
Column generation with a resource constrained
shortest path algorithm applied to train crew

scheduling

Master Thesis Econometrics and Management Science

Operations Research and Quantitative Logistics

Martine M.C. Verhave

358989

Erasmus University Rotterdam Ab Ovo International
Erasmus School of Economics Business and software solutions

Rotterdam Capelle aan den IJssel

Faculty adviser: Supervisors:

Dr. T.A.B. Dollevoet Drs. P. Koot

Second reader: Drs. D. Veldhuis

Dr. D. Huisman

15th December, 2015

Column generation with a resource constrained shortest path algorithm ap-

plied to train crew scheduling

Author: Martine M.C. Verhave

Student number: 358989

E-mail: 358989mv@student.eur.nl

Content: Master Thesis Econometrics and Operational Research - Operations Re-

search and Quantitative Logistics

Study: Master Econometrics and Operational Research

Faculty: Erasmus School of Economics

Educational institute: Erasmus University Rotterdam

Internship company: Ab Ovo

Academic year: 2014 - 2015

Place: Rotterdam

Date: 15th December, 2015

Faculty adviser: Dr. T.A.B. Dollevoet

Second reader: Dr. D. Huisman

External supervisors: Drs. P. Koot and Drs. D. Veldhuis

i

ABSTRACT

This thesis deals with a large real world application of the crew scheduling problem.

We formulate this problem as a set covering problem with additional constraints. The

columns of the formulation correspond to shifts that are in accordance with the labour

rules. The crew scheduling problem is proven to be NP-complete, and complete enumer-

ation of all shifts is computationally intractable for most real-life applications. Column

generation techniques are often used in literature to solve (integer) linear programs

that are too large to consider all variables explicitly. In this thesis, we investigate the

applicability of column generation to crew scheduling. The restricted master problem is

the LP relaxation of the original program. Promising columns are generated inside the

pricing problem. The pricing problem is formulated as a resource constrained shortest

path algorithm. Performance improvements are obtained if we solve the pricing problem

over different parts of the network. The independent pricing subproblems can be solved

in parallel. The column generation technique provides good quality solutions within

reasonable computation time for problem instances with up to 1500 tasks.

Key words: crew scheduling, set covering formulation, column generation, pricing

problem, resource constrained shortest path

ii

PREFACE

I am thankful for everyone who has supported me during my graduation.

My deepest gratitude is to my faculty adviser Twan Dollevoet. Thank you for your

great and enthusiastic support, both during the programming phase and the writing

process. You gave me a lot of time and expertise. I would like to thank my second

reader Dennis Huisman as well. Thank you for giving your professional evaluation.

Of course, I would like to thank my external supervisors Dieter Veldhuis and Peter Koot.

You gave me the opportunity to write my thesis at Ab Ovo International. It has been

a pleasure working with you. Thanks, too, to everyone who made the staff weekend in

Noordwijk an unforgettable experience.

I would like to express my gratitude to my family and friends for their unreserved love

and support. I want to make a special mention for the support given by Damiën Horsten

and Myrna van der Plas. Thank you for encouraging the use of correct grammar and

commenting on this thesis.

At this point I would also like to direct a word of thanks to my fellow students. The

past four years were a great experience, and I am grateful for the fantastic people I

have met during those years. Now it is time to go our own way and show the world

what we have learned from college.

Last but not least, I would like to thank you, reader, for your time and interest.

Martine Verhave

Rijnsburg, 2015

iii

Contents

1 Introduction 1

2 Planning process at the European rail-cargo company 3

2.1 Overall planning process . 3

2.2 Crew scheduling at the European rail-cargo company 4

3 Literature review 9

3.1 Crew diagramming methods . 9

3.2 Airline crew scheduling . 10

3.3 Heuristics . 10

3.3.1 Run cutting heuristics . 10

3.3.2 Block cutting heuristics . 10

3.4 Metaheuristics . 11

3.4.1 Genetic algorithms . 11

3.4.2 Simulated annealing . 12

3.4.3 Tabu search . 12

3.5 Set covering approaches . 13

3.5.1 Lagrangian relaxation . 14

3.5.2 Column generation . 15

3.5.3 Combination of Lagrangian relaxation and column generation 17

3.6 Conclusion of the literature review . 18

4 Problem formulation 19

5 Methodology 25

5.1 Crewblock construction . 25

5.1.1 Split large crewblocks based on cutting rules 26

5.1.2 Block cutting and set partitioning . 27

5.1.3 Merge multiple workblocks into one crewblock to reduce the problem size . . 29

5.2 Hand-over planning method . 32

5.3 Column generation . 33

5.3.1 General idea of column generation . 33

5.3.2 Restricted master problem . 34

5.3.3 Pricing problem . 34

iv

5.3.3.1 Resource constrained shortest path algorithm 35

5.3.3.2 Dominance rules . 37

5.3.3.3 Multiple pricing problems . 41

5.3.3.4 Graph construction and resources 42

6 Data description 58

6.1 Fixed parameter values . 58

6.2 Problem instances for which the optimal solution is known 59

6.2.1 Problem instance one . 60

6.2.2 Problem instance two . 61

6.2.3 Problem instance three . 62

6.2.4 Problem instance four . 65

6.3 Problem instance of the medium-size European rail-cargo company 65

6.4 Problem instances derived from the real-life problem instance 68

7 Computational experiments 70

7.1 Results for the problem instances with known optimal solution 70

7.1.1 Results for problem instance one . 71

7.1.2 Results for problem instance two . 73

7.1.3 Results for problem instances three and four 77

7.2 Sensitivity analysis . 79

7.2.1 Crewblock construction . 80

7.2.2 Effect of the dominance rule . 84

7.2.3 Effect of a split per day of the week . 87

7.2.4 Effect of the number of crewblocks . 88

7.2.5 Effect of the data size and complexity of the break requirements 88

7.2.6 Effect of the number of employment groups 89

8 Conclusion and Further research 91

References 97

Appendices 100

A Operational constraints for the real-life problem instance 100

B Student’s t-test 102

v

1 Introduction

The market share of rail-cargo companies has been increasing consistently over the past few years

(Woodburn (2012)). There is an increased level of competition within the rail-cargo sector. Due to

governmental savings as a result of economic regression and privatization of transport companies,

public financing of this sector is diminished and re-organization is forced. As a consequence, there

is an increasing demand for computer-assisted approaches and decision support systems that can

construct good quality train timetables, vehicle schedules and crew roster schemes automatically. In

this paper, we focus on the crew scheduling process at a medium-size European rail-cargo company.

Each train operated by the company needs a driver. More specific, each train activity included in

the vehicle schedule must be performed by an employee and is therefore called a crew requirement.

Examples of train activities are driving operations, shunting operations, fueling operations, coupling

operations and technical inspections of the train. A shift is a sequence of crew requirements and

other activities for a single crew member to be executed in a day, including possible break moments

(Qiao et al. (2010)). The crew diagramming problem (CDP) is to find a minimum cost set of crew

rosters covering the crew requirements. A crew roster is a sequence of shifts carried out by one driver

in a week, that is in accordance with the government regulations, collective labour agreements and

union demands that are applicable to the driver.

In addition to the large set of operational requirements that must be fulfilled, it is important

to pay attention to the requests of the company’s employees. According to Abbink et al. (2005),

the employees of the largest railway company of the Netherlands, NS Reizigers, were not satisfied

with the new scheduling rules provided by the management in 2001. NS Reizigers introduced a

set of rules called Circling-the-Church. Due to the introduction of this new set of rules, there was

almost no variety in the activities performed by each employee, and some drivers and conductors got

a large share of the unattractive part of the workload. This led to nationwide strikes in 2001 and

an alternative set of rules, called Sharing-Sweet-and-Sour, was developed in cooperation with the

employees of NS Reizigers. The introduction of this alternative set of rules satisfied the request of

employees for more variety, and improved the trains’ punctuality and the efficiency of NS Reizigers.

The CDP is commonly decomposed into the crew scheduling problem (CSP) and the crew ros-

tering problem (CRP). This decomposition is described in detail by Hartog et al. (2009) and Caprara

et al. (1997). The CSP is to find the minimum cost set of anonymous shifts that covers all crew

requirements derived from the annual vehicle schedule and fulfills the operational constraints. Fea-

sible crew rosters are constructed and assigned to the individual employees during the crew roster-

ing phase. The total operation cost of a transport company can be reduced remarkably by using

1

computer-aided approaches that construct crew roster schemes automatically instead of generating

crew rosters manually, see Abbink et al. (2005) and Huisman et al. (2005).

In this paper, we focus on the CSP faced by a medium-size European rail-cargo company. Fis-

chetti et al. (1989) have proven that the CSP is NP-complete, and the CSP can not be solved

to optimality within a reasonable computation time for most problems that arise in practice. The

explicit consideration of all feasible shifts is computationally intractable for most real-life CSPs. Col-

umn generation techniques and metaheuristics are examples of solution methods that work well in

practice. We present a resource constrained shortest path (RCSP) algorithm that is used in the

context of column generation to crew scheduling. We focus on the process of constructing crew

schedules for train drivers, given the annual vehicle schedule. Other crew members fall outside the

scope of this paper.

The remainder of this paper is organized as follows. The general planning process at railway

companies is described in Chapter 2. The crew scheduling process at the medium-size European

rail-cargo company is explained in detail in Chapter 2 as well. Chapter 3 provides an overview of

existing literature on crew diagramming. The mathematical formulation of the problem is presented

in Chapter 4. In Chapter 5, we discuss the outline of the methodology used to solve the CSP. The

dataset provided by the medium-size European rail-cargo company is described in Chapter 6. Small

problem instances, some derived from the original dataset, are used for sensitivity analysis. These

datasets are also described in Chapter 6. The results of computational experiments are reported

in Chapter 7. We end this paper with some concluding remarks and recommendations for future

research.

2

2 Planning process at the European rail-cargo company

The planning process at railway companies is commonly decomposed into four planning levels. These

planning levels are described in Section 2.1. Section 2.2 describes the crew scheduling process at

the European rail-cargo company, including a detailed description of the operational constraints that

must be fulfilled by the crew schedule.

2.1 Overall planning process

According to Huisman et al. (2005), the planning process at railway operators is commonly decom-

posed into four levels, namely the strategic, tactical, operational and dispatching level. The aim of

this section is to describe these planning levels in more detail.

The strategic level takes place one or more years before the actual plan is taken into operation.

At this level, the management team takes a critical look at the companies’ current state. The

management team focuses on achieving long-term objectives, and decisions are made based on the

expected growth of the network and services. Rail fleet management software is used to determine the

number and types of locomotives and wagons. The management team evaluates different scenarios

of closing existing crew depots or opening new depot locations. Setup costs and union agreements

are important factors that influence the decisions made by the management. The capacity of each

crew depot is aligned with the expected future developments.

The annual timetable is built at the tactical level, one year to two months in advance. A timetable

is a schedule of train services planned in a certain period, that satisfies the service level agreed on.

A train service is the driving operation with cargo or passengers between two stations, specified

by a departure and arrival time. Most railway companies design a timetable for one week that

is representative for all weeks in the planning period. This week is called the model week. The

timetable constructed for the model week is duplicated for the rest of the planning period. The

cyclic timetable must be modified for some days, for example due to speed limitations as a result of

track maintenance.

Two planning problems arise at the operational level, namely the vehicle scheduling problem

(VSP) and the crew diagramming problem (CDP). The VSP is to assign rolling stock units, both

locomotives and wagons, to cover all train services in the timetable. Several other train activities are

planned, such as shunting operations and coupling activities. The CDP is to find the minimum cost

set of crew rosters covering all crew requirements that are derived from the vehicle schedule. Crew

rosters are constructed in accordance with the government regulations, collective labour agreements

and union demands that are applicable to the crew.

3

Real-time control of the overall planning is necessary to deal with disruptions, such as an accident

at a certain part of the infrastructure which makes train traffic impossible on that line for a certain

period of time. Decisions on how to deal with a disturbance need to be made in a short time

period of just a few minutes, and heuristic methods are required (Huisman et al. (2005)). Crew

requirements that remain unassigned due to disruption during daily operations or health issues of

drivers are performed by available reserve crews. A reserve crew is an employee that stays at home

or at a large station, ready to work if required. Reserve crew have minimum guaranteed hours paid,

even if no crew requirement is performed. As a result, reserve crew is an expensive resource.

2.2 Crew scheduling at the European rail-cargo company

The CSP arises at the operational level. By then, the vehicle schedule for the model week is

constructed. Each train activity must be assigned to one crew member. In this section, we introduce

some terminology and give a description of the crew scheduling process at the European rail-cargo

company. The operational constraints that must be fulfilled by the individual shifts, crew schedule

and crew rosters are described.

Recall that the vehicle schedule covers all train services derived from the timetable. Rolling stock

deadheading operations to reposition the rolling stock units between stations or to locate the units

at a shunt yard are planned in the vehicle schedule as well (Caprara et al. (1997)). Some local

train activities are scheduled, e.g., fueling operations, coupling operations and brake tests. The

sequence of train activities planned on the same locomotive in the model week is called a locline.

The model week starts at 12 AM on Sunday. Several loclines are scheduled in time behind each

other, so that a circulation of one or more weeks is formed. This circulation is called a locline cycle.

Each locline is included in exactly one locline cycle. The same locomotive is used to operate the

train activities planned on successive loclines in the cycle in consecutive weeks. Figure 1 shows a

schematic representation of a locline cycle with three loclines. The locomotive that is assigned to

locline Li in the first week is assigned to locline Lj in the p-th week, with i ∈ {0, 1, 2}, p ∈ Z≥0 and

j = (i + p − 1)(mod 3).

Figure 1: Example: Locline cycle with three loclines

L0

L1

L2

4

The set of all train activities planned in the model week is given by T and the set of locline cycles

is given by LC . Cycle l ∈ LC is represented by the sequence of train activities planned in time behind

each other on the loclines in l , i.e. l = {t1,l , ..., tnl ,l} where ti ,l ∈ T for all positions i ∈ {1, ..., nl}
and nl the number of train activities in locline cycle l . The end location of train activity ti ,l must

be equal to the start location of activity t(i)(mod nl)+1,l , for all positions i ∈ {1, ..., nl}. Furthermore,

these train activities can not overlap in time. A locline cycle is only workable if it is in accordance

with the conditions mentioned above.

The crew requirements that can be executed by a driver are defined based on the traction knowl-

edge, route knowledge and skills. The driving license of a crew member determines the locomotive

types that the employee can drive. This information is called traction knowledge, see Laplagne

(2008). Similarly, crew members are trained to operate on certain parts of the network and they can

only drive trains on routes that they are familiar with. The employee’s skills determine the types of

crew requirements that the driver can perform. There are two driver work functions, namely local

drivers and global drivers. Local drivers have knowledge of a small part of the network and can only

fulfill certain crew requirements. The traction knowledge, route knowledge and skills of global drivers

are more expanded. The work regime of an employee specifies the collective labour agreements and

union demands that are applicable to the driver.

Each driver is connected to exactly one crew depot, which is the employee’s home base. The other

crew depots are away locations of this employee (Vaidyanathan et al. (2007)). An employment group

is a group of drivers who have the same home base location, work regime and work function. For

simplicity, we assume that all drivers of an employment group have the same route knowledge,

traction knowledge and skills. In practice, this will not be the case and the planning must be

adjusted manually to correct for this.

Shifts with a duration of at least 3 hours between 10 PM and 6 AM are night shifts. An

international shift starts from or ends up at a crew depot that is located in another country than the

home base location of the crew member who operates the shift, or it covers at least one international

crew requirement. These two characteristics define the shift type. Night shifts are valued less

attractive than regular day shifts, and drivers claim an additional payment to cover these unattractive

shifts. Further, drivers claim an additional payment if they must work on Monday before 4 AM or

on Friday after 7 PM.

The rolling stock units may not be left unattended, unless the driver has performed a shut-

down activity to secure the unit whilst unmanned. It is likely that this option makes the schedule

more efficient, since the driver can be used to cover other crew requirements. The equipment and

engines must be checked if the locomotive is restarted. The shut-down and start-up activities take

a non-negligible amount of time to execute. These activities are planned in the vehicle schedule. A

5

locomotive that can be left unattended is called an immobilized locomotive. A mobilized locomotive

is not allowed to be unmanned.

Relief locations are the subset of all locations where a crew change on a mobilized locomotive

can be planned (Banihashemi and Haghani (2001)). The hand-over of responsibility between the

drivers involved in a crew change on a mobilized locomotive ensures that the locomotive is not left

unattended. A relief opportunity exists between two crew requirements planned in sequence on the

some locomotive if the end location of the first activity is a relief location, and the idle time between

the crew requirements is larger than or equal to the hand-over duration. The duration of a hand-over

does not depend on the relief location, and is equal to 1 minute. A window of relief opportunities

exists if the time gap before the train departs from a relief location is larger than 1 minute. More

information about relief opportunities can be found in Laplagne (2008).

The sequence of crew requirements between two consecutive relief opportunities in a locline cycle

is called a workblock . These crew requirements need to be performed by the same driver. This driver

must have the route knowledge, traction knowledge and skills to perform all crew requirements in the

workblock. A schematic representation of a locline is shown in Figure 2. No other locline is planned

in time behind this locline. Local train activities, such as coupling operations and brake tests, are

labeled by the term local. The term leg is used to refer to the driving operations with cargo and

the vehicle deadheading operations. Shut-down (down) and start-up (up) activities are planned if

the rolling stock unit is left unattended. No driver can transfer from one rolling stock unit to another

one at location D. The start time and end time of each train activity are depicted. For example, the

shut-down activity specified by ’Th. 1310 - 1315’ is scheduled on Thursday from 13:10 till 13:15.

A disruption during daily operations can have consequences both on the vehicle schedule and

crew schedule. Suppose that a train is delayed. The driver who takes over the locomotive must wait

at the relief location for the train to arrive, and it is reasonable that both drivers involved encounter

problems during the rest of their working day. To reduce the consequence of disturbances on the

crew schedule, the number of crew changes on a mobilized locomotive is limited. The planner can

combine multiple workblocks planned in time behind each other on the same locline cycle into one

crewblock. The crew requirements in a crewblock are performed by a driver who has the route

knowledge, traction knowledge and skills to perform each activity in the elementary sequence. The

advantage of combining multiple workblocks into one crewblock is the reduced size of the problem,

which will lead to shorter computation times. A drawback is that the solution quality might depend

on the number of workblocks that are combined into one crewblock. In particular, one might be able

to reduce the cost of the solution by decreasing the number of workblocks that are combined into

one crewblock.

6

Figure 2: Example: Locline cycle with one locline

LEG (S to A) LOCAL (A) LEG (A to B) LOCAL (B) LEG (B to S) DOWN (S)

UP (S)LEG (S to C)LEG (C to D)LOCAL (D)LOCAL (D)

LOCAL (D) LEG (D to S) DOWN (S) UP (S) LEG (S to B)

LOCAL (B)LEG (B to A)LOCAL (A)LEG (A to S)DOWN (S)UP (S)

Mo. 0200 - 0240 Mo. 0240 - 0310 Mo. 0320 - 0540 Mo. 0540 - 0700 Mo. 0701 - 0840 Mo. 0840 - 0845

Mo. 1200 - 1205

Mo. 1205 - 1400Mo. 1500 - 1650Mo. 1652 - 1800Mo. 1800 - 1905

Mo. 1940 - 2020 Mo. 2020 - 2200 Mo. 2200 - 2205 Th. 0355 - 0400

Th. 0400 - 0539

Th. 0600 - 0740Th. 0740 - 1000Th. 1005 - 1120Th. 1120 - 1300Th. 1310 - 1315Mo. 0155 - 0200

Relief opportunity:
in different workblocks

No relief opportunity:
in the same workblock

No hand-over needed:
in different workblocks

Crew deadheading refers to the repositioning of crew between two relief locations. A taxicab or

car is used to transfer crew between relief locations that are far apart, while a bicycle and by foot

are suitable to travel between neighboring locations. Shifts can also contain passenger activities,

meaning that a driver is traveling as a passenger on a train. If more than one driver is allocated to a

locomotive at the same time, we assume that one qualified driver performs the actual train activities

and that the other crew members are passengers on the train. Passenger activities are planned on

individual train activities. In case of the European rail-cargo company, each driving operation can

be used for crew deadheading. See Vaidyanathan et al. (2007) for more information about crew

deadheading.

Each individual shift observes a set of working rules, concerning shift hours, driving time regula-

tions and required breaks. The following issues need to be addressed:

• The duration of the shift, also called the spread time of the shift, must be within some

predefined time interval. This interval depends on the work regime and work function of the

driver who operates the shift. Further, the time interval may be different for national and

international shifts.

• The break requirements depend on the work regime and work function of the driver who

operates the shift, the type and spread time of the shift. The total break time required, the

7

minimum duration per meal break and the time window in which the first break must take

place after the start of the shift are given. It is possible to have a break on the locomotive or

during crew repositioning.

• The total duration of all driving operations in one shift may not exceed the maximum driving

time, which depends on the work regime and work function of the employment group to which

the shift is allocated, and the shift type. Passenger activities are not considered as driving

time.

• All shifts operated by a local driver start and end at the home base location of the driver.

Global drivers may rest in a hotel at an away location for a maximum of one consecutive night,

i.e. the number of overnight stays is limited to one for global drivers.

• A log in activity of 10 minutes is required at the start of a shift. Furthermore, each shift ends

with a log out activity of 5 minutes. Both crew activities are planned at a crew depot.

Let D be the set of employment groups. The crew roster scheme is subject to a number of com-

prehensive constraints, concerning the percentage of overnight stays, regulating crew capacities, etc.

These rules involve multiple shifts at the same time. The following set of constraints must be fulfilled.

• Consider employment group d ∈ D. Let
¯
Vd and V̄d be the minimum and maximum average

weekly workload per driver of employment group d , respectively. The average weekly workload

per driver of the employment group, 〈Vd〉, is equal to the total spread time of the shifts

allocated to group d divided by the number of crew necessary to operate these shifts. It must

hold that V̄d ≥ 〈Vd〉. Further, the management team prefers that 〈Vd〉 ≥
¯
Vd . This is taken

into account in the objective function, i.e., a penalty cost is incurred if 〈Vd〉 <
¯
Vd .

• The minimum average number of rest days per driver per week is 2. This is computed per

employment group.

• Let fd be the maximum fraction of shifts allocated to employment group d ∈ D with an

overnight stay at the end. It must hold that fd = 0 if employment group d consists of local

drivers. Global drivers must return to their home base location at least every two shifts, and

it must hold that 0 ≤ fd ≤ 0.5 if global drivers are part of employment group d .

Some rostering aspects can only be taken into account during the crew rostering phase. For

example, the connection time between two adjacent shifts performed by the same employee should

satisfy the corresponding standards. The minimum and maximum required rest time depend on

whether the crew member spends this time at home or at a hotel away from his home base. Fur-

thermore, the weekly workload of a driver that is part of employment group d ∈ D may not exceed

the maximum weekly workload, which is larger than or equal to V̄d .

8

3 Literature review

In this chapter, existing literature on crew scheduling and crew rostering is reviewed. First, some

papers are presented that review methods and algorithms that are used to solve the CDP. The

differences between the airline CSP and the railway CSP are described in Section 3.2. Heuristics,

metaheuristics and set covering approaches that are used in literature to solve CSPs are described in

Section 3.3, Section 3.4 and Section 3.5, respectively. Finally, we position the scope of our analysis

within the existing literature and give a conclusion on how the reviewed literature can be used.

3.1 Crew diagramming methods

The CDP has been studied extensively in the past, especially for airline and mass-transit crew

scheduling applications. The need for efficient computerized crew scheduling algorithms to solve the

CDP faced by railway companies has increased over the past three decades, as the complexity of the

planning puzzle grew and manual planning became intractable.

The CDP is a challenging planning problem faced by many companies, such as transport com-

panies, call centers and hospitals. Each company has unique characteristics, resulting in a need for

specific mathematical models and algorithms to solve the staff rostering problem in different areas

of application. An overview of almost 700 studies in the area of crew diagramming that have been

published since 1950 is given by Ernst et al. (2004a). Most of these papers focus mainly on the crew

scheduling and crew rostering phase, but some also cover workforce planning and other related areas.

The papers are classified according to the type of problem addressed, the application areas covered

and the methods used. Ernst et al. (2004b) review scheduling and rostering methods and comment

on the applicability of the techniques for solving the CDP in different application areas. The authors

mention that literature is skewed towards mathematical programming and metaheuristic approaches.

Sodhi and Norris (2004) present a flexible and fast modeling approach in which the CDP is divided

into stages that can each be solved with a standard mixed integer linear program (MILP) solver or

manual approaches. Three types of shifts exist, i.e. early, late and night shifts. The first stage of this

approach is decomposed into three phases and the aim is to construct the rest-day pattern including

shifts. A single graph is created across all depots and a MILP model is solved to produce the patterns

that contain an ‘optimal’ rest-day pattern for a specific depot. A depth-first search heuristic is used

to find the rest-day pattern for a specific depot using the output of the MILP model. In the second

stage, concrete shift are assigned to the created rest-day pattern. This problem is modeled as an

assignment problem with side-constraints. Sodhi and Norris (2004) describe an application at the

London Underground. They use data from different depots, with crew sizes ranging from 30 to 150

9

drivers. Solving the MILP model in the first stage takes a few minutes at most and it is solved within

2% from optimality. The computation time for the second stage is only a few seconds.

3.2 Airline crew scheduling

Several review papers are available that address crew planning methods and algorithms with appli-

cability in the airline sector, including Souai and Teghem (2009) and Sellmann et al. (2002). In

general, the railway CSP is more complex than the airline CSP, as more activities are planned in

the train schedule than in the aircraft schedule. The number of feasible shifts is larger for railway

companies. Nevertheless, some methods used for airline applications can solve the rail CSP within a

reasonable time limit.

3.3 Heuristics

Heuristic methods based on rules used by manual planners were extensively used in the past to solve

the CSP. It was not possible to solve reasonable size problem instances with the technology available

then. Nowadays, heuristics are used to reduce the problem size so that mathematical programming

can be used to find a solution within a reasonable time limit. Laplagne (2008) claims that heuristics

are needed in at least one stage to solve large-size CSP instances with mathematical approaches

presented in literature.

3.3.1 Run cutting heuristics

Run cutting techniques are based on the idea used by manual planners to cut locline cycles into

crewblocks using cutting rules. Thereafter, two or three of these crewblocks are combined into one

shift based on their combination quality. The quality of a crewblock combination is evaluated in

terms of the number of driving operations covered and in terms of the time left for subsequent crew

requirements. Each shift must obey the relevant working rules. All crewblocks are included in at least

one shift and the cost of the solution is calculated based on shift characteristics. The solution quality

can be improved by using other criteria to cut the locline cycles into crewblocks and by exchanging

crewblocks between the shifts. The run cutting approach is often used to generate an initial feasible

schedule, see Cavique et al. (1999).

3.3.2 Block cutting heuristics

An algorithm for the CSP with bin packing features is presented by Qiao et al. (2010). The crew

scheduling process is decomposed into two parts, namely block cutting and piece matching. The

10

block cutting process cuts the locline cycles only at relief locations, and the minimum and maximum

length of a crewblock are set to reduce the problem size. There are different cutting patterns, as the

locline cycles can be cut at several points. All feasible blocks are generated given the set of cutting

patterns and a large candidate list of crewblocks is formed which covers each crew requirement at

least once. The piece matching process is formulated as a bin packing problem and the objective is

to minimize the total costs of the bins, i.e. the shifts, such that all crew requirements are covered

and the operational requirements are fulfilled. A modified best-fit-decreasing heuristic is used to find

a solution for the piece matching process.

Ball and Benoit-Thompson (1988) provide an approach that iterates between the solution of

a shortest path problem and the solution of a matching problem to solve the CSP. The block

partitioning problem is formulated as a shortest path problem and the non-linear objective function

of this problem is updated based on information obtained from the solution of the matching problem

at each iteration. The solution of the matching problem is a set of shifts that covers all crew

requirements at least once.

3.4 Metaheuristics

Research in metaheuristics and their application has become very popular over the last twenty years,

see Laplagne (2008). In this paper, the following definition of a metaheuristic is used.

“A metaheuristic is formally defined as an iterative generation process which guides a subordinate

heuristic by combining intelligently different concepts for exploring and exploiting the search space,

learning strategies are used to structure information in order to find efficiently near-optimal solutions.”

(Blum and Roli (2003))

3.4.1 Genetic algorithms

Genetic algorithms rest on the idea of natural selection, stated by the English naturalist and geologist

Charles Darwin (1809 - 1882). First, a large candidate list of feasible shifts is constructed. The

population of candidate solutions will evolve to a population with a better solution quality, by using

mutation and crossover techniques to improve the candidate solutions. Each population member is

represented by a chromosome, which contains one bit per shift. The bit is one if the shift is selected

in this candidate solution. The weakest candidate solutions in the population are replaced by new

offspring in each iteration. Crossover, mutations and repair heuristic are applied to the newly added

members, such that enough variation is present in the solution space. A detailed description of

genetic algorithms can be found in the paper written by Beasley and Chu (1996).

