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Abstract

Under new capital requirements, CoCo bonds can belong to the Additional Tier 1 (AT1)

capital category under strict conditions. These conditions give rise to the risk of coupon can-

cellation and the risk of extension beyond call dates. This study proposes two first passage-

time approaches to price AT1 conversion-to-equity CoCos: a structural model adapted to AT1

CoCo pricing, and a direct model for the triggering CET1 ratio. Both models include coupon

cancel risk and extension risk by setting two extra thresholds for the CET1 ratio. This study

contributes to the literature by being the first to include these risk factors to first passage-time

models, and one of the few to calibrate its parameters to data not including market observed

CoCo prices. We find that coupon cancel and extension risk have significant impact on a

CoCo’s risk profile, both driving its price down. Furthermore, we find that both models over-

price CoCos for realistic values of the thresholds. This may be caused by: (i) the absence of

extra downward pressure following coupon cancellation, extension, or conversion; and (ii) the

absence of the risk of regulatory forced conversions. These factors provide interesting oppor-

tunities for further research.
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Chapter 1

Introduction

Following the global financial crisis a vast set of new regulations, guidelines, and directives

for banking businesses have emerged. These rules are designed to enhance the stability of the

financial system and to create a level playing field in the financial industry. An important part of

these regulations is constituted by the European Parliament (EP, 2014) in the Banking Recovery

and Resolution Directive (BRRD). This Directive provides regulations designed to stimulate

banks to be prepared for a future new crisis. It forces banks to increase their bail-in or loss

absorbing capacity, where a banks’ own creditors, instead of the government, recapitalize the firm

in a crisis. Specifically, the Minimum Requirement for own funds and Eligible Liabilities (MREL,

see European Banking Authority (2014)) sets out minimum bail-in capacity requirements. These

requirements are elaborated in the Capital Requirement Regulations (CRR, see EP (2013b)),

which set out specifically the minimum amounts of capital to be held in each capital category.

Following these new bail-in capital requirements, there has been an exponential rise in hy-

brid debt issuance by banks in the EU.1 Contingent Convertible bonds (CoCos) are an example

of such a hybrid security. CoCos are (callable) bonds, that are automatically converted into

equity or suffer a (temporary) partial or complete write-down when a prespecified trigger event

occurs. A CoCo is specified by the following main characteristics:

• Maturity, face value, coupon rate, coupon payment dates, and call dates. Just like a regular

(callable) bond, a CoCo makes coupon payments and redeems the principal at maturity,

when conversion is avoided. Furthermore, CoCos are often callable, with prespecified

dates at which the issuer can call the bond at a predetermined price.

• The trigger event causing conversion. There exist three types of trigger events: (i) market

triggers, based on a market driven quantity such as the issuer’s stock price, reaching

some threshold; (ii) regulatory triggers, based on the regulator judging that the bank is

in need of recapitalization; and (iii) accounting triggers, based on a capital ratio such as

the Common Equity Tier 1 (CET1) ratio falling below some threshold.2 Combinations of
1 The total amount of contingent debt outstanding at banks in the EU has risen up to over $200 billion as of September

2014, as estimated by Avdjiev, Bolton, Jiang, Kartasheva, and Bogdanova (2015) based on Bloomberg and Dealogic.
2 The CET1 ratio equals the book value of common equity divided by the amount of risk-weighted assets. See

Section 2.1 for more detail hereon.
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different triggers also occur.

• The conversion mechanism, describing what happens upon occurrence of the trigger event.

This can be conversion into a number of equity shares, or a (temporary) partial or complete

write-down of the face value.3 Furthermore, a distinction can be made between dilutive

and non-dilutive CoCos.4

Hybrid instruments such as CoCos provide a cost-effective and efficient way of adding reg-

ulatory loss absorbing capital to the balance sheet.5 Furthermore, when CoCos work as they are

supposed to, they can reduce the bank’s probability of default, and thereby the probability of

the need for a new bail-out.

Depending on the specific structure of a CoCo, it is assigned to either the Additional Tier 1

(AT1) or the Tier 2 (T2) capital category.6 As AT1 eligibility is very attractive for banks towards

the capital requirements, this is currently the dominant style. However, to count as AT1 capital,

a CoCo must be structured in a very specific way. The most important extra risk drivers origi-

nating from the AT1 restrictions are: (i) coupon cancel risk, as coupon payments on AT1 CoCos

may be canceled on the discretion of the issuer or the regulator without consequences for the

rest of the CoCo lifetime; and (ii) extension risk, as there may be no incentives to call an AT1

CoCo, and the regulator may prohibit a call.

Though there exists a range of literature on the pricing of various types of CoCos, little

has been written on the impact of the AT1 requirements on a CoCo’s risk profile. This is

an important deficiency, as these extra requirements have significant impact on CoCo prices.

Furthermore, few studies calibrate their pricing models without using actual market observed

CoCo prices. Most studies present some theoretical model, and then either stick to guessed

parameters, or use market observed CoCo prices to extract information on their model’s pa-

rameters. However, to really understand what drives CoCo prices, we must explain them using

only information from other markets.

This study aims to fill both these gaps. This study focuses on AT1 eligible CoCos with a CET1

ratio trigger and non-dilutive conversion to equity. This is an interesting and challenging type

from a valuation perspective, as these CoCos contain both credit- and equity-like characteristics,

and their triggering accounting ratio is non-tradable. AT1 CoCos with an accounting trigger and

equity conversion make up about half of all CoCo issues in the EU over the past year.7

We model the CET1 ratio process and the stock price process, and approximate CoCo prices

3 A partial write-down is defined as a part of the CoCo being written-down, and the remaining fraction being paid
out to the holders in cash. CoCos with a temporary write-down feature can be written up again when the issuer’s
capital position has regained sufficient strength.

4 In dilutive CoCos, the face value of the CoCo is converted into more shares than the equivalent amount of equity.
Non-dilutive CoCos consist of CoCos with write-down features, or conversion to equity where the value of the claim
after conversion would be the same or less than before conversion.

5 Issuing a CoCo provides four benefits over issuing regular shares: (i) because CoCos are technically regarded as
bonds, payments can be made from pretax earnings in the majority of EU countries, enhancing the firms’ tax shield; (ii)
CoCos allow banks to tap from a different pool of investors; (iii) issuing a CoCo does not dilute current shareholders
when conversion is avoided; and (iv) the underwriting costs of issuing a CoCo are far lower than those of issuing equity
for reasons concerning information and managerial agency problems (see e.g. Calomiris and Herring (2013)).

6 The regulator dictates what types of liabilities are eligible for which capital category, and how much capital must
be held in each of the categories. See Section 2.1 for more detail hereon.

7 Estimated by Avdjiev et al. (2015).
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using a Monte Carlo algorithm. We use two first passage-time approaches to do so: (i) an Analyt-

ically Tractable First-Passage time (AT1P) approach, based on Brigo and Tarenghi’s 2004 extension

of the Black-Cox structural model of default, adapted to AT1 CoCos; and (ii) a methodology to

directly model the CET1 ratio and stock price as stochastic processes, based on the framework

by Cheridito and Xu (2015). Both models are calibrated on Credit Default Swap (CDS), equity,

and accounting data, i.e., without using CoCo prices. This enables us to examine their CoCo

pricing strength, and investigate what impact each of the risk drivers has on the CoCo price.

We assume coupon cancel risk and extension risk are driven by the CET1 ratio. That is, when

the CET1 ratio is below a coupon cancel threshold at a payment date, the coupon payment is

canceled. And when the CET1 ratio is below a call threshold at a call date, the CoCo is extended.

We test the models in a case study on AT1 CoCos issued by Banco Popular and ING in early

2015. We find that coupon cancel and extension risk have a significant impact on CoCo prices,

both in the AT1P and in the direct CET1 model. A higher coupon cancel threshold significantly

drives down CoCo prices. We find a similar effect for the extension risk, be it less strong. A

higher call threshold implies less early redemptions, which results in a larger probability of

conversion and stronger discounting of the potential principal. This effect is weakened by the

value of potential extra coupon payments.

While both models yield comparable prices for equal levels of the thresholds, they show

large differences in the relative contribution of the CoCo price components principal, coupons,

and stocks. In the direct CET1 model the conversion rate is very high, but the average loss of

value at conversion is low. In the AT1P model, the conversion rate is lower, but the average loss

of value at conversion is much higher. The behavior of the AT1P model seems more realistic, as

we expect conversion not to happen very often in reality, but with a large loss of value.

Furthermore, for both models, we need to set the call and coupon cancel thresholds unrealis-

tically high to match market observed CoCo prices. In other words, when setting the thresholds

at economically intuitive levels, both models overprice CoCos significantly. This may be caused

by a number of reasons: (i) the lack of extra downward pressure or shocks following announce-

ments of coupon cancellation, extension, or conversion; (ii) the lack of the uncertainty regarding

the power of the regulator to force conversion; (iii) the absence of the Bond-CDS basis in the

calibration procedure; and (iv) the lack of an extra CoCo illiquidity premium. These factors

provide interesting opportunities for further research.

This study is structured as follows. Chapter 2 gives an overview of current CoCo literature

and relevant valuation methods. Chapter 3 presents our AT1 CoCo valuation approaches, and

elaborates on how their parameters can be calibrated using market data not consisting of CoCo

prices. Furthermore, it introduces the Monte Carlo CoCo pricing algorithm. In Chapter 4 we

apply the calibration methods from Chapter 3 on two AT1 CoCos. Chapter 5 analyzes the pricing

behavior of both models, and compares model prices to market observed prices to examine

their pricing strength and to understand what drives CoCo prices. It also conducts a sensitivity

analysis on the input parameters. Chapter 6 concludes and provides recommendations for

further research.
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Chapter 2

Literature review

This chapter is divided into three parts. Section 2.1 introduces in detail the characteristics and

risk drivers of Additional Tier 1 eligible CoCos. Section 2.2 then provides an overview of the

current variety of CoCo pricing methods in the literature. We find that the class of first-passage

time models is most suitable for our purpose, so Section 2.3 focuses on the most interesting

studies on CoCo pricing using first-passage time models. It also outlines where the gaps in the

current literature lie, which this study aims to fill.

2.1 AT1 CoCo bonds: a primer

The idea of hybrid securities that are a form of debt that converts to equity if the issuer gets in

trouble was first offered by Flannery (2005). Later it was updated and specified as the currently

known CoCo in Flannery (2009). Further extensions and specifications were provided among

others by Kashyap, Rajan, and Stein (2008), who propose a systemic event to trigger conversion,

instead of a firm-specific event. McDonald (2010) and Squam Lake Working Group (2009) pro-

pose a combined trigger that depends on both the issuer’s individual health and the banking

system as a whole.

As introduced in Chapter 1, there exist several different capital categories. The CRR (EP,

2013b) dictates what types of liabilities are eligible for which capital category, and how much

capital must be held in each of the categories. The most general division of capital is into Tier

1 and Tier 2. Tier 1 is the most reliable category from the bank’s perspective, and consists

of instruments that can absorb losses without ceasing business operations. Tier 2 consists of

supplementary capital instruments, that cannot be directly used to absorb losses without ceasing

business operations.

The Tier 1 category constitutes the core capital, and is further divided into CET1 capital and

AT1 capital. The CET1 capital is given by the book value of common stockholders’ equity plus

any share premium accounts related to these common stocks, retained earnings, accumulated

other comprehensive income, and other reserves. The amount of CET1 capital on a bank’s

balance sheet forms the basis for the CET1 ratio. This ratio, as designed in EP (2013b) and EP
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(2013a), is defined as the CET1 capital divided by the amount of risk-weighted assets (RWA).

The amount of RWA is a function of the bank’s assets and off-balance sheet exposures weighted

according to their riskiness.

The AT1 category consists of instruments that are not CET1, but are still regarded as safe

enough to be Tier 1 eligible. Almost all recent CoCo issues in Europe have been AT1 eligible.

In order to qualify as AT1 capital CoCos need to oblige to some strict conditions. As these

conditions have a large impact on a CoCo’s risk profile and their value, we introduce the most

important ones carefully. These conditions comprise:

1. The CoCo has to be subordinated to Tier 2 capital in event of insolvency (EP, 2013b, Article

52: 1d);

2. The CoCo needs to have fully discretionary non-cumulative coupon payments, meaning

coupon payments can be canceled on the discretion of the issuer or the regulator (EP,

2013b, Article 52: 1l);

3. The CoCo must have a perpetual maturity, it may not have any incentives to redeem at its

call dates, and the regulator may opt to prohibit a call (EP, 2013b, Article 52: 1g);

4. The first call date must be at least five years after issuance (EP, 2013b, Article 52: 1i);

5. The CET1 ratio should trigger the CoCo (accounting trigger), with a minimum conversion

threshold at 5.125%, and the regulator may opt to force conversion as well (EP, 2013b,

Article 54: 1a).

When a CoCo does not meet these requirements, it is qualified as Tier 2 capital. The most

interesting requirements, especially from a valuation perspective, are (2) and (3). (2) implies

that coupon payments may be canceled without any consequences for the further lifetime of

the CoCo. This is in sharp contrast with the regular fixed income market. In a standard bond,

canceling a coupon payment automatically results in bankruptcy. The fact that this does not

hold for AT1 CoCo implies that we cannot speak of a fixed income product, and hence standard

fixed income valuation approaches do not apply, even when conversion is avoided.

Restriction (3) implies that there may be no incentives for the issuer to redeem the CoCo

as soon as possible. This is also in contrast with regular callable bonds, that traditionally con-

tain a coupon step-up when a call date is skipped. That is, the coupon rate is contractually

increased as a punishment when the issuer skips a call date. Moreover, markets traditionally

consider skipping a call date to be a very serious sign of deteriorating credit-worthiness. This

combination leads banks to almost always call their callable bonds at the first possible instant.

However, for AT1 CoCos, this trend may very well be broken. As coupon step-ups or other

incentives to call are prohibited, and regulators are likely to intervene when they feel that a call

is inappropriate. More on this interesting characteristic in our determination of an expression

for the AT1 CoCo price in Section 3.1.

In order to set up a CoCo valuation model, it is essential to have an exact understanding of

all risks associated with holding an AT1 CoCo. A valid pricing model should incorporate all
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these sources of risk. Below we provide a list of the risk drivers present in AT1 CoCos, partly

driven by the AT1 characteristics set out above:

• Interest rate risk. Before conversion, a CoCo is similar to a fixed income product and its

value is therefore sensitive to movements of the term structure of risk-free interest rates.

• Conversion risk (loss absorption risk). This is risk originating from the probability the CoCo

conversion is triggered. As this conversion generally entails a loss of value for the holder,

investors demand to be compensated for this. This risk driver is present in every CoCo,

and is treated in every study on CoCo valuation.

• Equity risk. Because of the potential conversion to equity, the CoCo holder is exposed to

variations in the share price of the issuing bank, as this may influence the value of their

claim when conversion occurs.

• Coupon cancel risk. The extra risk of coupon cancellation is born by the holder, and is

reflected in the CoCo value. EP (2013a, Article 141) dictates that coupon payments may

only take place when the bank has sufficient Available Distributable Items (ADI) and/or the

payment does not exceed the Maximum Distributable Amount (MDA). The pricing of this

risk is for example treated by Corcuera, De Spiegeleer, Fajardo, Jönsson, Schoutens, and

Valdivia (2014) for CoCos with a market trigger.

• Extension risk. The absence of incentives to call results in an unknown, but possibly signif-

icant probability of extension. The issuer might opt not to call when the financing costs of

issuing new debt are higher than those of keeping the CoCo in existence. Furthermore, the

regulator may prohibit the issuer from redeeming its CoCo. De Spiegeleer and Schoutens

(2014) quantify this extension risk in a reduced form framework.

2.2 Current variety in CoCo pricing models

The first problem that emerges when attempting to price a CoCo, is determining whether there

exists a unique price in the first place. Sundaresan and Wang (2010) argue that CoCos with a

market trigger can suffer from a multiple equilibria problem unless the trigger is designed in a way

that avoids dilution of preexisting stock holders. They show that dilutive CoCo conversion leads

to a situation where there can be more than one potential path for the stock price given a time

path for the bank’s asset value. This phenomenon would make it impossible to find a unique

price for the CoCo. Moreover, it can disastrously destabilize the market, as a small change in

market prices could lead the market to switch its belief to a different equilibrium (Calomiris and

Herring, 2013).

These concerns about multiple equilibria have led to a shift towards using accounting trig-

gers. Using a book value ratio rather than a market value ratio as conversion trigger removes the

multiple equilibria problem. However, it does present some new valuation challenges. Calomiris

and Herring (2013) argue that a book value trigger depends on the behavior of the management
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and the regulator, which is not easily predictable and makes the probability of conversion diffi-

cult to quantify. Furthermore, CoCos with an accounting trigger contain derivative-like charac-

teristics with a non-tradable underlying. When pricing such a derivative, special attention has

to be paid to fundamental principals of derivative pricing, such as the existence of a replicating

portfolio (see e.g. Cheridito and Xu (2015)).

There exist two main kinds of literature on CoCos: (i) literature on the effect of the intro-

duction of CoCos on bank stability, risk taking, and optimal capital structure; and (ii) literature

on the valuation of CoCos and the corresponding risk management. This study mainly belongs

to the second category. For literature in the first category we refer to Pennacchi (2011); Bolton

and Samana (2012); Koziol and Lawrenz (2012); Barucci and Del Viva (2013); Albul, Jaffee, and

Tchistyi (2013); Zeng (2013); Calomiris and Herring (2013); Hilscher and Raviv (2014); Himmel-

berg and Tsyplakov (2014); Chan and Van Wijnbergen (2014); Berg and Kaserer (2015).

The valuation literature can in turn be decomposed in three distinct approaches: (i) the first-

passage time approach, which models the conversion and/or default time as the first passage

time of a stochastic process through a threshold barrier (e.g. in Pennacchi (2011); Glasserman

and Nouri (2012); Buergi (2012); Brigo, Garcia, and Pede (2015); Albul et al. (2013); Metzler

and Reesor (2015); Cheridito and Xu (2015)). The most widely used group of first-passage time

models in the CoCo literature is the group of structural models, which model a company’s asset

value as a stochastic process and view default as the first time the asset value hits a certain

barrier from above; (ii) the reduced-form approach, where the trigger time is modeled as the

first arrival time of an intensity based model (e.g. in De Spiegeleer and Schoutens (2012); Jung

(2012); Cheridito and Xu (2014, 2015)). This approach focuses on the credit characteristics of

CoCos; and (iii) equity based models, which decompose the CoCo payoff as an ordinary bond

and a set of equity derivatives (e.g. in De Spiegeleer and Schoutens (2012); Jung (2012); Cor-

cuera, De Spiegeleer, Ferreiro-Castilla, Kyprianou, Madan, and Schoutens (2013)). This group

of equity models is only appropriate for CoCo with a market trigger, and is hence omitted for

the remainder of this study. For a critical assessment of some of the existing pricing approaches

see also Wilkens and Bethke (2014).

The presence of these distinct approaches can be attributed to the hybrid nature of a conversion-

to-equity CoCo. It contains credit like characteristics, namely in the periods where it acts as an

ordinary bond.8 This implies its value is driven by the interest rate and the issuers creditwor-

thiness and probability of default. However, because of the lurking possibility of conversion to

equity, its value is driven by the equity market as well. This results in the CoCo price reacting to

movements in both the credit and in the equity market. It is hence essential for a valid valuation

approach to inhabit both these characteristics.

