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Abstract

When markets are efficient all available information is quickly incorporated into all asset prices.

Markets are, however, not efficient due to disturbances such as transaction costs, liquidity con-

straints or regulations. The factor investing literature illustrates this market inefficiency by finding

significant premiums in asset markets that are different from the traditional asset class premi-

ums. This research contributes further to this literature by applying information from options

to construct profitable trading strategies with corporate bonds. This shows that not all available

information from the option market is incorporated in the corporate bond market. Furthermore,

many insights are provided as to what kind of information can be obtained from the option market.

The results of this research reinforce the notion of the option market as an important source of

information for investors.
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1 Introduction

The financial market as a whole is an intricate system of several separate markets such as the stock

market, option market and corporate bond market. Each of these markets have their own distinct

characteristics offering investors a wide variety of investment opportunities. Accordingly, informed

investors have to make a decision in which market to trade such that they can gain the most

benefit out of their information. A rather peculiar market is the option market, as this market

would effectively be redundant under complete and efficient market circumstances in the sense that

investors would be indifferent between trading in the option market or in the stock market. The

financial markets are, however, not perfect and there are reasons for informed investors to trade in

the option market instead of the stock market. A reason is for example that higher leverage and

therefore higher profits can be obtained by trading in options. Other reasons include the built-in

downside protection of options and also less issues with short selling constraints that are present in

the stock market. So there are reasons to believe that the option market can contain information

for future prices that is different from other markets as a result of informed trading.

The literature has certainly confirmed the option market to be an informative source for future

stock prices. Easley et al. (1998) develop an information model where informed investors can trade

in either the option market or stock market. With this model they find that particular types of

option trading volumes lead stock price changes. The option volume is also linked to the price

discovery process between options and stocks by Chakravarty et al. (2004). They find significant

price discovery in the option market indicating that new information about stock prices is first

reflected in option prices and this occurs especially when the option volume is high. DeMiguel

et al. (2013) apply option implied information on portfolio selection with a large number of stocks.

The performances of their portfolios improve substantially when information of the volatility risk

premium and the option implied skewness is incorporated in their portfolio selection methodology.

Most studies focus on the information content of the option market with respect to the stock

market, because there is a direct relation between these markets since a option is a derivative of

a stock. As equity and debt are on the same side of the balance sheet, there should also be a

relation, albeit indirectly, between options and corporate bonds. Nevertheless, little research has

been done on the informational role of options for corporate bonds. A reason might have been

the lack of data availability of corporate bonds up until the launch of Transaction Reporting and

Compliance Engine (TRACE) in 2002. With the introduction of TRACE all transaction data in

publicly issued U.S. corporate bonds were henceforth made available to the public, which has lead to

fundamental changes in the corporate bond market. Bessembinder and Maxwell (2008) state that

post-TRACE the transparency of the market increased resulting in substantially lower transaction
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costs. Furthermore, the availability of more timely and bigger data opened up opportunities for

algorithmic trading and quantitative investment strategies. Houweling and Van Zundert (2014)

find that the traditional factor strategies value, size, momentum, and low risk yield significant

returns in the corporate bond market. Other studies have also confirmed the existence of factor

strategies in the corporate bond market (Correia et al., 2012; Frazzini and Pedersen, 2014; Jostova

et al., 2013, amongst others), however, the amount of research is relatively scarce compared to the

equity factor literature.

The purpose of this research is to fill this gap in the literature and shed more light on the

information content of the option market with respect to the corporate bond market. Various

measures mainly based on option implied volatilities are used to implement trading strategies.

Most of these option measures have been proven in the literature to generate significant returns

in the stock market, but none have been investigated in a trading strategy setting applied to the

corporate bond market. The portfolio results based on these option measure show that significant

returns can also be obtained for corporate bonds. Furthermore, several interpretations of the

option measures are explored more in depth, as it is not always clear what particular piece of

information is embedded in the option measures. These results provide useful insights as to what

kind of information can be obtained from the option market.

This is the first research to investigate corporate bond trading strategies that are constructed

using option information, whereas other studies in the literature use specific bond information

or balance sheet information. In a sense this research challenges the efficient market hypothesis

which states that all available information should be incorporated into the prices of all markets.

The hypothesis implies that all option information should be already priced in the corporate bonds

and therefore the option based trading strategies should not be able to outperform the market.

This, however, is found to be not the case, as some trading strategies yield significantly higher

returns than the market assuming the correctness of the evaluation models.

The remainder of this paper is organized as follows. Section 2 provides a comprehensive

overview of the literature that has investigated the information content of the option market. The

data and the option measures are presented in Section 3, and the portfolio construction methodol-

ogy is explained in Section 4. A brief analysis on the predictive ability of several volatility measures

for future volatility can be found in Section 5. The portfolio results based on the option measures

are discussed extensively in Section 6. This section also provides more in depth analyses for each

individual option measure. The robustness of the results is checked in Section 7, after which a

conclusion is given in Section 8.
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2 Literature Overview

2.1 Option Implied Volatility

Christensen and Prabhala (1998) state that the volatility implied in an option’s price is widely

regarded as the option market’s forecast for future stock return volatility over the remaining life of

the relevant option. This means that the implied volatility should include the information contained

in all other variables in the market information set in explaining future volatility. They find that

the implied volatility has more predictive power than historical volatility for the S&P100 index,

partly because the implied volatility subsumes the information contained in historical volatility.

In a later study, Christensen and Hansen (2002) reinvestigate the information content of implied

volatility of different types of options on a larger data set. They reconfirm the results of Christensen

and Prabhala (1998) that implied volatility is an unbiased and efficient forecast of future volatility.

Mayhew (1995) provides an extensive review of the literature of implied volatility. He states

that the general consensus is that implied volatility is more useful for forecasting volatility than

volatility computed from historical data. He also reviews a branch of literature that uses a weighted

average of implied volatilities to incorporate the information of more options. Ederington and Guan

(2002) state that using a weighing scheme reduces the error caused by market imperfections. They

investigate a multitude of weighted implied volatility measures for the S&P500 index and find that

the choice of the weighing scheme matters very little. This is due to the fact that the S&P500

index is a very liquid asset such that the noise is too insignificant to average out. They state that

for illiquid assets, however, averaging out the errors can be worthwhile.

Although there are merits in using the information of multiple options, nearly all studies focus

on the information content of the implied volatility of a single option. Jiang and Tian (2005)

mention that these studies fail to incorporate the information contained in other options stating

that the use of a single option is not sufficient to extract all relevant information. They generalize

and simplify the model of Britten-Jones and Neuberger (2000) of which a model-free implied

volatility measure can be obtained. This measure is entirely derived from no-arbitrage conditions

and it uses the information of all available options. They find that their measure subsumes the

information of the historical volatility and also the Black and Scholes (1973) implied volatility.

Furthermore, efficient and accurate forecasts for future realized volatility are obtained with their

measure.

The previous studies all examine the information content of option index markets. Taylor

et al. (2010) are the first to investigate implied volatilities of individual stock options on a large

sample of U.S. stocks. They make comparisons between the historical volatility, implied volatility

and model-free implied volatility. Again, the results indicate that the option implied volatilities
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are more informative than the historical volatility. A concerning finding is, however, that the

model-free volatility only outperforms the other two volatility measures for about one-third of

their sample of firms, while this measure should theoretically be better than the other measures.

Possible explanations include overall illiquidity issues and an unreliable implementation of the

model-free volatility due to lack of data.

2.2 Option Implied Volatility Skew

One of the first studies documenting the implied volatility skew is that of Rubinstein (1985).

He found that option prices systematically deviate from the Black and Scholes (1973) model in

the sense that the implied volatilities differ across strike prices and maturities, while they should

be the same according to the option pricing model. Xing et al. (2010) are the first to examine

individual stock options on the information content of their implied volatility skews measured as

the difference between the implied volatilities of out-of-the-money put options and at-the-money

call options. They demonstrate that the implied volatility skew exhibits statistically significant

predictability for future equity returns in the cross section. This predictability is shown to persist

for at least six months indicating that the stock market is slow in reacting to information in the

option market. Furthermore, a trading strategy based on the volatility skew shows that stocks with

steeper volatility skews underperform those with flatter volatility skews. The returns are shown to

be significant even after controlling for the Fama and French (1996) risk factors. They conclude

that option traders have a superior informational advantage over stock traders.

Other studies that find profitable trading strategies based on the implied volatility skew include

Bali and Hovakimian (2009), Cremers and Weinbaum (2010), and Doran and Krieger (2010). All

these studies, however, do not take liquidity constraints and transaction costs of stocks into account

such that the trading strategies might not be feasible or unexploitable in practice. Baltussen et al.

(2012) use an investible universe of highly liquid stocks to investigate several strategies based on

option implied volatility skew measures that are also used in the aforementioned studies. The

strategies are shown to produce economically and statistically significant returns and even higher

returns can be obtained by combining the volatility skew measures in a single strategy. This

strategy, however, becomes unprofitable when transaction costs are incorporated. They show

that significant net returns can be obtained by applying several simple transaction cost reducing

adjustments. Lastly, they find that the option strategies are of a different nature than other

well-known stock selection strategies such as momentum, size, and value strategies.
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2.3 Credit Spreads

Most studies in the literature focus on the relations between the option market and the underlying

stock market. However, the option market is also connected to the credit market; for instance,

Merton (1974) made a simple link between the equity market and credit market by observing

that the equity of a firm is an option on the assets with the face value of debt as strike price.

Subsequently, Hull et al. (2004) developed an implementation of the Merton model that uses

information from the option market to obtain credit spreads. They test their methodology on the

credit default swap market and find that their method is an improvement over the more traditional

implementation of Jones et al. (1984) that uses information from the stock market as opposed to

the option market. Culp et al. (2014) also use the insights of Merton to develop a model-free

methodology in order to obtain option implied credit spreads that only depend on observable

market prices. The resulting credit spreads are comparable to real corporate bond credit spreads

and are also found to be an improvement over the traditional Merton model.

The information contained in individual options also includes the assessment of the market

on the expected volatility risk of the corresponding stocks. This particular piece of information

is relevant for evaluating the credit risk of firms. Cremers et al. (2008a) find that incorporating

option implied jump risk premiums in a structural jump diffusion firm value model improves the

fit of predicted credit spreads. In another study, Cremers et al. (2008b) investigate to what extent

the variation in credit spreads can be explained by implied volatilities and implied volatility skews.

They find that individual options certainly contain information about credit risk both over time

and across firms with higher explanatory power compared to historical measures of volatility.

3 Data

3.1 Data Description

Option data of the last trading day of each month is extracted from the OptionMetrics Ivy DB

U.S. database from January 1996 to August 2014, which is the most recent available data set. The

database provides end-of-day information such as bid and ask quotes, open interests, and trading

volumes. Additionally, it also contains option implied volatilities and other option Greeks that are

computed with the binomial tree model of Cox et al. (1979). Since all options are American style

options, this option pricing model takes into account the possibility of early exercise. Furthermore,

discrete dividend payments are also incorporated into the model.

Several filters are applied to the data to ensure that only the most informational relevant options

are used for the analysis. Firstly, as most trading activity is concentrated in options with a short

maturity, mainly options that mature in the following month are used unless otherwise mentioned.
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Since the data only includes options at the end of each month, the time-to-maturity of the options

are all approximately three weeks, as there are always options expiring at the third Friday of the

month. This ensures that there is no bias between the options due to maturity differences and

there are also no unwanted expiration effects in options that are extremely close to maturity as

documented by Ni et al. (2005). Secondly, options with mid quotes, i.e. the average bid and ask

quote, less than $0.125 are removed from the data set, because these prices may not reflect the

true price of the options due to the fact that these quotes are close to the tick size. Finally, only

options with positive open interest are retained, since these options have contracts outstanding in

the market and are therefore a better reflection of the market compared to options with zero open

interest. Furthermore, Bhuyan and Chaudhury (2005) find that open interest contains valuable

information that is attractive for trading purposes.

For the construction of the option measures it is required that the options are separated into

at-the-money (ATM) options and out-of-the-money (OTM) options. This will be based on the ratio

of the strike price to the stock price, i.e. the moneyness of the option. Following the conventions

in the literature, e.g. Baltussen et al. (2012), Xing et al. (2010), amongst others, the ATM option

is defined as the option with moneyness closest to 1, but between 0.95 and 1.05. The OTM put

option has moneyness closest to 0.95, but the moneyness is bounded between 0.80 and 0.95. The

reason for these definitions is to ensure that all ATM and OTM options fall in approximately the

same moneyness category for better comparability.

The option data is merged with corporate bond data consisting of the Barclays U.S. Corporate

Investment Grade index and the Barclays U.S. Corporate High Yield index. The bond data set is

sampled monthly and it contains characteristics such as the time-to-maturity, credit ratings and

credit spreads. Furthermore, the bond returns reflect the expected recovery rate whenever a firm

defaults, thus making the data set survivorship bias free. Following Houweling and Van Zundert

(2014) the analysis is focused on the excess returns of the corporate bonds versus duration-matched

Treasuries. This way the focus of the research lies on the default premium of corporate bonds

instead of the term premium which can be obtained by simply investing in government bonds.

One representative bond is chosen per firm with the seniority, age and size as the selection

criteria.1 First, the corporate bonds with the highest seniority are chosen, as these bonds are found

to be less volatile compared to subordinated bonds. Next, the most liquid bonds are chosen based

on their age and size as liquidity proxies, thus younger and larger bonds are preferred over other

bonds. A total of 2253 firms remain in the sample with over 230, 000 observations after merging

the option and corporate bond data sets. The Investment Grade (IG) universe has approximately

135, 000 observations and the High Yield (HY) universe has approximately 95, 000 observations.

1See Haesen et al. (2013) for a detailed explanation of the representative bond selection procedure.
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This sample of firms with options is a small fraction out of the original 6360 number of firms in

the indexes, thus sample selection bias can be a potential issue and care must therefore be taken

in generalizing the results. A closer inspection of the data shows that there can be a small bias

with respect to the firm sizes, as the mean (median) market capitalization of the original sample of

firms is $5.6 ($1.6) billion and it is $6.2 ($1.9) billion for the sample of firms with options. Thus,

the firms that issue options tend to be bigger in size compared to firms that do not issue options.