11

Souai and Teghem (2009) describe an approach based on a hybrid genetic algorithm that solves

the two subproblems of the CDP simultaneously. First, a subset of feasible shifts is generated for

each day in the planning horizon by solving a set partitioning problem (SPP) or by using a graph

theoretic heuristic. Second, the selected shifts are assigned to the available crew members in order

to build a solution in which all operational constraints are fulfilled. It might occur that some shifts

can not be assigned to a driver. Multi-point crossover operations and mutations are used to change

one or more solutions in the population. A legality repair heuristic and feasibility repair heuristic are

described that can be used to make the solution legal and feasible, respectively. Three real-world

problem instances for airline crew-pairing and rostering were solved within 2 hours of computation

time.

3.4.2 Simulated annealing

Emden-Weinert and Proksch (1999) present a simulated annealing algorithm for the airline crew

pairing problem. A run cutting formulation is used to construct a set of pairings. Computational

results are given for real-word test problems with up to 4600 flights per month. Combining simu-

lated annealing with a problem specific local improvement heuristic can reduce the run time, while

improving the solution quality.

3.4.3 Tabu search

Tabu search algorithms are methods employing local search methods used for mathematical opti-

mization. Neighboring solutions are explored and worse solutions can be accepted if it is not possible

to improve the solution by a move. In this way, the algorithm does not get stuck in a local optimum.

Previous visited solutions are stored on the tabu list. It is not allowed to select any solution appearing

in the tabu list as the next solution. The tabu list is dynamically updated during the search. The

best found solution is returned when the algorithm terminates. For a technical study on tabu search

algorithms, see Glover (1989) and Glover (1990).

Cavique et al. (1999) propose a tabu search algorithm for the CSP that is based on a run cutting

approach. The run cutting heuristic is used to construct an initial schedule and the tabu search

heuristic is used during the improvement phase, where the goal is to reduce the number of shifts

selected in the solution. After each iteration, expensive shifts are quashed and the run cutting

process is used to construct a set of shifts for the subproblem. A tabu list is used to avoid the

creation of shifts that were previously removed from the solution. Cavique et al. (1999) also describe

a sub-graph ejection chain method based on the formulation of the CSP as the maximum cardinality

matching problem on a non-bipartite graph. This method starts from an initial solution and attempts

12

to improve the current solution iteratively. As the number of possible graphs is large, a tabu search

framework using compound neighborhoods is used to solve the problem.

3.5 Set covering approaches

The CSP is often defined as a set covering problem (SCP) or a set partitioning problem (SPP), see

for example Jütte and Thonemann (2012). The columns of this formulation are shifts that are in

accordance with the government regulations and labour rules. The explicit construction of all feasible

shifts is computationally intractable for most real-world problem instances, and linear programming

or branch-and-price algorithms are needed, as mentioned by Qiao et al. (2010). The problem size

is reduced by merging several workblocks into one crewblock. A large set of candidate shifts is

constructed and added to the formulation. The problem is solved with the current set of shifts.

Let S be the set of candidate shifts added to the formulation. The set of crewblocks that must

be covered is given by C . The binary decision variable Xs indicates if shift s ∈ S is selected in

the final solution (1) or not (0). The cost to operate shift s ∈ S is given by cs . Binary parameter

a1
c,s indicates if crewblock c ∈ C is included in shift s ∈ S (1) or not (0). We assume that every

crewblock must be assigned to at least one driver, and that the minimum-cost set of shifts can only

be found if each crewblock is included in at least one shift in S . The set covering (set partitioning)

solution is the minimum-cost subset Z ⊆ S of shifts, such that each crewblock is included in at least

(exactly) one shift in Z . There are a lot of extra constraints compared to a standard SCP and the

following SCP with side-constraints is used.

min
∑
s∈S

csXs (3.1)

s.t ∑
s∈S

a1
c,sXs ≥ 1 ∀c ∈ C (3.2)∑

s∈S

gp,sXs ≤ dp ∀p ∈ F = {1, ..., f } (3.3)

Xs ∈ {0, 1} ∀s ∈ S (3.4)

The objective is to minimize the total cost associated with the solution (3.1). Constraints (3.2)

indicate that every crewblock is covered by at least one selected shift. If a crewblock is included in

more than one selected shift, we assume that one crew member performs the actual crew requirements

13

and that the other crew members are passengers on the locomotive. There is equality in constraints

(3.2) in the set partitioning formulation, so that each crewblock is covered exactly once. Constraints

(3.3) are additional constraints based on government regulations and labour rules. For instance, one

can limit the number of shifts selected in the solution. The shifts in the candidate solution obey the

naturally occurring constraints, and rules for individual shifts are not taken into account in (3.1) -

(3.4).

Willers et al. (1995) present a model for solving the bus driver scheduling problem. This model is

a combination of set partitioning and set covering constraints with additional constraints, as driving

operations at the start and end of the day are never overcovered. First, the number of shifts selected

is minimized by using a primal steepest edge algorithm starting with an initial set of shifts. Secondly,

a constraint is added to the formulation which ensures that the number of shifts can not increase

and a primal steepest edge algorithm is used to minimize the total cost of the shifts selected. As a

consequence, minimizing the number of shifts has absolute priority. A dual approach is presented,

which is faster than the primal strategy for 18 out of 20 real-world problem instances.

The paper written by Smith and Wren (1988) formulates the bus driver scheduling problem as a

SCP. The goal is to minimize the total number of shifts, such that all driving operations are covered

at minimum cost and all relevant side-constraints are fulfilled. A linear relaxation of the set covering

formulation is solved and constructive heuristics reduce the problem size. A branch-and-bound

method is used to find an integer optimal solution of the CSP that meets all side-constraints.

Recall that complete enumeration of all feasible shifts is computationally intractable for most

real size problem instances. The Lagrangian relaxation method and the column generation technique

can be used to reduce the computation time. The Lagrangian relaxation approach is described in

Subsection 3.5.1. The idea of column generation and papers that use this technique to solve the

CSP are presented in Subsection 3.5.2. The studies presented in Subsection 3.5.3 describe methods

that use a combination of these two techniques.

3.5.1 Lagrangian relaxation

The idea of the Lagrangian relaxation approach is to relax some of the difficult constraints in the

set covering or set partitioning formulation, and to penalize their violations in the objective function.

The Lagrangian relaxation method is used to find a lower bound on the optimal solution of the SCP

or the SPP. More information about Lagrangian relaxation and optimization can be found in Fisher

(2004) and Qiao et al. (2010).

Caprara et al. (1999) present a Lagrangian-based heuristic to solve the SCP. A 3-phase heuristic

is used to improve the solution of the SCP in consecutive iterations. In the sub-gradient phase, a

near-optimal Lagrangian multiplier vector is found by using a sub-gradient algorithm. A sequence of

14

near-optimal Lagrangian multiplier vectors is constructed in the heuristic phase, given the solution

of the first phase. A heuristic solution to the SCP is computed for each of the Lagrangian vectors,

and the current best solution found is updated each time a better solution is found. Columns that

have a high probability to be selected in the optimal solution are set equal to 1 in the column fixing

phase. The 3-phase heuristic is repeated until it is not possible to find a better solution for the SCP,

i.e. if all crew requirements are covered by the set of fixed columns or if the sum of the costs of

the fixed columns plus a lower bound on the cost of the remaining problem is at least the value of

the best found solution value of the SCP. New columns are added after solving the pricing problem.

After finishing the 3-phase heuristic, a refining procedure is performed that fixes some columns and

re-optimizes the resulting subproblem by using the 3-phase heuristic. The process is repeated until

a sufficient precision is obtained or until a given time-limit is exceeded. The algorithm provided by

Caprara et al. (1999) finds near-optimal solution for the CSP within a reasonable time limit for large

instances coming from real-world railway applications.

3.5.2 Column generation

The column generation technique is introduced by Dantzig and Wolfe (1960). This technique is

often used to solve (integer) linear programs that are too large to consider all variables explicitly.

The problem is split into two subproblems, namely the restricted master problem (RMP) and the

pricing problem. The RMP is the (linear programming (LP) relaxation of the integer) linear program

in which only a subset of variables is considered. Variables that have the potential to improve the

objective function are generated in the pricing problem, via a constraint-shortest-path, k-shortest

path or constraint-programming approach (see Guo et al. (2006)). These variables are added to the

formulation. The optimal solution of the RMP is found if no variable with negative reduced cost is

identified in the pricing problem. In our case, the master problem is the LP relaxation of the SCP

or SPP. The solution of the RMP gives a lower bound on the solution value of the original problem.

The combination of column generation and branch-and-bound techniques is called branch-and-price.

For a detailed description of branch-and-price in the context of crew scheduling, see Huisman (2007).

Jütte et al. (2011) describe a column generation based optimization software package that is

able to generate high quality solutions for the CSP in a few days for problem instances with up to

30.000 crew requirements. Initially, shifts are generated that have a negative reduced cost. The

master problem, which is the LP relaxation of a mixed-integer optimization problem, is solved with

the candidate set of shifts. Additional shifts are identified by the pricing problem until an integer

solution is found for the master problem.

Although high-quality solutions can be obtained within reasonable run times, Jütte and Thone-

mann (2012) mention that the run times needed by the algorithm of Jütte et al. (2011) are too

15

long to allow for short-term planning. Especially in the rail-cargo business, crew schedules must be

generated quickly as a large portion of the trains is scheduled few days before operation. Jütte and

Thonemann (2012) propose a divide-and-price approach which decomposes the overall problem into

overlapping subproblems. Each crewblock is assigned to one primary subregion and possibly multiple

secondary subregions. The number of subregions must be chosen such that there is a balance between

the solution quality and the solution time. The subproblems are solved in parallel and the subregions

are updated after several iterations. The authors use a column generation approach that solves a

resource constrained shortest path (RCSP) problem, followed by pricing and assignment updates.

Crewblocks are finally assigned to the subregion where they can be covered at lowest cost. The run

times are reduced significantly compared to the run times attained with the approach described by

Jütte et al. (2011), while the quality loss is low.

Jütte and Thonemann (2012) show that decomposing the problem instance in multiple subprob-

lems affects the run time significantly. Based on this observation, Jütte and Thonemann (2015)

present considerations on how to decompose the problem instance into smaller subproblems. A

graph partitioning based decomposition algorithm is deducted with four different decomposition

variations. A column generation approach combined with a variable fixing technique is used to solve

the subproblems simultaneously. The decomposition variation based on productivity showed the best

performance for real-life experiments.

Banihashemi and Haghani (2001) present a relaxed model for the mass-transit crew scheduling

(MTCS) problem based on the multi-commodity formulation of the multi-depot vehicle scheduling

(MDVS) problem and a constraint generation approach. The MTCS problem is formulated as a SCP.

Different types of shifts, e.g., long and short shifts, are considered as different types of commodities

and the formulation is task-based. Hard and soft constraints are added to the relaxed MTCS problem,

which respectively restrict the construction of specific shifts or add a penalty to the objective function

if specific shifts are constructed. The relaxed MTCS problem is solved to optimality and a list of

feasible shifts is built based on all constraints. The procedure to solve the relaxed MTCS to optimality

is a row-column-generation approach. Unfortunately, this procedure can only be applied to very small

problems with a maximum of 30 tasks.

Freling et al. (2001) propose a heuristic branch-and-price algorithm that can be used to solve

large scale CSPs. The first step of this algorithm is to generate an initial set of feasible shifts. The

LP relaxation of a set covering formulation is solved given the candidate shifts, and additional shifts

are obtained by using dual information from the solution. This process is repeated until the LP

relaxation is solved to optimality. The procedure to solve the IP problem uses the same column

generation algorithm to solve the LP relaxation in every other node of the branch-and-bound tree.

The authors propose three algorithms that are used to construct feasible shifts. The branch-and-price

16

algorithm proposed by Freling et al. (2001) can also be applied, after small modifications, for solving

CSPs in areas other than the train sector. Large scale CSPs can be solved within a reasonable time

limit and it is easy to implement labour rules and governmental regulations. Techniques to speed

up the algorithm are implemented, e.g., an acceleration technique that reduces the network size by

removing invalid arcs.

Desrochers and Soumis (1989) also describe a heuristic branch-and-price algorithm. New feasible

shifts are proposed to improve the current solution of the SCP by solving a shortest path problem

with resource constraints defined on an acyclic network. This subproblem is solved using a dynamic

programming algorithm. The planner must specify which columns with negative marginal cost must

be added to the set of candidate shifts. The performance of the algorithm is evaluated for two

relatively small real-life problem instances.

Savelsbergh (1997) presents a branch-and-price algorithm of the generalized assignment problem

(GAP) that examines the maximum profit assignment of n tasks to m crew members, such that each

task is assigned to one crew member and all shifts are feasible. The authors mention that solving an

LP relaxation of an IP problem with column generation does not necessarily give a feasible solution for

the original IP formulation, until the decision variables of the relaxed problem are integer. The pricing

problem must be such that columns that are infeasible due to the branching constraints will not be

generated. The authors consider various column generation schemes, and two branching strategies

are explored. A primal heuristic is used at each node of the branch-and-bound tree, which uses the

current solution of the LP problem to measure the desirability of assignments. Four experiments are

used to evaluate the performance of the branch-and-price algorithm for small problem instances with

a maximum of 20 crew members and 40 tasks.

3.5.3 Combination of Lagrangian relaxation and column generation

Abbink et al. (2008) provide a mathematical formulation of the CSP as an SCP with side-constraints.

Crew requirements and shifts are for two different planning days. The automatic crew scheduling

algorithm used by the largest railway company of the Netherlands solves this CSP by using column

generation combined with the Lagrangian-based heuristic provided by Caprara et al. (1999). Different

partitioning methods are presented. The global constraints are to be validated on a weekly basis.

In some cases the solution can be improved, for instance by re-scheduling the solution for one crew

base. Weekday, geographical and line based partitioning methods are presented. Partitioning based

on column information is the fourth partitioning method presented by Abbink et al. (2008). The

partitioning methods give promising results for a set of experiments.

Abbink et al. (2011) present an algorithm that combines Lagrangian heuristics, column generation

and fixing techniques. Promising shifts are constructed by solving a shortest path algorithm over

17

different parts of the network. They split the cyclic network into seven subnetworks, each associated

to a particular weekday. The subnetwork of a weekday overlaps with the subnetwork of the next

weekday, such that all feasible shifts can be constructed. Computational benefits can be obtained

by running the algorithm in parallel. The authors extended the algorithm to solve instances for the

complete week. Promising results were found.

3.6 Conclusion of the literature review

Heuristic methods are often used to reduce the problem size so that (integer) linear programs can be

used to find a solution to crew scheduling within reasonable computation time. We use the idea of

manual planner to cut the locline cycles into crewblocks based on cutting rules. The advantage of

this approach is the reduced size of the problem, and the CSP is easier and faster to solve. Usually,

there is a trade-off between the problem size and the solution quality, since the number of feasible

shifts reduces when multiple workblocks are combined into one crewblock.

Crew scheduling has been studied in different fields with many different approaches. Most problem

instances that are used to test the methods and algorithms described in literature are significantly

smaller than the crew scheduling problem faced by the medium size European rail-cargo company.

More than 15,000 crew requirements must be covered each week. Most techniques presented in

literature can not be used to solve large problem instances, even though acceleration techniques are

developed that reduce the size of the problem.

Several studies have shown that Lagrangian relaxation methods and column generation techniques

reduce the run time significantly. We present a column generation approach that is used to solve

the train driver scheduling problem. The master problem is formulated as a set covering problem

with additional constraints. The pricing problem, formulated as a resource constrained shortest

path problem, is used to propose new feasible shifts that have the potential to improve the objective

function of the RMP. The objective function of the pricing problem is the reduced cost of the solution

variable with respect to the current dual values of the constraints in the RMP. This idea was also

used by Desrochers and Soumis (1989).

Solving the pricing problem can be very time consuming. Significant performance improvements

can be obtained by splitting the pricing problem into multiple, smaller pricing subproblems. Instead

of solving the pricing problem for the entire week, Abbink et al. (2011) split the pricing problem on

weekday. Each subgraph is associated with a particular day of the week. The independent pricing

subproblems can be solved in parallel, and the number of threads depends on the number of CPU

cores available. We use the idea to split the pricing problem into smaller subproblems.

18

4 Problem formulation

In this chapter, we present the mathematical formulation of the CSP. The CSP is formulated as a

SCP with additional constraints. Every column of the formulation is a shift that can be carried out

by one employment group, and that obeys the relevant working rules. The extra constraints ensure

that the set of selected shifts fulfills the comprehensive constraints, concerning the percentage of

overnight stays, regulating crew capacities, etc. The durations are given in hours, and the costs are

specified in euro (per hour). First, we will introduce the sets, parameters and decision variables that

are used in the formulation and throughout the rest of this paper. Next, we present the mathematical

model.

Sets

D Set of employment groups.

C Set of crewblocks.

S Set of candidate shifts.

L Set of crew depot locations, relief locations at which at least one train activity starts and/or

ends and locations at which at least one driving operation on which a passenger activity

can be planned starts and/or ends.

For every employment group d ∈ D:

Ad Set of all away locations for employment group d , where Ad ⊂ L.

Ld Set of all crew depot locations where the shifts carried out by drivers of employment group

d can start and/or end, where Ad ⊂ Ld ⊆ L.

Parameters

a1
c,s Binary parameter indicating if crewblock c ∈ C is included in shift s ∈ S (1) or not (0).

a2
s,d Binary parameter indicating if shift s ∈ S can be allocated to employment group d ∈ D

(1) or not (0).

a3
s,i Binary parameter indicating if shift s ∈ S starts at day i ∈ {1, ..., 7} (1) or not (0).

a4
s,l Binary parameter indicating if shift s ∈ S starts from location l ∈

⋃
d∈D Ld (1) or not (0).

a5
s,l Binary parameter indicating if shift s ∈ S ends up at location l ∈

⋃
d∈D Ld (1) or not (0).

19

For every employment group d ∈ D:

nd Maximum number of crew rosters that can be allocated to employment group d .

γd Fixed cost per week per driver of employment group d .

ζd Hourly wage for a driver of employment group d .

fd Maximum fraction of shifts allocated to employment group d that ends with an overnight

stay. Local driver are not allowed to rest at a hotel away from their home base, so that

fd = 0 if employment group d consists of local drivers. Otherwise, 0 ≤ fd ≤ 0.5.

W̄d Maximum average number of working days per week for drivers of employment group d .

This is assumed to be equal to the maximum number of shifts that can be allocated to a

driver of the employment group in one week. For now, we assume that a crew roster can

not contain two or more shifts that start at the same day of the week.

¯
Vd Minimum average weekly workload per driver of employment group d .

V̄d Maximum average weekly workload per driver of employment group d .

ψd Hourly penalty cost incurred if the average weekly workload of a driver connected to em-

ployment group d is below
¯
Vd .

For every crewblock c ∈ C :

sc Start time of crewblock c . No hand-over activity is required before crewblock c if the first

crew requirement included in the crewblock corresponds to a start-up activity. In that case,

sc is equal to the the start time of the start-up activity. Otherwise, sc is equal to the start

time of the hand-over activity planned before crewblock c .

ec End time of crewblock c . No hand-over activity is required after crewblock c if the last

crew requirement included in the crewblock corresponds to a shut-down activity. In that

case, ec is equal to the the end time of the shut-down activity. Otherwise, ec is equal to

the end time of the hand-over activity planned after crewblock c .

dc Duration of crewblock c , i.e., the time elapsed between sc and ec .

µc Total duration of all crew requirements included in crewblock c .

uc Penalty cost if crewblock c is unassigned. Let θ be the hourly penalty cost for unassigned

crew requirements. Then, uc = θµc .

20

oc Penalty cost if crewblock c is overcovered. Let ν be the hourly overcover cost. Then,

oc = νdc . This cost is multiplied by the number of times that crewblock c is overcovered.

For every shift s ∈ S :

ds Spread time of shift s.

dbreak
s Minimum required meal break duration in shift s.

anights Binary parameter indicating if shift s is a night shift (1) or not (0).

cs Cost of shift s. The components of this parameter are specified in the list below.

• Salary cost. The paid time is equal to the spread time of shift s minus the minimum

required break duration, i.e. ζd(ds − dbreak
s).

• Night shift. The shift cost is raised with the fixed cost per night shift, cnight , if anights

is 1.

• Crew re-positioning. Cost of all crew repositioning operations planned in shift s.

• Non-productive cost. An additional cost of cnpro euro per hour is incurred for non-

productive shift duration.

• Shift duration on Monday before 4 AM and on Friday after 7 AM. Employees claim

an additional payment of cclaim euro per hour for shift duration on Monday before 4

AM and shift duration on Friday after 7 PM.

• Overnight cost. The shift cost is raised with the fixed cost covernight if shift s ends at

an away location of the employment group to which the shift is allocated.

Decision variables

Binary decision variables

Uc Binary variable indicating if crewblock c ∈ C is unassigned (1) or not (0). The variable is

equal to 1 if crewblock c is not included in any of the selected shifts, and 0 otherwise.

Xs Binary variable indicating if shift s ∈ S is selected (1) or not (0).

Integer decision variables

Yd Number of drivers needed to carry out the shifts allocated to employment group d ∈ D.

Oc Number of times that crewblock c ∈ C is overcovered by the selected shifts.

Non-negative decision variable

Ψd Workload allocated to employment group d ∈ D below
¯
VdYd .

21

Mathematical formulation

The mathematical formulation of the CSP is given by (4.1) - (4.15). The dual variables of the

constraints are stated in red. The dual variables of constraints (4.9) are mentioned later, as this

equality constraint is first split into two inequality constraints. Let I be the set {1, ..., 7}.

min
∑
s∈S

csXs +
∑
c∈C

(ucUc + ocOc) +
∑
d∈D

(γdYd+ψdΨd) (4.1)

s.t.
∑
s∈S

a1
c,sXs + Uc ≥ 1 ∀c ∈ C βc (4.2)

∑
s∈S

a1
c,sXs − Oc ≤ 1 ∀c ∈ C δc (4.3)

∑
s∈S

a2
s,da

3
s,iXs ≤ Yd ∀d ∈ D, i ∈ I εd ,i (4.4)

Yd ≤ nd ∀d ∈ D (4.5)∑
s∈S

a2
s,dXs ≤ W̄dYd ∀d ∈ D ηd (4.6)

∑
s∈S

a2
s,ddsXs + Ψd ≥

¯
VdYd ∀d ∈ D λd (4.7)

∑
s∈S

a2
s,ddsXs ≤ V̄dYd ∀d ∈ D κd (4.8)

∑
s∈S

a2
s,da

3
s,ia

5
s,lXs =

∑
s∈S

a2
s,da

3
s,(i)(mod 7)+1a

4
s,lXs ∀d ∈ D, l ∈ Ad , i ∈ I (4.9)

∑
s∈S

a2
s,d fdXs ≥

∑
s∈S

∑
l∈Ad

a2
s,da

5
s,lXs ∀d ∈ D ξd (4.10)

Xs ∈ B ∀s ∈ S (4.11)

Uc ∈ B ∀c ∈ C (4.12)

Oc ∈ Z≥0 ∀c ∈ C (4.13)

Yd ∈ Z≥0 ∀d ∈ D (4.14)

Ψd ∈ R≥0 ∀d ∈ D (4.15)

22

The SCP is a minimization problem (4.1). Our primary main goal is to minimize the total work

duration of unassigned crewblocks. Parameter θ must be large to ensure that the total duration of

unassigned crew requirements is minimized. Moreover, the objective value depends on the cost of

the selected shifts, the overcovered crewblocks, the shift duration and the number of drivers needed

to operate the selected shifts.

In the above model, the set covering constraints (4.2) make sure that every crewblock is either

covered by at least one of the selected shifts or marked as unassigned. Furthermore, constraints

(4.3) determine the number of times that every crewblock in C is overcovered. Consider crewblock

c ∈ C . We know that Oc =
∑

s∈S a
1
c,sXs − 1 if oc > 0. Furthermore, at most one of the decision

variables Uc and Oc is positive for crewblock c ∈ C .

Constraints (4.4) ensure that every crew roster contains at most one shift that starts at day i ,

where i ∈ {1, ..., 7}. Furthermore, the number of crew rosters that are required to cover the shifts

allocated to employment group d can not exceed the maximum number of crew rosters that can be

covered by the employment group, where d ∈ D (4.5). The number of shifts assigned to employment

group d may not exceed the number of working days per week times the number of crew rosters

that are required, where d ∈ D (4.6). Constraints (4.7) calculate the total shift duration below the

minimum average weekly workload. The average weekly workload of a driver may not exceed the

maximum average weekly workload (4.8).

Recall that the number of overnight stays is limited to one for global drivers. Suppose that a

global driver carries out a shift that starts at day i and has an overnight stay at the end, where

i ∈ {1, ..., 7}. We assume that this shift must be succeeded by a shift that starts at day i + 1 and

ends at the home base location of the driver. This is ensured by constraints (4.9). Constraints (4.10)

make sure that the fraction of shifts with an overnight stay at the end allocated to employment group

d does not exceed fd , where d ∈ D.

In the above model, crew deadheading on train activities can occur in two ways. Firstly, every

train activity (equivalently, every driving activity, as it is not useful to deadhead on a train activity

that starts and ends at the same location) can be explicitly used for deadheading, e.g., if the

driver does not have the required route knowledge, traction knowledge and skills to operate the

corresponding crew requirement. Suppose that shift s contains a passenger activity on at least one

crew requirement in crewblock c . The coefficient a1
c,s is equal to 0, as the employee does not perform

the crew requirements in crewblock c . We should not include the cost oc in the shift, but the cost for

crew deadheading by train (c train euro per hour) and the non-productive cost (cnpro euro per hour).

If the train activity is only used for deadheading, the actual crew requirement remains unassigned.

Secondly, a crewblock can be overcovered in the solution to the model. One of the drivers performs

the crew requirements included in the crewblock, and the other(s) deadhead on these activities.

23

In this case, all corresponding a1
c,s are equal to 1. The penalty cost oc is included. It is worth

mentioning that oc is larger than the cost of deadheading by train plus the non-productive cost if all

train activities in crewblock c are explicitly used for crew deadheading, i.e., oc > (c train + cnpro)µc .

We force the model to constructed shifts in which crew deadheading by train is explicitly used. The

same implementation can be used if not all train activities can be used for crew deadheading. In

that case, oc is large if crewblock c contains train activities that can not be used for deadheading.

To define dual variables on constraints (4.9), we split them as follows:∑
s∈S

a2
s,da

3
s,ia

5
s,lXs ≤

∑
s∈S

a2
s,da

3
s,(i)(mod 7)+1a

4
s,lXs ∀d ∈ D, l ∈ Ad , i ∈ {1, ..., 7} α−d ,l ,i (4.9a)

∑
s∈S

a2
s,da

3
s,ia

5
s,lXs ≥

∑
s∈S

a2
s,da

3
s,(i)(mod 7)+1a

4
s,lXs ∀d ∈ D, l ∈ Ad , i ∈ {1, ..., 7} α+

d ,l ,i (4.9b)

Not all rostering aspects are taken into account in (4.1) - (4.15). For example, we can not

guarantee that the connection time between two adjacent shifts performed by the same employee

satisfies the corresponding standards without introducing a large number of additional constraints.

Suppose that shift s, which starts on day i ∈ Z>0, ends up at the home base location of the

employment group to which the shift is allocated. We assume that shift s can be succeeded by a

feasible shift that starts at day i + j from the home base location of the employment group, where

j ∈ Z>0. If shift s ends up at an away location of the employment group, we assume that it can be

succeeded by a feasible shift that starts at day i + 1 from the away location and ends at the home

base location of the group. Problems can arise during the crew rostering phase. For example, it

is possible that more drivers are needed to cover the shifts allocated to an employment group than

the number of drivers determined in the crew scheduling phase. In that case, the cost of the final

solution increases. On the other hand, the cost of the solution can decrease if two shifts that start

on the same day can be assigned to the same driver, for example.

24

5 Methodology

The methodology used to solve the CSP is outlined in this chapter. The solution method is decom-

posed into four stages. In the first stage, workblocks are constructed. A workblock is the sequence

of crew requirements between two relief opportunities. In the second stage, multiple workblocks are

merged into one crewblock to reduce the problem size. The activities included in one crewblock are

performed by the same driver in sequence. In the third stage, the required hand-over activities are

planned between the crewblocks. The hand-over activity planned between two crewblocks is redun-

dant if these crewblocks are covered by the same driver. In the final stage, column generation is used

to solve the CSP. The restricted master problem (RMP) is the LP relaxation of (4.1) - (4.15), and

the pricing problem is formulated as a resource constrained shortest path (RCSP) algorithm. The

size of (4.1) - (4.15) grows exponentially with the number of crewblocks and employment groups,

and explicit enumeration of all feasible shifts is not possible within a reasonable time limit for real-life

problem instances. The advantage of column generation is that this solution method does not require

the explicit consideration of all variables.

