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Abstract

In this report the application of forecast combinations is examined for construction of excess

bond return forecasts using a large set of predictor variables. The analysis is done by applying

a large number of forecast combination methods to forecast one-year U.S. government excess

bond returns for maturities ranging from two to five years. For every maturity 753 forecast

sets are constructed using different forecast combinations methods, predictor variables and

cluster methods. These are then compared using the model confidence set procedure. The

forecast combination methods are subsequently subjected to a significance test and to a

test over different time periods. The conclusion that this report draws is that two sets of

forecast sets outperform the other forecast sets as well as the historical average benchmark

and achieve a higher out-of-sample R2 then was previously found in the literature. These are

the forecast sets that are constructed when either the recursive OLS weighting scheme or the

complete subset regression method is applied to the set of forecast sets which are constructed

with the macroeconomic predictors and which are first clustered according to their economic

background. These two forecast combination methods continue to outperform the others for

every maturity and also if the time period is changed.

Keywords: Forecast combinations - Excess bond returns - Large datasets
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1. Introduction

Forecasting bond returns by linking them to macroeconomic fundamentals is a subject which

has gained more attention from the academic community over the past three decades. There

are numerous papers regarding the subject, which mostly attempt to obtain factors from the

macroeconomic predictor variables or use financial variables, such as forward rates and yield

spreads, to construct bond return forecasts.

Bonds are used for many different reasons such as long-term planning and diversification as

well as saving and managing interest rate risk. So if it were possible to construct accurate

forecasts of the excess bond returns, that would help enormously when timing the best mo-

ment to buy bonds and deciding whether to sell the bond prior to its maturity date. This

would not only be of interest to individual investors but also to pension funds and monetary

and fiscal policy makers.

Technological advances over the last few decades have led to impressive gains not only in

computational power, but also in the quantity of available financial and macroeconomic data.

This provides the opportunity to exploit a much richer base of information than was conven-

tionally possible. But this abundance of information also poses new challenges. With many

predictors, high dimensionality and high estimation error can become a problem.

One specific method of dealing with a large number of predictors has been of particular in-

terest in the literature for almost half a century. Combining different forecasts to construct a
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2 Introduction

new forecast, a method known as ‘Forecast Combinations’, was first proposed by Bates and

Granger [1969]. The advantage of this method is that it is not necessary to use a complex

model which attempts to construct forecasts from a large set of predictor variables, which

can be both time-consuming and computationally difficult. Instead a simple model is used

to construct a separate forecast for each predictor variable, and these forecasts are then

combined, using a certain weighting scheme, to construct a single forecast.

Papers that have examined the use of large sets of macroeconomic variables for forecasting

bond returns have focussed on extracting factors from these variables which have subse-

quently been used to construct forecasts. This has been done with models such as princi-

pal components analysis by Ludvigson and Ng [2009] or a two-step adaptive group lasso

procedure by Huang and Shi [2010]. But constructing individual forecasts from each of

these variables and combining these into a single bond return forecast is a subject which

has not been investigated so far. This paper studies the application of forecast combina-

tions to construct forecasts of one-year U.S. government excess bond returns. A large set of

macroeconomic and financial predictor variables each use a linear regression model to con-

struct out-of-sample forecast sets of the excess bond returns. Different methods of forecast

combinations are then applied to these forecast sets. To examine the differences in infor-

mation contained in the macroeconomic and financial predictor variables, forecast sets are

constructed using both of the predictors sets separately as well as simultaneously.

Even though forecast combinations is proposed as a solution to the dimensionality problems

that arise when forecasts are constructed from large sets of predictor variables, the number

of forecasts that need to be combined is still too large for some of the models to deal with.

Using the ‘clustering’ method, the number of forecasts to be combined can be reduced sig-

nificantly. This was first proposed by Timmermann [2006], who stated that the method is

motivated by the assumption of a common factor structure underlying the forcasting models.

The idea is that before the forecast sets are combined, they are divided into clusters based on

specific criteria. The forecast sets in each cluster are then combined using equal weights to

create a single forecast set for each cluster. As a result the number of forecast sets is reduced

and the weighting schemes are applied to the clustered forecast sets.

D.W.B. Bender Master of Science Thesis
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In this report the forecast sets are clustered according to two different criteria: performance

and category. To determine clusters based on performance, the k-means algorithm is applied.

This method was proposed by Aiolfi and Timmermann [2006] and is based on the past mean

squared forecast error (MSFE) performance of the forecast sets. By applying this method it is

possible to combine the forecast sets that are similar and this can change the results of simple

weighting schemes as well as make it possible to apply more complex weighting schemes.

The assignment of clusters in this case varies over time as it is updated for each observation.

The category cluster method is based solely on the macroeconomic and financial properties

of the predictor variables, and as a result is time-invariant.

Three predictor variables sets, macroeconomic, financial and both macroeconomic and fi-

nancial, are used to construct three sets of forecast sets, and three methods, i.e. the no

cluster method, the category cluster method and the performance cluster method, were ap-

plied to each of these three sets. This creates nine different sets of forecast sets. Twelve

forecast combinations methods are applied to these nine forecast sets. These methods have

been proposed by Bates and Granger [1969], Stock and Watson [2006] and Elliott et al.

[2013]. In addition the effect of shrinkage towards equal weights, as suggested by Diebold

and Pauly [1990], is investigated by applying it to a selection of the forecast combination

methods. This results in a final total of 753 combined forecast sets for each maturity.

In order to discover which of these forecast combination methods constructs the most ac-

curate forecast sets, they all need to be compared for each maturity, and then evaluated to

determine which forecast set(s) perform(s) the best. Given the number of forecast sets this

is no trivial matter. However the model confidence set procedure, introduced by Hansen

[2011], provides a solution. A model confidence set is a set of models which is constructed

such that, for a given significance level, it will contain the best model(s) of the original set

of models. The model confidence set procedure is applied to forecast sets of the excess bond

returns which are constructed in this paper. For each maturity, a model confidence set is

determined at a significance level of 95%.

The main conclusion of this report is that two methods of forecast combinations, namely

the recursive OLS weighting scheme and the complete subset regression method, are able
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4 Introduction

to construct forecasts of one-year U.S. government excess bond returns, which consistently

outperform both the historical average benchmark and the other methods of forecast com-

binations. The recursive OLS weighting scheme is able to construct the best performing

forecast sets when either 25% or 50% shrinkage towards equal weights is applied, which

indicates that adding shrinkage towards equal weights to weighting schemes can improve

their performance. The complete subset regression method produces the best performing

forecast sets when the number of predictor variables, k, that are used is either the maximum

number that are available or close to that maximum. Both methods construct these forecast

sets when they use the macroeconomic predictor variables. These forecast sets have a higher

out-of-sample R2 (R2
OS), which is a measure that was first proposed by Campbell and Thomp-

son [2008], then has been previously reported in the literature. The main conclusion is based

on the result that out of a total of 753 different forecast sets, these forecast sets significantly

outperform the historical mean benchmark as well as the other forecast sets consistently for

each maturity. The model confidence set procedure produces sets which almost exclusively

contain these forecast sets. When the forecast combination methods are subjected to robust-

ness checks, these two forecast combination methods continue to construct forecast sets that

outperform the benchmark and the other forecast sets.

The results of all the other forecast sets are very similar to each other in terms of MSFE.

Differences in the parameters levels and the addition of different levels of shrinkage seem to

make very little difference. For most of those forecast methods even different sets of predic-

tor variables make only a slight difference to the results, which indicates that these forecast

combination methods are not succesful in extracting useful information from the predictor

variables.

In Huang and Shi [2010] forecasts are constructed of the same excess bond returns for the

period 1985 till 2007. The resulting R2
OS were between 0.36 and 0.39 for the 5 maturities. In

the case of Cieslak and Povala [2011], the results varied in the range of 0.20 to 0.24 for the

time period 1971-2009 for their forecasts which are constructed using a cycle-related factor.

Finally Cooper and Priestley [2009] construct forecasts for the period 1965-2003 using the

output gap. They report R2
OS between 0.20 and 0.30. All these forecasts were constructed
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from the same excess bond returns with maturities ranging from 2 to 5 years, and the same

measure for performance was used, namely the R2
OS . These are also the same excess bond

returns and out-of-sample measure that are used in this report. The forecasts sets that are

included in the model confidence sets for each maturity have an R2
OS in the range from 0.34

to 0.71 for the time period 1975 until 2011. The time spans are different but they all cover

at least the period from 1985 to 2003. Comparing the results, it can be concluded that

the forecasts obtained in this report perform better than those found in the literature. The

comparison between the results of Huang and Shi [2010] and the results in this paper is

especially interesting, since the same macroeconomic predictor variables are used in both

cases. Additionally this report examines the effect financial variables, but in the case where

just the macroeconomic variables are used, the best performing methods result in an R2
OS

that is up to 0.35 higher than than those found by Huang and Shi [2010].

A second conclusion that can be drawn from the results in this report is that the macroeco-

nomic predictor variables provide useful information when constructing excess bond return

forecasts. By contrast, the sets of financial predictor variables do not produce useful infor-

mation when constructing forecasts, either with solely these predictors, or in conjunction

with the macroeconomic predictor variables. The forecast sets that are constructed with the

macroeconomic predictor variables easily outperform those that were constructed with the

financial predictor variables, and the forecast sets that were constructed with both sets of

predictor variables are, at best, a worse version of those constructed with solely the macroe-

conomic variables. The fact that a large set of macroeconomic variables is able to produce

accurate forecasts of bond returns is in line with what has previously been stated in the lit-

erature. However several papers have also stated that there is valuable information, and

even complementary information to macroeconomic variables, in financial variables. This is

in contrast to the conclusion of this report; however this report examined the information

that could be extracted from a large set of financial variables, whereas the other papers only

used a small amount of financial variables to predict bond returns.

The clustering of the forecast sets according to two cluster methods also produced results

from which a conclusion can be drawn. This is that clustering the forecast sets according
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6 Introduction

to their past performance does not significantly improve the performance of the resulting

combined forecast sets, and the same is true for most of the forecast sets that were clustered

according to the category method. However there are a number of combined forecast sets

that are constructed using the category cluster method whose performance is significantly

better than that of the other combined forecast sets. At each maturity the final model confi-

dence set consists solely of these combined forecast sets that were clustered by category. It

is possible that predictor variables that fall in the same category contain overlapping infor-

mation and by combining these, this overlap can be reduced.

The rest of the paper is constructed as follows: Section 2 presents an overview of the related

literature. Section 3 describes the sets of predictor variables and how the excess bond return

data is constructed. Section 4 further examines the forecast combination methods and the

model confidence set procedure and gives an overview of the combined forecast sets of the

excess bond returns. Section 5 first presents the results of the forecast sets as well as the re-

sults of the model confidence set procedures and compares them for the different maturities.

Secondly the forecast combination methods are subjected to two robustness analyses, one on

the significance level of the model confidence set and one on the period of the observations.

And finally Section 6 presents the conclusions.

D.W.B. Bender Master of Science Thesis



2. Literature

In this Section first the findings of different articles on the use of macroeconomic variables

and financial variables for the forecasting of bond premia are summarised, and secondly

a brief overview is given of a number of articles on the subject of forecast combinations.

Literature about the specific methodology that is used in this report can be found the Section

4.

In the literature the use of macroeconomic variables to predict bond returns has already

been quite successful. Several papers report high in- and R2
OS results when applying various

methods to macroeconomic variables. The application of financial variables for predicting

bond returns has received slightly less attention is the past, but has still also been shown to

deliver positive results.

Cochrane and Piazzesi [2005] construct a new financial variable which is able to forecast

excess bond returns across a range of maturities. They investigate one-year excess returns

of n-year U.S. government bonds and run regressions of bond returns at time t + 1 on five

forward rates, with different maturities, at time t. As prices, yields and forward rates are

linear functions of each other, the forecasts are the same for each of these variables. They

find that a linear combination of five forward spreads explains a significant amount of the

variation in the following year’s excess returns on bonds with maturities from two to five

years. Based on this linear combination they construct their single-factor model. The excess
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bond returns that Cochrane and Piazzesi [2005] first calculated have become a constant

element in the literature on forecasting bond premia. Practically every paper on the subject

attempts to forecast these excess bond returns for 2- to 5- year maturities.

A single macroeconomic variable that has been shown to be able to produce accurate fore-

casts of bond returns is the output gap. By examining this single production-based macroe-

conomic variable, Cooper and Priestley [2009] exclude both the level of asset prices and also

any consumption data, and are able to assess whether this specific business cycle variable is

able to predict bond returns and is thus an important predictor of bond risk premia. They

examine the quality of the forecasts by using the R2
OS , which was proposed by Campbell and

Thompson [2008] and find R2
OS ranging from 0.25-0.31 for the period January 1975 - Decem-

ber 2003. From these results they conclude that the notion of bond return predictability is

a rational response to changing business conditions rather than market inefficiency. Cieslak

and Povala [2011] decompose long-term yields into a persistent component and maturity-

related cycles. They apply predictive regressions to the one-year excess bond returns on a

common factor constructed from these cycles. They determine the R2
OS for different time

periods, 1971-2009 and 1985-2009, which ranges from 0.18 to 0.37.

Both of these papers illustrate the fact that macroeconomic variables contain information

which can be used to construct forecasts of bond returns. By using a very small number of

these variables they are able to construct forecasts which perform well when measured by

the R2
OS .

Other papers focus on the possibility of extracting factors from large sets of macroeconomic

variables which can be used to construct forecasts of excess bond returns. Ludvigson and

Ng [2009] investigate whether macroeconomic sources contain information for bond pre-

dictability using a dynamic factor analysis on a set of 132 monthly macroeconomic variables.

They obtain a macroeconomic factor and construct forecasts of the excess bond returns. They

apply a ‘simple’ principal components analysis to extract factors and reduce the dimension-

ality. For these forecasts they find an R2
OS of 26% for the two-year bond. They also add the

Cochrane and Piazzesi [2005]’s single factor model, which henceforth will be referred to as

C Pt , to their model with macroeconomic variables. The result is an R2
OS of 44% for the same
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bond. This is a 13% improvement over just using the C Pt and an 18% improvement over

the dynamic factor model. This implies that the macroeconomic variables contain informa-

tion which is complementary to C Pt . Huang and Shi [2010] use a two-step adaptive group

lasso procedure to construct excess bond return forecasts and use the same macroeconomic

predictor variables as Ludvigson and Ng [2009]. They group 21 of these macroeconomic

predictors together, based on four factors, corresponding to employment, housing, financial

and inflation factors. These four factors are summed and this is the single macroeconomic

factor which they refer to as the SAFLasso factor. They find that this factor can predict ex-

cess bond returns on 2- to 5- year maturity bond with an R2
OS of 0.36-0.39 for the period

January 1985 - December 2007. They conclude that their SAGLasso factor contains infor-

mation about future excess bond returns beyond that which is covered by either the C Pt or

the Ludvigson and Ng [2009] factors.