As we want to build a model for AT1 CoCos with equity conversion, we need an approach

that can include both the credit and equity components, and that provides enough flexibility to

include coupon cancel and extension risk. Out of the three groups of valuation approaches, only

first-passage time models have these characteristics. Furthermore, first-passage time models

provide a clear connection with economic content, in linking a default or conversion barrier with

8 We disregard here the possibility of coupon cancellation that is present in AT1 CoCos for a moment.
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a set of economically interpretable stochastic processes (Brigo et al., 2015). This is in contrast to

the reduced form (intensity) approach, which regards default and/or conversion as striking out

of the blue (see e.g. Duffie and Singleton (1999)). Most pure credit approaches take the form

of an intensity model. Pure credit approaches also lack the ability to include the CoCo’s equity

component.

In first passage time models, the model parameters can be calibrated to credit and equity

markets simultaneously, thereby extracting market views from both markets. Furthermore, this

approach allows us to hedge this hybrid instrument using both credit and equity securities. This

is not possible when using a strictly credit or equity approach, but is essential when we want

to set up a proper pricing method for AT1 CoCos with equity conversion under the risk-neutral

measure. The reasons provided above lead us to select the first passage time approach as being

most fit for AT1 CoCo valuation, and hence we focus on these models going forward.

2.3 The structural approach and other first-passage time models

for CoCo valuation

Structural models for the firm value are build on a long line of research on capital structure

that was pioneered by Merton (1974), Black and Cox (1976), and Leland (1994), and includes

numerous subsequent papers. This approach is based on modeling a firm’s assets, and prices

debt and equity as claims on these assets. Merton assumes that the firm defaults when at

maturity its (latent) actual asset value is less than the face value of debt. Black and Cox ex-

tend this approach by allowing default at any time, defining default as the first time the asset

value drops to an exogenous reorganization barrier consisting of the debt of the firm and safety

covenants. Leland adds strategic default timing to the framework. Numerous other extensions

have been proposed, each with different specifications for the firm value process, the default

barrier, and/or the default time. An inexhaustive list of such methods is provided in Bielecki

and Rutkowski (2002) and the references therein. One interesting extension, especially in the

context of AT1 CoCo valuation, is provided by Brigo and Tarenghi (2004).

Brigo and Tarenghi (2004) propose a more flexible extension to the Black and Cox-model, and

call it the Analytically Tractable First-Passage Time (AT1P) model. They introduce a curved default

barrier to enhance model flexibility. They also provide a way of calibrating the model parameters

to the implied risk neutral survival probabilities extracted from CDS quotes, making use of

analytical formulas for barrier options (Brigo et al., 2015). All structural models mentioned

above are examples of the larger family of first-passage time models. This name originates from

the fact that they deal with the first time a process hits a barrier.

There exists some literature on CoCo valuation using structural or other first passage time

models. Pennacchi (2011) compares several CoCo structures by simulation with a jump diffusion

model of the issuer’s assets. Though his model is very complete and detailed, it lacks practical

usefulness. This is because he skips the calibration step, and limits his study to using guessed

benchmark parameters. Albul et al. (2013) construct closed form pricing expressions under the
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assumption that the conversion trigger is defined as a threshold level for the issuer’s assets and

that all debt has infinite maturity. They provide elegant formulas, but use a conversion trigger

that is not used in any actual CoCo issues. Glasserman and Nouri (2012) consider a GBM model

for the assets, an equity over assets conversion trigger and partial and on-going conversion in

amounts just sufficient to meet the minimum capital ratio. They overjump the fact that the CET1

ratio triggering the CoCo is unequal to the market value of equity-over-assets ratio. Hilscher and

Raviv (2014) obtain closed-form expressions for finite maturity debt and an asset level trigger,

where the contingent capital converts to a fixed proportion of total capital.

Brigo et al. (2015) use the AT1P model to price fixed maturity Tier 2 CoCos. They find a

link between the assets-over-equity ratio and CET1 ratio by cross-sectional regression analysis.

Buergi (2012) takes a similar approach, adding the assumption that the actual asset value is

equal to its book value in times of financial distress. Cheridito and Xu (2015) take a shortcut,

and instead of assuming a structural model for the firm, they directly specify a first-passage

time model on the CET1 ratio triggering the CoCo. They calibrate the model to CDS rates by

assuming that default is driven purely by the CET1 ratio falling below a critical threshold. The

latter three studies are the only ones to our knowledge that calibrate their model parameters to

market data not consisting of CoCo prices, and use these calibrated models to price CoCos.

None of the studies listed above take into account the two important extra risk factors present

in AT1 CoCos: coupon cancel and extension risk. However, in reality these factors are likely

to have significant impact on AT1 CoCo prices. This study aims to add these factors to the

valuation approach. Furthermore, it aims to calibrate the model parameters without using

market observed CoCo prices. This way, we can actually test the model’s ability to price CoCos,

and determine how the different risk factors contribute to this price. This combination is not yet

present in the literature.

We investigate two first-passage time approaches: the structural AT1P model suggested by

Brigo et al. (2015), adapted to AT1 CoCos, and a direct CET1 model designed specifically for

AT1 CoCo valuation, based on the framework by Cheridito and Xu (2015). We select the AT1P

model for its flexibility and possibilities to be calibrated to a full term structure of CDS rates and

equity data. Furthermore, the AT1P model provides options to translate the structural model

to the AT1 CoCo risk drivers. We select the direct CET1 model for its direct applicability to

the CET1 ratio and its elegant simplicity. It models just those processes needed for AT1 CoCo

valuation, and not any other superfluous information. Furthermore, the direct CET1 model

offers a nice alternative approach for its calibration, directly linking default to the CET1 ratio

falling below some barrier.
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Chapter 3

Model specification and methods

This chapter introduces the models and methods we propose for AT1 CoCo valuation. Sec-

tion 3.1 introduces an expression for the price of an AT1 CoCo with conversion to equity and a

CET1 ratio trigger. From this expression we then deduce which processes need to be modeled

to approximate this price. Section 3.2 specifies how CDS spreads can be written as a function of

risk-neutral survival probabilities. These probabilities play an important role in the calibration

of our model parameters. Section 3.3 introduces the structural firm value model and specifi-

cally the AT1P model, and discusses the assumptions and techniques for the calibration of the

model to observed credit and equity data. This includes finding expressions for the risk-neutral

survival probabilities in the AT1P setting. Furthermore, it introduces how the AT1P model can

be translated to the processes relevant for AT1 CoCo pricing. Section 3.4 introduces a method

to directly model the CET1 ratio, and to derive an expression for the risk-neutral survival prob-

abilities in terms of this model’s parameters. Combining the expressions for the risk-neutral

survival probabilities from both models with the expressions for the CDS rates derived in Sec-

tion 3.2 allows us to calibrate the model parameters. Section 3.5 introduces the Monte Carlo

algorithm to approximate CoCo prices, and proposes techniques to include the relevant risk

drivers for AT1 CoCos in this approach.

3.1 AT1 CoCo pricing

We consider a financial institution with an outstanding AT1 CoCo with non-dilutive equity

conversion. We assume that there exist three relevant state variables, combined in the 3-

dimensional stochastic process (Xt). Here (X1
t )t≥0 = (St)t≥0 denotes the stock price process,

(X2
t )t≥0 = (Ct)t≥0 denotes the CET1 ratio process, and (X3

t )t≥0 = (rt)t≥0 denotes the interest

rate process. The filtration formed by all observable events is denoted by (Ft)t≥0, and dis-

counted prices of future cash-flows are martingales under the risk neutral measure Q. In this

framework, the default time τ and the conversion time ϑ are modeled as first passage times in
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both the AT1P and the direct CET1 model:

AT1P model: τ = inf {t ∈ [0, T] : At ≤ Ĥt}, ϑ = inf {t ∈ [0, T] : Ct ≤ cϑ}, (3.1.1)

CET1 model: τ = inf {t ∈ [0, T] : Ct ≤ cτ}, ϑ = inf {t ∈ [0, T] : Ct ≤ cϑ}, (3.1.2)

where At and Ĥt are the firm value and default barrier in the AT1P model (see Section 3.3), and

cτ , cϑ are constants. For tractability, we take the process Ct to be continuous and observable.

Furthermore, we must always make the following assumption:

Assumption: Q(ϑ < τ) = 1. (3.1.3)

That is, we assume that conversion always happens before default. This assumption, though

certainly debatable, is essential to justify the remainder of this analysis. Namely, we are cal-

ibrating the state variable processes to market observed CDS spreads. Consequently, we use

CDS contracts to form the CoCo hedging portfolios, which is an essential step to justify our

risk-neutral pricing approaches. If default would be possible before conversion, CDS contracts

could not be used to perfectly hedge CoCos.

Note that in reality default is in fact possible before conversion. Some bank defaults over the

past decade have been driven more by liquidity issues than by capital issues.9 For this reason,

as put forward by Whittall (2014), CoCo investors still remain indecisive as to how to efficiently

hedge their CoCo exposure. There are several fixed income specialists who claim there should

be a separate instrument in addition to subordinated CDS contracts, specially designed to hedge

CoCos. However, for the time being, we are restricted to regular subordinated CDS contracts to

calibrate and hedge CoCos, thus making the assumption ϑ < τ necessary.

3.1.1 Quantifying the AT1 restrictions

An AT1 CoCo with equity conversion and a CET1 ratio trigger can be viewed as the sum of a

perpetual, callable, defaultable bond for which the coupon payments can be canceled, and an

option paying out a variable number of equity shares upon conversion. The perpetual nature

of the bond proposes clear difficulties when attempting to develop a Monte Carlo based pric-

ing approach. However, as introduced in Section 2.1, perpetual callable Tier 1 bonds issued

by banks have historically always been expected to be called at the first opportunity, no mat-

ter whether economic conditions would suggest differently. Consequently, these securities are

usually valued on that basis as well.

The widely believed rationale behind this assumption is as follows. If the bank does not call

the bond, it would damage investor confidence to such an extent, that it could never come back

to the market to raise Tier 1 or other capital again. Furthermore, when the bond is not called

and hence becomes perpetual, the only real difference compared to equity is the certain (higher)

9 We do make a note here on liquidity as driver of default. While liquidity is often the direct cause of a bank default,
liquidity issues are likely to be caused by capitalization problems. When deposit holders believe that a bank’s credit-
worthiness is strongly deteriorating, they may opt to withdraw their deposits, which in turn can lead to a ‘liquidity-
driven’ default.
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coupon rate on the bond versus an uncertain dividend on equity. These reasons, supported by

the fact that only very few occurrences of a non-call on a Tier 1 perpetual have taken place, have

supported for a long time the market’s view of pricing these bonds under the assumptions that

maturity equals the first call date.

However, some non-calls following the global financial crisis have exposed weaknesses in the

above reasoning. Notable non-calls include a $650 mn. Deutsche Bank Tier 1 in January 2009, a

$1 bn. Deutsche bank Subordinated Tier 2 in December 2008, and a $430 mn. Monte dei Paschi

di Siena (BMPS) Tier 1 in February 2011. These non-calls were based on the, seemingly rational,

decision that as a flight-to-quality was taking place during these crisis times, refinancing the

debt would cost the banks much more than just the extra cost of the coupon step-up associated

with extending the bond (see also De Spiegeleer and Schoutens (2014)). These occurrences

(temporarily) scared off subordinated bond investors, with declining prices en inflating CDS

spreads as a result.

AT1 CoCo bonds contain an additional reason to seriously consider the risk of extension.

Namely, as put forward in Section 2.1, in order to qualify as AT1 capital, it is prohibited for

a CoCo to inherit any incentive to be redeemed at its call dates. Where regular perpetuals,

including the non-calls mentioned above, all faced an increase in coupon once a call date was

surpassed, AT1 CoCos do not. Furthermore, as put forward in EP (2013b, Article 78(1)), the

regulator will only permit the issuer to call the CoCo when the CET1 ratio remains sufficiently

high after redemption. This is another argument increasing the possibility of extension. On the

other hand, the CoCo bond market is expected to be a lot more mature some years from now.

This gives the CoCo issuer an incentive to call, as it is likely that it can then directly issue a new

CoCo under better conditions. Once the issuer can directly issue a new CoCo, the regulator will

be more lenient in allowing redemption.

Combining the reasons above we conclude that for the CoCos we consider we indeed have

to include some risk of extension in our pricing model. We do this as follows. We choose our

CoCo ‘maturity’ T to be 10 years after issuance. For AT1 CoCos this implies that there occur

potential call dates tc, c = 1, 2, . . . , D, before T. At these call dates, we assume that the issuer

calls the CoCo, unless the regulator prohibits it from doing so. The regulator prohibits a call

if the CET1 ratio is not high enough. This fits our model nicely, as it allows us to determine a

CoCo call threshold cϕ. When Ct is above the call threshold at a call date, the CoCo is called.

When Ctc < cϕ however, the regulator prohibits a call, and the CoCo is extended up to at least

the next call date. We believe that we can safely assume that up to 10 years after issuance,

there will be at least one call date on which the CoCo is called, or a CoCo conversion date.

For this reason, the model’s pricing error due to possible value stemming from over 10 years

after issuance is likely to be very small. The appropriateness of this assumption is assessed in

Section 5.4.

Furthermore, the option of discretionary coupon cancellation must be included in the pricing

model as well. As put forward in Section 2.1, the regulator prohibits the issuer from paying out

a coupon when the issuer has insufficient ADI and/or the payment exceeds the MDA. ADI and

MDA, while both impossible to model directly in our framework, are notions that can be related
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directly to the amount of CET1 capital on the bank’s balance sheet. Both are functions of free

capital reserves, retained earnings, and equity, and thus are in close relation with CET1 capital.

This leads us to introduce a certain coupon cancel level ccc as well: if the CET1 ratio is below

this level on a distribution payment date, this payment is canceled in full.

3.1.2 Expression for the price of an AT1 CoCo

If we consider an AT1 CoCo with non-dilutive conversion to equity, and we assume the product

can be hedged with liquid instruments, and has not been converted or called yet by time t < T,

its unique arbitrage-free price is:

CoCot(St, Ct, rt, T) = ∑
ti>t

diPE
Q
t

[
e−
∫ ti

t ruduI{Cti>ccc ,ϑ>ti ,ϕ≥ti}

]
+ PE

Q
t

[
e−
∫ T

t ruduI{ϑ>T,ϕ>T}

]
+PE

Q
t

[
e−
∫ ϕ

t ruduI{ϕ≤T,ϕ<ϑ}

]
+ E

Q
t

[⌊
P

max {Sϑ, F}

⌋
e−
∫ ϑ

t ruduSϑI{ϑ≤T,ϑ≤ϕ}

]
.

(3.1.4)

The intuition behind this expression is as follows: (i) the first term represents the discounted

sum of future coupon payments, contingent on the CET1 ratio Ct being larger than the coupon

cancel trigger ccc at the coupon payment date ti, and both conversion time ϑ and redemption

time ϕ not having occurred yet. The coupon rate at ti is denoted by di for i = 1, . . . , M, with

M the total number of coupon payment dates up to ‘maturity’ T; (ii) the second term is the

discounted value of the principal P, contingent on both conversion and redemption not to occur

before ‘maturity’ T; (iii) the third term denotes the discounted value of the principal when the

CoCo is called at its issue price. This is logically contingent on redemption occurring before

maturity and before conversion; and (iv) the fourth term denotes the value of the possible

conversion into equity. This term depends on the stock price at conversion, the floor price

F, and the amount of stocks obtained, and is contingent on the conversion occurring before

maturity and before redemption.10

Some further implications of (3.1.4) are that when conversion coincides with a coupon pay-

ment date, no coupon payment takes place. And that when two or more of the events ‘conver-

sion’, ‘redemption’, or ‘maturity’ happen simultaneously, conversion goes before redemption

and maturity, and redemption goes before maturity. This is all in line with the details provided

in the prospectuses of relevant CoCo issues.

Judging from (3.1.4), we can find the CoCo price if we can specify under the Q-measure the

processes rt, Ct, St, and the processes underlying the stopping times ϑ and ϕ. These stopping

times, as specified earlier in this section, are all driven by the process Ct. Hence specifying the

parameters in the 3-dimensional stochastic process Xt under the Q-measure suffices to construct

a Monte Carlo approach to approximate expression (3.1.4).

10 The non-dilutive conversion to equity mechanism works as follows. At conversion, the CoCo holder must buy
stocks for a price of max {Sϑ , F}. That is, when the stock price is higher than the floor price at conversion, CoCo
conversion does not result in a significant loss of value. When however the stock price at conversion is lower than the
floor price, the CoCo holder must buy stocks for the floor price, which results in a significant loss of value.
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3.2 Credit Default Swap pricing

In this section we specify the Credit Default Swap (CDS) rate in terms of risk-neutral survival

probabilities. This way we can use market observed CDS spreads to calibrate the parameters of

the relevant processes. The buyer of a Credit Default Swap (CDS) acquires protection against

the default event of a reference entity. The seller thus pays the buyer when the reference entity

defaults. In exchange, the buyer of the CDS periodically pays a premium to the seller.

Consider a CDS contract on a reference entity with recovery rate R starting at T0, with

premium times Ti, i = 1, . . . , N, and maturity TN . Furthermore, the time t prices of zero coupon

bonds with maturity m are observed in the market and given by P(t, m) = E
Q
t

[
e−
∫ m

t rudu
]
. Then

the time t < TN discounted pay-off of the CDS for the buyer is given by the difference between

the default leg DLt and the premium leg PLt:

DLt = (1− R) ∑
i:Ti>t

(
P(t, τ)I{Ti−1<τ≤Ti}

)
(3.2.1)

PLt = ∑
i:Ti>t

(
δ
[

P(t, Ti)αI{τ>Ti} + P(t, τ)(τ − Ti−1)I{Ti−1<τ≤Ti}

])
, (3.2.2)

where α denotes the time between premium payments in years. This is typically 1/4. δ is the

CDS rate specified in the contract. Equation (3.2.2) gives the discounted premium payments,

including the accrued premium in the period where default occurs.

The price of the CDS at time t is now given by the expected value of DLt − PLt evaluated

under the Q-measure and conditional on Ft. Brigo et al. (2015) propose two assumptions to

make this expectation more tractable. Firstly, we approximate the accrual term by half the full

premium to be paid at the end of each period. Secondly, with respect to the default leg, we

use the premium leg time-grid as discretization for the resulting integral. The latter assumption

proves to work well. The error resulting from it is very small while it reduces computation

time considerably. The former assumption cannot be tested explicitly, but its resulting error is

at most half a premium payment. Combined with the fact that default is not likely to occur

very often, makes the total error of this assumption small. The benefits it provides in terms of

making evaluation of the expression a lot more tractable mathematically outweigh this error.