The remainder of this chapter is organized as follows. Section 5.1 describes three methods that

can be used to construct crewblocks, given the set of workblocks. The goal of Section 5.2 is to

describe the approach used to plan the hand-over activities between the crewblocks. The column

generation technique is described in Section 5.3.

5.1 Crewblock construction

The intention of this section is to provide three methods that are used to combine multiple workblocks

into one crewblock. The advantage of a CSP in which multiple workblocks are merged into one

crewblock is its reduced size, such that the problem is easier and faster to solve (Abbink et al.

(2011)). There is a trade-off between the duration of the crewblocks and the cost of the solution.

In particular, one might be able to reduce the cost of the solution by decreasing the number of

workblocks that are combined into one crewblock.

The method described in Subsection 5.1.1 starts with crewblocks that consist of all crew require-

ments planned in sequence on a mobilized locomotive. Thereafter, the method splits the crewblocks,

based on cutting rules. Each workblock is included completely in one crewblock. The method

described in Subsection 5.1.2 is based on block cutting heuristics and constructs all possible crew-

blocks, given some predefined parameters. The problem to select a subset of crewblocks such that

every workblock is included in exactly one selected crewblock is formulated as a SPP. The method

described in Subsection 5.1.3 merges workblocks based on predefined parameters, concerning the

25

minimum and maximum length of a crewblock, and the idle time between two crew requirements

included in the same crewblock.

5.1.1 Split large crewblocks based on cutting rules

It is likely that the impact of delay on the vehicle schedule and crew schedule increases with the

number of crew changes on a mobilized locomotive. Suppose that one train is delayed and that a

crew change on the locomotive is planned. The driver who takes over the locomotive has to wait for

the train to arrive and it is reasonable that both drivers involved encounter problems during the rest

of their working day. Reserve crew is needed to cover the crew requirements that remain unassigned

as a result of disruption during daily operations. Reserve crew is an expensive resource. The method

described in this subsection is stated on this observation.

The set of crew requirements derived from the train activities planned in the model week is given

by R. Locline cycle l ∈ LC is represented by the sequence of crew requirements that correspond with

the train activities planned in time behind each other on cycle l , i.e. l = {r1,l , ..., rnl ,l} where ri ,l ∈ R

for all positions i ∈ {1, ..., nl} and nl the number of train activities in locline cycle l . Suppose that ri ,l

corresponds with a shut-down activity, where i ∈ {1, ..., nl}. Crew requirement r(i)(mod nl)+1,l must

correspond with a start-up activity. In general, the idle time between these two activities is relatively

large and it is unproductive to include them in the same crewblock. One crewblock is constructed for

the sequence of crew requirements planned on a mobilized locomotive. Every crewblock starts with

a start-up activity and contains all crew requirements up to and including the next planned shut-

down activity. The duration of the individual crewblocks might be large, which makes it difficult

to construct feasible shifts covering every crewblock at least once. For this reason, the individual

crewblocks are cut into smaller crewblocks. The cutting criterion is described below.

Consider crewblock c ∈ C . This crewblock is represented by the sequence (r1,c , ..., rnc ,c), where

ri ,c ∈ R for all positions i ∈ {1, ..., nc} and nc is the number of crew requirements included in

crewblock c . Let Rc be the set of crew requirements in c after which a relief opportunity exists.

The last crew requirement in c is not included in Rc , i.e Rc ⊆ {r1,c , ..., rnc−1,c}. Binary parameter

ad ,c indicates if employment group d ∈ D has the traction knowledge, route knowledge and skills

to operate the crew requirements in crewblock c ∈ C (1) or not (0). The maximum spread time of

national and international shifts operated by employment group d ∈ D are given by d̄nat
d and d̄ int

d ,

respectively. Introduce the parameter d̄d ,c , for all d ∈ D and c ∈ C . The parameter is equal to d̄ int
d

if crewblock c ∈ C contains at least one crew requirement that starts or ends abroad for employment

group d ∈ D. Otherwise, d̄d ,c is the maximum of d̄nat
d and d̄ int

d .

Crewblock c ∈ C is split into crewblocks c1 and c2 if the number of crew requirements in Rc

is larger than 0 and if 2dc is larger than the duration of the maximum spread time of the most

26

restricted employment group that can cover the crewblock, i.e. 2dc > mine∈{d∈D|ac,d=1}(d̄e,c). The

cutting rule claims that the crewblock is split such that |dc1 − dc2 | is minimized, given that the last

crew requirement in c1 is an element from the set Rc . |x | is the absolute value of x , i.e. |x | = x

if x ≥ 0 and |x | = −x if x < 0. Relevant parameters of c1 and c2 are determined, e.g., the start

time and end time of the crewblocks. Furthermore, C is updated. The algorithm terminates if none

of the crewblocks needs any more splitting or if |Rc | = 0 for every crewblock c ∈ C for which

2dc > mine∈{d∈D|ac,d=1}(d̄e,c).

5.1.2 Block cutting and set partitioning

The number of relief opportunities increases with the number of crew requirements, the number

of relief locations and the idle time between two train activities planned in sequence on the same

locomotive. From a management point of view, it is inefficient and sometimes even undesirable to

change crew after a small period of time. On the other hand, the companies’ employees request

enough variation between the activities included in a shift, see the real-life case of NS reizigers

described in the introduction. The crewblock construction method described in this subsection is

able to take these conflicting interests into account.

Two crew requirements planned in sequence on a locomotive must be included in the same

crewblock if the idle time between the activities is smaller than
¯
M. This is an if -statement, not an

if-and-only-if -statement. Furthermore, the non-productive time of employees is reduced by specifying

the maximum idle time between two consecutive activities included in the same crewblock (M̄). Two

crew requirement planned in sequence on a locomotive are included in different crewblocks if the idle

time between the activities is larger than M̄ and if a relief opportunity exists between the activities.

It must hold that
¯
M < M̄.

Recall that crewblock c ∈ C is represented by the sequence (r1,c , ..., rnc ,c), with ri ,c ∈ R for all

i ∈ {1, ..., nc}. Let δc be the time elapsed between the start of crew requirement r1,c and the end

of crew requirement rnc ,c , for all c ∈ C . We want to enforce the value of δc to be in the interval

[
¯
T , T̄). In practice, it is not necessarily possible that

¯
T ≤ δc < T̄ for all c ∈ C . Let Cx ⊆ C be the

set of crewblocks for which δc is at least x hours. We want to minimize |CT̄ |, since small crewblocks

are in general easier to cover than large crewblocks.

The method described in this subsection uses the idea of block cutting heuristics to cut locline

cycles into crewblocks, given a set of cutting patterns. The method is decomposed into two phases,

namely block cutting and block selecting. The block cutting process cuts the locline cycles only at

relief locations, given that the idle time between the activities is greater than or equal to
¯
M. There

are different cutting patterns, as the locline cycles can be cut at several points. Recall that two crew

requirements planned in sequence on the same locline cycle are not included in the same crewblock

27

if the idle time between the activities is larger than M̄ and if there is a relief opportunity between

the two crew requirements. Furthermore, two or more workblocks can only be combined into one

crewblock if the corresponding δc is smaller than or equal to T̄ . All feasible crewblocks are generated

given the set of cutting patterns, and a large candidate list of crewblocks is formed which covers

every workblock at least once (C̄), see example 5.1.A.

Example 5.1.A: Parameter
¯
M is equal to the hand-over duration of 1 minute, and M̄ is

2 hours. Furthermore, we want to enforce that δc is in the interval [2,6], for all c ∈ C .

Consider the following part of a locline cycle.

0030 0230-0430 0450-0620 0630-08300 1100-1900 1910-2100 2310

w1 w2 w3 w4 w5

Let W be the set of workblocks constructed in the first stage of the solution process. In

this case, W = {· · · ,w1, ...,w5, · · · }. Crewblock c ∈ C is represented by the sequence of

workblocks included in c , i.e. c = (w1,c , ...,wmc ,c) where mc is the number of workblocks

included in crewblock c and wi ,c ∈W for all positions i ∈ {1, ...,mc}. The candidate list of

crewblocks is C̄ = {· · · , (w1), (w2), (w3), (w4), (w5), (w1,w2), (w2,w3), (w1,w2,w3), · · · },
given that every workblock can be carried out by the same subset of employment groups.

The LP relaxation of (4.1) - (4.15) is the master problem of the column generation method

used in this paper. Every workblock is included in exactly one crewblock in C in (4.1) - (4.15).

The problem to select elements in C̄ such that every workblock is included in exactly one selected

crewblock is formulated as a SPP. Our primary goal is to minimize |CT̄ |. Our secondary goal is to

minimize |C − C
¯
T |. Our third goal is to maximize |C |. The multi-objective problem is solved by

combining the multiple objectives into a single-objective scalar function.

Binary parameter a6
w ,c indicates if workblock w ∈ W is included in crewblock c ∈ C̄ (1) or

not (0). The indicator function Ix is equal to 1 if x holds, and 0 otherwise. We can formulate the

problem to select crewblocks from the candidate list of crewblocks using binary variables xc indicating

if crewblock c ∈ C̄ is selected (1) or not (0). Every workblock must be included in exactly one of

the selected crewblocks, and the problem is formulated as a SPP.

28

min α1

∑
c∈C̄

I(δc>T̄)xc + α2

∑
c∈C̄

I(δc<T̄)xc − α3

∑
c∈C̄

xc (5.1)

s.t.
∑
c∈C̄

a6
w ,cxc = 1 ∀w ∈W (5.2)

xc ∈ B ∀c ∈ C̄ (5.3)

The parameters α1,α2 and α3 are chosen such that our goals are taken into account, i.e. α1 �
α2 � α3. Constraints (5.2) ensure that every workblock is included in exactly one crewblock in C ,

where C = {c ∈ C̄ |xc = 1}. It is likely that the optimal solution of (5.1) - (5.3) is not unique, see

example 5.1.B.

Example 5.1.B: W and C̄ are described in example 5.1.A. The following solutions fulfill the

constraints in (5.1) - (5.3).

1. C = {(w1), (w2), (w3), (w4), (w5)} 3. C = {(w1), (w2,w3), (w4), (w5)}

2. C = {(w1,w2), (w3), (w4), (w5)} 4. C = {(w1,w2,w3), (w4), (w5)}

Examine that the objective function of (5.1) - (5.3) is minimized under solution 2 or 3. As

a result, the optimal solution of (5.1) - (5.3) is not unique.

In this paper, we will investigate the effect of different implementation options on the performance

of the column generation technique described in Section 5.3. We can only compare the results

obtained with different implementation options if the set of crewblocks added to (4.1) - (4.15) is

the same in each run, for given values of
¯
M, M̄,

¯
T and T̄ . We have seen before that the optimal

solution of (5.1) - (5.3) is not necessarily unique. One way to solve this problem is to select C ⊆ C̄

once, and use the resulting set of crewblocks in each independent run.

5.1.3 Merge multiple workblocks into one crewblock to reduce the problem size

The method described in this subsection is a heuristic version of the construction method described

in Subsection 5.1.2. This method does not construct the large candidate list of crewblocks. Multiple

workblocks are combined into one crewblock, given the different objectives and parameter settings.

A local search algorithm is added to improve the solution of the heuristic. Different neighboring

solutions are considered to improve the initial solution.

We will now describe the process used to construct the initial solution. Our primary goal is to

minimize |CT̄ |. Our secondary goal is to minimize |C − C
¯
T |. Finally, we want to maximize the

29

number of crewblocks in C . An initial solution is constructed by combining crewblocks in C − C
¯
T

with their adjacent crewblocks, without increasing the number of elements in CT̄ . Let H be the

set of elements for which δc is at least
¯
T , or that can not be combined with one of its adjacent

crewblocks. Initially, H equals C
¯
T . The algorithm selects crewblock c = argminγ∈C−H(δγ). Let

c−c and c+
c be the crewblocks scheduled directly before and after crewblock c , respectively. The

selected crewblock is combined with the crewblock c ′ ∈ {c−c , c+
c } for which the following conditions

are fulfilled, with ties broken by smallest idle time.

1. The idle time between c and c ′ is smaller than or equal to M̄.

2. At least one employment group has the qualifications and licensing for all crew requirement

included in c and c ′, i.e., maxd∈D(ad ,c + ad ,c′) = 2.

3. The number of elements in CT̄ does not increase by combining c and c ′.

Crewblock c can not be combined with one of its adjacent crewblocks if not all conditions 1 - 3

are valid for both c−c and c+
c . As a result, c must be added to H. Otherwise, C and H are updated.

The process is repeated until C = H.

The local search heuristic tries to improve the initial solution, by reducing the number of elements

in C − C
¯
T without increasing |CT̄ |. Note that |CT̄ | can not be reduced, given the rules used by

constructing the initial solution. The local search heuristic is applied to every locline cycle separately.

Consider locline cycle l ∈ LC . The set of crewblocks planned on this locline cycle is given by Cl .

Workblocks are swapped between crewblocks if that (potentially) leads to a reduction of |C − C
¯
T |.

The improvement heuristic is terminated if the number of iterations exceeds the user-specified number

of iterations or if |Cl | = 1.

In each iteration, the algorithm randomly selects one element from the set Cl , say crewblock c .

A second crewblock (c ′) is randomly selected from the set {c−c , c+
c }. Recall that crewblock γ ∈ C

is represented by the sequence of workblocks in γ, i.e. γ = (w1,γ , ...,wmγ ,γ) where wi ,γ ∈ W for all

positions i ∈ {1, ...,mγ} and mγ the number of workblocks in γ. The algorithm selects workblock

w ∈ c ′ adjacent to crewblock c . That is, w = wmc′ ,c
′ if c ′ = c−c and w = w1,c′ if c ′ = c+

c .

Let cw be the crewblock that is represented by the sequence (w ,w1,c , ...,wmc ,c) if c ′ = c−c and

(w1,c , ...,wmc ,c ,w) if c ′ = c+
c . Crewblock c ′w is represented by the sequence (w1,b, ...,wmb−1,b) if

c ′ = c−c and (w2,b, ...,wmb ,b) if c ′ = c+
c . Please note that mc′w is equal to zero if mc′ is one. If none

of the conditions listed below is fulfilled, crewblocks c and c ′ are replaced by crewblocks cw and c ′w .

Otherwise, Cl is not updated. The iteration counter is increased by one. This process is repeated

until the stopping criterion is fulfilled.

1. There is no employment group that has the route knowledge, traction knowledge and skills

for all crew requirements in crewblock cw , i.e., ad ,cw = 0 for all d ∈ D.

30

2. The idle time between c and c ′ exceeds M̄.

3. δcw > T̄ .

4. The number of crewblocks in C
¯
T decreases due to the interchange of workblock w , i.e.,

Iδc≥
¯
T + Iδc′≥

¯
T > Iδcw≥¯

T + Iδc′w≥¯
T . Ix indicates of condition x holds (1) or not (0). If mc′w = 0,

then Iδc′w≥¯
T = 0.

5. The number of crewblocks in C
¯
T does not change due to the interchange of workblock w ,

crewblock c ′w is non-empty, and δc + δc′ < δcw + δc′w OR |δc − δc′ | < |δcw − δc′w |.

Figure 3 is introduced to clarify the approach described in this subsection. In this example, a

locline is a sequence of crew requirements planned on one day for which the same locomotive is

used. No other loclines are planned in time behind this locline and the corresponding locline cycle

is a circulation of only one locline.
¯
T is 5 hours and 20 minutes and T̄ is 9 hours and 20 minutes.

Further, M̄ is 50 minutes. There is at least one employment group that has the ability to execute all

crew requirements that correspond with the train activities planned on the locline given in Figure 3.

Figure 3: Example: Initial solution and local search heuristic

Line 1 0030-0430 0510-0910 0950-1310 1350-1910 1950-2310

w1 w2 w3 w4 w5

Line 2 0030-0430 0510-0910 0950-1310 1350-1910 1950-2310

w1 w2 w3 w4 w50840 hrs

Line 3 0030-0430 0510-0910 0950-1310 1350-1910 1950-2310

w1 w2 w3 w4 w50840 hrs 0920 hrs

Line 4 0030-0430 0510-0910 0950-1310 1350-1910 1950-2310

w1 w2 w3 w4 w50840 hrs 0920 hrs

Line 5 0030-0430 0510-0910 0950-1310 1350-1910 1950-2310

w1 w2 w3 w4 w5 0840 hrs0920 hrs

Line 6 0030-0430 0510-0910 0950-1310 1350-1910 1950-2310

w1 w2 w3 w4 w5 0840 hrs0800 hrs

Workblocks w1 - w5 are constructed in the first step. Line 2 - 4 give a schematic representation

of the construction of the initial solution, where the bold block is considered. Line 5 - 6 represent

the local search heuristic. In the end,
¯
T ≤ δc < T̄ for all c ∈ C .

31

5.2 Hand-over planning method

The hand-over of responsibility between the drivers involved in a crew change on a mobilized lo-

comotive is planned during or directly after the crewblock construction phase. The advantage is

the reduced size of the CSP, as the number of feasible shifts might be reduced. Moreover, column

generation techniques can not be used if the feasibility of a variable depends on the selection of other

variables.

In general, a shut-down activity is planned in the vehicle schedule if the idle time between two

activities planned on a mobilized locomotive is relatively large. No hand-over of responsibilities is

required after a shut-down activity. Suppose that the last crew requirement in crewblock c ∈ C is

not a shut-down activity. A hand-over of responsibility is required if a driver supplants the driver

that has operated the locomotive and performed the crew requirements in c . The crewblock that is

planned in sequence on the same locomotive as crewblock c is c+
c . A window of relief opportunities

exists if the time gap between crew requirements rnc ,c and r1,c+
c

is larger than the hand-over duration

of 1 minute. The mobilized locomotive may not be left unattended, and it is not of much interest

which crew member has some idle time on the locomotive. The start time of the hand-over activity

is determined as follows.

• The hand-over activity is planned directly after rnc ,c with a chance of ρ1 percent.

• The hand-over activity is planned directly before r1,c+
c

with a chance of ρ2 percent.

• The hand-over activity is planned randomly between the end of rnc ,c and the start of r1,c+
c

with a chance of ρ3 percent. Each hand-over activity starts at a time point that is rounded

to whole minutes.

The total percentage adds up to 100 and the percentages are non-negative, i.e. ρ1 +ρ2 +ρ3 = 100

and ρ1, ρ2, ρ3 ≥ 0. It is worth mentioning that no hand-over of responsibility is required between

crewblocks c and c+
c if these crewblocks are included in the same shift. The following example is

used to clarify the hand-over planning method.

Example: Assume that the end time of the last activity in the considered crewblock is 14:00

and that the next crew requirement planned on the same locomotive starts at 14:30. With a

chance of ρ1 percent, the hand-over activity is planned from 14:00 to 14:01. With a chance

of ρ2 percent, the hand-over activity takes place from 14:29 to 14:30. The start time of the

hand-over activity is a random time point in the interval [14:00 14:29] with a chance of ρ3

percent. Recall that the start time is rounded to whole minutes.

32

5.3 Column generation

Recall that the CSP is NP-complete. In practice, complete enumeration of all feasible shifts is

computationally intractable for large problem instances. Column generation techniques have been

successfully applied to real-life crew scheduling problems, see Chapter 3. This solution method does

not require the explicit construction of all variables. The problem is decomposed into a restricted

master problem (RMP) and a pricing problem. The general idea of column generation is given in

Subsection 5.3.1. The RMP and the pricing problem that are used in this paper are described in

Subsection 5.3.2 and Subsection 5.3.3, respectively.

5.3.1 General idea of column generation

Column generation techniques can be used to solve (integer) linear programs that are too large to

consider all variables explicitly. Column generation exploits the idea that most of the variables are

non-basic in the optimal solution of the (integer) linear program. The problem is split into two

subproblems, namely the RMP and the pricing problem. The RMP is the (linear programming (LP)

relaxation of the integer) linear program in which only a subset of variables is considered. Variables

that have the potential to improve the objective function of the RMP and the original program are

generated in the pricing problem.

The process of column generation works as follows. An initial set of variables is generated and

added to the RMP, such that a solution exists. For example, a variable is generated for every

crewblock representing an infeasible shift that covers that crewblock. The cost of these shifts is

very high so that they are only included in the solution if there is no feasible way of covering the

crewblock. The RMP is solved with the current set of variables and the dual prices are obtained for

every constraint in the RMP. We assume without loss of generality that the RMP is a minimization

problem. The objective function of the pricing problem is the reduced cost of the solution variable

with respect to the current dual prices. We want to find a feasible variable with minimal reduced

cost. The constraints of the pricing problem ensure that the generated variables obey the naturally

occurring constraints. The pricing problem is solved. A variable with negative reduced cost is

identified if the objective value of the pricing problem is negative. The variable has the potential to

improve the objective function of the RMP, and is therefore added to the subset of variables. The

RMP is re-solved and the dual prices are updated. The pricing problem is solved with the new dual

prices. The optimal solution of the linear program is found if no variable with negative reduced cost

can be identified in the pricing problem.

33

5.3.2 Restricted master problem

The mathematical model presented in Chapter 4 describes the CSP at the medium-size European

rail-cargo company. The original program is given by (4.1) - (4.15). The master problem is the LP

relaxation of the original program, i.e., the LP obtained by dropping the integrality constraints (4.11)

- (4.14). The RMP is the master problem in which only a limited number of variables is considered.

The dual variables indicate which constraints of the LP relaxation of (4.1) - (4.15) are hardest to

satisfy. The dual variables of the constraints are stated in Chapter 4. The optimal solution of the

master problem is found if no variable with negative reduced cost can be identified in the pricing

problem. The optimal solution of the master problem provides a lower bound on the optimal solution

of the original program. The algorithm can not guarantee that the optimal solution of the original

program is found as well, unless the integrality constraints (4.11) - (4.14) are fulfilled by the LP

solution. It is likely that slightly different variables are required by the original program.

5.3.3 Pricing problem

Variables that have the potential to improve the objective function of the RMP (and also of the

original program) are identified in the pricing problem. The objective function of this problem is the

reduced cost of the solution variable with respect to the current dual values of the constraints in

the RMP. Recall that the RMP is a minimization problem. As a result, the objective function of the

pricing problem must be minimized. The reduced cost of shift s is calculated using Equation (5.4).

rs = cs +
∑
c∈C

a1
c,sβc −

∑
c∈C

a1
c,sδc −

∑
d∈D

a2
s,d

7∑
i=1

a3
s,iεd ,i −

∑
d∈D

a2
s,dηd (5.4)

+
∑
d∈D

a2
s,ddsλd −

∑
d∈D

a2
s,ddsκd −

∑
d∈D

a2
s,d

∑
l∈Ad

7∑
i=1

(
a3
s,ia

5
s,l − a3

s,(i mod 7)+1a
4
s,l

)
α−d ,l ,i

+
∑
d∈D

a2
s,d

∑
l∈Ad

7∑
i=1

(
a3
s,ia

5
s,l − a3

s,(i mod 7)+1a
4
s,l

)
α+
d ,l ,i −

∑
d∈D

a2
s,d

(∑
l∈Ad

a5
s,l − fd

)
ξd

= cs +
∑
c∈C

a1
c,s (βc − δc) +

∑
d∈D

a2
s,d

((
−

7∑
i=1

a3
s,iεd ,i

)
− ηd + ds(λd − κd)

−
(∑

l∈Ad

7∑
i=1

(
a3
s,ia

5
s,l − a3

s,(i mod 7)+1a
4
s,l

)(
α−d ,l ,i − α

+
d ,l ,i

))
−
(∑
l∈Ad

a5
s,l − fd

)
ξd

)

34

The remainder of this subsection is organized as follows. We formulate the pricing problem as

a resource constrained shortest path (RCSP) algorithm. General information about this algorithm

is given in Paragraph 5.3.3.1. Dominance rules are used to limit the number of paths that must be

researched by the pricing problem. Two commonly used dominance rules are described in Paragraph

5.3.3.2, and an example is used to discuss the difficulties encountered with each of these rules. The

paths that are generated inside the pricing problem must obey the naturally occurring constraints.

This can only be assured if the pricing problem is split by employment group, nationality and valid

break requirements. This is described in Paragraph 5.3.3.3. We also describe the idea to split the

resulting pricing subproblems on weekday in Paragraph 5.3.3.3. Abbink et al. (2011) show that this

results in significant performance improvements. The independent pricing subproblems can be solved

in parallel, and the number of threads depends on the number of CPU cores available. Each pricing

subproblem is stated on an acyclic directed graph. These graphs are described in detail in Paragraph

5.3.3.4.

5.3.3.1 Resource constrained shortest path algorithm

The RCSP problem is the problem of finding a least cost path between two nodes in an acyclic

network obeying a set of resource constraints. The RCSP algorithm is stated on an acyclic directed

graph G = (V ,A). We will now describe briefly how this graph is related to the CSP. Detailed

information about the nodes, arcs and resources can be found in Paragraph 5.3.3.4.

The RCSP problem asks for the computation of a resource feasible path from the source to the

target with minimal reduced cost. Two nodes are constructed for each location at which a log in

and log out activity can be planned. These nodes determine the start and end location of the path.

Two additional nodes are constructed to offset the night cost and driving time regulations. The

other nodes in V represent the start and/or end of a crewblock or possible passenger activity. These

nodes are associated with a time point and location. Crewblocks and possible passenger activities

are represented by the arc between the nodes corresponding with the start and end of the event.

An arc can also include crew deadheading trips, idle time and/or meal breaks. For example, a meal

break can be planned between two activities included in the same crewblock.

A path P = (v0, ..., vp) is a finite sequence of nodes for which it holds that (vi , vi+1) ∈ A for all

positions i = 0, 1, ..., p− 1. The objective is to select a path in G from the source to the target with

minimal cost that is resource feasible. Resources are included to ensure that the solution variables

satisfy the relevant operational constraints. In our case, the resources keep track of the reduced cost,

duration, driving time, meal break duration, nationality and night time spend.

Resource constraints are formulated by means of resource consumptions on the arcs and resource

windows on the nodes. Let N be the number of resources. The resource vector is given by B =

35

(B1, ...,BN)T ∈ RN , and the elements of this vector are the resource variables. The resource windows

associated with node i ∈ V are denoted by [li , ui], where li , ui ∈ RN and li ≤ ui . The changes in

the resource consumption associated with the arc (i , j) ∈ A are given by the vector fi ,j = (f ri ,j)
N
r=1 of

resource extension functions (REFs). The REF fi ,j depends on a resource vector Bi ∈ RN . Resource

vector Bi is the resource consumption accumulated along a path from the source up to node i . The

result fi ,j(Bi) ∈ RN is the resource consumption accumulated along a path for the source to node

j via node i . In our case, the algorithm is modeled such that there is no interdependence between

the different resources and fi ,j(Bi) = Bi + bi ,j . The elements of the vector bi ,j are the resource

consumptions on arc (i , j). Path P = (v0, ..., vp) is feasible with respect to the resources if there

exist resource vectors Bi ∈ [lvi , uvi] for all positions i = 0, 1, ..., p such that fvi ,vi+1 (Bi) = Bi+1 holds

for all i = 0, 1, ..., p − 1.

Example: Let us consider the following acyclic directed graph with six nodes, seven arcs,

and one resource.

[0, 0]
s

n1

[2, 4]

n2

[2, 6]

n3

[5, 7]

n4

[2, 6]

[6, 9]
t

2

3

2

3

4

3

1

The resource windows and the resource consumptions are given. The number of paths from

the source (s) to the target (t) is three, namely P1 = (s, n1, n3, t),P2 = (s, n2, n3, t) and

P3 = (s, n2, n4, t). We will now examine whether or not these paths are resource feasible.

P1: Bs = 0 ∈ [0, 0],Bn1 = 0 + 2 = 2 ∈ [2, 4],Bn3 = 2 + 2 = 4 /∈ [5, 7].

P2: Bs = 0 ∈ [0, 0],Bn2 = 0 + 3 = 3 ∈ [2, 4],Bn3 = 3 + 3 = 6 ∈ [5, 7],Bt = 6 + 3 =

9 ∈ [6, 9].

P3: Bs = 0 ∈ [0, 0],Bn2 = 0 + 3 = 3 ∈ [2, 4],Bn4 = 3 + 4 = 7 /∈ [2, 6].

Path P2 is the only path in the acyclic directed graph that is resource feasible.

36

5.3.3.2 Dominance rules

The RCSP algorithm is potentially very slow when all paths in the graph must be considered. The

algorithm uses the concept of dominance rules to restrict the number of paths that must be re-

searched. First, we describe how dominance rules are being used to restrict the number of paths to

be considered. Second, two commonly used dominance rules are described and an example is used

to discuss the difficulties encountered with each of these rules.