The difference is, however, not considerably large and the distribution of the firms with respect to

size stays relatively the same.

All stock related data is obtained from the CRSP database and all financial statement data is

gathered from the Compustat database. Lastly, the risk-free rate is downloaded from the Kenneth

French library2.

3.2 Option Measures

This section describes a total of five option based measures or option factors that are investigated

on whether they contain relevant information for corporate bonds. Each option measure has a

different interpretation or information content about the relevant firm that are either proven by

theory or empirically. The literature has shown that several of these option measures do contain

information for stocks, but very little or no studies have examined the information content of these

measures with respect to corporate bonds.

3.2.1 Realized-Implied Volatility Spread

The realized volatility is computed using historical data and is therefore a backward looking mea-

sure, whereas the implied volatility is inherently a forward looking measure. As a consequence,

these two volatility measures are often found to be different from each other. This gives rise to the

realized-implied volatility spread which is found to bear a negative risk premium by Bakshi and Ka-

padia (2003). In other words, investors buying stocks with high realized-implied volatility spreads

are not rewarded for the extra volatility risk that they take. Bali and Hovakimian (2009) find that

stocks with higher realized-implied volatility spreads bear higher volatility risk and those stocks

indeed give lower returns compared to the stocks with lower realized-implied volatility spreads.

This research investigates whether similar effects spill over to the corporate bond market. The

realized-implied volatility spread is defined as

RV IVi,t = RVi,t − IV ATM
i,t , (1)

2http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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where RVi,t is the realized volatility of stock i measured at month t using daily returns over the past

three months. This horizon is chosen to capture the most relevant information while minimizing

the noise. The implied volatility IV ATM
i,t is taken to be the average implied volatilities of the ATM

call and put options on stock i at month t. ATM options are overall the most liquid options and

are therefore often the best representation of the market.

3.2.2 Put-Call Implied Volatility Spread

The put-call parity, originally derived by Stoll (1969), defines a no-arbitrage relation between

European put and call options with the same strike price and maturity (henceforth referred to

as pairs of put and call options). This relation, however, does generally not hold in practice due

to market imperfections. Cremers and Weinbaum (2010) show as a consequence of the put-call

parity that the implied volatilities of pairs of put and call options should be identical to each other

regardless of the correctness of the chosen option pricing model. Thus, they investigate the impact

of deviations of the put-call parity on stock prices by examining the differences in implied volatility

of pairs of put and call options. Emphasis is put on the fact that their data consists of American

style options and therefore the put-call parity is no longer a strict no-arbitrage relation. Regardless,

they find relevant information about future stock prices in the deviations of the implied volatilities.

This research investigates whether deviations of the put-call parity also reveal information about

corporate bond prices. Likewise, the put-call implied volatility spread is used:

PUTCALLi,t =
1

Ni,t

Ni,t∑
j=1

(
IV

PUTj
i,t − IV CALLj

i,t

)
, (2)

where IV
PUTj
i,t and IV

CALLj
i,t denote the implied volatility of respectively the put option and the

call option of pair j on stock i at month t. The pairs are made over all available maturities and

strike prices with the total number of pairs of put and call options denoted as Ni,t. Multiple pairs

of put and call options are used to capture information from more options and to average out noise.

3.2.3 Implied Volatility Skew

Many studies have found the implied volatility skew to be informative with respect to stocks such

as Baltussen et al. (2012), Doran and Krieger (2010), amongst others. This research investigates

whether the implied volatility skew also contains information for future corporate bond prices. For

this purpose the volatility skew measure of Xing et al. (2010) is used:

SKEWi,t = IV OTMP
i,t − IV ATMC

i,t , (3)

where IV OTMP
i,t and IV ATMC

i,t denote the implied volatility of respectively an OTM put option and

an ATM call option on stock i at month t. This implied volatility skew measure is thought to reflect
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the expectations of future price movements. More precisely, it is the negative expectations that are

measured, as investors with pessimistic perceptions about a firm tend to buy put options for either

hedging or speculation purposes. When this happens the demand in put options increases, thus

raising the prices and implied volatilities of put options which results in a steeper implied volatility

skew. More leverage can be obtained in OTM options, thus investors who are more certain in the

future downfall are more inclined to buy OTM put options. So the OTM put option is chosen as

opposed to other put options, because it captures the severity of the negative expectations better.

The ATM call option is chosen as the benchmark for the general market expectations reflected

in the implied volatility skew, because this option is one of the most liquid option traded on the

market.

3.2.4 Implied Variance Term Slope

The previous implied volatility skew measure captures the implied volatility skew in the moneyness

dimension, however, the implied volatility is also found to vary in the maturity dimension; the so-

called term structure of implied volatility. The slope of this implied volatility term structure

reflects the differences in expectations of the market for volatility over different future horizons.

Related to this term structure is the expectation hypothesis derived by Campa and Chang (1995)

that states that there should be a rational consistency between the current long-term implied

variance and the expected future short-term implied variance. Although the literature has found

mixed results regarding this hypothesis, Mixon (2007) finds the slope of the implied variance

over several different maturities to contain predictive power for future implied variance of short-

term options. This research investigates whether the slope of the implied variance term structure

contains information for corporate bonds. The implied variance term slope is defined as

TERMSLOPEi,t =
1

Mi,t

Mi,t∑
j=1

(
V

2MCj
i,t − V 1MCj

i,t

)
, (4)

where V
2MCj
i,t and V

1MCj
i,t denote implied variances of the put options on stock i at month t that

have the same strike price with a two month maturity and an one month maturity respectively.

The total number of available pairs of put options with the same strike price is denoted by Mi,t.

The put options are restricted within the ATM moneyness bounds for comparability in both the

cross-section and throughout time. The reason for only including the options with these short

maturities is that each firm with options is legally required to have these maturities outstanding,

whereas there are less strict requirements for longer maturities. So the coverage is by far the largest

for these options.
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3.2.5 Option Implied Value Factor

One of the most well-known approaches in assessing the credit risk of a firm is the model of

Merton (1974). His insights made it quite straightforward to obtain credit risk measures such as

credit spreads from simple balance sheet information as described in Appendix A. Unfortunately,

the total asset value is often an unobserved variable making the model difficult to implement in

practice. Hull et al. (2004) developed a methodology that uses option information to obtain these

parameters in order to implement the Merton model, thus linking the credit market to the option

market. Their methodology requires information from two options, however, in Appendix A an

adapted methodology is described that requires only one single option. Option implied credit

spreads from the Merton model are used to construct a value factor that is in the same spirit as

in Houweling and Van Zundert (2014). This factor compares the market credit spread with the

fundamental credit spread assuming the correctness of the Merton model. At each point in time

the market credit spreads are cross-sectionally regressed on a constant and the option implied

credit spread, then the fitted credit spreads are used to construct the value factor as

V ALUEi,t =
SPREADMARKET

i,t

SPREADFIT
i,t

, (5)

where SPREADMARKET
i,t and SPREADFIT

i,t are respectively the market credit spread and the

fitted credit spread of bond i at month t. The model credit spreads are not directly used to

construct this factor, because model credit spreads are often considerably lower than observed

market credit spreads, which is known as the credit spread puzzle (Amato and Remolona (2003)).

The regressions are applied to alleviate this problem by making the credit spreads more comparable.

3.3 Descriptive Statistics

Table 1 presents summary descriptive statistics of the option measures, where the statistics are

first computed over the cross-section and then averaged over time, i.e. the time-series average of

the cross-sectional statistics. The mean RV IV of −0.73% shows that the implied volatility is on

average higher than the realized volatility. The implied volatilities of put options are on average

higher than call options which can be deduced from the mean PUTCALL of 0.88%. There is a

positive implied volatility skew in the moneyness dimension with a mean SKEW of 6.57%, but the

mean TERMSLOPE of −0.17% indicates a slight negative implied variance slope in the maturity

dimension. The mean V ALUE of 98.58% shows that the fitted credit spreads and market credit

spreads are on average approximately equal. All option measures exhibit quite some cross-sectional

variability with average standard deviations ranging between 5.02% and 63.87%. The percentiles

show that for every option measure 98% of the observations are within three or four standard

deviations from their mean.
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Table 1: Descriptive statistics

This table shows the time-series average of the cross-sectional means, the standard deviations and the 1st, 50th,

and 99th percentiles for each option measure over the sample period from January 1996 to August 2014.

Mean St. Dev. 1% 50% 99%

RVIV (%) −0.73 9.65 −24.66 −0.97 26.90

PUTCALL (%) 0.88 5.02 −10.74 0.61 15.84

SKEW (%) 6.57 7.00 −4.85 5.17 32.55

TERMSLOPE (%) −0.17 5.12 −15.74 0.11 10.26

VALUE (%) 98.58 63.87 22.86 84.99 270.23

In a factor strategy the portfolios are constructed by selecting assets based on sorting variables,

thus the ranking of the variables is essentially what matters the most. Table 2 shows the time-series

average of the cross-sectional Spearman rank correlations between the option measures. All in all,

the correlations between the variables are quite low with the highest average correlation of 0.39

being observed between RV IV and TERMSLOPE. The low correlations indicate that there is

little information overlap between the option measures, or in other words, each option measure

appears to contain distinct information.

Table 2: Spearman correlations

This table shows the time-series average of the cross-sectional Spearman rank correlations between the option

measures over the sample period from January 1996 to August 2014.

RVIV PUTCALL SKEW TERMSLOPE VALUE

RVIV 1.00

PUTCALL 0.03 1.00

SKEW 0.05 0.38 1.00

TERMSLOPE 0.39 -0.07 -0.06 1.00

VALUE 0.04 0.05 -0.02 0.10 1.00

Table 3 presents coverage statistics for both the IG and HY universe. The average number of

observations per month, and also the number of observations at the begin and end of the sample

are shown in the table. A first observation is that the coverage of each option measure increases

over the sample for both universes. The option measure with the lowest coverage is SKEW with

an average number of observation of 79 in the HY universe. The reason for this is because in this

sample there are less OTM options available than ATM options. This also explains why V ALUE,

which is constructed with OTM put options, also has a similar low coverage. Nevertheless, the

option measures seem to have overall adequate coverage.
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Table 3: Coverage statistics

This table shows the average number of observations, and the total number of observations at the begin and end of the

sample for each option measure over the sample period from January 1996 to August 2014.

RVIV PUTCALL SKEW TERMSLOPE VALUE

I. Investment Grade

Average 341 399 162 261 182

Start 263 321 61 115 67

End 444 476 215 388 225

II. High Yield

Average 171 266 79 116 109

Start 50 94 12 26 17

End 339 428 181 261 200

4 Portfolio Construction Methodology

A portfolio trading strategy approach is applied in order to assess whether the option measures

contain information for corporate bonds. At the end of each month the option measures are

constructed using data of the latest trading day. Then equally weighted corporate bond portfolios

are constructed by sorting the bonds on the option measures into five quintile portfolios. The

first quintile (Q1) contains the bonds with the highest option measure values and the last quintile

(Q5) holds the bonds with the lowest values of the option measure. The portfolios are held for

twelve months using the methodology of Jegadeesh and Titman (1993). This trading procedure

entails that a new portfolio is formed at each month and held for the next twelve months, while

the position in the portfolio that was formed twelve months ago is closed out. The longer holding

period is chosen to investigate whether the option information is persistent in the corporate bond

market. Furthermore, this is also a more realistic setting for real investors, as the corporate bond

market is not as liquid as the the stock market and it is therefore not feasible to rebalance complete

corporate bond portfolios on a frequent basis without incurring large transaction costs.

The returns are adjusted for risk with the Fama and French (1993) five factor model with

an addition of the Carhart (1997) momentum factor to investigate whether the option measures

contain different information compared to these well-known factors in the literature. The following

regression is performed to obtain the abnormal return αj of portfolio j

Rj,t = αj + β1jRMRFt + β2jSMBt + β3jHMLt + β4jMOMt + β5jTERMt + β6jDEFt + εt, (6)

where Rj,t is the return of portfolio j, RMRFt is the equity market premium, SMBt is the small-

minus-big equity size premium, HMLt is the high-minus-low equity value premium, MOMt is the

equity momentum premium, TERMt is the risk-free term interest rate premium, and DEFt is

the default premium. The white noise residuals are denoted by εt. The four equity factors in the
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regression are downloaded from the Kenneth French library3. The two bond factors follow the same

construction as in Houweling and Van Zundert (2014); the TERM factor is the total return of the

Barclays U.S. Treasury 7-10 year index minus the risk-free rate. This Treasury index is chosen to

match the maturities of the corporate bonds in the sample, which has an average maturity of 9.3

years. The DEFAULT factor is the excess return of the corporate bond market versus duration

matched Treasuries. The interest rate risk is eliminated by matching the durations so that this

factor only captures the default premium.

Following Houweling and Van Zundert (2014) the portfolio strategies are applied separately

for the IG and HY universes. This is done because according to market conventions these two

universes should be regarded as two distinct asset classes. This can be seen in the two separate

Barclays corporate bond indexes for the IG universe and HY universe that are used in this research.

Furthermore, Chen et al. (2014) provide evidence for the segmentation of the corporate bond market

showing that credit ratings have significant effects on bond prices, bond holdings and bond trading

activity. Moreover, the results do show noteworthy discrepancies between the universes to warrant

this separation. Note that due to this separation there is a separate bond market for both the

IG and HY universe and therefore the DEFAULT factor will be different for each universe. The

markets of the universes are defined to only consist of bonds of which option data is available for

a more fair comparison, as this market definition effectively describes the investible universe.

The market performance can be seen as the benchmark to beat, thus the Opdyke (2007) test

is employed to test whether a Sharpe ratio is significantly higher than the corresponding market

Sharpe ratio. In this test the returns are assumed to be only stationary and ergodic, whereas

the traditional Jobson and Korkie (1981) Sharpe ratio test assumes that the returns are normally

distributed. This normality assumption is often found to not hold in practice, thus the easy

implementable and less restrictive Opdyke (2007) test is the preferred test. Additionally, the 6-

factor alphas are statistically tested on significance with t-tests to investigate whether abnormal

returns can be generated that are different from the traditional factor premiums. The t-tests are

corrected for heteroscedasticity and autocorrelation with Newey and West (1987) standard errors.

