constructed schedules for alternative routes
allow for a fast feasibility check of a task insertion, as described in Section 5.3.1.
Thus, we only need to construct a schedule from scratch within the search
iteration as soon as we are certain that the task insertion is feasible.

5.4 Intensification and diversification

In our Tabu Search algorithm, we apply intensification and diversification mech-
anisms that try to guide the search process to a global optimum. The aim of
diversification methods is to explore regions of the solution space that have not

34

been addressed yet, or have a low probability of being addressed in the future.
The aim of intensification methods is to focus on a promising part of the solution
space, in order to improve a relatively good solution even further.

In Section 5.4.1, we discuss an intensification procedure of reordering tasks
within routes. In Section 5.4.2, we discuss a diversification procedure of random
perturbation. This procedure includes adding a random number of currently
unscheduled recurrent tasks to the solution. Both procedures are inspired by
Cordeau and Laporte [2005].

The role of these mechanisms in the Tabu Search process was already shown in
line 24-31 of Algorithm 2. We interrupt the search process and apply a reorder
or perturbation procedure after some number of iterations without improvement
of the previous solution, the best solution in a subsearch, or the best solution
in the overall search process. In that case, we reorder the best solution in the
current subsearch if that has not been done before. Otherwise, we do not expect
to find a better solution quickly in this region of the solution space and we apply
a perturbation procedure to the overall best solution. In both cases, we start a
new subsearch within the Tabu Search process.

5.4.1 Intensification: reorder tasks within routes

When we encounter a feasible task insertion in the search process, we imme-
diately consider the insertion to be successful. Thus, we ignore the possibility
of inserting the task at different insertion positions or in different alternative
routes. Moreover, we choose the order in which we try insertion positions ran-
domly. Due to ‘wrong’ decisions in these respects, it is likely that we obtain
routes that have a sub-optimal order of tasks. In particular, different task orders
might be better in the sense of larger time window buffers, lower total travel
time, or a larger space to insert additional tasks. This motivates the application
of a reordering procedure of tasks within routes.

Suppose we would like to apply a reordering procedure on a route k for resource
r. Especially for fast resources, routes typically contain many tasks and enumer-
ation of all possible task sequences is extremely time-intensive. Therefore, we
apply a Local Search procedure in which we use route k as a starting point. We
use a neighborhood that consists of the single move Relocate, in which we relo-
cate a task to a different position. This move can be applied in both directions,
as can be seen in Figure 5.3.

Some candidate moves have more potential to improve the task order than oth-
ers. We prefer task orders for which the time window deadlines are in increasing
order and the total travel time is low. Therefore, we first try the most promis-
ing moves in each search iteration. We start with moves that improve both the
deadline order and the total travel time. If no feasible move can be found, we
proceed with other moves that improve the deadline order. If this does not yield
a feasible move either, we continue with all other possible orders.

35

For each move, we check its feasibility by constructing a schedule from scratch
by Algorithm 3, for any reasonable amounts and positions of recharging depots.
If we find a feasible schedule, we store the obtained set of alternative routes and
terminate the reorder iteration immediately by moving to the accepted task
sequence. We terminate the reorder process if we cannot find a feasible new
task sequence or if the maximum number of reorder iterations is reached. Since
the reorder procedure involves constructing a large number of schedules from
scratch, the maximum number of iterations should remain small.

Figure 5.3: Two examples of a Relocate move in the reorder procedure.

5.4.2 Diversification: random perturbation

If we do not expect the solution in the current subsearch to improve quickly,
and the best solution in the current subsearch has already been reordered, we
randomly perturb the overall best solution found so far. Thus, we hope to find
improvements of the overall best solution in regions of the solution space that
are yet to be explored.

In the perturbation procedure, we pay special attention to recurrent tasks. Due
to the non-linear profit function in recurrent sets, the objective increase by
including a single task from a recurrent set is relatively low. However, as soon as
a larger part of the recurrent set is included in the solution, it might actually turn
out to be worthwhile to include these recurrent tasks in the solution. Therefore,
we include a step to add a random number of recurrent tasks in the perturbation
procedure, inspired by the local moves in Kuipers [2003].

The full perturbation procedure can be described by the following three steps:

1. Take the current best solution and an empty tabu list as a starting point.

2. Remove a random fraction of tasks from the best solution, and declare
assigning these tasks to their old resource tabu. Find a set of alternative
routes for each reduced route.

3. Choose a random number of available recurrent sets, and for each set, try
to insert a random number of recurrent tasks that were not removed in
Step 2. Declare deleting these tasks from the schedule tabu.

For Step 2, we set an upper bound on the random fraction of tasks to remove.
We let this upper bound decrease over time, in order to switch the focus from
diversification to intensification.

36

5.5 Speed-ups

In addition to the fast feasibility check and the alternative routes framework
from Section 5.3, we incorporated several other speed-ups in our Tabu Search
algorithms, including storage of lists of infeasible additions and computation of
potential objective increase. Both of these speed-ups aim to reduce the number
of task insertion attempts. Moreover, we must ensure that the alternative routes
framework does not take too much time and memory.

For each resource r, we store a list of tasks that cannot be added to the route of
r currently. This list of infeasible additions is used to avoid repeated attempts to
add a task to a route by an Addition move or a Change move, which we already
found to be infeasible. Moreover, for each task i that is currently assigned to
some resource r, we store a list of tasks that cannot be added to the route of
r after removal of i. Similarly, this list is used to avoid repeated attempts to
insert a task in a route by a Swap move or an Exchange move. Whenever a task
is removed from a route, a previously infeasible insertion might become feasible.
Therefore, we clean all lists for infeasible additions concerning this route in this
case.

Furthermore, for each of the four local move types, we sort the candidate moves
in decreasing order of their potential objective increase. This value can be com-
puted based on the current solution and the tasks related to the candidate move.
Consequently, if we find a feasible candidate move of some type, we can ignore
all other candidate moves of the same type, since they cannot lead to a higher
objective value.

For routes that contain many tasks and many recharging depots, the number
of possible alternative routes can be huge. Thus, the computation time for
finding all possible alternative routes can become unacceptably high and storing
all of them leads to memory issues. Therefore, we apply a greedy method to
find alternative routes quickly after each search iteration and in the reordering
procedure, while keeping the maximum number of alternative routes limited. In
this stage, we do not change the current number of recharging depots.

As an additional intensification procedure, we apply a procedure in which we
take some more time to find alternative routes and allow to store a larger number
of them. If the number of tasks and depot visits in the routes is small enough,
we find all possible alternative routes in which the number of recharging depot
visits differs at most one from the amount in the current route. Otherwise,
we apply a greedy procedure to find alternative routes with the least possible
number of recharging depots, and we store all feasible routes obtained by adding
a recharging depot visit to the current route. This procedure is applied to
the best solution in the current subsearch after a certain number of iterations
without improvement, provided that it has not been applied to this solution
before. Otherwise, we proceed to the reordering procedure.

37

Chapter 6

Robustness concepts

Since the travel and service times are uncertain, the optimal solution for the
deterministic problem might perform bad in practice. For instance, a resource
might need to skip an important task if it arrives too late or if a timely arrival
at the depot is in danger. Therefore, it is important to take the uncertainties
into account in the offline stage, in order to construct solutions that are robust
against deviations from expected travel and service times in real-time.

However, by focusing on robustness, we might derive a solution which is too
conservative, with a small total task value. Thus, a trade-off exists in the
offline stage between the total task value and the robustness of the solution.
In this chapter, we discuss two robustness concepts to handle this trade-off.
Both concepts try to bridge the gap between mean-case scheduling and worst-
case scheduling, of which the former easily leads to cancellation of high priority
tasks in real-time and the latter is very conservative.

In Section 6.1, we provide a working example for illustration of the concepts in
the subsequent sections. In Section 6.2, we introduce the new concept of the risk
function, which only allows to perform a low priority task before an important
task if this does not endanger the execution of the important task too much.
In Section 6.3, we discuss using a worst-case fraction that only allows solutions
that can still obtain a certain fraction of their original value in the worst-case
scenario. The risk function and the worst-case fraction impose an additional
requirement on a feasible schedule and a feasible solution, respectively.

By incorporating the robustness concepts in the Tabu Search algorithm, as we
explain in Chapter 7, we aim for a good online performance. For investigating
the effect of the robustness concepts in practice, we generate offline solutions
with and without the robustness concepts and compare their performance in
real-time. For this purpose, we apply rescheduling policies which we discuss
in Chapter 8, based on scenarios implied by multiple simulations of travel and
service times. We discuss the results of the simulations in Chapter 10.

38

6.1 Working example

In this section, we provide a small working example of an offline solution.
Throughout this chapter, we repeatedly return to this example to illustrate
the concepts of the risk function and the worst-case fraction.

In Figure 6.1, we show the routes in an offline solution with two resources. For
simplicity, we assume that the two resources are homogeneous with an endurance
of 100, a minimal rest time of 10. The route for resource 1 consists of two trips
and contains six tasks, while the route for resource 2 consists of a single trip
and contains four tasks.

In Tables 6.1 and 6.2, the schedules corresponding to the routes are shown. We
assume that all expected travel and service times are equal to 10. The maximal
deviation fractions for travel and service times are given by σTT = 0.1 and
σST = 0.25, respectively. That is, travel and service times can be delayed by at
most 10% and 25%, respectively.

In addition to the schedule, we state the time windows and latest return times
LRTEND and LRTHOR in the tables. The latest return times can be computed
as explained in 5.2.1, using an endurance of 100 and a planning horizon of [0,
300]. Furthermore, we use that all worst-case travel times to the depot are equal
to 11, as all expected travel times are equal to 10 and σTT = 0.1.

Figure 6.1: Working example: route a− i for resource 1, route u−z for resource
2. The squares represent depots, the circles represent tasks with their values.

39

Location Arrival Departure Time window LRTEND LRTHOR

a - 0 [0, 300] - -
b 10 20 [0, 100] 89 289
c 30 40 [0, 100] 89 289
d 50 60 [0, 55] 89 289
e 70 80 [0, 70] 89 289
f 90 100 [0, 300] - -
g 110 120 [0, 200] 189 289
h 130 140 [0, 134] 189 289
i 150 - [0, 300] - -

Table 6.1: Schedule for the route for resource 1 in Figure 6.1. LRTEND and
LRTHOR represent latest return times with respect to endurance and planning
horizon, respectively.

Location Arrival Departure Time window LRTEND LRTHOR

u - 0 [0, 300] - -
v 10 20 [0, 300] 89 289
w 30 40 [0, 300] 89 289
x 50 60 [0, 300] 89 289
y 70 80 [0, 300] 89 289
z 90 - [0, 300] - -

Table 6.2: Schedule for the route for resource 2 in Figure 6.1. LRTEND and
LRTHOR represent latest return times with respect to endurance and planning
horizon, respectively.

6.2 Risk function

In this section, we introduce a concept that determines for each task whether
it is ‘safe’ to perform the task or not, based on the risk of being forced to
cancel later tasks with higher value. Intuitively, a task should not be performed
if this makes the risk of skipping a more important task in the ‘future’ too
high. The risk function formalizes this concept and can be applied for any task
values.

The main idea of this concept is as follows. If a route contains a task j that is
succeeded by a series S of more important tasks, we perform a ‘stress test’ by
incorporating artificial delays of travel and service times. If the ratios between
the values of j and the tasks in S are higher, we incorporate more severe delays.
We check the feasibility of the delayed schedule with respect to time windows,
endurance, and the planning horizon. In particular, we check for each task
j′ ∈ S whether we still arrive and depart in time. If the delayed schedule is

40

infeasible, we declare the route to be risk-infeasible. Thus, risk-feasibility can
be regarded as an additional constraint to a feasible schedule, in the sense that
we only allow risk-feasible routes to appear in a solution.

For instance, consider the first route in Figure 6.1. This route has a feasible
schedule for the mean-case scenario, specified in Table 6.1. However, due to
stochasticity of travel and service times, the execution of tasks in real-time is
uncertain. In particular, the presence of task b might endanger the execution of
the more important task c. That is, delays related to task b might force us to
skip the more important task c in real-time.

In this example, we incorporate severe artificial delays in the part of the route
until task c, since task c is significantly more important than task b. The
corresponding risk check consists of determining whether we still expect to arrive
at task c before its deadline, and to depart from task c before its latest return
times, given the real-time scenario implied by the artificial delays. A similar
risk check can be applied in a later part of the same route, in order to determine
whether it is responsible to the relatively unimportant perform task e, regarding
the risk of having to skip a more important task g or h. If any risk check for a
route fails, the route is risk-infeasible.

Outline

In Section 6.2.1, we formalize the ‘future’ of a task in the idea that a task should
not be performed if this makes the risk of skipping a more important task in the
‘future’ too high. In general, this future does not refer to the entire remaining
part of the route. For instance, it does not make sense to declare the above route
risk-infeasible if artificial delays related to task b would lead to a late arrival at
task e, since task e is less important than task b. We restrict the future of a
task to blocks, which contain subsequent tasks with higher value.

In Section 6.2.2, we discuss how to determine the magnitude of the artificial
delays incorporated in a risk check. As we mentioned, relatively large differences
in task values (i.e. higher value ratios) lead to more severe delays. In particular,
we introduce a delay function that translates value ratios into artificial delay
fractions. If a value ratio is assigned to a location, the corresponding delay
fractions can be easily translated into a delayed travel time to this location
and a delayed service time of this location. The assignment of value ratios to
locations involves a further division of blocks into sub-blocks. To each sub-block,
we assign a risk function that maps locations to value ratios.

For each sub-block, a risk check is performed. In particular, the correspond-
ing risk function and the given delay function are used to determine a delayed
schedule. In Section 6.2.3, we discuss in detail how to determine whether a
sub-block remains feasible given this delayed schedule, with respect to the con-
straints regarding time windows, endurance, and planning horizon. We finalize
this section with some remarks in Section 6.2.4.

41

6.2.1 Construction of blocks

Recall that our aim is to check whether it is ‘safe’ enough to perform a task,
taking the risk of skipping more important tasks in the ‘future’ into account.
In this section, we formalize the ‘future’ of a task.

Let a block refer to a part of the route that starts at some task j and contains
a subsequent series of locations, of which the tasks all have higher value than
vj . The procedure to find all blocks of a route is as follows. We loop through
all tasks and start a block at task j if the next task has a higher value than vj .
We iteratively add the next location to the block until we encounter a task j′

with vj′ ≤ vj or the final depot.

We illustrate the procedure for the routes from Figure 6.1. For the second
route, observe that all values are equal. Therefore, this route does not contain
any block, which means that no risk checks will be performed on this route.
Hence, we can immediately conclude that this route is risk-feasible.

However, the first route contains several blocks. The first block starts at task b,
because the next task c has a higher value. This block ends at task d, since the
next task value ve does not exceed vb. After completing this block, we continue
the loop at task c. However, no block starts at task c nor at task d, because
of decreasing task values. The next block starts at task e, since the first task
afterwards (task g) has a higher value, and ends at task h, right before the final
depot. Observe that this block contains a recharging depot visit. Continuing the
loop at the next task g yields another block g− h, which is nested in the larger
block e− h. Thus, this route contains the blocks b− d, e− h, and g− h.

Figure 6.2: The first route from the working example contains blocks b− d, e−
h, g − h.

For the decision whether it is ‘safe’ enough to perform a task, we check whether a
block starts at this task. If that is the case, we check whether this block remains
feasible when incorporating artificial delays. In Section 6.2.2, we discuss why
and how to divide blocks further into sub-blocks. A block is feasible if and only
if all of its sub-blocks are feasible. A route is risk-feasible if and only if all of its

42

blocks are feasible.

We stress that we ignore any problems that the delays in a block might cause
after this block. For instance, we do not declare the route in Figure 6.2 to be
risk-infeasible if delays in the block b−d would definitely lead to a late arrival at
task h, even though task h is more important than task b. Thus, we implicitly
assume that such problems after a block can be solved by deleting the first task
after the block (task e in the example), which is by construction at most equally
important as the starting task of the block.

6.2.2 Delayed travel and service times

Recall that the main idea of the risk function is to perform stress tests by
incorporating artificial delays. Below, we discuss in detail how to determine the
severeness of these delays, based on the value ratios of the concerned tasks. In
general, larger value ratios lead to more severe delays.

First, we suppose that an assignment of value ratios to locations is given and
show how we translate them to delayed travel and service times. Afterwards,
we discuss how to assign value ratios to locations. The most natural assign-
ment of value ratios to locations would be to assign a value ratio vi/vj to each
task i in a block that starts at task j. However, it turns out that this choice
would be overrestrictive for certain blocks. Therefore, we propose an alternative
assignment that involves sub-blocks.

Translating value ratios to delay fractions

We introduce a delay function g : [1,∞) → (0, 1] that translates value ratios
into corresponding delay fractions. A delay function should be increasing, in
order to reflect that higher value ratios lead to more severe delays. For an
example of a piecewise linear delay function, see Figure 6.3.

This delay function has a cutoff ratio R̄ = 4, in the sense that any value ratio
that exceeds R̄ leads to the maximal delay fraction of 1. In general, for a delay
function g(R) = min{(R−1)/(R̄−1), 1}, a lower cutoff ratio R̄ leads to a steeper
delay function and the resulting delay fractions are higher. For the remainder of
this chapter, we assume that the delay function from Figure 6.3 is given.