All dominance rules specify resource bounds on each node, given the resource windows on the

nodes and resource consumptions associated with the arcs. These bounds are different from the

resource windows we defined before (the [li , ui] on node i ∈ V). The resource bounds on node i ∈ V

are denoted by [ai , bi], where ai , bi ∈ RN and li ≤ ai ≤ bi ≤ ui . A path from the source to node i is

pruned if the corresponding resource vector Bi is not in the interval [ai , bi]. Recall that N resources

are added to the labels. The RCSP problem asks for the computation of a path with minimal cost

obeying a set of resource constraints, assuming without loss of generality that the pricing problem

is a minimization problem. Suppose that the first resource value must be minimized at the target.

The levels of the other resources do not play a role in the optimization, and it must only hold that

the path is feasible with respect to these resources. Consider the resource vectors Bi ∈ [ai , bi] and

B
′

i ∈ [ai , bi]. The resource vector B ′i is dominated by the resource vector Bi at node i if B1
i ≤ B

′1
i .

The path corresponding with B ′i is pruned. Some paths are only dominated at the target.

Consider the acyclic directed graph shown in Figure 4 with nine nodes, thirteen arcs, and one

resource. The resource consumption associated with each arc is specified. We require the resource

value to be between 8.0 and 10.0 on the target, and leave it free on the other nodes (equivalently, in

[0.0, 10.0] on the other nodes, as the resource consumptions are non-negative). Our goal is to find

a path from the source to the target with minimal resource value.

Figure 4: Acyclic directed graph with nine nodes, thirteen arcs and one resource

source n2

n1

n3

n4

n5

n6

n7

[8.0, 10.0]
target

0.0

0.0

0.0

2.6

3.6

4.0

1.2

5.8

5.6

8.0

2.2

0.0

0.0

37

There are a number of illegal paths, e.g.,

source → n2 → n5 → n7 → target, Btarget = 6.2.

source → n3 → n5 → n6 → target, Btarget = 13.8.

The RCSP algorithm is potentially very slow if no dominance rule is set. The path from the

source to node i corresponding with Bi ∈ RN is only pruned if Bi /∈ [li , ui]. For the example, the

algorithm produces the following paths.

source → n1 → n4 → n6 → target, Btarget = 8.2.

source → n2 → n4 → n6 → target, Btarget = 9.2.

source → n3 → n5 → n7 → target, Btarget = 8.0.

Especially for large RCSP problems, it is recommended to set a maximum duration, or to specify

the number of feasible paths after which the algorithm terminates. Unfortunately, it is likely this

approach will not find (near-)optimal solutions.

Consider the graph shown in Figure 4. If we only consider the path from the source to node i

for which Bi ∈ R is minimal, it might occur that no feasible path is found even though resource

feasible paths from the source to the target exist. In terms of the dominance that we described,

this corresponds to the case where [ai , bi] = [li , ui] for all i ∈ V . Only a small fraction of paths is

considered. The best resource value in n4 is 1.2 and the best resource value in n5 is 4.0. The choice

at the target is between 6.8 and 6.2. Both values are outside the resource window at the target and

no feasible paths are found. We have seen before that three resource feasible paths exist.

The heuristic dominance rule uses pre-processing to specify resource bounds on each node. The

graph is traversed forwards once, and backwards once, and at each node the feasible bounds are

stored. The feasible bounds are such that a resource vector must be within these bounds in order to

be able to extend to a feasible path. This is not an if-and-only-if statement, and it might occur that

the optimal path is not found.

We will now describe how the feasible bounds are computed in general. Recall that the resource

windows associated with node i ∈ V are denoted by [li , ui], with li , ui ∈ RN and li ≤ ui . The feasible

bounds at node i are given by [ai , bi], where ai , bi ∈ RN and li ≤ ai ≤ bi ≤ ui . The graph is

traversed forward once, meaning that node j is visited before i if (j , i) ∈ A. The lower bound of ari
and the upper bound of bri (

¯
ari and b̄ri , respectively) are computed for each node i ∈ V and resource

r ∈ {1, ...,N}, using Equations (5.5) and (5.6).

38

¯
ari = max

(
l ri , min

j∈{γ∈V |(γ,i)∈A}

(
¯
arj + brj ,i

))
(5.5)

b̄ri = min

(
uri , max

j∈{γ∈V |(γ,i)∈A}

(
b̄rj + brj ,i

))
(5.6)

Thereafter, the graph is traversed backwards once, meaning that node j is visited before i if

(i , j) ∈ A. The feasible bounds at node i ∈ V are calculated using Equations (5.7) and (5.8).

ari = max

(
¯
ari , min

j∈{γ∈V |(i ,γ)∈A}

(
arj − bri ,j

))
(5.7)

bri = min

(
b̄ri , max

j∈{γ∈V |(i ,γ)∈A}

(
brj − bri ,j

))
(5.8)

Remark that we do not require that ari ≤ bri . However, node i can not be included in a feasible

path if ari > bri . This is an if -statement, not an if-and-only-if -statement. The feasible bounds on

each node in Figure 4 are given in Table 1.

Table 1: Resource bounds on the nodes in Figure 4

Node Bounds [li , ui] Feasible bounds Dominance bounds

source [-∞, +∞] [0.0, 0.0] [-∞, +∞]

n1 [-∞, +∞] [0.0, 0.0] [0.0, 1.8]

n2 [-∞, +∞] [0.0, 0.0] No dominance

n3 [-∞, +∞] [0.0, 0.0] No dominance

n4 [-∞, +∞] [2.4, 3.6] [2.4, 4.4]

n5 [-∞, +∞] [4.0, 5.8] No dominance

n6 [-∞, +∞] [8.0, 10.0] [8.0, 10.0]

n7 [-∞, +∞] [8.0, 8.0] [8.0, 10.0]

target [8.0, 10.0] [8.0, 10.0] [8.0, 10.0]

The path corresponding with Bi ∈ RN is pruned if Bi /∈ [ai , bi]. Furthermore, a resource vector

Bi ∈ RN at node i may only be dominated by another resource vector B ′i ∈ RN if both resource

vectors are within the feasible bounds. For the example, the resource consumption on the arc (n3, n4)

is not allowed in any feasible path as it falls outside the feasible bounds on n4. The resource value of

2.6 will dominate the resource value of 3.6 in n4, leading to a feasible path with a resource value of

8.2 in the target. The resource value of 4.0 will dominate the resource value of 5.8 in n5, not leading

39

to any feasible path. The algorithm produces the path source → n1 → n4 → n6 → target. As we

have seen before, this is not the resource feasible path with minimal resource value at the target.

When the heuristic dominance rule is turned on, the resource value 5.8 is dominated by 4.0 in n5.

However, the path from the source to the target via n5 and n7 is only feasible when the resource level

at n5 is 5.8. The concept of strict dominance bounds is introduced. These are resource bounds on

the nodes such that when the resource consumption is within these bounds, then every possible path

to the target is feasible. A resource vector Bi ∈ RN at node i may only be dominated by another

resource vector B ′i ∈ RN if every feasible path using Bi to the target is also a feasible path when B ′i
is used. We will now describe how the dominance bounds are computed in general.

The graph is traversed backwards, meaning that node j is considered before node i if (i , j) ∈ A.

For each node, the resource bounds are determined such that every possible path to the target is

feasible when the resource consumption is within these bounds. The dominance bounds on node i

are given by [ai , bi], with li ≤ ai ≤ bi ≤ ui . It holds that atarget = ltarget and btarget = utarget . Let

ari ,j and bri ,j be resource bounds on node i for resource r ∈ {1, ...,N}, given that arc (i , j) ∈ A is

included in the path. These values are calculated using Equations (5.9) and (5.10).

ari ,j = max
(̄
l ri ,
(
arj − bri ,j

))
(5.9)

bri ,j = min
(
ūri ,
(
brj − bri ,j

))
(5.10)

The dominance bound on node i for resource r is given by ari ,j if ari ,j = ari ,γ , for all j , γ ∈ V

for which (i , j) ∈ A and (i , γ) ∈ A. Otherwise, no dominance is applied in node i . Moreover,

no dominance is applied in node p if no dominance is applied in node i , given that i , p ∈ V and

(p, i) ∈ A.

The dominance bounds on the nodes are given in Table 1. For example, the dominance bounds

on n4 are given by [2.4, 4.4]. The resource consumption on the path from n4 to the target is 5.6.

The resource window associated with the target is [8.0, 10.0]. Therefore, the dominance bounds are

given by [8.0 - 5.6, 10.0 - 5.6] = [2.4, 4.4]. No dominance is applied in n5. The resource value 4.0

does not strictly dominate 5.8 in n5. The path from the source to the target via n5 is only feasible

when the resource level at n5 is 5.8. Given that the strict dominance rule is turned on, the solution

path is source → n3 → n5 → n7 → target and the resource consumption accumulated along the

path from the source to the target is 8.0. The optimal solution is found, but all or almost all paths

in the process must be evaluated. This is caused by the fact that some paths are only dominated in

the target. The number of paths considered depends on the graph characteristics and the dominance

bounds.

So, all paths are considered when no dominance rule is set and that is potentially very slow. When

the heuristic dominance rule is turned on, significantly fewer paths are considered. Unfortunately, it

40

is not guaranteed that the algorithm finds the optimal solution. In terms of column generation, it

might occur that the solution process is terminated before the optimal solution of the master problem

is found. In that case, at least one resource feasible path with negative reduced cost exists in the

graph, but the algorithm is not able to identify this solution variable. The optimal solution variable

is found when the strict dominance rule is turned on. However, the algorithm may have to consider

all or almost all paths in the graph. Our goal is to design a solution method that solves the CSP to

(near-)optimality within a reasonable time limit. Results of computational experiments with each of

the dominance rules are described in Chapter 7.

5.3.3.3 Multiple pricing problems

The paths generated inside the pricing problem must obey the naturally occurring constraints. The

spread time and required meal break duration depend on the work regime and work function of the

employment group that operates the shift, and the shift type. Furthermore, each shift must start

and/or end at the home base location of the employment group to which it is allocated. To ensure

that the variables satisfy the operational constraints, the pricing problem is split by employment

group, nationality and break requirement. We add an additional resource to the labels to offset the

night cost and driving time regulation. This resource records the night duration spend, i.e., the shift

duration between 10 PM and 6 AM.

Abbink et al. (2011) show that significant performance improvements can be obtained by splitting

the pricing problem into multiple, smaller pricing subproblems. Instead of solving the pricing problem

for the entire week, they split the pricing problem on weekday. These pricing subproblems must be

constructed such that all resource feasible paths in the pricing problem solved for the entire week

can still be constructed. We use the following rule to construct the pricing subproblems for each day

of the week. Consider a pricing subproblem that corresponds with day i , with i ∈ {1, ..., 7}. The

maximum spread time of the shifts generated in this subproblem is given by d̄ . Each crewblock or

possible passenger activity that starts after the first time period of day i (12 AM) and ends before

the latest time period of the day plus d̄ is included in the problem (Bach et al. (2014)). The networks

constructed for two successive days overlap in a time length that is equal to the maximum spread

time allowed. Figure 5 shows a schematic representation of the pricing subproblems that must be

solved.

41

Figure 5: Rules to split the pricing problem into multiple, smaller pricing subproblems

Pricing problem

E1

...
...

Ei

Yes

...
...

No

B1

1 2 3 4 5 6 7

Bj

1 2 3 4 5 6 7 Weekday

Break requirement

International shift

Employment group...

...

In general, the pricing problem is split into n pricing subproblems. Let Q be the set {1, ..., n}.
Pricing subproblem q ∈ Q is stated on the acyclic directed graph G q = (V q,Aq). This subproblem

asks for the computation of a path from the source sq ∈ V q to the target tq ∈ V q with minimal

reduced cost obeying a set of resource constraints.

Recall that solving a pricing problem is very time consuming in general. Significant performance

improvements can be obtained if the independent pricing subproblems are solved in parallel. The

number of threads depends on the number of CPU cores available. Ideally, there is a thread for each

individual pricing subproblem. Not all pricing subproblems need to be solved in each iteration. If

the number of threads is smaller than n, the solution time per iteration is reduced by solving only

a limited number of pricing subproblems. On the other hand, it is likely that more iterations of the

solution process are required before the algorithm terminates.

5.3.3.4 Graph construction and resources

In this paragraph, we describe how the graphs of the pricing subproblems are related to the CSP.

First, we give a global description of the graphs. Second, we describe the process to find the set

of crewblocks and passenger activities that can be included in the shifts generated inside a specific

subnetwork. Third, the node sets and arc sets are described in more detail. Eight resources are

introduced to ensure that the generated variables satisfy the naturally occurring constraints.

Global description of the subnetworks

Recall that the pricing problem is split by employment group. As a result, the shifts generated

inside a certain pricing problem can be assigned to exactly one employment group. Consider pricing

subproblem q ∈ Q. The shifts generated inside this pricing subproblem can be covered by drivers of

42

employment group dq, with dq ∈ D. The crewblocks that can be included in the shifts generated

inside pricing subproblem q fit in the time interval of the subproblem, and drivers of employment

group dq have the route knowledge, traction knowledge and skill to cover these crewblocks. The

passenger activities planned in the shifts generated inside pricing subproblem q also fit in the time

interval of the subproblem. Let Cq (Kq) be the set of crewblocks (possible passenger activities) that

are relevant in subproblem q. The crewblocks in Cq can not consist of crew requirements that start

or end abroad for employment group dq if national shifts are constructed inside subproblem q.

The source and target of G q are given by sq and tq, respectively. Two nodes are constructed

such that we can offset the night cost and driving time regulations. Let Lq ⊆ Ldq be the set of crew

depot locations at which the log in and log out activities can be planned. Two nodes are constructed

for each location l ∈ Lq. Crewblocks and passenger activities are events. Let τl ,q be the set of

unique time points at which an event start or ends at location l ∈ L. Nodes are constructed for each

combination of location l ∈ L and time point τ ∈ τl ,q.

An event is represented by an arc between the relevant nodes. Crew deadheading operations, idle

time and meal breaks can also be planned on an arc and one arc can have multiple functions. For

example, a meal break can be planned between the activities in one crewblock. Eight resources are

added to the labels to ensure that the variables obey the naturally occurring constraints.

The set of complex break requirements makes the problem more difficult to solve. The first break

must start within some predefined time interval after the start of the shift and it is possible to plan

a break on a mobilized locomotive. We can only assure that the constructed variables satisfy the

break rules if multiple nodes are constructed for each combination of location l ∈ L and time point

τ ∈ τl ,q. The resource windows that apply to node v ∈ V q depend on the function of the arc(s) in

Aq with a tail node in v . Consider the following example.

Example: Pricing subproblem q is the problem to find a minimum cost path in G q from the

source to the target that is feasible with respect to the resources. In this example, a path is

resource feasible if the duration of the path does not exceed d̄q and if a meal break of at least

30 minutes is planned within the shift. The break must start in the interval [3, 5] hours after

the start of the shift. Moreover, crew deadheading may count as a break and the break may

be planned on a mobilized locomotive. Crewblock c1 ∈ Cq is scheduled on Sunday between

9 AM and 12 PM. No train activities are planned within this crewblock between 10 AM and

11 AM. Nodes n1 and n2 correspond with the start and end of crewblock c1, respectively.

Suppose that the second resource keeps track of the duration of the path. The resource

window [l2n1
, u2

n1
] that applies to n1 depends on whether or not a break is planned on (n1, n2),

and on whether or not crewblock c1 is covered by the path if (n1, n2) is included. A crewblock

43

is covered in a shift if the driver performs the actual crew requirements instead of being a

passenger on the train.

Let us consider the case in which no break is planned on (n1, n2). This arc can be included

anywhere in the shift. The duration of (n1, n2) is given by ρn1,n2 . The resource window

[l2n1
, u2

n1
] is [0, d̄q − ρn1,n2]. Let us consider the case in which the break is planned on (n1, n2)

and c1 is not planned on the arc. The resource window [l2n1
, u2

n1
] is given by [0.5,min(5, d̄q −

ρn1,n2)], i.e., if the resource value at node n1 is 0.5, the meal break can start at 11:30 AM. The

break starts at 9 AM if the resource value at n1 is 5. If a break is planned on (n1, n2) and c1

is associated with the arc, the resource window [l2n1
, u2

n1
] is given by [1.5,min(4, d̄q − ρn1,n2)].

The break must start between 10 AM and 10:30 AM.

Relevant crewblocks and possible passenger activities

Consider pricing subproblem q ∈ Q. Let d̄q be the maximum spread time of shifts constructed inside

the considered pricing subproblem. Cdq ⊆ C is the set of crewblocks that can be performed by drivers

of employment group dq, i.e., the drivers of employment group dq have the route knowledge, traction

knowledge and skills for all crewblocks in Cdq . Each driving operation can be used to reposition crew

by train. The set of crewblocks (possible passenger activities) that can be included in the shifts

generated inside G q is given by Cq (Kq). The crewblocks in Cq can not contain crew requirements

that start or end abroad for employment group dq if national shifts are generated inside pricing

subproblem q. Each pricing subproblem must be stated on an acyclic graph, since it is not possible

to use a shortest path algorithm on a cyclic network. The crewblocks and passenger activities that

are included in the shifts generated inside q fall in the time frame of the pricing subproblem. Consider

the following two situations.

• Suppose that the pricing subproblems are split on weekday. In that case, the subnetwork of q is

acyclic and it is associated to a particular weekday i ∈ {1, ..., 7}. The same crew requirements

must be assigned at day i and day i + 7. Let Ci ⊆ C (Ki ⊆ K) be the set of crewblocks

(possible passenger activities) that start at day i , or at day i + 1 not later than d̄q hours after

midnight. Cq (Kq) is the set of crewblocks in Ci ∩ Cdq (possible passenger activities in Ki)

that end at day i , or at day i + 1 not later than d̄q hours after midnight.

• Suppose that the pricing subproblems are solved over the entire network. This poses a problem

to the shortest path algorithm, as the resulting network is cyclic. The problem is solved if we

give up that fact that day i is ’equal’ to day i + 7. Cq (Kq) is the set of crewblocks in Cdq

(possible passenger activities) that start later than the first time-point of day 1 and ends not

44

later than d̄q hours after midnight at day 8. All feasible shifts that could be constructed in

the cyclic network can still be constructed. Consider the following example

Example: The train activities planned in the model week are merged into seven

crewblocks, see Figure 6. Crewblock c1 starts and ends on Sunday (i = 1) not later

than d̄q hours after midnight. The crewblock is duplicated, and the start and end time

of this duplicate are raised by the duration of one week. Of course, the crewblock

must still be assigned only once. Crewblock c7 starts on Saturday, and ends on Sunday

not later than d̄q hours after midnight. The end time of the crewblock is raised by

the duration of one week. The resulting network is acyclic.

Figure 6: Example: Pricing problem solved for the entire week.

0h 192h

c1 c2 c3 c4 c5 c6 c7 c1

Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Node set

Consider pricing subproblem q ∈ Q. The source and target of G q are given by sq and tq, respectively.

Nodes tdayq and tnightq are used to offset the night cost and driving time regulations. Each path

constructed inside subproblem q includes one of these nodes. A day shift is constructed if tdayq is

included in the path, and a night shift is constructed if tnightq is included. The home base location of

employment group dq is given by ldq . Let Lq be the set of crew depots at which the log in and log out

activities can be planned, i.e. Lq = {ldq} ∪ Adq if fdq > 0 and Lq = {ldq} otherwise. All crew depots

located abroad are removed from the set Lq if national shifts are constructed inside subproblem q.

Nodes sl ,q and tl ,q are constructed for every location l ∈ Lq such that we can offset the overnight

cost. The shift starts from (ends up at) crew depot l ∈ Lq if sl ,q (tl ,q) is included in the path. Let

V q,s = {sq,∪l∈Lq sl ,q} and V q,t = {tq, tdayq , tnightq ,∪l∈Lq tl ,q}.
The required break duration in shifts generated inside subproblem q is given by dbreak

q . The

break can be split into smaller meal breaks with a duration of at least
¯
dbreak
q hours. The first break

must start in the interval [
¯
tbreakq , t̄breakq] after the start of the shift. Recall that the maximum spread

time for shifts constructed inside subproblem q is given by d̄q. The length of these shifts must be

greater than or equal to
¯
dq. The minimum and maximum spread time depend on the work regime of

employment group dq, the relevant break requirements and the nationality of the shift. The possible

break duration in crewblock c ∈ Cq is given by dbreak
c . The first break in c starts tc,1 hours after the

45

start of the crewblock. The latest time point in c such that the remaining break duration is at least

min (dbreak
c , dbreak

q) hours is given by tc,2.

Recall that τl ,q is the set of unique time point at which an event start or ends at location l ∈ L.

The start and end time of each possible passenger activity are derived from the vehicle schedule. A

directed arc can only exists if the time point associated with the tail node does not exceed the time

point associated with the head node. Two crewblocks that are planned in sequence on the same

locline cycle can be included in the same shift. We assume that a driver can change from locomotive

in 1 minute, i.e., a driver can perform two hand-over activities planned at the same location and

time simultaneously. To implement this, the start time and end time of the crewblocks are slightly

modified. The start time of crewblock c ∈ Cq is equal to the start time of r1,c if no hand-over activity

is planned before c . Otherwise, the start time of the crewblock is equal to the start time of the

hand-over activity planned before c enhanced with 30 seconds (the hand-over duration divided by

two). The end time of crewblock c ∈ Cq is equal to the end time of rnc ,c if no hand-over activity is

planned after c . Otherwise, the end time of the crewblock is equal to the start time of the hand-over

activity planned after c enhanced with 30 seconds (the hand-over duration divided by two). In this

way, the resulting subnetwork is acyclic and successive crewblocks can be combined into one shift.

In the begin of this paragraph, we have described that multiple nodes must be constructed for

each combination of location l ∈ L and time point τ ∈ τl ,q to ensure that the variables constructed

inside q satisfy the break requirement. We need to consider the first break in a shift differently from

all the others. The first break in subproblem q must start in the interval [
¯
tbreakq , t̄breakq] hours after

the start of the shift, while the other breaks must start in the interval (
¯
tbreakq , d̄q] hours after the start

of the shift. Further, the minimum and maximum time between two meal breaks is not specified.

Six node sets are presented in the list below. Node set V q is expanded with the sets V q,1 and

V q,2, irrespective of the break rules. Further, V q,3 (V q,5) is added to V q if dbreak
q > 0 (and if a break

can be planned on a mobilized locomotive). V q is expanded with the set V q,4 (V q,6) if dbreak
q > 0

and
¯
dbreak
q < dbreak

q (and if a break can be planned on a mobilized locomotive).

V q,1 One general node is constructed for each combination of location l and time-point τ ∈
τl ,q, with l ∈ L and τ ∈ τl ,q. A directed arc is constructed between v ∈ V q,1 and all other

nodes in V q that correspond with same location l ∈ L and time point τ ∈ τl ,q as node v .

V q,2 One no-break node is constructed for each combination of location l ∈ L and time-point

τ ∈ τl ,g . It is not allowed to plan a break on an arc that has a tail node in V q,2. For

example, suppose that v ∈ V q,2 corresponds with the start of crewblock c ∈ Cq. If this

node is included in the constructed path and if c is covered by the shift, no break is planned

in crewblock c .

46

V q,3 One first-break node is constructed for each combination of location l ∈ L and time-point

τ ∈ τl ,q. A break is planned on each arc that has a tail node in V q,3.

V q,4 One break node is constructed for each combination of location l ∈ L and time-point

τ ∈ τl ,q. A break is planned on each arc that has a tail node in V q,4.

V q,5 One first-break crewblock node is constructed for each combination of location l ∈ L,

time-point τ ∈ τl ,q and crewblock c ∈ Cq that starts from l at time τ if a break can be

planned in crewblock c . It is possible to plan one or more meal breaks in c if the idle time

of the individual breaks is at least equal to the minimum break duration per split, and if

it is allowed to plan a break on a mobilized locomotive. A break is planned on each arc

that has a tail node in V q,5.

V q,6 One break crewblock node is constructed for each combination of location l ∈ L, time-

point τ ∈ τl ,q and crewblock c ∈ Cq that starts from l at time τ if a break can be planned

in crewblock c . A break is planned on each arc that has a tail node in V q,6.

Node vq,p
l ,τ ∈ V q,p is associated with location l ∈ L and time point τ ∈ τl ,q, with p ∈ {1, ..., 4}.

Node vq,p
c ∈ V q,p reflects the start of crewblock c ∈ Cq, with p ∈ {5, 6}.

We will now explain how a path generated inside pricing subproblem q looks like. Each path

generated inside pricing subproblem q starts with two source nodes. The first node in each path is

the source sq. The second node in the path is an element from the set V q,s \{sq}. This node reflects

the crew depot at which the log in activity is planned. The path ends with three target nodes. The

first target node is tl ,q, with l ∈ Lq. This node reflects the crew depot at which the log out activity

is planned. The second target node is an element from the set {tdayq , tnightq }, specifying whether a

day or night shift is constructed. The last node in the path is the target tq. In between, we have

pairs of nodes, for which one is in V q,1 and the other is in ∪6
p=2V

q,p. An arc with a tail node in V q,1

connects that node with the nodes in ∪6
p=2V

q,p that are associated with the same location and time

point. The crewblocks, crew repositioning operations, breaks and wait moments are planned on the

arcs with a tail node in ∪6
p=2V

q,p and a head node in V q,1. Later in this paragraph, the different arc

sets are described.

Resources

Eight resources are added to the labels to ensure that the variables generated inside the individual

pricing subproblems obey the naturally occurring constraints. These resources are described in the

list below. The resource window [l ri , uri] that applies to node i ∈ V q is given for each resource

r ∈ {1, ..., 8}, where l ri , uri ∈ R and l ri ≤ uri .

47

1. Shadow price The objective of subproblem q is to find the path from sq to tq with minimal

reduced cost that is feasible with respect to the resources. The resource con-

sumption along the path from the source to the target is the reduced cost of

the variable. The resource window associated with node i ∈ V q is given by:

[l1i , u1
i] =

(−∞, 0] if i = tq

(−∞,∞) otherwise

2. Spread time The spread time of each shift constructed in subproblem q must be between

¯
dq and d̄q. The resource consumption along the path from the source node to

the target node is the duration of the shift, in hours. The resource windows

are set such that the first break in the shift starts in the interval [
¯
tbreakq , t̄breakq].

The first break is planned on an arc with a tail node in V q,3 or V q,5. Of course,

the other breaks can not be planned within the first
¯
tbreakq +

¯
dbreak
q hours after

the start of the shift. There is no minimum or maximum time period between

two meal breaks. The resource window associated with node i ∈ V q is given

by:

[l2i , u2
i] =



[
¯
tbreakq , t̄breakq] if i ∈ V q,3

[
¯
tbreakq +

¯
dbreak
q , d̄q] if i ∈ V q,4

[
¯
tbreakq − tc,2,min(t̄breakq − tc,1, d̄q − dc)] if i = vq,5

c ∈ V q,5

[
¯
tbreakq +

¯
dbreak
q − tc,2, d̄q − dc] if i = vq,6

c ∈ V q,6

[
¯
dq, d̄q] if i ∈ V q,t

[0, d̄q] otherwise

3. First break The first break in a shift is planned on an arc with a tail node in V q,3 or

V q,5. The resource consumption associated with these arcs is equal to 1. The

resource consumption along the path from the source sq to the target tq must

be equal to 1 if a break is required in the shifts constructed inside subnetwork

q. This resource is redundant if dbreak
q = 0. Otherwise, the resource window

associated with node i ∈ V q is given by:

48

[l3i , u3
i] =


[0, 0] if i ∈ V q,3 ∪ V q,5

[1, 1] if i ∈ V q,4 ∪ V q,6 ∪ V q,t

[0, 1] otherwise

4. Break duration The total duration of the meal breaks in the shift must be larger than or equal to

the required break duration that is specified by the break requirements, dbreak
q .

The resource consumption along the path from the source to the target is the

total break duration in the shift. We require the resource value to be zero at

all nodes i ∈ V q,3 ∪ V q,5, as no valid break can be scheduled before the first

break in the shift. This resource is redundant if dbreak
q = 0. Otherwise, the

resource window associated with node i ∈ V q is given by:

[l4i , u4
i] =



[0, 0] if i ∈ V q,3 ∪ V q,5

[
¯
dbreak
q , d̄q] if i ∈ V q,4 ∪ V q,6

[dbreak
q , d̄q] if i ∈ V q,t

[0, d̄q] otherwise

5. Driving time The total driving time of all crew requirements included in the path may not

exceed the maximum driving time, which depends on whether or not the con-

structed variable is a night shift. The resource consumption along the path

from the source to the target is the total duration of all driving operations

included in the shift. Let ¯drivedayq and ¯drivenightq be the maximum driving time

allowed in day shifts and night shifts, respectively. The resource window asso-

ciated with node i ∈ V q is given by:

[l5i , u5
i] =


[0, ¯drivedayq] if i = tdayq

[0, ¯drivenightq] if i = tnightq

[0, max(¯drivedayq , ¯drivenightq)] otherwise

6. Night duration There are different costs and driving time regulations depending on whether or

not the shift is a night shift. This resource records the night duration spend.