Ludvigson and Ng [2009] and Huang and Shi [2010] both conclude that factors can be ex-

tracted from large sets of macroeconomic variables which are able to produce forecasts of

excess bond returns that perform well when measured with the R2
OS . The first also illustrates

that using both macroeconomic and financial variables to construct a forecast can yield better

results than using either of them seperately. Results from Huang and Shi [2010] indicate that

clustering predictors together according to their economic background can lead to factors

that are able to contruct accurate forecasts.

The literature on using large sets of financial variables to predict (excess) bond returns is

lacking. However Ludvigson and Ng [2007] do use a large set of financial predictors to

make predictions about the stock market. They use the financial predictors to forecast one-

quarter-ahead excess stock market returns and volatility. They conclude that three new

factors; ‘volatility’, ‘risk premium’ and ‘real’, contain information which more commonly

used predictor variables lack.

The method of forecast combinations was first proposed by Bates and Granger [1969]. They

concluded that a combination of separate simple forecasts could yield lower MSFE results

than either individual forecasts. Subsequent empirical studies have found that the combined

forecasts are able to produce better forecasts than other individual forecasts. Timmermann
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[2006] continues on this subject and investigates different methods of determining weights

for combining forecasts. He concludes that simple combinations, which ignore correlations

between forecast errors, often perform better than more complex weighting schemes which

are designed to determine theoretically optimal weights. Elliott et al. [2013] introduce an-

other method of combining forecasts. They propose combining the forecasts, for a given

set of predictor variables, that are constructed from all possible linear regression models

for a certain number of predictors. This is the complete subset regression method. They

examine the trade-off between model complexity and model fit, and conclude that the sub-

sets can give more accurate forecasts than standard equally weighted forecast combinations.

They apply their method to a set of twelve possible predictors and also discuss the potential

computational issues if the number of predictors becomes large. Elliott et al. [2015] anal-

yse the complete subset regression method for situations where the number of predictors is

large relative to the sample size. They conclude that it can offer a favorable bias-variance

trade-off in the presence of many weak predictor variables. In addition they conclude that

the complete subset regression method can construct out-of-sample point forecasts of U.S.

employment, GDP growth and inflation which are more accurate than those constructed by

a dynamic factor approach or univariate regressions, which do not exploit the information

contained in the cross-section of the predictors. Many forecast combination methods have

been researched in the literature and they have shown good results when dealing with large

numbers of predictors.

In the literature, the results regarding bond premia indicate that there is indeed information

in macroceconomic variables which can be used to construct accurate forecasts of bond re-

turns. The use of financial variables to produce forecasts of bond returns has been done by,

for instance, Cochrane and Piazzesi [2005], with their single factor model, but using large

sets of financial variables to predict bond returns has not yet been attempted. The literature

on forecast combinations argues that when forecasting with large sets of predictors, forecast

combination methods are able to construct forecasts, even when the number of predictors

is large relative to the sample, which are more accurate than individual forecasts. However

using forecast combination methods to forecast (excess) bond returns is a subject that has
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not yet been attempted in the literature.
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3. Data

Before discussing the methods used in this paper, the one-year excess bond returns and the

predictor variable sets will be examined more closely.

3-1 One-year Excess Bond Returns

The U.S. government bond return data is taken from the Fama-Bliss dataset which is available

from the Center for Research in Security Prices (CRSP). The dataset contains monthly 1-

through 5-year zero-coupon U.S. Treasury bond prices and this is obtained for the period

that spans from January 1964 till December 2011.

The one-year excess bond returns are then constructed by borrowing at the one-year rate,

buying a long-term bond and selling it one year later. This is done as follows:

p(n)t = log price of n-year discount bond at time t. (3-1)

where n is given in years and indicates the maturity and t is given in months. The log yield

then is the defined as follows:

y(n)t ≡ −
1
n

p(n)t (3-2)
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14 Data

The one-year bond return from buying a n-year bond at time t and selling it at a year later

at time t + 12 is defined as:

r(n)t+12 ≡ p(n−1)
t+12 − p(n)t (3-3)

The one-year excess bond return is then determined as:

r x (n)t+12 ≡ r(n)t+12 − y(1)t (3-4)

This is applied to the entire Fama-Bliss dataset and this results in four sets of one-year excess

bond returns; r x (2), r x (3), r x (4) and r x (5), these correspond to the 2, 3, 4 and 5 year maturity

respectively.

3-1-1 Properties

First the excess bond returns for the 5 year maturity will be discussed in this Section. Second

these results will be compared to those for the 2, 3 and 4 year maturity. The complete results

of these can be found in Appendix A.

Figure 3-1a shows the constructed set of one-year excess bond returns for the 5 year matu-

rity. The bond returns are high at troughs and low at peaks, which indicate that they have a

business cycle pattern.

Figure 3-1b shows the histogram of the same bond returns. When comparing it to a normal

distribution it seems to fit quite well. This suggests that the bond returns might not reject

the null hypothesis of normality.

In figure 3-1c the autocorrelations for the sets of returns, squared returns and absolute re-

turns are presented. It is clear the returns show high autocorrelations which slowly decline.

It is logical that there is strong autocorrelation for the first twelve lags, as these lags are in

months and excess bond returns are constructed with bond prices which are a year apart.

The squared and absolute returns also start high but decline slightly faster, until they rise

again to a peak around 16 and start declining again. This indicates that volatility clustering

occurs in the return sets.

D.W.B. Bender Master of Science Thesis
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(a) One-year excess bond returns. The vertical lines represent the peaks and troughs of the US
Business cycle.1

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70
rx(5)

(b) Histograms of the returns

5 10 15 20 25
-0.1

0.1

0.3

0.5

0.7

0.9

rx(5)

returns
squared returns
absolute returns

(c) Autocorrelations of returns, squared returns
and absolute returns

Figure 3-1: Properties of the one-year excess bond returns for the 5 year maturity

The excess bond returns for the 5 year maturity are also compared to those of the 2, 3 and

4 year maturity. These three sets show very similar results to the 5 year maturity, though

an increased bond maturity results in higher absolute excess returns; but this would seem

logical. Table 3-1 presents the cross-correlation coefficients between each of the excess bond

return sets. The cross-correlation is very high, between each of the maturities. When the

difference in maturity is one year the lowest correlation is 0.982. Even when the largest

difference in maturities is taken, that between 2 and 5 years, the correlation is still 0.943.

Table 3-2 presents the statistics each of the sets of bond returns. As was suspected for the 5

year maturity, the skewness is very small and the kurtosis is very close to three. The Jarque-

Bera statistic as a result is 2.10, which does not reject the null hypothesis of normality. The
1Data of the business cycle was obtained from the National Bureau of Economic Research,

http://www.nber.org/cycles/cyclesmain.html
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Table 3-1: Cross-correlation coefficients of the
one-year excess bond return sets

r x (2) r x (3) r x (4) r x (5)

r x (2) 1.000 - - -
r x (3) 0.982 1.000 - -
r x (4) 0.962 0.990 1.000 -
r x (5) 0.943 0.979 0.994 1.000

results for the other three sets are similar, and for each of them the null hypothesis is not

rejected. The properties of the excess bond returns for each of the bond return sets are not

Table 3-2: Statistics of the one-year excess bond return sets

r x (2) r x (3) r x (4) r x (5)

Mean 0.005 0.009 0.012 0.013
Standard deviation 0.018 0.033 0.046 0.057

Skewness 0.02 -0.05 -0.01 -0.02
Kurtosis 3.31 3.37 3.32 3.30

Jarque-Bera 2.29 3.57 2.36 2.10

completely in line with the general ‘stylized facts’ of asset returns. These include non-normal

distributions, no significant autocorrelations and volatility clustering. Each of the return

sets however shows a normal distribution and high and slowly declining autocorrelations.

The autocorrelations in the squared and absolute returns do indicate that there are periods

of large returns which alternate with periods of small returns, which is characterised as

volatility clustering. The forecast models that are designed in this paper must be able to

capture the normal distribution of the excess returns as well as their autocorrelations and

the volatility clustering.

3-2 Predictor Variables

Two different sets of predictor variables will be used to construct forecast sets, a macroeco-

nomic and a financial set. As was discussed in Section 2, in the literature there are articles

which have succesfully been able to link macroecomic variables to the predictability of bond
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returns. Therefore the 132 macroeconomic predictor variables that are provided by James

Stock and Mark Watson, who use the data from Stock and Watson [2004], are used in this

report as the first set of predictor variables.

Additionally some articles report that combining financial factors such as the C Pt factor with

factors constructed from macroeconomic variables, can produce better forecasts than either

of them seperately. To test whether financial variables contain complementary information

to the macroeconomic variables, the set of 147 financial predictor variables, which are ob-

tained from Ludvigson and Ng [2007], are used as the second set of predictors in this report.

All of these data series are available for the period spanning January 1960 till December

20112. A detailed overview of all the data and their transformations can be found in Ap-

pendix A. All the raw data of the predictor variables are standardized before they are used

for estimation.

The two sets of predictor variables can each be categorised into smaller sets. The macroe-

conomic variables are categorised into 14 categories and the financial variables into 4 cate-

gories. An overview of these categories and amount of predictor variables in each is given

in Table 3-3.

In the financial categories, the factors include the three risk factors from Fama and French

[1993], namely the excess return on the market, the small-minus-big and high-minus-low

factors. It also includes the momentum factor, the bond risk premia factor of Cochrane and

Piazzesi [2005] and the consumption-wealth variable of Lettau and Ludvigson [2001]. The

category Size/BM portfolios is composed of 93 returns on stock portfolios sorted by size and

book-to-market ratio, a method which was proposed by Fama and French [1992].

2Both datasets are obtained from the homepage of Sydney Ludvigson
http://www.econ.nyu.edu/user/ludvigsons/
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Table 3-3: Overview of the categories for the macroeconomic and financial variables

Macroeconomic variables

Category Description # of predictors

Out Real Output & Income 18
EMP Employment & Hours 30
RTS Real Retail, Manufactering & Trade Sales 2
Mon Money & Credit Quantity Aggregates 11
PCE Consumption 1
HSS Housing Starts & Sales 10
Inv Real Inventories & Inventory-sales Ratio 3
Ord Orders & Unfilled Orders 6
AHE Average Hourly Earnings 3
Pri Price Indexes 21
Int Interest Rates and Spreads 17
SPr Stock Prices 4
FX Exchange Rates 5
Oth Miscellaneous 1

Total 132

Financial variables

Category Description # of predictors

PYD Prices, Yields & Dividends 5
RF Risk Factors 6
I Industries 43
S&BM Size/BM portfolios 93

Total 147
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4. Methods

In this section the method of forecast combination is first described in more detail. Sub-

sequently the sets of forecast sets that are constructed from the predictor variables are de-

scribed. Following this the weighting schemes and forecast combinations methods used in

this report are described. Finally the two methods of comparing the combined forecast sets

are described, namely the model confidence sets procedure and the R2
OS .

4-1 Forecast Combinations

Forecast combinations construct a forecast from a combination of two or more different

forecasts. The procedure for a model with N predictors and which uses a single regressor is

as follows:

1. Take a standard regression model with a single regressor x i,t

yt+h = αi + βi x i,t + εi,t (4-1)

where h is the forecast horizon.
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2. Construct forecast ŷi,τ+h using:

ŷi,τ+h = α̂i + β̂i x i,τ (4-2)

where α̂i and β̂i are constructed by regressing {yt}τ+h−1
t=τ+h−1−rw on {x i,t}τ−1

t=τ−1−rw, where

rw is the size of some rolling window.

3. Step 2 is repeated for i = 1, ..., N

4. The combined forecast for t = τ+ h is constructed as:

ŷ c
τ+h =

N
∑

i=1

ωi ŷi,τ+h, (4-3)

for certain weights ωi .

It is also possible to construct ŷi,τ with multiple regressors, let the weights vary over time

or even to include forecasts which are not obtained from regression models, but from other

sources such as surveys or expert opinions.

If a simple weighting scheme such as equal weights is applied, it is straightforward to com-

bine a large number of forecasts. In that case it is a matter of estimating individual forecasts

based on a single predictor (as in Equation 4-2) or a set of predictors and subsequently

weighing these according to the simple scheme to obtain a single prediction. It is however

a different case when the weights are constructed by some other more complex weight-

ing scheme. Complications can arise when attempting to construct these weights when the

number of predictors is large relative to the number of observations.

For each maturity this report constructs a forecast set of the one-year excess bond returns

with each of the predictor variables that have been discussed in the previous Section. These

forecast sets are then combined using both simple and complex weighting schemes. All the

forecasts that are constructed and examined have a fixed forecast horizon of twelve, i.e.

h = 12, which corresponds to one-year ahead forecasts. Two cluster methods are applied

to the forecast sets to reduce the amount of forecast sets before they are combined, which
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makes it possible to apply more complex weighting schemes. The construction of the forecast

sets and the application of the cluster methods is decribed in Section 4-2 and the forecast

combination methods are discussed in Sections 4-3 and 4-4.

4-2 Forecast Sets

4-2-1 Individual

The total number of predictor variables is 279, 132 macroeconomic and 147 financial, and is

denoted as N . The predictor variables are denoted as x i,t , where i = 1, ..., N , t = 1, ..., T and

T is the number of observations for which a forecast set is constructed. With each predictor

variable a set of out-of-sample forecasts is constructed. To do this, first a standard forecast

regression model is taken:

r x (n)t+12 = α
(n)
i + β

(n)
i x i,t + εi,t (4-4)

where n denotes the maturity. The out-of-sample forecasts of the one-year excess bond

returns are constructed using a recursive rolling estimation window. A rolling window of

120 monthly observations is taken. The first out-of-sample forecast for predictor x i,t is given

by:

cr x (n),ind
m+13 = α̂

(n)
i,m+1 + β̂

(n)
i,m+1 x i,m+1 (4-5)

where α̂(n)i,m+1 and β̂ (n)i,m+1 are the OLS estimates of α(n)i and β (n)i respectively, which are con-

structed by regressing {r x (n)t }
m+12
t=13 on {x i,t}mt=1. The second out-of-sample forecasts is then

given by:

cr x (n),ind
m+14 = α̂

(n)
i,m+2 + β̂

(n)
i,m+2 x i,m+2 (4-6)

where α̂(n)i,m+2 and β̂ (n)i,m+2 are estimated by regressing {r x (n),t }
m+13
t=14 on {x i,t}m+1

t=2 . Continuing

in this manner throughout the whole sample results in a out-of-sample forecast set based on

x i,t and containing forecasts {cr x (n),ind
i,t+1 }

T
t=m+12.