We use these delay fractions to compute delayed travel and service times. Sup-
pose that a value ratio R is assigned to a task l ∈ L, preceded by a location
k ∈ L in a route for resource r. Then we compute an adjusted travel time t′klr
from k to l and an adjusted service time s′lr of l as follows:

t′klr = (1 + σTT × g(R))t̄klr (6.1)

s′lr = (1 + σST × g(R))s̄lr (6.2)

43

For a depot l ∈ L, equation (6.1) still holds, but the ‘service time’ of this depot
remains equal to the minimal rest time of resource r. Recall that t̄klr and
s̄lr represent the expected values for the travel and service time, respectively,
while σTT and σST denote the corresponding maximal deviations. The delay
percentages of the original travel and service times are given by 100σTT×g(R)
and 100σST × g(R), respectively.

For an example for calculating delay percentages, recall from Section 6.1 that
we assume σTT = 0.1 and σST = 0.25. Suppose that a value ratio of R = 1.6 is
assigned to some task l. For the delay function g(R) from Figure 6.3, this leads
to a delay fraction of g(R) = 0.2. Hence, the travel time to l and the service
time of b are delayed by 2% and 5%, respectively.

Notice that we assumed that some value ratio R is associated to task l, without
giving further details yet. The remaining part of Section 6.2.2 is devoted to
answering the question which value ratios to assign to which locations.

Figure 6.3: A delay function g with cutoff ratio R̄ = 4, given by g(R) =
min{(R− 1)/3, 1} for R ≥ 1.

Assigning value ratios to locations

We introduce a risk function f : L→ [1,∞) that assigns a value ratio to each
location from a set L. The obtained value ratios serve as input for the delay
function. Below, we argue by an example that we cannot consider an entire
block at once in a feasibility check for a stress test. Afterwards, we explain how
to find suitable sub-blocks and corresponding risk functions.

Consider the first block b− d from Figure 6.2. For this block, the most natural
option is to compare the values of c and d to the value of the starting task
b. The resulting value ratios indicate the relative importance of tasks c and d
compared to task b, which reflects the aim to check whether it is responsible to
perform b. In particular, this block would have a corresponding risk function
defined by f(b) = f(c) = vc/vb = 5 and f(d) = vd/vb = 1.6. Observe that we

44

include task b in the risk function, in order to reflect that delays related to the
starting task b of this block are also highly relevant in the risk check whether it
is responsible to perform task b or not. Thus, a value ratio of 5 is associated to
tasks b and c, and a value ratio of 1.6 is associated to task d.

However, this choice turns out to be overrestrictive for this block. Given the
delay function g from Figure 6.3 and the value ratio R = 5 associated with tasks
b and c, we can compute delay percentages, as shown in Figure 6.4. Since the
value ratio R = 5 exceeds the cutoff ratio R̄ = 4 for this delay function g, we
have maximum delay percentages. This leads to worst-case adjusted travel and
service times t′abr = t′bcr = 11 and s′br = s′cr = 12.5. Similarly, we can compute
t′cdr = 10.2 and s′dr = 10.5 using the value ratio R = 1.6 associated with task d.
Given that we depart from the preceding depot a at time 0, the above delays
lead to arr′b = 11, dep′b = 23.5, arr′c = 34.5, dep′c = 47, arr′d = 58, dep′d = 70.5.
Since the arrival time at d exceeds Ud = 53, we would declare this route to be
risk-infeasible.

Figure 6.4: The delay percentages that correspond to a naive assignment of
value ratios to locations in block b − d. The corresponding delay percentages
for travel and service times are denoted in boldface and italic, respectively.

Observe that arrd is partially based on the worst-case delays related to task
c. However, since the value difference between b and d is relatively small, it is
not fair to judge the feasibility for task d based on worst-case delays for the
route up to task c. In other words, the worst-case delays are appropriate for the
feasibility checks regarding the route up to task c, but overrestrictive for task
d. It would be better if we only check task c under the worst-case delays up to
task c, and use relaxed delays for the feasibility checks regarding task d.

For this purpose, we perform risk checks on sub-blocks rather than on an entire
block. In this example, we divide the block b−d into sub-blocks b− c and b−d.
For the sub-block b− c, we use the risk function f(b) = f(c) = 5. This leads to
the delay percentages as shown in the left part of Figure 6.5 and an adjusted

45

partial schedule with arr′b = 11, dep′b = 23.5, arr′c = 34.5, dep′c = 47, which does
not lead to feasibility problems.

For the sub-block b − d, we overrule the previously assigned value ratios to b
and c, and relax them to f(b) = f(c) = f(d) = 1.6. This leads to the delay
percentages as shown in the right part of Figure 6.5, and an adjusted partial
schedule arr′b = 10.2, dep′b = 20.7, arr′c = 30.9, dep′c = 41.4, arr′d = 52.4, dep′d =
62.9. Observe that for this more appropriate risk check, task d does not violate
any constraint either. Since both sub-blocks are risk-feasible, the block b− d is
risk-feasible.

Figure 6.5: The block b− d contains sub-blocks b− c and b− d. The overruled
delay percentages are underlined.

We generalize this framework in Algorithm 5. For a given block, this procedure
shows how to find all of its sub-blocks and their corresponding risk functions.
We stress that sub-blocks are not the same as nested blocks. For a given block,
each value decrease leads to a sub-block, while each value increase leads to a
nested block. We explain the algorithm below, referring to specific parts of the
algorithm by line numbers.

We loop through all tasks in the block, starting at the first location after the
starting task j. For each task l we encounter, we compute a value ratio R = vl/vj
(line 10). If vl is at least as high as the value of the previous task, then we set
f(l) = R (line 11-12). Note that no value ratios are computed for depots and for
the starting task j. To these locations, we assign the value ratio that corresponds
to the next task (line 13-18 and line 22-24).

If vl is lower than the value of the previous task, then we create a sub-block by
cutting off the blcok directly after the previous task, and we assign the current
function f as its risk function (line 20). Afterwards, we set f(l) = R and for
all locations l′ before l for which we currently have f(l′) < R, we overrule the
current value ratio by setting f(l′) = R (line 25-27).

46

Algorithm 5 Procedure to find sub-blocks and their risk functions

1: Input: Route with locations L with a feasible mean-case schedule.
2: Input: Block starting at task j, with locations L′ ⊂ L.
3: Input: Delay function g : (1,∞) → (0, 1] that maps value ratios to delay

fractions.
4: Output: A list (list) of risk functions f : L′′ → [1,∞), each of which

assigns a value ratio to locations L′′ in a sub-block.

5: Initialize: prevTask = j, prevLoc = j, prevV alue = vj , list = ∅.
6: for all l ∈ L′\{j} do
7: if l is a depot then
8: Set prevLoc = l.
9: else

10: Compute value ratio R = vl/vj .
11: if vl ≥ prevV alue then
12: Set f(l) = R.
13: if prevTask = j then
14: Set f(j) = R.
15: end if
16: if prevLoc is a depot then
17: Set f(prevLoc) = R.
18: end if
19: else
20: Add current f to list.
21: Set f(l) = R.
22: if prevLoc is a depot then
23: Set f(prevLoc) = R.
24: end if
25: for all l′ ∈ L′ before l do
26: Set f(l′) = min{f(l′), R}.
27: end for
28: end if
29: Set prevTask = l, prevLoc = l and prevV alue = vl.
30: if l is final task of risk-subroute then
31: Add current f to list.
32: end if
33: end if
34: end for

47

This update operation is crucial to avoid overrestrictive cases as in Figure 6.4. It
ensures that we lower previous delays that were too severe, regarding the value
ratio for the current task l. Meanwhile, creating a sub-block before this update
operation ensures that the times windows and latest return times of the tasks
contained in this sub-block are still checked based the more severe delays.

We terminate the loop if we have arrived at the final task of the block, after
creating a final sub-block that equals the whole block (line 30-32).

When we apply this algorithm to the second block e − h from Figure 6.2, we
only obtain the entire block as a sub-block, as we do not encounter decreasing
values in this block. The risk function corresponding to e − h is given by
f(e) = f(f) = f(g) = 2 and f(h) = 8. For the nested block g − h, the
risk function is given by f(g) = f(h) = 4.

6.2.3 Feasibility check of sub-blocks

Recall that a block is risk-feasible if and only if all of its sub-blocks remain feasi-
ble when incorporating the artificial delays corresponding to their risk functions.
In Section 6.2.2, we already performed some feasibility checks in examples. Be-
low, we discuss the feasibility check of a sub-block in more detail.

Consider a sub-block that starts at some task j and has a corresponding risk
function f : L′′ → (1,∞). First of all, for each location l ∈ L′′, we apply
equations (6.1) and (6.2) to compute delayed travel and service times, using
a given delay function. Moreover, we set the base time equal to the planned
departure time from the location before j.

After these procedures, we can proceed to the feasibility check of the sub-block.
First, we perform a feasibility check with respect to time windows and the
planning horizon for all sub-blocks of a route. During these feasibility checks, we
keep track of possibly adjusted maximum shift values (msTW)′ for depots, which
can decrease due to the delays. We take the resulting smaller extension size of
depot visits into account when performing the feasibility check on endurance.
We declare a sub-block to be risk-feasible if it passes both checks.

A sub-block with location set L′′ is feasible with respect to time windows and
the planning horizon if and only if the delayed arrival time arr′i satisfies arr′i ≤
min{Ui, LRT

HOR
i } for each task i 6= j in L′′. We omit the starting task of the

sub-block j itself, since a check for j would not fit the picture of judging the
risk of skipping more important tasks after j.

Before performing the endurance check, we cut off the sub-block right before the
first depot we encounter, if any depot is included. This reflects that delays in
some trip cannot have a negative effect on the schedule for any subsequent trip.
In fact, they might even lead to a smaller duration of the next trip by a decreased
waiting time in the trip. Therefore, endurance problems that appear after a

48

recharging depot can never be solved by removing task j, which undermines the
idea of a risk check for task j.

A sub-block with location set L′′, which was possibly reduced by the above
procedure, is feasible with respect to endurance if and only if the adjusted
departure time dep′i satisfies dep′i ≤ LRTi for each task i 6= j in L′′. Again,
we omit j from the check. We can possibly repair initial endurance violations
by extending the stay at the previous depot, as we discussed in Section 5.2. In
this context, we use the possibly decreased maximum shift values (msTW

d)′ as
an additional upper bound on the maximal extension size of a depot d.

In the special case that we still have to wait before a location j′ after the starting
task j, despite of the incorporated delays and before any infeasibility problems,
we consider the sub-block to have passed the check. This waiting time can be
due to a release time if j′ is a task or an extended stay if j′ is a depot. Since
removing the starting task j would not decrease the starting time of j′, any
feasibility problems that occur after j′ can never be repaired by removing j.
Consequently, the part of the sub-block after j′ is irrelevant in the risk check
for task j.

Example

For example, consider the second block e−h from Figure 6.2 again, for which we
derived the risk function f(e) = f(f) = f(g) = 2 and f(h) = 8 in Section 6.2.2.
In the left part of Figure 6.6, the corresponding delay percentages are shown,
which lead to adjusted travel times t′der = t′efr = t′fgr = 10.33 and t′ghr = 11,
and adjusted service times s′er = s′gr = 10.83 and s′hr = 12.5. Recall that for
the depot node f , the minimal rest time remains fixed. Using depd = 60 (see
Table 6.1) as the base time, this leads to the following delayed partial schedule:
arr′e = 70.33, dep′e = 81.16, arr′f = 91.5, dep′f = 101.5, arr′g = 111.83, dep′g =
122.67, arr′h = 133.67, dep′h = 149.17. It can be easily checked in Table 6.1
that none of the arrival times violate a time window deadline, and none of the
departure times violates a latest return time.

Figure 6.6: Delay percentages for the blocks e− h and g − h, in boldface/italic
for travel and service times, respectively.

49

Consider the last block g − h from Figure 6.2, which is nested in e− h and has
the risk function f(g) = f(h) = 4. This leads to delay percentages as shown
in the left part of Figure 6.6, and worst-case travel and service times of 11 and
12.5, respectively. Using depf = 100 as the base time, we obtain the following
delayed partial schedule: arr′g = 111, dep′g = 123.5, arr′h = 134.5, dep′h = 147.
Observe that the value for dep′g is higher than in the feasibility check for block
e − h. This shows that feasibility checks in nested blocks are not necessarily
redundant. In fact, these delays even lead to a time window violation for task h,
since arr′h exceeds its deadline Uh = 134. Therefore, this block is risk-infeasible
and hence, we declare route 1 from the working example in Figure 6.1 to be
risk-infeasible.

6.2.4 Remarks

We stress that a block starting at task j can only exist if j is succeeded by a task
j′ has value vj′ > vj , or if j is the final task before a depot. Therefore, more
risk checks are performed for a route with increasing values (e.g. 10-20-70-80)
than for a route with decreasing values (e.g. 80-70-20-10). Consequently, a route
with increasing values has a lower probability of being risk-feasible. Thus, using
the risk function will encourage important tasks to be performed first, which
is an important and desirable side-effect, because this typically increases the
probability that these important tasks are actually realized.

Observe that the risk function concept does not impose any additional feasibility
requirement in routes with tasks with equal values, like route 2 from Figure 6.1.
In particular, it does not assist in avoiding a tight schedule filled exclusively with
important tasks. Such routes are undesirable because of the high probability of
being forced to skip an important task in real-time. Instead, it would be better
to distribute the important tasks better over the resources. In Section 6.3, we
discuss a concept that might help in this matter and thus forms a valuable
addition to the risk function.

The risk function can be incorporated as an additional constraint in the Tabu
Search process, as we discuss in Section 7.2. It can be easily incorporated in a
rescheduling policy for the online stage as well, as we discuss in Section 8.1.2.
At each departure event, we can perform a risk check on a block starting at the
upcoming task j, if such a block exists, given the current delay.

50

6.3 Worst-case fraction

The worst-case fraction sets a requirement on the minimal performance if the
worst-case scenario unfolds in real-time, in the sense that all travel and service
times take their maximum possible values.

If an unfavourable scenario unfolds in real-time, we can typically not perform all
tasks scheduled in our solution. Given some passive rescheduling policy in which
the only action is to delete tasks, i.e. routes are not extended by tasks that were
initially unscheduled or assigned to a different resource, we can determine for
each route which tasks would still be performed under a given scenario. Thus,
we can compute the worst-case fraction of a schedule as follows:

Worst case fraction =
Total value of remaining tasks in worst case scenario

Total value of all scheduled tasks

This value is a robustness measure for a solution that indicates how bad an
initially feasible solution can become in real-time. By setting a lower bound on
the worst-case fraction, denoted by WCF , we aim at ensuring a certain minimal
performance of a solution for any scenario.

An important remark, however, is that the worst-case scenario might not yield
the lowest total value in real-time after all. For instance, consider a route from
which we remove some task t with a low value in the worst-case scenario. In a
more favourable scenario up to task t, we decide to include task t. However, if
the realized scenario becomes very bad from arrt onwards, we might be forced
to skip a more important task after t. Thus, we obtain a lower value than in
the case that we would have skipped task t in the first place. Combining the
worst-case fraction with the risk function might help to avoid such situations,
but it does not guarantee the performance of important tasks.

A desirable side-effect of the worst-case fraction is the encouragement to obtain
a better distribution of tasks over the resources. If the schedule for a single re-
source is very tight in some solution, while another resource only performs a few
tasks, the worst-case performance is typically bad. This is a valuable addition
to our Tabu Search algorithm, since the search process currently has no incen-
tive to prefer solutions in which tasks are distributed over the resources more
evenly, since the only objective is to maximize the total task value. Moreover,
the worst-case fraction can assist in obtaining a better distribution of important
tasks as well, so that repairing a route in real-time can more often be done by
deleting a task with a low value.

Example

For instance, set a worst-case requirement WCF = 0.8 and consider the solution
in Figure 6.1 from the working example in Section 6.1 again. Observe that route

51

1 contains more tasks, as well as more important tasks. As the total value of
the solution is 151, we must at least obtain an online value of 120.8 in the
worst-case scenario in order to meet the requirement WCF = 0.8. Suppose we
use a naive rescheduling policy of always heading for the next task, while we
immediately head for the next location when we arrive late at a task, and we
abort the performance of a task when a latest return time is attained.

Applying this rescheduling policy to the solution in the working example yields
the worst-case schedules shown in Tables 6.3 and 6.4. For route 1, we violate
the time windows of tasks d and h, since arr′d = 58 > Ud and arr′h = 137 > 134.
Therefore, we skip tasks d and h. For route 2, we are unable to complete task
y before its latest return time for endurance LRTEND = 89, since we arrive
at arry = 80.5 and the worst-case service time of task y is equal to 11. In
order to avoid endurance violations, we abort task y at its latest return time for
endurance.

Since we delete tasks d, h and y, the remaining value is 90, which does not
satisfy the worst-case fraction requiremnent. Therefore, we declare this route
to be WCF-infeasible and forbid this solution. It can be easily checked that
this solution is WCF-feasible if we extend route 2 by a second trip that only
consists of task h, which reflects that WCF-feasible solutions often have a better
distribution of (important) tasks.