The resource consumption along the path from the source to the target is the

total spread time of the shift between 10 PM and 6 AM. The resource value

at the target node must be smaller than 3 if a day shift is constructed, and it

49

must be greater than or equal to 3 if a night shift is constructed. The resource

window associated with node i ∈ V q is given by:

[l6i , u6
i] =


[0, 3) if i = tdayq

[3, d̄q] if i = tnightq

[0, d̄q] otherwise

7. International The operational constraints depend on whether the constructed shift is an in-

ternational shift for employment group dq. This resource records the number

of international activities covered by the shift, and the number of crew depots

visited that are located abroad. A positive resource consumption accumulated

along the path from the source to the target indicates that an international

shift is constructed. This resource is redundant if national shifts are constructed

inside subproblem q, or if the same restrictions hold for national and interna-

tional shifts. Otherwise, the resource window associated with node i ∈ V q is

given by:

[l7i , u7
i] =

[1,∞) if i = tq

[0,∞) otherwise

8. Home Drivers connected to employment group d ∈ D may rest at a hotel away from

their home base for at most one consecutive night if fd > 0. The resource

consumption along the path from the source node to the target node is equal

to one if the shift starts or ends at an away location of employment group dq,

and two if the shift starts and ends at the home base location of the group.

The resource window associated with node i ∈ V q is given by:

[l8i , u8
i] =

[1, 2] if fdq > 0

[2, 2] otherwise

50

Arc set

Consider pricing subproblem q ∈ Q. The following parameters are introduced to specify the resource

consumptions associated with the arc (i , j) ∈ Aq. We know that the time point associated with node

i does not exceed the time point associated with node j if (i , j) ∈ Aq, for i , j ∈ V q.

ρi ,j The duration of arc (i , j).

ρclaimi ,j The total duration of arc (i , j) on Monday before 4 AM and on Friday after 7 PM.

ρnighti ,j The night duration spend on arc (i , j).

ρnproi ,j The non-productive time on arc (i , j).

ρbreaki ,j The possible break duration on arc (i , j). Time windows are not considered yet.

ρHLPi ,j The total duration of the crew deadheading activities planned on arc (i , j). An arc is

contructed for every driving operation in Kq and ρHLPi ,j is equal to the duration of this

operation. As mentioned before, several other vehicle types can be used to transfer crew

from one location to another. In that case, ρHLPi ,j is equal to the duration of the fastest

option to transfer crew from the location of node i to the location of node j within two

deadheading operations. If crew repositioning is not possible between this pair of locations

within two deadheading operations, an expensive taxicab can be used. For simplicity, we

assume that the time needed to transfer crew with the expensive taxicab only depends on

whether or not the locations are in the same country.

cHLPi ,j The cost of the crew deadheading activities planned on arc (i , j).

In the remainder of this paragraph, we present the subsets of arcs constructed for pricing sub-

problem q. We present them in the order from the easier ones (that correspond to crewblocks that

we need assign or deadheading operations) to the more difficult ones (arcs included to model certain

costs or constraints). The resource consumption is equal to zero if it is not explicitly specified.

For now, we assume that dbreak
q > 0 and

¯
dbreak
q < dbreak

q . In practice, not all subsets of nodes

described on page 46 and 47 are added to V q if dbreak
q = 0 or

¯
dbreak
q = dbreak

q . In that case, not

all arcs described below are added to Aq. More specific, the arcs with a node in ∪6
p=2V

q,p are not

constructed if dbreak
q = 0. If

¯
dbreak
q = dbreak

q and dbreak
q > 0, the arcs with a node in V q,4 ∪ V q,6 are

not constructed.

Crewblock Consider crewblock c ∈ Cq. The crewblock is represented by the arc between

i ∈ V q,2 corresponding with the start of crewblock c and j ∈ V q,1 corresponding

with the end of the crewblock. Furthermore, an arc representing crewblock c is

51

constructed between each node i ∈ {vq,5
c , vq,6

c } and j if a break can be planned on

crewblock c . The break duration planned on this arc is equal to the minimum value

of dbreak
c and dbreak

q . The driver performs the crew requirements in crewblock c if

the arc (i , j) is included in the path.

• b1
i ,j = βc − δc + ρi ,j(λdg − σdq) + cnproρnproi ,j + cclaimρclaimi ,j + ζdρi ,j

• b2
i ,j = ρi ,j

• b3
i ,j = 1 if i = vq,5

c

• b4
i ,j = ρbreaki ,j if i ∈ {vq,5

c , vq,6
c }

• b5
i ,j = ρdrivec

• b6
i ,j = ρnighti ,j

• b7
i ,j = 1 if crewblock c contains crew requirements that start or end at a

location abroad for employment group dq.

Passenger

activity

The passenger activities that can be included in the shift generated inside subprob-

lem q are the elements of the set Kq. Consider driving operation k ∈ Kq. This

activity starts from location l1 at time point τ1, and ends up at location l2 at time

point τ2. An arc is constructed between i = vq,2
l1,τ1

and j = vq,1
l2,τ2

, representing a pas-

senger activity on k without a break. Furthermore, an arc is constructed between

each node i ∈ {vq,3
l1,τ1

, vq,4
l1,τ1
} and j if crew deadheading may count as a break and

τ2 − τ1 ≥
¯
dbreak
q . The break duration on the arc (i , j) is equal to τ2 − τ1.

• b1
i ,j = ρi ,j(λdg − σdg) + cnproρnproi ,j + cHLPi ,j + cclaimρclaimi ,j + ζdρi ,j

• b2
i ,j = ρi ,j

• b3
i ,j = 1 if i ∈ V q,3

• b4
i ,j = ρbreaki ,j if i ∈ V q,3 ∪ V q,4

• b6
i ,j = ρnighti ,j

Crew

deadheading

Foot, lease car, own car and taxi can be used for crew deadheading operations others

than as a passenger on a train. The deadhead duration between the locations l1 and

l2 is given by dHLP
l1,l2

, for l1, l2 ∈ L and l1 6= l2. An expensive taxicab is available if it is

not possible to transfer crew from l1 to l2 within two deadheading operations. None

of these vehicle types has a fixed time schedule, and it is theoretically possible to

have a crew deadheading arc between two locations at any point in time. This case

is not manageable, since the number of crew deadheading arcs would be extremely

52

large. The number of deadheading possibilities should be reduced by omitting many

possible crew deadheading arcs, without reducing the solution space too much.

Consider the nodes v = vq,2
l ,τ and w = vq,1

l1,τ1
, with l , l1 ∈ L, l 6= l1, τ ∈ τl ,q and

τ1 ∈ τl1,q. Many possible crew deadheading arcs are omitted if the arc (v ,w) is only

constructed if dHLP
l ,l1
≤ τ1− τ and if there is no other node i ∈ V q,1 associated with

location l1 for which dHLP
l ,l1
≤ ρv ,i < τ1 − τ . Consider the nodes v ∈ {vq,3

l ,τ , vq,4
l ,τ }

and w = vq,1
l1,τ1

, with l , l1 ∈ L, l 6= l1, τ ∈ τl ,q and τ1 ∈ τl1,q. The arc (v ,w) is

only constructed if dHLP
l ,l1

≤ τ1 − τ and ρbreakv ,w ≥
¯
dbreak
q , and if there is no other

node i ∈ V q,1 associated with location l1 for which dHLP
l ,l1

≤ ρv ,i < τ1 − τ and

ρbreaki ,w ≥
¯
dbreak
q . The break on arc (v ,w) is the sum of (1) dHLP

l ,l1
if dHLP

l ,l1
≥

¯
dbreak
q

and if a break can be planned during repositioning, and (2) τ1 − τ − dHLP
l ,l1

if

τ1 − τ − dHLP
l ,l1
≥

¯
dbreak
q and if there is a break room present at l or l1.

• b1
v ,w = ρv ,w (λdq − σdq) + cnproρnprov ,w + cHLPv ,w + cclaimρclaimv ,w + ζdρv ,w .

• b2
v ,w = ρv ,w

• b3
v ,w = 1 if v ∈ V q,3

• b4
v ,w = ρbreakv ,w if v ∈ V q,3 ∪ V q,4

• b6
v ,w = ρnightv ,w

Wait arc A driver can wait at a location before he continues with another task. It is theoret-

ically possible to have a wait arc at a location at any point in time. Of course, this

case is not manageable. The number of wait arcs should be reduced by omitting

many possible wait arcs.

Consider the time point τ1 ∈ τl ,q at which an event takes place at location l ∈ L.

Let τ2 be the smallest element in τl ,q for which it holds that τ2 > τ1. A wait arc is

constructed between i = vq,2
l ,τ1

and j = vq,1
l ,τ2

. Let τ3 be the smallest element in τl ,q for

which it holds that τ3 ≥ τ1 +
¯
dbreak
q . Let τ4 be the smallest element in τl ,q for which

it holds that τ4 ≥ τ1 + dbreak
q . An arc is constructed between i ∈ {vq,3

l ,τ1
, vq,4

l ,τ1
} and

j = vq,1
l ,τ if a break room is present at location l , for all τ ∈ {χ ∈ τl ,q|τ3 ≤ χ ≤ τ4}.

• b1
i ,j = ρi ,j(λdq − σdq) + cnproρnproi ,j + cclaimρclaimi ,j + ζdρi ,j

• b2
i ,j = ρi ,j

• b3
i ,j = 1 if i ∈ V q,3

• b4
i ,j = ρbreaki ,j if i ∈ V q,3 ∪ V q,4

• b6
i ,j = ρnighti ,j

53

General arc An arc is constructed between node v ∈ V q,1 and each node w ∈ ∪6
p=2V

q,p that

is associated with the same location and time point as node v . Different resource

windows are associated with the head nodes of these arcs, such that the complex

break requirements can be taken into account.

Departure arc Each shift starts with a log in activity planned at a crew depot l ∈ Lq. Crew

deadheading is used to reposition the driver from the crew depot to the start location

of the first crewblock covered by the shift.

A departure arc is constructed between node i = sl1,q and each node j ∈ ∪τ∈τl2,q
{vq,1

l2,τ}
if dHLP

l1,l2
≤ d̄q, for all l1 ∈ Lq and l2 ∈ L. The break duration on (i , j) is equal to

zero if crew deadheading can not count as a break. Furthermore, the break duration

is equal to zero if the driving time after
¯
tbreakq hours after the start of the shift is

smaller than
¯
dbreak
q , as the first crew repositioning activity is scheduled directly after

the log in activity. The start day of the shift is given by ui ,j when (i , j) is included

in the path, with 1 ≤ ui ,j ≤ 7.

• b1
i ,j = ρi ,j(λd−κd)−εd ,ui ,j−ηd+cnproρnproi ,j +cHLPi ,j +cclaimρclaimi ,j +ζd(ρi ,j−dbreak

q)

if i is associated with the home base location of dq.

• b1
i ,j = ρi ,j(λd − κd) − εd ,ui ,j − ηd + α−dq ,l ,ui ,j

− α+
dq ,l ,ui ,j

+ cnproρnproi ,j + cHLPi ,j +

cclaimρclaimi ,j + ζd(ρi ,j − dbreak
q) if i is associated with crew depot l ∈ L \ {ldq}.

• b2
i ,j = ρi ,j

• b3
i ,j = 1 if ρbreaki ,j > 0

• b4
i ,j = ρbreaki ,j

• b6
i ,j = ρnighti ,j

Recall that the first break in each shift generated inside subproblem q must start

within the interval [
¯
tbreakq , t̄breakq] after the start of the shift. Initially, we did not

include an additional departure arc if no break can be planned on (i , j), with j

corresponding to the start of a crewblock. Unfortunately, we discovered that some

crewblocks could not be included in a feasible shift, due to break violations. It was

not possible to plan a break before, during or after the crewblock that addresses the

break requirements. We decided to construct an additional departure arc between

nodes i and j if the following four constraints are fulfilled.

1. No break can be planned on the current arc (i , j), i.e., ρbreaki ,j = 0,

54

2. At least one crewblock c ∈ Cq starts at the time point and location associated

with node j ,

3. Crew deadheading may count as a break and ρHLPi ,j ≥
¯
dbreak
q , or there is a

break room present at location l1 or location l2,

4. The required break duration is larger than zero, i.e., dbreak
q > 0.

Let (i , j)′ be the arc constructed between node i and node j if the four constraints

listed above are satisfied. The meal break planned on this arc must have a duration

in the interval [
¯
dbreak
q , dbreak

q]. We chose to construct the arcs such that the total

break duration on the arc is minimized, but at least
¯
dbreak
q . In that case, the arc

duration is minimized. Another option is to construct more than two departure arcs

between node i and node j , each with another break duration and thus another arc

length. Let d login be the duration of the log in activity. The meal break is planned

according to the following rules.

1. If crew deadheading may not count as a break or if ρHLPi ,j <
¯
dbreak
q , the meal

break must be planned at location l1 or location l2. To minimize the impact

of traffic jams on the vehicle schedule and to minimize the , the meal break is

planned at location l2 if there is a canteen available at that location. The break

starts x hours after the start of the shift, with x = max (d login + ρHLPi ,j ,
¯
tbreakq).

The first crew deadheading activity is planned directly after the log in activity.

The meal break is planned at location l1 if there is a break room present at

this location and no canteen is available at location l2. The break starts

¯
tbreakq hours after the start of the shift. The first crew deadheading activity is

planned directly after the break,

2. If crew deadheading may count as a break and ρHLPi ,j ≥
¯
dbreak
q , the break

is planned during crew repositioning and starts
¯
tbreakq hours after the start

of the shift. The remaining crew deadheading duration is
¯
dbreak
q . The crew

repositioning operation starts
¯
tbreakq − (ρHLPi ,j − ¯

dbreak
q) hours after the start of

the shift.

• b1
i ,j′ = ρi ,j′(λd −κd)−εd ,ui ,j′ −ηd +cnproρnproi ,j′ +cHLPi ,j′ +cclaimρclaimi ,j′ +ζd(ρi ,j′−

dbreak
q) if i is associated with the home base location of dq.

• b1
i ,j′ = ρi ,j′(λd −κd)− εd ,ui ,j′ − ηd +α−dq ,l ,ui ,j′

−α+
dq ,l ,ui ,j′

+ cnproρnproi ,j′ + cHLPi ,j′ +

cclaimρclaimi ,j′ + ζd(ρi ,j′ − dbreak
q) if i is associated with crew depot l ∈ L \ {ldq}.

• b2
i ,j′ = ρi ,j′

55

• b3
i ,j′ = 1

• b4
i ,j′ = ρbreaki ,j′

• b6
i ,j′ = ρnighti ,j′

Arrival arc Each shift ends with a log out activity planned at a crew depot l ∈ Lq. Crew

deadheading is used to reposition the driver from the end location of the last crew

requirement covered by the shift to the crew depot. An arc is constructed between

i ∈ ∪τ∈τl1,q
{vq,2

l1,τ} and j = tl2,q if dHLP
l1,l2
≤ d̄q, for all l1 ∈ L and l2 ∈ Lq. Furthermore,

an arc is constructed between i ∈ ∪τ∈τl1,q
{vq,3

l1,τ , vq,4
l1,τ} and j = tl2,q if

¯
dbreak
q ≤

dHLP
l1,l2
≤ d̄q and crew deadheading may count as a break, for all l1 ∈ L and l2 ∈ Lq.

Suppose that (i , j) is included in the path. The end day of the resulting shift is

computed and given by zi ,j , with 1 ≤ zi ,j ≤ 7. The parameter z−i ,j represents the

day before zi ,j , i.e., z−i ,j = zi ,j − 1 if zi ,j ≥ 2 and z−i ,j = 7 if zi ,j = 1

• b1
i ,j = ρi ,j(λd −κd) + cnproρnproi ,j + cHLPi ,j + cclaimρclaimi ,j + ζdρi ,j if j is associated

with the home base location of dq.

• b1
i ,j = ρi ,j(λd−κd)−α−

dq ,l ,z−i ,j
+α−

dq ,l ,z−i ,j
+cnproρnproi ,j +cHLPi ,j +cclaimρclaimi ,j +ζdρi ,j

if j is associated with crew depot l ∈ L \ {ldq}.

• b2
i ,j = ρi ,j

• b3
i ,j = 1 if i ∈ V q,3

l1
.

• b4
i ,j = ρbreaki ,j if i ∈ V q,3

l1
∪ V q,4

l1

• b6
i ,j = ρnighti ,j

Source arc An arc is constructed between the source sq and node sl ,q, for all l ∈ Lq. The shift

starts from depot location l ∈ Lq if (sq, sl ,q) is included in the path. A schematic

representation of the source arcs is shown in Figure 7 and Figure 8.

• b7
sq ,sl ,q = 1 if l ∈ Lq \ {ldq} and l is located abroad for dq

• b8
sq ,sl ,q = 1 if l = ldq

Target arc An arc is constructed between each node v ∈ {tdayq , tnightq } and the target tq.

A day shift is constructed if (tdayq , tq) is included in the path, and a night shift

is constructed if arc (tnightq , tq) is included in the path. Furthermore, an arc is

constructed between tl ,q and each node v ∈ {tdayq , tnightq }, for all l ∈ Lq. The shift

ends at depot location l ∈ Lq if (tl ,q, tdayq) or (tl ,q, tnightq) is included in the path. A

schematic representation of the target arcs is shown in Figure 7 and Figure 8.

56

• b1
tnightq ,tq

= cnight

• b1
tl ,q ,v = fdqξdq if v ∈ {tdayq , tnightq } and l = ldq

• b1
tl ,q ,v = (fdq − 1)ξdq + covernight if v ∈ {tdayq , tnightq } and l ∈ Lq \ {ldq}

• b7
tl ,q ,v = 1 if v ∈ {tdayq , tnightq } and l ∈ Lq \ {ldq} is located abroad for dq

• b8
tl ,q ,v = 1 if v ∈ {tdayq , tnightq } and l = ldq

Figure 7: Schematic representation of the source arcs and target arcs in the acyclic directed
graph G q given that fdq = 0 and Lq = {l1}, with q ∈ Q.

sq sl1,q tl1,q

tdayq

tnightq

tqGraph G q

Figure 8: Schematic representation of the source arcs and target arcs in the acyclic directed
graph G q given that fdq > 0 and Lq = {l1, l2, l3}, with q ∈ Q.

sq sl2,q

sl1,q

sl3,q

tl2,q

tl1,q

tl3,q

tdayq

tnightq

tqGraph G q

57

6 Data description

In this chapter, four problem instances are described for which the optimal solution to crew schedul-

ing is known. Furthermore, different problem instances are derived from the real-life application

of the European rail-cargo company. These datasets are used to evaluate the robustness of the

method to different problem sizes and implementation options. The aim of Section 6.1 is to set the

parameter values that are the same in each problem instance. The problem instances for which the

optimal solutions are known are described in Section 6.2. Information about the locations and crew

deadheading options, loclines and employment groups included in the original problem is given in

Section 6.3. Problem instances derived from this real-life application are described in Section 6.4.

6.1 Fixed parameter values

Some parameter values are fixed. These values are used in each problem instance that is considered

in this thesis. The aim of this section is to specify these values.

Passenger activities are planned to make the crew schedule more efficient. However, disruption

during daily operations have more impact on the crew schedule and vehicle schedule if passenger

activities are planned on the disrupted locomotive. Therefore, the cost for driving as a passenger on

a train is 2 euro per hour. Besides crew repositioning by train, four other crew deadheading options

can be used. The line segments on which each of these crew deadheading options can be used and

the duration of the trips are specified by the data. The costs for the different crew deadheading

options are depicted in Table 2.

Table 2: Costs for the different crew deadheading options (in euro per hour)

Crew deadheading option Foot Lease car Own car Taxi Train

Cost (in euro per hour) 2 20 15 25 2

The salary cost and fixed cost per driver of employment group d ∈ D are given by the parameters

ζd and γd , respectively. In practice, these costs depend on the work function, work regime, route

knowledge, traction knowledge and skills of the employee. In this thesis, we assume that the hourly

wage of each driver is 30 euro and that the fixed cost per driver is 1000 euro per week. It is worth

mentioning that it is easy to incorporate cost parameters that depend on the employment group of

the driver, since each shift is constructed for exactly one employment group.

Recall that the minimum and maximum average weekly workload per driver of employment d ∈ D

are given by the parameters
¯
Vd and V̄d , respectively. In this thesis, the average weekly workload

58

per crew member must be larger than or equal to 36 hours hours, for all d ∈ D. This constraint is

considered to be a soft constraint. Therefore, a penalty cost of ψd = 1 euro per hour is incurred if the

average weekly workload of a crew member of employment group d ∈ D is below
¯
Vd . Furthermore,

the average weekly workload per driver may not exceed 44 hours. This constraint is considered to

be a hard constraint, and it should be satisfied at all times.

An overnight stay at a hotel costs 200 euro (covernight). Crew planners strive for more effective

use of the available crew to reduce the number of crews needed. Crew requirements, log in activities

and log out activities are regarded productive. Non-productive time in a shift is penalized with 5

euro per hour (cnpro). Furthermore, cclaim is 10 euro per hour, cnight is 50 euro per night shift, θ is

10, 000 euro per hour and ν is 30 euro per hour.

The objective function of (4.1) - (4.15) is given by Equation (6.1).

z =
∑
s∈S

csXs +
∑
c∈C

(ucUc + ocOc) +
∑
d∈D

(γdYd + ψdΨd) (6.1)

=
∑
s∈S

(∑
d∈D

(
ζda

2
s,d(ds − dbreak

s)
)

+ cHLPs + cclaimdclaim
s + cnprodnpro

s + cnightanights

)
Xs

+
∑
c∈C

(θµcUc + νdcOc) +
∑
d∈D

(
γdYd + ψdmax(

¯
VdYd −

∑
s∈S

a2
s,ddsXs , 0)

)
=
∑
s∈S

(
30(ds − dbreak

s) + cHLPs + 10dclaim
s + 5dnpro

s + 50anights

)
Xs

+
∑
c∈C

(10, 000µcUc + 30dcOc) +
∑
d∈D

(
1000Yd + max(36Yd −

∑
s∈S

a2
s,ddsXs , 0)

)

6.2 Problem instances for which the optimal solution is known

In this section, small problem instances are described for which the optimal solution to crew scheduling

is known. The number of train activities planned in the model week is between 84 and 120. At

most two employment groups have the route knowledge, traction knowledge and skills for all crew

requirements. Information about the employment groups, crew requirements, crew repositioning

options and relevant operational constraints is given. The optimal solution of each instance is

described.

59

6.2.1 Problem instance one

Train activities, which take place at three relief locations, are planned on two identical loclines. The

sequence of train activities is the same at each day of the week. A schematic representation of the

vehicle schedule for one day of the week is shown in Figure 9. The locomotives are mobilized between

2 AM and 9 AM.

Figure 9: Schematic representation of the train activities planned per day of the week in problem
instance one. Twelve train activities are planned on two locomotives. The train activities are
planned at three relief locations, between 2 AM and 9 AM

0:00:00 12:00:00

L1

L2

UP A - B LOCAL B - C C - A DOWN

UP A - B LOCAL B - C C - A DOWN

12:00:00 23:59:59

L1

L2

Two employment groups with global drivers have the traction knowledge, route knowledge and

skills for all 84 crew requirements. Hence, D = {d1, d2} and a6
c,d = 1 for all c ∈ C and d ∈ D. At

most ten crew rosters can be allocated to each employment group. A break room is present at the

relief location. The home base location of employment group d is given by ld , for all d ∈ D. Crew

deadheading by foot is used to transfer crew from their home base location to the relief locations,

and back. Crew repositioning between home base location ld1 (ld2) and each of the relief locations

takes 10 (20) minutes.

The spread time of each shift generated inside this problem must be between 6 and 10 hours.

The total duration of all train services and rolling stock deadheading operations included in a shift

may not exceed 8 hours. No break is required.

In the optimal solution, fourteen shifts are added to the crew schedule. Two shifts are sufficient

to cover the crew requirements planned at one day of the week, each covering six crew requirements.

Even though the effect of delay is minimized if the number of crew changes on a mobilized locomotive

is minimized, no additional cost is incorporated with a crew change. Recall that we have assumed

that a driver can perform two hand-over activities at the same time, given that these crew activities

are planned at the same relief location. As a result, each shift can contain crew requirements planned

on both loclines. Crew repositioning and salary costs are minimized if the shifts start and end at the

60

home base location of the first employment group. Three crew rosters must be constructed to cover

all fourteen shifts.

The objective value of the optimal solution is 7100.33 euro. The components of the solution

value are specified by Equation (6.2).

z =
∑
s∈S

(
30(ds − dbreak

s) + cHLPs + 10dclaim
s + 5dnpro

s + 50anights

)
Xs (6.2)

+
∑
c∈C

(10, 000µcUc + 30dcOc) +
∑
d∈D

(
1000Yd + max(36Yd −

∑
s∈S

a2
s,dds , 0)

)
= 14x30x(7

7

12
− 0) + 14x2x

1

3
+ 10x2x2

1

3
+ 5x14x2

1

4
+ 50x14

+ 10, 000x0 + 30x0 + 1000x3 +
37

60
x3

≈ 7100.33 euro

Each shift in the optimal solution starts at 1:40 AM with a log in activity scheduled at ld1 . The

log out activity is scheduled at ld1 as well and ends at 9:15 AM. The paid time per shift is equal to the

spread time of 7 hours and 35 minutes, since no break is required. Crew repositioning from and to

the depot location takes 20 minutes per shift. Two shifts have a duration of 2 hours and 20 minutes

on Monday before 4 AM. The non-productive time per shift is 2 hours and 15 minutes. All selected

shifts are night shifts. Three employees are needed to cover the shifts allocated to employment group

d1 and the average weekly workload per employee is 35 hours and 23 minutes.

6.2.2 Problem instance two

Train activities, which take place at two relief locations, are planned on two loclines. The same

train activities are planned on Monday till Saturday. No train activities are scheduled on Sunday. A

schematic representation of the train activities per day (except Sunday) is shown in Figure 10. The

locomotive allocated to L1 is mobilized between 0:45 AM and 5:45 AM, and between 00:45 PM and

5:45 PM. The locomotive allocated to L2 is mobilized between 6:15 AM and 11:15 AM, and between

6:15 PM and 11:15 PM.

The global drivers that are part of the employment group in this dataset have the route knowledge,

traction knowledge and skills for all 120 crew requirements. The maximum number of crew rosters

that can be allocated to the employment group is ten. A break room is present at the relief locations.

The shift length must be between 5 and 12 hours. The total duration of all train services and rolling

61

stock deadheading operations included in a shift may not exceed 8 hours. No break is required. Crew

repositioning by taxi takes 5 minutes between each pair of locations.

The optimal solution is not unique. At least twelve shifts are needed to cover all crew require-

ments. The objective value of the optimal solution is 7649.17 euro, see Equation (6.3).

z =
∑
s∈S

(
30(ds − dbreak

s) + cHLPs + 10dclaim
s + 5dnpro

s + 50anights

)
Xs (6.3)

+
∑
c∈C

(
10, 000µcUc + 30dcOc) +

∑
d∈D

(1000Yd + max(36Yd −
∑
s∈S

a2
s,dds , 0)

)
= 12x30x(10

11

12
− 0) + 12x25x

1

6
+ 10(3

1

2
+ 4

5

12
) + 5x12x4

5

6
+ 50x6

+ 10, 000x0 + 30x0 + 1000x3 + 0

≈ 7649.17 euro

All crew requirements that start before (after) noon at the same day are included in one shift.

Six shifts start at 0:30 AM and end at 11:25 AM. The other shifts start at 00:30 PM and end at

11:25 PM. The paid time is equal to the spread time of the shift, as no break is required. The

crew deadheading duration per shift is 10 minutes. The total shift duration on Monday before 4

AM is 3 hours and 30 minutes and the total shift duration on Friday after 7 PM is 4 hours and 25

minutes. The non-productive time per shift is 4 hours and 50 minutes. The shifts that start at 0:30

AM are night shifts. Three employees are needed to cover the selected shifts and the average weekly

workload per employee is 43 hours and 40 minutes.

As mentioned before, the optimal solution is not unique. We will show this with an example.

The cost of the solution does not change if a shift that covers all crew requirements planned before

(after) noon at the same day is split into two shifts, each covering the sequence of crew requirements

planned on one locline. The idle time between the shut-down activity planned on L1 and the start

up activity planned on L2 is 30 minutes. The increase in crew deadheading cost (25 x 1 / 6) is

the same as the decrease in non-productive cost and salary cost (5 x 1 / 3 + 30 x 5 / 60). The

maximum number of shifts selected in an optimal solution is fifteen, i.e., at most three shifts are

split. Otherwise, an additional crew member is required. Furthermore, an additional crew member

is needed if two shifts that start at the same day are split.

