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Abstract

This paper analyzes the influence of various network architectures on the

ability of a group of people to adapt to a dynamic state of the world. In

highly connected societies, interaction with neighbors will clog the infor-

mation pipeline as individuals overvalue the information generated by the

(often incorrect) actions of others, making it impossible to distinguish the

signal that contains important information on the true state. As a result,

people are unable to change their action over time in a complete network.

When people have an unequal number of connections, those with the least

number of connections can start the adaptation process and set an example

for their neighbors.
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1 Introduction

Information plays a crucial role in any economic decision making process.

One of the findings in the social learning literature is that more effi cient

decision making can be achieved by limiting the information available to

those that have to act (Chamley, 2004). Learning from others can be

detrimental to society if people decide to mimic others and engage in herd

behavior: "everyone doing what everyone else is doing even when their

private information suggests doing something quite different." (Banerjee,

1992:798). Collective enthusiasm about a particular decision can severely

affect the eventual outcome and multiply gains or losses for those involved.

The goal of this paper is to explain in what way the structure of

a network affects the capacity to change for a group of individuals. In

doing so, the objective is to isolate cause, the network architecture, from

effect, the ability of a connected person to change her action over time in

accordance with the dynamic state of the world. Long-term behavior is

key, because adaptation is a continuous process that starts after actions

have converged. Every individual will have to learn the true state multiple

times. The network architecture then causes differences in behavior because

it affects the diffusion of information in society. The flow of information is

directed by the network characteristics: the number of connections, who is

connected to whom and the general level of trust in the correctness of the

actions of other people (as a measure of social influence).

To analyze the social learning process I present a model of decision

making by a group of myopic individuals. They have to decide simultane-

ously and repeatedly on one of two possible states of the world. Everyone

is aware that the state of the world is dynamic. Hence, the optimal deci-

sion changes over time and a different action is required once the state of

the world has changed in order to maximize payoffs. Furthermore, no one

knows whether any of their previous decisions were correct as payoffs are

not visible until the game has ended. To support their decision people have
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to rely on two sources of information. First, everyone receives a private sig-

nal, conditional on the state of the world at that time. The precision of the

signal is constant and gives a first indication of what the decision should

be. Adapting to the true state is possible for a person without neighbors,

because she will always follow her signal. Second, individuals are part of a

social network and observe the set of actions taken by their neighbors in the

preceding period. The content of this decentralized source of information

depends on the location of the agent in the network. The signal precision

is common knowledge and the actions of neighbors are judged by a pre-

determined level of reliability. In conjunction, the precision and reliability

determine the weight attached to the two sources of information and their

relative influence on the decision. When people observe a lot of neighbors

taking the same action and/or neighbors are highly valued, the actions of

these neighbors will be influential and can overrule a private signal, also if

they are incorrect.

The results show that connected individuals are subject to negative

herd externalities. It is shown that a network with more connections de-

creases the ability of agents to change their action. On the one hand,

an increase in the number of connections increases the probability of short-

term correct decisions, as more signals (conditional on the underlying state)

are inserted in the system. Most agents interpret their private signals cor-

rectly and interaction ensures that those that are incorrect will revise their

decision. On the other hand, a network with more links between people

means that no one is able to change their action over time, because they no

longer value the signal as primary source of information. They mostly rely

on the actions of their neighbors. A complete network, in which everyone

is connected to everyone, gives rise to a persistent herd, where actions con-

verge and none of the people involved is able to deviate. As a consequence,

adaptation to a different underlying state is impossible. Consider players

A and B deciding whether to invest or not, while observing each others

actions. If they both see their neighbor investing time after time, thereby

2



confirming their own belief, after some time they have probably convinced

each other and agree that investing is the best option, despite their signal

indicating that they are wrong. The cause of the gridlock is that person

A is not aware that B has primarily based her decision on the observation

of the action of A, and vice versa. If they would have known, and both

decided to follow their private signal, they would have behaved differently

and retained the ability to adapt. This finding is a consequence of the

assumption that there is a predetermined level of trust in the correctness

of neighbors’actions, which could be interpreted as peer pressure or a will-

ingness to show conformity with others. Related to the empirical findings

on correlation neglect and as a result of bounded rationality, the actions of

neighbors are always valued as independent and meaningful. Individuals

underestimate the level of correlation of the actions in their neighborhood

and an individual with more connections will receive more (often incorrect)

information. Treating all information as independent will cause conformity

in behavior and prevent adaptation, because everyone underestimates the

value of the private signal, which is truly independent and a (noisy) correct

reflection of the true state of the world.

Limiting the connections between people can alleviate the tendency

to engage in undesirable herd behavior. I show that the same number of

agents in an incomplete network might be able to adapt to changing cir-

cumstances. These networks exhibit a network dynamic, because time and

location determine who can adapt and at what time. Agents in a line net-

work are dependent on the two outer agents to stop the herd. Individuals

with one connection receive less information from their network, which will

increase the influence of the signal on their decision and direct the belief of

the agent towards the true state of the world. When one of these agents de-

cides to change actions others believe that this agent has received valuable

new information, which will encourage them to adapt as well. This pat-

tern of behavior generalizes to more complex networks consisting of nodes

with an unequal number of connections. Adaptation to a different state
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will always start at the outskirts and expand inward to highly connected

individuals. As long as the individual with the least number of connections

can change, she is able to stop the herd and start the adaptation process.

Theories of social learning with a static state of the world have proven

to be effective at explaining why actions will converge after some time and

why there is long-term enthusiasm about a particular decision (see for ex-

ample Bikhchandani, Hirshleifer and Welch, 1992; Gale and Kariv, 2003).

One of the shortcomings is that these models are less effective at explaining

why (groups of) people sometimes decide to radically change course, who

should be the first to change and the role of local interaction in this learn-

ing process. Roughly speaking, these models are well equipped to explain

the inflation of bubbles, but not why they burst. The contribution of this

paper is that it describes differences in behavior caused by the way people

are connected. A distinguishing feature of the model is that it is able to

explain the linkage between two empirical findings: the possibility of an

agent to deviate from a herd and the possibility of people to ignore infor-

mation (a cascade). Goeree, Palfrey, Rogers and McKelvey (2007) search

an explanation for the empirical finding that herds are seldom persistent

and deviations occur regularly. In a setting of sequential decision making

with a fixed state of the world they find that the true state will be re-

vealed over time. If everyone takes the incorrect action, one of the agents

is likely to follow a correct signal and deviate. This is the start of an adap-

tation process to a correct herd for all agents (a self-correcting herd). The

drawback of their theory is that it does not allow for agents that ignore

information if they achieve a level of certainty over the state of the world.

If people would ignore information, no one would be able to follow their

signal and change their action. In short, cascades need to be absent for

herds to stop. This result is in stark contrast with the empirically proven

occurrence of cascades as a type of behavior1 (Çelen and Kariv, 2004). In

1For a model with similar characteristics Çelen and Kariv (2004:497) conclude that:
"although cascades are not a theoretical possibility, they are a reality."
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the present paper the network architecture determines whether cascades

occur and whether herds are persistent. By varying the size and shape of

the network we can either observe herds and cascades together, or make

cascades absent and herds persistent, or observe very short herds without

cascades. In addition, within a network, we can differentiate the level of

belief for which people ignore information by varying the number of con-

nections. Moreover, contrary to conventional models of social learning, the

convergence of beliefs and actions to a unique state of the world, asymp-

totic learning, is never optimal. Beliefs do not converge because the optimal

action varies with the underlying state and information depreciates. The

objective of this thesis is to describe the adaptation process that follows

after everyone has decided that mimicking others is optimal and to show

which network architectures enable the fashion to become a fad.

As an example, consider a collection of small investors in search of prof-

its and a central bank with its policy to ensure financial stability. Investors

aggregate information from several sources. They collect local information

from peers by observing what others do and by looking at the volume of

traded stock. In addition, the central bank reports on the state of the

economy. Every investor will have its own interpretation of these reports,

but the information will be considered valuable if everything goes well and

there is a balance between the number of investors buying and selling as-

sets. During times of financial turmoil, this trust is fragile. Fear can give

rise to sudden changes in collective behavior. As the majority of investors

buys or sells assets at the same time, others will be inclined to follow. If

there are too many investors taking the same action, all will reassess the

value of their information and start to rely on peers as their main source of

information. As a consequence, public announcements by the central bank

are ineffective and overruled by information generated by the actions of

the majority of investors. It is hard to convince people that everything is

fine and their investments are safe when they see massive volume of stock

being sold by fellow traders. Following the actions taken by peers will then
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at least ensure constant relative utility. Individually, people make rational

decisions, but acting as a group creates a dynamic of its own. A state of

groupthink can deepen the crisis and prevents individuals from adequately

reacting to information that contradicts their actions. One of the investors

must be brave enough to start investing before others will follow and a pe-

riod of recovery can start. The influence of local interaction on this process,

and the conditions that enable the herd to become the primary source of

information is the central theme of this paper.

Section 2 presents related literature. Section 3 explains the model.

Section 4 describes the restrictions on attainable beliefs as a result of the

dynamic nature of the state of the world. Section 5 analyzes differences

in behavior for three network structures. Section 6 concludes. Section 7

questions three crucial modelling assumptions. The appendix contains all

the proofs.

2 Related Literature

The present paper builds on previous work on social learning of a (dynamic)

state of the world and analyzes the influence of a network on the diffusion

of information2.

2.1 Sequential decision making

Banerjee (1992) and Bikhchandani, Hirshleifer and Welch (1992) describe

a setting of sequential decision making that can lead to a loss of welfare for

society if people are inclined to mimic others, even if their peers have very

little information themselves. Individual rational behavior can cause delib-

erations that seem irrational for an independent bystander, because a lot of

valuable information is lost. During a herd, agents underestimate the value

of their private signal and overestimate the value of the actions of others.

2A broad overview of social learning literature (with empirical applications) is given
by Chamley (2004). In addition, Goyal (2007) discusses various aspects of social learning
by connected agents.
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They think the choices by predecessors are rich in information because the

actions are based on information aggregated at that time, but do not realize

most of them have been ignoring private information all along. Therefore,

the first couple of decisions are crucial to the equilibrium outcome. Smith

and Sørensen (2000) emphasize that these results hold because beliefs are

bounded as a result of bounded likelihood ratios (bounded away from zero

and finite). The informativeness of a binary signal is limited, resulting in

a maximum increase or decrease in belief each period. For a prior belief

that is suffi ciently outspoken (high or low) all available information is dis-

carded in advance, because the signal will not influence the choice of action

that period (the start of a cascade). In a model with unbounded beliefs

(i.e. unbounded likelihood ratios) signals are arbitrarily strong. In every

period there is a potential signal that can change the action. As a result,

information is aggregated in the belief parameter and the learning process

continues until actions and beliefs converge to the true state (asymptotic

learning) (see also Acemoglu, Dahleh, Lobel and Ozdaglar (2011))3.