The widely used Bartlett kernel is applied and the number of lags is determined by the plug-in

procedure introduced by Newey and West (1994). More specifically, the number of lags is computed

as 4(T/100)2/9 with T as the total sample size. These same settings are applied for every Newey

and West (1987) standard error in this research. Lastly, it is tested whether there is a monotonically

decreasing return pattern in the portfolios with the test of Patton and Timmermann (2010) (PT

test). This monotonicity test is entirely nonparametric and is implemented via bootstrapping. A

detailed description of this test procedure is given in Appendix B.

3http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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5 Volatility Analysis

In this section several analyses are shown to shed light on the differences between the standalone

realized volatility and implied volatility. These two volatility measures are closely related, but

intuitively the implied volatility should be able to predict future returns better as opposed to

the realized volatility. This is due to the fact that the implied volatility reflects the market

expectation for future volatility and is therefore a forward looking measure, while the realized

volatility is computed from historical data making it a backward looking measure. Thus, the

implied volatility can contain more information that is relevant for the future. It is investigated

whether this supposition becomes apparent in the performances of the trading strategies based on

these volatility measures. The realized volatility is computed over an one month horizon with daily

returns. This horizon is chosen to match the approximately one month maturity of the options of

which the implied volatility is extracted. Furthermore, only ATM call options are considered, as

these options are often the most liquid options and are therefore a better representation of market

expectations. The portfolio results are presented in Table 4 which shows the average annualized

return, the annualized volatility, the Sharpe ratio and the annualized 6-factor alpha.

The results show that bonds with lower volatility measures generally experience higher returns

compared to bonds with higher volatility measures. These results are in line with the low volatility

effect as documented by Frazzini and Pedersen (2014) and are especially pronounced in the HY

universe, where significant Sharpe ratios are obtained for the Q5-Q1 portfolios. The PT test indi-

cates that the return pattern of the realized volatility portfolios in the HY universe is significantly

monotonically increasing with a p-value of 0.04, while the PT test for the implied volatility port-

folio returns gives a p-value of 0.07 . Furthermore, the Opdyke (2007) test shows that the Q5-Q1

Sharpe ratio obtained with the implied volatility is significantly higher than the Q5-Q1 Sharpe

ratio that is generated using realized volatility. The results in the HY universe show that the

trading strategy based on implied volatility generally outperforms the realized volatility trading

strategy. This finding, however, is not really observed in the IG universe.

This analysis only considers the information from one single option, while there are a multitude

of various options available in the option market. The model-free implied volatility of Britten-Jones

and Neuberger (2000) incorporates information from all available options and should theoretically

contain more information compared to the implied volatility from a single option. The detailed

estimation procedure of this model-free implied volatility can be found in Appendix C. The portfolio

results based on the model-free implied volatility are presented in panel III of Table 4. The general

conclusion that can be made is that these portfolio results are slightly worse compared to the

portfolios constructed with implied volatility. For example, the Q5-Q1 Sharpe ratio obtained with
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Table 4: Portfolio results based on volatility measures

This table presents the results of the trading strategies based on several volatility measures over the sample period of January 1996 to August 2014 in both the Investment

Grade and High Yield. The methodology of Jegadeesh and Titman (1993) is employed with a holding period of twelve months to construct the portfolios. The first quintile

Q1 contains the bonds with the highest values of the sorting variable and the last quintile Q5 holds the bonds with the lowest sorting variable values. The average annualized

return, the annualized volatility, the Sharpe ratio and the annualized 6-factor alpha are shown in the table. Opdyke (2007) tests are employed to test whether the Sharpe

ratios of the portfolios are significantly higher than the corresponding market Sharpe ratio. The 6-factor alphas are tested on significance with t-tests corrected with Newey

and West (1987) standard errors.

Investment Grade High Yield

Q1 Q2 Q3 Q4 Q5 Q5-Q1 Q1 Q2 Q3 Q4 Q5 Q5-Q1

I. Realized Volatility

Returns (%) 0.28 0.68 0.62 0.45 0.37 0.09 −3.22 −0.49 0.53 1.49 2.11 5.51

Volatility (%) 5.83 4.73 4.52 4.07 3.90 3.29 15.13 11.20 9.54 8.17 7.10 11.79

Sharpe Ratio 0.05 0.14 0.14 0.11 0.10 0.03 −0.21 −0.04 0.06 0.18 0.30 0.47**

6F Alpha (%) −0.18 0.17 0.07 −0.23 −0.44 −0.08 −4.03 −1.67 −1.11 0.12 0.91 7.20**

II. Implied Volatility

Returns (%) 0.24 0.73 0.50 0.48 0.46 0.23 −4.61 −0.65 1.15 1.98 2.52 7.48

Volatility (%) 5.88 4.63 4.73 4.01 3.79 3.37 15.78 11.53 9.25 8.17 6.84 13.18

Sharpe Ratio 0.04 0.16 0.11 0.12 0.12 0.07 −0.29 −0.06 0.12 0.24 0.37* 0.57***

6F Alpha (%) −0.24 0.16 0.00 −0.18 −0.33 0.10 −4.83 −2.09 −0.71 0.53 1.39 8.97**

III. MF Implied Volatility

Returns (%) 0.15 0.69 0.61 0.53 0.42 0.19 −3.90 −1.06 1.00 1.70 2.39 6.56

Volatility (%) 5.76 4.75 4.57 4.05 3.86 3.10 15.40 11.21 9.60 8.33 6.93 12.54

Sharpe Ratio 0.03 0.15 0.13 0.13 0.11 0.06 −0.25 −0.09 0.10 0.20 0.34* 0.52***

6F Alpha (%) −0.34 0.15 0.09 −0.14 −0.38 0.07 −4.41 −2.16* −0.58 0.11 1.08 8.00**

***, ** and * show significance at the 1%, 5% and 10% level respectively.

16



the model-free implied volatility is found to be significantly lower than the Q5-Q1 Sharpe ratio that

is generated with the implied volatility trading strategy. Other statistics also point towards the

fact that the model-free implied volatility does not perform the best, while this volatility measure

should theoretically contain more information.

Next, it is investigated which volatility measure is a better predictor for future volatility follow-

ing the methodology of Christensen and Prabhala (1998). They run univariate and multivariate

regressions to determine which volatility measure is an unbiased estimator for future volatility.

All volatility measures are annualized and transformed with the natural log function to smooth

out outliers. The log realized volatility, log implied volatility and log model-free implied volatility

are denoted by LRV , LIV and MFIV respectively. Since the univariate regressions are sim-

ply restricted versions of the multivariate regression, only the multivariate regression equation is

described:

LRVi,t = θi + θLRVi LRVi,t−1 + θLIVi LIVi,t−1 + θMFIV
i MFIVi,t−1 + εi,t, (7)

where the subscripts i and t denote the firm and month respectively. The white noise residuals are

denoted by εi,t. The regressions are performed for each firm with at least 50 observations resulting in

596 eligible firms. For the univariate regressions a joint hypothesis is tested on whether the constant

equals zero and the slope coefficient equals one with the Wald test adjusted with Newey and West

(1987) standard errors. A significance level of 5% is adopted for the test. If this hypothesis holds

to be true, then the volatility measure is an unbiased estimator for future volatility. A summary of

the results is presented in Table 5 which shows the average coefficients, the average adjusted R2,

the average number of observations per regression and the number of times the null hypothesis is

not rejected.

Table 5: Volatility predictability results

This table presents summary results of univariate and multivariate regressions as specified by Equation 7. The

regressions are performed on firms with at least 50 observations resulting in 596 eligible firms. The average of

the coefficients, the average adjusted R2 and the average number of observations of all regressions are shown in

the table. Furthermore, the number of times the null hypothesis θ = 0 and θj = 1 with j = LRV,LIV,MFIV is

not rejected with the Wald test is reported as Test A. The null hypothesis of θLRV = 0, θLIV = 1 and

θMFIV = 0 is also tested with the Wald test and the number of times this null hypothesis is not rejected is

reported as Test B. All tests use Newey and West (1987) standard errors and a significance level of 5%.

θ θLRV θLIV θMFIV Adj. R2 #Obs Test A Test B

1 -0.43 0.63 0.41 102 36

2 -0.12 0.97 0.53 102 205

3 -0.33 0.82 0.39 102 181

4 -0.13 0.17 0.82 -0.04 0.54 102 331
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The univariate regressions show that the implied volatility provides the best fit with an average

adjusted R2 of 0.53. Additionally, the Wald tests show that the implied volatility is an unbiased

estimator in 205 cases, while the realized volatility is found to be a biased predictor in most cases.

Surprisingly, the model-free implied volatility performs the worst in terms of fit. The multivariate

regression results indicate that the implied volatility subsumes the other two volatility measures,

as the coefficients of the realized volatility and model-free implied volatility decrease towards zero,

while the implied volatility coefficient stays close to one. Furthermore, the average adjusted R2 of

0.54 is only a minor improvement over the average adjusted R2 of the univariate regressions with

implied volatility as the explanatory variable. The joint null hypothesis of θLRV = 0, θLIV = 1

and θMFIV = 0 is tested to statistically determine whether the implied volatility subsumes the

information contained in the other volatility measures. The results show that this null hypothesis

holds for 331 cases, which is approximately 55% of all tested firms. So the implied volatility is an

efficient estimator of future volatility for a majority of firms.

Jiang and Tian (2005) recognize that the implied volatility and model-free implied volatility

can potentially be endogenous variables. Their reasoning is that the implied volatility can contain

measurement errors due to misspecification errors of the option pricing model. Thus, two-stage

least squares (TSLS) regressions are employed to investigate whether endogeneity is an issue. In

the first stage the implied volatility and model-free implied volatility are individually regressed

on instrumental variables. Following Jiang and Tian (2005) the lagged realized volatility and

lagged implied volatility are chosen to be the instrumental variables for the implied volatility. The

same instrumental variables are chosen for the model-free implied volatility with as addition the

lagged model-free implied volatility. In the second stage the same univariate and multivariate

regressions are performed as before, except with the fitted values of the first stage regressions as

the explanatory variables. A summary of the TSLS regression results can be found in Table 6.

The first stage regressions show that the explanatory variables provide a good fit judging from

the average adjusted R2s. The Hausman (1978) test is conducted with auxiliary regressions to de-

termine whether the volatility measures are endogenous. The tests show that the implied volatility

and the model-free implied volatility are endogenous for respectively 99% and 83% of the cases

with a significance level of 5%. Thus, endogeneity is an issue for the regressions that are performed

earlier, which is exactly what is addressed in the second stage of the TSLS regression. The univari-

ate regressions, however, point toward the same conclusions as before. The multivariate regressions

do show significant different results, namely, the implied volatility does not seem to subsume the

information contained in the realized volatility and model-free implied volatility anymore, as the

joint null hypothesis of θLRV = 0, θLIV = 1 and θMFIV = 0 only holds for 46 cases now. These

results indicate that the implied volatility is not always an efficient forecast for future volatility.
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Table 6: Two-stage least squares regression results

This table presents summary results of both two-stage least squares regression stages. In the first stage the

dependent variable is indicated by the left column and the explanatory variables are all lagged by one month.

The second stage regressions are specified by Equation 7. The regressions are performed on firms with at least 50

observations resulting in 596 eligible firms. The average of the coefficients, the average adjusted R2 and the

average number of observations of all regressions are shown in the table. Furthermore, the number of times the

null hypothesis θ = 0 and θj = 1 with j = LRV,LIV,MFIV is not rejected with the Wald test is reported as

Test A. The null hypothesis of θLRV = 0, θLIV = 1 and θMFIV = 0 is also tested with the Wald test and the

number of times this null hypothesis is not rejected is reported as Test B. All tests use Newey and West (1987)

standard errors and a significance level of 5%.

θ θLRV θLIV θMFIV Adj. R2 #Obs Test A Test B

I. First Stage

LIV -0.29 0.18 0.56 0.56 117

MFIV -0.27 0.14 0.56 0.00 0.49 99

II. Second Stage

1 -0.42 0.65 0.42 98 25

2 -0.06 1.02 0.37 98 244

3 0.00 1.11 0.37 98 123

4 -0.17 0.43 0.24 0.23 0.45 98 46

Nonetheless, the univariate regressions suggest that the implied volatility is a better standalone

unbiased estimator for future volatility compared to the realized volatility and model-free implied

volatility, which is in line with the found portfolio results. A surprising result is that the model-

free implied volatility does not perform the best out of all the volatility measures. A possible

explanation is that there is not enough data to have an accurate estimate of the model-free implied

volatility. This lack of data is mostly contributed to the filtering of the options. Taylor et al.

(2010) found the model-free implied volatility to also perform poorly and pointed to the potential

mispricings of OTM options as an explanation.

6 Option Measure Analyses

This section discusses the portfolio results of the trading strategies based on the option measures.

Furthermore, each individual option measure is analyzed more in depth to gain more insight on

their information content. The portfolio results are presented in Table 7 which shows the average

annualized return, the annualized volatility, the Sharpe ratio and the annualized 6-factor alpha.

6.1 Realized-Implied Volatility Spread

Panel I of Table 7 shows that bonds with higher values of RV IV experience higher returns com-

pared to bonds with lower RV IV values in both the IG and HY universe. The Q1 portfolio in

the IG universe has an average annualized return of 0.73% decreasing to 0.24% in portfolio Q5.

19



Table 7: Portfolio results based on option measures

This table presents the results of the trading strategies based on the option measures over the sample period of January 1996 to August 2014 in both the Investment

Grade and High Yield universe. The methodology of Jegadeesh and Titman (1993) is employed with a holding period of twelve months to construct the portfolios. The

first quintile Q1 contains the bonds with the highest values of the sorting variable and the last quintile Q5 holds the bonds with the lowest sorting variable values. The

average annualized return, the annualized volatility, the Sharpe ratio and the 6-factor annualized alpha are shown in the table. Opdyke (2007) tests are employed to test

whether the Sharpe ratios of the portfolios are significantly higher than the corresponding market Sharpe ratio. The 6-factor alphas are tested on significance with t-tests

corrected with Newey and West (1987) standard errors.