6.2.3 Problem instance three

Train activities, which take place at two relief locations, are planned on two loclines. The same

sequence of train activities is planned at each day of the week. A schematic representation of the

62

train activities planned per day on each locline is shown in Figure 11. The locomotive allocated to

L1 is mobilized between 12 PM and 7:30 PM. The locomotive allocated to L2 is mobilized between

00:20 PM and 7:50 PM.

The global drivers that are part of the employment group have the route knowledge, traction

knowledge and skills for all 112 crew requirements. The maximum number of crew rosters that can

be covered to the employment group is ten. A break room is present at the relief locations. Crew

deadheading by foot takes 10 minutes between each pair of locations. The duration of a shift must

be between 5 and 12 hours. The total duration of all train services and rolling stock deadheading

operations included in a shift may not exceed 10 hours. The required meal break duration is 30

minutes, and this break can not be split into smaller breaks. The break is planned at a location with

a break room present, and the break can start anywhere within the shift.

In the optimal solution, fourteen shifts are selected that must be covered by three employees.

Each shift covers the crew requirements planned on the same locline at the same day. The required

meal break is planned directly after the first shut-down activity in the shift. The objective value of

the optimal solution is 6457.66 euro. The components of the solution value are specified by Equation

(6.4).

z =
∑
s∈S

(
30(ds − dbreak

s) + cHLPs + 10dclaim
s + 5dnpro

s + 50anights

)
Xs (6.4)

+
∑
c∈C

(
10, 000µcUc + 30dcOc) +

∑
d∈D

(1000Yd + max(36Yd −
∑
s∈S

a2
s,dds , 0)

)
= 14x30x(8

1

12
− 1

2
) + 14x2x

1

3
+ 10x1

5

6
+ 5x14x3

1

2
+ 50x0

+ 10, 000x0 + 30x0 + 1000x3 + 0

≈ 6457.67 euro

Each shift selected in the optimal solution has a duration of 8 hours and 5 minutes. The paid

time is equal to the shift duration minus the required break duration of half an hour. The crew

deadheading duration per shift is 20 minutes. The total shift duration on Friday after 7 PM is 1

hour and 50 minutes and the non-productive time per shift is 3 hours and 30 minutes. None of the

selected shifts is a night shift. The average weekly workload per employee is roughly 37 hours and

40 minutes.

63

Figure 10: Schematic representation of the train activities planned on Monday till Saturday in problem instance
two. Twenty train activities are planned on two locomotives. The locomotive allocated to L1 is mobilized
between 0:45 AM and 5:45 AM, and between 0:45 PM and 5:45 PM. The locomotive allocated to L2 is mobilized
between 6:15 AM and 11:15 AM, and between 6:15 PM and 11:15 PM

0:00:00 12:00:00

L1

L2

UP B - C LOCAL C - B DOWN

UP B - C LOCAL C - B DOWN

12:00:00 23:59:59

L1

L2

UP B - C LOCAL C - B DOWN

UP B - C LOCAL C - B DOWN

Figure 11: Schematic representation of the train activities planned per day in problem instances three and four.
Sixteen train activities are planned on two loclines. The locomotive allocated to L1 is mobilized between 12 PM
and 7:30 PM. The locomotive allocated to L2 is mobilized between 00:20 PM and 7:50 PM

0:00:00 12:00:00

L1

L2

12:00:00 23:59:59

L1

L2

UP B - C C - B DOWN UP B - C C - B DOWN

UP B - C C - B DOWN UP B - C C - B DOWN

64

6.2.4 Problem instance four

The only difference between problem instances three and four lies in the break requirements that are

applicable to the crew. The minimum meal break duration is 20 minutes and the break may be split

into two meal breaks with a duration of at least 10 minutes. Each break can be planned anywhere

within the shift and crew repositioning may count as a break.

The optimal solution of problem instance three is also an optimal solution for this instance.

However, the optimal solution is not unique. Crew repositioning from and to the home base of the

employment group results in a sufficient break of 20 minutes in total. Therefore, each shift in the

optimal solution consists of crew requirements that may be planned on different loclines. The spread

times of the shifts selected in the optimal solution are not necessarily identical. The objective value

of the optimal solution is 70 euros higher than the objective value of the optimal solution of problem

instance three. This is caused by the fact that the required break duration is not paid, and the

difference is 14 x 30 x (
1

2
− 1

3
) = 70 euro.

6.3 Problem instance of the medium-size European rail-cargo company

The drivers of the European rail-cargo company are divided over 48 employment groups. Each driver

must have knowledge of a certain part of the network to fulfill crew requirements. However, route

knowledge is specified for only 40 employment groups. The other employment groups are removed

from the data. The remaining drivers have the route knowledge to drive over each line segment that is

used in the standard week. Only 34 employment groups with specified route knowledge have traction

knowledge of at least one locomotive type used in the model week, and the other six employment

groups are removed from the data. All crew members have the skills for all types of crew requirements.

Employment groups with the same work function, work regime, skills, traction knowledge, route

knowledge and home base location are merged. In the end, there are eleven employment groups

with global driver and twelve employment groups with local drivers. Ten employment groups with

global drivers have work regime R1 and the other employment groups have work regime R2. The

crew depots are located in the default country. The average number of crew rosters that can be

allocated to an employment group with global (local) drivers is 12.8 (17.8). The corresponding

standard deviation is 6.058 (23.636).

The vehicle schedule consists of 143 loclines, which are included in 93 locline cycles. The number

of train activities planned in the model week is 15,564. All crew requirements in a locline cycle can

be performed by the same subset of employment groups, due to the fact that the same locomotive

type is used to operate all loclines included in the cycle. All drivers who have work regime R2 have

the same route knowledge, traction knowledge and skills. As a result, every driver who have work

65

regime R2 can perform the same 7708 crew requirements, with a total duration of 219 hours and

30 minutes. The average duration of crew requirements that can be covered by drivers with work

regime R1 is 258 hours and 30 minutes, with a standard deviation of roughly 156 hours. The drivers

of four employment groups with work regime R1 have the traction knowledge to perform (almost) all

crew requirements. Information about the driving operations (leg), shut-down activities (down)

and local train activities (local) is given in Table 3. Recall that a shut-down secures the unit whilst

unmanned, One crew requirement has a duration of more than 39 hours. This activity is marked as

an outlier and removed from the data.

Table 3: Information about the train activities included in the real-life problem instance

Type Number of crew requirements Minimum duration Maximum duration Total duration

leg 6660 0:01:00 7:17:00 266 days, 02:00:00

down 1347 0:03:00 0:18:00 7 days, 01:02:00

local 7557 0:01:00 7:55:00 185 days, 11:14:00

Total 15,564 0:01:00 7:55:00 458 days, 14:16:00

After a global look at the data, two types of data inconsistencies were found. First of all, it

occurs 45 times that the end location of a train activity is not equal to the start location of the next

activity planned on the same locomotive. Secondly, some train activities planned in sequence on the

same locomotive overlap in time. This happens two times, and the overlap time is 5 minutes. We

assume that the corresponding crew requirements must be operated by the same employee, since no

hand-over of responsibility can be scheduled between the crew requirements.

At most 112 train activities are scheduled at the same time. Due to the operational constraints

that must be fulfilled by the crew roster, it is likely that
∑

d∈D Yd is larger than 112.

Table 4 shows the total duration of train activities planned at each day of the week. The workload

on Saturday till Monday is relatively low in comparison with the workload on the other days. We

expect that most shifts in the crew schedule start on Tuesday till Friday. Days off are mainly scheduled

during the weekend and on Monday.

Table 4: The total duration of train activities planned at each day of the week

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

60 days, 16:48:00 84 days, 14:10:00 83 days, 3:53:00 83 days, 12:46:00 82 days, 17:04:00 50 days, 9:53:00 13 days, 11:42:00

Meal breaks are planned according to the break requirements, which depend on the work function

and work regime of the employment group to which the shift is allocated and on the shift character-

istics. Detailed information about the break requirements can be found in Table A27 in Appendix

66

A. The minimum and maximum shift duration and the maximum driving time per shift also depend

on the work function, work regime and shift type. More information about these restrictions can be

found in Table A25 and Table A26 in Appendix A.

Table 5 provides information about the crew repositioning options that can be used by drivers

of the European rail-cargo company. The longest direct trip with a regular taxi (not the expensive

taxicab) between two locations in the same country takes 3 hours, and the maximum driving time

between locations in different countries is 7 hours. If it is not possible to travel between a pair

of locations within two deadheading operations, an expensive taxicab can be used. A trip with

the expensive taxicab takes 3 hours if the locations are located in the same country, and 7 hours

otherwise. A ride with the expensive taxicab costs 1000 euro, irrespective of the length of the trip.

Table 5: Information about the crew deadheading options that can be used by drivers of the
European rail-cargo company

Option Number of segments Minimum duration Maximum duration Cost (euro per hour)

Foot 254 0:05:00 0:45:00 2

Lease car 207 0:10:00 2:25:00 20

Own car 147 0:05:00 3:20:00 15

Regular taxi 1272 0:01:00 7:00:00 25

There are six types of locations. Some neighboring locations are bundled and trucks are used to

transport the cargo from the central bundle location to other locations in the bundle. The home base

location of an employment group with global drivers is called a depot. Local drivers are connected

to work seats. The other three location types are stations, work locations and work stations.

The number of locations in the original dataset is 1026. These locations are divided over 21

countries in Europe. There is a canteen present at roughly 62 percent of the bundle locations and

65 percent of the bundle locations is a relief location. There is no canteen present at non-relief

locations. The locations that are relevant during crew scheduling are specified by the list below.

More information about the relevant locations in the real-life problem instance is given in Table 6.

• Home base locations,

• Relief locations at which at least one train activity starts and/or ends,

• Non-relief locations at which at least one driving activity starts and/or ends that can be used

to deadhead crew by train.

67

Table 6: Information about relevant locations included in the real-life problem instance, including
the home base locations, the relief locations at which at least one train activity starts and/or ends,
and locations at which at least one driving operation starts and/or ends

Location type Number of Number of locations No break room No break room Break room

locations in default country and no relief location and relief location and relief location

Bundle 333 241 47 14 272

Depot1 11 11 11 - -

Station 6 6 6 - -

Work location 1 1 1 - -

Work station 14 14 14 - -

Work seat2 12 12 12 - -

1 Home base locations of global drivers. 2 Home base location of local drivers.

6.4 Problem instances derived from the real-life problem instance

Datasets derived from the problem instance provided by the European rail-cargo company are used

to evaluate the robustness of the method, i.e., these datasets are used for sensitivity analysis on the

number of crewblocks constructed, the number of employment groups included in the data and the

complexity of the break requirements that are applicable to the drivers.

Table 7 gives an overview of subsets of crew requirements obtained from the set of crew require-

ments in the original instance. Either all crew requirements planned in a specified locline cycle are

included in the subset, or none of them is included. The crew requirements included in subset i are

also included in subset i + 1, for i ∈ {5, 6, 7}.

Table 7: Information about the crew requirements that are included in the subsets derived from
the real-life problem instance

Subset 5 6 7 8

Number of loclines 3 6 13 23

Number of crew requirements 350 721 1443 2464

Total duration of crew requirements 10 days, 23:58:00 19 days, 14:46:00 40 days, 20:37:00 72 days, 3:03:00

Five problem instances are constructed for each subset of crew requirements specified in Table

7. The differences between the five cases are described in Table 8. Instance A is the basic instance,

and then we can either add a break (in two different ways) and consider one or more employment

groups.

68

Table 8: Differences between five problem instances constructed for each subset of crew require-
ments specified in Table 7

Instance Number of employment groups Break requirement

A 1 -

B 1 Beasy

C 1 Break requirements of European rail-cargo company

D 10 Beasy

E 10 Break requirements of European rail-cargo company

Only one employment group is considered in instance A, B and C. The drivers that are part of

the employment group are global drivers, and have work regime R1. At most 100 crew rosters can

be allocated to the employment group. Crew rosters can be allocated to ten employment groups

with global drivers and work regime R1 in problem instance D and E. The number of crew rosters

that can be allocated to each employment group are derived from the original dataset, and the total

number of crew rosters that can be covered by the ten employment groups is 133. Every driver has

the traction knowledge, route knowledge and skills to perform all crew requirements scheduled in the

model week.

Break requirement Beasy is defined as follows. The required meal break duration is 30 minutes.

It is allowed to split the break into two smaller meal breaks, each having a duration of at least 15

minutes. The break can start anywhere in the shift. Crew repositioning may count as a break and it

is allowed to have a break on a mobilized locomotive. These break requirements apply to national

and international shifts. The break requirements specified by the European rail-cargo company must

hold in problem instance C and E, see Table A27 in Appendix A.

69

7 Computational experiments

In this chapter, results for the different problem instances as described in Chapter 6 are provided.

The object oriented optimization software Quintiq is used to implement the methods described in

Chapter 5. The MIP formulations and LP formulations are solved by using CPLEX 12.5.1, which is

accessible via the Quintiq software package. A laptop with 4.0 GB RAM memory and an Intel(R)

Core(TM) i7-2620M CPU @ 2.70GHz processor is used to perform the computational experiments.

It turned out that the available memory on this laptop was insufficient for computational experiment

with problem instances 7 and 8, and the real world application. These experiments are performed

on the online server of Ab Ovo, which provides sufficient memory.

The remainder of this chapter is organized as follows. In Section 7.1, results are presented and

evaluated for the small problem instances described in Section 6.2. Hereafter, Section 7.2 describes

the results of the sensitivity analysis. We investigate the effect of different parameters, problem sizes

and implementation options on the performance of the method.

7.1 Results for the problem instances with known optimal solution

In this section, the results for the problem instances as described in Section 6.2 will be discussed.

The results will be compared between the different dominance rules.

The column generation algorithm is terminated if no variable with negative reduced cost is iden-

tified in the pricing problem. The MIP of the RMP is solved after each iteration of the solution

process, such that we can regard the progress and tailing-off behavior of the method. The problem

instances are small, and we decided to construct the set of crewblocks so that each element in this

set consists of exactly one workblock. Furthermore, parameter ρ2 is 100 in the hand-over planning

method.

The RCSP algorithm can not guarantee that the optimal path from the source to the target

is found when the heuristic dominance rule is turned on. It might occur that no variable with

negative reduced cost is identified in the pricing problem, even though a resource feasible variable

with negative reduced cost exists. Hence, the algorithm can terminate before the optimal solution of

the master problem is found when the heuristic dominance rule is turned on. Recall that the master

problem is the relaxed version of the original program. A resource feasible path from the source to

the target with minimal reduced cost is identified when the strict dominance rule is turned on. When

the strict dominance rule is turned on, the optimal solution of the master problem is found if all

solution variables generated inside the pricing problem have non-negative reduced cost.

In theory, the feasible region of an LP relaxation is larger than the feasible region of the original

IP formulation. This implies that the optimal solution of the master problem provides a lower bound

70

on the optimal objective value of the original program. The algorithm can only guarantee that the

optimal solution to crew scheduling is found if the optimal solution to the master problem is integral.

The integrality gap denotes the gap between the optimal linear solution and the optimal integer

solution. Suppose that the objective function of the optimal solution of the original program is given

by z∗. Let z∗LP denotes the optimal solution of the master problem. The integrality gap is calculated

using Equation (7.1).

εint =
z∗ − z∗LP

z∗LP
× 100% (7.1)

The optimality gap denotes the gap between the optimal solution and the obtained solution. The

integer solution obtained is given by zH . The optimality gap is calculated using Equation (7.2).

εopt =
zH − z∗

z∗
× 100% (7.2)

The optimal solution of the original program is not known for larger problem instances. Recall

that the optimal solution of the master problem provides a lower bound on the optimal integer

solution. An upper bound on the optimality gap between z∗ and zH is given when z∗ is substituted

by z∗LP in Equation (7.1).

The candidate list of shifts constructed before the algorithm terminates might be different for

independent runs. To evaluate the variance in the performance of the solution method, I different

runs are performed. The best (worst) solution to the original program is given by
¯
z I (z̄ I). The

average results over I independent runs are denoted by 〈z〉I (MIP objective value), 〈Y 〉I (number

of crew rosters) and 〈d〉I (total workduration covered). The average computation time in seconds

after which the algorithm terminates is given by 〈t〉I .

7.1.1 Results for problem instance one

The workblocks are constructed in the first stage of the process. There is a relief opportunity after all

84 crew requirement, and every workblock consists of exactly one crew requirement. The crewblocks

are constructed in the second stage of the process. Every crewblock consists of exactly one workblock.

The algorithm is implemented such that the pricing subproblems are solved for the entire week.

Two individual pricing subproblems are solved in each iteration of the process, one for each employ-

ment group. Both problems are stated on an acyclic directed graph with 214 nodes and 677 arcs.

We run the algorithm in series. The average results over ten independent runs are shown in Table 9.

The optimal solution to the master problem is found in each run, and z∗LP is 6898.50 euro. The

integrality gap is 2.9%. The optimal solution value of the original program is 7100.33 euro. From

Table 9, we can calculate that the tightest upper bound on the optimality gap is 4.6% (strict). The

71

Table 9: Results for problem instance one over ten independent runs. The standard deviations are
listed between brackets.

Dominance rule
¯
z10 〈z〉10 z̄10 〈t〉10 〈Y 〉10 〈d〉10

Heuristic 7563.25 8132.28 (209.341) 8278.67 17.1 (2.745) 3.3 (0.458) 2 days, 23:07:21 (0:02:27)

Strict 7425.50 7835.96 (389.328) 8512.82 17.7 (6.573) 3.3 (0.458) 2 days, 23:09:00 (0:02:00)

optimal integer solution is not found in any run. We can conclude that the strict dominance rule

outperforms the heuristic dominance rule on average for this problem instance.

As can be seen from Table 9, not all crew requirements are always covered by at least one

selected shift. At most one crew requirement with a duration of 5 minutes is not assigned, and the

corresponding penalty cost is 10,000 / 12 ≈ 833.33 euro. At least one shift in the candidate list

contains the unassigned crew requirement, given that the optimal LP solution is found. The penalty

cost is smaller than the additional cost associated with the selection of one of the shifts covering

the unassigned crew requirement. An educated guess is that this problem is solved if θ is increased

drastically. For example, when θ is set to 100,000.

The unequal variance Student’s t-test (Student’s t-test or t-test in the following) is used to

evaluate whether the difference in runtime for the two dominance rules is significant. We refer

the interested reader to Appendix B for more information about the Student’s t-test . The first

(second) sample consists of the computation times of the independent runs when the heuristic

(strict) dominance rule is turned on. The corresponding p-value is 0.711. Hence, the null hypothesis

of equal sample means can not be rejected at a significance level of 5%.

Recall that the CSP is easier and faster to solve if multiple workblocks are combined into one

crewblock in the second stage of the process. The optimal solution of problem instance one can be

attained if the elementary sequence of crew requirements planned on one locline at the same day

is included in one or more crewblocks. If crewblocks are constructed with the method described in

Subsection 5.1.1, the workblocks are combined into 28 crewblocks. It takes roughly 3.9 seconds to

solve the LP formulation to optimality, irrespective of the dominance rule that is turned on. The

optimal solution to crew scheduling was found in all twenty runs. If all crew requirements planned on

one locline at the same day are directly included in one crewblock, the solution time is approximately

2.6 seconds. Each shift selected in the optimal solution covers exactly one crewblock, and the

corresponding objective value is 7100.33.

The explicit consideration of all paths takes more than 5 minutes, given that each crewblock

consists of one crew requirement. If we run the algorithm with the dominance rule off, all paths are

considered and that is potentially very slow. We can speed up the process by limiting the number of

feasible paths after which the algorithm terminates. Unfortunately, the algorithm can not guarantee

that the optimal solution is in one of the found paths up to the point where it stops. Let us

72

consider the case in which only the first ten feasible paths are returned by each pricing subproblem.

The average objective value over ten independent runs is approximately 162,300 after 1 minute of

runtime. Performance improvements are obtained by setting a dominance rule. We do not consider

the option to turn the dominance rule off in the remainder of this thesis.

7.1.2 Results for problem instance two

The workblocks are constructed in the first stage of the process. There is a relief opportunity after all

120 crew requirements planned in the model week, and every workblock consists of exactly one crew

requirement. The crewblocks are constructed in the second stage of the process. Every crewblock

consists of exactly one workblock.

The algorithm is implemented such that one pricing problem is solved for the entire week. The

pricing problem is stated on an acyclic directed graph with 526 nodes and 1477 arcs. Table 10

summarizes the average results over ten independent runs.

Table 10: Results for problem instance two over ten independent runs. The standard deviations
are listed between brackets.

Dominance rule
¯
z10 〈z〉10 z̄10 〈t〉10 〈Y 〉10 〈d〉10

Heuristic 7649.17 7653.88 (9.944) 7672,75 36.9 10.289) 3 2 days, 22:00:00

Strict 7649.17 7649.17 7649.17 75.4 (14.659) 3 2 days, 22:00:00

From Table 10, we can conclude that the optimal solution to crew scheduling is found in all runs

if the strict dominance rule is turned on. The objective value of the optimal LP solution is 7621.02

and the average number of shifts constructed per run is about 206. The integrality gap is 0.4%.

The optimal solution of the original program is not found in two out of ten runs, given that the

heuristic dominance rule is turned on. Furthermore, the optimal solution of the master problem was

not found in six independent runs (objective values between 7622.22 and 7639.10). The algorithm

terminates before the optimal LP solution is found. In the last iteration of the process, the algorithm

was not able to identify a variable with negative reduced cost in the pricing problem. One way to

solve this problem is to consider a combination of dominance rules. First, the heuristic dominance

rule is turned on. Promising shifts are constructed as long as a path with negative reduced cost is

identified in the pricing problem. Afterwards, the strict dominance rule is turned on, and promising

shifts are identified with the current dual prices.

We will now compare the results between different dominance rules. First, one representation

run in which the optimal LP solution is found is selected for both dominance rules. Figure 12 shows

a plot of the objective value of the MIP of the RMP versus the iteration number. Figure 12a is a

73

plot of the objective value versus the iteration number from the start of the solution process until

no variable with negative reduced cost is identified in the pricing problem. Figure 12b zooms in on

later iterations.

Figure 12: Objective value of the original program, i.e., the MIP of the RMP, expended to the
iteration number

0 50 100 150 200

0

2

4

6

·105

Iteration number

O
b

je
ct

iv
e

va
lu

e
M

IP
(e

u
ro

)

Heuristic dominance rule

Strict dominance rule

(a) All iterations

0 50 100 150 200

7,500

8,000

8,500

9,000

9,500

Iteration number

O
b

je
ct

iv
e

va
lu

e
M

IP
(e

u
ro

)

Heuristic dominance rule

Strict dominance rule

(b) Last iterations

At the start of the solution process, the candidate list of shifts is empty and the corresponding

objective value of (4.1) - (4.15) is 700,000 euro. The convergence of the column generation method is

fast at the start of the solution process, since promising shifts are constructed that contain crewblocks

which are not yet covered by the crew schedule (see Figure 12a). Figure 12b shows that the optimal

solution of the original program is found after twelve iterations if the strict dominance rule is turned

on, and after 144 iterations otherwise. Furthermore, the number of iterations needed before the

column generation process terminates exceeds 200 if the strict dominance rule is turned on, while it

is only 175 if the heuristic dominance rule is turned on. Recall that the RCSP can not guarantee that

a resource feasible path with minimal reduced cost is found in the pricing problem if the heuristic

dominance rule is turned on.

74

The tailing-off behavior of the column generation technique is visible by the red line in Figure

13. At the beginning of the process, the convergence of the column generation method is fast. The

objective value of the RMP decreases rather slow near the end of the solution process, see Figure 13b.

The objective value of the RMP decreases roughly 692.374 euro in the first twelve iterations, and only

6 euro in the remaining 191 iterations. Moreover, the objective value of the MIP of the RMP did not

improve in those 191 iterations (see Figure 12b). These results indicate that the overall performance

of the solution method might be improved by terminating the column generation algorithm if the

objective value of the (MIP of the) RMP did not improve in a predefined number of iterations.

Figure 13: Objective value of the RMP expended to the iteration number

0 50 100 150 200

0

2

4

6

·105

Iteration number

O
b

je
ct

iv
e

va
lu

e
R

M
P

(e
u

ro
)

Strict dominance rule

(a) All iterations

0 50 100 150 200
7,620

7,622

7,624

7,626

7,628

7,630

Iteration number

O
b

je
ct

iv
e

va
lu

e
R

M
P

(e
u

ro
)

Strict dominance rule

(b) Last iterations

Figure 14 shows a plot of the objective value of the MIP of the RMP versus the computation time,

for the two representative runs. Figure 14a is a plot of the objective value versus the computation

time from the start of the solution process until no variable with negative reduced cost is identified

in the pricing problem. Figure 14b zooms in on later iterations.

Since the slope of the blue line (heuristic) in Figure 14a is steeper than the slope of the red

line (strict), we can conclude that the objective value of the MIP formulation decreases fastest if

the heuristic dominance rule is turned on. On the other hand, we can conclude from Figure 14b

that the runtime to find the optimal MIP solution is shorter if the strict dominance rule is turned

75

Figure 14: Objective value of the original program, i.e., the MIP of the RMP, expended to the
computation time

0 20 40 60

0

2

4

6

·105

Computation time (s)

O
b

je
ct

iv
e

va
lu

e
M

IP
(e

u
ro

)

Heuristic dominance rule

Strict dominance rule

(a) All iterations

0 20 40 60

7,500

8,000

8,500

9,000

9,500

Computation time (s)

O
b

je
ct

iv
e

va
lu

e
M

IP
(e

u
ro

)
Heuristic dominance rule

Strict dominance rule

(b) Last iterations

on. These results reflect the characteristics of the dominance rules. All or almost all paths must be

considered to find the resource feasible path with minimal reduced cost when the strict dominance

rule is turned on. Significantly fewer paths are considered when the heuristic dominance rule is turned

on. Promising shifts are identified in the pricing problem, that are not necessary optimal.

There are a number of implementation options that can improve the performance of the solution

approach. First of all, there is no need to solve the MIP of the RMP until the last iteration of the

solution process, given that the algorithm only terminates if no variable with negative reduced cost is

identified in the pricing problem. Secondly, the algorithm can be implemented such that the pricing

subproblems are split per day of the week. The resulting pricing subproblems are easier and faster

to solve, as the number of resource feasible paths in the graph decreases. Finally, the algorithm can

be implemented such that the individual pricing subproblems are solved in parallel. The number of

threads depends on the number of CPU cores available.

The Student’s t-test is used to evaluate whether the average running time is reduced significantly

if one or more of these implementation options are used. Table 11 shows the average computation

time and sample variance for each (combination of) implementation option(s) over fifty independent

76

runs in which the strict dominance rule is turned on. All the reported running times are obtained by

solving the master problem to optimality. As a result, the running times are comparable with each

other.

Table 11: The sample mean (average computation time) and sample variance over fifty independent runs
in which the strict dominance rule is turned on.

Sample MIP only at end Pricing problem per day Algorithm in parallel 〈t〉50 s2

1 FALSE FALSE FALSE 68.72 130.451

2 TRUE FALSE FALSE 49.88 43.536

3 FALSE TRUE FALSE 19.40 8.816

4 FALSE FALSE TRUE 67.93 128.672

5 TRUE TRUE FALSE 15.00 4.449

6 FALSE TRUE TRUE 14.94 5.323

7 TRUE FALSE TRUE 50.02 44.218

8 TRUE TRUE TRUE 10.82 2.477

If we perform the statistical hypothesis test on Sample 1 and Sample 4, the null hypothesis of

equal means can not be rejected. This is caused by the fact that only one pricing problem is solved

in each iteration of the process. The same conclusion is drawn if we perform the test on Sample 2

and Sample 7. The average computation time is reduced significantly if the MIP of the RMP is only

solved in the last iteration or if the pricing problems are solved per day of the week. Combining two

of the implementation options leads to a significant reduction of the runtime. We can not reject

the null hypothesis of equal sample means if we perform the t-test on Sample 5 and Sample 6. The

average computation time is reduced significantly if all three implementation options are combined.

We can conclude that it is computationally attractive to split the pricing problems per day of

the week. The resulting pricing subproblems can be solved in parallel to speed up the process.

Furthermore, the running time is reduced significantly if the MIP of the RMP is not solved in each

iteration of the solution process.

7.1.3 Results for problem instances three and four

The workblocks are constructed in the first stage of the process. There is a relief opportunity after all

112 crew requirement planned in the model week, and every workblock consists of exactly one crew

requirement. The crewblocks are constructed in the second stage of the process. Every crewblock

consists of exactly one workblock.

77

One pricing problem is solved in each iteration of the process if the CSP of problem instance

three is solved. The pricing problem is stated on an acyclic directed graph with 1238 nodes and

4114 arcs. This graph is large in comparison with the graphs on which the pricing subproblems of

problem instances one and two are stated, due to the break requirements. The average results over

ten independent runs for problem instance three are defined in Table 12.

Table 12: Results for problem instance three over ten independent runs. The standard deviations
are listed between brackets, if larger than zero.