Under these assumptions we obtain as price CDST0,TN (t):

CDST0,TN (t) = (1− R) ∑
i:Ti>t

P(t, Ti) (Qt(τ > Ti−1)−Qt(τ > Ti))

−δ ∑
i:Ti>t

P(t, Ti)α

(
Qt(τ > Ti) +

1
2
[Qt(τ > Ti−1)−Qt(τ > Ti)]

)
, (3.2.3)

where Qt(·) denotes the probability under the risk-neutral measure Q at time t. Now in practice,

CDSs are quoted in terms of the rate that would make its current price equal to zero. We hence
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obtain as CDS rate at time t = T0 for maturity TN :

δt,TN =

(1− R) ∑
i:Ti>t

P(t, Ti) (Qt(τ > Ti−1)−Qt(τ > Ti))

∑
i:Ti>t

P(t, Ti)α

(
Qt(τ > Ti) +

1
2
[Qt(τ > Ti−1)−Qt(τ > Ti)]

) . (3.2.4)

In this setting, we only need to express the risk-neutral survival probability Qt(τ > t), for any

T0 ≤ t ≤ TN in terms of the model parameters. When we achieve this, we are able to calibrate

the parameters to a term structure of CDS rates and zero coupon bond prices.

3.3 The AT1P model

In the structural approach, we aim to model the banks’ asset value using a stochastic process,

viewing its debt and equity as claims on these assets. As introduced in Section 2.3, Merton

(1974) models the value of the firm (or asset value) A as a Geometric Brownian Motion. Under

the risk neutral measure this entails:

dAt = (r− q)Atdt + σA AtdWt, (3.3.1)

where r is the risk free rate, q the pay-out rate, and σA the asset volatility. All these parame-

ters are assumed constant in the original Merton model. Wt denotes a Brownian Motion under

the risk neutral measure Q defined in the probability space (Ω,F , Q). This implies lognormal

dynamics for the asset value. When the firm considered is a bank, this asset value comprises

of a portfolio of loans, securities, and off-balance sheet positions. Under the risk-neutral mea-

sure, the instantaneous rate of return of these assets is equal to the instantaneous risk-free rate.

Crouhy, Galai, and Mark (2000) note that this assumption of lognormality is quite robust in

practice and, according to KMVs empirical studies, actual data conform quite well to these dy-

namics.11 However, we note that the assumption of constant parameters is quite restrictive, and

it gives the model very little flexibility to fit a term structure of CDS rates. This implies it may

not be able to generate accurate probabilities of default.

This criticism on using GBM with constant parameters to describe the evolution of the assets

is mainly formalized by the observation that lognormal dynamics cannot match high short-term

CDS spreads observed in the market (see e.g. Lando (2004)). The reason for this is that under

GBM the instantaneous probability of default of a sound firm is close to zero. A single constant

volatility is simply not able to provide realistic default probabilities for varying maturities. There

are several ways to account for this anomaly. Firstly, the structural model can be extended to

incorporate jumps in the asset value (see e.g. Zhou (2001); Hilberink and Rogers (2002)). These

jumps have a natural interpretation in the setting of a bank, as a bank’s assets are known

to suffer from sudden shocks in value, e.g. when important information about their credit-

worthiness is disclosed. An asset process including jumps however poses large complications

11 KMV stands for the famous quantitative credit analysis company founded by Kealhofer, McQuown and Vasicek.

15



when attempting calibration to market quotes of CDS spreads. A more practical method to

circumvent the model’s disability to fit short maturity CDS spreads, is to omit the shortest

maturities from the calibration procedure.

Though omitting the shortest maturities from the calibration procedure does not actually

improve the model’s very short term performance, it does make sure that the calibration re-

sults are not strongly distorted by this anomaly. That is, including very short term maturities

would cause the parameters (especially the volatility) to be adapted strongly towards fitting

the short maturities, thereby significantly deteriorating the model performance for longer ma-

turities. However, in the context of CoCo pricing, having a generally accurate fit on the short,

medium, and long end of the CDS curve is more important for the pricing accuracy than having

an exact fit for very short maturities.12

Now firm value A is at any time composed out of an equity part E and a debt part D:

At = Et + Dt.

Merton (1974) assumes simple zero coupon debt with maturity T and face value F. For a

bank, this assumption is too restrictive, as a banks’ debt exists among other things of customer

deposits, senior bonds, subordinated bonds, and (contingent) convertible bonds. All these forms

of debt have distinctly different maturities and associated costs. In the Merton-model, default is

linked to the ability of the firm to pay back all its issued debt. If at maturity T, the firm value

A is larger than the face value of debt F, all debt is repaid and the firm survives. If however AT

is smaller than F, the firm defaults. This implies that firm default can be viewed as a stopping

time, which in this case is defined as: τ = TI{AT<F} + ∞I{AT≥F}, where IY denotes an indicator

function which equals 1 if Y holds, and 0 otherwise.

Now in a Black-Scholes economy where At is the only risky asset and there exists a bank

account B whose value grows deterministically and is given by:

Bt = B0ert,

we can use the Black-Scholes results for option pricing to price the equity and debt. The value

of debt at maturity is DT = min (AT , F) = F− (F− AT)
+, which gives for t < T:

Dt = Fe−r(T−t) −
(

Fe−r(T−t)Φ(−d2)− AtΦ(−d1)
)

, where (3.3.2)

d1 =
ln (At/F) +

(
r− q + σ2

A/2
)
(T − t)

σA
√

T − t

d2 = d1 − σA
√

T − t,

where Φ(·) denotes the CDF of the standard Gaussian distribution. The second term in (3.3.2)

comes from the fact that (F − AT)
+ is the pay-off of a standard European put option on the

12 It does not influence the CoCo price that much when the model is a bit off in determining when exactly during
the first two years default or conversion may take place. It does matter a lot that the model gives a generally accurate
distribution of conversions/defaults over its full maturity.
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asset value with strike F. Combining this with the asset dynamics from (3.3.1) gives the familiar

expression for the put price.

The equity value at maturity is given by the remaining asset value after all debt is repaid,

and is hence given by ET = (AT − F)+, yielding for t < T:

Et = AtΦ(d1)− Fe−r(T−t)Φ(d2), (3.3.3)

with d1 and d2 defined above. Again this result follows from standard option pricing noting

that the equity pay-off equals that of a call option on the asset value with strike F. An important

limitation of this model, apart from the restrictive assumption on the debt structure, is the fact

that default can only occur at maturity. Black and Cox (1976) were the first to introduce the

possibility of early default, resulting from the breaching of a safety covenants barrier. They

assume this barrier to be exponential. As noted by Glasserman and Nouri (2012), this boundary,

in the case of a regulated bank, can be interpreted as the minimum capital requirement the

bank must maintain. This capital requirement will set the liquidation boundary higher than the

actual default boundary: the bank is seized by the regulator before bankruptcy if the capital

requirement is not maintained. For more intuition about the interpretation of the default barrier

in our model, see Section 4.3.

In the Black-Cox framework the default time τ is defined as: τ = inf {t ∈ [0, T] : At ≤ Ht},
where inf {∅} = ∞, and the dynamics of the default barrier H are given by:

Ht =

F t = T

Ke−γ(T−t) t < T,

where γ and K are positive constants. When attempting to calibrate this model to CDS market

quotes, this model gives analytical formulas for CDS quotes using results from barrier option

pricing. However, the model shows to lack flexibility: its four free parameters σA, K, F, and γ

do not provide enough degrees of freedom to properly fit a term structure of CDS spreads.

This problem is addressed by Brigo and Tarenghi (2004), who propose a more flexible model,

that still yields analytical formulas for CDS quotes. Their model is based on work by Lo, Lee,

and Hui (2003) and Rapisarda (2005). They show that it is possible to find analytical barrier

option prices for models with time-dependent parameters, when the barrier has a particular

curved shape, partly dependent on the time dependent volatility. The resulting AT1P model is

designed as:

Firm value: dAt = (rt − q)Atdt + σA(t)AtdWt (3.3.4)

Itô⇒At = A0 exp
{∫ t

0

(
ru − q− 1

2
σ2

A(u)
)

du +
∫ t

0
σA(u)dWu

}
(3.3.5)

Default barrier: Ĥt = H exp
(∫ t

0

(
ru − q− Lσ2

A(u)
)

du
)

, (3.3.6)

where H > 0 and L are free parameters that can be used to shape the barrier. σA(t) denotes
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a time-dependent deterministic function of volatilities. The model can be made as flexible as

desired by varying the amount of parameters in this function. We note that the AT1P model

allows for a time dependent risk free rate, pay-out ratio, and asset volatility. Default time τ is

again defined as the first time A hits Ĥ from above, starting with A0 > H.

The equity value in this framework is somewhat more involved than the regular Euro-

pean call option from the Merton model, due to the possibility of early default and the time-

dependent default barrier. This equity value can be seen as a European down-and-out call

option on an underlying with time-dependent parameters. That is, the pay-off is (AT − ĤT)
+ if

the underlying stays above the barrier level up to maturity (survival) and pay-off is zero when

the underlying hits the barrier at any time before or at maturity (default). The equity value is

thus given by:

Et = E
Q
t

[
e−
∫ T

t rudu(AT − ĤT)
+I{τ>T}

]
. (3.3.7)

There exists an analytical solution to this expression, which is further elaborated in Section 4.3.

In this setting the risk-neutral survival probability Q{τ > T} can be derived analytically as well.

This probability can in turn be used to calibrate the model to market CDS quotes.

3.3.1 Translating the structural model to the CoCo risk drivers

In order to price a CoCo using the AT1P framework, we need to find a link between (3.3.4),

(3.3.6), (3.3.7), and the CoCo value driving processes St and Ct. For the link between Et and St,

we simply note that the market value of equity Et is equal to the firm’s market capitalization

MCt = Ot · St, where Ot denotes the number of shares outstanding at time t. Throughout this

study we assume Ot to be constant over time. The stock price at time t < T is hence given by

St = Et/O.

To find a link with the CET1 ratio Ct, we again take a look at the definition of this ratio,

introduced in Section 2.1. We have that the CET1 ratio is at any time t < τ defined as Ct =

CET1t/RWAt, where CET1t denotes the amount of CET1 capital on the bank’s balance sheet,

and RWAt denotes the amount of risk-weighted assets.

As noted in Section 2.1, CET1 capital is an accounting (or book) quantity, which clearly

differs from the market value Et coming from our model. However, we do expect there to be a

clear relationship between these two quantities. The amount of RWA is a function of the bank’s

assets and off-balance sheet exposures weighted according to their riskiness. It is hence of the

general form: RWAt = ∑j wj,tYj,t, where the weights wj,t are set by the regulator, and Yj,t is the

exposure to asset class j at time t. The sum is over all possible asset classes j. We thus expect

that there is a clear relationship between the total asset value and the RWA.

Next to incorporating the dependencies defined above, we need to make sure that the nec-

essary condition ϕ < τ, as set out in Section 3.1, is satisfied in our definition of Ct. Brigo et al.

(2015) propose a way achieve all this, by performing cross-sectional regressions of banks’ capital

ratios on their respective book value of assets over book value of equity ratios. The weakness

of their approach however, is that they establish a relationship based on book values, which
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they use in their market-value based pricing approach. Attempting to establish the relationship

directly on market values poses problems as well, as total asset value is not observed in the mar-

ket. To cope with this problem we use a solution as proposed by Calomiris and Herring (2013).

That is, we use the quasi market value of the assets (QMVA), rather than the true one. The

QMVA is calculated as QMVAt = MCt + Ft, where Ft denotes the face (book) value of liabilities

at time t. Using the face value of debt rather than the market value is necessary, as the marking

to market of bank debt, especially on ongoing basis, proposes great practical difficulties. The

assumption is also sensible, as it is likely that the market and face value of debt remain close to

each other.13

We estimate the relationship between the CET1 ratio and the market values of assets and

equity hence as follows:

Ci = β0 + β1

(
QMVAi

MCi

)
+ εi, for i = 1, . . . , W, (3.3.8)

where W denotes the number of banks considered for the cross-sectional analysis. Now, within

the AT1P model, the total asset value at time t is denoted by At. Brigo et al. (2015) then assume

the total liabilities to be given by Ĥt within the model. This is again a sloppy assumption, as

this implicitly assumes that the equity value Et is equal to the difference between At and default

barrier Ĥt. This is however, for L 6= 0, untrue in the AT1P model.14 For this reason, we make

use of the market value of equity Et within our model instead. That is, letting β̂0 and β̂1 denote

the estimated parameters from the regression (3.3.8), we express the proxy for Ct as:

Ĉt =

β̂0 + β̂1

(
At
Et

)
, Et > Emin,

0, Et ≤ Emin,
(3.3.9)

where

Emin =
∣∣min {β̂1/β̂0, 0}

∣∣ · At.

This last condition is necessary to ensure a nonnegative CET1 ratio. Now, similar to Brigo

et al. (2015), but adapted to our definitions, we need two conditions to ensure that (3.1.3) always

holds in this model. Firstly, we clearly need that the initial value of At/Et is such that Ct is above

the conversion threshold cϑ. This condition is assured by adding the model approximation of the

CET1 ratio, together with the market observed ratio, to the objective function of the calibration,

as set out in Section 4.3. Secondly, we need β̂1 < 0. We expect this to hold, as a higher asset-

on-equity ratio implies higher assets and/or lower equity. Higher assets in turn implies higher

risk-weighted assets, and lower equity implies lower CET1 capital. These factors both drive the

CET1 ratio down.

The proof that these two conditions imply (3.1.3) is as follows. We clearly have that At/Et →
∞ as Et → 0. Now from (3.3.7) we see that Et → 0 when At → Ĥt from above. Now from β̂1 < 0

13 Except when a major interest rate shock occurs. However, as our model only contains continuous stochastic factors,
this is unlikely to happen.

14 See Appendix E for elaboration hereon.
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and (3.3.9) we have that Ct → 0 as At/Et → ∞. This mean that in the limit of Et → 0 and thus

At → Ĥt (bank approaching default), Ct goes to zero. Now observing from (3.3.9) we see that

Ct is continuous for Et > Emin. Combining this with the starting value for Ct being above the

conversion threshold, we conclude that Ct would have to pass through the conversion threshold

before the bank reaches the default barrier.

Now, as (3.3.8) is a cross-sectional regression, it makes no sense to use the error distribution

from this regression to decorrelate the CET1 ratio from the assets-on-equity value in the sim-

ulation paths. Brigo et al. (2015) propose a solution to this issue. It entails introducing a new

random shock κt ∼ N (0, 1), independent of the Brownian motion underlying the asset value.

The CET1 capital in the simulation paths is then given by:

Ct = β̂0 + β̂1 · std(At/Et)

(
$

At/Et

std(At/Et)
+
√

1− $2κt

)
, (3.3.10)

where ‘correlation’ parameter $ ∈ [0, 1]. Correlation is written between quotation marks here as

we have corr(Ct, At/Et) = $ · sign(β1).

In terms of our overall state process Xt we hence have the following settings: X1
t = St =

Et/O, for O constant.15 Furthermore, X2
t = Ct as defined above, and X3

t = rt.

3.3.2 Hedging CoCos in the AT1P model

To prove there exists a CoCo hedging strategy in the AT1P framework, we follow the approach

of Cheridito and Xu (2015), adapted to our specification of the state process Xt. We assume there

exists a bank account with return rt, such that a unit of currency in the bank account evolves as

Π0
t = e

∫ t
0 rudu. Next to the bank account, we use three liquid hedging instruments. The prices

of the hedging instruments are given by Πj
t, j = 1, 2, 3. Now as the state variables are Markov

processes, the values of the CoCo and the hedging instruments at time t < ϑ can be written as

Π(t, Xt) and Πj(t, Xt), for deterministic functions Π, Πj: [0, T]×R3 → R.

Now the dynamic hedging strategy ξ
j
t, j = 0, 1, 2, 3, for t < ϑ, has to satisfy two properties:

(i) the value of the hedging portfolio should at any time be equal to the value of the CoCo;

and (ii) the sensitivity of the hedging portfolio with respect to the different risk factors should

always be equal to the sensitivity of the CoCo value to the risk factors. From Itô’s lemma we

obtain that these properties can be formalized as:

∂Π
∂xi (t, Xt) =

3

∑
j=1

ξ
j
t
∂Πj

∂xi (t, Xt), i = 1, 2, 3, and Π(t, Xt) = ξ0
t Π0

t +
3

∑
j=1

ξ
j
tΠ

j(t, Xt). (3.3.11)

We need three hedging instruments that can account for the equity risk (X1), conversion,

coupon cancel, and extension risk (X2), and interest rate risk (X3). We note that we assume con-

version, coupon cancellation, and extension are all driven by the CET1 ratio. Now we observe

that the CET1 ratio is a function of the assets-on-equity ratio in the AT1P model, and the assets
15 As the equity Et is valued using a Martingale pricing approach with the asset value At as underlying, its dis-

counted version is a Martingale by definition. Furthermore, noting that a Martingale multiplied by a constant remains
a Martingale, we conclude that the necessary condition set out in the beginning of Section 3.1 is satisfied.
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and equity (through the assets and default barrier) processes are calibrated to market observed

CDS rates. Furthermore, conversion always happens before default in our model. This implies

that the CET1 ratio is a function of the CDS rates in the AT1P model, and we can use a CDS

contract to hedge the conversion, coupon cancel, and extension risk factors. Furthermore, we

can use stock shares to hedge the equity risk factor, and interest rate swaps to hedge the interest

rate risk factor. We combine these observations with the fact that the coefficients of the expres-

sion for Ct do not depend on the value of St = Et/O, the coefficients of the SDE for rt do not

depend on St, and Ct is independent of rt. This allows us to let Π1 be the stock S, Π2 a CDS

contract, and Π3 an interest rate swap. Then for t < ϑ we can rewrite (3.3.11) to become:

∂Π
∂x1 (t, Xt) = ξ1

t

∂Π
∂x2 (t, Xt) = ξ2

t
∂Π2

∂x2 (t, Xt)

∂Π
∂x3 (t, Xt) = ξ3

t
∂Π3

∂x3 (t, Xt)

Π(t, Xt) = ξ0
t Π0

t +
3

∑
j=1

ξ
j
tΠ

j(t, Xt).

We see that we have here, for any t < ϑ, a system of four equations with four unknowns (ξ j
t,

j = 0, 1, 2, 3). This system can hence be solved, proving that the CoCo can be perfectly hedged

in this AT1P model, and that we can price the CoCo under the risk-neutral measure Q using

expression (3.1.4) in the AT1P model.

3.4 The direct CET1 model

Another possibility is to model the CET1 ratio directly as a diffusion process, as suggested

by Cheridito and Xu (2015). We assume again that all noise is generated by a 3-dimensional

diffusion process (Xt), with the definitions and assumptions from Section 3.1. The default time

τ and the conversion time ϑ are thus modeled as first passage times:

τ = inf {t ∈ [0, Ti] : Ct ≤ cτ}, ϑ = inf {t ∈ [0, Ti] : Ct ≤ cϑ}, (3.4.1)

where cϑ > cτ are constants, and Ct is the CET1 ratio process, which is of the form Ct = f (Xt)

for a continuous function f : R3 → R defined below.

Furthermore, the instantaneous risk-free interest rate rt is of the form rt = g(Xt) for a

continuous function g : R3 → R. As will become clear later, we do not need to specify explicitly

this short rate process for calibration of the model.