The sequential learning literature is related because the agents base

their decision on similar sources of information. The interplay between the

private signal and the observation of a single predecessor determine how

and when herds and cascades arise. Three remedies to counter the ten-

dency to mimic predecessors have been suggested. First, Banerjee (1992)

promotes limiting the importance of observations. This forces the agent

to make a personal assessment using the private signal and increases ex

post welfare. Including a network structure is essentially an extension to

this line of thought. The individual has more than one connection and the

importance of observations depends on how many neighbors are visible.

Second, Bikhchandani et al. (1992) suggest that expanding the informa-

tion set with public (or external) information can be used as an instrument

to delay or correct cascades. In addition, Goeree et al. (2007) add noise

3The difference between bounded and unbounded beliefs and the consequences for
the learning process are explained in Section 4.2.
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to payoffs, thereby assuming that every individual has a different optimal

action4. The noise is common knowledge, which ensures that each decision

maker knows her preference is different from that of others. As a result,

there is no common optimal action and everyone has a need for a private

signal (see also Goeree, Palfrey and Rogers, 2006). As a consequence, both

actions are always chosen with positive probability, ignoring information

is no consideration and the resulting information aggregation ensures as-

ymptotic learning. Furthermore, herds are temporary because individuals

value their own signal and are likely to act accordingly5. Third, as an

illustration of why herds are fragile, Bikhchandani et al. (1992) consider

the effects of a non-stationary state of the world. A change in the un-

observable state variable affects the random signal and reduces the value

of information so that a small probability of change can cause differences

in behavior. Moscarini et al. (1998) further this thought by showing the

depreciation of information resulting from a stochastically changing world.

A time-dependent state reduces the information contained in cascades and

makes them less valuable so that they end in limited time. Furthermore,

a cascade can last longer if the quality of private information decreases or

the state change is more predictable, so that the rate of depreciation is

lower. Peck and Yang (2011) extend this approach to an n-player setting

and apply this framework to explain fluctuation in the business cycle.

A precondition for adaptation to a different state is that beliefs are

active. Agents will have to take on information from their signal if they

want to adapt to the opposite state or if beliefs need to converge. Goeree

et al. (2007) solve this problem by making cascades non-existent. Simi-

larly, Smith and Sørensen (2000) show that unbounded beliefs prevent the

tendency to ignore information. In these models all beliefs are always ac-

tive. In the present paper I follow the approach taken by Moscarini et al.

4Their logit quantal response equilibrium model is an extension to the Bayesian
standard model by Bikhchandani et al. (1992).

5Note that the definition of herds and cascades these authors employ is the exact
opposite of the definitions in the present paper (see Section 4.2). They argue that the
distinction is not important because cascades never occur (Goeree et al., 2007:739).
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(1998) where agents that ignore information will have active beliefs after

some time, due to the depreciation of information resulting from a changing

state of the world. I replicate their results for a group of connected indi-

viduals in Section 4. The main difference is that, even though information

has an expiration date, interaction with neighbors might prevent adequate

adjustment of actions to the true state when a cascade has ended.

2.2 Simultaneous decision making

Orléan (1995) drops the assumption of sequential decision making and in-

troduces a group opinion, a reference for each agent which includes the

information from all observed actions. The main findings are similar to the

present model. First, when departing from the sequential context cascades

do not have to appear. Second, the weight attached to the observations of

others determines the influence of private information on the decision.

Bala and Goyal (1998) study a connected network in which signals are

absent but payoffs are observed. As long as one of the agents has an in-

centive to try a new action there is a positive probability that one of them

will find a higher payoff. The result is that beliefs converge and everyone

chooses the same action (asymptotic learning). In essence, this is a model

of social experimentation, because payoffs of neighbors are directly visible.

The difference with a model of social learning is that there is an informa-

tion externality (others learn from the action) but there is no information

asymmetry (payoffs are directly visible) (Gale and Kariv, 2003).

Gale and Kariv (2003) show what happens when (non-strategic) fully

rational players can make inferences about the actions of agents that are

not observed. Similar to the present paper they find that the results depend

on the distribution of connections between agents. Nevertheless, after some

time, all agent will choose the same action. In a complete network learning

ceases within a few periods, which means there is a high probability of an

incorrect action in the long-run. The learning process is spread out over

more periods in an incomplete network, which decreases the probability of
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incorrect actions. The model of Kanoria and Tamuz (2013) is an extension

that describes differences in the speed of convergence and calculates the

complexity of decisions made by rational Bayesian agents.

Acemoglu et al. (2011) emphasize the role of stochastic generated

neighborhood topologies with expanding observations. There is an infinite

number of agents observing actions from other neighbors than just a finite

subset of agents. If there exist a finite subset, these agents are highly

influential and the aggregation of information is troublesome. They show

that unbounded private beliefs combined with expanding observations are

a necessary and suffi cient conditions for asymptotic learning. The result

is a consequence of the strong improvement principle, which states that

each agent will always be able to imitate the action of her neighbor and

will therefore always be at least as well off (comparable to the imitation

principle in Bala and Goyal (1998)).

The curse of information principle is a result that has been well es-

tablished in the literature. Lamberson (2010) finds that the network archi-

tecture matters for the diffusion of information. Most notably, depending

on prior beliefs and the initial structure of the network, adding links can

decrease the effi ciency of decision making. Ellison and Fudenberg (1995)

find similar results as they show that a society can avoid ineffi cient herd-

ing when (word-of-mouth) communication is limited. González-Avella,

Eguíluz, Marsili, Vega-Redondo and San Miguel (2011) describe several

network structures and their effect on social learning. An agent follows the

signal if a large enough fraction of neighbors are taking this same action.

They find that restricted interaction increases the likelihood of asymptotic

learning. Lower (average) degree networks (for example with random link

probability) lead to more effi cient social learning and a higher probability

of correct decisions than interaction in a complete network.

One of the downsides of Bayesian learning is that, if the game con-

tinues for more than a few periods, agents are required to do complex

calculations. Therefore, following DeGroot (1974), a range of models uses
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simple updating rules. Klumpp (2006) shows that there is a negligible

difference in outcomes between Bayesian updating and (simple) linear up-

dating rules6. Ellison and Fudenberg (1993) study repeated choices for a

group of agents located on a line. They compare rule of thumb decision

making, where agents choose the action with the highest payoff in the pre-

ceding period, with popularity weighting, where agents take into account

the most popular adopted technology in the preceding period. For homoge-

nous players popularity weighting can hurt the short-term convergence of

actions in favor of long-term effi ciency.

The asymptotic learning outcome and short-term/long-term trade-off

is found by most authors. The main difference with these studies is that

asymptotic learning is never optimal if the underlying state of the world

changes. The objective is not to learn a fixed true state, but to adapt to

a different state every so often. Several authors have studied non-Bayesian

learning, where agent have to estimate the value of a dynamic state of the

world. Frongillo, Schoenebeck and Tamuz (2011) assume a time-varying

state following a random walk. The beliefs in complete networks will gen-

erally converge to a steady state, meaning that the range of their estimate

on what the state in the next period will be has equal covariance. Ac-

cordingly, Shahrampour, Rakhlin and Jadbabaie (2013) model the state as

a geometric random walk and study a wider variety of network architec-

tures. Agents aim to minimize the quadratic loss function and measuring

effi ciency is done by estimating the variance between agents’estimate and

the true state. They find a similar balance between the size of the net-

work and estimating precision. On the one hand, more connections means

an increase in prediction power. On the other hand, most effi cient social

learning is done by highly independent agents (with least common neigh-

bors). Accordingly, using a Bayesian approach, I find that the adaptation

mechanism operates most effi cient if connections are limited.

6Chandrasekhar, Larreguy and Xandri (2015) empirically establish whether a group
of people act more according to DeGroot learning or Bayesian models. Both types of
learning are able to adequatly describe the data, but DeGroot learning generally is a
better fit.
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3 The Model

There is a finite set of agents, i ∈ N = {1, ..., n}, that receive an investment

opportunity in each period, t ∈ {0, 1, ..., T}. In every period t, all of the

agents have to decide for themselves and simultaneously on an action, xit ∈

X = {0, 1}. The fixed set of agents that start the game continue playing

until the game ends. The objective of each agent is to maximize individual

VNM-utility uit (θt, xit) = (θt − c)xit. If the investment is rejected, denoted

xit = 0, the payoff is zero, uit (θt, 0) = 0. If the agent decides to invest she

has to incur cost, c = 1
2
, and the payoffdepends on the unknown state of the

world, θt ∈ Θ = {0, 1} (the bad and good state). Investing, denoted xit = 1,

is optimal in the good state, uit (1, 1) = 1
2
. If the state is bad the investment

is not able to cover the cost and the yield is negative, uit (0, 1) = −1
2
. At

the end of the game the payoff for all periods is summed, all agent see

whether their choices were correct, and they receive their payoff.

At the start of each period, nature determines the state of the world.

Furthermore, the random variable ε = Pr (θt 6= θt−1), with ε ∈ [0, 1], de-

termines whether the state is different than in the preceding period7. For

ε = 0 the state is fixed, denoted θf . For ε > 0 the state is dynamic, de-

noted θt. Moreover, the probability that the state of the world changes is

common knowledge. Therefore, agents always take into account the threat

of a time-varying state. To illustrate this threat, a probability ε = 1
6
means

that at the start of each period there is a one-to-six chance that the state

is different than in the preceding period.

All the information known to the agent up to time t is summarized in

a belief, µit ∈ ∆ (θ) = (0, 1). The belief is the probability that the true

state is good based on the history, µit = Pr (θt = 1|hit). At period t = 0

there is no information, both states of the world are equally likely, and the

initial belief is a flat prior for all agents, µit0 = 1
2
. The agent is myopic

as her memory can only contain a single value that carries over from one

7In essence, this is a Markov transition matrix with identical diagonal values.
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period to the next. After the decision is made, the gathered information

is discarded and the belief parameter reflects everything that is known up

to that time. The investment decision maps the posterior belief over both

states of the world into an action, σit : ∆ (θ)→ X. The optimal one-period

strategy, σ∗it, is the choice for the action that maximizes expected payoff:

σ∗it (µit)

 µit >
1
2
→ x∗it = 1

µit ≤ 1
2
→ x∗it = 0.