Dominance rule
¯
z10 〈z〉10 z̄10 〈t〉10 〈Y 〉10 〈d〉10

Heuristic 8579.42 18,827.61 (12,640.36) 38,563.28 34.8 (8.784) 4 2 days, 11:38:30 (1:17:08)

Strict 6457.67 6457.67 6457.67 126.0 (19.303) 3 2 days, 12:40:00

The optimal solution to the master problem is found in each run when the strict dominance rule

is turned on, and z∗LP is 6257.67 euro. The integrality gap is 3.2%. The master problem is not solved

to optimality in any of the ten independent runs in which the heuristic dominance rule is turned on.

Recall that the optimal solution value of the original program is 6457.67 euro. As can be seen from

Table 12, the optimal solution of the original problem is found in all ten runs if the strict dominance

rule is turned on. The average number of shifts constructed before the optimal LP solution was

found is 325 and the corresponding standard deviation is approximately 32. From Table 12, we can

calculate that the smallest optimality gap is 37.1% when the heuristic dominance rule is turned on.

We can conclude that the strict dominance rule outperforms the heuristic dominance rule for this

problem instance.

The pricing problem of problem instance four is stated on an acyclic directed graph with 1238

nodes and 4149 arcs. If we compare the size of the graph with the graph constructed for pricing

problem three, we can conclude that the number of arcs is increased. It is worth mentioning that

the difference is only very small. There are multiple reasons for this. First, the problem instance

is relatively small. Second, the minimum duration per break decreases from 30 minutes to only 10

minutes. The increase in the number of arcs with a break outweighs the decrease in the number

of wait arcs only minimal. The average results over ten independent runs for the fourth problem

instance are given in Table 13.

Table 13: Results for problem instance four over ten independent runs. The standard deviations
are listed between brackets, if larger than zero.

Dominance rule
¯
z10 〈z〉10 z̄10 〈t〉10 〈Y 〉10 〈d〉10

Heuristic 6527.67 6532.58 (2.70) 6535.42 47.2 (8.623) 3 2 days, 12:40:00

Strict 6527.67 6532.58 (2.93) 6538,00 46.1 (8.264) 3 2 days, 12:40:00

78

The optimal LP solution of 6327.67 is attained in each run, irrespective of the dominance rule

used. The integrality gap is 3.2%. The optimal solution to crew scheduling is found in only two runs,

but the optimality gap is at most 0.1 percent. The Student’s t-test is used to evaluate whether the

difference between the average runtime for both dominance rules is significant. The p-value of the

t-test is 0.785. We fail to reject the null hypothesis of equal sample means at a significance level of

5%.

7.2 Sensitivity analysis

Consider the original dataset provided by the European rail-cargo company. 483 directed acyclic

graphs must be initialized when the pricing subproblems are split per day of the week. Only 135 of

these graphs are initialized after 4 hours. By then, the total number of nodes is roughly 650,000.

Approximately 28,500,000 arcs are constructed between these nodes. We conclude from these results

that the solution approach as described in Chapter 5 can not solve the CSP of the medium-size

European rail-cargo company within a reasonable time limit.

Recall that problem instances are derived from the original problem to evaluate the robustness

of the method to different implementation options, parameters and data sizes. In Subsection 7.2.1

we evaluate the crewblock construction methods that are described in Section 5.1. Furthermore, we

investigate the effect of the parameter settings in the hand-over plannings method. Recall that two

different dominance rules can be turned on. In Subsection 7.2.2 we evaluate each (combination of)

dominance rule(s). The performance improvements obtained by splitting the pricing subproblems on

weekday are described in Subsection 7.2.3. The effect of the number of crewblocks on the solution is

investigated in Subsection 7.2.4. In Subsection 7.2.5 we investigate how sensitive the model reacts

to an increase in the number of crew requirements and the complexity of the break rules. Finally, in

Subsection 7.2.6 the effect of the number of employees on the solution is investigated.

The convergence of the column generation method is rather slow near the end of the solution

process, meaning that the objective value of the (MIP of the) RMP does not decrease much in

the last iterations. To avoid tailing-off behavior, the column generation process is terminated if the

objective value of the original program has not decreased by more than 10 euro in the last k iterations,

where k is a predefined parameter. Furthermore, the column generation process is terminated if the

covered work duration and number of employees needed have not changed in the last m iterations.

We ran tests using different values for these parameters, to obtain different computation times and

solutions of varying qualities. Parameter k was set to either 20 or ∞ and m was set to either 50 or

∞. We can only guarantee that the optimal solution of the LP relaxation of (4.1) - (4.15) is found if

both k and m are set to infinity, the strict dominance rule is turned on, and no variable with negative

reduced cost can be identified in the pricing problem.

79

It takes some non-negligible amount of time to solve the MIP formulation of the RMP to op-

timality, given the set of shifts added to the formulation. It is reasonable that the solution time

increases with the number of columns. The frequency with which the MIP must be solved depends

on the values of k and m. There is no need to solve the MIP formulation of the RMP until the last

iteration if both k and m are set to infinity. Only the solution in the last iteration is relevant.

7.2.1 Crewblock construction

The aim of this subsection is to evaluate the different crewblock construction methods described in

Section 5.1. Due to time limitations, we only consider the crewblock construction methods described

in Subsection 5.1.1 and Subsection 5.1.3.

Recall that crewblock c ∈ C is represented by the sequence of crew requirements included in

the crewblock, i.e. c = (r1,c , ..., rnc ,c) where ri ,c ∈ R for all positions i ∈ {1, ..., nc} and nc is the

number of crew requirements included in crewblock c . The time elapsed between the start of r1,c

and the end of rnc ,c is given by δc , for all c ∈ C . The duration of crewblock c ∈ C is denoted by

dc . Table 14 summarizes the results of the crewblock construction method described in Subsection

5.1.1 (hereafter CCM-1), given that parameter ρ2 is 100 in the hand-over planning method.

Table 14: Results of the crewblock construction method described in Subsection 5.1.1 (CCM-1).
Parameter ρ2 is equal to 100. The standard deviations are listed between brackets.

Dataset |C |
∑

c∈C δc
∑

c∈C δc / |C |
∑

c∈C dc
∑

c∈C dc / |C |
5 71 11 days, 10:14:00 3:51:45 (1:09:53) 12 days, 8:31:00 4:10:35 (1:13:50)

6 133 21 days, 14:55:00 3:54:06 (1:25:31) 22 days, 23:41:00 4:08:53 (1:28:19)

7 298 46 days, 00:19:00 3:42:21 (2:00:25) 49 days, 1:34:00 3:57:06 (2:02:01)

8 512 80 days, 8:04:00 3:45:57 (1:48:37) 89 days, 14:54:00 4:12:04 (2:21:53)

We will now describe the results obtained for the crewblock construction method described in

Subsection 5.1.3. In that method, δc is enforce to be in the interval [
¯
T , T̄), for all c ∈ C . Let C1 be

the set of crewblocks c ∈ C for which δc <
¯
T and C2 the set of crewblock c ∈ C for which δc > T̄ .

Table 15 summarizes the effect of an increase or decrease of
¯
T and T̄ on |C |, |C1| and |C2|. We

must note that it might occur that one or more of these numbers do not change as a result of an

increase or decrease of
¯
T and T̄ .

80

Table 15: Effect of an increase or decrease of the minimum and maximum crewblock length on
the number of crewblocks and the number of crewblocks that violate the duration constraints

|C | |C1| |C2|

¯
T ↑, T̄ ↑ ↓ ↓ or ↑ ↓

¯
T ↑, T̄ ↓ ↓ or ↑ ↑ ↑

¯
T ↓, T̄ ↑ ↓ or ↑ ↓ ↓

¯
T ↓, T̄ ↓ ↑ ↓ or ↑ ↑

Table 16 summarizes the results of the crewblock construction method obtained for problem

instance 5, for different combinations of
¯
T and T̄ . The number of improvement iterations is set to

zero, as the same crewblocks must be constructed in each independent run to make a fair comparison

between different implementation options, parameter settings and data sizes. Furthermore, it turned

out that only small improvements were realized if the local search heuristic is applied. The maximum

idle time between two consecutively scheduled crew requirements included in the same crewblock

(M̄) is 3 hours. Two consecutively planned crew requirements are included in different workblocks if

the idle time between these activities is greater than or equal to the hand-over duration of 1 minute

and if the end location of the first activity is a relief location, i.e.,
¯
M is 1 minute. The hand-over

activity required after crewblock c is planned directly before the start of crew requirement r1,c+
c

, for

all c ∈ C that do not end with a shut-down activity.

Table 16: Results of the crewblock construction method described in Subsection 5.1.3 for problem
instance 5. Parameter ρ2 is equal to 100. The standard deviations are listed between brackets.

¯
T T̄ |C | |C1| |C2|

∑
c∈C δc

∑
c∈C δc / |C |

∑
c∈C dc

∑
c∈C dc / |C |

2 5 80 10 2 11 days, 9:44:00 3:25:18 (1:18:45) 12 days, 9:01:00 3:42:46 (1:30:29)

3 5 80 19 2 11 days, 12:58:00 3:27:44 (1:18:13) 12 days, 11:36:00 3:44:42 (1:30:08)

1 6 83 0 0 11 days, 7:51:00 3:16:31 (1:10:48) 12 days, 9:04:00 3:34:45 (1:23:03)

2 6 72 2 0 11 days, 9:08:00 3:47:37 (1:07:30) 12 days, 8:53:00 4:07:24 (1:17:19)

0 7 141 0 0 11 days, 1:17:00 1:52:53 (1:36:56) 12 days, 9:41:00 2:06:40 (1:47:53)

1 7 83 0 0 11 days, 7:51:00 3:16:31 (1:10:48) 12 days, 9:04:00 3:34:45 (1:23:03)

2 7 70 0 0 11 days, 10:02:00 3:54:53 (1:10:05) 12 days, 8:51:00 4:14:27 (1:34:12)

From Table 16, we can conclude that the number of crewblock in C does not increase with

¯
T . This is in caused by the fact that more workblocks are combined into one crewblock when

¯
T

increases, since the size of C1 must be minimized. For a given value of T̄ , the number of elements

in C1 increases with
¯
T . Two crewblocks that consist of only one workblock have a corresponding δc

81

between 5 hours (including) and 6 hours (excluding), since |C2| = 2 if T̄ = 5 hours and |C2| = 0 is

T̄ = 6 hours.

Two combinations of
¯
T and T̄ are selected to evaluate the effect of the number of crewblocks

on the solution quality and corresponding computation time. The first combination is
¯
T = 1 hour

and T̄ = 7 hours, and the second combination is
¯
T = 0 hour and T̄ = 7 hours (hereafter CCM-2

and CCM-3, respectively). The number of nodes in each pricing subproblem is reduced if multiple

workblocks are merged into one crewblock, and also the number of arcs decreases (more drastically).

As a result, the CSP is easier and faster to solve. However, there is a trade-off between the size of

the CSP and the optimal solution value. In fact, the solution space is reduced if multiple workblocks

are combined into one crewblock, and some shifts that can be generated if each crewblock consists

of one workblock can not be constructed after merging. Each crewblock consists of exactly one

workblock if
¯
T = 0. Each workblock is a sequence of crew requirements that must be assigned to

the same driver. Table 17 summarizes the results of CCM-2 and CCM-3, given that parameter ρ2 is

100 in the hand-over planning method.

Table 17: Results of the crewblock construction methods CCM-2 and CCM-3. Parameter ρ2 is
equal to 100. The standard deviations are listed between brackets.

Method Dataset |C |
∑

c∈C δc
∑

c∈C δc / |C |
∑

c∈C dc
∑

c∈C dc / |C |

CCM-2

5 83 11 days, 7:51:00 3:16:31 (1:10:48) 12 days, 9:04:00 3:34:45 (1:23:03)

6 185 20 days, 22:46:00 2:43:04 (1:21:11) 23 days, 5:04:00 3:00:40 (1:27:26)

7 381 44 days, 13:22:00 2:48:24 (1:45:59) 49 days, 14:52:00 3:07:32 (1:48:09)

8 649 77 days, 13:27:00 2:52:05 (1:33:49) 90 days, 9:02:00 3:20:32 (2:14:33)

CCM-3

5 141 11 days, 1:17:00 1:52:53 (1:36:56) 12 days, 9:41:00 2:06:40 (1:47:53)

6 343 19 days, 18:29:00 1:23:00 (1:24:46) 23 days, 3:11:00 1:37:07 (1:30:28)

7 743 41 days, 5:41:00 1:19:56 (1:38:31) 49 days, 8:59:00 1:34:52 (1:41:04)

8 1205 72 days, 12:31:00 1:26:40 (1:34:47) 90 days, 2:27:00 1:47:40 (1:59:36)

Recall that the parameters ρ1, ρ2 and ρ3 determine the start time of a crew change on a mobilized

locomotive. The effect of the parameters ρ1, ρ2 and ρ3 on the performance of the column generation

approach is evaluated for problem instance 5C. The pricing problem is split by employment group and

break requirement, and the resulting number of subproblems is three. Note that we do not split the

pricing subproblems by day of the week. The size of the graph on which pricing subproblem q ∈ Q

is stated depends on the parameter values and the crewblock construction method used. Let V be

the set with all nodes and A the set with all arcs, i.e., V = ∪q∈QV q and A = ∪q∈QAq. The number

of elements in V and A vary over different runs if ρ3 > 0. Table 18 provides information about

82

the number of elements in V and A, for different parameter settings and crewblock construction

methods.

Table 18: The number of elements in V and A for problem instance 5C, split by crewblock
construction method and parameter settings. The average result over ten different runs is given if
ρ3 > 0

Method ρ1 = 100, ρ2 = ρ3 = 0 ρ2 = 100, ρ1 = ρ3 = 0 ρ3 = 100, ρ1 = ρ2 = 0

|V | |A| |V | |A| |V | |A|
CCM-1 4588 30,758 4606 30,862 4613.2 (9.859) 30,886.8 (43.814)

CCM-2 4830 31,975 4830 32,041 4830 31,983.4 (36.087)

CCM-3 5886 37,788 5898 37,940 5898 37,855.8 (44.381)

From Table 18, we conclude that the total number of nodes and arcs differ only marginal if

other parameter values are set. Further, the number of nodes and arcs grows with the number of

crewblocks in C . We will now investigate the effect of ρ1, ρ2 and ρ3 on the performance of the column

generation approach. The algorithm is implemented such that independent pricing subproblems are

solved in parallel and the strict dominance rule is turned on. Further, k is 20 and m is 50. Table 19

shows the average results over ten independent runs for problem instance 5C. The optimal solution

of the master problem is given by z∗LP . The optimal LP solution is different from run to run if ρ3 > 0.

Table 19: Results of solving the crew scheduling problem of dataset 5C for different combinations
of parameter values and crewblock construction method

Method ρ1 ρ2 ρ3 z∗LP ¯
z10 〈z〉10 z̄10 〈t〉10

CCM-1

100 0 0 30,749.06 31,527.47 31,527.47 31,527.47 331.2 (19.39)

0 100 0 30,376.99 31,258.05 31,258.05 31,258.05 321.3 (17.23)

0 0 100 - 31,395.07 60,034.41 (25,227.70) 78,603.08 213.9 (14.91)

CCM-2

100 0 0 30,209.15 31,188.63 31,188.63 31,188.63 525.7 (34.67)

0 100 0 30,002.68 30,191.30 30,191.30 30,191.30 537.1 (34.02)

0 0 100 - 31,221.05 59,447.78 (25,711.28) 78,461.45 338.5 (20.52)

CCM-3

100 0 0 29,425.12 29,961.30 30,933.29 (846.450) 31,508.18 2874.0 (41.33)

0 100 0 29,131,70 29,733.76 30,859.88 (827.516) 31,401.27 2898.8 (45.82)

0 0 100 - 31,715.40 70,378.02 (21,614.66) 80,285.56 2042.3 (42.19)

The optimal LP solution is attained in all runs if ρ1 = 100 or ρ2 = 100, and crewblocks are

constructed with CCM-1 or CCM-2. If crewblocks are constructed with CCM-3, each crewblock is

83

covered at least once in all ten independent runs if ρ1 = 100 or ρ2 = 100. It is not always possible

to cover all crewblocks if hand-over activities are planned randomly, irrespective of the construction

method used. A crewblock can not be covered if its duration is too long. On the other hand, it

might occur that it is not possible to plan a valid meal break in the shift that covers the crewblock.

Given the crewblock construction method, the optimal LP value is the lowest if hand-over activities

are planned directly before the start of the crewblocks. However, the differences are only marginal

and other conclusions must be draw for several other datasets. Our main goal is to evaluate the

effect of different implementation options on the solution quality and computation time. Therefore,

it is sufficient to chose one parameter setting. We have chosen to set ρ2 equal to 100.

7.2.2 Effect of the dominance rule

Recall that the RCSP algorithm uses the concept of dominance rules to limit the number of paths that

must be considered. In this thesis, we use the heuristic and the strict dominance rule as described in

Paragraph 5.3.3.2. The aim of this subsection is to investigate the effect of both dominance rules on

the performance of the method. We also investigate the effect of using combinations of dominance

rules. First, the heuristic (strict) dominance rule is turned on. If the algorithm terminates before the

optimal LP solution is found, the strict (heuristic) dominance rule is turned on. Additional paths are

generated in the pricing problem until the algorithm terminates again. It is worth mentioning that the

combination strict dominance followed by heuristic dominance can only improve the solution quality if

at least one of the parameters k and m is not set to infinity, and the algorithm did not terminate due

to the fact that no shift with negative reduced cost was identified in the pricing problem. Otherwise,

the optimal solution of the master problem is already found. In that case, no shifts with negative

reduced cost can be identified in the pricing problem of the RCSP algorithm by turning the heuristic

dominance rule on. In this section, we consider problem instances 5A and 5C.

The result of computational experiments for instance 5A are given in Table 20. Further, k is 20

and m is 50. The MIP of the RMP is solved after each iteration.

Recall that turning the strict dominance rule on will find the path with the lowest reduced cost

that is feasible with respect to the resources, but may have to consider all or almost all paths.

Significantly fewer paths are traversed if the heuristic dominance rule is turned on, but the optimal

path is not necessarily found. There is a trade-off between the solution quality and corresponding

computation time, which can also be seen in Table 20.

The unequal variance Student’s t-test is used to evaluate whether or not the average objective

value is significantly different if another (combination of) dominance rule(s) is used. It turns out

that the average objective value is significantly higher if the heuristic dominance rule is turned on

than when the strict dominance rule or a combination of dominance rules is used, irrespective of

84

Table 20: The average result for problem instance 5A over ten independent runs for different
(combinations of) dominance rules.

Method
Heuristic dominance rule Strict dominance rule

〈z〉10 〈t〉10 〈z〉10 〈t〉10

CCM-1 196,205.64 (59,635.94) 26.3 (4.32) 27,307.78 (42.627) 45.5 (2.82)

CCM-2 88,382.19 (37,049.04) 36.9 (3.15) 27,186.13 80.1 (4.33)

CCM-3 48,788.88 (27,513.52) 92.7 (30.27) 31,075.12 (904.550) 143.0 (32.45)

Method
Heuristic followed by strict Strict followed by heuristic

〈z〉10 〈t〉10 〈z〉10 〈t〉10

CCM-1 27,295.11 (14.296) 49.8 (3.14) 27,301.39 (28.331) 54.2 (2.10)

CCM-2 27,186.13 73.0 (3.29) 27,186.13 99.5 (5.21)

CCM-3 27,323.06 (159.377) 225.7 (14.49) 28,195.18 (875.116) 239.1 (48.56)

the crewblock construction method. Further, the average objective value is reduced significantly if

the heuristic dominance rule is turned on after the strict dominance rule, given that crewblocks are

constructed with CCM-3. We fail to reject the null hypothesis of equal sample means if we apply the

test on the results obtained with both combinations. For example, the p-value of the t-test is 0.089

if CCM-3 is used. The null hypothesis of equal sample means can not be rejected at a significance

level of 5%.

The Student’s t-test is also used to evaluate whether or not the average computation time is

significantly different if another (combination of) dominance rule(s) is used. It turns out that the

running time is significantly larger if the strict dominance rule is turned on instead of the heuristic

dominance rule. This reflects the characteristics of both rules. Furthermore, the average computation

time is significantly lower if the strict dominance rule is used after the heuristic dominance rule instead

of the reverse order. Promising results are shown if the strict dominance rule is turned on after the

heuristic dominance rule.

In fact, the results between the heuristic and strict dominance rule are hard to compare, since

the algorithm can terminate before no variable with negative reduced cost is identified in the pricing

problem. Therefore, we also consider the case in which the parameters k and m are set to infinity.

Again, ten independent runs are performed. Given that the heuristic dominance is turned on, the

algorithm terminates on average after 54.6 seconds if CCM-1 is used, 76.4 seconds if CCM-2 is

used and 162.1 seconds if CCM-3 is used. The average objective values are 39,203.31, 30,028.49

and 31,017.33, respectively. Based on the results stated in Table 20, we can conclude that other

(combinations of) dominance rule(s) show more promising results.

85

Recall that the optimal solution of the master problem provides a lower bound on the optimal

integer solution. The objective value of the optimal LP solution is 26, 869.78 if CCM-1 is used,

26, 737.65 if CCM-2 is used and 26, 652.44 if CCM-3 is used. It takes roughly 47 seconds to find

the optimal LP solution if CCM-1 is used, 80 seconds if CCM-2 is used and 507 seconds if CCM-3

is used. These are the average computation times over five independent runs, given that the strict

dominance rule is turned on. The solutions obtained for the original program are the same for all

these independent runs. The objective value of the original problem is 27,288.72 if CCM-1 is used,

27,186.13 if CCM-2 is used, and 27,125.55 if CCM-3 is used. The upper bounds on the optimality

gaps are given by 1.6%, 1.7% and 1.8%, respectively.

Consider the results obtained when the strict dominance rule is turned on. The upper bound on

the optimality gap is on average approximately 1.6% if CCM-1 is used, 1.7% if CCM-2 is used, and

16.6% if CCM-3 is used. Consider the results obtained if the strict dominance rule is applied after

the heuristic dominance rule. In that case, the upper bound on the optimality gap is on average

approximately 1.6% if CCM-1 is used, 1.7% if CCM-2 is used, and 2.5% if CCM-3 is used.

The result for problem instance 5C are given in Table 21. The algorithm is implemented such

that independent pricing subproblems are solved in parallel. Further, k is 20 and m is 50. The MIP

of the RMP is solved after each iteration.

Table 21: The average result for problem instance 5C over ten independent runs for different
(combinations of) dominance rules.

Method
Heuristic dominance rule Strict dominance rule

〈z〉10 〈t〉10 〈z〉10 〈t〉10

CCM-1 1,261,975.00 (114,460.413) 41.2 (6.14) 31,258.05 321.3 (17.23)

CCM-2 1,055,505.12 (111,073.893) 52.9 (3.23) 30,191.30 537.1 (34.02)

CCM-3 728,717.90 (40,722.782) 135.5 (13.48) 30,859.88 (827.516) 2898.8 (45.82)

Method
Heuristic followed by strict Strict followed by heuristic

〈z〉10 〈t〉10 〈z〉10 〈t〉10

CCM-1 31,299.65 (93.028) 302.1 (23.45) 31,258.05 320.8 (13.28)

CCM-2 30,836.34 (590.177) 456.2 (52.67) 30,196.82 (12.336) 537.4 (25.02)

CCM-3 31,574.42 (142.002) 2252.4 (130.89) 31,359.88 (48.561) 2897.5 (318.33)

Again, the solution quality is significantly worse if the heuristic dominance rule is used instead

of the strict dominance rule or a combination of dominance rules. We can not reject the null

hypothesis of equal sample means if the first sample consists of the objective values obtained when

the strict dominance rule is used and the second sample consists of the objective values obtained

86

when the strict dominance rule is turned on after the heuristic dominance rule, irrespective of the

crewblock construction method. It takes roughly 2 seconds to solve the pricing problem if the

heuristic dominance rule is turned on, and 26 seconds if the strict dominance rule is turned on.

Overall, the most promising results are obtained by using the strict dominance rule or by using

the combination of heuristic dominance rule followed by the strict dominance rule.

7.2.3 Effect of a split per day of the week

We have shown in Subsection 7.1.2 that the solution time is reduced significantly if the pricing

problems are split per day of the week and solved in parallel for the second data instance. In this

subsection, we evaluate the effect of splitting the pricing problems per day of the week on the solution

time and the corresponding computation time for larger datasets.

The algorithm is implemented such that the pricing subproblems are solved in parallel. The strict

dominance rule is turned on. Further, k is 20 and m is 50. The MIP formulation of the RMP is solved

after each iteration. The results are shown in Table 22. The total number of shifts constructed is

given by ’# shifts’.

Table 22: The average results over ten independent runs obtained when the pricing subproblems
are solved over the entire network and when the pricing subproblems are split on weekday. Results
are given for problem instances 5A, 5C and 6C

Dataset Method z∗LP
Pricing problems solved for the entire week Pricing problems solved per day of the week

〈z〉10 〈t〉10 # shifts 〈z〉10 〈t〉10 # shifts

5A

CCM-1 26,869.78 27,307.78 (46.627) 45.5 (2.82) 75.6 (1.86) 27,288.72 13.8 (0.12) 77.2 (2.59)

CCM-2 26,737.65 27,186.13 80.1 (4.33) 106.6 (3.38) 27,186.13 21.3 (3.15) 108.0 (3.39)

CCM-3 26,652.44 31,075.12 (904.550) 143.0 (32.45) 171.8 (28.99) 27,255.65 57.3 (4.32) 247.0 (11.55)

5C

CCM-1 30,376.99 31,258.05 321.3 (17.23) 94.8 (1.03) 31,258.05 103.9 (5.41) 93.2 (1.25)

CCM-2 30,002.68 30,191.30 537.1 (34.02) 126.4 (2.97) 30,191.30 157.8 (3.12) 130.8 (2.18)

CCM-3 29,891,31 30,859.88 (827.516) 2898.8 (45.82) 271.4 (10.46) 30,138.62 (35.620) 399.0 (31.54) 350.6 (23.86)

6C

CCM-1 Not solved 56,101.40 1606.2 (54.21) 189.2 (4.30) 56,101.40 588.7 (36.18) 194.1 (5.06)

CCM-2 Not solved 53,488.89 (48.327) 2974.1 (331.79) 331.6 (8.34) 53,452.30 (16.96) 1276.3 (56.227) 343.5 (9.47)

CCM-3 Not solved 53,296.41 (73.669) 23,658.3 (733.90) 893.2 (34.38) 53,318.20 (104.380) 7667.2 (461.95) 892.1 (41.26)

The Student’s t-test is used to evaluate whether the average computation time is reduced sig-

nificantly if the pricing problems are split per day of the week. We must reject the null hypothesis

of equal sample means, irrespective of the dataset and crewblock construction method. This means

that the average computation time is reduced significantly if the pricing problems solved per day of

the week. Besides that, the average objective value at the moment of termination does not differ

significantly or is significantly smaller if the pricing problems are split per day.

87

Significant performance improvements are obtained by splitting the pricing problem into multiple,

smaller pricing subproblems. The pricing subproblems are constructed such that all resource feasible

paths in the pricing problem solved over the entire network can still be constructed. The individual

pricing subproblems are easier and faster to solve if we split on weekday. This is verified by the

fact that the number of shifts constructed per second is on average larger if pricing subproblems are

solved per day of the week.

7.2.4 Effect of the number of crewblocks

In this subsection, we evaluate the effect of the number of crewblocks on the solution time and the

quality of the solution. Given a subset of crew requirements, we expect that the optimal MIP of the

master problem is the lowest when every crewblock consists of exactly one workblock. On the other

hand, the problem is easier and faster to solve if multiple workblocks are merged into one crewblock.

Consider the results for problem instances 5A and 5C presented in Table 22, where the pricing

problem is split by day of the week. Recall that |C | is equal to 71 if CCM-1 is used, 83 if CCM-2

is used and 141 if CCM-3 is used, considering problem instance 5. We can conclude from this

table that the optimal solution of the master problem decreases with the number of crewblocks in C .

Furthermore, the average computation time before termination grows with the number of crewblocks.

The number of paths that must be researched in each pricing subproblem grows with the number

of crewblocks included in the graph. The Student’s t-test is used to evaluate whether or not the

computation time is reduced significantly if less crewblocks are added to the formulation. We must

reject the null hypothesis of equal sample means for all t-tests that we perform on the runtimes.

Hence, the runtime is reduced significantly if CCM-1 is used instead of CCM-2, and if CCM-2 is used

instead of CCM-3. The quality loss is only marginally, considering the optimal LP solutions. As a

result, it is computationally attractive to merge multiple workblocks into one crewblock.

7.2.5 Effect of the data size and complexity of the break requirements

First, we evaluate the effect of an increase in the number of crew requirements on the solution

time. The number of paths in each pricing subproblem grows exponentially with the number of crew

requirements. Based on this, we expect that the computation time also increases exponentially with

the number of crew requirements. Next, the effect of the break requirements on the solution time is

investigated.