The result of this is N forecast sets at every maturity, one for each predictor variable. These

forecast sets are denoted as cr x (n),ind
i , where i = 1, ..., N and n= 2, ..., 5.
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The sets of forecast sets that are constructed from the macroeconomic and financial pre-

dictors contain 132 and 147 forecast sets respectively. This report examines the results of

applying forecast combininations to each of these sets seperately, but also the results when

forecast combinations are applied to the set containing them both. The latter set contains all

279 forecast sets. These three sets of forecast sets are referred to as the individual forecast

sets.

Several of the weighting schemes that are applied are not able to combine such large num-

bers of forecast sets. Therefore the forecast sets are clustered and combined, such that each

cluster has a single forecast set, before the weighting schemes are applied. This reduces the

number of forecast sets to which the weighting schemes are applied.

Two cluster methods are used in this report. The first of these starts by defining categories

which are defined by some economic property. The forecast sets are then assigned to a cate-

gory based on the economic property of the predictor variable with which it was constructed.

The forecast sets in each cluster are then combined and this results in a new clustered fore-

cast set for each of these categories. This cluster method is referred to as the category cluster

method. A reason for using categories as a cluster method is that when using a set of predic-

tor variables, it is likely that predictors which have similar economic backgrounds contain

similar information and by clustering those that fall in the same category before the com-

bined forecasts are constructed this overlap in information can be filtered.

The second cluster method that is applied is assigning forecast sets to clusters according to

their past MSFE and is referred to as the performance cluster method. The assumption that

is made is that the forecast sets that are very similar will produce similar MSFEs, and by

clustering these forecast sets accordingly, the amount of forecast sets can be reduced greatly

without discarding too much information.

4-2-2 Category

Constructing the clusters by category is done by categorizing the predictor variables based

on their economic backgrounds, which have been discussed in Section 3, and combining the
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corresponding forecast sets. These category clusters are time-invariant.

The macroeconomic predictor variables are divided into 14 clusters and the financial pre-

dictor variables into 4 clusters. The sets cr x (n),ind
i that are in cluster j are denoted by cr x (n)l, j ,

where l = 1, ..., N j and N j is the number of forecast sets in cluster j. The combined fore-

cast set of cluster j is denoted by cr x (n),cat
j and is constructed by taking the equally weighted

combination of the forecast sets within the cluster, as follows:

cr x (n),cat
j =

1
N j

N j
∑

l=1

cr x (n)l, j (4-7)

The forecast combination methods are applied to the set of forecast sets constructed from

each of the macroeconomic and financial predictor variables, as well as to the set containing

them both. For each of the three sets the result is a new set. These contain 14, 4 and 18

forecast sets respectively, which are significantly less than the individual forecast sets, and

are referred to as the category forecast sets.

4-2-3 Performance

The second cluster method that is applied in this report is clusters based on past performance.

Constructing these clusters is slightly more complicated than constructing them by category.

The performance of each forecast set, cr x (n),ind
i , is measured with a recursive rolling window.

The performance of each forecast set varies over time and therefore the performance clusters

have to be updated at each observation. To estimate the performances of the forecast sets a

rolling window of mp = 60 observations is taken.

It must be noted that only the performance of an already constructed forecast can be mea-

sured. Therefore the performance clusters can only be determined after the first m observa-

tions of the full sample T , and the period for which out-of-sample forecasts can be generated

which are based on performance clusters is t = m+mp + 1, ..., T .

The performance of the forecasts is measured in terms of MSFE. First the MSFE is determined
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for the initial rolling window.

MSFE(n)i,m+mp+1 =
1

mp

m+mp+1
∑

t=m+2

�

r x (n)t −cr x (n),ind
i,t

�2
(4-8)

Second the rolling window is shifted one observation and the MSFE is recalculated:

MSFE(n)i,m+mp+2 =
1

mp

m+mp+2
∑

t=m+3

�

r x (n)t −cr x (n),ind
i,t

�2
(4-9)

This is continued until the MSFE(n)i,t for the complete sample has been determined. For each

maturity the resulting sets are
¦

MSFE(n)i,t

©T

m+mp+1
for i = 1, ..., N . Each forecast set now has

a measure of its performance, for every observarion in the period t = m+mp + 1, ..., T .

The forecast sets are assigned to a cluster but these assignments are updated at every ob-

servation, which means that the composition of each cluster may be completely different

for each observation. To determine which forecast sets are assigned to which clusters the

k-means algorithm is applied. CLustering forecasts according to using this algorithm was ap-

plied by Aiolfi and Timmermann [2006]. This algorithm assigns the forecast sets to clusters

based on their MSFE. A number of clusters, k, is specified and the algorithm assigns each

forecast set to a cluster. There is no given number of sets that has to be included in each

cluster as long as each cluster contains at least one set. The advantage of this method is that

forecast sets with very similar performances will always end up in the same cluster, whereas

other methods which specify a fixed number of sets that each cluster must contain cannot

guarantee this. For each observation the k-means algorithm is implemented as follows:

1. Collect MSFE(n)i,t for i = 1, ..., N in V(n)t and let vi be the i-th element of V(n)t .

2. Set the amount of desired clusters to k.

3. Determine k initial cluster centers (centroids). This is done with the following sub-

algorithm:

4. Assigning the elements to the clusters is done in two steps. First with a batch update,
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and second with a online update.

A more detailed description of this algorithm can be found in Appendix B.

The k-means algorithm is applied at each observation and this generates the performance

clusters for each observation. The forecasts cr x (n),ind
i,t that are in cluster r are denoted by

cr x (n)p,r,t , where p = 1, ..., Nr,t and Nr,t is the amount of forecasts in cluster r at time t. The

forecast set of each cluster is constructed by taking the equally weighted average of the

forecasts in the cluster at each observation.

cr x (n),per
r,t =

1
Nr,t

Nr,t
∑

p=1

cr x (n)p,r,t (4-10)

Before creating the clusters based on performance, the number of different clusters has to

be selected. To determine the optimal number of clusters, the performance of the combined

forecast sets for different amounts of clusters is examined. The aim of clustering is to signif-

icantly reduce the amount of predictor variables. Therefore the combined forecast sets are

constructed with 5, 10 and 15 clusters.

The MSFEs of the forecast sets that were constructed using 5 performance clusters were on

average more than 10% lower than those that were constructed using 10 and 15 clusters,

when either the macroeconomic or financial forecast sets were used. Therefore it was de-

cided that 5 clusters would be used when constructing performance clusters for either the

macroeconomic or financial forecast sets. When the performance clusters are determined

for the set that contains both the macroeconomic and financial forecast sets, 10 clusters are

used.

This cluster method is applied to both the sets of forecast sets that are constructed with the

macroeconomic and financial predictor variables, and this results in five forecast sets each.

When the cluster method is applied to the set of forecast sets constructed from both sets of

predictor variables, ten clusters and thus ten forecast sets are the result. The three sets of

forecast sets are referred to as the performance forecast sets.
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4-2-4 Overview

The previous sections describe how the initial forecast sets are constructed as well as how

the two cluster methods are applied to combine these forecast sets into new forecast sets.

An overview of these forecast sets is provided in Table 4-1. All nine sets of forecast sets will

be combined according to the weighting schemes that are described in the next Section.

Table 4-1: An overview of the amount of constructed forecast sets

Individual Category Performance

Mac Fin All Mac Fin All Mac Fin All
Forecast sets 132 147 279 14 4 18 5 5 10

The number represents the amount of forecast sets that are constructed with a given cluster
method and a given set of predictor variables. E.g. using the category cluster method and just
the set of financial predictor variables, four forecast sets are constructed.

4-3 Weighting Schemes

The sets of individual, category and performance forecast sets that were constructed in the

previous section are combined using various weighting schemes. Each combined forecast is

constructed as:

Òcr(n)t =
1
N

N
∑

i=1

ωi,tcr x (n)i,t (4-11)

where N is the number of forecasts and ωi,t are the weights that are determined by the

weighting schemes.

Not every weighting schemes that is described can be applied to each set of forecasts. There-

fore it will be made apparent which weighting scheme is applied to which set.

4-3-1 Simple weights

Simple weights are, as the name suggests, the most basic weighting schemes. Simple fore-

casts are less prone to error maximization and to test their forecasting power this paper

examines five different simple weighting schemes. Each of the five is applied to each of the
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sets of individual, category and performance forecast sets.

Equal weights. The weights in this scheme are simply set to ωave
i,t =

1
N . The weights are

time-invariant so ωave
i,t =ω

ave
i .

Trimmed equal weights. This scheme determines new weights at each observation. Therefore

the forecasts for which the weights have to be determined are examined at each observation.

The weights are set to ωt r im_ave
i,t = 0 for the forecasts that have the 10% highest and lowest

values, and to ωt r im_ave
i,t = 1

0.8N for the remaining forecast.

Median combination forecast. In this scheme the weights are set to ωmed
i,t = 0 for all the fore-

casts except for the median of {cr x (n)i,t }
N
i=1, for which the weight is set equal to 1. This is done

at each observation.

The last two simple weighting schemes are based on the past performance of the forecast

sets, but apply simple weights once the past performances have been determined.

Best performance. At observation τ the MSFE of each forecast set is determined for the

previous 60 observations, i.e. for t = τ − 60, ...,τ − 1. For the forecast sets with the 10%

lowest MSFEs the weight is set to one,ωBP
i,τ =

1
0.1N . For all the others it is set to zero,ωBP

i,τ = 0.

Exclude worst. In this scheme the same MSFEs are examined as with Best performance. This

time the forecast sets with the 10% highest MSFEs are excluded. Their weights are set to

zero, ωEW
i,τ = 0, while for the other forecasts it is set to ωEW

i,τ =
1

0.9N .

4-3-2 Recursive OLS weights

Recursive OLS weights are based on regressing the bond returns on the forecasts of these

returns. The linear regression model is:

r x (n)t = ζRX (n)t + εt (4-12)

where RX (n)t =
¦

cr x (n)1,t , ...,cr x (n)N ,t

©

and ζ is a 1 × n coefficient vector. To determine the OLS

estimate of ζ, a rolling estimation window of size mr is used. At observation τ, {r x (n)t }
τ−1
τ−mr

is regressed on {RX (n)t }
τ−1
τ−mr

. The weightωOLS
i,τ is the i-th element of vector ζ̂i,τ. No intercept

is included in the model and no coefficients are restricted.
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Two different window sizes are used, namely 36 and 60 months. These should be large

enough to capture the characteristics of the returns, but not so long that they can’t adapt to

changes in the observations.

As the recursive OLS weights need to perform a regression at each observation, this is only

applied to the category and performance forecast sets, as they have been reduced in size.

4-3-3 Adaptive Updating weights

Applying schemes where the weights depend inversely on the historical performance of in-

dividual forecasts was first proposed by Bates and Granger [1969]. Miller et al. [1992]

modified this weighting scheme to give more recent data more weight in the estimation, by

adding a discount factor. This section presents five weighting schemes based on these two

papers.

The weighting schemes recursively examine the performance of the forecast sets and assign

the weights based on the performance up to that point. Schemes BG1 and BG2 use a rolling

window of size v to determine weights based on the past performance of the forecast sets.

Scheme BG3 also applied a rolling window of size v but it also smooths its weights towards

their values the previous observation and this means that BG3 actually uses an expanding

window. Schemes BG4 and BG5 use an expanding window to do this. The last two apply ex-

ponential discounting to put more emphasis on recent performance. By using an expanding

window these schemes make sure they always take all the available information into account

when determining weights. The schemes using a rolling window only use the information

that is contained in the last v observations. The weighting schemes use the forecast error as

a measure, which is defined as:

e(n)i,t = r x (n)t −cr x (n)i,t (4-13)

The first weighting scheme, BG1, uses the relative performance of each forecast set over the

past v observations to determine the weights. The weights correspond to the inverse of the

sum of the MSFE over the past v observations of the each set scaled such that the sum of all
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weights is equal to one.

ωBG1
i,τ =

�

∑τ−1
t=τ−v e(n)i,t

2�−1

∑N
j=1

�

∑τ−1
t=τ−v e(n)j,t

2�−1 (4-14)

Scheme BG3 uses the same relative performance of each forecast set over the past v observa-

tions as BG1, but smooths the weightsωBG3
i,τ towards the weights at the previous observation

ωBG3
i,τ−1 by a factor α ∈ (0, 1). Scheme BG1 therfore is a special case of the weighting scheme

BG3 where α= 0.

ωBG3
i,τ = αω

BG3
i,τ−1 + (1−α)

�

∑τ−1
t=τ−v e(n)i,t

2�−1

∑N
j=1

�

∑τ−1
t=τ−v e(n)j,t

2�−1 (4-15)

When α gets closer to one, in general the evolution of the weights becomes smoother. To

test the effects of this parameter α, this weighting scheme is applied to the forecast sets with

α= 1/4, 1/2 and 3/4.

The last weighting scheme that uses a rolling window is scheme BG2. This weighting

schemes determines weights based on the covariance matrix of the forecast errors. The co-

variance matrix includes the squared forecast error of each set that schemes BG1 and BG3

rely on, but adds the terms which measure the correlation between the forecast errors of the

different forecast sets. This covariance matrix is denoted by bUt and has dimensions N × N .

At observation τ the elements of bUτ are determined by:

bUτ[i, j] = v−1
τ−1
∑

t=τ−v

e(n)i,t e(n)j,t (4-16)

The inverse of the covariance matrix is then taken and the weight of each forecast set corre-

sponds to the sum of its inverted variance and covariance with the other sets, scaled so the

sum of all weights is equal to one.

ωBG2
τ =

bU−1
τ ι

ι′ bU−1
τ ι

(4-17)
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where ι is a N × 1 vector of ones. The weights ωBG2
i,τ is the i-th elements of ωBG2

τ .

Each of the weighting schemes, BG1, BG2 and BG3, uses a rolling estimation window v. For

each scheme three windows sizes are applied, namely 12, 36 and 60 months. These should

be long enough to capture the characteristics of the errors, but not so long that they can’t

adapt to changes in the forecast performances.

The last two weighting schemes discussed in this section use an expanding window instead

of a rolling window. The main difference is that only the past v observations are taken

into account when using a rolling window. The information that these observations contain

is considered equally when constructing weights. When an expanding window is applied,

each available past observation is used to construct the weights. So for the entire sample

t = 1, ...,τ, ..., T , when constructing ωi,τ the observations from the period t = 1, ...,τ − 1

are used. However not every observation is given the same weight. The idea is that empha-

sis is put on more recent observations. This is done by exponentially discounting the past

observations by λt .