Over time, the individual strategy profile is a sequence of strategies, σ∗i =

{σ∗it}t∈T , that determine the optimal action in each period given the realized

history. Moreover, the strategy profile, σ∗ = (σ∗1, ..., σ
∗
n), determines all

actions that are taken by all players in every period (Tadelis, 2013).

To update her belief over the state of world the agent can consult

two sources of information that form the history, hit = {sit, Zit}, where

ht0 = {∅}. First, starting from t = 0, each agent receives a private signal,

sit ∈ S = {0, 1}, that is conditional on the state of the world and indepen-

dently and identically distributed. Moreover, the probability of receiving

a correct signal is equal for all agents so that q = Pr (sit = 1|θt = 1) =

Pr (sit = 0|θt = 0), and the signal is noisy but informative, q ∈
(
1
2
, 1
)
. The

probability of receiving an incorrect signal is 1− q = Pr (sit = 1|θt = 0) =

Pr (sit = 0|θt = 1). The signal could be interpreted as a report on the pro-

jected profitability of the investment, send to every potential investor. Each

recipient has her own interpretation of this information or might have con-

cerns about the trustworthiness of the sender. Hence, the report gives a

first indication of the true state but cannot eliminate all uncertainty.

As a second piece of evidence, starting from t = 1, the agent observes

the actions taken by neighbors. The extend to which her decision is influ-

enced by others depends on the quality and quantity of this information.

To assess the quality of the decision of others, the reliability of neighbors is

the probability that the observed action of a neighbor, zjt, is equal to the

true state, p = Pr (zjt = 1|θt = 1) = Pr (zjt = 0|θt = 0), where p ∈
[
1
2
, 1
]
.
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This exogenous variable represents a predetermined level of trust in soci-

ety and is assumed to be identical for all agents. Similar to Golub and

Jackson (2010) and DeMarzo, Vayanos and Zwiebel (2003) the reliability

is a subjective evaluation of the actions of others that does not reflect the

true (unknown) percentage of correct observed actions. As an example, if

p = 7
10
and an agents sees her neighbor investing, the agent will always

believe there is a 70 percent chance that this action is correct and reflects

the true state at that time. Moreover, if p = 1
2
observed actions are consid-

ered worthless and any information from the network is ignored, whereas

for p = 1 everyone is convinced others always take the correct action, even

if the actions of two neighbors are opposed (as these will cancel each other

out). Valuing what others do enables social learning and the reliability of

others is necessary to obtain a weighted average of the opinion of others.

An increase in imposed reliability increases the influence of the actions of

neighbors on the belief of the agent. Golub and Jackson (2010) justify this

limitation of rationality, interpreting it as social pressure or willingness to

match the actions of others. Furthermore, feeding the system with (partly)

incorrect information does not have to be unrealistic as learning in the real

world is often done by erroneous and dubious information. In Section 5.2

it is shown that, concerning the initial convergence of actions, agent in a

complete network benefit from the combination of a flat prior and this im-

posed reliability, compared to a setting without neighbors. Moreover, the

implications of these assumptions are discussed in Section 7.

The quantity of observed actions is reflected in the observation set,

Zit, a subset of all actions taken in the preceding period8. The observa-

tion set is a personal decentralized source of information as the elements

included in the set depend on the location of the agent in the network. An

individual with more members in her neighborhood will have a larger set

8The set X describes the two actions available to the agent. Zt is the set of realised
actions over all agents that can be observed at time t. Zit is the subset of these realised
actions visible to agent i at time t. I use this notation to dinstinghuish between the
action the agent takes (xit ∈ X) and what she observes (zjt ∈ Z for all j ∈ Ni).
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of observations available and two agents have identical sets if they observe

the same people. The observation set can be partitioned, Zit = {Z1it, Z0it},

such that Z1it contains the observed investments (zjt = 1) and Z0it the ob-

served rejections (zjt = 0). The difference between the number of elements

in these sets is the peer group dominant action, δit = |Z1it| − |Z0it|. This

integer captures how many more neighbors have chosen to invest, and is

negative if abstaining is the dominant choice among neighbors9.

The interplay between the number of (Bernoulli distributed) observed

actions and their weight (p) provides evidence on the true state of the world.

The probability of a observing a certain number of investments conditional

on the good state is Binomially distributed (for |Ni| ≥ 2):

Pr
(∣∣Z1it∣∣ |θt = 1

)
=

(
|Ni|
|Z1it|

)
p|Z1it| (1− p)|Z

0
it| .

Accordingly, the probability of observing the same number of investments

in the bad state is:

Pr
(∣∣Z1it∣∣ |θt = 0

)
=

(
|Ni|
|Z1it|

)
(1− p)|Z

1
it| p|Z0it|.

Before actually observing the actions of neighbors the agent can determine

how many investments she should observe so observations will not influence

her belief: disregarding the signal, the prior is equal to the posterior. She

has an expectation of the size of δit and observing more (less) people invest

will increase (decrease) her belief.

An important precondition for finding detrimental herd behavior is

that every agent is boundedly rational. The actions taken by others are

observed, but the agent is unable to infer why others take this decision and

what this says about their information. Moreover, agents know their neigh-

9The possibility of imitation is overlooked by the agent. Mimicking is one of the con-
sequences of this learning setup, but agents are unaware that their neighbors might not
make an independent judgement. This simplifies the approach taken by Orléan (1995)
in which the agent puts a subjective weight on the peer group opinion by estimating the
number of imitators and independent agents and discards actions that are likely to be
the result of mimicking.
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bors, but are not informed about the structure of the network and their

exact location. Strategic behavior is therefore ruled out. Bala and Goyal

(1998) justify this assumption by noting that observing direct neighbors is

cheap, but making inferences about their actions is infinitely expensive. If

agents would take into account the network architecture they would have

to be able to do complex calculations (see Gale and Kariv (2003) for fully

rational individuals in a small network). DeMarzo et al. (2003) describe

how an agent would have to distinguish old (correlated) from new infor-

mation and must recall information received from neighbors in preceding

periods. In the present paper the agent has no memory of previous signals

and observations, other than the information aggregated in the belief pa-

rameter. In addition, the agent is myopic. She is unaware that the signal

(from period t) and the observed actions (from period t− 1) are generated

in different periods. The observations are received in period t and therefore

treated as evidence on the true state at that time.

Local interaction enables individuals to gather additional information

in order to confirm or refute their findings from the report. The static

network is represented by a graph with nodes and connections (N, g). A

connection (or link) between i and j is denoted gij = 1. The present paper

is limited to undirected networks, where interaction is reciprocal and a

link gij automatically implies gij = gji. Furthermore, the neighborhood

of agent i, denoted Ni (g) ⊆ {1, . . . , i− 1, i+ 1, . . . , n}, consists of all the

people she observes. Two network properties are worth mentioning10. First,

the network is connected. Every node has at least one connection and

there is a path from each agent to every other agent. Connected networks

are analyzed because groups of unconnected components can be analyzed

as a collection of connected networks (Bala and Goyal, 1998). Second,

the agent’s own action does not belong to the neighborhood, i /∈ Ni (g),

and the extended neighborhood (neighbors of neighbors) is not observed.

Interaction is restricted to those neighbors directly linked to the agent.

10For a detailed discussion of network properties see Goyal (2007) and Jackson (2008).
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It is now possible to show the (in)effi ciencies of this social learning

setup.

4 The Evolution of Belief

In this section, I introduce the main building blocks that guide the analy-

sis. The actions chosen by the agent, xit ∈ X, are derived from her belief,

µit ∈ ∆. Here, the main focus is on the values these beliefs can take on,

the subset of beliefs that can be ruled out in advance and the way be-

liefs become active after an individual has decided to ignore information.

First, there is a strict upper and lower limit on belief due to the continuous

threat of an unobservable state change (ε). In addition, if beliefs cross a

certain threshold, agents attain a level of certainty which will urge them to

ignore new information and stop the belief from increasing or decreasing

further (an information cascade). It is shown that the size of the neigh-

borhood (|Ni|), the reliability of neighbors (p) and the signal precision (q)

determine the value of this threshold. Furthermore, this disregard for new

information will last for a limited number of periods, depending on the

volatility of the state (cascades are temporary). After some time agents

look for new information, thereby opening up the possibility of adaptation

to the opposite state.

4.1 The likelihood ratio

The log likelihood ratio (henceforth: LLR) is the ratio of belief in the good

state relative to the bad state expressed in logs. The LLR is comprised

of three variables that form the posterior belief: the prior ratio, the signal

precision ratio and the network confidence ratio11. The prior is the ratio

11λit+1 = ζit+χit+λit = ln
P(θt=1|sit,Z1it)
P(θt=0|sit,Z1it)

= ln P (sit|θt=1)P (sit|θt=0)+ln
P(Z1it|θt=1)
P(Z1it|θt=0)

+ln P (θt=1)P (θt=0)
.
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of beliefs that carries over from the preceding period. This gives

λit = ln

(
µit

1− µit

)
, (1)

where at the start of the game both states are equally likely, implying

λit0 = 0 for all agents. Second, the signal precision ratio is given by

ζ it = α (2sit − 1) , (2)

where α = ln

(
q

1− q

)
.

The logarithm of the signal precision ratio is a constant value, positive if

sit = 1 and negative if sit = 0. Third, the agent will take into consideration

whether the actions of others are in accordance with her personal belief.

The influence of neighbors is determined by the reliability of others (p) and

the preferred action in the neighborhood (δit). The network confidence

ratio is therefore given by

χit = βδit , (3)

where β = ln

(
p

1− p

)
and δit =

∣∣Z1it∣∣− ∣∣Z0it∣∣ .
For a given number of neighbors in a static network this network confidence

ratio is bounded.

The posterior likelihood is the sum of (1), (2) and (3). The posterior

is the basis for the choice of action for an individual agent and includes all

the information available at that time:

λit+1 = α (2sit − 1) + βδit + λit. (4)

The balance between signal precision (q, included in α) and the reliability

of neighbors (p, contained in β) is the main invariant measure that affects
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the equilibrium outcome. These variables measure the precision of the

two sources of information. If the actions of others are not very reliable,

the information included in a report is regarded as the most important

source of information and a signal opposing the belief can alter the action.

Nevertheless, a trustworthy report can be overruled if a suffi cient number

of agents agree on one of the two states. As the peer group dominant

action (δit) increases, the neighborhood will become the primary source of

information.