Investment Grade High Yield

Q1 Q2 Q3 Q4 Q5 Q1-Q5 Q1 Q2 Q3 Q4 Q5 Q1-Q5

I. RVIV

Returns (%) 0.73 0.70 0.47 0.44 0.24 0.48 1.09 1.86 1.92 1.86 0.42 0.67

Volatility (%) 4.79 4.53 4.26 4.39 4.58 1.00 10.18 8.62 8.46 8.71 9.81 2.46

Sharpe Ratio 0.15 0.16 0.11 0.10 0.05 0.48*** 0.11 0.22 0.23 0.21 0.04 0.27

6F Alpha (%) 0.19 0.05 −0.19 −0.22 −0.37** 0.57** −0.32 0.25 0.27 0.53 −0.83 0.50

II. PUTCALL

Returns (%) 0.80 0.52 0.49 0.52 0.53 0.27 1.62 1.98 1.81 2.28 1.86 −0.23

Volatility (%) 4.80 4.48 4.44 4.42 4.73 0.90 11.71 9.77 9.34 9.08 10.49 2.92

Sharpe Ratio 0.17 0.12 0.11 0.12 0.11 0.30* 0.14 0.20 0.19 0.25 0.18 −0.08

6F Alpha (%) 0.15 −0.12 −0.25 −0.14 0.12 0.04 −1.17 0.38 −0.02 0.63 −0.16 −1.21

III. SKEW

Returns (%) 0.19 0.54 0.49 0.45 0.63 −0.44 1.35 0.21 0.72 0.08 1.14 0.21

Volatility (%) 5.37 4.56 4.33 4.27 4.51 2.22 10.27 9.65 9.29 9.29 9.34 2.90

Sharpe Ratio 0.03 0.12 0.11 0.11 0.14 −0.20 0.13 0.02 0.08 0.01 0.12 0.07

6F Alpha (%) −0.20 −0.11 −0.22 −0.25 0.06 −0.26 −0.21 −1.18 −0.66 −1.48 0.14 −0.48

IV. TERMSLOPE

Returns (%) 0.61 0.44 0.45 0.35 0.25 0.36 0.72 1.75 1.41 0.64 −0.70 1.43

Volatility (%) 4.72 4.36 4.38 4.36 4.73 0.77 10.80 8.57 8.60 9.26 11.26 2.74

Sharpe Ratio 0.13 0.13 0.12 0.11 0.07 0.47** 0.15 0.20 0.25 0.16 −0.02 0.66***

6F Alpha (%) −0.10 −0.20 −0.24 −0.22 −0.31 0.20 −0.86 0.31 −0.34 −0.87 −2.32 1.60

V. VALUE

Returns (%) 1.92 0.64 0.18 0.01 −0.21 2.13 2.64 1.07 0.87 0.69 −0.51 3.17

Volatility (%) 5.88 5.14 4.95 4.20 3.13 3.57 11.69 10.01 9.58 8.95 8.83 5.44

Sharpe Ratio 0.33*** 0.13 0.04 0.00 −0.07 0.60*** 0.23 0.11 0.09 0.08 −0.06 0.58***

6F Alpha (%) 1.55*** 0.08 −0.55*** −0.72*** −0.82*** 2.30*** 0.60 −0.62 −0.62 −0.69 −1.34 1.69

***, ** and * show significance at the 1%, 5% and 10% level respectively.
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The PT test indicates that the portfolios have a significant monotonically declining return pat-

tern. Although the Q1-Q5 portfolio generates relatively low returns, it’s volatility is considerably

lower compared to the individual portfolios resulting in a highly significant Sharpe ratio of 0.48.

Furthermore, the significant annualized 6-factor alpha of 0.57% indicates that this portfolio dif-

fers from the traditional factor strategies. Similar results are found in the HY universe, though

portfolio Q1 does not gain the most returns despite the higher risk it takes compared to the other

portfolios as indicated by the volatilities. As a result, the Q1-Q5 portfolio has an insignificant

Sharpe ratio of 0.27 and an insignificant annualized 6-factor alpha of 0.50%, but the portfolios do

show a decreasing, though insignificant, return pattern starting from portfolio Q2 to Q5. So this

strategy shows significant results in the IG universe and similar, though less convincing, results in

the HY universe.

The literature has found the realized-implied volatility spread to bear a negative risk premium

for stocks, that is, stocks with high values of RV IV are shown to gain less returns compared to

stocks with lower RV IV values. These findings are not consistent with the corporate bond results

where the opposite return effect is observed, though the Q1 portfolio in the HY universe does hint

towards this negative risk premium. This portfolio contains bonds with the highest values of RV IV

and has lower returns compared to the other individual portfolios. The other portfolios, however,

do not show evidence in favour of the negative risk premium. Thus, a different interpretation for

the RV IV option measure is given next to explain the portfolio results.

The realized-implied volatility spread compares the historical volatility with the market ex-

pectation of future volatility. Thus, a supposition for the interpretation of the realized-implied

volatility spread is that it describes a trend in the volatility. If for example the current implied

volatility is low compared to the historical volatility, then the volatility is expected to decline in the

future, thus a positive RV IV can be associated with a declining volatility trend. Fama-MacBeth

regressions with an ARX(1)-like structure are employed to test this conjecture on the cross-sections

of the data. At each point in time the following cross-sectional regression is performed:

V OLi,t = φ1t + φ2tV OLi,t−1 + φ3tRV IVi,t−1 + ηi,t, (8)

where V OLi,t is the realized volatility of stock i at month t computed using daily return data of the

previous month. This choice of the horizon ensures that there is no overlap between the dependent

and explanatory variables. The additional explanatory variable of interest is the realized-implied

volatility spread RV IVi,t−1 of firm i at month t− 1. Finally, the white noise residuals are denoted

by ηi,t. The coefficients of the cross-sectional regressions are averaged over time and tested on

significance with t-tests. The standard errors for the tests are adjusted for heteroscedasticity

and autocorrelation with Newey and West (1987) corrections. Table 8 presents the results of the

Fama-MacBeth regressions.
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Table 8: Fama-MacBeth regression results

This table presents the results of Fama-MacBeth regressions specified by Equation

8. Additionally, the table also presents the results of the same regressions performed

with Z-scores of the variables which are winsorized at ±3. The average coefficients

with t-stats between parentheses, the average adjusted R2 and the number of

months are shown in the table. The t-stats are computed with Newey and West

(1987) standard errors.

Standard Z-Scores

1 2 3 4

Constant 0.13 0.11 0.23 0.21

(27.16) (26.69) (25.03) (25.21)

VOL 0.60 0.64 0.82 0.85

(42.16) (49.75) (65.17) (72.33)

RVIV -0.27 -0.15

(-19.99) (-17.65)

Adj. R2 0.35 0.39 0.37 0.39

#Months 224 224 224 224

The first regression in the table shows that the standard AR(1) specification for V OL provides

a good fit with an average adjusted R2 of 0.35. The second regression includes the RV IV as an

explanatory variable. The RV IV has a significant negative coefficient of −0.27 and it contains some

explanatory power, as the average adjusted R2 increases by 0.04 to a total of 0.39. Furthermore,

the addition of RV IV does not heavily influence the other coefficients of the first regression. This

means that when there is a positive difference between the historical volatility and implied volatility,

i.e. an expected decline in volatility, then the future volatility is indeed adjusted downwards. The

same inference can be made for a negative realized-implied volatility spread to adjust the future

volatility upwards.

As a robustness check the same procedure is performed with Z-scores of the variables. At

each point in time the corresponding cross-sectional medians are subtracted from the variables

and then divided by the corresponding median absolute deviations. The explanatory variables

are winsorized at ±3 to limit the influence of outliers. The third and fourth regression in Table

8 show the results of this robustness check. Even though the coefficient of RV IV of −0.15 has

increased more towards zero, it remains significant and the same conclusions can be made as

before. The same analysis is also done with three, six and twelve month historical volatilities as

the V OL variable with the appropriate lags such that there is no overlap between the dependent

variable and explanatory variables. The results presented in Table 9 all show similar outcomes as

before. Statistical evidence is therefore found with this brief investigation for the conjecture that

the realized-implied volatility spread describes a trend in volatility.
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Table 9: Fama-MacBeth regression results for different horizons

This table presents the results of the Fama-MacBeth regressions specified by Equation 8 for different historical

horizons for the V OL variable with the appropriate lags such that there is no overlap between the dependent

variable and explanatory variables. The variables are transformed into Z-scores and are winsorized at ±3. The

coefficients with t-stats between parentheses, the average adjusted R2 and the number of months are shown in

the table. The t-stats are computed with Newey and West (1987) standard errors.

3 Months 6 Months 12 Months

Constant 0.17 0.15 0.16 0.15 0.18 0.17

(17.82) (16.38) (12.02) (11.63) (9.68) (9.66)

VOL 0.93 1.03 0.97 1.01 0.98 0.99

(73.61) (81.43) (65.18) (68.71) (50.06) (50.89)

RVIV -0.26 -0.13 -0.05

(-40.86) (-18.58) (-6.30)

Adj. R2 0.51 0.55 0.56 0.58 0.55 0.56

#Months 224.00 224.00 224.00 224.00 224.00 224.00

This interpretation of RV IV as a volatility trend is also in agreement with the portfolio results.

The highest values of this option measure are sorted in portfolio Q1, thus the implied volatilities are

lower compared to the realized volatilities indicating a decline in future volatilities. This can imply

that the firms in this portfolio are becoming less risky which raises the future bond prices. Evidence

for this reasoning is provided by Campbell and Taksler (2003) who find the equity volatility to be

positively related to yields on corporate bonds relative to Treasury bonds. In normal circumstances

yields on Treasury bonds are relatively stable, thus it follows that corporate bond yields will drop

as volatilities decline resulting in a rise in future bond prices. The higher bond prices in the future

result in positive returns for this portfolio. The volatility in portfolio Q1 is expected to decline the

most and therefore, ceteris paribus, the bond prices are expected to rise the most resulting in the

portfolio with the highest average annualized return. So this interpretation of the realized-implied

volatility spread as a trend in volatility is backed by statistical and economical evidence.

6.2 Put-Call Implied Volatility Spread

Panel II of Table 7 presents the portfolio results based on the PUTCALL option measure which

shows different outcomes depending on the universe. The results in the IG universe suggest that

bonds with higher PUTCALL values generally experience higher returns compared to bonds with

lower values. Thus, bonds with relatively expensive put options outperform bonds with relatively

expensive call options. The Q1 portfolio has an average annualized return of 0.80% decreasing to

0.53% in portfolio Q5, though the PT test indicates that there is no significant decreasing return

pattern. The Q1-Q5 portfolio has a lower return compared to the individual portfolios, but the

Sharpe ratio of 0.30 is significant, though only marginally. The annualized 6-factor alpha of 0.04%

is, however, not significant indicating that this strategy is not different from the other traditional
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factor strategies. In the HY universe there is no concise pattern in the returns and Sharpe ratios

of the portfolios which is also confirmed with the PT test. This is also reflected in the Q1-Q5

portfolio with an average annualized return of −0.23%, an insignificant Sharpe ratio of −0.08

and an insignificant annualized 6-factor alpha of −1.21%. So only the portfolio results in the IG

universe suggest that this option measure might contain relevant information for the corporate

bond market with the only concern being an insignificant 6-factor alpha. As the option measure

is constructed out of a wide variety of options with different strikes and maturities, it is suspected

that noise can be a disturbing factor. An attempt to capture more relevant information is done

next.

Deviations from the put-call parity are argued by Cremers and Weinbaum (2010) to be caused

by informed trading in the options market. Related to this is the sequential trade model of Easley

et al. (1998) that is developed to determine where informed investors will trade. Their model

suggests that informed investors will trade more in options when the option market is more liquid.

Chakravarty et al. (2004) find evidence supporting this suggestion, that is, they find that the option

market contains more information when the option trading volume is high. Intuitively, informed

investors want to hide their trading intents to gain the most out of their information. This can

be done by strategically camouflaging their trades depending on the liquidity of the market; so-

called stealth trading. Anand and Chakravarty (2007) investigate the price discovery in the option

market in the light of stealth trading and find that informed traders prefer to trade in more liquid

options. All of this suggests that the information content of the PUTCALL option measure should

increase when the options are more liquid.

This is investigated by sorting the available pairs of put and call options in three groups based

on the average bid-ask spread as a liquidity measure. Three groups are made such there is a group

with liquid options, a group with illiquid options and a middle neutral group. The liquid options

group are the options with the lowest bid-ask spreads and vice versa. This separation of options is

done for each individual PUTCALL option measure and a prerequisite is that there are at least

three pairs of put and call options to ensure that each group contains at least one observation.

Then for each liquidity group the PUTCALL option measure is computed and the same portfolio

strategy as before is applied to examine whether more information is captured by more liquid

options. Table 10 presents the portfolio results for the liquid options group and the illiquid options

group in the IG universe.
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Table 10: Liquidity effects in the Investment Grade universe

This table presents the results of the trading strategies based on the PUTCALL option measure in the Investment

Grade universe over the sample period of January 1996 to August 2014. All available pairs of put and call options

are separated into three liquidity groups based on the average bid-ask spread. The liquid options group are the

options with the lowest bid-ask spreads and vice versa. The PUTCALL option measure is then constructed with

the options for each group and the methodology of Jegadeesh and Titman (1993) is employed with a holding

period of twelve months to construct the portfolios. The first quintile Q1 contains the bonds with the highest

values of the sorting variable and the last quintile Q5 holds the bonds with the lowest sorting variable values. The

average annualized return, the annualized volatility, the Sharpe ratio and the annualized 6-factor alpha are shown

in the table. Opdyke (2007) tests are employed to test whether the Sharpe ratios of the portfolios are significantly

higher than the corresponding market Sharpe ratio. The 6-factor alphas are tested on significance with t-tests

corrected with Newey and West (1987) standard errors.