Weighting scheme BG4, is very similar to scheme BG1. They both determine the weights

based on the inverse of the MSFE. The difference being that BG1 looks at the past v ob-

servations, while BG4 looks at all past observations. As a results BG4 is fairly similar to

BG3.

ωBG4
i,τ =

�

∑τ−1
t=1 λ

t e(n)i,t

2�−1

∑N
j=1

�

∑τ−1
t=1 λ

t e(n)j,t

2�−1 (4-18)

Setting the parameter λ= 1 corresponds to putting equal weights on each past observation.

Any higher values of λ correspond to putting relatively more weight on more recent obser-

vations. The last of these weighting schemes is BG5. As scheme BG4 was very similar to

scheme BG1, so is scheme BG5 very similar to BG2. The scheme also determines weights

by looking at a covariance matrix but again the difference is that the second uses a rolling

window and the first an expanding window. The covariance matrix cWt is constructed with

the expanding window and has dimensions N × N . At each observation τ the elements of
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cWτ are determined by:

cWτ[i, j] =
τ−1
∑

t=1

λt e(n)i,t e(n)j,t (4-19)

The elements cWτ[i, i] are squared forecast errors which are used for scheme BG4, so as

was the case between BG2 and BG1, BG5 includes the squared forecast errors and adds

the correlation terms of the different forecast sets. This covariance matrix is then used to

construct the weights.

ωBG5
τ =

cW−1
τ ι

ι′cW−1
τ ι

(4-20)

where ι is a N × 1 vector of ones. The weight ωBG5
i,τ is the i-th elements of ωBG5

τ .

For both of the schemes BG4 and BG5, a λ of 1.05 and 1.10 will be chosen, as this will allow

for more weight on recent observations, but still allow ‘older’ observations to add informa-

tion.

By applying these five relatively similar weighting schemes several effects can be examined;

using either a rolling window or an expanding window, using an entire covariance matrix or

ignoring the correlation, and looking only at the performance of each forecast set individu-

ally; smoothing the weights towards the weights at the previous observation.

Weighting schemes BG1, BG3 and BG4 are applied to all of the constructed forecast sets.

Weighting schemes BG2 and BG5 on the other hand are only applied to the forecast sets

that were constructed after a cluster method was applied. The reason for this is that both

these weighting schemes construct a covariance matrix at each observation, and this causes

a problem if it is applied to a set of forecast sets that have not yet been reduced by a cluster

method as the number of forecasts is too large.

4-3-4 Shrinkage

Eleven different weighting schemes have now been discussed; five simple, one recursive

OLS and five adaptive updating. In addition to determining the weights based solely on

these weighting schemes, shrinkage is applied to a number of them. Shrinkage is a method

where the weightsωi,t , that are determined by some weighting scheme, are shrunk towards
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a value which is imposed a priori. The amount of shrinkage that is applied is controlled by

the parameter γ. This takes the form:

ω
(∗)_shr
i,t = γω(∗)i,t + (1− γ)

1
N

(4-21)

In this case shrinkage towards equal weights is applied to the adaptive updating weighting

schemes as well as the recursive OLS weights. To study the effects of different amounts of

shrinkage several values of γ are applied; γ= 1
4 , 1

2 , 3
4 .

4-4 Complete Subset Regression

When constructing the combined forecasts in the previous sections, first forecast sets were

constructed and then these were either combined, or clustered and then combinied. Each

forecast set was constructed by regressing the excess bond returns on a single predictor vari-

able set. These forecast sets can of course be constructed in any number of ways. One other

method of constructing forecasts is applied in this paper and the only weighting scheme that

is applied when combining the forecasts is equal weights.

This method is called the complete subset regression method and is proposed by Elliott et al.

[2013]. Like all the other forecast combination methods that have already been discussed in

the report, the complete subset regression method applies averaging over multiple forecasts,

rather then selecting a single prediction model. The weighting schemes that are discussed

in the previous sections, are all applied to the same forecast sets that have already been con-

structed using the predictor variables. The complete subset regression method constructs dif-

ferent forecast sets itself, using more than one predictor variable, and then applies an equal

weights weighting scheme. Applying this method in addition to the weighting schemes adds

an extra forecast combination method, and also one that constructs its combined forecasts

from different initial forecasts.

The idea of the complete subset regression method is that given a total of K predictor vari-

ables for k = 1, ..., K a forecast set is constructed for each subset of k predictor variables. This
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means that for each k there are Mk =
K!

k!(K−k)! forecast sets. For each k a single forecast set

is constructed by combining the forecast sets which were constructed with the same amount

of predictor variables. These forecast sets are combined using equal weights.

For a given value of k, Z j,t,k contains the j-th subset of k predictor variables, where j =

1, ..., Mk. The forecasts are constructed using a rolling window of 120 observations. Fore-

cast cr x (n),cSubsR
j,τ,k is constructed by:

cr x (n),cSubsR
j,τ,k = θ̂ j,τ,kZ j,τ,k (4-22)

where θ̂ j,τ,k is the OLS estimate of θ j,k, which in turn is constructed by regressing {r x (n)t }
τ−1
t=τ−u

on {Z j,t,k}τ−2
t=τ−u−1, according to the following regressing model:

r x (n)t+1 = θ j,kZ j,t,k + ε j,t,k (4-23)

For each value k, Mk forecast sets cr x (n),cSubsR
j,τ,k are constructed, where cr x (n),cSubsR

j,k is the set

of forecasts cr x (n),cSubsR
j,τ,k . A single forecast set is constructed for each value of k with an equal

weights weighting scheme.

ccx (n),cSubsR
k =

1
Mk

Mk
∑

j=1

cr x (n),cSubsR
j,k (4-24)

Appying the complete subset regression method for k = 1 is equivalent to applying the equal

weights weighting scheme to the forecast sets, therefore this will not be done.

When the number of predictor variables that is used by the complete subset regression

method is large, the computation time becomes very large. Therefore the complete sub-

set regression method is only applied to the individual forecast sets for k = 2.

The complete subset regression method is applied to the predictor variables when they are

clustered by categories. In this case it is applied for k = 2, ..., K , where K corresponds to 14,

4 and 18 for the three sets of predictor variables respectively.

For the construction of the forecast sets, a rolling window of 120 observations is taken. How-

ever this means that this method cannot be applied to the performance sets, because a large
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window is already needed to create the performance clusters. This means that if the com-

plete subset regressions method would be applied, there would not be enough data left to

verify the forecast sets.

4-5 Overview

In the previous sections a number of weighting schemes and methods of constructing fore-

casts were discussed. The total time sample, for which all of the data is available, spans

the period from January 1964 till December 2011. The different weighting schemes, cluster

methods and parameter settings each require a sample of observations to create the initial

forecast. However the size of this sample is not the same in each case. Therefore the forecast

sets that are constructed have different starting dates. E.g. the forecast set that is created

with the weighting scheme equal weights for a set from the individual forecast set, spans

the period January 1975 till December 2011, whereas the forecast set that is created using

weighting scheme BG4 for a set from the performance forecast sets, spans the period Febru-

ary 1979 till December 2011.

This report aims to make a comparison of the forecasting power of the different methods.

Therefore the forecast sets are all constructed for the same period, where the starting date

is chosen such that each forecast method can be included. This spans the period February

1985 till December 2011, consisting of 323 forecasts. Twelve forecast combination methods

have been described; five simple, the recursive OLS, five adaptive updating and the complete

subset regression. These twelve methods are used to construct forecasts of one-year excess

U.S. government bond returns. The methods are applied with different parameter settings

and also with different amount of shrinkage applied. On top of that the forecasts are con-

structed using two sets of predictor variables, macroeconomic and financial, and the forecast

combination methods are applied to each of these sets of forecast sets individually as well as

combined. Finally the forecasts are also clustered according to two different methods. As a

result, a large number of different forecast sets have been constructed. In total 753 forecast

sets of the one-year excess U.S. government bond returns have been constructed for each of
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Table 4-2: An overview of the combined forecast sets

Individual Category Performance

Mac Fin All Mac Fin All Mac Fin All
Forecast sets 132 147 279 14 4 18 5 5 10

Simple

Mean 1 1 1 1 1 1 1 1 1
Trimmed mean 1 1 1 1 1 1 1 1 1
Median 1 1 1 1 1 1 1 1 1
Exclude worst 1 1 1 1 1 1 1 1 1
Best performance 1 1 1 1 1 1 1 1 1

Scheme total 5 5 5 5 5 5 5 5 5

Recursive OLS

Scheme total 0 0 0 8 8 8 8 8 8

Adaptive updating

BG1 12 12 12 12 12 12 12 12 12
BG2 0 0 0 12 12 12 12 12 12
BG3 36 36 36 36 36 36 36 36 36
BG4 8 8 8 8 8 8 8 8 8
BG5 0 0 0 8 8 8 8 8 8

Scheme total 56 56 56 76 76 76 76 76 76

Complete subset regression

Scheme total 1 1 1 13 3 17 0 0 0

Total 62 62 62 102 92 106 89 89 89

The nummber in italic represent the number of parameter settings for a given weighting scheme. E.g. the 147
forecast sets that were constructed from the Individual Financial sets are used to construct 36 new combined
forecast sets using 36 different parameter settings of the weighting scheme BG3.

Master of Science Thesis D.W.B. Bender



36 Methods

the four maturities, 2, 3, 4 and 5 years. An overview of these forecast sets is given in Table

4-2.

From each of the three individual forecast sets, 62 forecast sets are constructed. These sets

are referred to as the combined individual sets. From the category forecast sets, three sets

of forecast sets of 102, 92 and 106 have been constructed, for the three sets of predictor

variables respectively. The reason for the difference in number of forecast sets is that the

complete subset regression methods is applied for k = 2, ..., K and K differs depending on

which set of predictor variables is chosen. The constructed sets are referred to as the com-

bined category sets. From the performance forecast sets, 89 combined forecast sets are con-

structed for each predictor variables set. These are referred to as the combined performance

sets.

For each maturity n, the total set containing all three of the combined forecast sets is referred

to as N 0,(n) and contains all 753 combined forecast sets.

4-6 Model Confidence Set

Comparing the results of the 753 forecast sets is certainly not a trivial matter. The model

confidence set algorithm, which was introduced by Hansen [2011], provides a solution to

this problem. For a given set of forecast sets M0,(n) and significance level α, the model con-

fidence set algorithm constructs a new set cM∗,(n)
1−α , which contains the best forecast set(s) of

the original set, such that cM∗,(n)
1−α ⊆M0,(n). This set cM∗,(n)

1−α is called the model confidence

set.

The model confidence set algorithm evaluates each forecast set based on its relative perfor-

mance to the other forecast sets. This relative performance is measured as follows: Consider

the initial set M0,(n), which contains m0 forecast sets of T observations. These forecast sets

are evaluated by means of a loss function. The squared forecast error is applied as loss

function, such that:

L(n)i,t =
�

r x (n)t −ccx (n)i,t

�2
(4-25)
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where i = 1, ..., m0 and t = 1, ..., T . The relative performance of two forecasts is defined as:

d(n)i j,t ≡ L(n)i,t − L(n)j,t for all i, j ∈M0,(n) (4-26)

The vector d(n)i j consists of the elements d(n)i j,t for t = 1, ..., T . The assumption is made that

µ
(n)
i j ≡ E(d(n)i j,t) is finite and independent of t, for all i, j ∈M0,(n). The alternatives are ranked

in terms of expected loss, so that the alternative i is preferred to alternative j if µ(n)i j < 0.

The objective of the MCS algorithm is to determine M∗,(n), where M∗,(n) is defined as:

M∗,(n) ≡ {i ∈M0,(n) : µ(n)i j ≤ 0 for all j ∈M0,(n)} (4-27)

To achieve this goal, a series of significance tests was performed to determine whether any

of the forecast sets are significantly inferior to the other forecast sets of M0,(n). If it is found

that an forecast set is inferior, it is eliminated from the set. The hypothesis that is tested to

determine this takes the form:

H0,M(n) : µ(n)i j = 0 for all i, j ∈M(n) (4-28)

where M(n) ⊆M0,(n).

The model confidence set algorithm is based on an equivalence test, δM, and an elimination

rule, eM. The equivalence test is used to test the hypothesis H0,M(n) for any M(n) ⊆M0,(n),

and in the event that H0,M(n) is rejected, the elimination rule identifies the forecast set in

M(n) that is to be removed from M(n). Here δM = 0 and δM = 1 correspond to the cases

where H0,M(n) is accepted or rejected respectively. The algorithm works as followed:

1. Initially set M(n) =M0,(n)

2. Test H0,M(n) using δM at level α

3. If H0,M(n) is accepted, define cM∗,(n)
1− alpha = M(n); otherwise, use eM to eliminate an

object from M(n) and repeat the procedure from Step 2
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The model confidence set cM∗,(n)
1−α is the set of surviving objects.

The applied equivalence test is based on t-statistics. First the relative sample loss statistic is

defined as d̄(n)i j ≡
1
T

∑T
t=1 d(n)i j,t . This measures the relative sample loss between the ith and

the jth forecast set. Second an estimate is made of the variance of d̄(n)i j using a bootstrap.

This is defined as Óvar
�

d̄(n)i j

�

≡ 1
B

∑B
b=1

�

d̄∗,(n)b,i j − d̄(n)i j

�2
. From these variables the following

t-statistic can be constructed as:

t(n)i j =
d̄(n)i j

r

Óvar
�

d̄(n)i j

�

for i, j ∈M(n) (4-29)

This t-statistic is associated with the null hypothesis that µ(n)i j = 0 and this null hypothesis

can be tested with the test statistic:

T (n)R,M ≡ max
i, j∈M(n)

|t(n)i j | (4-30)

The natural elimination rule for this test statistic is e(n)RM = arg maxi∈M(n) sup j∈M(n) t(n)i j be-

cause this model is such that t(n)eR,M j = T (n)R,M for some j ∈M(n).

The model confidence set p-value for forecast set e(n)M j
∈M0,(n) is defined by p̂(n)eM j

≡maxi≤ j P(n)H0,Mi
,

where P(n)H0,Mi
denotes the p-value that is associated with the null hypothesis H0,M(n)

i
. As M(n)

m0

consists of a single forecast set, the null hypothesis, H0,M(n)
m0

, states that the last surviving

forecast set is as good as itself, making the P(n)H0,Mm0
= 1.

The implementation of the model confidence set algorithm in this report uses a block-bootstrap

procedure of B resamples, which is set to 10000. The block length l should be long enough

to capture any autocorrelation found in the loss terms. Autocorrelation tests are performed

and the conclusion of the tests is that a block length of 18 observations captures the autocor-

relation in all of the loss terms for each set of combined forecast sets. The significance level

which is applied when constructing the model confidence set is 95%, which corresponds to

an α of 0.05.