The belief of the agent can be derived from the LLR12. For a fixed

state of the world (ε = 0) the belief is derived as follows

µit (θf ) =
eλit+1

1 + eλit+1
. (5)

If the state of the world is fickle (ε > 0) the prior is first updated according

to (4) and then amended to take into account the possibility of a dynamic

state of the world. After Bayesian updating to the posterior likelihood, the

belief is

µit+1 (θt) = (1− ε)
(

eλit+1

1 + eλit+1

)
+ ε

(
1− eλit+1

1 + eλit+1

)
. (6)

The threat of an underlying state change make the agent discount the in-

formation from earlier periods and introduces a continuous demand for new

information. Information depreciates as a signal received several periods

before might be conditional on a state of the world that is no longer up-to-

date (Moscarini et al., 1998). From (6) it is easy to confirm that the threat

of a change in state leads to a strict upper and lower bound on attainable

beliefs. The dynamic belief is bounded µit (θt) ∈ [ε, 1− ε] for ε > 0. More-

over, the findings by Moscarini et al. (1998) for high values of ε can be

replicated. For ε > 1
2
beliefs oscillate and actions alternate between zero

and one. For ε = 1
2
all information is superfluous which means µit = 1

2
for

12Smith and Sørensen (2000) use the term ’likelihood analogues’to emphasize that
there is a direct one-to-one correspondence between the belief parameter and the LLR.
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all agents in every period. These results deal with extreme values of ε and

are omitted by the following assumption.

Assumption A The volatility of the state is limited to ε ∈
[
0, 1

2

)
from

now on. There is a state of the world that changes, and it might change

rapidly, but it is not likely to change two periods in succession.

All variables in the LLR exhibit monotonicity. The signal is informa-

tive so that more good signals increase the likelihood of the good state. The

signal precision ratio describes a relationship between two probability mass

functions and satisfies the monotone likelihood ratio property (MLRP):
∂

∂q
(q/ (1− q)) = 1/ (1− q)2 > 0 for q 6= 1. Moreover, the network con-

fidence ratio is strictly increasing in the number of observed investments:
∂

∂δit

(
(p/ (1− p))δit

)
= (p/ (1− p))δit ln (p/ (1− p)) > 0 for 1

2
< p < 1, and

monotonically increasing in p: for a given δit,
∂

∂p

(
pδit/ (1− p)δit

)
> 0 for

p 6= 1. Finally, belief is a continuous variable and the prior likelihood is a

ratio of two probability density functions, f (µ|θ = 1) and f (µ|θ = 0), with

corresponding cumulative density functions (CDF) F θ=1 (µ) and F θ=0 (µ),

where for any µit ∈ (0, 1), F θ=1 (µ) ≤ F θ=0 (µ) (first-order stochastic dom-

inance) (Chamley, 2004). The agent will at least receive the utility from

the state being bad, Pr
(
uit ≥ −1

2

)
= 1, and there is a strictly smaller

probability that she will receive more than that, Pr (uit ≥ 0) < 1.

4.2 Herding and cascades

The process of social learning can give rise to detrimental network external-

ities if individuals ignore private information and, as a result, everyone else

receives less information. An individual takes the action that is optimal

from her personal point of view, but for an outsider the behavior may seem

irrational due to the resulting loss of information for society. Therefore,

it is important to define what this loss of information looks like, i.e. the
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difference between collective herding and individual cascades13.

A herd is a characteristic of the actions taken by the population of

agents (a choice dynamic). During a sequence of periods all actions for all

agents are identical. There is conformity over which of the two states is

likely to be true but agents can still adjust their belief. Therefore, they

might choose to oppose the herd if their information is convincing and

herding stops when the first agent decides to deviate. Moreover, a herd

that does not stop, such that everyone agrees until the end of the game, is

defined as a persistent herd.

Definition 4.1 A herd is said to take place if, during a sequence Tk ⊂

T , where Tk = {tk0 , ..., tku}, tk0 ≥ t0 and tku ≤ T , all actions are identical:

for all tk ∈ Tk, xit = xjt = x̄ for all i ∈ N .

Definition 4.2 A herd is said to be persistent if actions are identical

until the end of the game: Tk = {tk0 , ..., T}, s.t. for all tk ∈ Tk, xit = xjt =

x̄ for all i ∈ N .

A herd describes the convergence of actions. For asymptotic learning

beliefs have to converge as well, which is neither a result in the present

paper, nor the goal of individuals in the present framework. A change of

action to the true time-varying state demands a belief that is capable of

change.

Beliefs are steadfast during an information cascade which, in contrast

to the collective nature of herds, describes a mimicking process for individ-

ual agents (a belief dynamic). Cascades are detrimental because adaptation

to the opposite state is not possible. During a cascade the opposite state

is so unlikely that people decide on their action without the use of infor-

13As there is some ambiguity about what herds and cascades are, the starting point
is Bikhchandani, Hirshleifer and Welch (2008) and Çelen and Kariv (2003). These defi-
nitions, related to one-time sequential decision making, are applied to repeated simulta-
neous decisions. Moreover, these definitions are not in accordance with other literature.
As an example, Chamley (2004:64) defines the start of an information cascade as the
moment when the agent does not follow her signal but still processes the information
and the start of a herd as the moment when agents ignore private signals.
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mation, as it is regarded as redundant. The individual might save time

by not reading the report and save effort by not having to meet with oth-

ers to hear their decision. The learning process has ceased as there is no

Bayesian updating of the LLR and the agent mimics the action taken in

the preceding period.

The cascade set is the union of the upper and lower cascade set, a

range of beliefs for which the ex ante probability of a different action than

in the preceding period is zero, µit ∈ Hl ∪ Hu ⇒ Pr (xit 6= xit−1) = 0.

A cascade starts in period t when the posterior belief enters one of the

cascade sets in period t−1. To find the cascade set, the belief is partitioned

µit ∈ Hl ∪Hm ∪Hu = [0, 1]. The lower cascade set, Hl = [0, η), is a set of

prior beliefs in a specific round for which the agent will always conclude not

investing is optimal, xit = xit−1 = 0. Even if all information is opposing

this belief, Z1it = {Ni} and sit = 1, the range of feasible posteriors is µit+1 ∈[
0, 1

2

]
. Similarly, for a belief in the upper cascade set, Hu = (1− η, 1], the

posterior belief will always indicate investing is optimal, µit+1 ∈
(
1
2
, 1
]
⇒

xit = xit−1 = 1, even if all information indicates otherwise, Z1it = {∅} and

sit = 0. In between, µit ∈ Hm = [η, 1− η], beliefs are active as the agent

chooses both actions with positive probability and uses her information to

make this choice, Pr (xit = 1) < 1.

Definition 4.3 During an information cascade the agent mimics her

own action taken in the previous period, Pr (xit = xit−1) = 1. The range of

possible posterior beliefs is restricted to the same half of the interval as the

prior belief. Any information is discarded.

The threat of a change in the state of the world (Assumption A) and

the cascade set (Definition 4.3) restrict the evolution of belief. Figure 1

gives a graphical representation of the cascade set and the range of unfea-

sible beliefs due to a volatile state and serves as a template for graphs in

the next section.

Active beliefs are a necessary condition for agents to adapt. If cascades

22



 
0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

unattainable beliefs 

unattainable beliefs 

upper cascade set (Hu) 

lower cascade set (Hl) 

μ 

1-η 

1-ε 

c 

η 

ε 

xit = 1 

xit = 0 

t 

ε ↑ 

|Ni| ↑ 

active beliefs 

Figure 1. Boundary conditions for the evolution of belief over time. Beliefs
are active if there is a need for new information and both actions are possible.
In the cascade sets information is ignored, but beliefs bounce back towards the
center after some time due to the depreciation of information. Extreme beliefs
are unattainable as a result of the dynamic nature of the state of the world.

would be everlasting, beliefs would be constant until the end of the game,

thereby preventing a change in action. Furthermore, it is easy to see that

the cascade region is unattainable if the state is highly volatile (ε ≥ η).

Then, as a result of the high rate of depreciation, there is a constant demand

for new information. Agents will use all the information they receive to

make a balanced decision. Moreover, whether the belief of the agent is in a

cascade set depends on the size of the neighborhood. For an increase in the

number of neighbors (|Ni|) the cascade threshold (η) decreases. Ignoring

the signal plus a group of others requires a stronger belief than ignoring

just the private signal. Therefore, Lemma 1 shows that an agent with more

neighbors is less susceptible to cascades.

Lemma 1 The upper bound on the lower cascade set, Hl = [0, η), sat-

isfies η =

(
1 +

q

1− q
p

1− p
|Ni|
)−1

. Hence, the size of the cascade set Hl ∪

Hu = [0, η)∪ (1− η, 1] is decreasing in |Ni| for |Ni| > 0 and lim|Ni|→∞ η =

0.
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Smith and Sørensen (2000) show that a necessary condition for the

existence of cascades is that beliefs are bounded. Beliefs are bounded

if there is a maximum amount of information that can be derived from

the signal (and in this case observations), which causes the LLR to be fi-

nite and bounded away from zero (Acemoglu et al., 2011). For an agent

without neighbors with signal precision q, the signal precision ratio is

ζ it ∈ {− ln (q/ (1− q)) , ln (q/ (1− q))}. As q ∈
(
1
2
, 1
)
this means 0 <

ln (q/ (1− q)) < ∞, which shows that the maximum distance between a

prior and posterior belief in a specific round is finite and depends on the

informativeness of the signal. In contrast, for an unbounded likelihood ra-

tio signals have to be arbitrarily strong (a continuous signal space). As

a result, the probability an agent chooses one of both states is positive

for any µit ∈ (0, 1) as the information can always alter the action and

the prior is overwhelmed by the signal. Hence, the only cascade sets are

µit ∈ {∅} ∪ {1} and learning will continue until beliefs have converged to

the true state (Acemoglu et al., 2011).

During an information cascade signals and observations are ignored.

The Bayesian posterior belief (4) is then replaced by

µit+1 (θt) = (1− ε)µit + ε (1− µit) (7)

for µit ∈ [0, η) ∪ (1− η, 1] .

For a fixed state we have ε = 0 and thus µit+1 (θf ) = µit. Therefore, a belief

that is in a cascade set will be constant until the end of the game as the

individual has collected information, made up her mind, and is certain that

this is the optimal action. Changing the decision is unnecessary as there

is no reason to suspect the outcome will be any different. The evolution of

belief during a cascade subject to a dynamic state (ε > 0) is characterized

by a discounted version of the prior (7), which evolves decreasing convex if

µit ∈ (1− η, 1] or increasing concave if µit ∈ [0, η). Consider an individual

with a belief that indicates she should invest
(
µit >

1
2
⇒ xit = 1

)
. At some
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point in time she is isolated from the outside world and is unable to receive

new information. Each period, some of the information she had collected

becomes less valuable, as it is conditional on a state long ago. As time

goes by, the information is reduced to a tiny clue about the current state.