The first element of (Xt) is the stock price process, which we assume to follow a GBM with

dividend payout rate d:

dX1
t = dSt = (rt − d)Stdt + σSt

(√
1− ρ2dW1

t + ρdW2
t

)
, (3.4.2)
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where W1
t and W2

t are Brownian motions under the risk neutral measure Q, and σ and ρ are

constants. Furthermore, the dividend pay-out rate d is assumed constant as well. The last

term results from Choleski decomposition of two independent Q-Brownian motions W1
t and

W2
t , and is a Q-Brownian motion itself as well. We do this to get correlation ρ between the

Brownian motions of the stock price and the CET1 ratio processes. We can verify by Itô that the

corresponding functional form is given by:

St = S0 exp
{∫ t

0
rudu−

(
d +

1
2

σ2
)

t + σ

(√
1− ρ2W1

t + ρW2
t

)}
. (3.4.3)

Now the discounted stock price process is given by:

S̃t = e−
∫ t

0 ruduedtSt = S0 exp
{
−1

2
σ2t + σ

(√
1− ρ2W1

t + ρW2
t

)}
.

And by Itô the corresponding SDE is given by:

dS̃t =

{
σ

(√
1− ρ2dW1

t + ρdW2
t

)}
,

which is a Q-martingale. Furthermore, the time t prices of risk-free zero coupon bonds with

maturity m are given by P(t, m) = E
Q
t

[
e−
∫ m

t rudu
]
.

As introduced above, we assume default is driven by the CET1 ratio falling below some

threshold. This is a very practical assumptions, as this allows us to calibrate the model to

market observed CDS spreads. Now we let the second element of (Xt) be the process governing

the CET1 ratio. We choose the CET1 ratio to follow an Exponential Ornstein-Uhlenbeck (EOU)

process. We find that this is both an economically intuitive choice, and that it yields better

calibration results than for example GBM dynamics. The economic intuition is that banks always

have a target CET1 ratio, represented as the long-run mean of the EOU process. The CET1 ratio

generally roams around this long run mean, as banks adjust their strategy as to let the CET1

ratio move towards their target. We take the exponential variant of the OU process as the CET1

ratio cannot become negative.

The SDE for the logarithm of the CET1 ratio is hence given by:

d
(

log (X2
t )
)
= d (log (Ct)) = dHt = κ(h̄− Ht)dt + ηdW2

t , (3.4.4)

where h̄ denotes the long-run mean, κ the speed of mean reversion, and η the variance of the

process. That is, we define the process Ht = log (Ct). Note that we can thus also state that

Ht = h(Xt) for a continuous function h : R3 → R.

3.4.1 Calibration to CDS spreads using PDEs

In order to calibrate the model to CDS rates, we need to express the implied risk-neutral survival

probabilities in terms of the parameters.

In order to do so, we define the domain D := {h ∈ R : h > log (cτ)} and denote for all
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(t, h) ∈ [0, Ti]× D by Qt,h the risk-neutral probability conditioned on Ht = h and t < τ. The

corresponding conditional expectation is denoted by E
Q
t,h. That is, the domain is given by the

settings for which the CET1 ratio is above the default threshold, and hence the company is not

in default. Now we employ a Feynman-Kac type result, which is suggested by Cheridito and

Xu (2015), to obtain a partial differential equation (PDE) for QCET1
t,h (τ > Ti), i = 1, . . . , N. That

is, the risk-neutral survival probabilities within the direct CET1 model for several maturities.

Let i = 1, . . . , N, and assume there exists a bounded function g : [0, Ti]× D̄ → R satisfying

the following PDE:

∂g
∂t

(t, h) + [κ(h̄− h)]
∂g
∂h

(t, h) +
1
2

η2 ∂2g
∂h2 (t, h) = 0, (3.4.5)

with boundary conditions

g(t, h) = 0 for h ∈ ∂D, g(Ti, h) = I{h∈D}, (3.4.6)

where the stochastic process H on the interval [0, Ti] is defined as in (3.4.4) with Ht = h. Now

applying Itô to the process g(t, Ht) gives us:

dg =

{
∂g
∂t

(t, Ht) + [κ(h̄− Ht)]
∂g
∂h

(t, Ht) +
1
2

η2 ∂2g
∂h2 (t, Ht)

}
dt + η

∂g
∂h

(t, Ht)dW2
t .

Rewriting this expression to integral form we obtain:

g(Ti, HTi )− g(t, Ht) =
∫ Ti

t

{
∂g
∂t

(u, Hu) + [κ(h̄− Hu)]
∂g
∂h

(u, Hu) +
1
2

η2 ∂2g
∂h2 (u, Hu)

}
du

+
∫ Ti

t
η

∂g
∂h

(u, Hu)dW2
u .

Taking expectations conditional on Ft, we see that the first term of the right-hand side is zero

by (3.4.5) and the second term is zero by definition of stochastic integrals. We hence obtain:

E
Q
t,Ht

[
g(Ti, HTi )− g(t, Ht)|Ft

]
= 0

⇒ g(t, Ht) = E
Q
t,Ht

[
I{HTi

∈D}

]
for all (t, Ht) ∈ [0, Ti]× D

⇒ g(t, Ht) = QCET1
t,Ht

(τ > Ti) for all (t, Ht) ∈ [0, Ti]× D, (3.4.7)

where the second step follows from (3.4.6) and the fact that g(t, Ht) is Ft-measurable.

We have proved here that the solution of (3.4.5) with boundary conditions (3.4.6), gives us

the value for the risk-neutral survival probability in terms of the model parameters. This allows

us to calibrate the direct CET1 model parameters to a term structure of CDS rates.

3.4.2 Hedging CoCos in the direct CET1 model

To prove there exists a CoCo hedging strategy in the CET1 model, we again follow the approach

of Cheridito and Xu (2015), adapted to our specification of the state process Xt. We assume there
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exists a bank account with return rt, such that a unit of currency in the back account evolves as

Π0
t = e

∫ t
0 rudu. Next to the bank account, we use three liquid hedging instruments. The prices

of the hedging instruments are given by Πj
t, j = 1, 2, 3. Now as the state variables are Markov

processes, the values of the CoCo and the hedging instruments at time t < ϑ can be written as

Π(t, Xt) and Πj(t, Xt), for deterministic functions Π, Πj: [0, T]×R3 → R.

Now the dynamic hedging strategy ξ
j
t, j = 0, 1, 2, 3, for t < ϑ, has to satisfy two properties:

(i) the value of the hedging portfolio should at any time be equal to the value of the CoCo;

and (ii) the sensitivity of the hedging portfolio with respect to the different risk factors should

always be equal to the sensitivity of the CoCo value to the risk factors. From Itô’s lemma we

obtain that these properties can be formalized as:

∂Π
∂xi (t, Xt) =

3

∑
j=1

ξ
j
t
∂Πj

∂xi (t, Xt), i = 1, 2, 3, and Π(t, Xt) = ξ0
t Π0

t +
3

∑
j=1

ξ
j
tΠ

j(t, Xt). (3.4.8)

We need three hedging instruments that can account for the equity risk (X1), conversion,

coupon cancel, and extension risk (X2), and interest rate risk (X3). We note that conversion,

coupon cancellation, and extension are all driven by the CET1 ratio. As the CET1 ratio is

calibrated to (and hence is a function of) CDS rates, and conversion always happens before

default in our model, we can use a CDS contract to hedge the conversion, coupon cancel, and

extension risk factors. Furthermore, we can use stock shares to hedge the equity risk factor, and

interest rate swaps to hedge the interest rate risk factor. We combine these observations with

the fact that the coefficients of the SDE for Ct do not depend on St, the coefficients of the SDE

for rt do not depend on St, and Ct is independent of rt. This allows us to let Π1 be the stock

S, Π2 a CDS contract, and Π3 an interest rate swap. Then for t < ϑ we can rewrite (3.4.8) to

become:

∂Π
∂x1 (t, Xt) = ξ1

t

∂Π
∂x2 (t, Xt) = ξ2

t
∂Π2

∂x2 (t, Xt)

∂Π
∂x3 (t, Xt) = ξ3

t
∂Π3

∂x3 (t, Xt)

Π(t, Xt) = ξ0
t Π0

t +
3

∑
j=1

ξ
j
tΠ

j(t, Xt).

We see that we have here, for any t < ϑ, a system of four equations with four unknowns (ξ j
t,

j = 0, 1, 2, 3). This system can hence be solved, proving that the CoCo can be perfectly hedged

in this CET1 model, and that we can price the CoCo under the risk-neutral measure Q using

expression (3.1.4) in the direct CET1 model.
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3.5 Monte Carlo pricing algorithm

Once the parameters of the models from Section 3.3 and Section 3.4 are calibrated, we can build

simulation paths. The general idea is that at each path of the simulation, the discounted pay-off

of the CoCo is calculated. Once these pay-offs are averaged over a large number of paths, we

obtain an accurate estimate of the value (price) of the CoCo at the pricing date. We simulate G

paths for the state variables St, Ct, and rt.

We outline here how we simulate one path for the AT1P and the direct CET1 model. At the

starting date t = 0, all variables are known and given by:

AT1P model: A0 = 1, Ĥ0 = H, E0 = MC0/QMVA0, where MC0 and QMVA0 are observed from

the market and financial statements, C0 = CET10/RWA0, where CET10 and RWA0

are observed from financial statements.

CET1 model: S0 observed from market, and H0 (and thus C0) from calibration.

Furthermore we note that at each next step t, the variable values at the previous steps are known.

Moreover, in the AT1P model, the values for Ĥt and σA(t) are deterministic and thus known for

every 0 ≤ t ≤ T. We divide T into M equally spaced intervals of length ∆t = 1 day = T/M.

Then for t = 1, . . . , M, we perform the following steps iteratively:

AT1P model

1. We draw At from the Euler-discretization of (3.3.5), that is:

At = At−1 exp
{(

rt−1 − q− 1
2

σ2
A(t− 1)

)
∆t + σA(t− 1)

√
∆tεt

}
,

where ∆t = 1 day = T/M, and εt ∼ N (0, 1).

2. We determine Et as the solution of (3.3.7), calculated using the Crank-Nicolson method as

put forward in Appendix B and Appendix E.

3. We draw Ct using (3.3.10), where we use the draws for At and Et computed above.

4. We determine St by using St = Et/O.

Direct CET1 model

1. We draw St from the Euler-discretization of (3.4.3), that is:

St = St−1 exp
{(

rt−1 − d− 1
2

σ2
)

∆t + σ
√

∆t
(√

1− ρ2ς1
t + ρς2

t

)}
,

where ∆t = 1 day = T/M, and ς1
t , ς2

t ∼ i.i.d. N (0, 1).

2. We draw Ht from the Euler-discretization of (3.4.4), that is:

Ht = Ht−1 + κ(h̄− Ht−1)∆t + η
√

∆tς2
t ,
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where ∆t and ς2
t as above.

3. We determine Ct by using Ct = eHt .

Within each of these simulation paths for Ct and St, we can now evaluate the pay-off of the

CoCo. The CoCo price is given by the sum of the different components from the expression for

the CoCo price (3.1.4). We evaluate these components as follows:

• On every coupon payment date ti, when Cti ≥ ccc and conversion or redemption has

not occurred, the present value of the coupon payment is given by diPe−
∫ ti

0 rudu. When

Cti < ccc, ϑ < ti, or ϕ < ti, the present value of the i-th coupon payment is zero.

• When Ct falls below cϑ for the first time, and this occurs before maturity T or redemption

date ϕ, we have t = ϑ. At this point the conversion to equity occurs, and the present value

of the received equity shares is given by
⌊

P
max {Sϑ ,F}

⌋
Sϑe−

∫ ϑ
0 rudu.

• When at a call date tc we have Ctc > cϕ, and conversion has not occurred yet, the CoCo

is called, and thus tc = ϕ. The CoCo holder then receives his principal P, which has a

present value given by Pe−
∫ ϕ

0 rudu.

• When at maturity T, conversion time ϑ and redemption time ϕ have not occurred yet, the

CoCo holder receives his principal P. This has present value given by Pe−
∫ T

0 rudu.
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Chapter 4

Calibration case studies

In this chapter we apply the methods set out in Chapter 3 to real world examples of AT1 CoCos.

To do so we need data on a number of variables. Section 4.1 introduces this data. It starts with

giving details on the CoCo contracts we investigate. Then, in Section 4.1.1, we introduce the

data used for calibration of the model parameters for both the AT1P and the direct CET1 model.

Section 4.1.2 introduces the extra data we use in the AT1P model to translate the structural

model to the relevant processes for AT1 CoCos. Section 4.2 provides the results of the calibration

procedure for the direct CET1 model. Section 4.3 does the same for the AT1P model.

4.1 Data description

For application of our calibration and valuation approaches, we select two banks that have re-

cently issued a non-dilutive equity conversion AT1 CoCo with a CET1 ratio trigger. We choose

ING Group, parent company of ING Bank, the largest banking institution in the Netherlands,

and Banco Popular Group, parent company of Banco Popular Espanol, the fourth largest bank-

ing group in Spain. We select banks with different credit-worthiness, to evaluate how this affects

the calibration and valuation results. ING Group has issued a dollar-denominated AT1 CoCo

security on April 16, 2015. Banco Popular Group has issued a euro-denominated AT1 CoCo

security on February 6, 2015. See Table 4.1 for details on these issues. Both have a 7.0% CET1

ratio trigger level, and full conversion into equity upon occurrence of the trigger event. Note

that both CoCos satisfy the restrictions for AT1 as set out in Section 2.1.

4.1.1 Model calibration

To calibrate the models, we make use of mid CDS curves on subordinated debt of ING and Banco

Popular (BP). The CDS quotes are extracted from Bloomberg with maturities TN = 2, 3, 4, 5, 7,

and 10 years. There are shorter maturities available as well, but for the reasons put forward

in Section 3.3 we choose to omit these from the calibration procedure. These quotes denote

so-called CDS-spreads. These spreads are determined by Bloomberg based the following set of
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Table 4.1: This table shows the details of the CoCo issues by ING Group and Banco Popular
Group that form the main research candidates of this study.

ING Group

Issue date: April 16, 2015
Name securities: Perpetual Additional Tier 1 Contingent Convertible Capital Securities

ISIN ID: US456837AE31
Face value: $1 bn. in minimum denominations of $200 k.

Maturity: Perpetual, no fixed maturity or redemption date.
Coupons: 6.000% per annum, payable semi-annually in arrear, for the first 5 years, and

the sum of 4.445% and the 5-year Fixed vs. 6M Libor Mid-Market Swap Rate
afterwards. Payments occur on April 16 and October 16 in each year.

Day count convention: 30/360.
Coupon cancel options: Coupon payments can be canceled at sole discretion of the issuer and the

regulator.
Callable? Callable every 5 years on the discretion of the issuer and the regulator, com-

mencing 5 years after issue.
Trigger: Group CET1 ratio, calculated by the issuer, falling below 7.0% at any time. The

regulator can also force conversion.
Conversion mechanism: Converts into bP/(max {Sϑ, $9.00, Nϑ})c ordinary equity shares, where P de-

notes the principal amount, Sϑ the market price per share on conversion date
ϑ, Nϑ the nominal value per share on the conversion date ϑ, $ 9.00 the floor
price, and b·c denotes the floor function.*

Seniority: Unsecured, subordinated AT1.

Banco Popular Group

Issue date: February 6, 2015
Name securities: Additional Tier 1 High Trigger Contingent Convertible Perpetual Preferred

Securities
ISIN ID: XS1189104356

Face value: $750 mn.
Maturity: Perpetual, no fixed maturity or redemption date.
Coupons: 8.250% per annum, payable quarterly in arrear, for the first 5 years, and the

sum of 8.179% and the 5-year Fixed vs. 6M Euribor Mid-Swap Rate afterwards.
Payments occur on January 10, April 10, July 10, and October 10 in each year.

Day count convention: Actual/Actual.
Coupon cancel options: Coupon payments can be canceled at sole discretion of the issuer and the

regulator.
Callable? Callable at the discretion of the issuer and the regulator on every coupon pay-

ment date, commencing 5 years after issue.
Trigger: Group CET1 ratio, calculated by the issuer, falling below 7.0% at any time. The

regulator can also force conversion.
Conversion mechanism: Converts into bP/(max {Sϑ,e1.889, Nϑ})c ordinary equity shares, where P de-

notes the principal amount, Sϑ the market price per share on conversion date
ϑ, Nϑ the nominal value per share on the conversion date ϑ, e1.889 the floor
price, and b·c denotes the floor function.**

Seniority: Unsecured, subordinated AT1.

Notes: * When at conversion the stock is not traded on the stock exchange, Sϑ drops from the maximum function.
The amount of shares received is then solely determined by the nominal value per share and the floor price. The
nominal value is expected to always be less than the floor price, and hence will not affect the number of shares received.
Furthermore, the floor price is subject to adjustments following events that directly affect or could potentially affect
the number of ordinary shares. Such events include consolidation, reclassification, subdivision, issuance, extraordinary
(non-cash) dividends, and rights to convert, exchange, subscribe, purchase or otherwise acquire, ordinary shares. These
so-called anti-dilution adjustments are outside the scope of this study: we always assume that the floor price and the
number of ordinary shares remain constant up to conversion, and that the stock is traded on the exchange at conversion.
** Subject to the same conditions as given above for the ING CoCo.
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assumptions: (i) the recovery rate is 20%;16 (ii) the ISDA CDS Fixing Swap Curve is used for

discounting the cash flows;17 and (iii) premium payments occur quarterly. The spread then

denotes the per annum percentage of the principal the CDS buyer pays that makes the initial

value of the contract zero. We use a monthly dataset, consisting of end-of-month observations.

For ING we pick a sample of 103 observed CDS curves from April 2007 until October 2015. This

period cannot be taken longer, as short term CDS spreads are not available for ING for earlier

dates. For BP we pick a sample of 87 observed CDS curves, from August 2008 until October

2015. Again a longer period is not possible due to lack of data. We purposefully select sample

periods that contain different economic circumstances, including recessions. This allows us to

examine our models’ calibration performance for various types of CDS curves, both including

volatile and less volatile times, and higher and lower CDS rates.

Figure 4.1 displays the time series of CDS curves for ING and BP. Figure 4.2 shows bench-

mark estimates of the corresponding risk-neutral (or Q-) survival probabilities, calculated using

a piecewise linear hazard rate function as defined in (4.2.2). These denote the risk neutral prob-

abilities that the firm does not default within the specified maturity. Note that the maturity axis

is inverted to ease visual inspection. We find for both banks that during the end of 2011 and

halfway 2012 the CDS spreads were the highest, likely as a result of the European sovereign debt

crisis. For BP the curve was even inverted at some points. This indicates that the market was

very negative about the bank’s short-term outlook. However, the market did think that when

the bank would survive the first period, it would become more likely that it would survive for

a longer period. This is also indicated by the hyperbolic downward shape of the Q-survival

probabilities in these periods. However, at most points, we see that the CDS curve is upward

sloping and curved, and the Q-survival curve is downward sloping and close to a straight line.

Finally, we see that in general BP’s CDS spreads are significantly higher than those of ING,

indicating that ING overall has a higher credit-worthiness.

For the calibration procedures, we need the ISDA CDS Fixing Swap Curves as well, as

Bloomberg uses this curve to discount CDS payments in their quoted spreads. This data is

available from Bloomberg at a daily frequency. We obtain monthly end-of-month data for these

rates for April 2007 until October 2015. The CDS curves, along with the swap curves, and

assumptions on the recovery rate, coupon frequency, and a specification of the risk-neutral

survival probabilities for different maturities, allow us to calibrate the parameters of our models.