The entire model confidence set procedure that is implemented in this report can be de-
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scribed in two steps. In the first step, the sample and bootstrap statistic are determined.

And in the second step, sequential testing is performed. The details of this implementation

are discussed in Appendix B.

The goal of the model confidence set algorithm is to compare all 753 forecast sets for each

maturity and determine whether one or more forecast sets outperforms the rest of the fore-

cast sets. For a given maturity however, performing the model confidence set procedure on

753 forecast sets at once is not computationally possible. Therefore the procedure is first

applied to all the combined forecast sets that were constructed using macroeconomic pre-

dictors. Secondly it is applied to the combined forecast sets that were constructed using the

financial predictors. And lastly the procedure is applied to the combined forecast sets that

were constructed using both the macroeconomic and financial predictors. This procedure

results in a model confidence set for each of these sets, which will be referred to as ÔCM
∗,(n)
1−α ,

ÓCF
∗,(n)
1−α and ÓCA

∗,(n)
1−α respectively. These three model confidence sets are then merged into a

single set, ÒN ∗,(n)1−α , and the model confidence procedure is then applied to this set. The goal

is then achieved, as for each maturity a single model confidence set, cM∗,(n)
1−α , remains.

4-7 Out-of-sample R2

After the model confidence set procedure has been applied the set of surviving models is

compared. One measure that is used is the R2
OS . This was first proposed by Campbell and

Thompson [2008] and is calculated as

R2
OS = 1−

MSFEmodel

MSFEbenchmark
(4-31)

In this report the historical mean forecasting model is taken as the benchmark. This is con-

structed at each observation t as:

cr x (n)t+1 =
1
t

t
∑

τ=1

r x (n)τ (4-32)
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If the R2
OS has a positive value, this indicates that the forecast set has a lower MSFE than that

of the benchmark.
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5. Results

This Section presents the results of the combined forecast sets which were constructed with

the forecast combination methods. First the resulting combined forecast sets for the 5 year

maturity are presented, and the results of applying the model confidence set procedure to

the combined forecast sets which were constructed using the same predictor variable sets,

are also presented and discussed. Secondly the model confidence set procedure is applied

to the three model confidence sets that resulted from each predictor set, and the results of

this are discussed. In addition a selection of the ‘best performing’ forecast sets is made based

on their respective MSFE, and these forecast sets are further examined. The two selection

criteria, model confidence set procedure and MSFE selection, are also compared. Thirdly the

results of the forecast sets for the 2, 3, and 4 year maturity are presented and the results of

all four maturities are compared. Lastly two robustness checks are performed on the forecast

sets. First the model confidence set results are examined for different significance levels and

secondly the results are examined when the period of the observations is changed.

5-1 5 year maturity

In Section 4-5 it was concluded that for each maturity a total of 753 combined forecast sets

would be constructed. 253 using macroeconomic predictor variables, 243 using financial
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predictors variables and 257 using both macroeconomic and financial variables. Firstly the

MSFE results as well as the model confidence set results of the forecast sets constructed

from each of these three sets are presented for the 5 year maturity. Subsequently the three

resulting model confidence sets are merged and results of performing the model confidence

set procedure on this new set is presented. The results of this are compared to the results

when a selection of the forecast sets is made by ranking them based on their MSFE.

5-1-1 Results by predictor variable type

Figure 5-1 presents the results of each of the combined forecast sets for a 5 year maturity.

The results of the model confidence set procedures are also presented in the figure, and these

are summarised in Table 5-1.

The results of the combined forecast sets constructed with macroeconomic predictors are

shown in Figure 5-1a. A large number of the forecast sets have very similar results, both in

terms of MSFE and bias. These are all clustered around the point (2.5e-3,-7.5e-3), which in

terms of MSFE is about the same as that of the benchmark, but in terms of absolute bias is

slightly smaller. If this is examined more closely, it can be seen that in particular the forecast

sets that were constructed with the performance cluster method have almost identical results,

as the MSFE ranges between 2.51e-3 and 2.52e-3 for almost all of them. The forecast sets

that were constructed without a cluster method are also almost all included in the point

cluster of results. Their results vary more than those of the performance forecast sets, but

they are still very similar. A number of the forecast sets that fall outside of the point cluster

have fairly similar MSFE results and differ mainly in bias, but there are also a number of

forecast sets that perform worse in terms of MSFE. However there is also a group of forecast

sets which seems to outperform all the other forecast sets in terms of MSFE. These are 17

forecast sets, each constructed with the cateogry cluster method. The first eight of these

are all the forecast sets that were constructed with the recursive OLS weighting scheme and

the other seven were constructed with the complete subset regression forecast combination

method. The forecast sets that were constructed with the category cluster method but with

D.W.B. Bender Master of Science Thesis



5-1 5 year maturity 43

the other weighting schemes are also mostly contained in the cluster of results.

Out of a total of 253 forecast sets, the model confidence set procedure includes just four

in the 95% model confidence set, ÔCM
∗,(5)
95% . These four forecast sets are those that were

constructed using the recursive OLS weighting scheme and to which either 25% or 50%

shrinkage towards equal weights was applied. One forecast set is excluded even though it

has a very similar MSFE and a smaller bias than two of the forecast sets that are included.

Figure 5-1b presents the results of the combined financial forecast sets. It can be observed
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Figure 5-1: MSFE and bias (both displayed in base points) of each combined forecast set for
the 5 year maturity. The subfigures show the results of the sets Combined Macroeconomic,
Combined Financial and Combined All and their respective model confidence sets, ÔCM

∗,(5)
95% ,

ÓCF
∗,(5)
95% and ÓCA∗,(5)95% , are indicated by the red marks.

that, with the exception of a few, all the forecast sets have a very similar performance in
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Table 5-1: A breakdown of the model confidence sets

SIM ROLS BG1 BG2 BG3 BG4 BG5 CSR Total

Mac Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 4/8 0/12 0/12 0/36 0/8 0/8 0/13 4/102
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Fin Ind 5/5 - 12/12 - 36/36 8/8 - 1/1 62/62
Cat 5/5 8/8 7/12 11/12 0/36 7/8 8/8 3/3 49/92
Per 5/5 7/8 12/12 12/12 36/36 8/8 8/8 - 88/89

All Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 4/8 0/12 0/12 0/36 0/8 0/8 5/17 9/106
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Total 15/45 23/48 31/108 23/72 72/324 23/72 16/48 9/36 212/753

Every three rows represent the breakdown by forecast combination method of forecast sets which are included in the three model
confidence sets.

terms of both MSFE and bias. On closer examination it is apparent that for each of the three

cluster methods most of the forecast sets are clustered in a single point. Each of these three

points has a slightly worse MSFE than that of the benchmark. In contrast to the results of the

macroeconomic forecast sets there are no results which can be considered better in terms of

MSFE than the benchmark. There are however 5 forecast sets that seems to perform slightly

better than the other forecast sets and like with the macroeconomic results, these forecast

sets are constructed with the recursive OLS weighting scheme.

In this case the model confidence set, ÓCF
∗,(5)
95% , includes 199 out of an initial 243 forecast sets.

This means that over 80% of the initial forecast sets are included in the model confidence

set. On closer examiniton it can be seen that the forecast sets that are constructed without a

cluster method or those constructed with the performance cluster method, with the exception

of one, are all included in the model confidence set. Out of the forecast sets that were

constructed with the category cluster method and are in the point cluster, 43 are excluded

from the model confidence set while the rest is included.

Another point of interest is that the forecast set that has the worst performance in terms

of MSFE is still included in the model confidence set, while its MSFE is about two and half

times as large as that of the 43 forecast sets that were excluded from the point cluster. Both

these observations feel slightly counterintuitive.
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The last result set is that of the combined forecast sets which are constructed using both

macroeconomic and financial predictor variables. These are presented in Figure 5-1c. Again

there is a point cluster, but it can be observed that these results are somewhere in between

the results of the macroeconomic sets and the financials sets, as this cluster for the macroeco-

nomic sets had a slightly lower MSFE and was more varied, whereas the cluster of the finan-

cial sets had a slightly higher MSFE and was less varied. Again forecast sets constructed with

each of the three cluster methods are included in the point cluster and there are a number

of forecast sets from each of them that lie outside of this cluster and perform worse in terms

of MSFE. There is another similarity to the results of the macroeconomic forecast sets, and

that is that again there are 17 forecast sets that are constructed using the category cluster

method that seem to outperform both the rest of the forecast sets and the benchmark. These

17 forecast sets are exactly the same 17 as was the case with the macroeconomic forecast

sets, these are again all eight of the recursive OLS weighting scheme forecast sets as well as

seven of the complete subset regression method forecast sets.

As with the macroeconomic forecast sets, the model confidence set ÓCA
∗,(5)
95% only includes fore-

cast sets that were constructed using the category cluster method. This time nine forecast

sets are included. The same four recursive OLS forecast with 25% and 50% shrinkage are

included but this time five complete subset regression forecast sets are also included. These

are the forecast sets that were constructed with 11, 13, 15, 16 and 18 regressors.

The results of applying the model confidence set to the three subsets of forecast sets based on

their predictor variables sets are that for both the macroeconomic and the macroeconomic

and financial forecast sets, only a handful of forecast sets are included. These forecast sets

are all constructed using just two of the twelve forecast combination methods and indeed

seem to outperform most of the other forecast sets and the benchmark in terms of MSFE.

In the case of the financial forecast sets 199 out of 243 forecast sets are included and it

seems that none of the forecast combination methods are able to construct a forecast set

that significantly outperforms the other forecast sets or the benchmark.
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5-1-2 Overall results

The three model confidence sets that are constructed with the forecast sets of each of the pre-

dictor variable sets are merged into the new set ÒN ∗,(5)95% , i.e. ÒN ∗,(5)95% =
n

ÔCM
∗,(5)
95% ,ÓCF

∗,(5)
95% ,ÓCA

∗,(5)
95%

o

.

This new set consists of 212 of the initial 753 forecast sets. The model confidence set pro-

cedure is applied to this new set, and the results of this are presented in Figure 5-2. It is
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Figure 5-2: MSFE and bias of the forecast sets that are in the model confidence sets
models of each of the cluster methods for the forecast sets of the 5 year maturity bonds.
The model confidence set, cM∗,(5)

95% , of the new set of forecast sets, ÒN ∗,(5)95% , is represented by
the red marks

clear that the forecast sets that were constructed with financial predictors perform much

worse than the forecast sets that were constructed with either the macroeconomic or the

macroeconomic and financial sets of predictors. The model confidence set confirms this, as

it excludes all 199 of these forecast sets. All eight of the recursive OLS forecast sets are
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again included in the model confidence set, four from the macroeconomic and four from the

macroeconomic and financial sets. Of the complete subset regression forecast sets that were

included in the ÓCA
∗,(5)
95% , only two are included in the model confidence set, while the other

three are excluded. The result of this is that in the final model confidence set for the 5 year

maturity ten forecast sets remain. Table 5-2 gives a breakdown of the final model confidence

set in terms of predictor variable, cluster method and forecast combination method.

Table 5-2: A breakdown of the model confidence sets

SIM ROLS BG1 BG2 BG3 BG4 BG5 CSR Total

Mac Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 4/8 0/12 0/12 0/36 0/8 0/8 0/13 4/102
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Fin Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 0/8 0/12 0/12 0/36 0/8 0/8 0/3 0/92
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

All Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 4/8 0/12 0/12 0/36 0/8 0/8 2/17 6/106
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Total 0/45 8/48 0/108 0/72 0/324 0/72 0/48 2/36 10/753

The final row represents the breakdown by the forecast combination method of forecast sets which are included in the final
model confidence set for the 5 year maturity.

According to the model confidence set results for the 5 year maturity it can be concluded

that two of the forecast combination methods are able to construct forecast sets which can

outperform both the historical mean benchmark and the other forecast sets. Moreover, these

two forecast combination methods are only able to construct these when the initial forecast

sets are constructed using either the macroeconomic predictor variables or both the macroe-

conomic and financial predictor variables.

Another observation that can be made is that all the forecast sets that are included in the

final model confidence set were constructed with the forecast sets that were first combined

according to the category cluster method. So reducing the number of forecast sets to which

the weighting schemes are applied, can improve the performance, but does not necessarily

do so, as can be concluded from the fact that none of the forecast sets that were constructed

using the performance cluster method remain in the model confidence set. Applying the cat-
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egory cluster method reduces the number of forecast sets but also clusters forecast sets that

were constructed using predictor variables containing similar information. Each of the fore-

cast sets that are constructed with recursive OLS are subjected to three levels of shrinkage,

25%, 50% and 75% as well as being constructed without any shrinkage. The eight forecast

sets included in the model confidence set and are constructed with the recursive OLS weight-

ing scheme all include a level of shrinkage towards equal weights. To four of them 25% and

to four of them 50% shrinkage towards equal weight is applied, whereas their corresponding

forecast sets that received no shrinkage are not included in the model confidence set.

In the results presented in Figure 5-2, it can be seen that the model confidence set includes

a number of forecast sets, but also excludes some sets that have very similar results in terms

of MSFE and bias. The same was also the case when the model confidence set was applied,

in Section 5-1-1, to the three sets of forecast sets for each predictor variable set. Therefore

it would also be good to compare the forecast sets by some other measure. In Figure 5-3 the

results of all the forecast sets are presented again. It is clear straightaway that, if the selection

of the best performing forecast sets is made by only looking at the MFSE, that only forecast

sets that are constructed using the recursive OLS weighting scheme or the complete subset

regression method would be selected. The recursive OLS forecast sets seem to outperform

the complete subset regression forecast sets in terms of MSFE, but the biases of the latter

seem to be smaller than those of the recursive OLS forecast sets. This is also the case when

the best performing foreast sets are selected by the model confidence set. However if the

selection is made solely on the MSFE, more forecast sets are included. To verify whether

excluding those forecast sets that the model confidence set excludes has merit, all of the

forecast sets which are contained in the dotted box in Figure 5-3 are further examined.