Her best option is to simply choose the same action she chose when she

last received information, while uncertainty about the correctness of this

decision increases. This illustrates the non-Bayesian movement of belief

towards the fixed point, µit = 1
2
, during cascades. The fixed point is the

asymptote for any belief, µit ∈ [0, 1], inserted in (7) as t → ∞ (the proof

of Lemma 2 provides a detailed discussion on the fixed point).

In this framework ignoring information is a personal consideration such

that others can still accumulate information. Agents can decide for them-

selves when they have a need for new information and when they dis-

card signals and observations. Therefore, we can replicate the results of

Moscarini et al. (1998) that cascades are temporary and will stop within a

finite period of time. The behavior during a cascade is no different than for

sequential decision makers, because the addition of a network structure has

no influence on cascade behavior as observations are discarded. As soon as

beliefs are active, µit ∈ [η, 1− η], the belief has exited the cascade region,

signals and observations are regarded valuable again, and updating is again

done by (4).

Lemma 2 A cascade is temporary if the state of the world is dynamic

and a network is present. Beliefs in the cascade set are adjusted in the

direction of the fixed point, µit = 1
2
, due to the depreciation of information.

This process continues until the belief is active and the probability of both

states of the world is positive or until the game has ended.

The foregoing analysis has shown that (i) ignoring information is less

likely when neighbors are present and (ii) ignoring information is restricted

to a limited number of periods. Agent will have a tendency to ignore

information as additional information is aggregated in the belief parameter
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but, as older information is less valuable, temporary cascades enable beliefs

to become active after some time. No matter how convinced an agent is

about the correctness of her choice, after some time there is a positive

probability that both actions are chosen. In the next section I will use this

finding to show that active beliefs enable agents to take up new information

and change their action. The goal of the next section is to describe in what

way beliefs, subject to the above conditions, evolve for a variety of network

architectures. Hence, it is shown that cascades are no longer an obstacle to

deviate from the herd, but interaction can prevent adaptation to a different

state.

5 Main Results

The goal of the following analysis is to show in what way local interaction

affects the ability of a group of people to react to actual changes in the

state of the world. The belief is limited by the conditions laid down in

the previous section, so that we can now observe what happens when a

sequence of signals is generated for various network structures. The length

of the game (T ), the signal precision (q), the reliability of neighbors (p) and

the probability of a state change (ε) are determined before the start of the

game and fixed throughout. As a result, there are two factors that can cause

differences in actions: the realized signals and the network architecture.

In contrast to the threat of a change in the state of the world (the prob-

ability ε is common knowledge) an actual change in the underlying state

(θt 6= θt−1) is not directly visible for agents but will alter the distribution of

signals. The expected value of signals in the good state is E [sit|θt = 1] = q.

In the bad state we expect more negative signals E [sit|θt = 0] = 1 − q.

Thus, for a static network, the outcome is determined by the realized se-

quence of signals. To isolate cause (the network architecture) from effect

(the actions and beliefs of a group of agents), the signals are kept constant.

Therefore, a sample path is one unique sequence of signals that causes one
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outcome14. An outcome is the value of belief for each agent and for every

period corresponding to this sequence of signals, {µit}i∈N,t∈T . Any state-

ment about the influence of the network structure on differences in actions

assumes an identical sample path. However, the following results are robust

to changes in the signal distribution. Furthermore, the following examples

are all generated by one unique sequence of signals.

Example A Assume the state of the world is θTA = 1 for a sequence

of periods, TA = {t0, ..., tk−1}, and then changes to θTB = 0 for the rest of

the game, TB = {tk, ..., T}. The associated expected value for a sequence

of independent signals for all agents is q for t ∈ TA and 1− q for t ∈ TB.

Each following subsection discusses a network architecture. Individ-

uals without neighbors (Section 5.1) use the signal as a sole source of in-

formation. This section serves primarily as an illustration of temporary

cascades as herds will emerge, but not as a consequence of interaction.

People in a complete network (Section 5.2) have the highest possible level

of interaction and are therefore prone to (persistent) herds. For agents

in an incomplete network (Section 5.3) time and location determine their

ability to change actions.

5.1 Isolated agents or unreliable neighbors

For an isolated agent the private signal is the only variable affecting belief.

An isolated agent is either a person without neighbors, Ni = {∅}, or some-

one that receives information from the action of others but judges them

as unreliable, p = Pr (zjt = θt) = 1
2
. As a result, potential observations

are discarded and the network confidence ratio will not influence beliefs,

χit = 0 for all i ∈ N . The LLR is therefore given by λit+1 = ζ it + λit.

For isolated agents, switching actions to adapt to a different state is

always possible. After all, every individual receives a sequence of signals

14The collection of sample paths constitutes every possible outcome and the proba-
bility of a sample path is the product of the probabilities of the independent signals.
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Figure 2. Three isolated agents successfully adapt to a change in the state of the
world at t = 10 (q = 3

4 , p =
1
2 , ε =

1
10). As an illustration of the distribution of

signals, the white boxes represent the signals send to player 1. Signals for other
agents are not shown. The fluctuations on the top and bottom of the graph are
caused by temporary cascades.

that is informative and conditional on the actual state of the world as the

only source of information. Moreover, the agent is aware that the state is

dynamic, such that if initially the majority of information indicates that

investing was optimal, and subsequently she receives messages that indicate

investing can hurt payoffs, the agent will notice this change in tone and act

accordingly. There is no reason to have doubts about this information,

other than the usual noise (q).

Example A.1 The evolution of belief for three isolated agents (N = 3

and p = 1
2
), receiving a randomly generated sequence of signals, is shown

in Figure 2. This is one of (263) sample paths for q = 3
4
and ε = 1

10
.

Furthermore, the actual state change from good to bad occurs at tk = 10,

which means investing is optimal for the first ten periods and rejecting the

investment is optimal until T = 20. Moreover, the cascade threshold is

not influenced by neighbors (η0 = 1− q) and the state is not very volatile
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(ε < η0) so that the agents can achieve a level of certainty and beliefs can

enter the cascade set.

Beliefs follow the change in underlying state. At the start of the game

the LLR tends to ∞ and the belief tends to the upper bound, 1 − ε, for

all agents. The expected value of the signal precision ratio is positive,

E
[
ζ iTA|θTA = 1

]
> 0, for any q ∈

(
1
2
, 1
)
. After the state has changed,

there is a sudden increase in negative signals, E
[
ζ iTB |θTB = 0

]
< 0, so that

the LLR tends to −∞ and the expected belief tends to ε for all agents.

There is a positive probability that agents take incorrect decisions and

beliefs end up in an incorrect cascade. Thus, the payoff for investments

will be negative if the agent decides to invests and state is bad, or there are

foregone profits if not investing is chosen in the good state. The signals are

informative, but there is a chance that an individual receives a series of bad

reports or wrongly interprets the information for a number of successive

periods. The probability of an incorrect cascade increases as the signal

precision (q) decreases.

Example A.2 Consider player 3, receiving three incorrect signals at

the start of the game. Her belief enters the cascade region at t = 2(
µ32 = 2

10
< η
)
and all her actions until that moment are incorrect. She

repeatedly decides not to invest, but could have made a profit. The proba-

bility of this incorrect cascade is the probability of receiving three consec-

utive incorrect signals, (1− q)3 > 0.

During such an incorrect cascade, if the state is fixed, the agent ignores

any further information and is therefore unable to rectify this decision. A

dynamic state of the world enables her to recover from incorrect actions,

as the depreciation of information ensures the agent will have a need for

new signals after a finite period of time (see Lemma 2). After some time

the belief is active (both states of the world are again true with positive

probability) which enables the agent to adequately react to the signals she

receives. Hence, she is again expected to take the correct decision.
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Example A.3 The belief is bounded by the threat of a change in the

unobservable state, µit ∈ [ε, 1− ε] =
[
1
10
, 9
10

]
, and will bounce back once

it is in the cascade region: µit ∈ [0, η) ∪ (1− η, 1] =
[
0, 1

4

)
∪
(
3
4
, 1
]
. For

all agents beliefs become active after a maximum of two periods after an

information cascade has started15.

These examples illustrate the mechanism that enables adaptation of

beliefs and actions to the true state, irrespective of whether neighbors are

present. Agents know the state may have changed, which makes the value

of information depreciate. A person that ignores signals will have a brief

look at some signals every now and then to see whether the action is still

up-to-date. She will then change her action if she notices the changes in

the signal distribution. In doing so, a sequence of signals that is conflicting

with her belief causes her to reconsider and might lead to a different action.

A group of agents that has successfully adapted to a new state is in

a herd (they all take the same action x̄). Isolated agents do not receive

meaningful information from others such that herding does not arise as

a result of mimicking, but because they are all expected to successfully

adapt to the true state over time. In contrast, a persistent herd, where

everyone takes the same action until the end of the game (Tk = {tk0 , ..., T}),

is unlikely. Isolated agents freely adapt to the true state and after each

change in the time-varying state one agent is the first to deviate, thereby

breaking the herd. Provided that the underlying state changes, the chance

of a persistent herd approaches 0 if t → ∞. Proposition 1 describes this

behavior.

Proposition 1 An isolated agent, Ni = {∅}, or agent with unreliable

neighbors, p = 1
2
, will be able to adapt to a real change in the state of

the world (θt 6= θt−1). The probability of a persistent herd approaches 0 if

t→∞ and ε > 0.
15There is a second strict bound that is not defined and is omitted from the rest of

the paper. For a minimum (maximum) active prior belief µit = η = 1
4 (µit = 1− η =

3
4 )

there is a maximum decrease (increase) in belief caused by the signal sit = 0 (sit = 1)
which results in the posterior belief µit = 0.18 > ε (µit = 0.82 < 1− ε). This belief will
exit the cascade region in two periods.
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As a result of the absence of local interaction, agents decide individu-

ally and are not bound by instructions. They are expected to (generally)

take the same actions and herding is likely, although any agent is free to

deviate from the herd and there is no fixed order in which adaptation takes

place.

5.2 Complete undirected networks

Appreciating the opinion of others will influence the decision making process.

In a complete network everyone is connected with everyone (|Ni| = n − 1

for all agents). Moreover, the imposed level of trust in society is such that

agents believe the majority of the decisions of their neighbors are correct,

p > 1
2
. As the agents now have two sources of information, they have to

weigh the precision of the signal (q) and the reliability of neighbors (p).

Moreover, even for untrustworthy neighbors, the network takes over as pri-

mary source of information if the difference between the number of people

investing and rejecting the investment is large. In a given period, the belief

of the agent follows the direction dictated by the actions of others if:

|δit| >
α

β
, (8)

with α = ln
q

1− q

and β = ln
p

1− p .