Q1 Q2 Q3 Q4 Q5 Q1-Q5

I. Liquid Options

Returns (%) 0.70 0.47 0.46 0.54 0.40 0.30

Volatility (%) 4.84 4.45 4.48 4.46 4.72 0.82

Sharpe Ratio 0.14 0.11 0.10 0.12 0.08 0.36**

6F Alpha (%) 0.09 −0.18 −0.26 −0.10 −0.02 0.11

II. Illiquid Options

Returns (%) 0.61 0.49 0.50 0.49 0.47 0.14

Volatility (%) 4.82 4.45 4.44 4.42 4.83 0.93

Sharpe Ratio 0.13 0.11 0.11 0.11 0.10 0.15

6F Alpha (%) 0.07 −0.15 −0.16 −0.19 −0.03 0.11

** shows significance at the 5% level.

The results show a clear difference between using liquid options and illiquid options. When the

PUTCALL option measure is based on liquid options, then the Q1-Q5 portfolio has an average

annualized return of 0.30% with a significant Sharpe ratio of 0.36. However, when illiquid options

are used, then the Q1-Q5 portfolio has a lower average annualized return of 0.14% with an insignif-

icant Sharpe ratio of 0.15. The Opdyke (2007) test shows that this Sharpe ratio is significantly

lower than the Sharpe ratio obtained with liquid options. Furthermore, the average annualized

return, Sharpe ratio and annualized 6-factor alpha of the Q1-Q5 portfolio based on liquid options

are an improvement over the unfiltered Q1-Q5 portfolio results that uses all options. The 6-factor

alpha, however, remains insignificant showing again that no abnormal returns can be gained with

this strategy. Nevertheless, these results suggest that liquid options contain more information

compared to illiquid options. Next, Table 11 shows the portfolio results in the HY universe.

The results when illiquid options are used to construct the PUTCALL option measure show a

complete reversal of returns compared to the IG universe. Now portfolio Q1 has the lowest returns

with an average annualized return of 1.01% and it increases to 2.15% in portfolio Q5. The Q1-Q5

portfolio has a negative annualized return of −1.11% with an insignificant Sharpe ratio of −0.27

and an annualized 6-factor alpha of −2.01% that is insignificant. Also, the results using liquid

25



options are not an improvement over the results that uses all options indicating that there might

be other noises involved in the construction of this option measure. Nevertheless, the Opdyke

(2007) test here also indicates that the Sharpe ratios based on the liquid and illiquid options

are significantly different from each other. So the results do suggest that options contain different

information depending on their liquidity. Most findings, however, indicate that this option measure

does not contain much relevant information for corporate bonds.

Table 11: Liquidity effects in the High Yield universe

This table presents the results of the trading strategies based on the PUTCALL option measure in the High Yield

universe over the sample period of January 1996 to August 2014. All available pairs of put and call options are

separated into three liquidity groups based on the average bid-ask spread. The liquid options group are the options

with the lowest bid-ask spreads and vice versa. The PUTCALL option measure is then constructed with the

options for each group and the methodology of Jegadeesh and Titman (1993) is employed with a holding period of

twelve months to construct the portfolios. The first quintile Q1 contains the bonds with the highest values of the

sorting variable and the last quintile Q5 holds the bonds with the lowest sorting variable values. The average

annualized return, the annualized volatility, the Sharpe ratio and the annualized 6-factor alpha are shown in the

table. Opdyke (2007) tests are employed to test whether the Sharpe ratios of the portfolios are significantly higher

than the corresponding market Sharpe ratio. The 6-factor alphas are tested on significance with t-tests corrected

with Newey and West (1987) standard errors.

Q1 Q2 Q3 Q4 Q5 Q1-Q5

I. Liquid Options

Returns (%) 1.78 1.27 1.63 1.76 1.59 0.19

Volatility (%) 11.42 10.20 9.34 9.46 10.31 2.72

Sharpe Ratio 0.16 0.12 0.17 0.19 0.15 0.07

6F Alpha (%) −1.17 −0.33 −0.14 0.13 −0.28 −1.10*

II. Illiquid Options

Returns (%) 1.01 1.31 1.42 2.04 2.15 −1.11

Volatility (%) 12.32 9.90 9.53 9.00 10.26 4.15

Sharpe Ratio 0.08 0.13 0.15 0.23 0.21 −0.27

6F Alpha (%) −1.62 −0.49 −0.20 0.32 0.17 −2.01

* shows significance at the 10% level.

This option measure is based on the put-call parity that only holds for European options, while

the stock options are all in American style. Thus, the early exercise premium included in American

options can introduce disturbing noises to this option measure. This is investigated by constructing

the PUTCALL option measure with only ATM options that expire in one month. This way the

early exercise premium of American options is reduced, as there are less incentives to exercise

ATM options and the premium is by definition less for options that have a shorter maturity. The

portfolio results based on this new PUTCALL option measure are presented in Table 12. The

general finding is that there are no significant improvements over the results based on the original

PUTCALL option measure. This confirms again that deviations from the put-call parity does not

reveal information relevant for corporate bonds.
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Table 12: Portfolio results with modified PUTCALL option measure

This table presents the results of the trading strategies based on a modified PUTCALL option measure over the

sample period of January 1996 to August 2014 in both the Investment Grade and High Yield. The modified

PUTCALL option measure is defined similarly as PUTCALL, but only ATM options with an one month maturity

are included in the construction. The methodology of Jegadeesh and Titman (1993) is employed with a holding

period of twelve months to construct the portfolios. The first quintile Q1 contains the bonds with the highest values

of the sorting variable and the last quintile Q5 holds the bonds with the lowest sorting variable values. The average

annualized return, the annualized volatility, the Sharpe ratio and the annualized 6-factor alpha are shown in the

table. Opdyke (2007) tests are employed to test whether the Sharpe ratios of the portfolios are significantly higher

than the corresponding market Sharpe ratio. The annualized 6-factor alphas are tested on significance with t-tests

corrected with Newey and West (1987) standard errors.

Q1 Q2 Q3 Q4 Q5 Q1-Q5

I. Investment Grade

Returns (%) 0.53 0.49 0.49 0.39 0.39 0.14

Volatility (%) 4.87 4.36 4.35 4.33 4.59 0.64

Sharpe Ratio 0.11 0.11 0.11 0.09 0.08 0.22

6F Alpha (%) −0.02 −0.21 −0.30 −0.30 −0.08 0.04

II. High Yield

Returns (%) 0.97 0.43 0.38 0.82 1.03 −0.06

Volatility (%) 10.93 9.85 9.42 9.25 9.92 3.08

Sharpe Ratio 0.09 0.04 0.04 0.09 0.10 −0.02

6F Alpha (%) −0.84 −1.14 −1.14 −0.67 −0.66 −0.32

An intentional decision that is made is to not use option trading volume as a liquidity measure.

This is because Easley et al. (1998) find the stand-alone option trading volumes to contain no

information about future stock prices. However, when they decompose the option trading volume

into positive trades (buying calls and selling puts) and negative trades (selling calls and buying

puts), then these volumes are found to have informational content. Pan and Poteshman (2006) also

investigate the predictive ability of option trading volumes for future stock prices. They find that

option trading volumes that are initiated to open new positions contain significant information.

So the standalone option trading volume can be decomposed into components based on different

information signals. When this is not done it is possible to bias the results by naively sorting on

standalone option trading volume. Due to lack of data to perform this decomposition it is opted

to not choose the option trading volume as the liquidity measure.

6.3 Implied Volatility Skew

Panel III of Table 7 shows the portfolio results of the SKEW based trading strategies. The results

in the IG universe indicate that bonds with higher values of SKEW underperform compared to

bonds with lower values. The Q1 portfolio has an average annualized return of 0.19% increasing

to 0.63% in portfolio Q5. The PT test indicates that this increasing pattern is, however, not

significant. The Q1-Q5 portfolio has an insignificant Sharpe ratio of −0.20 and an insignificant
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annualized 6-factor alpha of −0.26%. The portfolios in the HY universe do not give a significant

return pattern resulting in a low and insignificant Sharpe ratio of −0.07 and an insignificant

annualized 6-factor alpha of −0.48% for the Q1-Q5 portfolio. This outcome is possibly due to the

lower coverage in the HY universe. Regardless, these portfolio results indicate that this option

measure contains little to no information for corporate bond prices.

Despite the weak results, the portfolios in the IG universe do exhibit the correct return pattern

according to the interpretation of the SKEW option measure. That is, high values of the SKEW

imply that implied volatilities of OTM put options are relatively higher compared to those of

ATM call options. According to Garleanu et al. (2009) this indicates that there is a relatively

high demand for OTM put options, as they document theoretical and empirical evidence that high

demand pressures increase the implied volatilities of options. The reasons for investors to buy

OTM put options are either to hedge or speculate for future price drops. Thus, the high demand

for these options suggests that informed investors have bad expectations for the future health of

the relevant firms. This corresponds with the fact that the Q1 portfolio in the IG universe has the

lowest return out of all the portfolios, though this interpretation does not hold in the HY universe.

This interpretation of the SKEW option measure is investigated further.

Pooled regressions of the market credit spread on the SKEW option measure and other control

variables are performed to investigate whether the SKEW contains information regarding the

health of a firm. The market credit spreads are in basis points and are chosen as the indicator

for the degree of riskiness or health of a firm. The regressions are not contemporaneous, but the

explanatory variables are all lagged by one month in order to investigate the predictive power of

SKEW . The chosen control variables are similar to those used by Cremers et al. (2008b) who

also investigated the explanatory power of option information for corporate bond credit spreads.

Other studies have also found that these variables contain information for credit spreads.

The essential firm specific volatility control variables include the historical return volatility,

historical return skew and option implied volatility. Other natural firm specific control variables

are the leverage and stock return. The leverage is undoubtedly an important measure for the credit

risk of firms and the stock return reflects the overall health of the firm. Cremers et al. (2008b) also

add the corresponding market based variables due to concerns of measurement errors in the firm

specific variables. The S&P500 index is chosen as the proxy for the market, as the firms in the

data set are all U.S. listed. The market variables include the historical return volatility, historical

return skew, option implied volatility, option implied skew, and return. All historical measures

and returns are computed with a six month horizon on a daily frequency.

Furthermore, the 5-year yield of Treasury bonds and the difference between the 10-year and

2-year Treasury yields are included to control for respectively the level and the slope of the term
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structure of interest rates. The BAA corporate bond yield rate is also added to capture the overall

market credit risk. These specific data series are downloaded via Datastream. Lastly, the time-to-

maturity of the bonds is also used as a control variable, as Cremers et al. (2008b) find significant

different regression results depending on whether the bonds have a short maturity or long maturity.

The sample is split between the IG and HY universe in order to examine whether the SKEW

variable shows different effects depending on the universe, as this is the case for the portfolio

results. Additionally, the regressions are only performed on bonds with at least 25 month ob-

servations. Driscoll and Kraay (1998) standard errors are used to correct for heteroscedasticity,

auto-correlation and cross-sectional correlation. These standard errors are a generalization of the

Newey and West (1987) standard errors for pooled regressions. Table 13 presents the results of the

regressions.

As argued before, a high value of SKEW indicates relatively high distress of a firm, thus the

SKEW variable should be positively related to credit spreads. This interpretation corresponds

with the regression results, as the coefficients of SKEW are significantly positive in each regression.

Remarkably, the coefficients in the HY universe are more significant and of a higher magnitude

compared to the IG universe. This suggests that the SKEW variable has substantial predictive

power for future credit spreads or the future risk of a firm, thought the portfolio results in the HY

universe do not reflect this finding. A possible reason might be that the information contained

in the SKEW option measure is already priced in the bonds. Another reason can be that the

information is only relevant for a short period. If this is the case, then the portfolios with a twelve

month holding period will incorporate old irrelevant information. But the results with an one

month holding period in the robustness check do not show any significant improvements indicating

that there is little information in the SKEW option measure for future corporate bond prices.

An interesting finding is that the maturity has a positive coefficient in the IG universe and a

negative coefficient in the HY universe. Intuitively, bond yields should be higher for bonds with

longer maturities, as investors want a premium for holding the bonds due to the risks that they

take such as interest rate risk or default risk. So the maturity has the intuitive effect in the IG

universe, but not in the HY universe. The negative coefficient of the maturity, which indicates

a downward sloping yield curve, suggests that there are already negative expectations about the

future of these bonds. As a consequence, the SKEW variable, which tries to indicate future

distress, does possibly not contain any extra information that is already known to the market. So

the information contained in SKEW is perhaps already incorporated into the prices of the bonds

which explains the insignificant portfolio results.
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Table 13: Pooled regression results

This table presents the results of pooled regressions with the credit spreads in basis points as the dependent

variable over the sample period of January 1996 to August 2014. The explanatory variables are indicated by the

first column. The coefficients with t-stats between parentheses, the adjusted R2, the total number of

observations and the total number of bonds are shown in the table. The t-stats are computed with Driscoll and

Kraay (1998) standard errors.