Figure 5-4 gives the cumulative squared forecast error of the benchmark minus the cumula-

tive squared forecast error of the forecast sets which are selected for further examination. In

addition, the R2
OS is given for each set, and the forecast sets which are included in the model

confidence set are marked with an asterisk.
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Figure 5-3: MSFE and bias of all the forecast sets of the 5 year maturity bonds. The
model confidence set, cM∗,(5)

95% is represented by the red marks
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Figure 5-4: The cumulative squared forecast error of the historical average benchmark
minus the cumulative squared forecast error of the selected forecast sets and their R2

OS . The
red asterisk indicates the forecast sets that are also included in the final model confidence
set. The abbreviation ‘model shr x ’ corresponds to 1− x shrinkage towards equal weights.
In the case of the recursive OLS weighting schemes 36 or 60 corresponds to the size of the
rolling window in months. In the case of the complete subset regression model, the number
after k corresponds to the amount of predictor variables that were used to construct the
combined forecast.
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Figure 5-4: Continued.
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Examining the recursive OLS forecast sets first shows that the four forecast sets that are con-

structed with 75% shrinkage indeed perform worse than the rest of the forecast sets. When

the four forecast sets to which no shrinkage is applied are examined, it can be observed that,

with one exception, they perform a lot better than the ones with 75% shrinkage and only

slightly worse than those with 25% and 50% shrinkage. The forecast set that is constructed

with no shrinkage, a rolling window of 36 and the macroeconomic predictors, even seems to

perform as well as, or even better than those with 50% shrinkage, but it is not included in the

model confidence set. On the whole the difference between the forecast sets that are con-

structed with the macroeconomic predictors, and their counterparts which are constructed

with both the macroeconomic and financial predictors, is very small; in the cases where the

difference is more than 0.01, the macroeconomic forecast set performs better.

If the complete subset regression forecast sets are examined, is it apparent that increasing the

number of regressors improves the performance. In the case when only macroeconomic pre-

dictors are used, the forecast sets where k = 11, ..., 14, out of 14, perform the best. The same

is the case when looking at the forecast sets that were constructed with both the macroeco-

nomic and financial predictors. In this case, out of 18 possible predictors, the forecast sets

that perform the best are the ones where the amount of regressors are 14 through 18. To ex-

amine the difference between the corresponding forecast sets, the macroeconomic k = 14 is

compared to the all k = 18, as this corresponds to adding the four financial predictor variable

sets. As was the case with the recursive OLS forecast sets, the difference is practically none,

and the same happen when the other corresponding forecast sets are compared. The model

confidence set includes only two forecast sets that were constructed using the complete sub-

set regression method, both constructed with both the macroeconomic and financial set of

predictors and 13 and 16 regressors respectively. This is remarkable as the performance of

the k = 16 forecast set seems very similar to eight forecast sets which have a R2
OS of mre

than 0.40. And the forecast set which is included and was constructed with 13 regressors

seems to perform significantly worse throughtout the whole period than those forecast sets.

Comparing the results of all 24 forecast sets and the model confidence set results it is even

more surprising that the two complete subset regression forecast sets are included when
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the no shrinkage recursive OLS forecast sets are excluded, as those forecast sets seem to

outperform the benchmark more consistently.

5-2 Comparison with other maturities

In this report the same predictor variables are used to construct excess bond returns with

four different maturities, namely 2, 3, 4 and 5 years. In the previous section the results of

the forecast sets for the 5 year maturity are described. Here the results of the three other

maturities are briefly described and these are compared with those of the 5 year maturity.

Figure 5-5 presents the results of the forecast sets for the 2, 3 and 4 year maturity and the

results of their respective model confidence sets. It is apparent straightaway that the results

are very similar to each other and to those of the 5 year maturity. Like with the 5 year

maturity, for each of these maturities a large part of the forecast set results is clustered in

one point, which in terms of MSFE is almost the same as that of the benchmark. For each

maturity it is also the case that there are a number of forecast sets that have a slighty different

bias or a slightly worse MSFE. But, as with the results for the 5 year maturity, for each of these

maturities there is a group of exactly 34 forecast sets that outperform both the benchmark

and the other 719 forecast set in terms of MSFE. And in each case these are again only

recursive OLS and complete subset regression forecast sets. Moreover these 34 are exactly

the same forecast sets for each maturity. In each case it is still clear that the recursive OLS

forecast sets have a smaller MSFE than the complete subset regression forecast sets, with the

exception of the recursive OLS forecast sets to which 75% shrinkage was applied.

Table 5-3: A breakdown of the model confidence sets for the four different year maturities

SIM ROLS BG1 BG2 BG3 BG4 BG5 CSR Total

2 years 0 8 0 0 0 0 0 5 13
3 years 0 9 0 0 0 0 0 7 16
4 years 1 10 0 0 3 0 0 5 19
5 years 0 8 0 0 0 0 0 2 10

Figure 5-5 also shows which forecast sets are included in the model confidence set for each

maturity, and Table 5-3 presents the breakdown by forecast combination method of these
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Figure 5-5: MSFE and bias of all the forecast sets of the 2, 3 and 4 year maturity bonds.
The model confidence sets, cM∗,(2)

95% , cM∗,(3)
95% and cM∗,(4)

95% are represented by the red marks
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model confidence sets. The cumulative squared error of the benchmark minus the cumula-

tive squared of these forecast sets are presented in Appendix C.

The model confidence set results are also similar for each maturity. They exclude the recur-

sive OLS forecast sets with 75% shrinkage, and they each keep between eight and ten of the

twelve remaining recursive OLS forecast set. With the complete subset regression forecast

sets, the 2, 3 and 4 year maturities include a few more forecast sets than the 5 year maturity

did. But they all exclude some of these sets that seem to do at least as well as some of the

forecast sets that are included.

Finally in the case of the 4 year maturity the model confidence set includes four forecast sets

from two completely different weighting schemes. One constructed with the simple best

performing weighting scheme and three with the BG3 weighting scheme, and on top of that

all four are constructed with only the financial set of predictor variables. However if Figure

5-5c is examined more closely, it is apparent that the results of the simple best performing

forecast set lie just under the cluster of results, and the results of the three BG3 forecast sets

are within the cluster. In addition the R2
OS of each of these four forecast sets is negative,

indicating that they all perform worse than the benchmark.

5-3 Robustness Tests

To test the robustness of the results in this report, this section will first examine the effect of

applying different signficance levels to the model confidence set procedure and examining

the differences in the resulting model confidence sets. And second the robustness of the

forecast combination methods will be tested. This is done by dividing the entire period into

smaller subperiods and re-applying each forecast combination method to the subperiods.

5-3-1 Significance Level

The model confidence set procedure is re-applied twice to the combined forecast sets, the

first time α is set to 0.10 and the second time to 0.025, corresponding to a 90% and 97.5%
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significance level respectively. Figure 5-6 presents the results of these model confidence

set procedures. Table 5-4 gives a breakdown of these model confidence sets by forecast

combination method.

The 90% model confidence set excludes two extra forecast sets in addition to the 95% model

confidence set. These are the two complete subset regression forecast sets that remained,

and the result is that the 90% model confidence set contains eight forecast sets, which are

all constructed with the recursive OLS weighting scheme. Examining Figure 5-6a these are

also the forecast sets which have the lowest MSFE, with the exception of a single other

forecast set. These eight forecast sets are the forecast sets that also consistently have the

lowest MSFEs in each of the other maturities, so it might be beneficial to apply the model

confidence set procedure with a significance level of 90% instead of 95% when applied to

such large sets in the future.

As can be expected from the 97.5% model confidence set, more forecast set are included than

in the other two. In fact, forecast sets constructed with each forecast combination method

are included. However if Figure 5-6c is examined, it is clear that many of the forecast sets

that are included do not perform better than the other forecast sets. In fact many of the

recursive OLS and complete subset regression forecast sets that perform a lot better are still

not included in the 97.5% model confidence set.

Table 5-4: A breakdown of the model confidence sets for the 5 year maturity at three different levels of α

Significance level SIM ROLS BG1 BG2 BG3 BG4 BG5 CSR Total

90% 0 8 0 0 0 0 0 0 8
95% 0 8 0 0 0 0 0 2 10

97.5% 9 11 14 6 35 11 4 6 96
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Figure 5-6: MSFE and bias of all the forecast sets of the 5 year maturity bonds. The
model confidence sets, cM∗,(5)

90% , cM∗,(5)
95% and cM∗,(5)

97.5% are represented by the red marks
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5-3-2 Time period

The forecast combination methods in this report are all applied and verified with a single pe-

riod. To verify whether the results are consistent when the methods are applied to different

datasets, the period is now divided into subperiods. The forecast sets in this report are all

constructed for the period from Febuary 1985 till December 2011, this is referred to as the

Complete period. To test the robustness of the results, the period is divided into two parts,

Febuary 1985 till July 1998, and August 1998 till December 2011, these are referred to as

the First period and Second period respectively. The forecast sets are reconstructed for each

of these periods. The results are presented in Figure 5-7.
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Figure 5-7: MSFE and bias of all the forecast sets of the 5 year maturity bonds for the
two subperiods and the complete period
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When the First period results are examined in Figure 5-7a, it observed that as in the Full pe-

riod, the recursive OLS and complete subset regression forecast sets outperform the bench-

mark and the other forecast sets. Another similarity to the Full period is that the other

forecast sets all at best have the same MSFE as the benchmark, but most of them have a

higher MSFE. Some of the complete subset regression forecasts do however have a larger

bias than that of the recursive OLS forecast sets; this is in contrast to the Full period, as the

complete subset regression forecast sets each have a smaller bias in this case.

In the Second period all the forecast sets have smaller MSFEs than in the other two periods.

This could indicate that the excess bond returns were less volatile in this subperiod. But,

as was the case in the First and the Full period, the recursive OLS and complete subset re-

gression forecast sets outperform the benchmark as well as the other forecast sets. In this

period the best performing complete subset regression methods have about the same MSFE

as the best performing recursive OLS forecast sets, and the bias of these sets is even slightly

smaller.
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6. Conclusions

The objective of this report is to see whether forecast combinations can be a solution to using

large sets of predictors to forecast excess bond returns. The results in this report show that

there are two methods of forecast combinations that are able to construct accurate and robust

forecasts of one-year excess U.S. government bond returns and are able to do this consistently

for different bond maturities. This conclusion is the result of the analysis of four questions:

First, do macroeconomic and financial variables contain useful and complementary infor-

mation which can be used by forecast combination methods to construct accurate excess

bond return forecasts? Second, when applying forecast combination methods to forecasts,

which are constructed from predictor variables, is it beneficial to first reduce the number

of forecasts by constructing clustered forecasts with either a category or performance based

cluster method? Third, if a large number of forecast sets of the excess bond returns are

constructed will some of them outperform both the other forecast sets and the benchmark,

and is the model confidence set procedure able to identify these forecast sets? And finally,

if some method(s) construct forecast sets that outperform the other forecast set(s), will this

method or these methods be able to construct forecast set(s) that consistently outperform

both the other forecast sets and the benchmark for different maturities and time periods?

The analysis of these questions will each be discussed individually.

Two types of predictor variables were available in this report, macroeconomic and finan-
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cial. The combined forecast sets were constructed using both of these separately, as well as

simultaneously. The conclusion that can be drawn from this, is that the macroeconomic pre-

dictor variables provide useful information when constructing excess bond return forecasts,

whereas this is not the case for the financial predictor variables. The performance of each of

the forecast sets that are constructed using solely the financial predictors for a given maturity

are almost identical in terms of MSFE and bias. In addition the financial predictor variables

add no complementary information to the macroeconomic variables. This is a result of the

fact that for each forecast set that is constructed with the macroeconomic variables, its coun-

terpart, which is constructed with the same cluster method, forecast combination method

and other parameter settings, but uses both the macroeconomic and financial predictors, has

either a similar or a worse performance. This suggests that the financial predictors do not

contain useful or complementary information for the prediction of U.S. government bonds.

As other papers that only used a small amount of financial variables to predict bond returns

reported positive results, a recommendation for future research is that the effects of adding a

single or a couple of financial variables, such as Cochrane and Piazzesi [2005]’s single factor

model, to the macroeconomic variables should be studied.

The forecast combination methods are applied to three sets of forecast sets: the 279 fore-

cast sets that are constructed straight from the predictor variables, the 18 category clustered

forecast sets and the 20 forecast sets which are clustered according to past performance.

One conclusion that can be drawn from the results is that clustering the forecast sets ac-

cording to their past performance does not significantly improve the performance of the

resulting combined forecast sets. For most of the forecast combination methods, applying

the category cluster method does not improve the performance either; however there are

a number of combined forecast sets that are constructed using the category cluster method

whose performance is significantly better than that of the other combined forecast sets. At

each maturity the final model confidence set consists solely of these combined forecast sets

that were clustered by category. It is possible that predictor variables that fall into the same

category contain the same information and by combining them, the amount of overlapping

information is reduced.
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Twelve methods of forecast combinations are used to construct the forecast sets. Of these

twelve, there are two which constructed forecast sets that outperform both the other forecast

sets and the benchmark are constructed. These are the recursive OLS weighting scheme and

the complete subset regression method. The forecast sets are constructed when these two

methods are applied to the category clustered forecast sets. These are the forecast sets that

are included in the final model confidence sets of each maturity. When the ‘best performing’

forecast sets are selected based on their MSFE, at each maturity the same 34 forecast sets

are selected, 16 recursive OLS and 18 complete subset regression sets. None of the other

forecast sets perform significantly better than either each other or the benchmark.

Within the different recursive OLS forecast sets, eight parameter settings produce the most

consistent results. These are those which are constructed with a rolling window of 36 or 60

months which use the macroeconomic predictor variables or both the macroeconomic and

financial predictors, and with either 25% or 50% shrinkage towards equal weights. In the

case of the 5 year maturity, the R2
OS is between 0.54 and 0.65 for these forecast sets. The use

of shrinkage towards equal weights improves the performance of these forecast sets and it

can therefore be concluded that the use of shrinkage can be a valuable addition when using

forecast combinations to forecast excess bond returns.

The forecast sets that were constructed with the complete subset regression perform slightly

worse in most cases than the recursive OLS forecast sets, but they still outperform all the

other forecast sets and the benchmark. Additionally the bias of these forecast sets is on the

whole lower than those of the recursive OLS forecast sets. The complete subset regression

forecast sets, constructed with either the macroeconomic predictor or both the macroeco-

nomic and financial predictors sets, are included in the model confidence sets. In both cases,

increasing the number of predictor variables when performing the complete subset regres-

sion method improves the performance. The most accurate forecast sets are constructed

when the maximum number of regressors is used and substracting regressors slowly dimin-

ishes the performance. The complete subset regression method constructs different forecasts

with each set of k predictors and then applies equal weights to combine them. Further re-

search could be done to examine whether applying other weighting schemes, such as the
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recursive OLS weighting scheme, could improve the performance of these forecasts.

A conclusion of using these two methods is that the recursive OLS weighting scheme provides

more accurate forecasts, but there is certainly also merit in applying the complete subset re-

gression method to forecast the excess bond returns. The smaller bias that the complete

subset regression achieves could be useful in some cases.