4.1.2 Link to CET1 ratio in the AT1P model

To construct the link to the CET1 ratio in the structural model, we make use of a cross-sectional

set of data on European banks at a single point in time: June 30, 2015. The reasons we pick

a single date to perform this analysis are set out in Section 4.3.1. We do realize that picking a

single date may make the results sensitive to what date we choose. For this reason, we perform

a sensitivity analysis on the regression results in Section 5.4. The variables we consider for

16 This is a widespread market assumption on the recovery rate on subordinated debt.
17 This curve represents euro-denominated interest rate swaps. The short end of the curve are Euribor rates, and the

long end of the curve is based fixed-versus-6M Euribor swaps.

29



10

8

Maturity (years)

6

4

2Jan-16
Jan-15

Jan-14
Jan-13

Jan-12
Jan-11

Jan-10
Jan-09

Jan-08

300

0

100

200

500

400

Jan-07

C
D

S
 s

pr
ea

rd
 (

bp
s)

(a) ING Group

10

8

Maturity (years)

6

4

2Jan-16
Jan-15

Jan-14
Jan-13

Jan-12
Jan-11

Jan-10
Jan-09

2000

1500

1000

500

0
Jan-08

C
D

S
 s

pr
ea

d 
(b

ps
)

(b) Banco Popular Group

Figure 4.1: Market observed CDS spreads for different maturities using end-of-month data. For
ING (a) the period is April 2007 until October 2015. For Banco Popular (b) the period is August
2008 until October 2015.
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Figure 4.2: Estimates for the risk-neutral survival probabilities, calculated using the method of
O’Kane and Turnbull, as set out in (4.2.2). Calculation is done for different maturities using
end-of-month data. For ING (a) the period is April 2007 until October 2015. For Banco Popular
(b) the period is August 2008 until October 2015. Note: maturity axis is inverted to ease visual
inspection.

the regression analysis are: risk-weighted assets, CET1 capital, market capitalization, and book

value of liabilities. The data on risk-weighted assets and CET1 capital is extracted from half-

year interim reports. The data on market capitalization is extracted from interim reports and

Bloomberg. See Table A.1 in Appendix A for a full list of the 57 banks we use to perform

the cross-sectional analysis. These banks are selected both on availability of accurate data, and

for having similar exposures to retail and corporate clients. That is, banks with risk profiles

comparable to ING and BP.

30



4.2 Calibration direct CET1 model

In order to calibrate the CET1 ratio model from Section 3.4, we need to solve the PDE from

(3.4.5). This is a linear PDE with Dirichlet boundary conditions, which we can solve efficiently

using the Crank-Nicolson finite difference method.18 See Appendix B for elaboration on this

method in this context. The default barrier level cτ is set equal to the minimum CET1 ratio

required by the Basel III regulations, i.e. 4.5%. That is, we assume that default occurs when Ct

drops to 4.5% before or at maturity, or equivalently when Ht drops to log (4.5%). This is a valid

assumption, as e.g. EP (2013b) dictates that banks will be forced to enter resolution when their

CET1 ratio drops below 4.5%. This assumption also automatically ensures that (3.1.3) holds, as

the CoCo conversion threshold is always higher than 4.5%, and Ct is a continuous process.

As for the recovery rate R, present in the expression for the CDS rate given in (3.2.4), we use

the 20% assumed in the CDS rates extracted from Bloomberg. Furthermore, the parameter α is

given by 1/4 for the CDS contracts considered. In this setting, we aim to optimize the parame-

ters κ, h̄, η, and Ht, to match the term structure of CDS rates as closely as possible. We define

an error function, which we minimize using the calibration parameters. However, this mini-

mization poses some problems, as the error function constructed from only CDS rates is nearly

flat in certain regions, which causes problems for gradient-based minimization algorithms. This

problem is caused by combinations of the model parameters having a similar, or opposite effect

on the model outcomes. For example, increasing η drives model CDS rates up, while increasing

κ drives model CDS rates down. This implies that there may be multiple combinations of η and

κ that result in similar error function value. These interactions and the corresponding stability

concerns are assessed in detail in Section 4.2.1 and Section 4.2.2.

Cheridito and Xu (2015) propose a technique to make the parameters better identified. They

suggest computing the Q-survival probabilities inferred from the CDS rates using the reduced

form method of O’Kane and Turnbull (2003), and add those to the error function as well. That is,

as ‘actual’ risk-neutral survival probabilities are not observed in the market, we use the method

of O’Kane and Turnbull as benchmark. This results in the following objective function, which

yields more stable minimization results:

min
κ,h̄,η,Ht

EFCET1
t = ∑

TN=2,3,4,5,7,10

( δCET1
t,TN

− δmarket
t,TN

δmarket
t,TN

)2

+

(
QCET1

t (τ > TN)−QOKT
t (τ > TN)

QOKT
t (τ > TN)

)2
 ,

(4.2.1)

subject to: κ, h̄, η, Ht > 0,

where the superscripts CET1, market, and OKT, denote quantities derived using the model from

Section 3.4, obtained from the market, and derived using the method of O’Kane and Turnbull,

respectively.

For the model quantities, we plug in the expression for the CDS rate from (3.2.4), and for

18 As noted by Cheridito and Xu (2015), Göing-Jaeschke and Yor (2003) and Alili, Patie, and Pedersen (2005) derive
analytical formulas for the hitting time distributions of Ornstein-Uhlenbeck processes. However, due to the cumber-
someness of these expressions, solving numerically is more practical.

31



the Q-survival probabilities the numerical solutions to the PDEs from (3.4.5), for all relevant

maturities Ti. For the market quantities, we plug in the market quotes for the CDS rates for the

relevant maturities, as well as the observed zero coupon bond prices P(t, Ti), which occur in

(3.2.4). For the O’Kane and Turnbull values, we compute the risk-neutral survival probabilities

by calibrating by forward induction a piecewise linear hazard rate function λ(t) to the term

structure of CDS rates, that is:

QOKT
t (τ > t + n) =



exp (−λ0,2n) if 0 < n ≤ 2

exp (−2λ0,2 − λ2,3(n− 2)) if 2 < n ≤ 3

exp (−2λ0,2 − λ2,3 − λ3,4(n− 3)) if 3 < n ≤ 4

exp (−2λ0,2 − λ2,3 − λ3,4 − λ4,5(n− 4)) if 4 < n ≤ 5

exp (−2λ0,2 − λ2,3 − λ3,4 − λ4,5 − λ5,7(n− 5)) if 5 < n ≤ 7

exp (−2λ0,2 − λ2,3 − λ3,4 − λ4,5 − 2λ5,7 − λ7,10(n− 7)) if n > 7,

(4.2.2)

where the λ’s are fitted one by one using a root searching algorithm on (3.2.4) minus the relevant

CDS market quote. For details on this method see O’Kane and Turnbull (2003).

We minimize (4.2.1) using the fmincon function in MATLAB R2015a.

4.2.1 Results

Figure 4.3 shows the results of the calibration at every point in our dataset for ING, as well as

the fit of the model at the pricing date June 30, 2015. Figure 4.4 shows the same results for BP.

Some observations from Figure 4.3 and Figure 4.4 are the following. The highest point for the

CDS spreads and correspondingly the lowest point for the Q-survival probabilities is reached

in July 2012 (see also Figure 4.1 and Figure 4.2). This is reflected in low values for Ht and h̄,

especially for BP. BP shows here a starting CET1 ratio of Ct = eHt = e2.06 = 7.85%, which is only

barely above the conversion threshold of 7%. The long run mean estimate at that moment was

even below the default threshold at e1.10 = 3.0%. However, the speed of mean reversion for BP

at this point is very low, implying that the model does not move quickly towards this long run

mean. Surprisingly, we find that the variance has a dip at this point as well. This is somewhat

counterintuitive as we would expect there to be a lot of uncertainty (and thus volatility) in times

where the company is close to default. It can however be explained by a combination of two

observations. Firstly, we have that a low volatility parameter is necessary to achieve an inverted

CDS curve in this model. This is due to a high volatility parameter drastically increasing the

probability of default, especially over longer horizons.

Secondly, we note that the variance of Ct is given by η2

2κ

(
1− e−2κt), which goes to η2/2κ when

t gets large.19 In general the variance of Ct increases in η and decreases in κ. In Figure 4.4a we

19 It can be easily shown that the solution of the SDE (3.4.4) for any t > 0 is given by Ht = H0e−κt + h̄(1− e−κt) +

e−κt ∫ t
0 ηeκudW2

u , which is normally distributed. Now using the property Var
[∫ t

0 eaudWu

]
=
∫ t

0 e2audu, we see that the

variance of Ht is given by e−2κtη2
∫ t

0 e2κudu = η2

2κ

(
1− e−2κt). This clearly goes to η2/2κ when t gets large.
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Figure 4.3: Results of the calibration of the CET1 model for ING. Calibration is performed
monthly using end-of-month data and the objective function (4.2.1), for the period April 2007
until October 2015. (a) displays the optimal parameter values at every point, and (b) shows the
model implied CDS curve versus the market observed curve on the CoCo pricing date June 30,
2015.
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Figure 4.4: Results of the calibration of the CET1 model for Banco Popular. Calibration is
performed monthly using end-of-month data and the objective function (4.2.1), for the period
August 2008 until October 2015. (a) displays the optimal parameter values at every point, and
(b) shows the model implied CDS curve versus the market observed curve on the CoCo pricing
date June 30, 2015.

see that during the periods of very high CDS spreads, we have η > κ, while at the majority of

the other periods κ > η. This implies that while η is lower in the periods with high spreads, the

actual variance of the CET1 ratio is higher here than in other periods.

For ING we observe that higher CDS spreads are reflected in the model parameters mostly

through low values for κ. This can be explained, similarly to above, by noting that a lower κ

implies a higher volatility for the CET1 ratio, which results in lower probabilities of survival

and thus higher CDS spreads. The other parameters remain relatively constant over the sample.
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Figure 4.5: Root Mean Squared Relative Errors, calculated by (4.2.3), of calibrations of the CET1
model performed monthly using end-of-month data and the objective function (4.2.1), for the
period April 2007 until October 2015 for ING, and August 2008 until October 2015 for BP. (a)
displays the RMSREs for ING Group, and (b) shows the RMSREs for Banco Popular Group.

4.2.2 Evaluation

To evaluate how well the model is able to fit the term structure of CDS spreads, we make use of

the Root Mean Squared Relative Error (RMSRE) of the calibrations, which is calculated by:

RMSRE =

√√√√1
6 ∑

N=2,3,4,5,7,10

(
δCET1

t,TN
− δmarket

t,TN

δmarket
t,TN

)2

. (4.2.3)

Figure 4.5 shows how well the CET1 model is able to fit the CDS curves of both banks in terms

of the RMSREs.

From Figure 4.5 we see that the fit for BP is better at almost every point in time. In general,

we find that the model has a better fit for higher CDS spreads. For the first periods for ING,

when the CDS spreads were extremely low, the model fit is bad. At the periods of very high

CDS spreads however, the model fits the data fairly accurately. Furthermore, we see that the fit

is better for upward sloping, curved CDS term structures. For inverted or flat curves the fit is

less accurate, as we can see when comparing Figure 4.1b and Figure 4.5b.

To further assess the calibration behavior of the direct CET1 model, we conduct autocorre-

lation tests on the calibration error series from Figure 4.5. Presence of autocorrelation in the

calibration error series is undesirable, as this would imply that the errors are not independently

distributed. Ideally, we want the errors to behave like white noise. This would signal that the

calibration captures trends in credit-worthiness, but omits any independent idiosyncratic noise

in the CDS rates.

We test the presence of serial correlation with the Ljung-Box test (Ljung and Box, 1978).

This test evaluates the null hypothesis H0 : the data are independently distributed, against the

alternative of serial correlation for a specified number of lags. It is a portmanteau test. That is, its

alternative hypothesis Ha is loosely specified as Ha: the data are not independently distributed;
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Table 4.2: P-values for the Ljung-Box serial correlation tests for the series of relative calibration
errors from Figure 4.5 for ING and Banco Popular. For ING this entails 103 observations in the
full sample, from April 2007 until October 2015. For Banco Popular it entails 87 observations in
the full sample, from August 2008 until October 2015. The number of lags is set at l = 10 in the
full sample, and l = 6 in the short sample.

Full sample Short sample (final 36 months)

ING 2.2× 10−16 0.4298
Banco Popular 1.7× 10−14 0.5123

Notes: lag selection for the Ljung-Box test based on the rule of thumb from Hyndman and Athanasopoulos (2013).

there exists serial correlation. It does not specify at with lag(s) there is autocorrelation. The

Ljung-Box test does require us to pick the number of lags to test. We use the rule of thumb

as proposed by Hyndman and Athanasopoulos (2013) for non-seasonal data to determine the

number of lags to include. That is, number of lags l is given by l = min {10, bK/5c}, where K

is the number of observations. In our case this reduces to l = 10 for both the ING and the BP

error series.

Table 4.2 presents the autocorrelation test results. We observe that both for ING and for

BP there is clear evidence of autocorrelation in the calibration error series. This autocorrelation

is visible in Figure 4.5 as well, where we observe trends in the error series. These trends are

caused, as explained above, by the fact that the direct CET1 model gives a better fit for high

CDS rates and upward sloping, curved term structures. This proposes a problem when we

want to use these direct CET1 model calibrations to price CoCos over long horizons. This is true

as model CoCo prices will clearly be less accurate in periods of low and/or flat/inverted CDS

curves. However, as we introduce in Chapter 5, we only price CoCos in the final 7 (for ING) or

9 (for BP) months of the sample. In these small subsamples we find the levels and slopes of the

CDS curves to be rather similar, and we thus expect the calibration errors to be much closer to

white noise. This implies that the problem of serial correlation is not relevant for the scope of

our pricing study.

To verify this, we also perform Ljung-Box tests for smaller subsamples, consisting of the final

2.5 years (36 months) of our original samples. We pick this range as the CDS curves of ING and

BP are of comparable level and slope over this range. Following the rule of thumb, we set the

number of lags for this analysis at l = 7. Table 4.2 provides the results of this analysis. We see

that indeed there is no significant evidence to reject the hypothesis of independently distributed

errors over this smaller sample. This implies that the direct CET1 model calibration results can

safely be used for CoCo pricing over the small sample we consider in Chapter 5. In Section 6.1

we provide a suggestion on how the calibration procedure in the direct CET1 model can be

adapted to be more suitable for CoCo pricing over a longer horizon.

On the pricing date June 30, 2015, the parameter estimates are given by:

For ING: Ct = eHt = 13.0%, c̄ = eh̄ = 10.9%, κ = 0.9430, η = 0.4666. (4.2.4)

For BP: Ct = eHt = 12.7%, c̄ = eh̄ = 10.6%, κ = 1.0674, η = 0.5132. (4.2.5)
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The last reported CET1 ratios stem from the 2015 Q2 report and are given by 12.8% and 12.8%

for ING and Banco Popular, respectively. Hence, the calibrated values for Ht lie very close to

the actual reported CET1 ratios. This is nice, as this ensures that the simulation paths start at a

realistic point. Furthermore, the long run means of around 10-11% agree with what is advised

by the regulator as target CET1 ratio.20 It is hence logical that banks will steer on this target as

well.

To analyze the stability of the calibration results of the CET1 model, we look at the value

of the objective function (4.2.1) for different combinations of the parameters. We analyze the

stability of pairs of two parameters, keeping the other two parameters fixed at their optimal

value. Figure C.1 and Figure C.2 in Appendix C show the results of this analysis. Figure C.1a

shows that, keeping Ht and h̄ fixed, there is a curve of combinations of κ and η that produce a

similar value of the objective function. The actual optimal solution is only slightly better than

some other combinations. Logically, these combination lie in an increasing line in the η − κ

plane. This can be explained by the argument introduced in Section 4.2: the variance of Ct

is η2

2κ

(
1− e−2κt), so increasing both η and κ can keep the variance more or less constant. The

curved shape of the trend in the η − κ plane in Figure C.1a is explained by the fact that η is

squared in the expression for the variance.

From Figure C.1b we see that the optimal solution in the Ht − h̄ plan, keeping κ and η

constant, is a lot more stable. There is one combination that clearly yields the lowest objective

function. It is logical that we do not see a similar trend here, as Ht and h̄ both ‘work in the

same direction’, i.e. increasing both results in lower CDS rates, while decreasing both results in

higher rates.

The same holds for Ht and κ, as Figure C.2b displays. These also work in the same direction,

which explains the declining line in the Ht− κ plane. However, setting both Ht and κ somewhat

higher or lower can result in nearly the same objective function value. This also explains the

simultaneous kinks in Figure 4.3a for Ht and κ: a slight change in CDS rates can result in the

optimal solution to shift upwards for both Ht and κ.

4.3 Calibration AT1P model

As introduced in Section 3.3, we need to derive an expression for the risk-neutral survival

probabilities implied by the model of (3.3.4) and (3.3.6), in order to calibrate the parameters to

a term structure of CDS rates. See Appendix D for details on the derivation of this expression.

The risk-neutral survival probability for any maturity T > t is given by:

Qt(τ > T) = Φ

 log
(

Vt
H

)
+ 2L−1

2

∫ T
t σ2

A(u)du√∫ T
t σ2

A(u)du

−(H
Vt

)2L−1
Φ

 log
(

H
Vt

)
+ 2L−1

2

∫ Ti
t σ2

A(u)du√∫ T
t σ2

A(u)du

 ,

(4.3.1)

where Φ(·) denotes the cumulative distribution function of the standard Gaussian distribution.
20 According to the latest Basel publications, the regulators are aiming at a target CET1 ratio of 10-12.5%.

36



We notice from (4.3.1), that H and Vt only occur as ratio, and never alone. This property

allows us to rescale the initial value of the firm to Vt = 1, and express H as a fraction of it

(Brigo, Morini, and Pallavicini, 2013, Chapter 3). This is practical, as it implies we do not need

to know the real initial value of the firm, or its real debt situation, in order to calibrate to CDS

rates. It also allows us to rewrite the barrier as in Brigo et al. (2013, Chapter 3), as to provide

some more economical intuition behind this barrier:

Ĥt =
H
A0

E
Q
0 [At] exp

(
−L

∫ t

0
σ2

A(u)du
)

.

The basis of this default barrier is the proportion of the expected value of the asset value at

time t, controlled by parameter H. This parameters may depend among others on the liability

structure, safety covenants, capital regulations, and more general on the characteristics of the

capital structure. The benefit of the calibration scheme we employ here, is that we do not

have to specify explicitly the derivation of the parameter H. We include it in the calibration

procedure, as to extract the market information on this parameter from the CDS rates. The

structure of the default barrier is in line with Giesecke (2004), who observes that the fallacies

when implementing the simpler Black-Cox model in empirical settings can be explained by

the assumption that the total debt grows at a positive rate, similar to the firm value, or that

firms have some target leverage ratio (see Collin-Dufresne and Goldstein (2001)). This feature is

present in the AT1P model.

Thereby, through the shaping parameter L, it is possible that this basis default barrier is

modified to account for the asset volatility (see e.g. Brigo, Morini, and Tarenghi (2010)). L > 0

has the interpretation that when volatility increases, which can happen independent from credit

quality, the barrier is lowered somewhat, to give the company some more space before entering

default.