The peer group dominant action (the integer δit) varies over time as agents

observe neighbors switching from investing to rejecting, and vice versa. The

boundary α/β defines the number of agents that have to agree on a certain

action before the signal is overruled by the peer group opinion, in the LLR

|ζ it| < |χit|. For agents agreeing with the majority, if (8) holds, posterior

beliefs are constraint to the interval the prior is in, either µit ∈
[
ε, 1
2

)
or

µit ∈
(
1
2
, 1− ε

]
. A belief that causes a switch in actions is unfeasible.

For those not agreeing with the dominant action, the belief will be drawn
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Figure 3. The evolution of belief for three agents in a complete network (q = 3
4 ,

p = 2
3 , ε =

1
10). A persistent herd starts at A. Therefore, these agents are not

able to adapt to the state change at B. Moreover, cascades are not possible due
to the volatility of the state and the number of neighbors for each agent (ε > η).
Therefore the cascade sets are not displayed.

towards the opposite side. No combination of signals is able to prevent

their belief from conforming with the peer group opinion eventually. The

only possibility to postpone a herd is when the belief of an agent is in the

opposite cascade set, in which any information is bluntly ignored. Even so,

ignoring information is limited to a finite number of periods and temporary

cascades force the agent to join the others eventually.

To illustrate the behavior of agents in a complete network, Figure 3

displays the evolution of belief for the same agents, receiving the same

sequence of signals, as in Examples A.1 to A.3. Here, the difference is that

agents can learn from the actions of the people they observe.

Example A.4 In Figure 3 the network takes over as the primary source

of information if the agent observes a difference of at least two neighbors

taking the same action, |δit| ≥ 2. Notice that player 2 believes investing

is optimal throughout the game. Moreover, at the beginning of the game
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player 1 and 3 are not influenced by neighbors. They both observe one

neighbor investing and the other rejecting the investment, |Z1it| = |Z0it| =

1 ⇒ δit = 0, and follow their signal leading them to an incorrect decision.

Furthermore, after the first signal, player 1 correctly interprets all of the

following signals, decides to switch actions, and believes that investing is

optimal at period t = 2. From this moment on, player 3 observes two

investments, δ3t = 2. Therefore, the actions of neighbors are considered

to be a more important reflection of the true state than the signal and

the belief is drawn towards the correct action in the following periods. As

long as player 3 opposes the actions taken by the other two, a change in

action is still possible for player 1 and 2. For them the signal is still the

primary source of information, δ2t = 1 ⇒ ζ it > χit. Thus, if one of these

agents receives a series of (incorrect) reports, indicating that they should

withdraw their investment, they are able to adjust their belief accordingly

and avoid the herd that now starts at A.

If all agents agree on the same action and they are unable to deviate,

a herd automatically implies a persistent herd. Formally,

|Ni|>
α

β
for all i, (9)

represents the threshold for the size of the neighborhood such that none

of the agents is able to switch actions once action have converged. A

neighborhood of this size gives rise to the gridlock effect : for all agents the

reliability of the report (q) is not able to counteract the combination of the

reliability of neighbors (p) and the peer group dominant action, |δit| = n−1.

There are simply too many neighbors agreeing on the same action. Agents

will notice changes in the signal distribution but are unwilling to challenge

the conventional wisdom and adapt to a changing state.

Example A.5 The persistent herd, that prevents adaptation to the

true state in Figure 3, is caused by the gridlock effect. At A every individual
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observes two neighbors investing (δit = 2 for all agents). As a consequence,

everyone considers the network as the primary source of information and

any report will be overruled by the (less reliable) observations. At t = 10

the state of the world changes and refraining from investing is optimal (B).

Nevertheless, all agents continue to invest even though most of the reports

they receive indicate otherwise.

Moreover, because of the uncertainty about the state of the world and

the presence of two neighbors, beliefs will never enter the cascade region

in this example (ε > η2). As a result, cascades are nonexistent and every

period the LLR will be updated by taking into account information from

both sources.

To assess the impact of a persistent herd there is an important differ-

ence between short-term and long-term outcomes. Compared to isolated

agents, a complete network increases the probability that everyone chooses

the correct action in the short-term. In the first period everyone receives

an informative signal without observing others. Similar to a fixed world

setting, these first signals are important to determine the herd equilibrium

for the rest of the game (see for example Gale and Kariv, 2003). The

probability that initial herds are incorrect remains, but decreases as sig-

nal precision or the size of the complete network increases. Moreover, the

assumption of a flat prior (all agents believe µit0 = 1
2
) increases the likeli-

hood that the correct decision is taken by most agents in the first periods.

Not only do we expect most of them to take the correct action after the

first signal, E
[∣∣Z1t1∣∣ |θt1 = 1

]
= nq and E

[∣∣Z0t1∣∣ |θt1 = 1
]

= n (1− q), this

also increases the expected number of observed investments in period one:

E [δit1 |θt1 = 1] > 0 ⇒ E
[
χit1|θt1 = 1

]
> 0. Therefore, in addition to the

signal, the peer group opinion directs initial beliefs towards the correct

short-term action.

The drawback of local interaction is that long-term behavior is charac-

terized by suboptimal actions. Agents will never change their action, even
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though they are aware that the state of the world (and thus their preferred

decision) changes with positive probability. If we compare individual be-

havior during persistent herds and information cascades, a cascade occurs

when there is a level of certainty over the state of the world that makes

the agent ignore any further information. She knows that out of all the

possible combinations of signals and observations there is no combination

that is going to change her belief on the optimal action. In contrast, during

a persistent herd, the agent receives lots of information that can potentially

cause a change in action. The problem is that everyone is waiting for their

neighbors to change and, as a consequence, none of the agents is willing

to switch actions. There is a potential combination of signals and content

of the observation set that can alter the action. The gridlock effect occurs

because none of the neighbors will actually take the actions that will lead

to these observations.

These results can be extended to a complete network with any number

of nodes without loss of generality. Proposition 2 describes the persistent

herd behavior in complete networks.

Proposition 2 In a complete network, if |Ni| >
α

β
and ε > 0, actions

converge. Moreover, the probability of a persistent herd approaches 1 if t→

∞. If |Ni| ≤
α

β
there is a positive probability that any herd is temporary

and agents are able to adapt to changing conditions with positive probability.

A persistent herd is a manifestation of the curse of information. There

is too much information in the economic system. Therefore, people are un-

able to distinguish the signal that contains valuable information on the true

state and there is too much weight on the actions of peers. The character-

istics of a persistent herd and the finding that individuals overweigh their

information are closely related to the concept of correlation neglect : indi-

viduals underestimate the level of correlation of their various information

sources, treating them as independent, and causing conformity in behavior

(Levy and Razin, 2015). Aggregate group behavior results in outcomes that
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are different than if agents would only have private information. Moreover,

DeMarzo et al. (2003) introduce the concept of persuasion bias to indicate

that agents fail to account for possible repetitions of information they re-

ceive. Every piece of information is seen as new and influences the belief as

such. Furthermore, if individuals threat all information as new, the level of

connectedness of agents (their social influence) determines their influence

on the outcome. During a persistent herd, no one is able to infer that

the actions they take influence the actions they observe and that everyone

receives information from the same pool of peers. Eyster and Weizsäcker

(2011) perform several experiments and find that most people neglect cor-

relation when deciding on the composition of their investment portfolio. If

all investors overestimate their biased information this can lead to excessive

risk taking in financial markets (see also Enke and Zimmerman (2013)).

5.3 Incomplete undirected (line) networks

Limiting the number of connections for some of the agents restricts the

flow of information and can make people that would follow the herd in a

complete network susceptible to their signal again. In this section I give an

example of an incomplete network architecture and show that this enables

the group to process new information and adapt to changes. The starting

point is that every incomplete network is a subset of the complete network.

In an incomplete network some of the links are removed and at least one

of the sets in the observation set Zit = {Z1it, Z0it} contains less elements.

As a special case of the incomplete network, a line network consists

of two groups of nodes (2 outer nodes and n − 2 inner nodes) that differ

in the number of connections. Nodes at the ends of the line have just one

link and one neighbor. In between, all agents have two neighbors. As a

result, the observable peer group dominant action is limited to integers in

the interval δit ∈ [−2, 2]. Moreover, individuals with one connection receive

less information than agents with two connections. Therefore, the size of

the cascade region is larger for the outer nodes
(
η
1
> η

2

)
. Based on the
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Figure 4. Differences in behavior for a three-person line network depending on
signal precision (q) and the reliability of neighbors (p). In region A none of the
agents is able to adapt. In region B everyone can adapt. In region C agents
with one connection are able to adapt but are not expected to do so because of
their signal. In region D the signal is strong enough and we expect a domino
effect after each change in the underlying state of the world.

ratio of signal precision (q included in α) and reliability of neighbors (p

included in β) we can distinguish three intervals illustrated in Figure 4.

If one observation is enough to overrule the signal (0 ≤ α ≤ β) any herd

is persistent and adapting to changing circumstances is impossible once

actions converge. Then, behavior is similar to the gridlock effect found in

the complete network as q ≤ p automatically implies a persistent herd (9).

Point A in Figure 4, at which 65 percent of reports are interpreted correctly,

but 70 percent of the actions of any neighbor are judged to be correct, is

one such point. Every agent will follow the action(s) of her neighbor(s).

Furthermore, if observing more than two neighbors is necessary before the

gridlock effect occurs (α > 2β) the ability to adjust is limited. Beliefs are

influenced by the observation of neighbors, and agents need convincing

signals before they are willing to switch actions. Nonetheless, trying a

different action is always possible for all agents, a gridlock is impossible
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and a persistent herd is unlikely. At point B the signal is very reliable and

reflects the true state of the world 95 percent of the time. Even though

70 percent of the action of others are reliable and some agents observe two

corresponding actions, the signal guides beliefs as the primary source of

information for everyone.