From the results it is clear that the recursive OLS weighting scheme and the complete subset

regression method are able to construct forecast sets that consistently outperform the other

forecast sets for different maturities. The model confidence set procedure is also able to

identify these forecast sets. With the exception of the 4 year maturity, the model confidence

set procedure only included forecast sets constructed with one of these two forecast combi-

nation methods. However the model confidence set procedure seems to be inconsistent in

which forecast sets it includes. Some of the forecast sets is excludes have very similar results

to forecast sets which it includes. Sometimes forecast sets are even excluded, which in terms

of MSFE, seem to significantly outperform other forecast sets, which the model confidence

set procedure does include. In some cases, such as the 4 year maturity, four forecast sets

are included, which clearly do not significantly outperform the other forecast sets. Likewise,

when the significance level is increased from 95% to 97.5%, the number of forecast sets in-

cluded increases from ten to 96, but these 96 forecast sets are certainly not the 96 forecast

sets which perform the best in terms of MSFE. When the significance level is set to 90% how-

ever, eight forecast sets are included. These eight forecast sets are the recursive OLS forecast

sets that consistently outperform the other forecast sets, including the other recursive OLS

and complete subset regression forecast set, at each maturity. This indicates that the model

confidence set procedure has trouble accurately selecting the ‘best performing’ forecast sets

at a 95% significance level and does a better job of this when applied with a 90% significance

level.

The same conclusion can be drawn about the robustness of the recursive OLS and complete

subset regression combination method, when used to construct forecast sets for subsets of

the time period. The two forecast set methods provide the forecast sets that outperform the

benchmark as well as the other forecast sets for each subperiod. Therefore, the two methods
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can also provide accurate forecasts for other datasets. In the Second period the complete

subset regression forecast sets with the best results have a MSFE which is the same as that

of the best performing recursive OLS forecast sets.
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A. Data

A-1 Excess Bond Return Properties
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Figure A-1: One-year excess bond returns, for the different maturities
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Figure A-1: Continued.
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Figure A-2: Histograms of the one-year excess bond returns for the different maturities
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Figure A-3: Autocorrelations of the sets of returns, squared returns and absolute returns for the different
maturity
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A-2 Predictor Variables

Table A-1: Macroenconomic predictor variables

Category Series Number Short name Trans Description

Out 1 PI ∆ln Personal Income (AR, Bil. Chain 2000 $) (TCB)
Out 2 PI less transfers ∆ln Personal Income Less Transfer Payments (AR, Bil. Chain 2000 $) (TCB)
PCE 3 Real Consumption ∆ln Real Consumption (AC) a0m224/gmdc (a0m224 is from TCB)
Mon 4 M&T sales ∆ln Manufacturing and Trade Sales (Mil. Chain 1996 $) (TCB)
RTS 5 Retail sales ∆ln Sales of Retail Stores (Mil. Chain 2000 $) (TCB)
Out 6 IP: total ∆ln Industrial Production Index - Total Index
Out 7 IP: products ∆ln Industrial Production Index - Products, Total
Out 8 IP: final prod ∆ln Industrial Production Index - Final Products
Out 9 IP: cons gds ∆ln Industrial Production Index - Consumer Goods
Out 10 IP: cons dble ∆ln Industrial Production Index - Durable Consumer Goods
Out 11 IP: cons nondble ∆ln Industrial Production Index - Nondurable Consumer Goods
Out 12 IP: bus eqpt ∆ln Industrial Production Index - Business Equipment
Out 13 IP: matls ∆ln Industrial Production Index - Materials
Out 14 IP: dble matls ∆ln Industrial Production Index - Durable Goods Materials
Out 15 IP: nondble matls ∆ln Industrial Production Index - Nondurable Goods Materials
Out 16 IP: mfg ∆ln Industrial Production Index - Manufacturing (Sic)
Out 17 IP: res util ∆ln Industrial Production Index - Residential Utilities
Out 18 IP: fuels ∆ln Industrial Production Index - Fuels
Out 19 NAPM prodn l v Napm Production Index (Percent)
Out 20 Cap util ∆l v Capacity Utilization (Mfg.) (TCB)

EMP 21 Help wanted indx ∆l v Index of Help-Wanted Advertising in Newspapers (1967=100;Sa)
EMP 22 Help wanted/unemp ∆l v Employment: Ratio; Help-Wanted Ads:No. Unemployed Clf
EMP 23 Emp CPS total ∆ln Civilian Labor Force: Employed, Total (Thous.,Sa)
EMP 24 Emp CPS nonag ∆ln Civilian Labor Force: Employed, Nonagric. Industries (Thous.,Sa)
EMP 25 U: all ∆l v Unemployment Rate: All Workers, 16 Years & Over (%,Sa)
EMP 26 U: mean duration ∆l v Unemploy. By Duration: Average (Mean) Duration in Weeks (Sa)
EMP 27 U < 5 wks ∆ln Unemploy. By Duration: Persons Unempl.Less than 5 Wks (Thous.,Sa)
EMP 28 U 5-14 wks ∆ln Unemploy. By Duration: Persons Unempl. 5 to 14 Wks (Thous.,Sa)
EMP 29 U 15+ wks ∆ln Unemploy. By Duration: Persons Unempl. 15 Wks + (Thous.,Sa)
EMP 30 U 15-26 wks ∆ln Unemploy. By Duration: Persons Unempl. 15 to 26 Wks (Thous.,Sa)
EMP 31 U 27+ wks ∆ln Unemploy. By Duration: Persons Unempl. 27 Wks + (Thous,Sa)
EMP 32 UI claims ∆ln Average Weekly Initial Claims, Unemploy. Insurance (Thous.) (TCB)
EMP 33 Emp: total ∆ln Employees on Nonfarm Payrolls: Total Private
EMP 34 Emp: gds prod ∆ln Employees on Nonfarm Payrolls - Goods-Producing
EMP 35 Emp: mining ∆ln Employees on Nonfarm Payrolls âĂŞ Mining
EMP 36 Emp: const ∆ln Employees on Nonfarm Payrolls - Construction
EMP 37 Emp: mfg ∆ln Employees on Nonfarm Payrolls - Manufacturing
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Table A-1: continued

Category Series Number Short name Trans Description

EMP 35 Emp: mining ∆ln Employees on Nonfarm Payrolls - Mining
EMP 36 Emp: const ∆ln Employees on Nonfarm Payrolls - Construction
EMP 37 Emp: mfg ∆ln Employees on Nonfarm Payrolls - Manufacturing
EMP 38 Emp: dble gds ∆ln Employees on Nonfarm Payrolls - Durable Goods
EMP 39 Emp: nondbles ∆ln Employees on Nonfarm Payrolls - Nondurable Goods
EMP 40 Emp: services ∆ln Employees on Nonfarm Payrolls - Service-Providing
EMP 41 Emp: TTU ∆ln Employees on Nonfarm Payrolls - Trade, Transportation, and Utilities
EMP 42 Emp: wholesale ∆ln Employees on Nonfarm Payrolls - Wholesale Trade
EMP 43 Emp: retail ∆ln Employees on Nonfarm Payrolls - Retail Trade
EMP 44 Emp: FIRE ∆ln Employees on Nonfarm Payrolls - Financial Activities
EMP 45 Emp: Govt ∆ln Employees on Nonfarm Payrolls - Government
EMP 46 Agg wkly hours ∆ln Employee Hours in Nonag. Establishments (AR, Bil. Hours) (TCB)
EMP 47 Avg hrs l v Avg Weekly Hrs of Prod or Nonsup Workers on Private Nonfarm Payrolls
EMP 48 Overtime: mfg ∆l v AvgWeekly Hrs of Prod or Nonsup Workers on Private Nonfarm Payrolls
EMP 49 Avg hrs: mfg l v Average Weekly Hours, Mfg. (Hours) (TCB)
EMP 50 NAPM empl l v Napm Employment Index (Percent)
HSS 51 Starts: nonfarm ln Housing Starts:Nonfarm(1947-58);Total Farm&Nonfarm(1959-) (Thous.,Saar)
HSS 52 Starts: NE ln Housing Starts:Northeast (Thous.U.)S.A.
HSS 53 Starts: MW ln Housing Starts:Midwest(Thous.U.)S.A.
HSS 54 Starts: South ln Housing Starts:South (Thous.U.)S.A.
HSS 55 Starts: West ln Housing Starts:West (Thous.U.)S.A.
HSS 56 BP: total ln Housing Authorized: Total New Priv Housing Units (Thous.,Saar)
HSS 57 BP: NE ln Houses Authorized by Build. Permits:Northeast (Thou.U.)S.A
HSS 58 BP: MW ln Houses Authorized by Build. Permits:Midwest (Thou.U.)S.A.
HSS 59 BP: South ln Houses Authorized by Build. Permits:South (Thou.U.)S.A.
HSS 60 BP: West ln Houses Authorized by Build. Permits:West (Thou.U.)S.A.
Out 61 PMI l v Purchasing Managers Index (Sa)
Ord 62 NAPM new ordrs l v Napm New Orders Index (Percent)
Ord 63 NAPM vendor del l v Napm Vendor Deliveries Index (Percent)
RTS 64 NAPM Invent l v Napm Inventories Index (Percent)
Ord 65 Orders: cons gds ∆ln Mfrs New Orders, Consumer Goods and Materials (Bil. Chain 1982 $) (TCB)
Ord 66 Orders: dble gds ∆ln Mfrs New Orders, Durable Goods Industries (Bil. Chain 2000 $) (TCB)
Ord 67 Orders: cap gds ∆ln Mfrs New Orders, Nondefense Capital Goods (Mil. Chain 1982 $) (TCB)
Ord 68 Unf orders: dble ∆ln Mfrs Unfilled Orders, Durable Goods Indus. (Bil. Chain 2000 $) (TCB)
Inv 69 M&T invent ∆ln Manufacturing and Trade Inventories (Bil. Chain 2000 $) (TCB)
Inv 70 M&T invent/sales ∆l v Ratio, Mfg. and Trade Inventories to Sales (Based on Chain 2000 $) (TCB)

Mon 71 M1 ∆2ln Money Stock: M1(Curr,Trav.Cks,Dem Dep,Other Ckable Dep) (Bil$,Sa)
Mon 72 M2 ∆2ln Money Stock:M2(M1+Onite Rps,Euro$,G/P&B/D Mmmfs&Sav

&Sm Time Dep(Bil$,Sa)
Mon 73 Currency ∆2ln Money Stock: M3(M2+Lg Time Dep,Term Rps&Inst Only Mmmfs) (Bil$,Sa)
Mon 74 M2 (real) ∆ln Money Supply - M2 in 1996 Dollars (Bci)
Mon 75 MB ∆2ln Monetary Base, Adj. tor Reserve Requirement Changes (Mil$,Sa)
Mon 76 Reserves tot ∆2ln Depository Inst Reserves:Total, Adj. tor Reserve Req Chgs (Mil$,Sa)
Mon 77 Reserves nonbor ∆2ln Depository Inst Reserves:Nonborrowed,Adj. Res Req Chgs (Mil$,Sa)
Mon 78 C&I loan plus l v Commercial & Industrial Loans Oustanding in 1996 Dollars (Bci)
Mon 79 ∆ C&I loans ∆2ln Wkly Rp Lg Coml Banks:Net Change Coml & Indus Loans (Bil$,Saar)
Mon 80 Cons credit ∆l v Consumer Credit Outstanding - Nonrevolving (G19)
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Table A-1: continued

Category Series Number Short name Trans Description

Mon 81 Inst cred/PI ∆ln Ratio, Consumer Installment Credit to Personal Income (Pct.) (TCB)
SPr 82 S&P 500 ∆ln S&Ps Common Stock Price Index: Composite (1941-43=10)
SPr 83 S&P: indust ∆ln S&Ps Common Stock Price Index: Industrials (1941-43=10)
SPr 84 S&P div yield ∆l v S&Ps Composite Common Stock: Dividend Yield (% per Annum)
SPr 85 S&P PE ratio ∆ln S&Ps Composite Common Stock: Price-Earnings Ratio (%,Nsa)
Int 86 Fed Funds ∆l v Interest Rate: Federal Funds (Effective) (% per Annum,Nsa)
Int 87 Comm paper ∆l v Cmmercial Paper Rate (AC)
Int 88 3 mo T-bill ∆l v Interest Rate: U.S.Treasury Bills, Sec Mkt, 3-Mo. (% per Ann,Nsa)
Int 89 6 mo T-bill ∆l v Interest Rate: U.S.Treasury Bills, Sec Mkt, 6-Mo. (% per Ann,Nsa)
Int 90 1 yr T-bond ∆l v Interest Rate: U.S.Treasury Const Maturities, 1-Yr. (% per Ann,Nsa)
Int 91 5 yr T-bond ∆l v Interest Rate: U.S.Treasury Const Maturities, 5-Yr. (% per Ann,Nsa)
Int 92 10 yr T-bond ∆l v Interest Rate: U.S.Treasury Const Maturities, 10-Yr. (% per Ann,Nsa)
Int 93 Aaa bond ∆l v Bond Yield: Moodys Aaa Corporate (% per Annum)
Int 94 Baa bond ∆l v Bond Yield: Moodys Baa Corporate (% per Annum)
Int 95 CP-FF spread l v cp90-fyff (AC)
Int 96 3 mo-FF spread l v fygm3-fyff (AC)
Int 97 6 mo-FF spread l v fygm6-fyff (AC)
Int 98 1 yr-FF spread l v fygt1-fyff (AC)
Int 99 5 yr-FF spread l v fygt5-fyff (AC)
Int 100 10 yr-FF spread l v fygt10-fyff (AC)
Int 101 Aaa-FF spread l v fyaaac-fyff (AC)
Int 102 Baa-FF spread l v fybaac-fyff (AC)
FX 103 Ex rate: avg ∆ln United States;Effective Exchange Rate (Merm) (Index No.)
FX 104 Ex rate: Switz ∆ln Foreign Exchange Rate: Switzerland (Swiss Franc per U.S.$)
FX 105 Ex rate: Japan ∆ln Foreign Exchange Rate: Japan (Yen per U.S.$)
FX 106 Ex rate: UK ∆ln Foreign Exchange Rate: United Kingdom (Cents per Pound)
FX 107 EX rate: Canada ∆ln Foreign Exchange Rate: Canada (Canadian $ per U.S.$)
Pri 108 PPI: fin gds ∆2ln Producer Price Index: Finished Goods (82=100,Sa)
Pri 109 PPI: cons gds ∆2ln Producer Price Index: Finished Consumer Goods (82=100,Sa)
Pri 110 PPI: int matâĂŹls ∆2ln Producer Price Index: Intermed Mat.Supplies & Components (82=100,Sa)
Pri 111 PPI: crude matâĂŹls ∆2ln Producer Price Index: Crude Materials (82=100,Sa)
Pri 112 Spot market price ∆2ln Spot market price index: bls & crb: all commodities (1967=100)
Pri 113 PPI: nonferrous ∆2ln Index Of Sensitive Materials Prices (1990=100) (Bci-99a)
Pri 114 NAPM com price l v Napm Commodity Prices Index (Percent)
Pri 115 CPI-U: all ∆2ln Cpi-U: All Items (82-84=100,Sa)
Pri 116 CPI-U: apparel ∆2ln Cpi-U: Apparel & Upkeep (82-84=100,Sa)
Pri 117 CPI-U: transp ∆2ln Cpi-U: Transportation (82-84=100,Sa)
Pri 118 CPI-U: medical ∆2ln Cpi-U: Medical Care (82-84=100,Sa)
Pri 119 CPI-U: comm. ∆2ln Cpi-U: Commodities (82-84=100,Sa)
Pri 120 CPI-U: dbles ∆2ln Cpi-U: Durables (82-84=100,Sa)
Pri 121 CPI-U: services ∆2ln Cpi-U: Services (82-84=100,Sa)
Pri 122 CPI-U: ex food ∆2ln Cpi-U: All Items Less Food (82-84=100,Sa)
Pri 123 CPI-U: ex shelter ∆2ln Cpi-U: All Items Less Shelter (82-84=100,Sa)
Pri 124 CPI-U: ex med ∆2ln Cpi-U: All Items Less Medical Care (82-84=100,Sa)
Pri 125 PCE defl ∆2ln Pce, Impl Pr Defl:Pce (1987=100)
Pri 126 PCE defl: dlbes ∆2ln Pce, Impl Pr Defl:Pce; Durables (1987=100)
Pri 127 PCE defl: nondble ∆2ln Pce, Impl Pr Defl:Pce; Nondurables (1996=100)
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Table A-1: continued