Furthermore, we need an expression for the value of equity within the model EAT1P
t . See

Appendix E for details on the derivation of this expression. Finally, we use the proxy for the

CET1 ratio from (3.3.9). Adding this to the objective function ensures that the model produces

a starting value for the CET1 ratio that is very close to the actual CET1 ratio, and thus well

above the conversion threshold. As for the recovery rate R, present in the expression for the

CDS rate given in (3.2.4), we use the 20% assumed in the CDS rates extracted from Bloomberg.

Furthermore, the parameter α is given by 1/4 for the CDS contracts considered.

For the volatilities σA(t), we use a piecewise constant function consisting of 6 volatility

parameters, corresponding to the 6 CDS maturities we are calibrating on. Similar to the O’Kane

and Turnbull method from (4.2.2), the first volatility σA,1 corresponds to 0 < t ≤ 2, the second

σA,2 corresponds to 2 < t ≤ 3, and so on. In this setting, we aim to find values for the parameters

H, L, and σA,1, . . . , σA,6 which produce a term structure of CDS rates, market value of equity Et,

and CET1 ratio Ct, as close as possible to those observed in the market.

Analogous to the calibration of the direct CET1 model, we add the Q-survival probabilities

inferred from the CDS rates using the reduced form method of O’Kane and Turnbull (2003)
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to the calibration as well.21 We hence define an error function, which we minimize using the

calibration parameters. The minimization problem is defined as follows:

min
H,L,σA,1,...,σA,6

EFAT1P
t = ∑

N=2,3,4,5,7,10

(
δAT1P

t,TN
− δmarket

t,TN

δmarket
t,TN

)2

+

(
EAT1P

t − Emarket
t

Emarket
t

)2

+

(
CAT1P

t − Cmarket
t

Cmarket
t

)2

+ ∑
N=2,3,4,5,7,10

(
QAT1P

t (τ > TN)−QOKT
t (τ > TN)

QOKT
t (τ > TN)

)2

,

subject to: 0 < H ≤ 1, and

σA,1, . . . , σA,6 > 0,

(4.3.2)

where the superscripts AT1P, market, and OKT, denote quantities derived using the model from

Section 3.3, obtained from the market, and derived using the method of O’Kane and Turnbull,

respectively.

For the model quantities, we plug in the expression for the CDS rate from (3.2.4), and for the

Q-survival probabilities the expression from (4.3.1), for all relevant maturities Ti. Furthermore,

for the equity value we plug in the expression derived in Appendix E. For the CET1 ratio Ct

we plug in the proxy from (3.3.9). As for the market quantities, we plug in the market quotes

for the CDS rates for the relevant maturities, as well as the observed zero coupon bond prices

P(t, Ti), which occur in (3.2.4), the market value of equity as a fraction of the quasi firm value,

and the reported CET1 ratio.22 For the O’Kane and Turnbull values, we compute the risk-

neutral survival probabilities by calibrating by forward induction a piecewise linear hazard rate

function λ(t) to the term structure of CDS rates (see Section 4.2).

The calibration procedure outlined above is justified for reasons set out e.g. in Brigo and

Tarenghi (2004). We are not interested in estimating the real process of the firm value. We

only want to reproduce risk-neutral survival probabilities with a model that is also justifiable

economically. While we appreciate the economic interpretation of the model, we are not seeking

to sharply estimate the firm value process or its capital structure. We use the structural set-up

as a tool for assessing the realism of the calibrations, and to check their economic consequences.

We minimize (4.3.2) using the fmincon function in MATLAB R2015a.

4.3.1 Results

Before we can initiate the optimization algorithm on (4.3.2), we need to estimate regression

(3.3.8). We need the estimated regression parameters to calculate CAT1P
t in (4.3.2). We estimate

(3.3.8) using OLS on the dataset of European banks introduced in Table A.1 on June 30, 2015.

We choose to investigate this relationship on this single date. This is in contrary to e.g. Brigo

et al. (2015), who estimate their model on a number of dates spanning over ten years, and take

the average of the parameters of each date to use in their calibration and simulation model. We

believe there are some important reasons why their method yields unreliable results.

21 See Section 4.2 for elaboration hereon.
22 As we do not know the actual firm value, we use here an approximation given by the sum of the market value of

equity and the book value of debt. See Section 3.3.
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Firstly, the definition of the CET1 ratio has changed heavily over the recent years. Both

the definition of CET1 capital, and the calculation method for the RWA, have changed funda-

mentally. Therefore, what banks calculated to be their Common Tier 1 ratio ten years ago, is

something very different from what is reported recently as CET1 ratio. Secondly, following the

global financial crisis, capital requirements have gone up immensely, and subsequently CET1

ratios have increased significantly for banks across Europe. For these reasons we believe we get

more reliable results when estimating (3.3.8) at the most recent available data point: June 30,

2015. The results of the OLS estimation are as follows, with t-statistics between parentheses.

Ci = 15.20
(21.36)

− 0.1173
(−3.490)

·
(

QMVAi
MCi

)
+ εi, for i = 1, . . . , W, (4.3.3)

where W denotes the number of banks in the dataset. The R2 of this regression is 30%.

We hence see that, even though our dataset is not very large, the regression coefficient is

strongly significant. Thereby, as expected, we have a negative value for β̂1. An important

observation on this model is that the value of QMVA/MC will always be larger than one,

as QMVA/MC = 1 would imply that the bank has zero debt on its balance sheet. This im-

plies, from (3.3.10), that in the AT1P model the CET1 ratio never stays consistently larger than

15.20− 0.1173 = 15.08%. This in contrast to the CET1 model, where the CET1 ratio can grow

unrestrained.

Now the fact that we only pick one recent date to estimate the regression model poses

problems when attempting to calibrate the AT1P model parameters over the full horizon of CDS

data using (4.3.2). The observed CET1 ratios for both ING and BP were very low in the beginning

of our samples, and show a consistent upward trend over the sample. The corresponding assets-

over-equity values, however, do not show an upward trend. They follow more the trends of the

varying credit-worthiness and the economic cycle, also reflected in the CDS curves. This is again

explained by noting that the CET1 ratio is an accounting quantity, which has been subject to the

vagaries of the changing regulatory landscape over the past decade. Adding both the market

value of equity and the CET1 ratio, calculated through (4.3.3), to the objective function, hence

yield unreliable and uninterpretable results for periods too long ago.23

For this reason, we choose to limit the range on which we calibrate the AT1P model to the

periods for which the definition of the CET1 ratio was constant, and the strong upward trend in

the reported CET1 ratios was stagnating. This is for both ING and BP around the end of 2012.

Figure 4.6 shows the results of the calibration at every point starting October 2012 for ING.

Figure 4.7 shows the same results for BP.

Some observations from Figure 4.6 and Figure 4.7 are the following. From Figure 4.6b we

see that σA,1 is often the highest. This is necessary to obtain sufficiently high short term CDS

spreads. Furthermore, we surprisingly see the volatilities increasing over time, and H decreasing

23 Note that the problems described here are not directly relevant for the calibration of the direct CET1 model, de-
scribed in Section 4.2. The calibrated starting CET1 ratios from Section 4.2.1 are indeed not very close to the actual
reported CET1 ratios in the beginning of the calibration samples. However, since the actual CET1 ratio and market
value of equity are not part of the objective function of the calibration procedure for the direct CET1 model, the calibra-
tion results for the direct CET1 model are not distorted by the problems described in this section.
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Figure 4.6: Results of the calibration of the AT1P model for ING. Calibration is performed
monthly using end-of-month data and the objective function (4.3.2), for the period October 2012
until October 2015. (a) displays the optimal parameter values for the parameters H and L, and
(b) shows the optimal parameter values for parameters σA,1, . . . , σA,6.
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Figure 4.7: Results of the calibration of the AT1P model for Banco Popular. Calibration is
performed monthly using end-of-month data and the objective function (4.3.2), for the period
October 2012 until October 2015. (a) displays the optimal parameter values for the parameters
H and L, and (b) shows the optimal parameter values for parameters σA,1, . . . , σA,6.

over time for ING. This is caused by the presence of the market value of equity as fraction

of the total firm value in the objective function. This market value of equity has increased

almost monotonically over the past two years. For the model to fit this trend, the parameter

H must decrease, as that results in a lower default barrier and consequently a higher market

value of equity. However, keeping the volatilities constant, lowering H would result in sharply

decreasing CDS spreads, as lowering H drives down the probability of default. In reality, while

the trend in CDS spreads was generally decreasing as well over the last years, this effect was

less strong, and so the volatilities must increase to achieve the correct CDS rates.

As for the parameter L for ING, we see that this is quite constant at just under 0.7. This
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Figure 4.8: Root Mean Squared Relative Errors, calculated by (4.2.3), of calibrations of the AT1P
model performed monthly using end-of-month data and the objective function (4.3.2), for the
period October 2012 until October 2015. (a) displays the RMSREs for ING Group, and (b) shows
the RMSREs for Banco Popular Group.

implies that the model adjusts to changes in the CDS rates, CET1 ratio, and market value

of equity more easily through the volatility parameters, keeping the adjustment parameter L

relatively constant. Furthermore, from (3.3.5) and (3.3.6), we note that as L > 0.5, the drift of

the default barrier is smaller than the drift of the firm value. This feature helps the model in

obtaining the curved shape of the CDS curves.

From Figure 4.7 we can make similar observations for BP. The market value of equity saw

an increase from begin 2013 up to begin 2014, and a decrease afterwards. This is reflected in the

calibrated values of H. Then given these values for H, the CDS curves are replicated by tweaking

the volatility parameters. The shaping parameter L is again relatively steady, signaling that the

model tweaks its outcomes more easily through the volatility parameters, while L assists in

obtaining the correct shape of the CDS curves. Logically, we see that the volatilities for BP are

higher than those of ING, as BP’s CDS rates are higher as well.

4.3.2 Evaluation

To evaluate how well the model is able to fit the term structure of CDS spreads, we again

make use of the RMSRE of the calibrations. RMSREs are calculated equivalently using (4.2.3),

replacing the direct CET1 implied CDS spreads by the AT1P implied CDS spreads.

Figure 4.8 shows how well the AT1P model is able to fit the CDS curves of both banks in

terms of the RMSREs.

Observing Figure 4.8 we see that the calibration errors are far lower than those of the direct

CET1 model. This is simply explained by the fact that the AT1P model has 8 free fitting param-

eters, while the direct CET1 model has only 4. This larger overfit of the AT1P model yields a

better in sample fit by definition. It does not make sense to analyze the time series of RMSREs

for the AT1P model in much detail, as the differences are driven mostly by discrepancies in the

minimization algorithm. The algorithm stops when the objective function values of consecutive
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steps are less than 1−4 apart. That is, the differences in RMSREs lie in the region where the

algorithm hits its tolerance. They are thus not driven by the calibration behavior of the AT1P

model, but by the termination conditions of the minimization algorithm.

Basically, the AT1P model can perfectly fit a term structure of CDS spreads through its six

volatility parameters, while H and L are used to obtain a fit on Et and Ct as well. Equivalently

to the O’Kane and Turnbull procedure from (4.2.2), the AT1P model can fit the first maturity

CDS rate using σA,1, then the second maturity using σA,2, and so on. While the AT1P model

thus obtains a better in sample fit than the direct CET1 model, this does not imply it produces

more accurate CoCo prices as well. The AT1P model could be fitting a lot of noise, impeding its

CoCo pricing strength. Whether this is the case is investigated in Chapter 5.
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Chapter 5

Pricing case studies

To examine the strength of the two pricing models introduced and calibrated before, we use

them to price the CoCos from Table 4.1 at different points in time. Comparing the model-

implied CoCo values with market observed prices serves as an out-of-sample test of our pricing

models. It examines how well the models translate relevant market views from CDS and equity

markets into CoCo values. Note that both models, and especially the AT1P model, are largely

overfitted, as they contain a lot of parameters compared to the amount of market observed

quantities they are calibrated on. This would pose big problems when we would want to use

the models to forecast prices. However, our out-of-sample test does not include forecasting a

future CoCo price, but just examining whether the models can translate the information from

the credit and equity market into the CoCo price at the same instant. For this purpose, the

overfit is not a problem.

Furthermore, we analyze how the price is affected by the coupon cancel and call thresholds,

and how this price can be contributed to the different CoCo components. As the Banco Popular

CoCo was issued in February 2015 and we use end-of-month data, we price this CoCo on nine

dates: February 27 up to October 30, on every last day of the month. The ING CoCo was issued

in April 2015, and hence we price it on seven moments: April 30, 2015 up to October 30, 2015,

on every last day of the month.

Before we can initiate the CoCo pricing algorithm as put forward in Section 3.5, we first have

to determine parameter values for the parameters that are not calibrated in Chapter 4. For the

AT1P model, this parameter is the ‘correlation’ parameter $ between the CET1 ratio and the

assets-over-equity ratio. For the CET1 model, these parameters are the correlation between the

Brownian motions governing the variability in the stock price and the CET1 ratio, ρ, and stock

volatility σ.

So far, we have ignored the pay-out rate parameters q in AT1P model, and d in the direct

CET1 model. As there exist no apparent methods to estimate these parameters in a robust way,

we opt to set it equal to zero in the initial pricing analysis in this section. In Section 5.4 we

analyze the sensitivity of the CoCo price for the pay-out rate by running scenarios on it.

As for the coupon cancel threshold ccc and the CoCo call threshold cϕ, we examine consis-
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tency conditions among the different pricing dates. That is, we investigate what combination

of market views of ccc and cϕ, consistent over time, are implied by each model. Then we eval-

uate these combinations on their economic interpretation and realism, to compare the relative

strength of both models.

As for the risk-free rate process rt, we opt use a fixed value at each pricing date. For the sake

of tractability of the study we do not fit a stochastic model for the short rate. At each pricing

date, we use the 10 year maturity point of the Overnight Indexed Swap (OIS) curve as relevant

risk-free rate.24

We choose to use G = 10, 000 paths for obtaining the approximated CoCo price in each

setting. We find that for this relatively small number, the CoCo price is already stable, and

confidence intervals are sufficiently small. While more paths obviously yields more accurate

results, computation time limits us from doing so. We need to evaluate CoCo prices for a lot of

different settings. Hence, setting the amount of paths per price higher, vastly increases the total

computation time up to infeasible levels.

Section 5.1 describes the execution of the steps introduced above for the CET1 model. Sec-

tion 5.2 does the same for the AT1P model.

5.1 Pricing in the direct CET1 model

Before we can examine the CoCo pricing strength of the CET1 model, we need to specify the

stock volatility parameter σ, the (constant) annualized volatility of the stock return. We use the

10-year Bloomberg implied volatility for this extent. That is, the volatility implied from at-the-

money call options on the stock. Bloomberg uses a series of different techniques to obtain this

implied volatility. For elaboration on these techniques see Bloomberg (2014). As there is no

liquid market for options of a maturity of 10 years, Bloomberg uses an extrapolation technique,

also described in aforementioned document.

As for the correlation ρ between the Brownian motions W1
t and W2

t from (3.4.2) and (3.4.4), we

are forced to make use of an intuitive argument. Estimating the correlation is not possible due

to the very low frequency of available CET1 ratio data. Therefore we argue as follows. Firstly,

the correlation must clearly be positive. When the bank’s capital ratio deteriorates, and thus

the bank moves towards conversion, this will have a negative impact on the stock price. This is

true since a declining CET1 ratio signals a declining credit-worthiness, which drives the stock

price down. Thereby, both the market and CoCo issuers clearly assume that any conversion will

entail a significant loss in value for the investor, judging from the high coupon rates on CoCos.

Conversion only entails a significant loss in value when the stock price at conversion Sϑ is below

the floor price F, which is already significantly below the actual stock price at the issue date for

both CoCos considered. This implies that a declining CET1 ratio will always be accompanied

by a declining stock price. Moreover, the actual announcement of a CoCo conversion is likely to

24 The OIS curves denote the fixed rates for fixed-versus-floating swap contracts where the floating leg is the overnight
rate. We use the Libor variant for the dollar-denominated ING CoCo, and the Euribor variant for the euro-denominated
Banco Popular CoCo. The data is extracted from Bloomberg. These curves are market standards to use as risk-free term
structures.
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Table 5.1: This table shows the prices (as percentage of the principal) of the CoCos from Ta-
ble 4.1, issued by ING Group on April 16, 2015, and by Banco Popular Group on February 2,
2015, on a number of end-of-month pricing dates. Thereby, it shows the calibrated parameter
values Ht, h̄, κ, and η, the stock volatility σ, stock price St, and risk-free rate r, to be used in the
pricing algorithm. These are all values used for pricing the CoCo in the CET1 model.

ING Group
t CoComarket

t St ($) r (%) σ (%) Ht h̄ κ η

October 30, 2015 100.350 14.582 1.985 30.41 2.5576 2.3832 0.8948 0.4346
September 30, 2015 97.250 14.145 1.743 31.66 2.5678 2.3834 0.9091 0.4557

August 31, 2015 98.500 15.288 1.985 31.16 2.5642 2.3969 0.9446 0.4582
July 31, 2015 100.625 17.044 2.046 28.78 2.5647 2.3972 0.9459 0.4588
June 30, 2015 100.250 16.518 2.185 28.37 2.5657 2.3893 0.9430 0.4666
May 29, 2015 100.300 16.432 2.057 27.40 2.5673 2.3915 0.9268 0.4547

April 30, 2015 99.950 15.470 1.928 27.70 2.5619 2.3993 0.9566 0.4551

Banco Popular Group
t CoComarket

t St (e) r (%) σ (%) Ht h̄ κ η

October 30, 2015 98.661 3.741 0.6580 34.95 2.5318 2.3602 1.1027 0.5223
September 30, 2015 96.532 3.259 0.7050 36.00 2.5457 2.3415 1.0364 0.5203

August 31, 2015 99.729 3.804 0.8570 36.01 2.5328 2.3558 1.0861 0.5172
July 31, 2015 101.897 4.160 0.7480 35.82 2.5375 2.3554 1.0787 0.5138
June 30, 2015 99.486 4.326 0.8875 35.80 2.5389 2.3528 1.0674 0.5132
May 29, 2015 101.634 4.490 0.5950 35.07 2.5324 2.3663 1.1135 0.5140

April 30, 2015 102.255 4.668 0.4250 35.62 2.5336 2.3634 1.0959 0.5067
March 31, 2015 103.944 4.541 0.2910 35.48 2.5349 2.3595 1.0887 0.5126

February 27, 2015 103.178 4.098 0.4330 36.01 2.5192 2.3759 1.1436 0.5324

Notes: In February and March the ING CoCo was not yet listed. Therefore there are only seven pricing dates for the ING
CoCo, whereas the Banco Popular CoCo has nine pricing dates. As for the risk-free rates r, we use the 10 year maturity
points from Overnight Indexed Swap (OIS) curves. These curves denote the fixed rates for fixed-versus-floating swap
contracts where the floating leg is the overnight rate. We use the Libor variant for the dollar-denominated ING CoCo,
and the Euribor variant for the euro-denominated Banco Popular CoCo.

entail an extra downward shock to the stock price.

Another argument for the above assumption lies in CoCo hedging strategies. CoCo investors

may opt to hedge their positions, especially when conversion comes closer, by taking a short

position in the bank’s stock. This way they are protected against the fact that they may be forced

to buy stock at a relatively high price at conversion. These short position however may in turn

drive the stock price further down. All arguments presented here advocate a strong positive

correlation between movements in the CET1 ratio and movements in the stock price. Therefore

we set this parameter at ρ = 0.9. Section 5.4 investigates the sensitivity of this choice on model

CoCo prices.