Investment Grade High Yield

1 2 3 4 5 6

SKEW 318.21 218.84 151.80 434.56 348.82 332.26

(3.39) (4.23) (4.24) (3.87) (4.64) (5.67)

Firm Hist. Skew 6.88 5.22 1.72 12.82 12.20 4.26

(4.42) (6.36) (4.49) (5.04) (5.36) (2.46)

Firm Impl. Volatility 364.75 279.65 278.42 556.31 425.78 474.89

(3.11) (5.63) (12.78) (5.05) (6.58) (10.38)

Firm Hist. Volatility 144.43 47.84 81.13 158.82 109.24 148.52

(2.38) (1.63) (3.99) (2.64) (3.36) (4.44)

Firm Return -7.59 1.27 1.31 -36.85 -29.53 -17.05

(-1.02) (0.71) (1.56) (-2.08) (-1.90) (-2.35)

Market Impl. Skew -674.41 -325.17 -1130.41 -716.01

(-1.71) (-1.76) (-2.08) (-2.47)

Market Hist. Skew -14.50 -29.61 -16.39 -36.67

(-0.84) (-2.50) (-0.65) (-2.89)

Market Impl. Volatility 209.02 -153.25 621.14 80.14

(1.18) (-2.12) (2.80) (0.74)

Market Hist. Volatility 253.99 -14.32 195.66 -252.23

(2.09) (-0.15) (1.04) (-2.12)

Market Return -84.12 32.36 102.81 87.85

(-1.25) (0.72) (1.00) (1.84)

Leverage 76.02 229.45

(9.94) (6.67)

5Y Yield -84.16 -103.78

(-6.95) (-7.95)

10Y Yield - 2Y Yield -32.98 -15.04

(-3.35) (-1.49)

BAA Rate 89.10 102.79

(5.78) (6.11)

Maturity 0.71 -3.42

(3.28) (-2.24)

Constant -23.99 -10.43 -231.10 66.92 54.71 -246.24

(-0.85) (-0.28) (-4.56) (2.22) (1.15) (-4.30)

Adj. R2 0.26 0.31 0.43 0.27 0.31 0.44

#Obs 30971 30971 30971 11693 11693 11693

#Bonds 439 439 439 243 243 243

Multicollinearity is a possible complication for these regressions, especially for the historical

and implied volatilities, as these volatility measures are most likely highly correlated. However,

a brief inspection of the correlation matrix shows that the correlations between the historical

volatilities and option implied volatilities in the IG and HY universe are lower than 0.40. These

correlations are reasonably low such that multicollinearity is not a big problem for these volatility
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variables. Other variables of interest also show acceptable correlations such that that there are no

multicollinearity problems.

Since the point of this analysis is to investigate the effects of SKEW on credit spreads, only

the noteworthy results of the other variables will be discussed briefly. The fact that several market

variables are significant indicates that the variables on a firm level are not their true values and

therefore contain measurement errors as is reasoned by Cremers et al. (2008b). An economically

counter-intuitive result are the positive coefficients for the firm historical skew for all regressions,

as this suggests that credit spreads decline when returns become more negatively skewed. Cremers

et al. (2008b) also find this result and they argue that the historical skew is too slow to incorporate

the relevant information for credit spreads as opposed to the implied skew that is less persistent and

mean-reverts more quickly. Most other results are in line with the findings of the literature, thus

I refer to Campbell and Taksler (2003), Collin-Dufresne et al. (2001) and Cremers et al. (2008b)

for a more in depth discussion of these regression results.

6.4 Implied Variance Term Structure

Panel IV of Table 7 presents the portfolio results of the trading strategies based on TERMSLOPE.

In general, bonds with higher values of TERMSLOPE experience higher returns than the bonds

with lower values. This can be seen in the IG universe, where portfolio Q1 has an average annualized

return of 0.61% decreasing to 0.25% in portfolio Q5, as well as in the HY universe with an average

annualized return of 0.72% in portfolio Q1 decreasing to −0.70% in portfolio Q5. The PT test

indicates that this decreasing return pattern is significant in the IG universe, but in the HY

universe the test shows insignificant results. The Q1-Q5 portfolio in the IG universe has the lowest

volatility out of all the strategies resulting in a highly significant Sharpe ratio of 0.47, but it has

an insignificant annualized 6-factor alpha of 0.20%. The highest Sharpe ratio out of all the option

strategies is observed for the Q1-Q5 portfolio in the HY universe. This portfolio has an average

annualized return of 1.43% with a highly significant Sharpe ratio of 0.66, but again an insignificant

annualized 6-factor alpha of 1.60%. These portfolio results show that the TERMSLOPE option

measure does contain some information for corporate bonds.

As for as I know, the literature did not investigate the term structure of the implied variance

in a trading strategy setting for any asset market yet. A possible reason might be that this option

measure has little economic interpretation regarding the state of the corresponding firm. What is

known in the literature is that the term structure of the implied variance is linked to the future

implied variance with the expectations hypothesis. The hypothesis is based on the linearity of

variance with respect to time and states that the future short-term implied variance is determined

by the current slope of the implied variance term structure. Campa and Chang (1995) show
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based on the stochastic volatility option pricing model of Hull and White (1987) that the following

relation should hold at current time t0:

Et1

[
(t2 − t1)V t2

t1

]
= Et0

[
t2V

t2
t0

]
− Et0

[
tIV

t1
t0

]
+ ξt1 , t0 ≤ t1 ≤ t2, (9)

where V T
t denotes the implied variance of an option at time t that expires at time T and ξt1 is white

noise that becomes known at time t1. This relation shows that the future implied variance should

follow a rational consistency with the current implied variance term structure and is referred to as

the expectations hypothesis. The majority of the literature, e.g. Byoun et al. (2003), Campa and

Chang (1995), Mixon (2007), amongst others, test this hypothesis with simple linear regressions.

The regression equation can be obtained by manipulating the previous relation and is as follows:

V t2
t1
− V t2

t0
= λ1 + λ2

(
1

t2/t1 − 1

)(
V t2
t0
− V t1

t0

)
+ ξ, (10)

where the expectations hypothesis holds when λ1 = 0 and λ2 = 1. Note that the TERMSLOPE

option measure appears on the right hand side of the equation when t2 and t1 are set to the expi-

ration times that are respectively two months and one months from the current time. Accordingly,

the variables on the left hand side of the equation are defined as such to match the TERMSLOPE

option measure resulting in the following regression equation:

1

Li,t+1

Li,t+1∑
j=1

V
1MCj
i,t+1 −

1

Mi,t

Mi,t∑
j=1

V
2MCj
i,t = λ1i + λ2iTERMSLOPEi,t + ξi, (11)

where V
1MCj
i,t+1 is the implied variance of the put option with an one month maturity on stock i

at month t + 1. The put options are restricted within the ATM bounds and the strike prices

are matched to those of TERMSLOPE for comparability. The number of eligible options is

denoted by Li,t+1. The second term on the left hand side of the regression is the first term of

the TERMSLOPE option measure. Finally, the white noise residuals are denoted by ξi. When

the expectations hypothesis holds, this equation states that changes in the implied variance of the

options that expire in two months are fully correlated with TERMSLOPE at any point in time.

The regression is performed for each firm with at least 50 month observations resulting in 336

eligible firms. The hypotheses λ1 = 0 and λ2 = 1 are tested individually with t-tests and also

jointly with a Wald test, where in both tests Newey and West (1987) corrections are applied and

a significance level of 5% is adopted. A summary of the results is presented in Table 14 which

shows the average coefficients, the average adjusted R2, the average number of observations per

regression and the number of times the null hypothesis is not rejected.
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Table 14: Expectations hypothesis regression results

This table presents summary results of the regressions as specified by Equation

11. The regressions are performed on a firms with at least 50 observations

resulting in a total of 336 firms. The average and the standard deviation of the

coefficients, the average adjusted R2 and the average number of observations of

all regressions are shown in the table. Furthermore, the number of times the

null hypotheses λ1 = 0 and λ2 = 1 are not rejected is also reported. The null

hypothesis are tested with t-test corrected with Newey and West (1987)

standard errors and a significance level of 5% is adopted.

λ1 λ2 Adj. R2 #Obs

Mean -0.008 0.154 0.04 84

St. Dev. 0.011 0.784

Test 261 141

The mean constant of all the regressions is −0.008 and in line with this statistic is that in

261 of cases the t-test fails to reject the hypothesis of λ1 = 0. Most of the t-tests reject the

λ2 = 1 hypothesis with only 141 failing to reject this hypothesis. This is also reflected in the mean

slope coefficient of 0.154. The joint Wald test shows that a total of 96 firms conform with the

expectations hypothesis, which is approximately 29% out of all the tested firms. Similar findings

are found when the put options are substituted for call options. It is safe to conclude that the

expectations hypothesis does generally not hold for this sample. Nevertheless, the TERMSLOPE

does have predictive power for future implied variances judging from the average adjusted R2 of

0.04. Additionally, a t-test shows that the average coefficient of TERMSLOPE is significantly

larger than zero. So TERMSLOPE does predict the correct direction of the change in the

future implied volatility, though it underestimates the change compared to what the expectations

hypothesis indicates. This finding can be used to explain the portfolio results.

The highest values of TERMSLOPE are sorted in portfolio Q1, thus this portfolio contains

the bonds with the largest expected positive changes in future option implied variance according

to the expectations hypothesis. This of course has to be incorporated in the prices in all markets

including the corporate bond market. This expected rise in implied variance indicates that the

firm is expected to be more risky in the future resulting in a downward adjustment of the current

corporate bond prices. As the previous tests show, the realized change in implied variance is only

a fraction of what was expected. So when the market observes in the future that the actual change

in implied variance did not change as much as expected, then the prices are adjusted upwards

resulting in positive returns. Portfolio Q1 contains the observations with the largest overreactions

in the future risk increase and therefore also the highest returns. The opposite can be reasoned

for portfolio Q5 where the firms are expected to decrease in risk, but the overreaction to this

expectations results in current prices that are too high resulting in low returns.
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What is peculiar is that the TERMSLOPE option measure only captures the really short end

of the implied variance term structure. So the information content of this option measure should

only be relevant for a short time period, though the portfolio results with a holding period of twelve

months indicate otherwise. The portfolio results with an one month holding period in the later

robustness check indicate that higher returns and higher 6-factor alphas can be generated with

a shorter holding period, though the volatilities of the portfolios are higher resulting in similar

Sharpe ratios. Nevertheless, the findings indicate that most returns are generated in the first

month after portfolio formation.

6.5 Value Factor

Panel V of Table 7 shows that bonds with higher values of V ALUE typically experience higher

returns compared to bonds with lower values. The Q1 portfolio in the IG universe has an average

annualized return of 1.92% decreasing to −0.21% in portfolio Q5. The same return pattern can

be seen in the HY universe with an average annualized return of 2.64% in portfolio Q1 decreasing

to −0.51% in portfolio Q1. This decreasing return pattern in the HY universe is monotonically

significant according to the PT test, while the return pattern in the IG universe is found to be

insignificant. The Q1-Q5 portfolios in both universes have by far the highest volatility compared

to other Q1-Q5 portfolios, but the portfolios are adequately compensated with higher returns.

The Q1-Q5 portfolio in the IG universe has an average annualized return of 2.13% with a highly

significant Sharpe ratio of 0.60 and a highly significant annualized 6-factor alpha of 2.30%. The

highest returns are observed for the Q1-Q5 portfolio in the HY universe with an average annualized

return of 3.17% and a highly significant Sharpe ratio of 0.58, but an insignificant annualized 6-

factor alpha of 1.69%. Next, a brief analysis is done on the option implied credit spread that is

part of the V ALUE factor.

Apart from implementing the Merton model with option data, it is also possible to do so with

equity data as described in Appendix A. This equity implied implementation is found by Hillegeist

et al. (2004) to provide more information about the probability of bankruptcy than accounting

based measures. They do state, however, that it doesn’t reflect all market based information such

as the returns and size of the firms. The option implied implementation, however, has not been

investigated much in the literature. While the data sources of both implementations are different,

the approaches are quite similar in the sense that both require to solve a non-linear system of

equations to obtain the parameters of the Merton model. Thus, it is possible to investigate which

data source contains more information by comparing both implementations. This is exactly done

by Hull et al. (2004) and they find the option implied implementation to provide a better fit for

CDS spreads.
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A similar analysis is done to compare both implementations with corporate bond spreads as

opposed to CDS spreads. For this purpose, pooled regressions of the market bond spread are

performed on a model implied credit spread as the explanatory variable. All credit spreads are in

basis points and the equity implied credit spread and option implied credit spread are denoted by

SPREADEquity and SPREADOption respectively. The regressions are only performed on bonds

with at least 50 month observations. The results of the regressions are presented in Table 15. Hull

et al. (2004) state that the errors of regressions are unlikely to be normally distributed due to the

nature of the models generating the credit spreads, thus only the standard errors are reported.

Table 15: Pooled regression results

This table presents the results of pooled regressions with the credit spreads in basis points as the dependent

variable over the sample period of January 1996 to August 2014. The explanatory variables are indicated

by the first column. Furthermore, the same pooled regressions with firm dummies and month dummies are

also presented. The coefficients with standard errors between parentheses, the adjusted R2, the total

number of observations and the total number of bonds are shown in the table.

Standard Firm Dummies Month Dummies

1 2 3 4 5 6

Constant 215.82 199.75 219.27 211.65 115.97 108.35

(1.03) (1.01) (22.32) (21.16) (6.76) (6.58)

SPREADEquity 0.17 0.14 0.12

(0.00) (0.00) (0.00)

SPREADOption 0.22 0.19 0.16

(0.00) (0.00) (0.00)

Adj. R2 0.15 0.23 0.44 0.49 0.36 0.39

#Obs 41934 41934 41934 41934 41934 41934

#Bonds 464 464 464 464 464 464

The average market credit spread is approximately 216 and 200 basis points higher than re-

spectively the equity and option implied credit spread as indicated by the constants in the first

two regressions. So even though the credit spread puzzle still crops up for both models, it is less

pronounced for the option implied credit spreads. Furthermore, the option implied credit spreads

also provide a better fit with an adjusted R2 of 0.23 compared to 0.15 of the regression with the

equity implied credit spread as the explanatory variable. Also important to note is that both model

credit spreads are positively related with the market spread as is expected.

The same regressions are also done with firm dummies and month dummies to control for cross-

sectional variations and time variations respectively. These results are also presented in Table 15.

In both cases the adjusted R2 increases quite substantially indicating that the model credit spreads

do not explain the entire cross-section and time variation of market credit spreads. Although the

coefficients of the model credit spreads decrease slightly, the same conclusion can be made that the

option implied credit spread is a better fit for the market spreads than the equity implied credit

spreads as is indicated by the adjusted R2s.
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Overall the regressions indicate that the model credit spreads are not a spectacularly good

fit of the observed market credit spreads. The Merton model is of course not always an exact

replication of the reality. Firms also issue other types of bonds with different maturities and

seniorities besides the assumed discount bond, and interest rates do not remain constant over

time. Furthermore, many important frictions are left out of the model such as taxes, bankruptcy

costs, agency costs, moral hazard and so on. Over time many developments of the Merton model

have emerged addressing these shortcomings; an extensive review of these extensions is provided by

Sundaresan (2013). So the fact that the credit spreads obtained from the traditional Merton model

do not fit the observed market credit spreads well is not a surprise. However, the results do indicate

that information from options can help explain credit spreads better than stock information.