Location Arrival Departure Time window LRTEND LRTHOR

a - 0 [0, 300] - -
b 11 23.5 [0, 100] 89 289
c 34.5 47 [0, 100] 89 289
d 58 58 [0, 55] 89 289
e 69 81.5 [0, 70] 89 289
f 92.5 102.5 [0, 300] - -
g 113.5 126 [0, 200] 189 289
h 137 137 [0, 134] 189 289
i 148 - [0, 300] - -

Table 6.3: Worst-case schedule for route 1 in Figure 6.1.

Location Arrival Departure Time window LRTEND LRTHOR

u - 0 [0, 300] - -
v 11 23.5 [0, 300] 89 289
w 34.5 47 [0, 300] 89 289
x 58 70.5 [0, 300] 89 289
y 80.5 89 [0, 300] 89 289
z 100 - [0, 300] - -

Table 6.4: Worst-case schedule for route 2 in Figure 6.1.

52

Chapter 7

Generating robust solutions
with Tabu Search

In this chapter, we discuss how to adjust the Tabu Search heuristic, introduced
in Chapter 5, in such a way that we can generate robust solutions with this
heuristic, using among others the robustness concepts from Chapter 6.

First, we propose a procedure to extend depot visits in Section 7.1. Afterwards,
in Sections 7.2 and 7.3, we explain how to incorporate the risk function and the
worst-case fraction in the Tabu Search heuristic, respectively. Incorporating
these robustness concepts can provide guidance in finding a robust solution,
whereas the extension of depot visits improves the robustness of a given feasible
schedule.

7.1 Final extension of depot visits

For repairing endurance problems when constructing a feasible schedule in the
Tabu Search, we use a minimal possible extension size of depot visits (see Section
5.2.2). For a final schedule, however, a minimal extension size leads to an
unstable route, in the sense that even the smallest delay in the subsequent trip
would lead to endurance problems. Thus, applying an additional extension of
depot visits might improve the robustness of the schedule. This procedure can
be regarded as a post-processing step of the search process, or as a pre-processing
step before entering the online stage of the problem.

Recall from Section 5.2.2 that for a task j, a time window buffer is given by
Uj−arrj and an endurance buffer is given by LRTEND

j −arrj . An extension of a
depot visit is beneficial for the endurance buffers of the tasks in the subsequent
trip, provided that the extension reduces the total waiting time in the trip,

53

while it always deteriorates time window buffers. In Algorithm 6, we show a
procedure to find an extension size that balances the buffers with respect to time
windows and endurance (line 5-12). When using the risk function, we also take
decreased time window and endurance buffers encountered in feasibility checks
of sub-blocks into account. As a final step, we ensure that we never arrive at
the first task after the depot before its release time in the worst-case scenario
(line 13-14).

Due to bounding the extension size from above by the total waiting time in
the trip, extending a visit to depot d never leads to a later arrival time at the
next depot j. Moreover, an extension in some trip does not affect the maximum
shift values for previous trips, since the extension just moves the wait to the
depot instead of removing it completely. Thus, the procedure can be applied
independently to all trips of a route.

Algorithm 6 Determining a final extension size of a depot visit

1: Input: Trip for resource r from depot d to depot j with task set Tripj ,
starting with task a.

2: Input: For each task i ∈ Tripj , endurance buffers bufEndi = LRTEND −
depi and total waiting time tripWaiti in the trip up to and including i.

3: Input: Maximal travel time deviation fraction σTT .
4: Output: Additional extension size ∆ for depot d

5: Set bufTW = msTW
d and ∆ = 0.

6: for all tasks i ∈ Tripj do
7: Set bufEnd′i = bufEndi + ∆ and tripWait′i = tripWaiti −∆
8: if bufTW > bufEnd′i then
9: Set ∆ = ∆ + min{tripWait′i, (bufTW − bufEnd′i)/2}.

10: Set bufTW = bufTW −∆.
11: end if
12: end for
13: Set minExtendBy = La − (1 + σTT)t̄dar − depa.
14: Set ∆ = max{∆,minExtendBy}.

7.2 Incorporating the risk function

In this section, we discuss how to incorporate the risk function as an additional
constraint for a successful move in the Tabu Search heuristic. In order to tackle
the Extended Security Routing problem better, we introduce an alternative
procedure to restore the risk-feasibility of a solution.

For a candidate move in the Tabu Search algorithm, a risk check on the routes
involved in this move is performed after the fast feasibility check and construct-
ing a feasible schedule. If any involved route turns out to be risk-infeasible,

54

we reject the candidate move, even though it is feasible with respect to time
windows, endurance, and the planning horizon.

As an alternative, we can use a procedure to restore the risk-feasibility of a
solution, rather than only accepting candidate moves that lead to risk-feasible
solutions. In particular, we ignore risk-feasibility throughout the iteration when
trying candidate moves. As a post-processing step after each iteration, we apply
the procedure below to restore the risk-feasibility of the best solution of the
iteration.

We loop through all routes that contain recurrent tasks and check their risk-
feasibility. If a route is risk-infeasible, we remove the starting task of the sub-
block in which we encounter this infeasibility. If the route becomes risk-feasible,
possibly after removing multiple tasks, we proceed to the next route in the
solution and apply the same procedure. Note that we might need to return to
routes from which we have already removed tasks to ensure their risk-feasibility,
due to removal of recurrent tasks in other routes. We terminate the restore
procedure if all routes have become risk-feasible.

This alternative approach with the restore procedure is more suitable for the
Extended Security Routing problem, due to the presence of recurrent tasks.
Recall from Section 2.2 that the value of recurrent tasks depends on the num-
ber of tasks from the corresponding recurrent set that appear in the solution.
Therefore, inserting a recurrent task in some route causes a value increase for
the other tasks in the same recurrent set as well, even if these tasks are assigned
to different resources. Similarly, a removal leads to a value decrease of tasks in
the same recurrent set. Therefore, the structure of blocks and sub-blocks might
change, as well as the value ratios within these (sub-)blocks. In particular, the
risk checks cannot be performed separately per resource.

Moreover, when using the standard risk check, a counterintuitive behaviour
regarding addition of tasks with high value can occur. For instance, consider
an example in which we try to add a task j with value 100 to a route where
all current tasks have value 1. The resulting route might be risk-infeasible,
due to worst-case delays in the sub-block starting at the task before j, if such
a task exists. When using the alternative option, we temporarily ignore this
risk-infeasiblity and accept the insertion. After the iteration, we restore the
risk-feasibility of the solution, which leads to the removal of one or more tasks
with value 1, while the important task with value 100 remains.

7.3 Incorporating the worst-case fraction

The worst-case fraction can be easily incorporated in the Tabu Search heuristic
as well. When a candidate move is feasible, we construct a feasible schedule as
usual, by Algorithm 3. Afterwards, we check whether the candidate solution

55

satisfies the worst-case fraction requirement. In general, this procedure consists
of the following steps.

1. Apply the depot visit extension procedure to all routes in the solution.

2. Apply a given rescheduling policy to the solution, in the worst-case sce-
nario for the online stage.

Obviously, it might be useful to store some results for the worst-case scenario,
instead of performing the above steps for all routes in each candidate move.
Nevertheless, incorporating this worst-case fraction remains a relatively time-
intensive procedure. This is particularly true when the lower bound on the
worst-case fraction is high, since this leads to a large number of unsuccessful
worst-case fraction checks.

56

Chapter 8

Rescheduling policies for
the online problem

The previous chapters covered the construction of a solution in the offline stage.
In Chapter 7, we discussed how to generate robust offline solutions with the
Tabu Search heuristics, using robustness concepts from Chapter 6. However,
due to the stochastic travel and service times, we will typically not be able to
perform the schedules as planned in reality.

The online stage of the problem requires adjustments to the offline solution in
real-time, in which we repeatedly make decisions based on the realized scenario
up to some point in time, using rescheduling policies. Rather than maximizing
the objective value in the offline stage, we aim for maximizing the obtained value
in the online stage, as well as for being able to stick to the original schedules as
much as possible.

In Section 8.1, we propose a passive rescheduling policy for a given route. Af-
terwards, we discuss the necessary adjustments to make this policy suitable
when using the risk function. Furthermore, we generalize the policy to han-
dle all routes of a solution simultaneously, which is necessary for the Extended
Security Routing problem.

The above rescheduling policies are passive in the sense that we do not add
initially unscheduled tasks in real-time, and we do not reassign scheduled tasks
to different resources. These passive policies allow for a fair judgement of the
performance of the robustness concepts, compared to more active policies in
which the initial offline solution might be completely transformed.

However, the passive policies are focused on unfavourable scenarios. Ideally, we
would be able to take advantage of favourable scenarios. For this purpose, we
describe a more active policy in Section 8.2. As the focus of this thesis is on the
robustness concepts, we did not implement this policy.

57

8.1 Passive rescheduling policies

We propose a passive rescheduling policy for a given route in 8.1.1. Afterwards,
we explain how to incorporate the risk function in this policy in 8.1.2. In Section
8.1.3, we generalize the rescheduling policy in such a way that we can handle
all routes of a solution simultaneously in real-time.

8.1.1 Rescheduling policy for a given route

We propose a passive rescheduling policy in which we perform feasibility checks
on the future part of the route at each departure event, in order to decide
whether or not to head for the upcoming task. In particular, we only head for
a task if we consider that to be a responsible choice, regarding the importance
of the upcoming task and the current feasibility state of the future part of the
route. At each arrival event at a task, we only check whether we arrived before
its deadline and start performing the task. However, we abort the execution
of tasks when a latest return time with respect to endurance or the planning
horizon is reached. The full rescheduling policy is shown in Algorithm 7 and is
discussed below. The line numbers in this section refer to this algorithm.

The real-time route starts by leaving the depot at the planned departure time.
Afterwards, we compute realized arrival and departure times based on simulated
travel and service times, in a loop through all locations. If we encounter a depot
j, we assign a penalty if the realized arrival time violates the planning horizon or
if the total trip duration exceeds the endurance (line 13). For the waiting policy
when arriving at a depot, recall from Section 7.1 that we determine a balanced
departure time from each depot visit before entering the online stage. Therefore,
we never leave earlier than this balanced departure time (line 14).

Before heading to a task j, we check whether it is responsible to go there (line
17-32). If we expect the future part of the route, restricted to subsequent tasks
with higher value than vj , to become infeasible when including task j in the
real-time route, we decide to skip j (line 27-29). The aim of the restriction is to
avoid deleting tasks too early, which might turn out to be unnecessary in case of
favourable realizations. Meanwhile, we still protect the tasks with higher value.
Note that we cannot repair endurance violations now, since we cannot extend a
stay at a depot in history.

If the above future feasibility check is successfully passed, we head for task j
(line 33). If we arrive late, we delete task j (line 34-36). Otherwise, we start
performing j. If we have not completed j yet at its minimum latest return time,
we interrupt the performance of j and head for the depot (line 37-41).

The quality of the real-time route can be determined by the obtained value∑
i∈IR vir of the completed tasks and its total penalty pen. The number of re-

moved tasks indicates how close we were able to stay to the original route.

58

Algorithm 7 The standard passive rescheduling policy

1: Input: Resource r with endurance Er and minimal rest time Rr.
2: Input: Route with locations L and tasks I ⊂ L, starting at depot d0.
3: Input: Original schedule with arrival arr and departure times dep.
4: Input: Latest return times LRTHOR

t for all tasks t ∈ I.
5: Input: Simulated travel times tRijr and service times sRjr for any i, j ∈ L.
6: Input: Penalty functions horPen : R → R+ and endPen : R → R+, with

violation size as input and corresponding penalty as output.
7: Input: Previous depot d, previous location i. In the k-loop, d′ and i′

represent previous the depot/location for the future location k.
8: Output: Realized route with completed tasks IR, total penalty pen, and

arrival and departure times arrR and depR.

9: Initialize: d = i = d0, I
R = I, pen = 0, depRd = depd.

10: for all locations j ∈ L\{d} do
11: if j is a depot then
12: Set arrRj = depRi + tRijr.

13: Set pen = pen+ horPen(arrRj − Uj) + endPen(arrRj − depRd − Er).

14: Set depRj = max{arrRj +Rr, depj}.
15: Set d = i = j.
16: else
17: Initalize: time = depRi , i

′ = i, d′ = d.
18: for all locations k from j onwards do
19: Set arrk = time+ t̄i′kr and depk = max{arrk, Lk}+ s̄kr.
20: if k is a depot then
21: Set d′ = k and dep′d′ = depk = max{depk, depk}.
22: else
23: if vk ≤ vj then
24: Break the k-loop and head for task j.
25: end if
26: Compute LRT

END

k = dep′d′ + Er − t̄kdr.

27: if arrk > Uk or depk > min{LRTEND

k , LRTHOR
k } then

28: Skip: set IR = IR\{j} and go to next j.
29: end if
30: end if
31: Set time = depk and i′ = k.
32: end for
33: Set arrRj = depRijr + tRijr and i = j.

34: if arrRj > Uj then

35: Late: set IR = IR\{j}, depRj = arrRj and go to next j.
36: end if
37: Set dep′j = max{arrRj , Lj}+ sRjr.

38: Set LRTEND
j = depRd + Er − t̄jdr.

39: if dep′j > min{LRTEND
j , LRTHOR

j } then

40: Abort: set IR = IR\{j}, depRj = LRTj and go to next j.
41: end if
42: Set depRj = dep′j and i = j.
43: end if
44: end for

Example

As an example, consider the route from Figure 8.1 and the corresponding sched-
ule from Table 8.1. For simplicity, we assume that all travel and service times
are 10 before recharging depot d, and 20 afterwards. For the real-time scenario,
suppose that all travel and service times are delayed by 10%. Furthermore,
suppose that an endurance of 105 is given.

We start by leaving depot a at the planned time depa = 100. At time arr′b = 111,
we confirm that we arrived at task b in time and start performing b. After
completion of b, we check whether we expect to arrive in time at the upcoming
task c and the more important next task e, assuming a mean-case scenario from
time dep′b = 122 onwards. We obtain arrc = 132, depc = 142 and arre =
320, depe = 340, which gives no feasibility problems. Therefore, we head for
task c and arrive there at time arr′c = 133. Since Uc = 132, we are too late to
start this task. Instead, we head for depot d.

At depot d, we wait for the originally planned departure time depd = 300 to
leave the depot. For the upcoming task e, we expect to arrive and depart in
time, since the original schedule is feasible. We arrive in time at task e at
time arr′e = 322 and complete task e at time dep′e = 344. At this time, we
check for the only remaining task f whether we expect to arrive and depart in
time, given a mean-case scenario. Since arrf = 364 < Uf and depf = 384 <

min{LRTEND
f , LRTHOR

f }, we decide to head for task f . After arrival at time
arr′f = 366, we start performing task f , although we do not expect to finish this

task in time anymore. Indeed, at time LRTEND
f = 385, we have not completed

task f yet, so we abort task f and return to the depot.

Figure 8.1: Example route for the online stage.

Location Arrival Departure Time window LRTEND LRTHOR

a - 100 [0, 600] - -
b 110 120 [110, 120] 195 590
c 130 140 [120, 132] 195 590
d 150 300 [0, 600] - -
e 320 340 [320, 400] 385 580
f 360 380 [320, 400] 385 580
g 400 - [0, 600] - -

Table 8.1: Original schedule for the route in Figure 8.1.

60

8.1.2 Adjustments when using the risk function

Recall from Section 6.2 that the main goal of the risk function is to determine
beforehand whether it is safe enough to perform a task, when taking the risk
of skipping a more important task in the future into account. Next to its
contribution to a robust solution, this idea is useful in real-time as well.

For the rescheduling policy using the risk function, we use the core of Algorithm
7 with an adjusted future feasibility check at each departure event. Instead of
checking feasibility in the mean-case scenario for the future part of the route,
restricted to tasks that are more important than the upcoming task (line 17-32),
we perform the following:

1. Check whether we expect to arrive at j and depart from j in time.

2. Perform a risk check on the block starting at j, if such a block exists, using
the current time of the departure event as the base time.

Whenever we encounter an infeasibility in the above checks, we decide to skip j.
Note that we only consider possible blocks starting at the upcoming task, given
the scenario up to the current point in time. Again, this choice aims to avoid
removing tasks too early and unnecessarily. The above procedure helps to avoid
performing tasks at the cost of skipping more important tasks, although it does
not guarantee the performance of more important tasks in general.

Suppose that the route in Figure 8.1 is risk-feasible for some delay function. As
before, we complete task b at time dep′b = 122. For the decision whether to head
for task c or not, we check whether we expect feasibility problems regarding task
c itself, as we did before. Furthermore, we perform a risk check on the block
c− e, using dep′b = 122 as the base time. We head for task c if and only if this
block passes the risk check. Since no blocks start after task c, no additional
adjustments to the original policy are required in this case.

8.1.3 Rescheduling policy for a given solution

As we mentioned in Section 2.2, the value of recurrent tasks depends on the num-
ber of tasks from the same recurrent set that appear in the solution. Therefore,
the removal of a recurrent task in real-time leads to a lower value of tasks from
the same recurrent set, both for completed and future tasks. This leads to de-
pendencies between routes and implies that the online problem of the Extended
Security Routing problem is not separable per route. Thus, we need to handle
all routes simultaneously in real-time.