Table 5.1 displays the CoCo prices (as percentage of the principal) of the CoCos from Ta-

ble 4.1, at the different pricing dates. Furthermore, it summarizes the values we use for each

relevant parameter in the CoCo pricing approach under the direct CET1 model.
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5.1.1 Pricing behavior

Figure 5.1 and Table 5.2 display some charts and tables to get a feeling of the CoCo pricing

behavior of the CET1 model. It shows the CET1 model CoCo price for different combinations of

ccc and cϕ. Furthermore, it shows how the different components (stocks, principal, and coupons)

contribute to this price. For each combination of ccc (x-axis) and cϕ (y-axis) the color gives the

corresponding price (in Figure 5.1a) or relative contribution (in Figure 5.1b, Figure 5.1c, and

Figure 5.1d). The legends on the right side of the charts give the values corresponding to the

colors.

(a) Prices. (b) Relative value of stocks.

(c) Relative value of principal. (d) Relative value of coupons.

Figure 5.1: Results of the CoCo pricing procedure for the ING CoCo on June 30, 2015, using
the parameter values for the CET1 model from Table 5.1 and G = 10, 000 simulation paths per
combination of ccc and cϕ. Pricing is done using a range of different values for the coupon
cancel threshold ccc and the CoCo call threshold cϕ. Panel (a) shows the resulting CoCo prices.
Panel (b), (c), and (d) show the proportion of this price that can be attributed to the potential
value of stocks received, principal received, and coupon payments, respectively.

Figure 5.1a and Table 5.2 show that, as we would expect, the CoCo price decreases in ccc.

Logically, when more coupon payments are canceled, the CoCo price decreases. Furthermore,

the price decreases in cϕ as well, be it more gradual. This is the so-called extension risk intro-

duced in Section 2.1 and in De Spiegeleer and Schoutens (2014). When the CoCo call threshold

is higher, the CoCo is redeemed less often. This implies that there is more often a longer period

46



Table 5.2: Price variation of the ING CoCo for different values of the coupon cancel and call
thresholds in the CET1 model. Pricing done on June 30, 2015, where we recall that the market
price of the CoCo was 1.0025 per unit of notional.

ccc (%) cϕ (%) Estimated price 95% confidence interval

9 9 1.0690 [1.0668; 1.0712]
10 1.0679 [1.0657; 1.0702]
11 1.0675 [1.0651; 1.0698]
12 1.0673 [1.0659; 1.0697]

10 9 1.0513 [1.0490; 1.0535]
10 1.0498 [1.0475; 1.0521]
11 1.0488 [1.0464; 1.0512]
12 1.0479 [1.0455; 1.0504]

11 9 1.0312 [1.0290; 1.0335]
10 1.0293 [1.0270; 1.0316]
11 1.0277 [1.0253; 1.0301]
12 1.0260 [1.0236; 1.0285]

12 9 1.0100 [1.0078; 1.0122]
10 1.0076 [1.0054; 1.0099]
11 1.0055 [1.0031; 1.0078]
12 1.0030 [1.0006; 1.0054]

of possible conversion to equity, and that the present value of the potential principal payment

decreases due to time-value of money. Both are factors that drive down the CoCo price. We

do notice that this effect is weaker for low values of the coupon cancel threshold. When this

threshold is low, extension implies more coupons being payed out, counteracting the previously

mentioned effects.

Figure 5.1b shows that the relative contribution of stocks grows in ccc and in cϕ. This is

logical, as a higher ccc implies more coupons are canceled and thus coupon payments contribute

less to the CoCo value. A higher cϕ implies the CoCo is extended more often, giving more time

and thus a higher probability of conversion to stocks. Furthermore, we notice the extremely

high relative contribution of stocks, ranging from 60-80% of the CoCo value. This implies that

in the CET1 model CoCo conversion occurs very often.

Figure 5.1c is straightforward. More canceled coupons drive up the relative value of the

principal. When the coupon is extended more often, the probability that the principal is re-

turned, as well as the present value of the principal when returned goes down, both decreasing

the relative contribution of the principal.

Figure 5.1d is straightforward as well. More canceled coupons drive down the relative con-

tribution of coupon payments. And more extensions increases the average amount of coupons

received, driving up the relative contribution of coupon payments.

47



Coupon Cancel Threshold (%)
8 9 10 11 12 13 14 15 16

C
oC

o 
C

al
l T

hr
es

ho
ld

 (
%

)

8

9

10

11

12

13

14

15

16

October
September
August
July
June
May
April

(a) ING Group

Coupon Cancel Threshold (%)
8 9 10 11 12 13 14 15 16

C
oC

o 
C

al
l T

hr
es

ho
ld

 (
%

)

8

9

10

11

12

13

14

15

16

October
September
August
July
June
May
April
March
February

(b) Banco Popular Group

Figure 5.2: Combinations of the coupon cancel threshold ccc and the CoCo call threshold cϕ that
make the CET1 model implied CoCo price equal to the market observed price. For the model
parameters and the market observed prices we use the values from Table 5.1. The pricing dates
are the last days of the months mentioned in the legends.

5.1.2 Comparison to observed market prices

Now we move on to comparing the results from our pricing algorithm to the market observed

prices on the different pricing dates. Using the settings from Table 5.1, we again evaluate the

CoCo price for different combinations of the CoCo call threshold cϕ and the coupon cancel

threshold ccc. Instead of displaying the whole range, we now determine which combinations

of cϕ and ccc make the CET1 model implied CoCo price equal to the market observed price on

each of the pricing dates. Figure 5.2 shows the results of this analysis for both the ING and the

Banco Popular CoCo.

In a perfect pricing model, the contour lines for the different pricing dates would all intersect

in one unique point: the point that gives the actual values (or what the market believes the actual

values are) for the CoCo call threshold and the coupon cancel threshold. Furthermore, we note

that there is no clear reason to believe that the market has shifted it views on the values of

ccc and cϕ over the course of 2015. Therefore we assume that any deviation from the ‘perfect

intersection’ is caused by inconsistency of the pricing model in translating the information from

the credit and equity market into the CoCo price. Or, broader, the incapability of models based

solely on credit and equity markets to explain CoCo prices.

From Figure 5.2a we see that the CET1 model is quite consistent for the ING CoCo. The

contour lines, except one, lie very close to each other. Furthermore, it again shows that the CoCo

price is not very sensitive to the amount of extension risk. When comparing e.g. cϕ = 16% and

cϕ = 8% (or their difference ∆ϕ=8%), the difference in the corresponding values for ccc making

the model price equal to the market price is way smaller (around 12%-12.5%, or ∆cc = 0.5%,

on average). Furthermore we note that the values for ccc making the model price equal to the

market price are very high. It seems unrealistic that coupon payments will be canceled when

the CET1 ratio is 12%. This observation leads us to believe that the market prices are driven

down by some other factor(s), not included in the CET1 model.
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Figure 5.2b strengthens this idea. It shows, firstly, that the CET1 model is not very consistent

for the Banco Popular CoCo. The contour lines show quite some dispersion, and do not have

a lot of common intersections. Thereby, the values for the coupon cancel threshold need to be

even higher than for the ING CoCo, to make the model price equal to the market price. As

it is unrealistic that coupons will be canceled at a CET1 ratio of over 13%, this gives us strong

evidence that there exists some factor, not included in the CET1 model, that the market considers

that drives down CoCo prices.

5.2 Pricing in the AT1P model

To price CoCos in the AT1P model, we first need to specify the ‘correlation’ parameter $ ∈ [0, 1]

between the CET1 ratio and the assets-over-equity ratio. Note that as we have β̂1 < 0, the actual

correlation between the CET1 ratio and the assets-on-equity ratio is −$. It is logical that this is a

negative value, as we expect both the CET1 capital to have a strong positive correlation with the

equity value, and the RWA to have a strong positive correlation with the asset value. This would

imply a negative relation between the CET1 ratio and the assets-on-equity ratio. Thereby, an

increasing assets-over-equity ratio clearly indicates deterioration of the bank’s credit-worthiness:

the bank moves towards default. This will be accompanied by a decreasing CET1 ratio. For these

reasons, we set this parameter at $ = 0.9. Section 5.4 investigates the sensitivity of this choice

on model CoCo prices.

Table 5.3 displays the CoCo prices (as percentage of the principal) of the CoCos from Ta-

ble 4.1, at the different pricing dates. Furthermore, it summarizes the values we use for each

relevant parameter in the CoCo pricing approach under the AT1P model.

At every pricing date we assume the number of shares outstanding to remain equal to its

initial value over the remaining term. We need this number of shares, combined with the initial

QMVA, to calculate the stock price at conversion through Sϑ = (Eϑ ·QMVAt)/Ot. Here we note

that Eϑ is a ratio over the initial QMVA.

5.2.1 Pricing behavior

Figure 5.3 and Table 5.4 display some charts and tables to get a feeling of the CoCo pricing

behavior of the AT1P model. It shows the AT1P model CoCo price for different combinations of

ccc and cϕ. Furthermore, it shows how the different components (stocks, principal, and coupons)

contribute to this price. The interpretation of the graphs is as explained in Section 5.1.1.

Starting at the graphs for the relative contribution of the components, Figure 5.3b, Fig-

ure 5.3c, and Figure 5.3d, we can make the same observations as in Section 5.1.1. However,

in the AT1P model the changes are a lot sharper and less gradual, and there is almost no vari-

ability in the extreme cases for ccc and cϕ. This difference is caused by the fact that there is a lot

less variability in the CET1 ratio in the AT1P model, compared to the direct CET1 model. The

fact that the relative contribution of stocks is a lot lower in the AT1P model, and thus conversion

occurs a lot less often, confirms this observation.

49



Table 5.3: This table shows the prices (as percentage of the principal) of the CoCos from Table 4.1, issued by ING Group on April 16, 2015, and by
Banco Popular Group on February 2, 2015, on a number of end-of-month pricing dates. Thereby, it shows the calibrated parameter values H, L, and
σA,1, . . . , σA,6, and equity Et as ratio of the initial QMVA, the quasi-market value of assets QMVAt (in mn.), CET1 ratio Ct, number of shares outstanding
Ot (in mn.), and risk-free rate r, to be used in the pricing algorithm. These are all values used for pricing the CoCos in the AT1P model.

ING Group

t CoComarket
t Et (%) Ct (%) Ot QMVAt ($) r (%) H L [σA,1, . . . , σA,6]

October 30, 2015 100.350 5.823 12.60 3870 968,892 1.7430 0.9431 0.6596 [0.0177, 0.0119, 0.0123, 0.0126, 0.0132, 0.0131]
September 30, 2015 97.250 5.661 12.60 3870 967,228 1.7430 0.9450 0.6592 [0.0180, 0.0124, 0.0135, 0.0132, 0.0147, 0.0144]

August 31, 2015 98.500 6.089 12.67 3869 971,635 1.9850 0.9408 0.6585 [0.0191, 0.0129, 0.0139, 0.0131, 0.0148, 0.0144]
July 31, 2015 100.625 6.738 12.73 3869 978,400 2.0460 0.9347 0.6615 [0.0211, 0.0143, 0.0154, 0.0154, 0.0156, 0.0158]
June 30, 2015 100.250 6.581 12.80 3868 967,770 2.1850 0.9363 0.6572 [0.0212, 0.0148, 0.0162, 0.0156, 0.0171, 0.0164]
May 29, 2015 100.300 6.171 13.20 3866 1,029,400 2.0570 0.9397 0.6616 [0.0194, 0.0131, 0.0145, 0.0142, 0.0146, 0.0148]

April 30, 2015 99.950 5.540 13.60 3864 1,079,055 1.9280 0.9452 0.6600 [0.0173, 0.0115, 0.0125, 0.0119, 0.0128, 0.0124]

Banco Popular Group

t CoComarket
t Et (%) Ct (%) Ot QMVAt ($) r (%) H L [σA,1, . . . , σA,6]

October 30, 2015 98.661 5.093 12.65 2119 155,676 0.6580 0.9507 0.6470 [0.0190, 0.0144, 0.0158, 0.0162, 0.0184, 0.0197]
September 30, 2015 96.532 4.466 12.65 2119 154,655 0.7050 0.9567 0.6591 [0.0170, 0.0133, 0.0150, 0.0156, 0.0177, 0.0194]

August 31, 2015 99.729 5.148 12.58 2119 156,616 0.8570 0.9503 0.6570 [0.0189, 0.0141, 0.0166, 0.0167, 0.0167, 0.0189]
July 31, 2015 101.897 5.574 12.52 2119 158,176 0.7480 0.9465 0.6494 [0.0202, 0.0151, 0.0170, 0.0173, 0.0189, 0.0204]
June 30, 2015 99.486 5.754 12.45 2119 159,334 0.8875 0.9450 0.6539 [0.0209, 0.0157, 0.0178, 0.0182, 0.0197, 0.0214]
May 29, 2015 101.634 5.908 12.43 2117 160,880 0.5950 0.9434 0.6552 [0.0210, 0.0153, 0.0169, 0.0171, 0.0187, 0.0198]

April 30, 2015 102.255 6.076 12.42 2115 162,455 0.4250 0.9418 0.6551 [0.0214, 0.0154, 0.0175, 0.0177, 0.0183, 0.0196]
March 31, 2015 103.944 5.870 12.40 2112 163,385 0.2910 0.9438 0.6539 [0.0210, 0.0157, 0.0173, 0.0176, 0.0193, 0.0206]

February 27, 2015 103.178 5.374 12.10 2108 160,771 0.4330 0.9487 0.6564 [0.0196, 0.0148, 0.0156, 0.0158, 0.0180, 0.0196]

Notes: In February and March the ING CoCo was not yet listed. Therefore there are only seven pricing dates for the ING CoCo, whereas the Banco Popular CoCo has nine pricing dates. As
for the risk-free rates r, we use the 10 year maturity points from Overnight Indexed Swap (OIS) curves. These curves denote the fixed rates for fixed-versus-floating swap contracts where the
floating leg is the overnight rate. We use the Libor variant for the dollar-denominated ING CoCo, and the Euribor variant for the euro-denominated Banco Popular CoCo.
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(a) Prices. (b) Relative value of stocks.

(c) Relative value of principal. (d) Relative value of coupons.

Figure 5.3: Results of the CoCo pricing procedure for the ING CoCo on June 30, 2015, using the
results from the AT1P model from Table 5.3 and G = 10, 000 simulation paths per combination
of ccc and cϕ. Pricing is done using a range of different values for the coupon cancel threshold
ccc and the CoCo call threshold cϕ. Panel (a) shows the resulting CoCo prices. Panel (b), (c),
and (d) show the proportion of this price that can be attributed to the potential value of stocks
received, principal received, and coupon payments, respectively.

Furthermore, as introduced in Section 4.3, the CET1 ratio cannot become consistently higher

than 15.08% in the AT1P model. This implies that for ccc > 15% the relative contribution of

coupon payments is nearly zero, as almost no coupons will be payed out. For cϕ > 15%, the

CoCo will never be called. These two observations explain the quick convergence of the CoCo

prices and contribution of the different components for high levels of the thresholds.

For intermediate levels of the thresholds (around 10-14%), the relative contribution charts

Figure 5.3b, Figure 5.3c, and Figure 5.3d, show similar behavior as in the CET1 model. For

smaller values of the thresholds, they again show very quick convergence. This is explained by

noting that when the firm value At is relatively close to the default level Ĥt, Et is small. When in

this situation the difference At − Ĥt decreases somewhat, Et will decrease by approximately the

same amount, but At/Et will increase at a far higher rate. This implies that, in the AT1P model,

when the CET1 ratio is at a level between 7 and 10% at some point, it is very likely to either

quickly go up again towards an intermediate level, or fall towards conversion. This explains the

small differences in the relative contributions when the thresholds are set low.
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Table 5.4: Price variation of the ING CoCo for different values of the coupon cancel and call
thresholds in the AT1P model. Pricing done on June 30, 2015, where we recall that the market
price of the CoCo was 1.0025 per unit of notional.

ccc (%) cϕ (%) Estimated price 95% confidence interval

9 9 1.0515 [1.0461; 1.0569]
10 1.0488 [1.0434; 1.0543]
11 1.0423 [1.0368; 1.0478]
12 1.0317 [1.0261; 1.0374]

10 9 1.0503 [1.0449; 1.0558]
10 1.0476 [1.0421; 1.0531]
11 1.0411 [1.0355; 1.0466]
12 1.0303 [1.0246; 1.0360]

11 9 1.0471 [1.0416; 1.0526]
10 1.0444 [1.0388; 1.0499]
11 1.0377 [1.0321; 1.0433]
12 1.0266 [1.0208; 1.0323]

12 9 1.0374 [1.0318; 1.0431]
10 1.0347 [1.0290; 1.0403]
11 1.0277 [1.0219; 1.0335]
12 1.0157 [1.0098; 1.0216]

These effects also have some economical intuition. Firstly, banks are indeed likely not to let

their CET1 ratio become too high. Secondly, when the CET1 ratio decreases towards a dangerous

level of about 7-9%, the bank management will attempt to quickly get it in the safe-zone again,

as such a low CET1 ratio can have significant impact on the market’s confidence in the bank’s

credit-worthiness. However, this deteriorating market confidence may very well reinforce the

downward trend as well, indeed pushing the CET1 ratio more quickly towards conversion.

Now in Figure 5.3a and Table 5.4, apart from the effects described above, we see some

differing behavior. Where in the direct CET1 model the CoCo price is stricly decreasing in ccc

and cϕ, this is not the case in the AT1P model. In the AT1P model the price is still strictly

decreasing in ccc, but it is decreasing in cϕ only up to 13.8%, and increasing for higher values

of cϕ, when ccc is not too high. This is explained as follows. For cϕ low, the CoCo is called

very often, especially as the CET1 ratio does not float around a lot at low values, as explained

above. This gives a high price. When cϕ is intermediate, the CoCo is extended regularly, and

when it is extended, conversion happens relatively often as well, as the CET1 ratio can easily

slip from intermediate to low values and through the conversion barrier. This drives down the

price. When cϕ is high, the CoCo is redeemed very rarely. However, when the CET1 ratio is

very high, it is unlikely that conversion will occur in the period after the call date, and the fact

value is lost due to the time value of money, is compensated by the extra coupons received. This

combination leads to the price increasing again.
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Figure 5.4: Combinations of the coupon cancel threshold ccc and the CoCo call threshold cϕ that
make the AT1P model implied CoCo price equal to the market observed price. For the model
parameters and the market observed prices we use the values from Table 5.3. The pricing dates
are the last days of the months mentioned in the legends.

5.2.2 Comparison to observed market prices

Now we move on to comparing the results from our pricing algorithm to the market observed

prices on the different pricing dates. Using the settings from Table 5.3, we perform the same

analysis as in Section 5.1. Figure 5.4 shows the results of this analysis for both the ING and the

Banco Popular CoCo.

The most obvious observation from Figure 5.4 is that for ING, for many values of ccc there

exist multiple possible values for cϕ that make the AT1P model price equal to the market price.

This is explained by the observations made in Section 5.2.1. This effect is only limitedly visible

for Banco Popular. The effect is smaller for Banco Popular because the asset value and thus

the CET1 ratio has more variability for Banco Popular, which implies that the CET1 ratio roams

around at low values more often. This in turn leads to differences in price for different low

values of cϕ.