Category Category Category Category Category

Pri 128 PCE defl: service ∆2ln Pce, Impl Pr Defl:Pce; Services (1987=100)
AHE 129 AHE: goods ∆2ln Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls

- Goods-Producing
AHE 130 AHE: const ∆2ln Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls

- Construction
AHE 131 AHE: mfg ∆2ln Avg Hourly Earnings of Prod or Nonsup Workers on Private Nonfarm Payrolls

Manufacturing
Oth 132 Consumer expect ∆l v U. of Mich. Index of Consumer Excpectations (Bcd-83)

Table A-2: Financial predictor variables

Category Series Number Short name Source Description

PYD 1 D_log(DIV) CRSP Log difference of the sum of the dividends in the last 4 quarters
(divs are not reivested)

PYD 2 D_log(P) CRSP Log difference of the CRSP portfolio price when dividends
are not reivested

PYD 3 D_DIVreinvested CRSP Log difference of the sum of the dividends in the last 4 quarters
(divs are reinvested)

PYD 4 D_Preinvested CRSP Log difference of the CRSP portfolio price when
dividends are reinvested

PYD 5 d-p CRSP DIVreinveste - Preinveste = log(DIV) - log(P)
RF 6 R15-R11 French Small stock value spread constructed from French database
RF 7 CP factor CP Piazzesi-Cochrane risk factor, quarterly average

(Cochrane and Piazzesi, 2005)
RF 8 Mkt-RF French Fama-French market risk factor (Fama and French, 1993)
RF 9 SMB French Fama-French risk factor (Fama and French, 1993)
RF 10 HML French Fama-French risk factor (Fama and French, 1993) French
RF 11 UMD French Momentum risk factor, French data set
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Table A-2: continued

Category Series Number Short name Source Category Series Number Short name Source

I 12 Agric French I 44 Paper French
I 13 Food French I 45 Boxes French
I 14 Beer French I 46 Trans French
I 15 Smoke French I 47 Whlsl French
I 16 Toys French I 48 Rtail French
I 17 Fun French I 49 Meals French
I 18 Books French I 50 Banks French
I 19 Hshld French I 51 Insur French
I 20 Clths French I 52 RlEst French
I 21 MedEq French I 53 Fin French
I 22 Drugs French I 54 Other French
I 23 Chems French S&BM 55 ports_2 French
I 24 Rubbr French S&BM 56 ports_4 French
I 25 Txtls French S&BM 57 ports_5 French
I 26 BldMt French S&BM 58 ports_6 French
I 27 Cnstr French S&BM 59 ports_7 French
I 28 Steel French S&BM 60 ports_8 French
I 29 Mach French S&BM 61 ports_9 French
I 30 ElcEq French S&BM 62 ports_high French
I 31 Autos French S&BM 63 ports_low French
I 32 Aero French S&BM 64 port2_2 French
I 33 Ships French S&BM 65 port2_3 French
I 34 Mines French S&BM 66 port2_4 French
I 35 Coal French S&BM 67 port2_5 French
I 36 Oil French S&BM 68 port2_6 French
I 37 Util French S&BM 69 port2_7 French
I 38 Telcm French S&BM 70 port2_8 French
I 39 PerSv French S&BM 71 port2_9 French
I 40 BusSv French S&BM 72 port2_high French
I 41 Hardw French S&BM 73 port2_low French
I 42 Chips French S&BM 74 port3_2 French
I 43 LabEq French S&BM 75 port3_3 French
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Table A-2: continued

Category Series Number Short name Source Category Series Number Short name Source

S&BM 76 port3_4 French S&BM 112 port6_high French
S&BM 77 port3_5 French S&BM 113 port6_low French
S&BM 78 port3_6 French S&BM 114 port7_2 French
S&BM 79 port3_7 French S&BM 115 port7_3 French
S&BM 80 port3_8 French S&BM 116 port7_4 French
S&BM 81 port3_9 French S&BM 117 port7_5 French
S&BM 82 port3_high French S&BM 118 port7_6 French
S&BM 83 port3_low French S&BM 119 port7_7 French
S&BM 84 port4_2 French S&BM 120 port7_8 French
S&BM 85 port4_3 French S&BM 121 port7_9 French
S&BM 86 port4_4 French S&BM 122 port7_low French
S&BM 87 port4_5 French S&BM 123 port8_2 French
S&BM 88 port4_6 French S&BM 124 port8_3 French
S&BM 89 port4_7 French S&BM 125 port8_4 French
S&BM 90 port4_8 French S&BM 126 port8_5 French
S&BM 91 port4_9 French S&BM 127 port8_6 French
S&BM 92 port4_high French S&BM 128 port8_7 French
S&BM 93 port4_low French S&BM 129 port8_8 French
S&BM 94 port5_2 French S&BM 130 port8_9 French
S&BM 95 port5_3 French S&BM 131 port8_high French
S&BM 96 port5_4 French S&BM 132 port8_low French
S&BM 97 port5_5 French S&BM 133 port9_2 French
S&BM 98 port5_6 French S&BM 134 port9_3 French
S&BM 99 port5_7 French S&BM 135 port9_4 French
S&BM 100 port5_8 French S&BM 136 port9_5 French
S&BM 101 port5_9 French S&BM 137 port9_6 French
S&BM 102 port5_high French S&BM 138 port9_7 French
S&BM 103 port5_low French S&BM 139 port9_8 French
S&BM 104 port6_2 French S&BM 140 port9_high French
S&BM 105 port6_3 French S&BM 141 port9_low French
S&BM 106 port6_4 French S&BM 142 portl_2 French
S&BM 107 port6_5 French S&BM 143 portl_3 French
S&BM 108 port6_6 French S&BM 144 portl_4 French
S&BM 109 port6_7 French S&BM 145 portl_5 French
S&BM 110 port6_8 French S&BM 146 portl_6 French
S&BM 111 port6_9 French S&BM 147 portl_7 French
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B. Methods

B-1 k-means algorithm

1. Collect MSFE(n)i,t for i = 1, ..., N in V(n)t and let vi be the i-th element of V(n)t .

2. Set the amount of desired clusters to k.

3. Determine k initial cluster centers (centroids). This is done with the following sub-algorithm:

(a) Select a random element from V(n)t , define this as first centroid and denote it by c1.

(b) Compute the squared distances from each other element to c1. For element vm denote
this as:

d(vm, c j)≡ (vm − c1)
2 (B-1)

(c) Select the next centroid, c2, at random from V(n)t with probability

d2 (vm, c1)
∑n

j=1 d2
�

v j , c1

� (B-2)

(d) Until k centroids are chosen repeat:

i. Compute the distances from each observation to each centroid and assign each
observation to its closest centroid.

ii. For m = 1, ..., n and p = 1, ..., j − 1, select centroid j at random from V(n)t with
probability

d2
�

vm, cp

�

∑

{h;vh∈Cp} d2
�

vh, cp

� (B-3)

where Cp is the set of all observations closest to centroid cp and vm belongs to
Cp. That is, select each subsequent center with a probability proporitonal to the
distance from itself to the closest center that is already chosen.
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4. Assigning the elements to the clusters is done in two steps, first with a batch update and
second with a online update.

(a) The batch update algorithm:

i. Compute the squared distance of each element in V(n)t to each centroid.
ii. All the elements are assigned to the cluster with the closest centroid.

iii. Compute the average of the observations in each cluster to obtain k new centroid
locations.

iv. Repeat steps (a) through (c) until the assignment of the clusters does not change
any more.

(b) The online update algorithm:

i. Compute the squared distance of each element in V(n)t to each centroid.
ii. Each element is reassigned individually to a different centroid if the reassignment

decreases the sum of distances.
iii. Compute the average of the observations in each cluster to obtain k new centroid

locations.
iv. Repeat steps (a) through (c) until the assignment of the clusters does not change

any more.

B-2 Model Confidence Set

Determining sample and bootstrap statistics:

1. A circular bootstrap scheme with block length l = 18 is used to create B = 10000 bootstrap
resamples.

2. For each forecast set the variables L(n)i,t for i = 1, ..., m0 and t = 1, ..., T are determined.
These variables are used to calculate the sample averages for each forecast set.

L̄(n)i ≡
1
T

T
∑

t=1

L(n)i,t for i = 1, ..., m0 (B-4)

3. The corresponding bootstrap variables are given by

L∗,(n)b,i,t = L(n)i,τb ,t for b = 1, ...B, i = 1, ..., m0, and t = 1, ..., T (B-5)

and these are used to calculate the bootstrap sample averages, L̄∗,(n)b,i ≡
1
T

∑T
t=1 L∗,(n)b,i,t .

4. Define the relative sample loss statistics of both the forecast sets and their bootstraps as:

d̄(n)i j = L̄(n)i − L̄(n)j d̄∗,(n)b,i j = L̄∗,(n)b,i − L̄∗,(n)b, j (B-6)
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5. Calculate the estimate of var(d̄(n)i j )

Óvar
�

d̄(n)i j

�

≡
1
B

B
∑

b=1

�

d̄∗,(n)b,i j − d̄(n)i j

�2
(B-7)

Sequential testing:

1. Initialize by setting M(n) =M0,(n)

2. Define

t(n)i j =
d̄(n)i j

r

Óvar
�

d̄(n)i j

�

for i, j ∈M(n) (B-8)

and determine the test statistic

T (n)R,M ≡ max
i, j∈M(n)

|t(n)i j | (B-9)

3. Define

t∗,(n)b,i j =
d̄∗,(n)b,i j − d̄(n)i j
r

Óvar
�

d̄(n)i j

�

for i, j ∈M(n) (B-10)

and determine the bootstrap estimate of T (n)R,M distribution as

T ∗,(n)b,M ≡ max
i, j∈M(n)

|t∗,(n)b,i j | for b = 1, ..., B (B-11)

4. The p-value of H0,M(n) is then given by

PH0,M(n)
≡

1
B

B
∑

b=1

I¦T (n)R,M>T ∗,(n)b,M

© (B-12)

where I{•} is an indicatior function.

5. H0,M(n) is rejected if PH0,M(n)
< α. Then e(n)RM = arg maxi∈M(n) sup j∈M(n) t(n)i j is eliminated

from M(n).

6. Steps 2 through 5 are repeated until H0,M(n) is accepted. The resulting set of forecast sets

is denoted cM∗,(n)
1−α and referred to as the (1−α) MCS.
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C. Results

Table C-1: A breakdown of the model confidence sets for 2 year maturity

SIM ROLS BG1 BG2 BG3 BG4 BG5 CSR Total

Mac Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 5/8 0/12 0/12 0/36 0/8 0/8 1/13 6/102
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Fin Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 0/8 0/12 0/12 0/36 0/8 0/8 0/3 0/92
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

All Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 3/8 0/12 0/12 0/36 0/8 0/8 4/17 7/106
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Total 0/45 8/48 0/108 0/72 0/324 0/72 0/48 5/36 13/753

The final row represents the breakdown by the forecast combination method of forecast sets which are included in the final
model confidence set for the 2 year maturity.

Table C-2: A breakdown of the model confidence sets for 3 year maturity

SIM ROLS BG1 BG2 BG3 BG4 BG5 CSR Total

Mac Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 4/8 0/12 0/12 0/36 0/8 0/8 2/13 6/102
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Fin Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 0/8 0/12 0/12 0/36 0/8 0/8 0/3 0/92
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

All Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 5/8 0/12 0/12 0/36 0/8 0/8 5/17 10/106
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Total 0/45 9/48 0/108 0/72 0/324 0/72 0/48 7/36 16/753

The final row represents the breakdown by the forecast combination method of forecast sets which are included in the final
model confidence set for the 3 year maturity.
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Table C-3: A breakdown of the model confidence sets for 4 year maturity

SIM ROLS BG1 BG2 BG3 BG4 BG5 CSR Total

Mac Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 5/8 0/12 0/12 0/36 0/8 0/8 1/13 6/102
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Fin Ind 1/5 - 0/12 - 3/36 0/8 - 0/1 4/62
Cat 0/5 0/8 0/12 0/12 0/36 0/8 0/8 0/3 0/92
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

All Ind 0/5 - 0/12 - 0/36 0/8 - 0/1 0/62
Cat 0/5 5/8 0/12 0/12 0/36 0/8 0/8 4/17 9/106
Per 0/5 0/8 0/12 0/12 0/36 0/8 0/8 - 0/89

Total 1/45 10/48 0/108 0/72 3/324 0/72 0/48 5/36 22/753

The final row represents the breakdown by the forecast combination method of forecast sets which are included in the final
model confidence set for the 4 year maturity.
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Figure C-1: The cumulative squared forecast error of the historical average benchmark minus the
cumulative squared forecast error of the forecast sets that are included in the model confidence
set for the 2 year maturity, their R2

OS
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Figure C-2: The cumulative squared forecast error of the historical average benchmark minus the
cumulative squared forecast error of the forecast sets that are included in the model confidence
set for the 3 year maturity, their R2
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Figure C-3: The cumulative squared forecast error of the historical average benchmark minus the
cumulative squared forecast error of the forecast sets that are included in the model confidence
set for the 4 year maturity, their R2
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