For this purpose, we keep track of the next departure times for each route.
We terminate if no next departure times remain, i.e. if all routes have been
completed. In each iteration, we consider the route with the earlier next de-
parture time and determine the upcoming location j. If this is a depot, we
apply the same procedure as before (line 12-15 of Algorithm 1). Otherwise, we

61

decide whether to head for task j or not. Again, we can basically use the same
procedure as before, as described line 17-32 of Algorithm 7, or its risk variant
described in Section 8.1.2. However, for all recurrent tasks in the route, we use
the values based on the most recent information on removal of recurrent tasks
in the routes.

8.2 Active rescheduling policy

In the passive rescheduling policies described above, our only possible action
is to delete tasks from routes in unfavourable scenarios. However, we might
be able to control the damage better if we would be able to reassign the task
to a different resource, or if we could replace the deleted task by a slightly less
important task. Moreover, in favourable scenarios, we might have the possibility
to add initially unscheduled tasks to the route.

By using more active policies, we could probably often increase the objective
value obtained in real-time. However, the other criterion to stick to the original
plan would probably deteriorate. Below, we describe a policy that aims to find
a compromise between aiming for a higher objective value and sticking to the
original plan.

For a departure event after completing the visit to location i and before heading
to a task j, we can check whether we can add an unscheduled task between i
and j, or whether we can replace task j by a more important unscheduled task.
Note that these actions correspond to the local moves Addition and Swap in
the Tabu Search algorithm, see Section 5.1.

Observe that we only consider a single insertion position and we still do not
reassign tasks to different resources. In particular, we do not consider the local
moves Change and Exchange from Section 5.1. While the obtained value will
typically be lower than for more active rescheduling policies, this policy can be
easily implemented in practice and allows for very quick decisions. Moreover, it
meets the practical wish to avoid nervousness and to stay close to the original
solution in real-time.

62

Chapter 9

Data description

For evaluating the quality of the proposed methods and concepts, we consider
different datasets. In this chapter, we describe the datasets we used for the origi-
nal problem and the extended problem. Furthermore, we describe the framework
we used for the simulations of travel and service times.

9.1 Instances for the original problem

For the original Security Routing problem, we use four instances, to which we
refer by Instance 1 - 4, based on test instances from Vansteenwegen [2009]. These
are the same instances as Instance 2 - 5 used in Breugem et al. [2015].

A very important aspect of these datasets is the strict priority distinction be-
tween tasks, in the sense that a task is more important than the set of all tasks
with lower value. That is, for I ′ = {i′ ∈ I | vi′ < vi}, we have vi >

∑
i′∈I′ vi′ ,

for each task i ∈ I. In these datasets, we have priority levels P = {1, 2, 3},
which we need to convert to values wp. Let Ip be the set of tasks with priority
p. We set w3 = 1, w2 = 1 + |I3| and w1 = 1 + w2|I2|+ w3|I3|. Note that these
values satisfy the required strict priority distinction, and that tasks of priority
1 are most important.

All instances contain 100 tasks and 2 depots, and the planning horizon ends at
T = 600. Other characteristics of the instances are summarized in Table 9.1.
Instances 1 and 4 share a common map with geographical locations of tasks
and depots (see Figure 9.1), as well as Instances 2 and 3 (see Figure 9.2). The
tasks are clustered for Instances 1 and 4, while they are scattered for Instances
2 and 3. Contrary to the geographical locations, the priorities, time windows,
and service times of tasks can be different per instance.

63

Instance 1 Instance 2 Instance 3 Instance 4

#tasks 39 / 30 / 31 35 / 41 / 24 32 / 41 / 27 39 / 30 / 31
values 992 / 32 / 1 1050 / 25 / 1 1176 / 28 / 1 992 / 32 / 1

max obj 39679 37799 38807 39679
avg tw 74.6 117.2 189.9 67.0

avg min dist 2.7 5.2 5.2 2.7

#resources 5 10 10 5
avg speed 21.4 25 30 21.4

avg endurance 260 260 310 260
avg rest time 58 58 42 58

avg service time 24.8 43.9 33.8 24.9

Table 9.1: Characteristics of the data instances for the original problem. For
tasks, we report the number of tasks per priority, the corresponding values, the
resulting maximal objective, the average size of time windows, and the average
distance from a task to the nearest other task. For resources, we report the
number of resources, the average speed, the average endurance, the average
minimal rest time, and the average service time of resources for tasks.

Since Instances 2 and 3 have larger time windows and more resources than
Instances 1 and 4, it can be expected that more tasks can be scheduled for
the former instances. Furthermore, it can be expected that more tasks can be
scheduled for Instance 3 than for Instance 2, due to larger averages for travel
speed and endurance, and smaller averages for rest time and service time.

64

Figure 9.1: The map of tasks and depots for Instances 1 and 4.

Figure 9.2: The map of tasks and depots for Instances 2 and 3.

65

9.2 Instances for the extended problem

For the Extended Security Routing problem, we need datasets with a more
general value structure, resource-dependent values and recurrent tasks. For this
purpose, we adjust and extend the value structure as follows:

1. For each task with priority 1/2/3, assign a random base value in [11, 20],
[6, 10], or [1, 5], respectively.

2. For each task, assign a random quality between 0.8 and 1 to each mean
that can perform the task.

We incorporate recurrent tasks in the instances by the following procedure:

1. For each priority, randomly choose 3 tasks to become part of a recurrent
set.

2. Each priority gets one recurrent set for each of the sizes 3, 5, and 7.

3. We assume that in a recurrent set, service times and qualities are equal.

4. Assign a time window [iT/|S|, (i+0.5)T/|S|] to the i-th task in a recurrent
set S.

Note that each of the extended instances contains 136 tasks now. The time
windows of the recurrent tasks are chosen such that they are disjoint and evenly
distributed over time. We refer to these extended datasets by Instances 5 -
8.

Additionally, we use a dataset that was used in an experiment in a military
context, In this dataset, to which we refer as Instance 9, all 126 tasks belong
to some recurrent set of either size 4 or size 5. The planning horizon ends at
T = 660. Since we only have 3 resources and the service times of tasks are
relatively short, we typically obtain routes with a lot of tasks and recharging
depots, especially for the fast resources.

9.3 Simulation of travel and service times

We assume that travel and service times can deviate at most 10% and 25% from
their expected values. That is, we set σTT = 0.1 and σST = 0.25. For the online
stage of both problems, we draw realizations of travel and service times from a
uniform distribution over [(1 − σTT)t̄ijr, (1 + σTT)t̄ijr] and [(1 − σST)s̄jr, (1 +
σST)s̄jr], respectively.

66

Chapter 10

Results

In this chapter, we show and analyze the results of applying our methods and
concepts to the datasets described in Chapter 9. In Sections 10.1 and 10.2, we
discuss the results for the original Security Routing problem and the Extended
Security Routing problem, respectively.

The experiments for the Tabu Search heuristic were performed on a computer
with an Intel Core i5-2400 processor with CPU running at 3.1 GHz and 4 GB of
RAM-memory. The experiments for the LRCG approach were performed on a
computer with an Intel Core i3-2310M processor with CPU running at 2.1 GHz
and 4 GB of RAM-memory.

10.1 Results for the original problem

The majority of the results for the original Security Routing problem concerns
the performance of the Tabu Search algorithm. In particular, we focus on the ef-
fect of using robustness concepts on the online performance of the solutions. Fur-
thermore, we discuss the results of applying the LRCG method to the datasets.
In particular, we compare the obtained upper bound estimators on the optimal
total task value and the obtained feasible solutions to the best results for the
Tabu Search algorithm.

10.1.1 Tabu Search and robustness concepts

In order to judge the effect of including the reordering mechanism and the
robustness concepts on the offline solution, we generated solutions for all of the
following approaches:

67

• STD: The Tabu Search algorithm from Chapter 5, but without reordering.

• REORDER: Similar to STD, but now including the reordering procedure.

• WCF90: Similar to REORDER, but with WCF = 0.9.

• WCF99: Similar to WCF90, but with a more strict bound WCF = 0.99.

• RISK: Similar to REORDER, but now we only accept risk-feasible routes.

• RISKRES: Similar to RISK, but with restoring risk-feasibility of solutions.

• RWCF90: Similar to RISK, but accompanied by WCF = 0.9.

• RRWCF90: Similar to RISKRES, but accompanied by WCF = 0.9.

We refer to Chapter 6 for the robustness concepts of the risk function and the
worst-case fraction. We refer to Chapter 7 for the way in which these con-
cepts were integrated in the Tabu Search algorithm, as well as for the difference
between only accepting risk-feasible routes and restoring risk-feasibility of a
solution after each iteration.

For the approaches WCF90 and WCF99, we require that the majority of the
offline solution can be executed in the worst-case scenario. For WCF90, we
allow for some more flexibility. Given the priority structure of these datasets,
only a few or no tasks of priority 1 can be removed in the worst-case scenario
for WCF90 and WCF99, respectively. For the four approaches using the risk
function, we use a delay function that implies that each value difference leads
to worst-case delays, e.g. g(R) = min{(R−1)/5, 1}, in order to reflect the strict
priority distictions in these datasets.

For all approaches, we performed 10 runs of 15 minutes in the offline stage. For
each offline solution, we applied a rescheduling policy for 2000 simulations of
travel and service times, of which 1000 were applied after a final depot visit
extension (see Section 7.1).

Offline stage

For the offline stage, we are particularly interested in the added value of the
reordering procedure of tasks within routes. Furthermore, we report the num-
ber of iterations in the Tabu Search algorithm, in order to illustrate the effect
of including the reordering procedure and the robustness concepts on the speed
of the algorithm. Moreover, we check whether using the robustness concepts
affects the order of tasks within routes and the distribution of tasks over re-
sources.

Table 10.1 summarizes the results obtained. Note that for Instance 3, the op-
timal objective value is attained for each approach. For Instance 2, all tasks
of priority 1 and almost all tasks of priority 2 are assigned for each approach
as well. For Instances 1 and 4, we only have 5 resources available and hence,

68

the number of scheduled tasks is considerably lower. This table also shows that
approach WCF99 yields the most conservative solutions for all instances, which
makes sense due to the very strict requirement that 99% of the scheduled task
value should still be realized in the worst-case scenario.

The strategy of restoring the risk-feasibility of a solution after each iteration
outperforms the standard risk-feasibility check for Instances 1 and 4, whereas the
standard risk check gives slightly better results for Instance 2. Table 10.1 also
shows that a more conservative approach like RISK sometimes yields a higher
objective value than a basic approach like REORDER. As the risk function can
be regarded as an additional feasibility constraint, this behaviour is somewhat
counterintuitive. However, it appears that rejection of certain routes due to risk-
infeasibility can lead the search process into promising regions of the (smaller)
solution space more quickly.

The results for the approaches STD and REORDER show that the reorder
procedure only slightly slows down the search process, but it does not improve
the objective value significantly for these instances. Another measure for the
usefulness of reordering is the success percentage, in the sense that the best
objective value of the (sub)search is improved in the first iteration afterwards.
For Instance 3, no reordering procedures were performed before attaining the
maximal objective value. For approach REORDER and Instances 1/2/4, the
average success percentages are given by 21.8%, 10.4% and 12.0%, respectively.
These percentages suggest that the reordering procedure is particularly useful
if there are still many unscheduled tasks remaining that can be inserted after
reordering, as in Instances 1 and 4.

For investigating whether the risk function indeed leads to a preference of routes
with decreasing values, we use the average number of less important tasks before
a task of priority 1 or 2 as a measure. For investigating whether the worst-case
fraction leads to a better distribution of scheduled tasks over the resources, we
use the standard deviation of number of tasks per route as a measure. The
corresponding results are shown in Table 10.2.

For Instances 1/2/4, the risk function clearly leads to a considerable decrease
of the average number of less important tasks before tasks of priority 1 and 2.
For Instance 3, this effect is also visible for priority 2, but not that much for
priority 1. This might be due to the fact that this is an ‘easy’ instance in the
sense that a large fraction of feasible routes is risk-feasible as well. In the more
restrictive instances 1 and 4, the effect is the most significant.

On the other hand, the effect of using the worst-case fraction on the distribu-
tion of tasks over the resources is not clear for these instances. This might be
partially due to the fact that a less even distribution of tasks might actually
lead to more robust schedules for our heterogeneous resources. The effect is
more clearly visible for the extensions of these instances, as we show in Section
10.2.

69

S
T

D
R

E
O

R
D

E
R

W
C

F
9
0

W
C

F
99

R
IS

K
R

IS
K

R
E

S
R

W
C

F
9
0

R
R

W
C

F
90

I1 O
b

j
38

4
0
5
,2

(4
4
8,

8
)

3
8
40

8
,7

(4
5
2
,3

)
37

1
22

,9
(9

3
9,

1)
3
36

2
3,

5
(1

19
2,

5)
38

6
28

,7
(4

3
5,

9)
3
8
9
4
5
,8

(0
,4

)
3
7
51

5
,4

(6
1
9,

9
)

3
78

2
8
,3

(2
91

,0
)

#
p

ri
o

1
3
8,

4
(0

,5
)

38
,4

(0
,5

)
3
7,

1
(1

,0
)

3
3,

5
(1

,2
)

3
8,

7
(0

,5
)

3
9
,0

(0
,0

)
3
7
,5

(0
,7

)
3
7,

9
(0

,3
)

#
p

ri
o

2
9,

7
(1

,6
)

9
,8

(1
,4

)
9
,9

(3
,3

)
1
2,

1
(2

,1
)

7,
4

(1
,0

)
8
,0

(0
,0

)
9
,8

(1
,9

)
7
,2

(1
,1

)
#

p
ri

o
3

2,
0

(1
,1

)
2
,3

(1
,2

)
2
,9

(0
,9

)
4
,3

(1
,5

)
1,

5
(0

,8
)

1
,8

(0
,4

)
1
,8

(1
,2

)
1
,1

(0
,3

)
#

it
s

28
2
4
8
,4

(5
8
4,

0
)

2
52

4
9
,8

(1
5
6
3
,7

)
8
6
69

,6
(8

0
4,

5)
4
0
03

,4
(5

0
6,

7)
15

9
88

,4
(1

7
3,

4)
1
3
3
8
0
,0

(4
8
4
,4

)
1
2
38

6
,3

(4
1
2,

8
)

6
11

5
,7

(6
7
8,

3
)

I2 O
b

j
3
7
7
74

,0
(1

6,
0
)

3
7
7
8
1
,3

(7
,2

)
3
77

80
,5

(6
,2

)
3
7
75

3,
6

(2
0,

6)
37

77
7
,1

(7
,1

)
3
7
76

4,
6

(1
3,

2
)

3
7
7
66

.6
(1

1
.6

)
3
77

5
7
,3

(1
5,

5
)

#
p

ri
o

1
3
5,

0
(0

,0
)

3
5
,0

(0
,0

)
3
5,

0
(0

,0
)

3
5,

0
(0

,0
)

3
5,

0
(0

,0
)

3
5,

0
(0

,0
)

3
5
,0

(0
,0

)
3
5,

0
(0

,0
)

#
p

ri
o

2
4
0,

6
(0

,7
)

4
0
,9

(0
,3

)
4
0,

9
(0

,3
)

3
9,

9
(0

,8
)

4
0,

9
(0

,3
)

4
0,

5
(0

,5
)

4
0
,5

(0
,5

)
4
0,

2
(0

,6
)

#
p

ri
o

3
9,

0
(1

,5
)

8
,8

(1
,2

)
8
,0

(1
,5

5
)

6
,1

(1
,2

)
4,

6
(1

,3
)

2
,1

(1
,4

)
4
,1

(1
,2

)
2
,3

(1
,7

)
#

it
s

16
5
8
6
,5

(3
0
1,

8
)

1
7
2
7
8
,0

(4
5
5
,9

)
7
3
94

,2
(6

7
4,

3)
2
6
92

,9
(2

2
0,

7)
1
37

4
4,

4
(7

2,
1
)

9
5
50

,4
(3

4
4,

8
)

1
0
60

0
,4

(5
0
9,

7
)

4
78

0
,9

(4
4
4,

5
)

I3 O
b

j
3
88

0
7
,0

(0
,0

)
3
8
8
0
7
,0

(0
,0

)
3
88

07
,0

(0
,0

)
38

80
7
,0

(0
,0

)
38

80
7
,0

(0
,0

)
38

8
07

,0
(0

,0
)

3
8
8
0
7,

0
(0

,0
)

3
8
8
07

,0
(0

,0
)

#
p

ri
o

1
3
2,

0
(0

,0
)

3
2
,0

(0
,0

)
3
2,

0
(0

,0
)

3
2,

0
(0

,0
)

3
2,

0
(0

,0
)

3
2,

0
(0

,0
)

3
2
,0

(0
,0

)
3
2,

0
(0

,0
)

#
p

ri
o

2
4
1,

0
(0

,0
)

4
1
,0

(0
,0

)
4
1,

0
(0

,0
)

4
1,

0
(0

,0
)

4
1,

0
(0

,0
)