The location of the agent in the network and the moment in time are

important when players in the center are not able to switch actions, while

the other two players can change. Then, the network dynamics determine

whether and when someone is able to switch actions. This intermediate

situation is illustrated at point C. Here, the signal (correct 75 percent of the

time) can overrule one but not two corresponding observations (of which 70

percent is considered correct). As a result, the signal is the primary source

of information for agents with one neighbor and the network determines

what to believe for agents observing two similar actions. This dynamic

occurs when 1 ≤ α ≤ 2β. This gives16

p ≤ q ≤
(

1 +
(1− p)2

p2

)−1
. (10)

Contrary to a complete network, there is no guarantee that actions

converge when (10) is satisfied. Persistent herds are not the unique outcome

as the two outer agents will always be able to react to signals. Nevertheless,

they are drawn towards the herd by their neighbor. At C, on average, there

are not enough signals and they are not precise enough to let an outer

player escape the herd. If the true state of the world is θt = 0 (θt = 1) and

everyone is taking the opposite action, the outer players are only expected

to change when their LLR tends to−∞ (∞), implying E [ζ it|θt = 0]+β < 0(
E [ζ it|θt = 1] + β−1 > 0

)
, and can oppose their only neighbor if signals are

16Accordingly
(
1 +

√
1/q − 1

)−1
≤ p ≤ q for q ∈

(
1
2 , 1
)
and p ∈

(
1
2 , 1
)
.
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considered to be important enough:

p <

(
1 +

(
q

1− q

)(1−2q))−1
. (11)

If (10) holds, one or more agents are able to escape the herd as they con-

sider their signal important while the others are unable to switch actions. If

(11) holds, the expected sequence of signals (and their precision) generates

enough evidence for these agents that the opposite action delivers a higher

payoff. This situation is illustrated at D. On average, there are enough sig-

nals indicating that the outer players have to switch actions, contradicting

the observations they receive from their neighbor. One of them is likely to

change actions and subsequently the agent in the center observes δit = 0,

which means she is able to follow.
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Figure 5. The domino effect for a three-person incomplete line network (q = 0.83,
p = 7

10 , ε =
1
10). One of the outer players (2 and 3) has to change actions before

player 1 can follow. A first domino effect is visible from t = 0 and ends when the
herd begins (t = 3). A second domino effect starts as the state changes (t = 10)
and ends when player 1 definitively rejects the investment (t = 16).

Figure 5 displays an example of a three player line network, receiving
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the same signal sequence as in Examples A.1 to A.6. To ensure adaptation

by the outer agents, the reliability of neighbors has been increased to p = 7
10

and 83 percent of signals are correct (corresponding to D in Figure 4).

Example A.6 In Figure 5 actions have converged after ten periods so

that investment is the preferred choice of action for all agents. Following

this herd the underlying state changes, which requires adaptation to prevent

a loss. Player 1 is in the center of the line network. She observes two

investments (δ1t10 = 2) and is therefore unable to change actions. Player 2

and 3 observe the center player investing (δit10 = 1). At point E player 3 has

had several reliable reports that she should change her action to prevent

a loss. She deviates to adapt to the correct state. After the deviation

is observed, the content of the observation set of player 1 has changed

(δ1t13 = 0) resulting in a period of free movement of belief. She decides

to follow the signal and reject the investment (F ). In spite of this, the

following signal is incorrect and suggesting investing is optimal, so again

she switches actions. Now, at point G, the second outer agent (player 2)

also stops investing. When both outer players agree on the same action the

period of free movement of belief has ended which forces player 1 to follow

her neighbors (δ1t16 = −2). Irrespective of her signals, she adapts to the

correct action.

This example illustrates the domino effect: after each change in the

underlying state the group depends on the outer players that can freely

alternate between actions to change and break the herd. The agent in the

center is never the designated person to deviate. As soon as this agent

observes a deviating action from a neighbor, she is free to change actions

herself. In a line network, all nodes with two connections encounter this

local gridlock effect during a herd. Until one of the outer players has

decided to switch actions, the others act as a counterweight, opposing the

altered distribution of signals resulting from the state change. Once an

outer player has switched actions, her neighbor in the outer layer of inner
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nodes is free to choose the opposite action, and so forth. Proposition 3

describes the domino effect.

Proposition 3 For an undirected line network, if actions have con-

verged and 1 ≤ α ≤ 2β, agents with one link can adapt to the opposite

action. They are expected to do so if p <

(
1 +

(
q

1− q

)(1−2q))−1
. After

these agents have changed, their neighbors can adapt as well. This process

continues until all agents have adapted or the underlying state changes.

These results extend to an undirected line network with any number

of agents without loss of generality. Naturally, each added node means

an additional agent with two neighbors. The domino effect describes that

breaking the herd by switching actions will always start at the two players

on the edge of the network and is expected to expand inward as long as the

state remains fixed. The deviant actions taken by one of these agents re-

veals valuable information to others. The signals she received are opposing

the herd and she is willing to follow these signals (Peck and Yang, 2011).

In addition, we know that convergence of actions to an opposite state by

all agents will take at least two periods for a three-person network. If the

network is an n-person line network the transition to a herd on the opposite

action will take at least 1
2
n periods if n is even and 1

2
(n+ 1) periods if n

is uneven.

The domino effect can describe the adaptation process for any shape of

undirected network that has a certain threshold comparable to (10). From

the population of agents herding after the state of the world has changed,

those with a limited number of connections are the ones that will have

to fuel the adaptation process by switching first. Congestion(s) arise(s)

where pockets of highly connected agents are located. As an example,

consider a complex network composed of nodes with an unequal number

of links in which all agents are taking the same action. Moreover, for all

agents α = 21
2
β and (11) is satisfied. If these agents are herding, at first,

adaptation to the underlying state is only possible for those with one or
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two neighbors. Agents with one neighbor are likely to change their action

first, because they have only one observation counteracting their signals.

Furthermore, if all agents that can adapt have done so, some agents might

remain that still observe a difference of three neighbors taking the incorrect

action (δit ≥ 3 or δit ≤ −3). These agents will never be able to adapt and

the network will be divided between agents that adapt freely, agents that

have to wait before a subset of their neighbors have changed and those

that will never obtain a belief that will make them change actions (a local

persistent herd). A fashion for some will be a fad for others.

6 Conclusion

The aim of the foregoing analysis is to understand the effect of various

network architectures on the social learning process. Individuals receive

a private signal and observe a subset of all actions taken in the previous

period. The goal of each individual is to maximize utility by estimating

what the true underlying time-varying state is. The results show that

individual rational behavior may lead to collective ineffi ciencies, especially

in highly connected societies.

Two effects of a dynamic state of the world have been identified. First,

the threat of a change in underlying state ensures cascades are temporary.

Information depreciates and the resulting revision of the belief parameter

acts as an adaptation mechanism. Temporary cascades are a necessary

condition for adaptation because they ensure agents have a continuous

need for new information. Beliefs become active after some time and if

the content of the information has changed this might lead them to try a

different action. Furthermore, the presence of neighbors does not affect the

evolution of belief during a cascade as individuals ignore all information.

An increase in neighbors does decrease the likelihood that cascades occur,

because individuals are less inclined to ignore a large group of neighbors

taking the same action. Second, the actual change in the state of the world
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causes a change in the distribution of signals. Agents need to act when they

notice a change in the signal distribution. The ability to adapt depends on

the interplay between the reliability of neighbors, the quality of the private

signal and the number of connections. An isolated agent, that relies solely

on the private signal, will always be able to change its action in accordance

with the state of the world. The expected signals adjust the belief of the

agent towards the true state over time (similar to a sequential learning

framework). Therefore, herds are likely as everyone is expected to choose

the correct action, but herding is not a result of interaction and there is no

fixed order of adaptation.

In a complete network I identify the gridlock effect as the cause of a per-

sistent herd. Herding is permanent if everybody has multiple connections

and the actions they observe are reliable. After actions have converged, the

network takes over from the signal as the primary source of information,

leading to a state of groupthink. People are ready to change to a different

action but none of the agents is willing to deviate first. There is too much

(incorrect) information to make a balanced decision, leading to a loss in

utility for all agents.

Reducing the information available to the agents can alleviate the grid-

lock effect. In an incomplete network, time and place determine whether

and when individuals are able to change actions. The domino effect de-

scribes that, at first, adaptation is possible for agents with a small number

of connections. These agents will have to change first, while other highly

connected individuals wait until they observe a different action from their

neighbors. A change of action by sparsely connected agents is a message to

others that they have received valuable new information about a possible

change in the state of the world and they are willing to act accordingly.

Change starting at the outskirts will then expand inward over time, pro-

vided that the state remains fixed during this process.

These findings are subject to several limitations.
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7 Discussion

Here, I discuss three modelling assumptions and the way in which they

affect the results.

The distribution of priors. The distribution of priors is the starting

point for the evolution of belief. All agent have a flat prior, µit0 = 1
2
,

because both states of the world are equally likely at the start. As a

consequence, there is a high probability that all agents take the correct

action in the short-term. Furthermore, the presence of a network magnifies

this effect as individuals that are incorrect initially will be corrected by their

peers. As an example of a different distribution, Bala and Goyal (1998)

assume each agent has a prior from a set of prior beliefs µit0 (θ) ∈ ℘ (θ) (and

to be complete these beliefs are interior µit0 (θ) > 0). Allowing for a diverse

set of priors will change the outcome in the short-run. Convergence to the

correct action is not self-evident, because some of the agents will choose

incorrect actions without any information and can influence the others to

join them in an incorrect herd. The long-term behavior and the adaptation

process studied in the present paper are robust to this change. After actions

converge, the flat prior is no longer important for the further adaptation

process and the results follow. Furthermore, one of the advantages of a

time-varying state is that an incorrect decision before a change is correct

afterwards.

The subjective reliability of others. The Bayesian approach demands

that the agent make inferences about the actions of others. For every

observation, the subjective reliability of others (p) is this inference. As I

have shown, the interpretation of this variable is troublesome and most

of the time the agents are simply wrong about whether the actions of

neighbors were correct. This imposed ignorance causes the persistent herd

behavior found when neighbors are providing information. As an example,

if agents herd on the incorrect action the actual value of the reliability

of others is pt = P (zjt = θt) = 0. None of the agents takes the correct
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decision in any of these periods and this is not common knowledge. As a

consequence, information received from neighbors is overweighted.

A more realistic approach would be to let the subjective reliability

of neighbors truly reflect the percentage of correct actions taken in the

preceding period (without agents knowing which of their neighbors was

correct). If the true reliability is announced publicly at the start of the

period, this would gradually reduce the value of observations if these are

incorrect, so that agents could infer that they have to switch actions to

adapt. Hence, the reliability of neighbors is time-dependent, pt. Moreover,

as this process continues, and more people take the correct action, the

confidence in neighbors will increase until beliefs are locked in their interval

once again. Every change in the underlying state causes this process to

recur.

The volatility of the dynamic state. It is assumed that the state of

the world is not likely to change two periods in succession, ε ∈
[
0, 1

2

)
. This

deserves two important (contradicting) remarks. First, the state should not

be too volatile. The domino effect in an incomplete network can only be

expected if the state is fixed for a number of periods. Beliefs in a cascade

set need time to become active and once they are active it generally takes

several periods before this leads to a change in action. Second, the state

should change regularly. For ε ≈ 0, the duration of temporary cascades can

be longer than the duration of the game and there might not be enough

opportunities to revise the belief for each agent. The mechanism that

revises beliefs is then lacking and the results will only hold if time is infinite.