7 Robustness

The literature that investigates the information content of options via trading strategies often use

a short holding period. One reason is because most studies apply the strategy on stocks which

is a more liquid asset class compared to corporate bonds. While it is possible to completely

change stock portfolios on a frequent basis without incurring relatively high transaction costs, it

is simply not possible to do so for corporate bond portfolios. A theoretical oriented motivation for

using a short holding period is that the information contained in options is a snapshot of market

expectations. It is possible that expectations of the market change in the short-term such that

older information becomes irrelevant. If this is the case, then it is quite difficult to determine

whether options contain relevant information when the portfolios are held for a long period. This

is a reason to apply a shorter holding period of one month to the strategies as a robustness check.

Only the general findings from this robustness check are briefly discussed, but the detailed

portfolio results can be found in Table 16. The performance of the Q1-Q5 portfolios based on

RV IV , TERMSLOPE and V ALUE are generally higher than the Q1-Q5 portfolios with a twelve

month holding period indicating that the information contained in these option measures is more

relevant in the short term, but it is also quite persistent for a longer period. The portfolio results of

the PUTCALL and SKEW option measures do not show significant improvements compared to

the twelve month holding period results. This confirms that there is little evidence for PUTCALL

and SKEW to contain relevant information for corporate bonds prices.
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Table 16: Portfolio results with an one month holding period

This table presents the results of the trading strategies based on the option measures over the sample period of January 1996 to August 2014 in both the Investment

Grade and High Yield universe. The methodology of Jegadeesh and Titman (1993) is employed with a holding period of one month to construct the portfolios. The first

quintile Q1 contains the bonds with the highest values of the sorting variable and the last quintile Q5 holds the bonds with the lowest sorting variable values. The

average annualized return, the annualized volatility, the Sharpe ratio and the annualized 6-factor alpha are shown in the table. Opdyke (2007) tests are employed to test

whether the Sharpe ratios of the portfolios are significantly higher than the corresponding market Sharpe ratio. The 6-factor alphas are tested on significance with t-tests

corrected with Newey and West (1987) standard errors.

Investment Grade High Yield

Q1 Q2 Q3 Q4 Q5 Q1-Q5 Q1 Q2 Q3 Q4 Q5 Q1-Q5

I. RVIV

Returns (%) 1.13 0.92 0.99 0.46 −0.18 1.32 3.20 3.11 3.10 2.36 2.34 0.84

Volatility (%) 4.92 4.57 4.14 4.26 4.66 2.00 9.62 8.14 7.78 8.41 9.38 4.66

Sharpe Ratio 0.23* 0.20 0.24* 0.11 −0.04 0.66*** 0.33 0.38** 0.40** 0.28 0.25 0.18

6F Alpha (%) 0.49** 0.15 0.29 −0.26 −0.34 0.83* 1.87* 1.82* 1.75** 0.97 0.23 1.79

II. PUTCALL

Returns (%) 0.60 0.36 0.58 0.74 0.53 0.07 2.46 2.55 2.78 2.73 1.75 0.70

Volatility (%) 5.08 4.62 4.30 4.48 4.79 2.00 11.70 9.24 8.97 8.83 10.80 4.95

Sharpe Ratio 0.12 0.08 0.14 0.17 0.11 0.03 0.21 0.28 0.31 0.31 0.16 0.14

6F Alpha (%) 0.09 −0.25 −0.16 −0.08 0.31 −0.20 −0.27 1.30* 1.08 1.25** −0.09 −0.18

III. SKEW

Returns (%) 0.35 0.87 0.80 0.80 0.90 −0.55 4.01 1.88 2.62 2.82 2.61 1.36

Volatility (%) 5.32 4.73 4.29 4.03 4.74 2.65 9.10 8.81 8.75 8.21 8.90 5.33

Sharpe Ratio 0.07 0.18 0.19 0.20 0.19 −0.21 0.44*** 0.21 0.30 0.34* 0.29 0.26

6F Alpha (%) −0.03 −0.06 0.29 0.11 0.15 −0.13 2.81** −0.06 1.26 1.06 1.20 1.81

IV. TERMSLOPE

Returns (%) 0.95 0.96 0.97 0.36 −0.07 1.02 4.36 1.90 2.61 1.66 0.24 4.12

Volatility (%) 5.10 4.07 4.36 4.35 4.92 2.56 10.06 7.92 8.00 8.72 11.09 6.00

Sharpe Ratio 0.19 0.24* 0.22 0.08 −0.01 0.40** 0.43*** 0.24 0.33 0.19 0.02 0.69***

6F Alpha (%) 0.18 0.16 0.41 −0.33 −0.26 0.41 2.79*** 0.23 1.07 −0.12 −0.99 4.13***

V. VALUE

Returns (%) 3.27 1.24 0.28 −0.31 −1.02 4.33 7.90 4.45 2.82 1.27 −2.35 10.50

Volatility (%) 6.30 5.21 4.80 4.14 3.12 4.09 10.92 9.23 8.72 8.26 7.84 6.95

Sharpe Ratio 0.52*** 0.24* 0.06 −0.07 −0.33 1.06*** 0.72*** 0.48*** 0.32 0.15 −0.30 1.51***

6F Alpha (%) 3.13*** 0.48 −0.52** −1.12*** −1.73*** 4.86*** 5.25*** 3.78*** 1.30 −0.08 −3.21*** 8.50***

***, **, and * show significance at the 1%, 5%, and 10% level respectively.
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8 Conclusion

This research investigates whether it is possible to extract information from options that is rele-

vant for corporate bonds. This is done by employing corporate bond trading strategies based on

various option based measures. These option measures are confirmed by the literature to contain

information for stocks and the portfolio results of this research do indicate that several option mea-

sures also contain relevant information for corporate bond prices. Some option measures, however,

are found to contain little to no information. Besides employing these trading strategies, more

in-depth analyses are also performed for individual option measures in order to gain insights as to

what kind of information can be obtained from the option market. A summary of the findings is

given next.

Statistical and economical evidence is found that the realized-implied volatility spread describes

a trend in volatility. Related to predicting future volatility is the expectations hypothesis that

links the current implied variance term structure to future implied variances. It is shown that

the expectations hypothesis does generally not hold for this sample of options, but the results

do indicate that the market overreacts to the information contained in the implied variance term

slope. It is also found that the implied volatility skew has predictive power for future credit spreads,

though this does not translate into significantly profitable trading strategies. Lastly, option implied

credit spreads are shown to provide a better fit for observed market credit spreads compared to

equity implied credit spreads.

All in all, it can be concluded that the option market does certainly contain relevant information

for corporate bonds. An immediate question that follows is whether this information can be used to

construct profitable and feasible portfolios in practice. This automatically means that transaction

costs becomes an important factor that has to be incorporated into the strategies. Since the

implied volatility is a snapshot of market expectations, it can change drastically from month to

month resulting in high turnovers. As a consequence, transaction costs will be high especially in

the illiquid corporate bond market. This issue is possibly an interesting topic for future research.

A completely different approach in assessing the information content of the option market with

respect to the corporate bond market is to develop a Kyle (1985) model. This is a a sequential

trading model that determines an equilibrium between inside traders, random noise traders and

market makers. Back and Crotty (2015) investigate the information conveyed in the order flows

of stocks and corporate bonds by developing a Kyle (1985) model with traders who can trade in

either the stock market or corporate bond market. A possibly interesting extension is to include the

option market as an additional market to this model to investigate the trading dynamics between

these markets.
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A Merton Model

Merton (1974) developed a model to obtain credit risk measures from simple firm balance sheet

information. In his model the firm assets are assumed to follow a geometric Brownian motion:

dAt = µAtdt+ σAAtdWt, (12)

where At is the total asset value of the firm, µ is the continuously compounded return on the

assets, σA is the constant asset volatility and Wt is a standard Wiener process. Furthermore, the

firm only has equity and debt as liabilities, where the debt is a single pure discount bond with

payment D at time T . As recognized by Merton, the equity price Et of the firm at time t is the

price of a European call option on the assets At with strike price D and maturity T , which can be

formulated with Black and Scholes (1973) as

Et = AtN(d1)−De−r(T−t)N(d2), (13)

where

d1 =
ln
(
Ater(T−t)

D

)
σA
√
T − t

+
1

2
σA
√
T − t; d2 = d1 − σA

√
T − t.

The risk-free rate r is assumed to be constant andN is the cumulative standard normal distribution.

The equity Et is set to the stock price of the firm. The debt payment D is defined to be the total

liabilities divided by the total shares outstanding and the maturity T is matched to the maturity

of the bond. Thus, the remaining unknown variables are the asset value and the asset volatility.

When these variables are known, then the credit spreads implied by the Merton model can be

obtained in a straightforward manner. First, define the market value of debt Bt as the assets

minus the equity:

Bt = At − Et = At

(
N(−d1) +

De−r(T−t)

At
N(d2)

)
, (14)

where the definition of equity as a call option is used. The definition of the yield to maturity y of

a discount bond can also be used to define the market value of debt as

Bt = De−y(T−t). (15)

Subsequently, by setting both definitions of Bt equal to each other the credit spread s derived from

the Merton model can be computed as

s = y − r = −
ln

(
N(d2) + At

De−r(T−t)
N(−d1)

)
T − t

. (16)

A popular approach to obtain the asset value and asset volatility is given by Jones et al. (1984).

They make use of the fact that equity is a function of asset value and apply Ito’s lemma to obtain

the following relation between the asset volatility and equity volatility:

σE =
∂Et
∂At

At
Et
σA. (17)
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It can be shown with the Black-Scholes option formula that ∂Et
∂At

= N(d1). So substituting this and

the definition of equity as a call option results in

σE =
σAN(d1)

N(d1)− De−r(T−t)

At
N(d2)

. (18)

This relation along with the definition of equity as a call option on the assets can be used to form

a system of equations to solve for the asset value At and asset volatility σA. This research sets

the equity volatility σE as the historical return volatility of the stock measured with daily returns

over a horizon of twelve months.

Another approach to obtain the asset value and asset volatility is to make use of the fact when

the Merton model holds, then the option on the equity Et is a compound option, i.e. an option on

an option. Hull et al. (2004) utilize this fact in order to implement the Merton model. They use

the model of Geske (1979) who derived an analytical formula of the compound option in continuous

time with no-arbitrage conditions. The derived formula for the value of an European put option

Pt(τ,K) with strike price K and maturity τ < T is

Pt(τ,K) = De−r(T−t)M

(
−a2, d2;

√
τ − t
T − t

)
−AtM

(
−a1, d1;

√
τ − t
T − t

)
+Ke−r(τ−t)N(−a2), (19)

where

a1 =
ln
(
Ater(τ−t)

A∗τ

)
σA
√
τ − t

+
1

2
σA
√
τ − t; a2 = a1 − σA

√
τ − t

and M denotes the bivariate cumulative normal distribution function with the first two parameters

as the upper integral limits and last parameter as the correlation coefficient. A∗τ is the asset value

for which the equity equals the strike price K at time τ , that is, it is the solution to the following

equation

E∗τ ≡ A∗τN(d∗1)−De−r(T−τ)N(d∗2) = K, (20)

where

d∗1 =
ln
(A∗t er(T−τ)

D

)
σA
√
T − τ

+
1

2
σA
√
T − τ ; d∗2 = d∗1 − σA

√
T − τ .

One can also interpret A∗τ as the value for which the call option is exactly at-the-money at time τ ,

thus the holder of this option is indifferent between exercising and not exercising the option. This

is an important observation used by Geske (1979) in deriving the formula of the option, because

this allowed him to partition the value of the compound option over the asset value of the firm. If

the asset value is lower than A∗τ , then the put option will be exercised and vice versa.

Instead of formulating the put option as a compound option, it is also possible to use the

traditional Black and Scholes (1973) formula:

Pt(τ,K) = Ke−r(τ−t)N(−d̂2)− EtN(−d̂1), (21)
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where

d̂1 =
ln
(
E0er(τ−t)

K

)
σE
√
τ − t

+
1

2
σE
√
τ − t; d̂2 = d̂1 − σE

√
τ − t.

Here too the equity Et is assumed to follow a geometric Brownian motion with constant option

implied volatility σE . The moneyness κ of this put option at time t is the strike price divided by

the equity price, i.e. κ = K/Et . A system of two non-linear equations can now be set up to solve

for the asset value At and the asset volatility σA by setting the two formulas of the call option, i.e.

the compound option definition and the Black-Scholes definition, equal to each other and using

the following alternative relation of equity:

κEt = E∗τ . (22)

As inputs this system of equations requires information of a single put option on the stock of the

firm which will give the strike price K, time to maturity τ and the implied volatility σE . Note that

the derivations are made assuming European options, but in practice the options on stocks are

American options. OTM put options with a short maturity are used to reduce the errors caused

by this discrepancy, as these options are less likely to be exercised early.
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B Monotonic Relation Test

There are instances in finance where one wants to test whether returns are monotonically increasing.

For example, the Capital Asset Pricing Model implies that expected stock returns should show an

increasing pattern when sorted on their market betas. Another example is to test whether there

is an increasing return pattern in the portfolios of a factor strategy. Consider N + 1 assets with

expected returns µ = (µ0, µ1, ..., µN )′ and one wants to prove the following relation:

µN > µN−1 > ... > µ0. (23)

Patton and Timmermann (2010) developed a nonparametric method to test for this monotonicity

in returns. They use the return differentials of adjacent pairs of securities denoted as ∆i = µi−µi−1

to test this relation. It is assumed that there is a flat or weakly decreasing return pattern under

the null hypothesis.

H0 : ∆i ≤ 0, ∀i = 1, 2, ..., N (24)

The alternative hypothesis is that there is a strict increasing return pattern.