4
1,

0
(0

,0
)

4
1
,0

(0
,0

)
4
1,

0
(0

,0
)

#
p

ri
o

3
2
7,

0
(0

,0
)

2
7
,0

(0
,0

)
2
7,

0
(0

,0
)

2
7,

0
(0

,0
)

2
7,

0
(0

,0
)

2
7,

0
(0

,0
)

2
7
,0

(0
,0

)
2
7,

0
(0

,0
)

#
it

s
1
0
5
6,

4
(5

50
,2

)
2
7
5
,0

(0
,0

)
4
34

,4
(2

8
,8

)
38

1
,0

(0
,0

)
62

6,
5

(3
42

,3
)

1
0
11

,0
(4

6
4,

3
)

4
92

,0
(0

,0
)

7
6
8
,2

(6
2
6
,6

)

I4 O
b

j
36

9
8
7
,8

(4
1
5,

5
)

3
6
89

4
,8

(6
4
4
,4

)
35

0
01

,3
(8

6
4,

6)
31

6
10

,9
(4

5
9,

5)
36

7
38

,1
(3

8
5,

1)
3
7
7
6
8
,7

(2
6
9
,2

)
3
5
60

4
,4

(7
2
5,

9
)

3
52

0
1
,1

(3
69

,0
)

#
p

ri
o

1
3
7,

0
(0

,5
)

36
,9

(0
,7

)
3
4,

9
(0

,9
)

3
1,

4
(0

,5
)

3
6,

8
(0

,4
)

3
7
,9

(0
,3

)
3
5
,6

(0
,8

)
3
5,

2
(0

,4
)

#
p

ri
o

2
8,

8
(1

,1
)

9
,0

(1
,7

)
1
1,

8
(2

,4
)

1
4,

3
(1

,3
)

7,
2

(1
,0

)
5
,3

(0
,9

)
9
,0

(2
,3

)
8
,8

(1
,3

)
#

p
ri

o
3

2,
2

(0
,4

)
2
,0

(0
,9

)
2
,9

(0
,9

)
4
,5

(1
,2

)
2,

1
(0

,9
)

2
,3

(0
,8

)
1
,2

(1
,1

)
1
,1

(0
,3

)
#

it
s

29
7
7
8,

9
(2

4
42

,7
)

2
40

2
3
,0

(1
7
7
3
,0

)
8
7
21

,3
(4

8
7,

3)
7
0
37

,8
(5

4
5,

8)
16

3
95

,7
(1

7
6,

6)
1
4
8
5
5
,0

(1
3
0
,0

)
1
2
82

5
,6

(8
8
2,

9
)

5
96

8
,7

(5
1
2,

5
)

T
ab

le
10

.1
:

O
ffl

in
e

re
su

lt
s

fo
r

T
ab

u
S

ea
rc

h
:

o
b

je
ct

iv
e,

n
u

m
b

er
o
f

ta
sk

s
p

er
p

ri
o
ri

ty
,

a
n

d
n
u

m
b

er
o
f

it
er

a
ti

o
n

s
(s

p
ee

d
).

W
e

re
p

or
t

th
e

av
er

ag
e

va
lu

es
an

d
st

an
d

ar
d

d
ev

ia
ti

o
n

s
(b

et
w

ee
n

b
ra

ck
et

s)
ov

er
1
0

ru
n

s
o
f

1
5

m
in

u
te

s.
F

o
r

ea
ch

in
st

a
n

ce
,

th
e

re
su

lt
s

fo
r

th
e

b
es

t
ap

p
ro

ac
h

ar
e

in
b

ol
d

fa
ce

.

S
T

D
R

E
O

R
D

E
R

W
C

F
9
0

W
C

F
9
9

R
IS

K
R

IS
K

R
E

S
R

W
C

F
9
0

R
R

W
C

F
9
0

In
st

a
n

c
e

1
#

lo
w

er
b

ef
or

e
p

ri
o

1
1,

0
(0

,3
)

1
,1

(0
,4

)
1
,2

(0
,4

)
1
,6

(0
,4

)
0
,3

(0
,1

)
0
,3

(0
,1

)
0
,8

(0
,4

)
0
,4

(0
,1

)
#

lo
w

er
b

ef
or

e
p

ri
o

2
0,

2
(0

,2
)

0
,2

(0
,2

)
0
,1

(0
,1

)
0
,4

(0
,2

)
0
,0

(0
,1

)
0
,0

(0
,0

)
0
,0

(0
,0

)
0
,0

(0
,0

)
S

t
d

ev
#

ta
sk

s
p

er
ro

u
te

5,
3

(0
,3

)
5
,3

(0
,3

)
5
,2

(0
,3

)
5
,1

(0
,3

)
5
,0

(0
,2

)
5
,2

(0
,3

)
5
,1

(0
,3

)
4
,6

(0
,2

)

In
st

a
n

c
e

2
#

lo
w

er
b

ef
or

e
p

ri
o

1
1,

9
(0

,3
)

1
,8

(0
,2

)
2
,0

(0
,1

)
1
,7

(0
,2

)
1
,3

(0
,2

)
1
,2

(0
,2

)
1
,3

(0
,1

)
1
,2

(0
,2

)
#

lo
w

er
b

ef
or

e
p

ri
o

2
0,

7
(0

,2
)

0
,7

(0
,1

)
0
,6

(0
,1

)
0
,4

(0
,1

)
0
,3

(0
,1

)
0
,1

(0
,1

)
0
,2

(0
,1

)
0
,1

(0
,1

)
S

t
d

ev
#

ta
sk

s
p

er
ro

u
te

1,
4

(0
,2

)
1
,5

(0
,2

)
1
,4

(0
,2

)
1
,4

(0
,2

)
1
,4

(0
,2

)
1
,3

(0
,1

)
1
,4

(0
,3

)
1
,4

(0
,2

)

In
st

a
n

c
e

3
#

lo
w

er
b

ef
or

e
p

ri
o

1
4,

3
(0

,5
)

3
,9

(0
,0

)
4
,6

(0
,2

)
4
,2

(0
,0

)
4
,1

(0
,2

)
4
,4

(0
,6

)
3
,8

(0
,0

)
3
,8

(0
,3

)
#

lo
w

er
b

ef
or

e
p

ri
o

2
1,

2
(0

,1
)

1
,2

(0
,0

)
1
,3

(0
,0

)
1
,1

(0
,0

)
0
,9

(0
,1

)
0
,7

(0
,1

)
0
,7

(0
,0

)
0
,6

(0
,2

)
S

t
d

ev
#

ta
sk

s
p

er
ro

u
te

3,
2

(0
,6

)
3
,0

(0
,0

)
3
,9

(0
,2

)
3
,4

(0
,0

)
3
,2

(0
,2

)
3
,5

(0
,5

)
2
,4

(0
,0

)
3
,2

(0
,3

)

In
st

a
n

c
e

4
#

lo
w

er
b

ef
or

e
p

ri
o

1
1,

0
(0

,2
)

1
,1

(0
,3

)
1
,4

(0
,3

)
1
,9

(0
,2

)
0
,5

(0
,3

)
0
,4

(0
,1

)
0
,8

(0
,2

)
0
,7

(0
,2

)
#

lo
w

er
b

ef
or

e
p

ri
o

2
0,

1
(0

,1
)

0
,3

(0
,2

)
0
,2

(0
,1

)
0
,4

(0
,2

)
0
,1

(0
,2

)
0
,3

(0
,1

)
0
,1

(0
,1

)
0
,0

(0
,1

)
S

t
d

ev
#

ta
sk

s
p

er
ro

u
te

5,
2

(0
,2

)
5
,1

(0
,2

)
5
,0

(0
,3

)
5
,0

(0
,2

)
4
,8

(0
,2

)
4
,8

(0
,2

)
4
,7

(0
,3

)
4
,6

(0
,3

)

T
ab

le
10

.2
:

C
h

ar
ac

te
ri

st
ic

s
of

th
e

offl
in

e
so

lu
ti

o
n

s:
n
u

m
b

er
o
f

le
ss

im
p

o
rt

a
n
t

ta
sk

s
b

ef
o
re

a
ta

sk
o
f

so
m

e
p

ri
o
ri

ty
,

a
n

d
th

e
st

an
d

ar
d

d
ev

ia
ti

on
of

th
e

n
u

m
b

er
of

ta
sk

s
p

er
ro

u
te

.
W

e
re

p
o
rt

th
e

av
er

a
g
e

va
lu

es
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s
(b

et
w

ee
n

b
ra

ck
et

s)
ov

er
10

ru
n

s
of

15
m

in
u

te
s.

F
or

ea
ch

in
st

a
n

ce
,

th
e

b
es

t
re

su
lt

s
a
re

in
b

o
ld

fa
ce

.

71

Online stage

For the online stage, we report both the obtained objective values in the simu-
lations and the number of removed tasks, as a measure for the robustness of a
solution, indicating its capabiility to stick to the original plan. The penalties for
endurance and planning horizon were equal to zero in all experiments, thanks
to the use of latest return times.

For the offline solutions constructed without using the risk function (i.e. for the
first four approaches), we apply the standard rescheduling policy as described
in Algorithm 7. Otherwise, we use the adjusted version with the risk check at
each departure event, as described in Section 8.1.2.

When applying this risk rescheduling policy to offline solutions that were not
built to satisfy these risk check, it is very likely that these solution are not
even risk-feasible if the mean-case scenario would unfold in real-time. There-
fore, it can be expected that a larger number of tasks is removed than for the
basic rescheduling policy. This result can be observed in Tables B.1 and B.2 in
Appendix B, which also shows that the online objective value always increases
when incorporating the risk function in the rescheduling policy. Nevertheless,
we choose to use the basic rescheduling policy for the approaches STD, RE-
ORDER, WCF90, and WCF99, since it does not make sense to start the online
stage with a solution that is not even feasible in the mean-case scenario.

Tables B.1 and B.2 also show that the approach WCF99 always performs best
if a worst-case scenario unfolds in real-time. The approach WCF90 is always
the second best approach regarding the number of removed tasks, and for two
instances also for the online objective value. However, since we assume a mean-
case scenario in the offline stage when constructing the schedules, we focus on
the online performance when travel and service times are simulated as described
in Section 9.3, rather than on the worst-case scenario.

As a final remark for Tables B.1 and B.2, observe that the worst-case scenario
does not necessarily yield the worst online objective value. In particular, for
approaches WCF90 and WCF99, the average online objective value in the worst-
case scenario sometimes exceeds the one in which we use simulations of travel
and service times as described in Section 9.3.

Table 10.3 summarizes the results for the online stage. First of all, observe that
improving the schedules of a solution by a final extension of depot visits appears
to be very valuable. For all instances and approaches, the results significantly
outperform the results for solutions without the final extension, both with re-
spect to the objective values and to the number of removed tasks. When we
zoom in on the reasons why tasks were removed, the results suggest that a final
depot extension leads to a higher percentage of task removals due to feasibility
problems with time windows. This makes sense, since an extension of a depot
visit makes a schedule more compact, at the cost of decreased time window
buffers.

72

S
T

D
R

E
O

R
D

E
R

W
C

F
90

W
C

F
99

R
IS

K
R

IS
K

R
E

S
R

W
C

F
90

R
R

W
C

F
90

In
st

a
n

c
e

1
O

ffl
in

e
ob

j
38

40
5,

2
(4

4
8,

8)
38

40
8,

7
(4

52
,3

)
37

12
2,

9
(9

39
,1

)
33

62
3,

5
(1

19
2,

5)
38

62
8,

7
(4

35
,9

)
38

94
5,

8
(0

,4
)

3
75

15
,4

(6
1
9,

9
)

37
82

8,
3

(2
91

,0
)

O
n
li
n
e

ob
j

35
21

0,
2

(1
4
13

,6
)

35
61

7,
5

(1
40

7,
9)

34
52

2,
7

(1
41

1,
2)

32
86

7,
7

(1
33

6,
9)

36
24

4,
6

(1
17

3,
7)

36
27

9,
4

(1
22

1,
7
)

35
85

2,
8

(1
11

9,
1
)

3
6
9
3
5
,9

(7
8
5
,7

)
O

n
li
n
e

o
b

j
n
o

ex
t

34
62

2,
0

(1
3
92

,7
)

34
83

4,
6

(1
33

5,
2)

34
10

2,
6

(1
47

3,
1)

32
13

1,
2

(1
47

0,
0)

35
68

7,
8

(1
25

0,
1)

36
08

5,
6

(1
20

4,
6
)

35
05

2,
1

(1
15

9,
3
)

36
15

3,
1

(9
52

,5
)

#
ta

sk
s

re
m

ov
ed

4
,2

(1
,5

)
3,

8
(1

,7
)

3,
9

(1
,5

)
2,

5
(1

,3
)

3,
7

(1
,4

)
3,

8
(1

,5
)

3,
3

(1
,5

)
2
,1

(1
,2

)
#

re
m

ov
ed

n
o

ex
t

4
,9

(1
,5

)
4,

8
(1

,7
)

4,
5

(1
,6

)
4,

0
(1

,4
)

4,
5

(1
,4

)
4,

5
(1

,5
)

4,
4

(1
,5

)
3
,4

(1
,3

)

In
st

a
n

c
e

2
O

ffl
in

e
ob

j
37

77
4,

0
(1

6,
0)

37
78

1,
3

(7
,2

)
37

78
0,

5
(6

,2
)

37
75

3,
6

(2
0,

6)
37

77
7,

1
(7

,1
)

37
76

4,
6

(1
3
,2

)
37

76
6.

6
(1

1.
6
)

3
7
75

7,
3

(1
5,

5
)

O
n
li
n
e

ob
j

34
22

2,
5

(1
5
59

,8
)

35
21

6,
5

(1
30

3,
7)

35
27

8,
0

(1
43

2,
0)

36
70

0,
7

(8
3
2,

6)
36

78
2,

4
(8

55
,8

)
36

49
5,

1
(8

92
,8

)
3
67

57
,9

(9
0
3,

4
)

3
7
0
5
3
,3

(7
2
2
,4

)
O

n
li
n
e

o
b

j
n
o

ex
t

33
09

3,
0

(1
6
17

,9
)

34
56

5,
3

(1
49

1,
0)

34
48

4,
0

(1
49

4,
1)

35
94

7,
0

(1
12

1,
7)

36
09

8,
9

(9
72

,4
)

35
82

0,
5

(1
07

8,
8
)

36
08

6,
5

(1
18

1,
6
)

3
63

07
,4

(1
0
56

,2
)

#
ta

sk
s

re
m

ov
ed

7
,5

(2
,0

)
7,

2
(2

,0
)

7,
4

(2
,0

)
6
,4

(1
,9

)
7,

0
(2

,0
)

7,
1

(2
,0

)
7,

0
(2

,0
)

6
,8

(2
,0

)
#

re
m

ov
ed

n
o

ex
t

10
,1

(2
,2

)
9,

7
(2

,1
)

9,
9

(2
,2

)
9,

3
(2

,1
)

9,
9

(2
,2

)
9,

9
(2

,2
)

9,
8

(2
,1

)
9
,8

(2
,3

)

In
st

a
n

c
e

3
O

ffl
in

e
ob

j
38

80
7
,0

(0
,0

)
38

80
7,

0
(0

,0
)

38
80

7,
0

(0
,0

)
38

80
7
,0

(0
,0

)
38

80
7,

0
(0

,0
)

38
80

7,
0

(0
,0

)
38

80
7,

0
(0

,0
)

38
80

7,
0

(0
,0

)
O

n
li
n
e

ob
j

36
48

7,
3

(1
4
56

,9
)

36
80

4,
6

(1
11

5,
9)

37
70

3,
5

(8
95

,9
)

38
20

4,
8

(6
6
9,

8)
38

56
0,

3
(5

34
,2

)
38

72
3,

7
(2

29
,6

)
38

75
4,

7
(5

7,
6
)

3
8
7
6
8
,9

(1
0
3
,7

)
O

n
li
n
e

o
b

j
n
o

ex
t

35
15

5,
1

(1
7
72

,3
)

36
06

1,
3

(1
21

9,
4)

37
08

5,
6

(1
02

0,
0)

37
29

1,
9

(9
4
6,

1)
37

71
5,

3
(8

96
,2

)
38

48
2,

9
(4

76
,6

)
3
82

43
,0

(6
2
7,

2
)

38
04

8,
0

(7
94

,9
)

#
ta

sk
s

re
m

ov
ed

5
,1

(1
,8

)
4,

6
(1

,5
)

3
,9

(1
,5

)
4,

1
(1

,6
)

4,
7

(1
,8

)
5,

0
(1

,7
)

4,
0

(1
,5

)
4
,7

(1
,7

)
#

re
m

ov
ed

n
o

ex
t

8
,0

(2
,2

)
5,

8
(1

,6
)

7,
1

(1
,9

)
6,

9
(1

,8
)

7,
6

(2
,2

)
7,

8
(1

,9
)

7,
9

(2
,0

)
7
,7

(2
,0

)

In
st

a
n

c
e

4
O

ffl
in

e
ob

j
36

98
7,

8
(4

1
5,

5)
36

89
4,

8
(6

44
,4

)
35

00
1,

3
(8

64
,6

)
31

61
0,

9
(4

5
9,

5)
36

73
8,

1
(3

85
,1

)
37

76
8,

7
(2

69
,2

)
3
56

04
,4

(7
2
5,

9
)

35
20

1,
1

(3
69

,0
)

O
n
li
n
e

ob
j

33
42

7,
0

(1
5
18

,2
)

33
15

1,
7

(1
50

0,
2)

32
52

7,
3

(1
62

7,
5)

30
95

7,
9

(8
5
4,

4)
33

95
5,

6
(1

34
1,

7)
3
4
8
0
4
,5

(1
3
0
5
,4

)
33

99
0,

5
(1

12
5,

8
)

34
26

6,
1

(9
02

,0
)

O
n
li
n
e

ob
j

n
o

ex
t

32
61

1,
5

(1
5
00

,3
)

32
41

3,
46

(1
5
54

,1
)

31
86

5,
8

(1
75

1,
5)

30
50

4,
5

(9
4
4,

9)
33

27
5,

0
(1

32
5,

4)
34

26
5,

7
(1

34
9,

8
)

33
18

9,
3

(1
26

2,
0
)

3
35

59
,4

(1
0
40

,5
)

#
ta

sk
s

re
m

ov
ed

4
,1

(1
,6

)
4,

2
(1

,6
)

3,
7

(1
,5

)
2
,8

(1
,3

)
3,

5
(1

,5
)

3,
9

(1
,5

)
3,

1
(1

,4
)

2
,8

(1
,4

)
#

re
m

ov
ed

n
o

ex
t

4
,9

(1
,6

)
5,

0
(1

,6
)

4,
7

(1
,5

)
4,

1
(1

,4
)

4,
4

(1
,5

)
4,

7
(1

,5
)

4,
3

(1
,5

)
4
,2

(1
,5

)

T
ab

le
10

.3
:

O
n

li
n

e
re

su
lt

s
fo

r
T

ab
u

S
ea

rc
h

:
o
n

li
n

e
o
b

je
ct

iv
e

va
lu

e
a
n

d
th

e
n
u

m
b

er
o
f

re
m

ov
ed

ta
sk

s,
w

it
h

a
n

d
w

it
h

o
u

t
a

fi
n
a
l

ex
te

n
si

on
of

d
ep

ot
v
is

it
s.