Chamley (2004) emphasizes the relevance of knowing at which speed

learning occurs. The present paper is about (the absence of) an asymptotic

result and not about the rate of learning. Nevertheless, the speed of learn-

ing is important as slow learning automatically implies slow adaptation.

The adaptation mechanism needs to operate with suffi cient speed to keep

up with the ever changing state. The rate at which adaptation occurs is

left for further research.
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Appendix

Proof of Lemma 1: The starting point is (i) the threshold of the lower

cascade set for an agent without neighbors (η0). In the presence of neigh-

bors (ii) a cascade starts when all observations and the signal are opposing

the belief of the agent, but she is unwilling to alter the action. Finally, (iii)

an increase in the number of neighbors decreases the cascade threshold.

(i) For an agent without neighbors and belief µit ≤ 1
2
(taking action

xit = 0) the signal is ignored if the belief is in the lower cascade set,

µit ∈ Hl =
[
0, η

0

)
. Therefore, the threshold η0 is the maximum belief

for which inserting sit = 1 in (4) will not lead to a change in action,

µit+1 ∈
[
0, 1

2

]
. Remember that µit+1 = 1

2
⇒ λit+1 = 0, so that

λit+1 = ln

(
q

1− q

)
+ ln

(
µit

1− µit

)
= 0.

This gives

µit+1 = η0 = 1− q.

(ii) With observations, |Ni| > 0, the range of the cascade set depends

on neighbors. For an agent with belief µit ≤ 1
2
(taking action xit = 0)

a cascade has started if updating the belief will not change the action,

λit+1 ≤ 0. She receives a signal contradicting her belief, sit = 1, and

observes all agents investing so that the observation sets are Z1it = {Ni}

and Z0it = {∅}. Including this information in (4) means that |δit| = |Ni|

and gives threshold η|Ni| =

(
1 +

q

1− q
p

1− p
|Ni|
)−1

. Similarly, 1 − η|Ni| =(
1 +

1− q
q

p

1− p
−|Ni|

)−1
is the upper cascade threshold.

(iii) It is easy to see that η|Ni| < η0. Furthermore, η|Ni| decreases in

|Ni| for p ∈
[
1
2
, 1
]
and q ∈

(
1
2
, 1
)
.�

Proof of Lemma 2: The first part of the proof is similar to that of

Proposition 1 in Moscarini et al. (1998) and replicates these findings if
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Ni = {∅}. Here it is shown that (i) beliefs tend to the fixed point and (ii)

there is a maximum duration of cascade belief.

(i) The evolution of belief during a cascade for ε > 0 ((7) in the text)

can be written as

µit+1 (θt) = µit (1− 2ε) + ε.

The belief is adjusted with constant value |1− 2ε| and
∂µdit+1
∂µdit

= 1−2ε > 0

for ε ∈
(
0, 1

2

)
. At the fixed point of this linear recurrence relation the prior

is equal to the posterior. Therefore, µit+1 = µit implies µit = µit (1− 2ε) +

ε. It follows that µit = 1
2
. As soon as a cascade starts, the belief of the

agent will be directed towards this asymptote.

(ii) The lowest possible belief subject to a dynamic state is ε. Assume

the agent has this belief and ε < η, so that the belief is in the cascade

region. The belief increases each period following µit = 1
2
− 1

2
(1 − 2ε)t+1

if µit <
1
2
(and decreases as µit = 1

2
+ 1

2
(1 − 2ε)t+1 if µit >

1
2
). The agent

returns to Bayesian updating as soon as 1
2
− 1

2
(1 − 2ε)t+1 ≥ η, i.e. after a

finite number of periods. For all other feasible cascade beliefs µit ∈ [ε, η)

the cascade will end in less or an equal number of periods, as a consequence

of the constant speed of movement towards the fixed point.�

Proof of Proposition 1: The proposition states that an isolated agent

can adapt to a true state of the world. Lemma 2 describes that cascades

are temporary if ε > 0 and the belief will exit the cascade region within

finite time. Here, it is shown that (i) the distribution of signals ensures

an isolated agent is expected to choose the correct action if the belief is

outside the cascade interval, µit ∈ [η, 1− η] (based on Chamley (2004)).

(i) Assume the agent invests (xit = 1) but the true state is θt = 0. The

dynamic state ensures the belief is bounded: µit ∈ [ε, 1− ε]. Neighbors do

not have influence, E [χit] = 0 ∀t, and the expected value of the random

variable is

E [ζ it|θt = 0] = ln

(
q

1− q

)
(1− 2q) .
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Signals are informative q ∈
(
1
2
, 1
)
so that E [ζ it|θt = 0] < 0. Hence, the

LLR tends to −∞ and µit tends to ε as t→∞. If the state changes before

µit ≤ 1
2
, the correct (and optimal) action is already chosen and xit = θt. If

the state of the world is θt = 1, the signal is again conditional on the true

state of the world and

E [ζ it|θt = 1] = ln

(
q

1− q

)
(2q − 1) .

As E [ζ it|θt = 1] > 0, the LLR tends to∞ and µit tends to 1−ε as t→∞.�

Proof of Proposition 2: The proof consist of three parts. First, it is

shown that (i) if (9) is satisfied none of the agents is able to switch actions

once a herd has started. Furthermore, (ii) if there are two groups of equal

size one of the agents will deviate and, as a result, (iii) actions will converge.

(i) During a persistent herd the signal is dominated by the informa-

tion from observations. Signal precision has a constant value s.t. |ζ it| =

ln (q/ (1− q)). The influence of observations from neighbors depends on the

number of neighbors agreeing on the same action, |χit| = ln (p/ (1− p))|δit|.

By definition, in a herd all agents take the same action which implies

|δit| = |Ni| = n − 1 for all i. Therefore, |χit| = ln (p/ (1− p))|Ni|. The

network dictates the direction of belief if

|ζ it| < |χit| ⇒ ln

(
q

1− q

)
< ln

(
p

1− p

)|Ni|
.

The threshold follows as

|Ni|>
α

β
.

The LLR is (bounded and) limited to (−∞, 0) or (0,∞) and beliefs will be

contained in their respective interval
[
ε, 1
2

)
or
(
1
2
, 1− ε

]
for ε > 0.

(ii) This is a proof by contradiction. Assume that society is divided

into two groups of equal size, A and B, that continue to hold a different

belief for the the rest of the game. Furthermore, during a finite period of
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time Tk = (tk0 , ..., tku), where tk0 ≥ t0 and tku ≤ T , the state of the world

is θTk = 1. At the start of tk0 , all agents in group A chose to invest, with

µitk0
> 1

2
∀i ∈ A. The agents in group B are incorrect and believe that not

investing is optimal, µitk0 ≤
1
2
∀i ∈ B.

In any complete network δit 6= 0 will always hold for one of the two

groups. For groups that are split equally this implies δit = −1 for all agents

in group A and δit = 1 for all agents in group B (none of the agents observes

her own action as i /∈ Ni). Any balance in opinion will shift as a result of

the distribution of signals conditional on the state of the world. The LLR

tends to ∞ if

E [ζ it|θt] + βδit > 0.

Inserting the signal precision ratio gives

α (2E [sit|θt]− 1) + βδit > 0.

Analogously,

δit >
α

β
(2θt − 1) (1− 2q) for θt ∈ {0, 1} .

If this does not hold E [λit+1] < 0, and the LLR tends to −∞. A situation

in which group A and B continue to engage in different actions can only

be sustained as long as the LLR of group A (δit = −1) tends to∞ and the

LLR of group B (δit = 1) tends to −∞:

−1 >
α

β
(2θt − 1) (1− 2q) > 1.

This is contradiction as (1− 2q) ∈ (−1, 0) and α/β > 0 for 1
2
> p > 1 and

1
2
> q > 1.

(iii) Actions converge because, provided that the state is fixed during

a certain period, it is not possible that one or more individuals continue

to hold a different belief than the rest of the group as shown by (ii). At
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some moment in time an agent in group B is expected to change. These

individuals will be drawn towards the correct side, because the signal and

the observations indicate their decision is incorrect and the belief will be

adjusted upward. For the agents in group A their signal indicates they

are correct, but their observation indicates otherwise. Whether their belief

is directed downward depends on the strength of the signal. Eventually,

one of the agents switches from A to B, or vice versa. This switch will

accelerate the convergence process.

Assume one of the agents changes her decision from xit = 0 to xit+1 =

1. The content of the observation set for this agent will not change (she

does not observe her own action), but her belief is already µit+1 >
1
2
and

δit+1 = 1 ⇒ E [λit+1] > 0. For the remaining agents in group A their

prejudice has been confirmed and δit+1 = 1 ⇒ E [λit+1] > 0. Their belief

now tends to 1 − ε. Agents in group B observe one less companion and

an additional dissident, so that δit+1 = 3. They will eventually follow the

agent that has first switched to group B. As soon as |δit| > α/β for A or

B, the network takes over as primary source of information.�

Proof of Proposition 3: It is assumed that actions have converged. The

domino effect will only occur if (i) the threshold (10) is satisfied. Further-

more, the signal is expected to correct beliefs (11) if (ii) agents collectively

invests and the true state is θt = 0 and (iii) agents collectively abstain and

the true state is θt = 1.

(i) The threshold for the domino effect is found by inserting |Ni| = 1

for the outer nodes and |Ni| = 2 for the inner nodes in (9).

(ii) The expected distribution of signals directs the belief downward if

E [λit] < 0. If the outer node has belief µit >
1
2
and observes δit = 1, the

LLR tends to −∞ if

E [ζ it|θt = 0] + χit < 0,
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so that

ln

(
q

1− q

)
(1− 2q) + ln

(
p

1− p

)
< 0.

This gives

(
q

1− q

)(1−2q)
<

1− p
p
⇒ p <

(
1 +

(
q

1− q

)(1−2q))−1
. (A1)

(iii) If no one invests and the state is θt = 1, the expected distribution

of signals directs the belief upward if E [λit] > 0. If the outer node has

belief µit ≤ 1
2
and observes δit = −1, the LLR tends to ∞ if

ln

(
q

1− q

)
(2q − 1) + ln

(
p

1− p

)−1
> 0.

Accordingly,

(
q

1− q

)(2q−1)
>

p

1− p ⇒ p <

1 +

((
q

1− q

)(2q−1))−1−1 . (A2)

Here (A1) and (A2) are equivalent. If these equations hold the single coun-

teracting observation is overruled by the expected sequence of signals.�
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