Table 23 shows the average runtime for different problem instances. The computation time is

limited to 12 hours. Crewblock construction method CCM-1 is used, and the strict dominance rule

88

is turned on. The pricing problems are split by weekday and solved in parallel. The MIP is solved

after every five iterations.

Table 23: Average computation time (in seconds) before termination. The standard deviations are
listed between brackets

Problem instance 5 6 7 8

A 13.8 (0.12) 1 66.3 (2.01) 1 713.9 (8.76) 2 4108.5 (157.68) 2

B 31.1 (3.19) 1 169.5 (3.45) 1 1060.8 (54.83) 2 21,337.8 (765.22) 3

C 103.9 (5.41) 1 588.7 (36.18) 1 6218.0 (213.41) 2 > 43,200.0
1 Average computation time over 10 independent runs, 2 Average computation time over 5 independent runs,
3 Average computation time over 2 independent runs

The average computation time grows exponentially with the number of crew requirements. It

takes roughly 31 seconds to solve problem instance 5B, while solving problem 8B takes roughly 6

hours. The only difference between these two problem instances is the number of crew requirements

that must be covered. The number of nodes in each pricing subproblem grows with the number of

crewblocks and passenger activities that can be included in the shifts generated inside the subproblem.

The number of arcs grows more drastically than the number of nodes. As a result, the number of

(feasible) paths grows exponentially with the number of train activities planned in the model week.

Table 23 shows that the average computation time is significantly higher if break requirements are

introduced. The complexity of these break requirements also have a significant impact on the solution

time. In Chapter 8 we describe a solution method that can be used to reduce the computation time

if a meal break is required in the shifts.

The algorithm is not able to solve the CSP of dataset 8C within 12 hours. Most real-life problem

instances are much larger than this instance, both in the number of employment groups and the

number of train activities scheduled in the model week. Based on this, we conclude that the column

generation technique described in this paper is not able to solve real-life CSPs within a reasonable

time limit.

7.2.6 Effect of the number of employment groups

In this subsection, we investigate the effect of the number of employment groups on the solution

time and solution quality. Recall that we have assumed that each employment group has the route

knowledge, traction knowledge and skills to perform all crew requirements.

Results of computation experiments that can be used to evaluate the effect of the number of

employment groups on the solution quality and computation time are given in Table 24. The pricing

89

problem is split by employment group, nationality, break requirement and day of the week. The

pricing subproblems are solved in parallel, with the number of threads depending on the number of

CPU cores. The strict dominance rule is turned on. Furthermore, k = 20, m = 50 and the MIP

formulation of the RMP is solved every five iterations. Crewblock construction method CCM-1 is

used.

Table 24: Results of computational experiments to evaluate the effect of the number of
employment groups on the solution quality and computation time

Dataset 〈z〉 〈t〉 〈Yd〉 |Q| Average running time per iteration (s)

5C 31,258.051 103.9 (5.41)1 121 21 10.2 (3.25)1

5E 27,629.182 11,547.3 (431.87)2 112 210 722.5 (58.31)2

6C 56,101.401 588.7 (36.38)1 211 21 25.3 (4.98)1

6E 44,553.13 (233.14)2 24,752.1 (391.77)2 182 210 556.8 (806.44)2

1 Average over 10 independent runs, 2 Average over 5 independent runs

Table 24 shows that the average objective value at the moment of termination is lower when

there are ten employment groups instead of one. Better shifts can be constructed, such that the

crew deadheading duration and idle time in the shifts is reduced. Furthermore, the number of

employees needed to cover the selected shifts is smaller when the number of employment groups

is ten instead of one. The results show that the average computation time is significantly larger if

shifts are constructed for ten employment groups. In fact, there are at least two reasons for this.

First, the number of pricing subproblems that is solved in each iteration of the solution process is

21 if there is only one employment group and 210 if there are ten employment groups. Second, it

is likely that the number of shifts generated in each iteration of the solution process is larger if 210

pricing subproblems are solved instead of 21. More shifts are added to the formulation and it takes

significantly more time to solve the MIP of the RMP to optimality.

90

8 Conclusion and Further research

In this thesis, a large real-life problem instance of the crew scheduling problem (CSP) has been

considered. The CSP is one of the most challenging planning problems faced by railway companies,

and the problem is proven to be NP-complete. In the past, crew schedules were constructed with

heuristic methods that were based on the rules used by manual planners. The planning puzzle

became more complex over the last three decades, leading to an increasing demand for computer-

assisted approaches and decision support systems that can construct good quality crew roster schemes

automatically. In order to create a satisfactory crew schedule for the employees and management of

the railway company, several complex rules and constraints need to be addressed. For example, the

crew schedule must fulfill the government regulation concerning shift time and break requirements,

and labour agreements. Furthermore, the traction knowledge, route knowledge and skills of the crew

members must be considered. Existing literature is skewed towards mathematical programming and

metaheuristic approaches.

The CSP is formulated as a set covering problem (SCP) with side-constraints. Every column

of the formulation is a shift that can be carried out by one employment group, and that addresses

the labour rules and government regulations. The side-constraints ensure that the set of selected

shifts fulfills the comprehensive constraints, e.g., the percentage of overnight stays, regulating crew

capacity, etc. First, a large candidate list of feasible shifts is constructed, given the set of crew

requirements that must be covered. Second, the minimum covering set of shifts is selected from

the candidate list by using the set covering formulation. Unfortunately, the explicit construction of

all variables is computationally intractable. Column generation techniques and metaheuristics are

examples of solution methods that work well in practice.

In this thesis, we proposed a column generation method to solve the CSP. Workblocks are

constructed in the first stage of the process. A workblock is the sequence of crew requirements

between two relief opportunities on a locline, i.e., the smallest amount of work that must be performed

by one driver. We can reduce the problem size by merging multiple workblocks into one crewblock,

such that the problem is easier and faster to solve. There is a trade-off between the number of

workblocks merged and the solution quality. In this thesis, we proposed three crewblock construction

methods. The first method starts with crewblocks that consist of all crew requirements planned in

sequence on a mobilized locomotive. Thereafter, the method splits the crewblocks based on cutting

rules. Each workblock is included completely in one crewblock. The second method is based on

block cutting heuristics and constructs all possible crewblocks, given some predefined parameters.

First, a large candidate list of crewblocks is constructed, given a set of cutting rules. The problem

to select a subset of crewblocks such that every workblock is included in exactly one of the selected

91

crewblock is formulated as a set partitioning problem. The third method merges workblocks based

on predefined parameters, such as the minimum and maximum length of a crewblock. This method

is extended with a local search heuristic to improve the initial solution. Next, the hand-overs of

responsibility between the drivers involved in crew changes on a mobilized locomotive are scheduled.

The problem to construct a feasible crew schedule is decomposed into two subproblems, namely

the restricted master problem (RMP) and the pricing problem. The RMP is the linear programming

(LP) relaxation of the set covering formulation in which only a subset of variables is considered. Shifts

that have the potential to improve the solution of the RMP are identified in the pricing problem. The

pricing problem is formulated as a resource constrained shortest path (RCSP) algorithm. Resources

are added to the labels to record, among others, the shift duration, break duration, night time spend

and nationality. We must split the pricing problem by employment group and break requirement, to

ensure that the shifts generated inside the pricing problem obey the naturally occurring constraints.

The RCSP uses the concept of dominance rules to limit the number of paths that must be researched.

We have considered the heuristic dominance rule and the strict dominance rule. We also investigated

the option to split the resulting pricing subproblems by day of the week.

Small problem instances with up to 120 train activities planned in the model week were created

for which the optimal solution to crew scheduling is known. The column generation method was

terminated if no variables with negative reduced cost were identified in the pricing problem. If the

strict dominance rule is turned on, all or almost all paths must be considered to find the resource

feasible path with minimal reduced cost. In the end, the optimal solution of the LP relaxation of the

original program is found. Significantly fewer paths are considered if the heuristic dominance rule

is turned on, and promising shifts are identified that are not necessary optimal. Unfortunately, the

algorithm can terminate before the optimal solution of the LP relaxation of the original program is

found.

For the first problem instance, containing 84 crew requirements and two employment groups,

the average optimality gap over ten independent runs is 14.5% if the heuristic dominance rule is

turned on, and 10.4% if the strict dominance rule is turned on. Further, we could not reject the null

hypothesis of equal run times for the two dominance rules. The algorithm is able to reach the optimal

LP solution within 18 seconds. For the second problem instance, containing 120 crew requirements

and one employment group, we concluded that significant performance improvements are obtained

by splitting the pricing problem into multiple, smaller pricing subproblems. The pricing subproblems

are easier and faster to solve. Moreover, multiple pricing subproblems can be solved in parallel. The

number of threads depends on the number of CPU cores available. The computation time decreases

significantly if the MIP of the RMP is only solved in the last iteration of the algorithm. For the

third problem instance, containing 112 crew requirements and one employment group, the average

92

optimality gap over ten independent runs is 191.6% if the heuristic dominance rule is turned on. The

average computation time is 35 seconds. The optimal solution to crew scheduling is attained in all

ten independent runs if the strict dominance rule is turned on, within approximately 126 seconds.

For the fourth problem instance, the results obtained with both dominance rules are quite similar.

Overall, the strict dominance rule outperforms the heuristic dominance rule with respect to the

solution quality.

In addition to the small datasets, different problem instances are derived from the real-life problem

instance to investigate the robustness of the method to different parameter settings, implementation

options and data sizes. These datasets contain 350 to 2464 crew requirements. Several instances

are constructed for each subset of crew requirements. One instance is the basic instance, and then

we either add a break (in two different ways) and consider one or ten employment groups.

We have investigated the effect of the strict and heuristic dominance rule on the performance

of the method. Furthermore, we investigated the effect of combinations of dominance rules on the

solution quality. The strict dominance rule and the combination of heuristic dominance followed by

strict dominance show the most promising results.

Significant performance improvements are obtained by splitting the pricing problem into multiple,

smaller pricing problems. The pricing subproblems are easier and faster to solve if we split on day

of the week. Furthermore, we have shown that it is computationally attractive to merge multiple

workblocks into one crewblock. In that case, the runtime is reduced significantly, while the objective

value increases only marginally.

Recall that the CSP is NP-complete. We found that the computation time increases exponentially

with the number of crew requirements that must be assigned. Furthermore, the computation time

increases with the complexity of the break rules, as the pricing subproblems are solved over larger

networks. The runtime increases with the number of employment groups included in the problem,

since more pricing subproblems must be solved in that case. On the other hand, the cost of the crew

schedule decreases with the number of employment groups. More effective shifts can be constructed

in that case.

We will provide some ideas for further research in the remainder of this chapter.

In this thesis, we proposed different methods to merge multiple workblocks into one crewblock,

such that the size of the CSP is reduced. Even though the results were satisfactory, there is room

for improvement in constructing the crewblocks. For example, it is worth investigating whether

performance improvements are realized if the number of workblocks is reduced in the first step of

the solution process. We assumed that a crew change on a mobilized locomotive can be planned if

the idle time between two train activities is at least equal to the hand-over duration of one minute,

93

and if the corresponding location is a relief location. In practice, crew changes are only planned if

the idle time between two crew requirements is, for example, more than 15 minutes. Furthermore,

the problem size is reduced if multiple crewblocks, scheduled on one or multiple loclines, are already

combined before the column generation algorithm. For example, crewblocks are combined based on

their combination quality. The quality of a crewblock combination can be evaluated in terms of the

idle time between the crewblocks, and the crew requirements covered.

A crucial element in the CSP is the set of complex break requirements that are applicable to the

crew. Given that the first break must start in some predefined time window after the start of the

shift, multiple nodes are required for each time point and location at which at least one event starts

and/or ends. The resource windows associated with these nodes are different, to ensure that the

breaks are planned according to the break rules. However, it is sufficient to construct one node for

each time point and location at which at least one event starts and/or ends if no break window is

set. A break is scheduled on an arc if the break time is larger than or equal to the minimum break

duration, irrespective of the spread time of the shift. Hence, the number of paths that must be

researched in the pricing subproblems is significantly smaller. When a break window is specified, it

might be computationally attractive to initially omit this window. Shifts are constructed with the

column generation algorithm until a stopping criterion is satisfied. Then, we must check whether or

not the selected shifts satisfy the break requirements. The crew requirements included in the shifts

that do not satisfy the break rules must be re-scheduled. If only a small number of crew requirements

must be re-scheduled, manual planning or heuristic methods can be used. Otherwise, the column

generation algorithm is used again. The time window in which the first break should start must be

considered during re-scheduling.

We have already mentioned that there is no need to solve each pricing subproblem to optimality in

every iteration of the solution process. It is likely that the runtime decreases if only a limited number

of subproblems is solved by turning the strict dominance rule on, and that the other subproblems

are solved by using the heuristic dominance rule. Moreover, not all pricing subproblems have to be

solved in each iteration of the solution process. However, we can only conclude that the optimal

solution of the master problem is found if all pricing subproblems are solved to optimality and no

variable with negative reduced cost is identified.

Even for the small problem instances, the runtime decreased significantly if the MIP of the RMP

was not solved in each iteration of the solution process. It might be interesting to investigate stopping

criteria that do not require the objective value of the MIP formulation. For example, both k and m

depend on the LP solution rather than the MIP solution. In that case, it suffices to solve one MIP

of the RMP after the column generation process is terminated.

94

The number of arcs in the graphs on which the pricing subproblems are stated turned out to be a

point of interest, especially for large problem instances. It is theoretically possible to construct wait,

crew deadheading, arrival and departure arcs at any point in time. In that case, the number of arcs

in the graphs would become extremely large, which results in memory issues and makes the problem

very hard to solve. Therefore, we already omitted a very large number of these arcs. However, there

is room for improvement in generating these arcs. We will describe some of these options in the

following four paragraphs.

First of all, the number of wait arcs with a break might be reduced. For example, only one wait

arc with break is constructed in each node, with a break larger than or equal to the minimum break

duration. Even though the solution space decreases by doing so, we do not expect large issues.

Secondly, suppose that a driver waits a location before another activity is planned in his shift. It

is likely that this activity corresponds to a crewblock or passenger activity that starts at the current

location, or that it involves a crew deadheading operation. In the last case, we could also directly

include a crew deadheading arc in the shift, instead of a wait arc followed by the same deadheading

operation. In terms of the graph, it might be beneficial to construct wait arcs and crew deadheading

arcs with a head node corresponding with the start of a crewblock or passenger activity only. In

that case, the number of paths that must be researched in each pricing subproblem is reduced. For

example, suppose that a wait arc is constructed between node v and node w , where w does not

correspond with the start of an event. It is likely that a wait arc or crew deadheading arc with a

tail node in w is included in the path after arc (v ,w). Suppose that crew deadheading arc (w , u) is

included. It was also possible to use the deadheading arc (v , u).

Thirdly, the number of departure and arrival arcs can be reduced as well. In practice, it is sufficient

to construct departure arcs only between a crew depot and a node that corresponds with the start of

an event. Furthermore, arrival arcs should only be constructed between nodes that correspond with

the end of an event and the crew depots.

Finally, we have constructed departure, arrival and crew deadheading arcs between two nodes if

the deadhead time does not exceed the maximum spread time of the shift. However, long deadhead

arcs are very ineffective and would hardly be used. It might be beneficial to limit the deadhead

duration on an arc, thus omitting some of the arcs that were constructed before.

Each driving activity planned in the model week can be used to transfer drivers as a passenger

on a train. We have constructed two nodes for each driving operation, corresponding with the start

and end of the event. The passenger activity is represented by the arc between these nodes. The

number of nodes corresponding with passenger activities is large, and the size of the problem is

reduced if some or all possible passenger activities are omitted. For example, we only include those

passenger activities corresponding with a pair of locations between which no faster (combination of)

95

deadheading options exists. When the crew schedule is constructed, the planner can try to reduce

the cost by considering the option to travel as a passenger on a train.

For simplity, we have assumed that each trip with the expensive taxicab takes 3 hours between

locations in the same country, and 7 hours otherwise. The euclidean distance can be used to estimate

the actual driving times, given the coordinates of the locations. The cost associated with a trip with

the expensive taxicab must depend on the duration of the ride.

The idea of dividing the problem into smaller subproblems which are solved in parallel seems to

be rather efficient. The pricing problem must be split by employment group, nationality and break

requirements to ensure that the generated variables satisfy the operational constraints. Furthermore,

the performance improvement turns out to be significant if pricing subproblems are solved by week-

day. It might be interesting to investigate other decomposition criteria, concerning geographical

partitioning. For example, we can decompose the overall problem into overlapping subregions. Each

crewblock and employment group is assigned to one primary subregion and possibly multiple sec-

ondary subregions, such that there is a balance between the solution quality and the solution time.

The subregions are updated after several iterations.

The column generation method can be extended with column fixing techniques and a Lagrangian-

based heuristic to speed up the solution process.

96

References

Abbink, E., Albino, L., Dollevoet, T., Huisman, D., Roussado, J., and Saldanha, R. L. (2011).

Solving large scale crew scheduling problems in practice. Public Transport, 3(2):149–164.

Abbink, E., Fischetti, M., Kroon, L., Timmer, G., and Vromans, M. (2005). Reinventing crew

scheduling at Netherlands Railways. Interfaces, 35(5):393–401.

Abbink, E., van ’t Wout, J., and Huisman, D. (2008). Solving large scale crew scheduling problems

by using iterative partitioning. Technical report, Econometric Institute Research Papers.

Bach, L., Dollevoet, T., and Huisman, D. (2014). Integrating timetabling and crew scheduling at a

freight railway operator. Technical report, Econometric Institute Research Papers.

Ball, M. and Benoit-Thompson, H. (1988). A lagrangian relaxation based heuristic for the urban

transit crew scheduling problem. Computer-Aided Transit Scheduling, Lecture Notes in Economics

and Mathematical Systems, 308:54–67.

Banihashemi, M. and Haghani, A. (2001). A new model for the mass transit crew scheduling problem.

In Computer-Aided Scheduling of Public Transport, pages 1–15. Springer.

Beasley, J. E. and Chu, P. C. (1996). A genetic algorithm for the set covering problem. European

Journal of Operational Research, 94(2):392–404.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview and conceptual

comparison. ACM Computing Surveys (CSUR), 35(3):268–308.

Caprara, A., Fischetti, M., and Toth, P. (1999). A heuristic method for the set covering problem.

Operations Research, 47(5):730–743.

Caprara, A., Fischetti, M., Toth, P., Vigo, D., and Guida, P. L. (1997). Algorithms for railway crew

management. Mathematical Programming, 79(1-3):125–141.

Cavique, L., Rego, C., and Themido, I. (1999). New heuristic algorithms for the crew scheduling

problem. In Meta-Heuristics, pages 37–47. Springer.

Dantzig, G. B. and Wolfe, P. (1960). Decomposition principle for linear programs. Operations

Research, 8(1):101–111.

Desrochers, M. and Soumis, F. (1989). A column generation approach to the urban transit crew

scheduling problem. Transportation Science, 23(1):1–13.

97

Emden-Weinert, T. and Proksch, M. (1999). Best practice simulated annealing for the airline crew

scheduling problem. Journal of Heuristics, 5(4):419–436.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., Owens, B., and Sier, D. (2004a). An annotated

bibliography of personnel scheduling and rostering. Annals of Operations Research, 127(1-4):21–

144.

Ernst, A. T., Jiang, H., Krishnamoorthy, M., and Sier, D. (2004b). Staff scheduling and rostering: A

review of applications, methods and models. European Journal of Operational Research, 153(1):3–

27.

Fischetti, M., Martello, S., and Toth, P. (1989). The fixed job schedule problem with working-time

constraints. Operations Research, 37(3):395–403.

Fisher, M. L. (2004). The lagrangian relaxation method for solving integer programming problems.

Management Science, 50(12 supplement):1861–1871.

Freling, R., Lentink, R. M., and Odijk, M. A. (2001). Scheduling train crews: A case study for the

Dutch railways. Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathemat-

ical Systems, 505:54–67.

Glover, F. (1989). Tabu search-part i. ORSA Journal on computing, 1(3):190–206.

Glover, F. (1990). Tabu search-part ii. ORSA Journal on computing, 2(1):4–32.

Guo, Y., Mellouli, T., Suhl, L., and Thiel, M. P. (2006). A partially integrated airline crew scheduling

approach with time-dependent crew capacities and multiple home bases. European Journal of

Operational Research, 171(3):1169–1181.

Hartog, A., Huisman, D., Abbink, E. J., and Kroon, L. G. (2009). Decision support for crew rostering

at NS. Public Transport, 1(2):121–133.

Huisman, D. (2007). A column generation approach for the rail crew re-scheduling problem. European

Journal of Operational Research, 180(1):163–173.

Huisman, D., Kroon, L. G., Lentink, R. M., and Vromans, M. J. (2005). Operations research in

passenger railway transportation. Statistica Neerlandica, 59(4):467–497.

Jütte, S., Albers, M., Thonemann, U. W., and Haase, K. (2011). Optimizing railway crew scheduling

at DB Schenker. Interfaces, 41(2):109–122.

98

Jütte, S. and Thonemann, U. W. (2012). Divide-and-price: A decomposition algorithm for solving

large railway crew scheduling problems. European Journal of Operational Research, 219(2):214–

223.

Jütte, S. and Thonemann, U. W. (2015). A graph partitioning strategy for solving large-scale crew

scheduling problems. OR Spectrum, 37(1):137–170.

Laplagne, I. E. (2008). Train driver scheduling with windows of relief opportunities. PhD thesis,

University of Leeds.

Qiao, W., Hamedi, M., and Haghani, A. (2010). Algorithm for crew-scheduling problem with bin-

packing features. Transportation Research Record: Journal of the Transportation Research Board,

2197(1):80–88.

Ruxton, G. D. (2006). The unequal variance t-test is an underused alternative to Student’s t-test

and the Mann–Whitney U test. Behavioral Ecology, 17(4):688–690.

Savelsbergh, M. (1997). A branch-and-price algorithm for the generalized assignment problem.

Operations Research, 45(6):831–841.

Sellmann, M., Zervoudakis, K., Stamatopoulos, P., and Fahle, T. (2002). Crew assignment via

constraint programming: integrating column generation and heuristic tree search. Annals of

Operations Research, 115(1-4):207–225.

Smith, B. M. and Wren, A. (1988). A bus crew scheduling system using a set covering formulation.

Transportation Research Part A: General, 22(2):97–108.

Sodhi, M. S. and Norris, S. (2004). A flexible, fast, and optimal modeling approach applied to crew

rostering at London Underground. Annals of Operations Research, 127(1-4):259–281.

Souai, N. and Teghem, J. (2009). Genetic algorithm based approach for the integrated airline

crew-pairing and rostering problem. European Journal of Operational Research, 199(3):674–683.

Vaidyanathan, B., Jha, K. C., and Ahuja, R. K. (2007). Multicommodity network flow approach to

the railroad crew-scheduling problem. IBM Journal of Research and Development, 51(3.4):325–

344.

Willers, W., Proll, L., and Wren, A. (1995). A dual strategy for solving the linear programming

relaxation of a driver scheduling system. Annals of Operations Research, 58(7):519–531.

Woodburn, A. (2012). Intermodal rail freight activity in britain: Where has the growth come from?

Research in Transportation Business & Management, 5:16–26.

99

Appendices

A Operational constraints for the real-life problem instance

Table A25: Minimum and maximum spread time

Spread time requirement Regime International shift Minimum shift duration Maximum shift duration

S1 R1 TRUE 05:00:00 10:00:00

S2 R1 FALSE 05:00:00 09:00:00

S3 R2 TRUE 05:00:00 13:00:00

S4 R2 FALSE 05:00:00 10:00:00

Table A26: Maximum driving time

Driving time requirement Regime Night shift International shift Maximum driving duration

D1 R1 TRUE TRUE 08:00:00

D2 R1 TRUE FALSE 1 day

D3 R1 FALSE TRUE 09:00:00

D4 R1 FALSE FALSE 1 day

D5 R2 TRUE TRUE 08:00:00

D6 R2 TRUE FALSE 08:00:00

D7 R2 FALSE TRUE 09:00:00

D8 R2 FALSE FALSE 09:00:00

100

T
a

b
le

A
2

7
:

B
re

ak
re

q
u

ir
em

en
ts

B
re

a
k

re
q

u
ir

em
en

t
R

eg
im

e
E

m
p

lo
ye

e
ro

le
M

in
im

u
m

sh
if

t
d

u
ra

ti
o

n
M

a
xi

m
u

m
sh

if
t

d
u

ra
ti

o
n

F
ir

st
b

re
a

k
a

ft
er

F
ir

st
b

re
a

k
b

ef
o

re

B
1

R
1

G
lo

b
al

d
ri

ve
r

05
:0

0:
00

2
d

ay
s

00
:0

0:
00

08
:0

0:
00

B
2

R
1

G
lo

b
al

d
ri

ve
r

05
:0

0:
00

08
:0

0:
00

03
:0

0:
00

06
:0

0:
00

B
3

R
1

G
lo

b
al

d
ri

ve
r

08
:0

1:
00

2
d

ay
s

03
:0

0:
00

06
:0

0:
00

B
4

R
2

G
lo

b
al

d
ri

ve
r

05
:0

0:
00

2
d

ay
s

00
:0

0:
00

08
:0

0:
00

B
5

R
2

G
lo

b
al

d
ri

ve
r

05
:0

0:
00

08
:0

0:
00

03
:0

0:
00

06
:0

0:
00

B
6

R
2

G
lo

b
al

d
ri

ve
r

08
:0

1:
00

2
d

ay
s

03
:0

0:
00

06
:0

0:
00

B
7

R
2

L
o

ca
l

d
ri

ve
r

05
:0

0:
00

2
d

ay
s

00
:0

0:
00

08
:0

0:
00

B
8

R
2

L
o

ca
l

d
ri

ve
r

05
:0

0:
00

08
:0

0:
00

03
:0

0:
00

06
:0

0:
00

B
9

R
2

L
o

ca
l

d
ri

ve
r

08
:0

1:
00

2
d

ay
s

03
:0

0:
00

06
:0

0:
00

B
re

a
k

re
q

u
ir

em
en

t
In

te
rn

a
ti

o
n

a
l

sh
if

t
B

re
a

k
d

u
ra

ti
o

n
S

p
lit

a
llo

w
ed

M
in

im
u

m
b

re
a

k
d

u
ra

ti
o

n
M

o
ve

a
s

b
re

a
k

B
re

a
k

in
lo

c

B
1

FA
L

S
E

00
:2

0:
00

FA
L

S
E

00
:1

5:
00

T
R

U
E

T
R

U
E

B
2

T
R

U
E

00
:3

0:
00

T
R

U
E

00
:1

5:
00

T
R

U
E

T
R

U
E

B
3

T
R

U
E

00
:4

5:
00

T
R

U
E

00
:1

5:
00

T
R

U
E

T
R

U
E

B
4

FA
L

S
E

00
:1

5:
00

FA
L

S
E

00
:1

5:
00

T
R

U
E

T
R

U
E

B
5

T
R

U
E

00
:3

0:
00

T
R

U
E

00
:1

5:
00

T
R

U
E

T
R

U
E

B
6

T
R

U
E

00
:4

5:
00

T
R

U
E

00
:1

5:
00

T
R

U
E

T
R

U
E

B
7

FA
L

S
E

00
:1

5:
00

FA
L

S
E

00
:1

5:
00

FA
L

S
E

FA
L

S
E

B
8

T
R

U
E

00
:3

0:
00

T
R

U
E

00
:1

5:
00

FA
L

S
E

T
R

U
E

B
9

T
R

U
E

00
:4

5:
00

T
R

U
E

00
:1

5:
00

T
R

U
E

T
R

U
E

101

B Student’s t-test

Different versions of the Student’s t-test exists. The aim of this section is to provide general informa-
tion about the unequal variance Student’s t-test. More information about this statistical hypothesis
test can be found in the paper written by Ruxton (2006).

The test statistic follows a Student’s t-distribution if the null hypothesis of equal means is sup-
ported. A t-test can be applied to two independent samples that come from a normal distribution.
Suppose that the expected sample means are given by µ1 and µ2, respectively. We test the null
hypothesis H0 : µ1 = µ2 against HA : µ1 6= µ2. The size of the first sample is N1 and the size of the
second sample is N2. The test-statistic T is given by:

T =
Ȳ1 − Ȳ2√

s2
1/N1 + s2

2/N2

where Ȳ1 (Ȳ2) is the sample mean of the first (second) sample and s2
1 (s2

2) is the sample variance
of the first (second) sample. The significance level is given by α. The null hypothesis of equal means
is rejected if |T | > t1−α/2, υ, where t1−α/2, υ is the critical value of the t-distribution with υ degrees
of freedom. The degrees of freedom is calculated using the following formula.

υ =
(s2

1/N1 + s2
2/N2)2

(s2
1/N1)2/(N1 − 1) + (s2

2/N2)2/(N2 − 1)

102