F
or

co
m

p
ar

is
o
n

p
u

rp
o
se

s,
w

e
re

p
ea

t
th

e
o
ffl

in
e

o
b

je
ct

iv
e

va
lu

e.
W

e
re

p
o
rt

th
e

av
er

a
g
es

a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

on
s

(b
et

w
ee

n
b

ra
ck

et
s)

ov
er

10
0
0

si
m

u
la

ti
o
n

s
p

er
o
ffl

in
e

so
lu

ti
o
n

.
F

o
r

ea
ch

in
st

a
n

ce
,

th
e

h
ig

h
es

t
o
n

li
n

e
o
b

je
ct

iv
e

va
lu

es
an

d
th

e
lo

w
es

t
n
u

m
b

er
of

re
m

ov
ed

ta
sk

s
a
re

in
b

o
ld

fa
ce

.

As all tasks can be scheduled in Instance 3, the robustness of a solution is the
most interesting result. The effect of including the robustness concepts on the
online performance can be observed very clearly for this instance. Requiring
a worst-case fraction of WCF = 0.9 already improves the basic online objec-
tive value significantly (compare approaches WCF90 and REORDER), while
using the more strict requirement WCF = 0.99 (approach WCF99) yields even
higher objective values. Using the risk function (approaches RISK, RISKRES,
RWCF90, RRWCF90) improves the online objective value even further.

The results suggest that using a worst-case fraction is especially useful when
most of the tasks can be scheduled, as the approaches WCF90 and WCF99
perform quite poorly in Instances 1 and 4, while it significantly improves the
results obtained by the basic approaches (STD and REORDER) in Instances
2 and 3. For the former instances, the offline objective value for WCF99 al-
ready drops below the obtained online objective value for the basic approaches.
Although fewer and less important tasks have to be removed in real-time, the
online objective value often is significantly smaller than the ones for the basic
approaches in these instances.

In general, the risk function and the corresponding rescheduling policy prove
their usefulness, as the corresponding approaches (RISK, RISKRES, RWCF90,
RRWCF90) outperform all other approaches for all instances, regarding the on-
line objective value. In particular, using the risk function leads to a considerable
improvement of the online results compared to the basic approaches (STD and
REORDER) regarding both online objective value and the number of removed
tasks, regardless of the instance.

Combining the risk function with a worst-case fraction (approaches RWCF90
and RRWCF90) always leads to a decreased number of removed tasks compared
to the plain risk approaches (RISK and RISKRES), while the effect on the
online objective value varies per instance and approach. Considering the online
performance over all instances, the approach RRWCF90 yields the best results,
which suggests that combining the two concepts might actually pay off.

10.1.2 LRCG results

For the LRCG method, we investigate the effect of our adjustments to the
subgradient algorithm (see Section 4.2.2). We are particularly interested in the
strength of the obtained upper bound estimators for the optimal total task value
and in the quality of the obtained feasible solutions.

For the subgradient algorithm, we used the following parameters related to the
step size: α = 2.0, decrFactor = 0.5, p = 20, p′ = 100, nrItsAvg = 4, and
minImprove = 0.02. Furthermore, we used Λ0 = 0, δ = 0.01, ε = 0.001, and
jmax = 1500.

For the pricing problem, recall the dominance rules from Section 4.3.1. As in

74

Breugem et al. [2015], we report the results when using rule 1 and a maximum
running time of 30 seconds per pricing problem. We also report results when
using rule 2 additionally, with a maximum running time of 60 seconds per pricing
problem. We stress that both dominance rules are of a heuristic nature.

Upper bound estimators

Figure 10.1 shows the convergence of the Lagrangian Dual solution throughout
the column generation algorithm for all instances. Instance 3 is particularly
interesting, since we have seen in the Tabu Search results that all tasks can
be scheduled. Therefore, the dual solution should ideally converge to 0. In
Breugem et al. [2015], a value of -3.01 was achieved for this instance. Within 10
column generation iterations, a value of -0.003 has already been attained with
the adjusted subgradient algorithm. Afterwards, the dual solution converges
even more to 0.

Table 10.4 shows the obtained Lagrangian Dual solutions Θ̂N in the final itera-
tion N of the LRCG algorithm. As we discussed in Section 4.4, Θ̂N can be used
as a lower bound estimator (UBE) of the objective value of the ILP in Section
4.1, while the converse (

∑
i∈I vi)− Θ̂N can be used an upper bound estimator

for the optimal total task value.

For dominance rule 1, the new UBEs are stronger bounds than the ones in
Breugem et al. [2015] for Instances 1 and 4, while they are comparable for In-
stances 2 and 3. Comparing these UBEs to the maximum values we encountered
for these instances when applying Tabu Search, we observe that we tend to un-
derestimate the maximum possible objective value. This is due to the heuristic
nature of dominance rule 1, which leads to an early termination of the LRCG
algorithm even though there are still favourable columns remaining.

For dominance rule 2, the UBEs become stronger, since rule 2 is less strict than
rule 1 in the sense that more partial paths remain non-dominated. In particular,
the UBEs now exceed the maximum values obtained by Tabu Search. The UBEs
might still underestimate the optimal total task value since dominance rule 2
is a heuristic rule as well. However, an overestimation is possible as well now,
since the Lagrangian Dual problem is a relaxation of the original problem and
its solution is approximated by the subgradient algorithm.

75

Figure 10.1: The development of the Lagrangian Dual solutions.

Instance 1 Instance 2 Instance 3 Instance 4

Rule 1 Obj Breugem et al. [2015] 33826 34457 37640 26918
Feasible obj value 36737 37454 38716 35777

UBE Breugem et al. [2015] 38829 37789 38807 36293
UBE 38931 37784 38807 37142

Rule 2 Feasible obj value 38753 37584 38765 35841
UBE 39012 37793 38807 38550

Highest obtained obj TS 39008 37786 38807 37923
Maximal objective 39679 37799 38807 39679

Table 10.4: LRCG results: objective values of feasible solutions and upper
bound estimators (UBEs) on the optimal total task value. The UBEs corre-
spond to the Lagrangian Dual solutions from the final LRCG iteration. For
comparison, we also show the UBEs and objective values of feasible solutions
obtained in Breugem et al. [2015] with rule 1, the highest obtained objective
value by the Tabu Search (TS) heuristic, and the maximal possible objective
value if all tasks could be scheduled. We use a maximum running time of 30 / 60
seconds for each pricing problem when using dominance rule 1 / 2, respectively.

76

Feasible solutions

Table 10.4 also shows the objective values of the best feasible solutions obtained
by the greedy procedure in Section 4.5. For dominance rule 1, the obtained
feasible solutions significantly improve the ones in Breugem et al. [2015] for
all instances, especially for Instance 4. Due to the adjusted subgradient algo-
rithm, the Lagrangian Dual problem results in different Lagrangian multipliers
Λ, which in turn leads to different generated columns in the pricing problem.
Thus, in addition to an improvement of the upper bound estimators, the ad-
justed subgradient algorithm leads to better feasible solutions as well.

For dominance rule 2, the quality of the feasible solutions is improved further
for all instances. Due to using a less strict dominance rule and a higher max-
imal running time per pricing problem, we are better able to find the shortest
path in the pricing problem. Thus, we generate better columns and obtain a
feasible solution with a higher objective value. However, the LRCG approach is
still outperformed by the Tabu Search heuristic for all instances, although the
differences in objective values are typically relatively small now.

10.2 Results for the extended problem

For the extended problem, we use the datasets with resource-dependent values
and recurrent tasks as described in Section 9.2. The evaluation criteria basically
remain the same for both stages. An interesting new aspect is the assignment
of recurrent tasks. Due to the non-linear convex profit function, we would
expect that recurrent sets are often performed either completely or not at all,
especially in the offline stage. Furthermore, with the more general structure of
task values, it is interesting to observe the behaviour of the risk function under
different delay functions.

For the Extended Security Routing problem, we can only use the risk function
in the restore variant, since the value structure in a route might change due to
moves involving recurrent tasks for other routes, as shown in Section 7.2. We
distinguish two piecewise linear delay functions, with cutoff ratios of 3 and 6.
In addition to the used approaches REORDER, WCF90, and WCF99, we use
the following approaches:

• NOADDRECS: Similar to REORDER, but without adding recurrent tasks
in the perturbation procedure.

• RISKRES6: Similar to RISKRES in the original problem, given a delay
function g(R) = min{(R− 1)/5, 1}.

• RISKRES3: Similar to RISKRES6, but with g(R) = min{(R− 1)/5, 1}.

• RR3WCF90: Similar to RISKRES3, but accompanied by WCF = 0.9.

77

For RISKRES3, the delay function is steeper than for RISKRES6. Thus, we
probably obtain more conservative solutions with RISKRES3, as a steeper delay
function leads to more severe delays in the risk checks.

Offline stage

The results for the offline stage are summarized in Table 10.5. We observe that
recurrent sets are indeed very often either scheduled completely or not at all.
Most exceptions occur for approach WCF99. This might be partially due to a
low number of reorder and perturbation procedures for this approach, due to a
lack of running time.

Regarding the robustness concepts, we observe that the worst-case fraction often
leads to a better distribution of tasks over the routes, but also to a significantly
lower objective value, especially for approach WCF99. Using the risk function
only leads to a relatively small decrease in the offline objective values. When
we compare approaches RISKRES6 and RISKRES3, we observe that a steeper
delay function (with cutoff ratio 3) typically leads to a lower offline objective
value, due to the more strict requirements in the risk checks.

Table 10.5 also shows that the number of iterations for Instance 9 is very low.
This is due to the characteristics of the instance that lead to routes of up
to 60 tasks and 6 recharging depots for a single resource, which makes it very
time-intensive to determine alternative routes, especially in a reorder procedure.
Recall that all tasks in this instance are recurrent and observe that almost all
tasks are scheduled for most approaches.

For Instance 7, almost all recurrent tasks are scheduled for all approaches. For
the other instances, the solutions typically include the recurrent sets for original
priority 1. If sets of lower priority are included, these sets often have the smallest
size 3. In Instance 8, however, the recurrent set of size 3 of original priority 1
was not scheduled for any approach, while a less important recurrent set of
size 7 for original priority 2 was often scheduled. This can be explained by the
topography of the instance, which shows that the small set of priority 1 is far
from both depots, while the large set of priority 2 is relatively close to both
depots. In particular, the average distances to a depot are given by 52.2 and
18.1, respectively.

The results suggest that incorporating the step to add recurrent tasks in the per-
turbation procedure does not necessarily increase the percentage of scheduled
recurrent tasks or the objective value. Typically, the results for NOADDRECS
are very close to the ones for REORDER. This means that the common sched-
uled recurrent tasks find their way into the solution, regardless of any help in
the perturbation procedure. For the recurrent tasks that are left unscheduled
by REORDER, it might just not be worthwhile to include them in the solution.
In Instance 6, however, the recurrent set of size 7 with original priority 2 is
included in the solution more often for NOADDRECS.

78

N
O

A
D

D
R

E
C

S
R

E
O

R
D

E
R

W
C

F
9
0

W
C

F
9
9

R
IS

K
R

E
S

6
R

IS
K

R
E

S
3

R
R

3
W

C
F

9
0

In
st

a
n

c
e

5
O

ffl
in

e
ob

j
70

7,
2

(6
,0

)
7
0
9
,2

(4
,4

)
6
37

,0
(1

7
,3

)
52

1
,6

(5
,0

)
69

7,
0

(4
,8

)
6
7
9
,6

(1
1
,4

)
6
2
3
,7

(2
2
,7

)
#

ta
sk

s
53

,9
(0

,8
)

54
,2

(0
,8

)
53

,4
(1

,6
)

49
,8

(0
,6

)
51

,0
(1

,0
)

4
9
,1

(1
,4

)
4
7
,3

(1
,1

)
%

re
c

ta
sk

s
28

,4
(2

,8
)

2
8,

4
(-

)
21

,6
(-

)
17

,3
(-

)
30

,0
(5

,1
)

2
6
,2

(-
)

1
5
,7

(-
)

%
re

c
se

ts
al

l/
0

98
,9

(3
,3

)
9
7,

8
(-

)
94

,4
(-

)
46

,7
(-

)
1
0
0
,0

(0
,0

)
1
0
0
,0

(0
,0

)
9
7
,8

(-
)

S
t

d
ev

#
ta

sk
s

5,
7

(0
,3

)
5,

6
(0

,1
)

5
,4

(0
,3

)
5,

1
(0

,0
)

5
,2

(0
,2

)
5
,2

(0
,3

)
4
,9

(0
,2

)
#

it
er

at
io

n
s

62
5
04

,4
(1

0
47

,1
)

62
4
90

,4
(1

9
70

,8
)

10
11

0,
3

(1
31

5,
3
)

1
32

0,
0

(7
2,

0)
34

71
9,

1
(1

64
3
,5

)
26

0
1
0
,1

(8
8
9
,1

)
4
1
7
6
,8

(4
4
3
,0

)

In
st

a
n

c
e

6
O

ffl
in

e
ob

j
9
3
6
,5

(5
,1

)
93

2,
9

(2
,8

)
83

2,
3

(0
,0

)
63

7
,0

(0
,0

)
91

9,
6

(1
4,

8)
9
0
5
,9

(3
,5

)
7
8
3
,0

(0
,0

)
#

ta
sk

s
86

,0
(0

,9
)

85
,2

(1
,0

)
80

,3
(0

,9
)

59
,0

(0
,0

)
82

,3
(1

,1
)

8
0
,4

(0
,7

)
7
4
,0

(0
,0

)
%

re
c

ta
sk

s
52

,9
(6

,3
)

4
6,

0
(-

)
37

,3
(-

)
17

,8
(0

,0
)

37
,3

(-
)

3
9
,3

(-
)

1
3
,3

(0
,0

)
%

re
c

se
ts

al
l/

0
95

,6
(7

,3
)

9
3,

3
(-

)
67

,7
(-

)
44

,4
(0

,0
)

92
,2

(-
)

1
0
0
,0

(0
,0

)
1
0
0
,0

(0
,0

)
S
t

d
ev

#
ta

sk
s

1,
1

(0
,1

)
1,

0
(0

,2
)

1
,0

(0
,1

)
1,

9
(0

,0
)

1
,2

(0
,2

)
1
,2

(0
,2

)
0
,9

(0
,0

)
#

it
er

at
io

n
s

17
0
70

,4
(1

2
20

,2
)

15
6
09

,5
(1

6
47

,2
)

2
25

8,
3

(5
2,

7)
60

2
,0

(0
,0

)
15

47
1,

7
(7

6
5,

2)
11

0
5
9
,7

(4
3
6
,7

)
1
4
0
5
,0

(0
,0

)

In
st

a
n

c
e

7
O

ffl
in

e
ob

j
11

89
,2

(1
,2

)
1
1
9
0
,5

(2
,3

)
1
17

6,
3

(2
,5

)
65

5
,2

(0
,0

)
11

73
,4

(2
,8

)
1
1
6
8
,7

(1
,1

)
1
0
8
2
,3

(1
7
,6

)
#

ta
sk

s
12

3,
8

(1
,4

)
12

4,
4

(1
,4

)
12

2,
5

(0
,5

)
56

,0
(0

,0
)