H1 : ∆i > 0, ∀i = 1, 2, ..., N (25)

So the monotonically increasing return pattern is proved by rejecting the null hypothesis. It is also

possible to test for monotonically decreasing returns by simply reversing the order of the assets.

Next, Patton and Timmermann (2010) recognize that if the smallest value of ∆i is larger than

zero, then it must be that ∆i > 0 for every i = 1, 2, ..., N when the alternative hypothesis holds.

Thus, the alternative hypothesis can be rewritten as

H1 : min
i=1,2,...,N

∆i > 0. (26)

This motivates the use of the following test statistic:

J = min
i=1,2,...,N

∆̂i, (27)

where ∆̂i = µ̂i − µ̂t−1 with µ̂=
1
T

∑T
t=1 ri,t. These are the observed sample estimates of ∆i and µi

of the time series of returns {ri,t}Tt=1 of asset i.

Since the distribution of the test statistic is unknown, Patton and Timmermann (2010) imple-

ment the test by means of bootstrapping. This approach has the advantage of not imposing any

distributional assumptions, but it can be less optimal in situations where more information of the

distribution is available. The stationary bootstrap method of Politis and Romano (1994) is used to

randomly draw samples from the observed return set {ri,t | i = 0, 1, ..., N ; t = 1, 2, ..., T}, where i

denotes the asset and t the time index. Instead of drawing from the sample of returns, however,
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the bootstrap method is applied on the set of time indexes {1, 2, ..., T} to draw return samples

{rbi,τ(t) | i = 0, 1, ..., N ; τ(1), τ(2), ..., τ(T )}, where τ(t) denotes the randomly drawn time index.

The drawing of the time index is done only once per bootstrap b and is common across all returns

to preserve any cross-sectional dependencies in the returns. The bootstrapping method has many

similarities to a moving block bootstrap algorithm, but there are several alterations in order to

have stationary sampled series4. These alterations are that the block length and the starting point

are both randomly drawn, as opposed to deterministically fixing them beforehand. The block

length and starting point are drawn from a geometric distribution and an uniform distribution

respectively. The parameters of the geometric distribution are set such that the average length of

a block is six.

The bootstrapped return samples are used to obtain a bootstrap distribution of the test statistic

J under the null hypothesis. This is done by first choosing a point in the null space least favourite

to the alternative hypothesis which is ∆i = 0 for every i = 1, 2, ..., N . Then for each return sample

a bootstrapped test statistic is computed as

Jb = min
i=1,2,...,N

(∆̂b
i − ∆̂i), (28)

where ∆̂b
i is the is the bootstrapped estimate of ∆̂i. This is done for B = 10000 bootstraps and will

give a distribution of the test statistic under the null hypothesis. The p-value is simply computed

as the percentage of times when Jb is larger than J . This approach is similar to the Reality Check

test of White (2000).

4See Politis and Romano (1994) for more details
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C Model-Free Implied Volatility

The traditional way to price options is to specify a price process of the underlying asset and

then derive the option prices with the parameters of this price process. For example, one of

the key assumptions in the option model of Black and Scholes (1973) is that the underlying price

process follows a geometric Brownian motion. The Black-Scholes option price formulas can then be

derived via several approaches such as with Martingale theory or with the Feynman-Kac formula.

A completely different take on this standard approach in option pricing theory is done by Britten-

Jones and Neuberger (2000). They assume that the option prices are a given of which they

extract as much information as possible about the underlying price process. This results in a

characterization of all continuous price processes that are consistent with the current option prices

of the market. Subsequently, they derive the implied volatility that is commonly shared by all

of these consistent processes via no-arbitrage conditions. Since only option prices are required to

compute this implied volatility and thus no specific model, this implied volatility measure is seen as

a model-free implied volatility. The simplified implementation of this model-free implied volatility

developed by Jiang and Tian (2005) is described next.

Let C(T,K) denote a call option that expires at time T with strike price K. Then the integrated

variance5 between the current date 0 and future date T of the underlying forward price process Ft

is given by the following equation:

EF0

[ ∫ T

0

(
dFt
Ft

)2]
= 2

∫ ∞
0

CF (T,K)−max(F0 −K, 0)

K2
dK, (29)

, where a superscript F denotes the forward probability measure. The model-free implied volatility

is obtained by dividing this integrated variance by T and taking the square root. Next, the forward

asset price is translated to the asset spot price St as Ft = erTSt, where r is the risk-free interest

rate. Similarly the forward call price is defined as CF (T,K) = erTC(T,K). A simple change of

variables results in

2

∫ ∞
0

CF (T, erTK)−max(S0 −K, 0)

K2
dK. (30)

As can be observed from this equation is that the integral is taken over an infinite range of strike

prices. This requires that call options exist for a continuous range of strike prices which is not the

case in practice. Only a limited range of strike prices are actually traded on the market and thus

numerical methods are required in order to compute the integral. Following Jiang and Tian (2005)

the integral is approximated with the trapezoidal rule over the truncated bounds Kmin and Kmax.

2

∫ ∞
0

CF (T, erTK)−max(S0 −K, 0)

K2
dK ≈

N∑
i=1

[
g(T,Ki) + g(T,Ki−1)

]
∆K, (31)

5See Britten-Jones and Neuberger (2000) for a detailed derivation of this integrated variance.
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where N is the number of subintervals and ∆K = (Kmax−Kmin)/N is the size of the subintervals.

The function in the summation is defined as

g(T,Ki) =
CF (T,Ki)−max(F0 −Ki, 0)

K2
i

, (32)

where Ki = Kmin + i∆K. The reason for truncating the bounds is because in practice the options

do not span the strike prices from zero to infinity. Jiang and Tian (2005) provide theoretical upper

bounds of the errors that result from truncating the integral. They find that in general when the

truncation bounds are more than two standard deviations from the current stock price then the

truncation errors become negligible. Accordingly, the truncation bounds are set to be at least two

standard deviations from the current stock price whenever possible.

The approximation of the integral requires that there are option prices available for every strike

price Ki. In practice, however, the strike prices only span a small set of discrete values. This issue

is solved by using estimated option prices by means of interpolation. First, the available option

prices are transformed into implied volatilities with the Black and Scholes (1973) model and then a

smooth function is fitted between these implied volatilities with the cubic spline interpolation. The

reason for not directly interpolating between the available option prices is because there will be

numerical complications due to the non-linear relationship between the option price and the strike

price. Finally, the implied volatilities are transformed back into option prices for every strike price

Ki, again with the Black-Scholes model. It is important to note that the Black-Scholes model is not

assumed to be the true pricing model, but it is simply used as a mapping tool between the option

prices and implied volatilities. This interpolation method cannot be used to obtain option prices

outside the bounds of the available option prices. Jiang and Tian (2005) show that extrapolating

these options as the option prices of the maximum and minimum available strike prices reduces

the estimation errors as compared to simply truncating the bounds.
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Correia, M., Richardson, S., and Tuna, İ. (2012). Value investing in credit markets. Review of

Accounting Studies, 17(3):572–609.

Cox, J. C., Ross, S. A., and Rubinstein, M. (1979). Option pricing: A simplified approach. Journal

of Financial Economics, 7(3):229–263.

Cremers, K. M., Driessen, J., and Maenhout, P. (2008a). Explaining the level of credit spreads:

Option-implied jump risk premia in a firm value model. Review of Financial Studies, 21(5):2209–

2242.

Cremers, M., Driessen, J., Maenhout, P., and Weinbaum, D. (2008b). Individual stock-option

prices and credit spreads. Journal of Banking & Finance, 32(12):2706–2715.

Cremers, M. and Weinbaum, D. (2010). Deviations from put-call parity and stock return pre-

dictability.

Culp, C. L., Nozawa, Y., and Veronesi, P. (2014). Option-based credit spreads. Available at SSRN.

DeMiguel, V., Plyakha, Y., Uppal, R., and Vilkov, G. (2013). Improving portfolio selection us-

ing option-implied volatility and skewness. Journal of Financial and Quantitative Analysis,

48(06):1813–1845.

Doran, J. S. and Krieger, K. (2010). Implications for asset returns in the implied volatility skew.

Financial Analysts Journal, 66(1):65–76.

47



Driscoll, J. C. and Kraay, A. C. (1998). Consistent covariance matrix estimation with spatially

dependent panel data. Review of Economics and Statistics, 80(4):549–560.

Easley, D., O’hara, M., and Srinivas, P. S. (1998). Option volume and stock prices: Evidence on

where informed traders trade. The Journal of Finance, 53(2):431–465.

Ederington, L. H. and Guan, W. (2002). Measuring implied volatility: is an average better? Which

average? Journal of Futures Markets, 22(9):811–837.

Fama, E. F. and French, K. R. (1993). Common risk factors in the returns on stocks and bonds.

Journal of Financial Economics, 33(1):3–56.

Fama, E. F. and French, K. R. (1996). Multifactor explanations of asset pricing anomalies. The

Journal of Finance, 51(1):55–84.

Frazzini, A. and Pedersen, L. H. (2014). Betting against beta. Journal of Financial Economics,

111(1):1–25.

Garleanu, N., Pedersen, L. H., and Poteshman, A. M. (2009). Demand-based option pricing.

Review of Financial Studies, 22(10):4259–4299.

Geske, R. (1979). The valuation of compound options. Journal of Financial Economics, 7(1):63–81.

Haesen, D., Houweling, P., and Van Zundert, J. (2013). Residual equity momentum for corporate

bonds. Available at SSRN.

Hausman, J. A. (1978). Specification tests in econometrics. Econometrica, 46(6):1251–1271.

Hillegeist, S. A., Keating, E. K., Cram, D. P., and Lundstedt, K. G. (2004). Assessing the proba-

bility of bankruptcy. Review of Accounting Studies, 9(1):5–34.

Houweling, P. and Van Zundert, J. (2014). Factor investing in the corporate bond market. Available

at SSRN.

Hull, J., Nelken, I., and White, A. (2004). Merton’s model, credit risk, and volatility skews. Journal

of Credit Risk Volume, 1(1):05.

Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. The

Journal of Finance, 42(2):281–300.

Jegadeesh, N. and Titman, S. (1993). Returns to buying winners and selling losers: Implications

for stock market efficiency. The Journal of Finance, 48(1):65–91.

48



Jiang, G. J. and Tian, Y. S. (2005). The model-free implied volatility and its information content.

Review of Financial Studies, 18(4):1305–1342.

Jobson, J. D. and Korkie, B. M. (1981). Performance hypothesis testing with the sharpe and

treynor measures. Journal of Finance, pages 889–908.

Jones, E. P., Mason, S. P., and Rosenfeld, E. (1984). Contingent claims analysis of corporate

capital structures: An empirical investigation. The Journal of Finance, 39(3):611–625.

Jostova, G., Nikolova, S., Philipov, A., and Stahel, C. W. (2013). Momentum in corporate bond

returns. Review of Financial Studies, 26(7):1649–1693.

Kyle, A. S. (1985). Continuous auctions and insider trading. Econometrica, 53(6):1315–1336.

Mayhew, S. (1995). Implied volatility. Financial Analysts Journal, 51(4):8–20.

Merton, R. C. (1974). On the pricing of corporate debt: The risk structure of interest rates*. The

Journal of Finance, 29(2):449–470.

Mixon, S. (2007). The implied volatility term structure of stock index options. Journal of Empirical

Finance, 14(3):333–354.

Newey, W. K. and West, K. D. (1987). A simple, positive semi-definite, heteroskedasticity and

autocorrelation consistent covariance matrix. Econometrica, 55(3):703–708.

Newey, W. K. and West, K. D. (1994). Automatic lag selection in covariance matrix estimation.

Review of Economic Studies, 61(4):631–653.

Ni, S. X., Pearson, N. D., and Poteshman, A. M. (2005). Stock price clustering on option expiration

dates. Journal of Financial Economics, 78(1):49–87.

Opdyke, J. D. J. (2007). Comparing sharpe ratios: so where are the p-values? Journal of Asset

Management, 8(5):308–336.

Pan, J. and Poteshman, A. M. (2006). The information in option volume for future stock prices.

Review of Financial Studies, 19(3):871–908.

Patton, A. J. and Timmermann, A. (2010). Monotonicity in asset returns: New tests with appli-

cations to the term structure, the CAPM, and portfolio sorts. Journal of Financial Economics,

98(3):605–625.

Politis, D. N. and Romano, J. P. (1994). The stationary bootstrap. Journal of the American

Statistical association, 89(428):1303–1313.

49



Rubinstein, M. (1985). Nonparametric tests of alternative option pricing models using all reported

trades and quotes on the 30 most active CBOE option classes from August 23, 1976 through

August 31, 1978. The Journal of Finance, 40(2):455–480.

Stoll, H. R. (1969). The relationship between put and call option prices. The Journal of Finance,

24(5):801–824.

Sundaresan, S. (2013). A review of Mertons model of the firms capital structure with its wide

applications. Annual Review of Financial Economics, 5(1):21–41.

Taylor, S. J., Yadav, P. K., and Zhang, Y. (2010). The information content of implied volatilities

and model-free volatility expectations: Evidence from options written on individual stocks.

Journal of Banking & Finance, 34(4):871–881.

White, H. (2000). A reality check for data snooping. Econometrica, 68(5):1097–1126.

Xing, Y., Zhang, X., and Zhao, R. (2010). What does the individual option volatility smirk tell us

about future equity returns? Journal of Financial and Quantitative Analysis, 45(3):641–662.

50


	Introduction
	Literature Overview
	Option Implied Volatility
	Option Implied Volatility Skew
	Credit Spreads

	Data
	Data Description
	Option Measures
	Realized-Implied Volatility Spread
	Put-Call Implied Volatility Spread
	Implied Volatility Skew
	Implied Variance Term Slope
	Option Implied Value Factor

	Descriptive Statistics

	Portfolio Construction Methodology
	Volatility Analysis
	Option Measure Analyses
	Realized-Implied Volatility Spread
	Put-Call Implied Volatility Spread
	Implied Volatility Skew
	Implied Variance Term Structure
	Value Factor

	Robustness
	Conclusion
	Merton Model
	Monotonic Relation Test
	Model-Free Implied Volatility