11
6,

0
(1

,1
)

1
1
3
,8

(0
,4

)
1
0
6
,2

(1
,0

)
%

re
c

ta
sk

s
84

,9
(1

,3
)

85
,1

(1
,4

)
84

,4
(0

,0
)

4,
4

(0
,0

)
72

,0
(2

,7
)

7
3
,3

(0
,0

)
4
9
,6

(-
)

%
re

c
se

ts
al

l/
0

98
,9

(3
,3

)
97

,8
(4

,4
)

1
0
0
,0

(0
,0

)
77

,8
(0

,0
)

1
0
0
,0

(0
,0

)
1
0
0
,0

(0
,0

)
8
8
,9

(-
)

S
t

d
ev

#
ta

sk
s

3,
9

(0
,2

)
3,

8
(0

,3
)

4
,1

(0
,1

)
1
,9

(0
,0

)
3
,8

(0
,2

)
3
,4

(0
,1

)
3
,0

(0
,4

)
#

it
er

at
io

n
s

13
7
08

,6
(1

2
16

,0
)

14
2
24

,2
(1

1
22

,5
)

3
28

7,
9

(5
3,

8)
16

6
,0

(0
,0

)
32

69
,9

(9
4,

7
)

18
8
6
,1

(8
3
,5

)
6
3
8
,8

(9
8
,4

)

In
st

a
n

c
e

8
O

ffl
in

e
ob

j
7
4
7
,5

(5
,5

)
74

7,
4

(6
,8

)
6
81

,2
(2

7
,4

)
60

7
,3

(2
,0

)
73

5,
5

(1
,9

)
7
3
1
,3

(5
,9

)
7
0
6
,1

(9
,0

)
#

ta
sk

s
56

,9
(0

,7
)

56
,9

(0
,7

)
55

,0
(2

,1
)

52
,5

(0
,5

)
52

,3
(0

,8
)

5
1
,6

(0
,7

)
5
1
,0

(1
,2

)
%

re
c

ta
sk

s
43

,8
(1

,0
)

44
,0

(0
,9

)
32

,0
(3

,9
)

40
,9

(1
,8

)
31

,3
(7

,1
)

2
6
,7

(0
,0

)
2
8
,2

(1
,7

)
%

re
c

se
ts

al
l/

0
92

,2
(5

,1
)

91
,1

(4
,4

)
81

,1
(1

2,
2)

40
,0

(7
,4

)
1
0
0
,0

(0
,0

)
1
0
0
,0

(0
,0

)
9
2
,2

(8
,7

)
S
t

d
ev

#
ta

sk
s

5,
3

(0
,3

)
5,

3
(0

,2
)

5
,3

(0
,3

)
5,

0
(0

,1
)

4
,7

(0
,1

)
4
,5

(0
,1

)
4
,9

(0
,2

)
#

it
er

at
io

n
s

60
3
67

,6
(1

2
90

,1
)

59
8
27

,6
(1

4
75

,5
)

10
66

9,
1

(1
52

4,
4
)

11
95

,0
(0

,0
)

30
95

3,
7

(8
8
4,

8)
25

3
3
8
,1

(4
8
1
,9

)
5
5
7
9
,2

(4
3
0
,3

)

In
st

a
n

c
e

9
O

ffl
in

e
ob

j
1
2
4
,2

(1
,5

)
12

3,
7

(1
,5

)
12

1,
8

(1
,0

)
94

,3
(1

,5
)

12
2,

4
(2

,7
)

1
2
2
,9

(0
,9

)
1
0
4
,7

(6
,4

)
#

ta
sk

s
12

5,
0

(0
,9

)
12

4,
6

(0
,9

)
12

2,
7

(1
,1

)
99

,3
(1

,4
)

12
2,

8
(2

,1
)

1
2
3
,5

(1
,5

)
1
0
6
,9

(7
,2

)
%

re
c

se
ts

al
l/

0
97

,9
(1

,7
)

97
,5

(1
,6

)
97

,1
(1

,4
)

84
,6

(2
,8

)
9
8
,9

(2
,3

)
9
8
,2

(1
,8

)
9
3
,6

(4
,2

)
S
t

d
ev

#
ta

sk
s

16
,8

(0
,6

)
15

,2
(2

,0
)

18
,5

(2
,8

)
1
0
,9

(0
,3

)
13

,6
(3

,8
)

1
2
,3

(2
,6

)
1
2
,4

(3
,2

)
#

it
er

at
io

n
s

12
79

,0
(2

32
,0

)
13

48
,9

(2
88

,8
)

8
39

,3
(8

5
,5

)
36

2
,0

(0
,0

)
93

9,
8

(1
01

,0
)

10
7
0
,2

(1
9
7
,0

)
8
6
4
,8

(6
3
,1

)

T
ab

le
10

.5
:

O
ffl

in
e

re
su

lt
s

fo
r

T
ab

u
S

ea
rc

h
:

o
b

je
ct

iv
e

va
lu

e,
n
u

m
b

er
o
f

sc
h

ed
u

le
d

ta
sk

s,
p

er
ce

n
ta

g
e

o
f

re
cu

rr
en

t
ta

sk
s

sc
h

ed
u

le
d

,
p

er
ce

n
ta

ge
of

re
cu

rr
en

t
se

ts
ei

th
er

fu
ll

y
sc

h
ed

u
le

d
o
r

n
o
t

a
t

a
ll

,
st

a
n

d
a
rd

d
ev

ia
ti

o
n

o
f

n
u

m
b

er
o
f

ta
sk

s
p

er
ro

u
te

,
a
n

d
n
u

m
b

er
of

it
er

at
io

n
s.

W
e

re
p

or
t

th
e

av
er

ag
es

a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s
(b

et
w

ee
n

b
ra

ck
et

s,
if

av
a
il
a
b

le
)

ov
er

1
0

ru
n

s
o
f

1
5

m
in

u
te

s.
F

o
r

ea
ch

in
st

an
ce

,
th

e
h

ig
h

es
t

offl
in

e
ob

je
ct

iv
e

va
lu

e,
th

e
h

ig
h

es
t

p
er

ce
n
ta

g
e

o
f

fu
ll

o
r

em
p

ty
re

cu
rr

en
t

se
ts

,
a
n

d
th

e
m

o
st

ev
en

d
is

tr
ib

u
ti

on
of

ta
sk

s
ar

e
in

b
ol

d
fa

ce
.

Online stage

For the online stage of the Extended Security Routing problem, we only consider
simulations after a final extension of depot visits. As before, the criteria for
online performance are the online objective value and the number of removed
tasks. The results are summarized in Table 10.6.

This table shows that the online solutions for WCF99 are close to their original
offline solutions again. However, in all instances, the offline objective values al-
ready drop significantly below the online objective values of all other approaches.
The less strict approach WCF90 performs better: it yields the best online per-
formance for both criteria in the Divi instance, while it yields the highest online
objective value for Instance 7.

As for the original Security Routing problem, using the risk function (approaches
RISKRES6 and RISKRES3) is the best way to obtain online solutions of high
quality. Although the offline objective values for these approaches are slightly
smaller than for the basic approach REORDER, the online objective values are
typically larger, while the number of removed tasks is always lower.

Whereas the offline objective value was almost always higher for RISKRES6
than for the more strict RISKRES3, the comparison for the online results
strongly depends per instance. Thus, the more strict risk requirements some-
times turn the lower offline objective value into a better real-time performance,
which might be caused by a better protection of important tasks in real-time.

For these instances, combining the risk function and the worst-case fraction is
not very successful: it leads to considerable deterioriations of the online objective
value compared to the approaches RISKRES6 and RISKRES3, although the
number of removed tasks decreases as well. Furthermore, it only improves the
online performance compared to WCF90 for Instances 5 and 8.

80

N
O

A
D

D
R

E
C

S
R

E
O

R
D

E
R

W
C

F
9
0

W
C

F
9
9

R
IS

K
R

E
S

6
R

IS
K

R
E

S
3

R
R

3
W

C
F

9
0

In
st

a
n

c
e

5
O

ffl
in

e
o
b

j
6
92

,4
(1

2
,2

)
7
09

,2
(4

,4
)

6
37

,0
(1

7
,3

)
5
21

,6
(5

,0
)

69
7,

0
(4

,8
)

6
79

,6
(1

1
,4

)
6
23

,7
(2

2
,7

)
O

n
li
n
e

ob
j

6
15

,6
(3

4
,4

)
6
26

,8
(3

3
,5

)
6
06

,5
(2

4
,9

)
51

2,
8

(1
1,

1
)

6
3
4
,3

(3
3
,0

)
6
26

,7
(3

3
,7

)
6
09

,3
(2

7
,9

)
#

ta
sk

s
re

m
ov

ed
5
,0

(1
,6

)
5
,6

(1
,6

)
3
,1

(1
,5

)
1
,8

(1
,0

)
3,

3
(1

,6
)

2,
9

(1
,4

)
1
,4

(1
,1

)

In
st

a
n

c
e

6
O

ffl
in

e
o
b

j
93

6,
5

(5
,1

)
9
32

,9
(2

,8
)

83
2,

3
(0

,0
)

6
37

,0
(0

,0
)

91
9,

6
(1

4
,8

)
9
05

,9
(3

,5
)

78
3,

0
(0

,0
)

O
n
li
n
e

ob
j

8
09

,0
(3

5
,7

)
8
19

,8
(3

2
,9

)
7
77

,7
(2

2
,9

)
61

1,
9

(1
6,

6
)

82
3,

0
(3

6
,1

)
8
2
5
,3

(3
3
,1

)
7
45

,7
(1

3
,1

)
#

ta
sk

s
re

m
ov

ed
1
0,

0
(2

,3
)

9
,4

(2
,3

)
6
,5

(2
,0

)
2
,6

(1
,2

)
7,

4
(2

,1
)

6,
5

(2
,1

)
5,

2
(1

,6
)

In
st

a
n

c
e

7
O

ffl
in

e
o
b

j
1
18

9,
2

(1
,2

)
1
19

0,
5

(2
,3

)
1
17

6,
3

(2
,5

)
6
55

,2
(0

,0
)

11
73

,4
(2

,8
)

1
16

8
,7

(1
,1

)
10

82
,3

(1
7
,6

)
O

n
li
n
e

ob
j

10
97

,4
(3

5
,8

)
11

0
2,

6
(3

3
,7

)
11

2
3,

2
(2

5
,6

)
6
51

,7
(3

,9
)

1
10

1,
9

(3
6,

5
)

1
1
2
2
,4

(2
4
,1

)
10

59
,3

(2
1
,0

)
#

ta
sk

s
re

m
ov

ed
8
,7

(2
,2

)
9
,0

(2
,2

)
7
,0

(1
,9

)
1
,1

(0
,7

)
5,

0
(1

,9
)

4,
6

(1
,7

)
3,

9
(1

,5
)

In
st

a
n

c
e

8
O

ffl
in

e
o
b

j
74

7,
5

(5
,5

)
7
47

,4
(6

,8
)

6
81

,2
(2

7
,4

)
6
07

,3
(2

,0
)

73
5,

5
(1

,9
)

7
31

,3
(5

,9
)

70
6,

1
(9

,0
)

O
n
li
n
e

ob
j

6
73

,1
(3

9
,3

)
6
80

,4
(3

5
,3

)
6
49

,3
(3

2
,7

)
5
9
0,

6
5

(1
8,

3)
7
3
5
,5

(1
,9

)
6
77

,4
(3

2
,3

)
6
90

,4
(1

5
,8

)
#

ta
sk

s
re

m
ov

ed
4
,6

(1
,7

)
4
,2

(1
,6

)
3
,3

(1
,3

)
1
,7

(1
,0

)
3,

5
(1

,5
)

3,
4

(1
,5

)
1,

8
(1

,1
)

In
st

a
n

c
e

9
O

ffl
in

e
o
b

j
12

4,
2

(1
,5

)
1
23

,7
(1

,5
)

12
1,

8
(1

,0
)

94
,3

(1
,5

)
12

2.
4

(2
.7

)
1
22

,9
(0

,9
)

10
4.

7
(6

.4
)

O
n
li
n
e

ob
j

11
6,

0
(4

,4
)

1
16

,1
(4

,8
)

11
9,

4
(2

,8
)

93
,4

(2
,1

)
11

5,
8

(4
,5

)
1
1
8
,1

(3
,6

)
10

2,
0

(6
,7

)
#

ta
sk

s
re

m
ov

ed
3
,9

(2
,3

)
3
,8

(2
,5

)
1
,1

(1
,2

)
0
,7

(0
,9

)
3,

0
(2

,2
)

2,
3

(1
,7

)
1,

4
(1

,2
)

T
ab

le
10

.6
:

O
n

li
n

e
re

su
lt

s
fo

r
T

ab
u

S
ea

rc
h

:
o
ffl

in
e

o
b

je
ct

iv
e

va
lu

e
(f

o
r

co
m

p
a
ri

so
n

),
o
n

li
n

e
o
b

je
ct

iv
e

va
lu

e,
a
n

d
n
u

m
b

er
o
f

re
m

ov
ed

ta
sk

s.
W

e
re

p
or

t
th

e
av

er
a
g
es

a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

s
(b

et
w

ee
n

b
ra

ck
et

s)
ov

er
1
0
0
0

si
m

u
la

ti
o
n

s
fo

r
ea

ch
o
ffl

in
e

so
lu

ti
on

.
F

or
ea

ch
in

st
an

ce
,

th
e

h
ig

h
es

t
o
n

li
n

e
o
b

je
ct

iv
e

va
lu

e
a
n

d
th

e
lo

w
es

t
n
u

m
b

er
o
f

re
m

ov
ed

ta
sk

s
a
re

in
b

o
ld

fa
ce

.

Chapter 11

Conclusions and further
research

In this final chapter, we first summarize the thesis. Afterwards, we point to
some directions for further research.

11.1 Conclusions

This thesis addresses the Security Routing problem, which is an extensive ver-
sion of the Team Orienteering Problem, including multi-trips, endurance con-
straints, and heterogeneous resources. In the Extended Security Routing prob-
lem, resource-dependent task values and recurrent tasks with non-linear profits
were added. Moreover, due to stochastic travel and service times, we have to
deal with an offline stage of constructing initial (robust) solutions and an online
stage of adjusting the schedules in real-time.

For the original Security Routing problem, we proposed a heuristic based on
the combination of Lagrangian Relaxation and Column Generation, and a Tabu
Search heuristic that contains a procedure of reordering tasks within routes. The
Tabu Search heuristic is suitable for the Extended Security Routing problem
as well, and generates schedules that have a low probability of violating the
constraints on endurance and the planning horizon, by the use of latest return
times.

We introduced the robustness concepts of the risk function and the worst-case
fraction. We incorporated these concepts in our Tabu Search heuristic, in order
to construct robust solutions in the offline stage. Moreover, the robustness of
individual schedules was improved by extending depot visits. We generated
solutions for the offline stage with and without incorporating the robustness

82

concepts in the Tabu Search heuristic. We used simulations of travel and service
times in order to measure the robustness of the solutions.

For the online stage, we proposed rescheduling policies that check whether it
is responsible to head for the upcoming task, regarding the current delay and
the values of the subsequent tasks. In addition to its contributions to a robust
solution for the offline stage, the introduced concept of the risk function can be
incorporated in the rescheduling policy in a natural way.

For the Extended Security Routing problem, we discussed a procedure to handle
all routes simultaneously in real-time, which is necessary because of the non-
linear profits for recurrent tasks. The quality of realized online solutions is
evaluated by the obtained objective value and the number of removed tasks,
which indicates how close the realized solution was to the initial solution.

We applied the LRCG heuristic to the original Security Routing problem. The
results suggest that our adjustments to the subgradient algorithm are successful.
The upper bound estimators for the optimal total task value are significantly
stronger than the ones in Breugem et al. [2015] for two instances, and com-
parable for the two other instances. Moreover, the quality of the generated
feasible solutions was improved significantly for all instances. Using a less strict
dominance rule leads to further improvements of the results.

When applying the Tabu Search heuristic to original Security Routing problem,
the results for the offline stage suggest that including the reorder procedure in
the Tabu Search heuristic does not improve the objective value, although the
reorder procedure is applied successfully around 10%−20% of the times. For the
risk function, the desirable side-effect to prefer routes with decreasing values is
clearly visible, as opposed to the desired side-effect of a more even distribution
of tasks over resources when using the worst-case fraction.

The online results show that the procedure to extend depot visits is a success-
ful and important part of the construction of robust solutions. It appears that
using the worst-case fraction is especially useful for instances in which most of
the tasks can be scheduled. Regardless of the instance, using the risk func-
tion leads to a significant improvement of the online results compared to the
basic heuristic, in both online objective value and the closeness to the origi-
nal plan. Furthermore, combining the two concepts appears to be a promising
option.

For the Extended Security Routing problem, the offline results show that recur-
rent sets are very often either completely incorporated in the offline schedule or
not at all, which is a natural behaviour considering the non-linear convex profits
of recurrent sets. The incorporated step in the perturbation procedure to add
recurrent tasks, in order to help them appear in the solution, does not seem
to contribute much to the offline objective value. As for the original problem,
using a strict requirement on the worst-case fraction appears to be questionable,
since this can lead to a large decrease of the offline objective value.

83

For the online stage, using the risk function again proved to be the best way
to obtain stable and high quality online results. Using more strict risk require-
ments, modeled by a steeper delay function, leads to a lower number of removed
tasks for all instances, whereas the effect on the online objective value varies
per instance. Contrary to the original problem, the results obtained by using
the risk function are never improved when incorporating the worst-case fraction
as well.

11.2 Further research

Several different objective criteria might be included in the Tabu Search, in ad-
dition to maximizing the task values. For instance, the worst-case fraction might
contribute to a more even distribution of tasks over the resources, but within
the subset of solutions that satisfy the requirement implied by the worst-case
fraction, there is currently no incentive to prefer solutions in which tasks are
distributed more evenly. If the problem would be extended further by includ-
ing the danger of performing a task, a corresponding second objective criterion
would allow the user to choose between risky or risk-averse solutions. Further-
more, some measure of free space in a solution might be designed and used as
a second objective criterion, possibly combined with including the reordering
procedure as a local move in the Tabu Search algorithm.

In the current definition of the latest return times (see Section 5.2.1), we assume
worst-case travel times to the depot, which successfully avoids endurance and
planning horizon violations. It might be interesting to consider a less strict
travel time that is based on the value of the task we are performing, in order to
balance the risk of violating endurance or planning horizon constraints and the
cost of excluding or aborting an important task. Similarly, we could apply more
flexible rules regarding heading for the upcoming task in real-time. Currently,
we skip the upcoming task when the probability of arriving in time is below
50%. A more flexible and value-dependent threshold might be suitable here as
well.

An active real-time policy could be implemented to improve the online results,
especially when the objective value in real-time is considered to be more impor-
tant than sticking to the original plan. A suggestion for such a policy was made
in Section 8.2. Furthermore, in the case that the first task after a depot visit
is removed, a decision to stay longer at the depot than initially planned might
improve the current rescheduling policies.

In order to improve the robustness of a given schedule, we applied a final depot
visit extension that balances the size of buffers with respect to time windows and
endurance buffers. However, it might be worthwhile to investigate a weighted
procedure that takes task values and the position of the task in the route into
account, as delays can become larger in a later stage of the route. Furthermore,

84

in a very tight trip with respect to endurance, we might want to relax the upper
bound of the total waiting time in the trip on the extension size.

Currently, the feasible solutions generated by the LRCG heuristic are outper-
formed by the ones generated in the Tabu Search heuristic. A common issue
for LRCG approaches is that the generated routes have a high value for the
resources individually, but share a relatively large common set of tasks, which
only need to be performed at most once. In order to circumvent this problem,
column fixing could be used (see e.g. Caprara et al. [1999], Potthoff et al. [2010]).
The main idea of this technique is to repeatedly fix different parts of the solution
and to generate columns that complement the fixed part well.

85

Appendix A

Terminology and
variables

Figure A.1: A solution that consists of two routes and their schedules. Route
1 consists of two trips, while route 2 consists of a single trip. The locations are
represented by squares (depots) and circles (tasks with their values).

86

Variable Section Description

I 2.1 Set of tasks
R 2.1 Set of resources
Li 2.1 Release time of task i
Ui 2.1 Deadline of task i
vi 2.1 Base value for task i
vir 2.2 Value for task i, when performed by resource r
Er 2.1 Endurance of resource r
Rr 2.1 Minimal rest time for resource r
T 2.1 End of the planning horizon
s̄ir 2.1 Expected service time of task i by resource r
t̄ijr 2.1 Expected travel time from location i to location j for resource r
σTT 2.1 Maximal deviation fraction for travel times
σST 2.1 Maximal deviation fraction for service times

Kr 4.1 Set of all feasible routes for resource r
Kn

r 4.2 Set of generated routes for resource r in the n-th LRCG iteration
Kn 4.2 Set of all generated routes in the n-th LRCG iteration
Λ = (λi)i∈I 4.2 Lagrangian multipliers
ζkr(Λ) 4.2 Reduced costs for route k for resource r,

given Lagrangian multipliers Λ
Θn(Λ) 4.2 Optimal objective value for the Lagrangian subproblem

in the n-th LRCG iteration, given Lagrangian multipliers Λ
Θ∗n 4.2 Optimal objective value for the Lagrangian Dual problem

in the n-th LRCG iteration

Θ̂n 4.2 Approximation of Θ∗n, obtained by the subgradient algorithm.

arrj 4.3, 5.2 Arrival time at location j
waitj 4.3, 5.2 Waiting time before location j
startj 4.3, 5.2 Starting time at location j
depj 5.2 Departure time from location j
LRTHOR

i 5.2 Latest return time from task i, w.r.t. the planning horizon
LRTEND

i 5.2 Latest return time from task i, w.r.t. endurance
msTW

i 5.2 Maximum shift of the starting time of i, w.r.t. time windows
msEND

i 5.2 Maximum shift of the starting time of i, w.r.t. endurance

g : [1,∞)→ (0, 1] 6.2 Delay function that maps value ratios to delay fractions
f : L→ [1,∞) 6.2 Risk function that maps locations to value ratios
WCF 6.3 Lower bound on the worst-case fraction of a solution

Table A.1: For a selection of variables, we state the notation, the section in
which they were introduced, and a description.

87

Appendix B

Additional results

REORDER WCF90 WCF99 RISK

Instance 1
Offline obj 38637.3 (415.5) 37336.3 (437.5) 35106.7 (51.0) 38945.3 (0.9)

Online obj basic policy 34820.7 (1436.2) 35733.0 (1113.7) 34527.8 (676.5) 36436.2 (1159.2)
Online obj risk policy 35599.6 (1273.4) 36329.4 (1013.4) 34912.2 (306.5) 36397.7 (1185.7)
Online obj worst-case 27330.0 (459.8) 34208.7 (455.1) 34859.7 (30.2) 31552.7 (453.1)
#tasks removed basic 4.6 (1.5) 3.1 (1.4) 2.6 (1.2) 4.3 (1.5)
#tasks removed risk 5.9 (1.5) 4.2 (1.4) 3.6 (1.3) 3.9 (1.4)
#tasks removed WC 14.0 (0.8) 10.0 (1.6) 9.3 (0.5) 11.7 (0.5)

Instance 2
Offline obj 37775.0 (10.6) 37764.7 (23.1) 37699.3 (13.8) 37778.3 (0.5)

Online obj basic policy 33638.9 (1613.8) 35610.2 (1070.1) 35947.9 (997.6) 37283.6 (650.7)
Online obj risk policy 35735.2 (1190.7) 36868.9 (803.4) 37198.1 (577.4) 37379.1 (541.2)
Online obj worst-case 26257.3 (1764.6) 34230.3 (20.0) 37345.7 (12.6) 34584.7 (1956.1)
#tasks removed basic 7.7 (2.0) 6.9 (1.9) 6.2 (1.8) 5.7 (1.8)
#tasks removed risk 13.6 (2.3) 9.2 (2.0) 9.1 (1.9) 6.0 (1.8)
#tasks removed WC 24.3 (0.9) 19.3 (1.3) 17.7 (1.3) 21.0 (0.0)

Table B.1: Online results for a selection of approaches of the Tabu Search heuris-
tic for Instances 1 and 2. The offline objective value is reported for comparison.
We report the online results when using the basic rescheduling policy, when
incorporating the risk function in the policy, and for the worst-case scenario.
For the former two policies, we report the averages and standard deviations
(between brackets) over 1000 simulations for each of the 3 offline solutions, gen-
erated in at most 10 minutes. For the worst-case results, we report the averages
and standard deviations (between brackets) over the online performance in the
worst-case scenario over the 3 offline solutions. For the worst-case results, we
use the basic rescheduling policy, except for approach RISK.

88

REORDER WCF90 WCF99 RISK

Instance 3
Offline obj 38807.0 (0.0) 38807.0 (0.0) 38807.0 (0.0) 38807.0 (0.0)

Online obj basic policy 36850.2 (1157.0) 37705.1 (907.3) 38232.8 (583.7) 38340.4 (707.4)
Online obj risk policy 38471.8 (524.9) 38703.3 (228.1) 38726.7 (128.1) 38475.9 (622.5)
Online obj worst-case 28304.3 (553.4) 34990.0 (0.0) 38472.3 (13.2) 36574.0 (2010.6)
#tasks removed basic 4.8 (1.6) 4.6 (1.5) 4.4 (1.6) 3.8 (1.6)
#tasks removed risk 8.3 (1.8) 6.5 (1.6) 7.1 (1.7) 4.9 (1.8)
#tasks removed WC 23.0 (0.0) 22.0 (0.0) 19.7 (0.5) 22.7 (1.3)

Instance 4
Offline obj 37313.7 (409.0) 33476.7 (452.8) 31171.0 (836.1) 37560.0 (422.9)

Online obj basic policy 33978.8 (1418.4) 32128.0 (1143.3) 30235.4 (1110.5) 34876.3 (1413.4)
Online obj risk policy 34766.8 (1214.2) 32639.4 (898.3) 30906.3 (932.9) 34923.3 (1357.7)
Online obj worst-case 26006.3 (761.8) 30348.0 (467.4) 30934.0 (823.1) 26914.0 (1359.1)
#tasks removed basic 4.2 (1.5) 3.1 (1.6) 2.7 (1.3) 3.3 (1.4)
#tasks removed risk 5.5 (1.6) 4.8 (2.0) 4.0 (1.6) 3.6 (1.5)
#tasks removed WC 14.0 (1.4) 11.0 (1.4) 9.7 (1.7) 13.3 (1.9)

Table B.2: Online results for a selection of approaches of the Tabu Search heuris-
tic for Instances 3 and 4. The offline objective value is reported for comparison.
We report the online results when using the basic rescheduling policy, when
incorporating the risk function in the policy, and for the worst-case scenario.
For the former two policies, we report the averages and standard deviations
(between brackets) over 1000 simulations for each of the 3 offline solutions, gen-
erated in at most 10 minutes. For the worst-case results, we report the averages
and standard deviations (between brackets) over the online performance in the
worst-case scenario over the 3 offline solutions. For the worst-case results, we
use the basic rescheduling policy, except for approach RISK.

89

Bibliography

E. J. W. Abbink, L. Albino, T. A. B. Dollevoet, D. Huisman, J. Roussado, and
R. L. Saldanha. Solving Large Scale Crew Scheduling Problems in Practice.
Public Transport, 3(2):149–164, 2011.

C. Archetti, M. G. Speranza, and D. Vigo. Vehicle Routing Problems with
Profits. Vehicle Routing: Problems, Methods, and Applications, 18:273, 2014.

A. Ben-Tal, L. El Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
University Press, 2009.

N. Bianchessi, J.-F. Cordeau, J. Desrosiers, G. Laporte, and V. Raymond. A
heuristic for the multi-satellite, multi-orbit and multi-user management of
Earth observation satellites. European Journal of Operational Research, 177
(2):750–762, 2007.

J. R. Birge and F. Louveaux. Introduction to Stochastic Programming. Springer
Science & Business Media, 2011.

T. Breugem, G. van Ginkel, M. L. van Meerkerk, and R. Sewnarain. Security
Routing with Uncertainty. Report for Seminar Logistic Case Studies, Erasmus
University Rotterdam, 2015.

J. Caceres-Cruz, P. Arias, D. Guimarans, D. Riera, and A. A. Juan. Rich
Vehicle Routing Problem: Survey. ACM Computing Surveys (CSUR), 47(2):
32, 2014.

A. Caprara, M. Fischetti, and P. Toth. A Heuristic Method for the Set Covering
Problem. Operations Research, 47(5):730–743, 1999.

I.-M. Chao, B. L. Golden, and E. A. Wasil. The team orienteering problem.
European Journal of Operational Research, 88(3):464–474, 1996.

J.-F. Cordeau and G. Laporte. Maximizing the Value of an Earth Observation
Satellite Orbit. Journal of the Operational Research Society, 56(8):962–968,
2005.

G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column Generation, vol-
ume 5. Springer Science & Business Media, 2006.

90

G. Erdogan and G. Laporte. The Orienteering Problem with Variable Profits.
Networks, 61(2):104–116, 2013.

L. Evers, K. Glorie, S. van der Ster, A. Barros, and H. Monsuur. The Ori-
enteering Problem under Uncertainty Stochastic Programming and Robust
Optimization compared. Technical report, Econometric Institute Research
Papers, 2012.

L. Evers, T. A. B. Dollevoet, A. I. Barros, and H. Monsuur. Robust UAV
Mission Planning. Annals of Operations Research, 222(1):293–315, 2014a.

L. Evers, K. Glorie, S. Van Der Ster, A. I. Barros, and H. Monsuur. A two-stage
approach to the orienteering problem with stochastic weights. Computers &
Operations Research, 43:248–260, 2014b.

M. L. Fisher. The Lagrangian Relaxation Method for Solving Integer Program-
ming Problems. Management Science, 27(1):1–18, 1981.

E. F. Flushing, L. M. Gambardella, and G. A. Di Caro. Collaborative Missions
with Heterogeneous Teams: Mathematical Model and Solution Approach.
IDSIA, Lugano (Switzerland), Tech. Rep, pages 02–14, 2014.

F. Glover and M. Laguna. Tabu Search. Springer, 2013.

B. L. Golden, L. Levy, and R. Vohra. The Orienteering Problem. Naval Research
Logistics (NRL), 34(3):307–318, 1987.

I. E. Grossmann. Review of Nonlinear Mixed-Integer and Disjunctive Program-
ming Techniques. Optimization and Engineering, 3(3):227–252, 2002.

D. Huisman, R. Jans, M. Peeters, and A. P. M. Wagelmans. Combining Column
Generation and Lagrangian Relaxation. Springer, 2005.

T. İlhan, S. M. R. Iravani, and M. S. Daskin. The Orienteering Problem with
Stochastic Profits. Iie Transactions, 40(4):406–421, 2008.

L. Ke, Z. Xu, Z. Feng, K. Shang, and X. Qian. Proportion-based robust opti-
mization and team orienteering problem with interval data. European Journal
of Operational Research, 226(1):19–31, 2013.

L. Kroon and M. Fischetti. Crew Scheduling for Netherlands Railways - Des-
tination: Customer. In Computer-aided scheduling of public transport, pages
181–201. Springer, 2001.

E. J. Kuipers. An algorithm for selecting and timetabling requests for an
Earth Observation Satellite. Bulletin de la Société Française de Recherche
Opérationnelle et dAide à la Décision, pages 7–10, 2003.

P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing. Springer,
1987.

J. K. Lenstra. Local Search in Combinatorial Optimization. Princeton University
Press, 2003.

91

C. Liebchen, M. Lübbecke, R. Möhring, and S. Stiller. The Concept of Recover-
able Robustness, Linear Programming Recovery, and Railway Applications.
In Robust and Online Large-Scale Optimization, pages 1–27. Springer, 2009.

S. Pirkwieser and G. R. Raidl. A Column Generation Approach for the Pe-
riodic Vehicle Routing Problem with Time Windows. In Proceedings of the
International Network Optimization Conference, volume 2009, 2009.

D. Potthoff, D. Huisman, and G. Desaulniers. Column generation with dynamic
duty selection for railway crew rescheduling. Transportation Science, 44(4):
493–505, 2010.

ROADEF. Management of the mission of Earth observation satellites - Chal-
lenge description. http://challenge.roadef.org/2003/files/formal$\

_$250902.pdf, September 2002.

M. W. P. Savelsbergh. The vehicle routing problem with time windows: Mini-
mizing route duration. ORSA Journal on Computing, 4(2):146–154, 1992.

H. Tang, E. Miller-Hooks, and R. Tomastik. Scheduling technicians for planned
maintenance of geographically distributed equipment. Transportation Re-
search Part E: Logistics and Transportation Review, 43(5):591–609, 2007.

T. Tsiligirides. Heuristic methods applied to orienteering. Journal of the Oper-
ational Research Society, pages 797–809, 1984.

P. Vansteenwegen. The Team Orienteering Problem with Time Windows, Test
Instances, c-r-rc-100-100. http://www.mech.kuleuven.be/en/cib/op, 2009.

P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden. Meta-
heuristics for Tourist Trip Planning. In Metaheuristics in the Service Industry,
pages 15–31. Springer, 2009.

P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden. The orienteering
problem: A Survey. European Journal of Operational Research, 209(1):1–10,
2011.

L. P. Veelenturf, D. Potthoff, D. Huisman, L. G. Kroon, G. Maróti, and A. P. M.
Wagelmans. A Quasi-Robust Optimization Approach for Crew Rescheduling.
Transportation Science, 2014.

X. Wang, B. L. Golden, and E. A. Wasil. Using a Genetic Algorithm to Solve the
Generalized Orienteering Problem. In The Vehicle Routing Problem: Latest
Advances and New Challenges, pages 263–274. Springer, 2008.

J. Xu and S. Y. Chiu. Effective Heuristic Procedures for a Field Technician
Scheduling Problem. Journal of Heuristics, 7(5):495–509, 2001.

92