Overall, Figure 5.4 displays that the AT1P model shows more consistency than the CET1

model. The contour lines lie closer to each other, both for the ING and for the Banco Popular

CoCo. Furthermore, we again observe that the CoCo price is not very sensitive to the amount of

extension risk. However, for the AT1P model, this only holds for sufficiently small values of cϕ.

In the region of small values for cϕ, we see again that the values for ccc making the model price

equal to the market price are very high. However, for higher cϕ, the coupon cancel threshold

pricing the CoCo correctly are lower and more realistic.

5.3 Comparing the conversion behavior

In Section 5.1 and Section 5.2 we have seen that the pricing behavior of the direct CET1 and the

AT1P model look rather similar at first sight. The effects of the thresholds on the CoCo price
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are similar, and and the thresholds needed to arrive at the market price are also close to each

other at levels of around 12-14%. We do see strong differences in the relative contribution of the

different components to the CoCo price. To further analyze these differences, we take a closer

look at the conversion behavior of both models. Figure 5.5 and Figure 5.6 display two empirical

distributions extracted from simulation paths created with the direct CET1 model and the AT1P

model, respectively. Figure 5.5a and Figure 5.6a show the distribution of the conversion recovery

rates. That is, what percentage of the principal the stocks received at conversion are worth. A

recovery rate of 1 hence means that conversion did not result in any extra loss of value, as the

value of the stocks received at conversion is equal to the original claim. A recovery rate of 0

means that the claim is worthless after conversion.

Figure 5.5a shows that in the direct CET1 model conversion happens very often (68.1% in

the paths considered), but does not lead to a high average loss of value. At the majority of

conversions the stock price was above the floor price, resulting in a recovery rate of 1. This

is somewhat surprising, as we use a correlation of ρ = 0.9 between the shocks in stock price

and the shocks in the CET1 ratio, meaning they should move together rather tightly. Conversion

happens so often, however, that there are a lot of paths where the stock price has not gone down

enough to result in significant loss of value.

Figure 5.6a shows a completely different story for the AT1P model. While the overall con-

version rate is much lower (18.3% in the paths considered), the average loss of value is much

higher. This is explained by inspecting (3.3.10) combined with the regression results from (4.3.3).

(3.3.10) tells that, while containing an idiosyncratic shock, the value of the CET1 ratio is very

tightly linked to the assets-on-equity ratio. Especially for a high value of the correlation, such

as the $ = 0.9 considered in this case. Furthermore, the idiosyncratic shocks on the CET1 ratio

are not persistent due to the lack of an autoregressive component in (3.3.10). Now combining

this insight with (4.3.3), we see that the CET1 ratio will cross the 7% conversion barrier for a

rather specific range of values of the assets-on-equity-ratio. This specific range in turns leads to

a specific range of stock prices at conversion, due to the direct link between Et and At in the

AT1P model (see (3.3.7)). This explains the variation in recovery rates for the AT1P model. We

note that the recovery statistics for the AT1P model look a lot more realistic than those of the

CET1 model: a rather low conversion rate, but a high average loss of value when conversion

occurs.

Figure 5.5b and Figure 5.6b show that the distribution of conversion times is rather similar

for both models. Due to the continuous nature of the models it takes some time before reaching

conversion. And the longer conversion is avoided, the smaller the probability of conversion, as

the CET1 ratio is then more likely to have drifted away from the conversion barrier. For both

models we see a significant drop at t = 5 years. This is caused by the fact that t = 5 is a call

date for the CoCo, and it is redeemed in a lot of the paths at this point, especially as the call

threshold is set fairly low at cϕ = 9%.
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(a) Histogram of conversion recovery rates: mean rate is 0.82.
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Figure 5.5: Empirical distributions of the recovery rates of conversion, and the conversion times
for the direct CET1 model. Paths built for the ING CoCo on June 30, 2015, using parameter
settings from Table 5.1. The overall conversion rate on these paths is 68.1%. Both distributions
and the reported means are conditional on conversion occurring before default and redemption.
Thresholds are set at ccc = cϕ = 9%, and d = 0, ρ = 0.9. Estimated price using these settings on
G = 10, 000 simulation paths is 1.0690 with 95% confidence interval [1.0660; 1.0712].
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Conversion time # (in years from issue date)
1 2 3 4 5 6 7 8 9 10

P
ro

b
ab

il
it
y

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) Histogram of conversion times: Et [ϑ|ϑ < min {ϕ, τ}] = 2.78.

Figure 5.6: Empirical distributions of the recovery rates of conversion, and the conversion times
for the AT1P model. Paths built for the ING CoCo on June 30, 2015, using parameter settings
from Table 5.3. The overall conversion rate on these paths is 18.3%. Both distributions and
the reported means are conditional on conversion occurring before default and redemption.
Thresholds are set at ccc = cϕ = 9%, and q = 0, $ = 0.9. Estimated price using these settings on
G = 10, 000 simulation paths is 1.0515 with 95% confidence interval [1.0461; 1.0569].

5.4 Sensitivity analysis

In this section we investigate the sensitivity of the CoCo price for some of the parameters. To

keep the analysis tractable, we focus solely on the ING CoCo on the pricing date June 30, 2015 in

this section. We start by looking at different combinations of the pay-out rate q and ‘correlation’

parameter $ in the AT1P model, as well as different combinations of the pay-out rate d and
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Figure 5.7: Price variation of the ING CoCo for different values of the pay-out rate and corre-
lation parameters in the AT1P and the CET1 model on G = 10, 000 simulation paths for each
combination of settings. Pricing done on June 30, 2015, where we recall that r = 2.185%, and
the market price of the CoCo was 1.0025 per unit of notional. For both models we set ccc = 9%
and cϕ = 9%. These are values that we believe to be close to the actual point at which coupons
and calls are canceled.

correlation parameter ρ in the CET1 model. We use a combination of the CoCo call and coupon

cancel thresholds that we believe to lie close to the actual values at which coupons and calls will

be canceled.

We set the coupon cancel threshold equal to 9%. We believe the bank will only cancel a

coupon payment when its CET1 ratio moves dangerously close towards the conversion barrier,

and when the regulator strongly advises the bank to do so. As canceling a coupon can have

a strong signaling effect, banks will definitely have a very large incentive to postpone coupon

cancellation as much as possible. As the regulator fears this signaling effect as well, it is not

likely to intervene much earlier.

As for the call threshold, we believe this lies relatively close to the conversion threshold as

well. Similarly to canceling a coupon, skipping a call may have a strong signaling effect, which

makes both the bank and the regulator reticent in doing so. For this reason, we set cϕ = 9% as

well.

In the AT1P model, we calibrate the parameters for different values of the pay-out rate q.

Then, for the different solutions of these calibrations, we create simulation paths using differ-

ent values of the ‘correlation’ parameter $. Subsequently, we price the CoCo on these paths.

Figure 5.7a displays the results of this analysis.

In the CET1 model, the pay-out rate d and the correlation parameter ρ do not influence

the calibration. They only affect the simulation paths. We thus create simulation paths using

different combinations of d and ρ, and price the ING CoCo on these paths. Figure 5.7b displays

the results of this analysis.

From Figure 5.7b we see that the CoCo price is decreasing in the correlation parameter ρ in

the direct CET1 model. This is logical, as higher ρ means lower stock price at conversion. When

ρ is high, and the ratio decreases towards conversion, the stock price decreases as well, which
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may lead to a stock price below the floor price at conversion, driving down the CoCo value.

When ρ is low, the stock moves more independently of the CET1 ratio, and the stock price could

very well be quite high at conversion, resulting in a limited loss of value for the CoCo holder.

Thereby, ρ does not influence the probability of conversion. The CoCo price is decreasing in d

as well, as a higher d in the direct CET1 model also simply results in a lower average stock price

at conversion. Overall we note that even for highly stressed values of ρ and d, the direct CET1

model is not able to replicate the market observed CoCo price for realistic values of ccc and cϕ.

In the AT1P model, the CoCo price is decreasing in $ as well, though this effect is somewhat

more complicated than in the direct CET1 model. In the extreme case $ = 0, and when we

take std(At/Et) constant, the CET1 ratio process does not depend on the assets-on-equity ratio.

In this case it is rather likely that Ct does not cross the conversion, as it will take the form of

white noise around the mean β̂0 + β̂1 · std(At/Et). In this case conversion will almost only be

triggered by the asset value crossing the default barrier. This implies that at conversion the

stock price is always very low (most often zero). Then when $ increases, the bond duration

will decrease, as conversions caused by the CET1 ratio hitting the barrier will start to occur as

well. However, the average stock price at conversion will increase. From Figure 5.7a we see

that for higher $ the effect of the decreasing duration (increasing probability of conversion) is

counteracted more and more by the increasing average stock price at conversion.

As for the pay-out rate, the CoCo price increases for increasing q in the AT1P model. This

is in contrast to what happens in the direct CET1 model. This is explained as follows. In the

AT1P model, the pay-out rate influences every step of the process. In the calibration step, a high

q implies higher volatilities and lower H. A high q implies a lower drift of the firm value and

the default barrier. Then as we note that the volatilities are relative with respect to the height of

the firm value, the volatility parameters are set higher. To match the market value of equity for

these higher volatilities, H is set lower. In the pricing step, this results for low q, that the equity

slips below the minimum from (3.3.9) more often, yielding a higher conversion rate and thus a

lower price. Overall, we again note that even for highly stressed values of $ and q, the AT1P

model is not able to replicate the market observed CoCo price for realistic values of ccc and cϕ.

Next, we look at the appropriateness of our decision to set the effective maturity at 10 years.

From Table 5.5 we see that this assumption is valid. Both in the AT1P and in the direct CET1

model, there is a small difference in CoCo price when the imposed maturity is set longer than

10 years. This implies indeed that there is not a lot of value added after the tenth year. The

CoCo will be either converted or called after ten years the vast majority of the time, and the

cash flows that do occur in the paths where the CoCo is still alive more than 10 years after

issue are discounted heavily. We do see that imposing T = 5 years does yield a less accurate

approximation of the price. Between the fifth and the tenth year there is still enough activity to

contribute significantly to the price. This is also visible in Figure 5.5b and Figure 5.6b. We see

that for the AT1P model, there is actually no difference at all between setting the maturity at

10 or longer. This implies that in the AT1P model the CoCo, in the paths considered, is always

either converted or called after 10 years under these settings.

Finally, we assess the sensitivity of the CoCo prices in the AT1P model to the results of the
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Table 5.5: Price variation of the ING CoCo for different values of the imposed maturity T in the
AT1P and the CET1 model and G = 10, 000 simulation paths. Pricing done on June 30, 2015,
where we recall that the market price of the CoCo was 1.0025 per unit of notional. For both
models we set ccc = 9% and cϕ = 9%. These are values that we believe to be close to the actual
point at which coupons and calls are canceled.

Direct CET1 model AT1P model
T Est. price 95% conf. Est. price 95% conf.

5 1.0725 [1.0704; 1.0746] 1.0534 [1.0481; 1.0588]
10 1.0689 [1.0667; 1.0711] 1.0515 [1.0461; 1.0569]
15 1.0685 [1.0663; 1.0706] 1.0515 [1.0461; 1.0569]
20 1.0682 [1.0660; 1.0704] 1.0515 [1.0461; 1.0569]
25 1.0689 [1.0667; 1.0711] 1.0515 [1.0461; 1.0569]

cross-sectional regression analysis from (4.3.3). Ideally, we would want to analyze the impact

of our decision to run the regression on a single date by replicating the pricing approach while

running the regression on different dates. However, as assembling the dataset we use for the

regression is extremely time-consuming, we opt to run scenarios by applying shocks to the

regression results. That is, we apply shocks to β̂0 and β̂1, calibrate the AT1P model using these

shocked parameters, and assess what impact this has on the pricing results. Figure 5.8 shows

the results of this analysis.

From Figure 5.8 we see that the CoCo price is not very sensitive to the value of β̂0. We do find

gradually higher prices for higher β̂0. This is as expected, as a higher β̂0 implies generally higher

CET1 ratios, and thus less conversions. Furthermore, we find decreasing prices for decreasing

β̂1. This is again logical, as a lower (more negative) β̂1 implies that the CET1 ratio decreases

faster when the assets-on-equity ratio increases. We find that the sensitivity to β̂1 is stronger.

This is explained by the arguments set out in Section 5.2.1 on the behavior of the AT1P model.

As the assets-on-equity ratio moves quite erratically when Et is small, and β̂1 controls how the

movements in At/Et are translated into the CET1 ratio, the value of β̂1 has a significant impact

on the amount of conversions. The intercept β̂0 has less impact, as the value of β̂0 only slightly

shifts the critical region for the CET1 ratio, and does not have a strong impact when the CET1

ratio is in the danger-zone just above the conversion threshold. We again find that the model is

not able to replicate the market observed price, even for stressed values of β̂0 and β̂1.

We conclude that both models are unable to replicate market observed CoCo price for real-

istic values of the thresholds, even for highly stressed values of the non-calibrated parameters.

Section 5.5 outlines possible causes for this anomaly.

5.5 Discussion

This section provides possible explanations for the fact that both the AT1P and the direct CET1

model overprice AT1 CoCos for realistic values of the coupon cancel and call thresholds. The

first cause is the fact that our models lack extra downward pressure or shocks on the CET1 ratio

and/or the stock price following (the announcement of) a coupon cancellation, extension, or
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Figure 5.8: Price variation of the ING CoCo for different shocks to the cross-sectional regression
results from (4.3.3) in the AT1P model on G = 10, 000 simulation paths for each combination of
settings. Pricing done on June 30, 2015, where we recall that the market price of the CoCo was
1.0025 per unit of notional. We set ccc = 9% and cϕ = 9%. These are values that we believe to
be close to the actual point at which coupons and calls are canceled. We recall that in the base
case we have β̂0 = 15.2% and β̂1 = −0.1173%.

conversion. Our models assume the stock price and CET1 ratio to be continuous up to conver-

sion. Thereby, the parameters of the processes are fixed over each simulation path, regardless

of coupon cancellation, extension, or conversion occurring in that path. However, in reality, the

announcement of a coupon cancellation or an extension will already be a clear signal to the mar-

ket of deteriorating credit-worthiness, and may thus induce downward pressure on the stock

price. Furthermore, it may indirectly put extra downward pressure on the CET1 ratio as well.

Through a possible downgrade of the issuer, the risk weights on the bank’s assets may increase,

driving down the CET1 ratio. The announcement of conversion will be an even stronger signal,

and will almost definitely imply a downward shock to the stock price.

Secondly, our models lack the uncertainty around the power of the regulator to force conver-

sion. While we do include the power of the regulator to induce extension or coupon cancellation

through the thresholds for the CET1 ratio, we omit the fact that the regulator also has the power

to force conversion even when the CET1 ratio is still above the conversion threshold. The pres-

ence of this feature may have a scaring effect on the market, driving down CoCo prices.

Thirdly, we may consider a correction to the model CoCo prices that takes into account the

Bond-CDS, or funding liquidity, basis, as suggested by Brigo et al. (2015). This is the difference

between the credit spreads implied by the bond prices term structure, and the credit spreads

implied by the CDS rates term structure. This can be interpreted as a funding liquidity basis, as

bonds are funded instruments, while CDSs are not. A way to add this basis to the calibration

procedure is to use par-equivalent CDS spreads (PECS) instead of regular CDS spreads. This is

determined as the value of the CDS spread that makes the CDS-implied bond price equal to its
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market price for the same maturity (see e.g. Elizalde, Doctor, and Saltuk (2009)). Using these

shifted spreads would imply higher CDS rates, and thus calibrated parameters that would result

in more conversion and lower CoCo prices.

To illustrate the implications of ignoring the Bond-CDS spread, we price a regular Tier 2 bond

using the direct CET1 and the AT1P models, with the calibrated parameters from Table 5.1 and

Table 5.3. We pick a bond issued by ING that has characteristics as close as possible to the CoCo

bond analyzed in Chapter 5, apart from the conversion mechanism and the call and coupon

cancel features. Table 5.6 gives the characteristics of this regular defaultable bond. Table 5.7

shows the results of the pricing analysis.

Table 5.6: Details of the regular defaultable bond by ING Group.

Issue date: September 25, 2013
Name securities: Subordinated notes

ISIN ID: USN45780CT38
Maturity: September 25, 2023 (10 years).
Coupons: 5.800% per annum, payable semi-annually in arrear.

Day count convention: 30/360.
Coupon cancel options: None.

Callable? No.
Seniority: Unsecured, subordinated Tier 2.

Table 5.7: Price of the ING regular defaultable bond in both models for G = 10, 000 simulation
paths. Pricing done on June 30, 2015. Recovery rate is assumed to be 20%.

Direct CET1 model AT1P model
Market price Est. price 95% conf. Est. price 95% conf.

1.0992 1.1185 [1.1116; 1.1253] 1.1139 [1.1074; 1.1203]

We indeed find the model prices to be 1.5-2% above the market observed price. This differ-

ence is explained by the Bond-CDS argument set out above. Now noting that this basis is likely

to be present as well in CoCo prices, adding this to the CoCo pricing procedure will bring the

model CoCo prices closer to market observed CoCo prices.

Fourthly, the market may have additional fear for regulatory changes. The CoCos we con-

sider both contain clauses that state they may be redeemed for the principal amount once reg-

ulatory changes occur that alter the tax deductibility of coupon payments or the definition of

AT1 capital. The market may fear that there is a significant probability that one of those events

will occur, and may therefore be hesitant to pay above par for an AT1 CoCo.

Lastly, the AT1 CoCo bond market may contain an extra illiquidity spread. Due to the

abundance of uncertain factors in AT1 CoCo contracts, a lot of investors are still prohibited or

very reluctant to invest in CoCos. There is e.g. an overall prohibition to invest in CoCos for

private investors in the EU, and many large institutional investors such as pension funds, may

not invest in CoCos as well due to their strict mandates. This may have an additional downward

effect on CoCo prices.
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Chapter 6

Concluding remarks

This study assesses two pricing models for AT1 eligible non-dilutive conversion-to-equity CoCo

bonds. These CoCos can be viewed as the sum of a perpetual, callable, defaultable bond for

which the coupon payments can be canceled, and an option with as underlying the CET1 ratio,

paying out a variable number of equity shares upon conversion. AT1 CoCos thus contain two

important additional risk drivers compared to regular equity conversion CoCos: (i) coupon

cancel risk, as coupon payments may be canceled on the discretion of the issuer or the regulator

without consequences for the rest of the CoCo lifetime; and (ii) extension risk, as there may be

no incentives to call, and the regulator may prohibit a call. We assume these risk factors are

driven by the CET1 ratio: when the CET1 ratio is below a certain coupon cancel threshold at a

payment date, the coupon payment is canceled, and when the CET1 ratio is below a certain call

threshold at a call date, the CoCo is extended (the call date is skipped).

We model the CET1 ratio process and the stock price process to approximate CoCo prices

using a Monte Carlo algorithm. We use two first passage-time approaches to do so: (i) the struc-

tural Analytically Tractable First-Passage Time (AT1P) model, based on Brigo and Tarenghi’s

2004 extension of the Black-Cox model. We establish a link to the CET1 ratio in this frame-

work using cross-sectional regression analysis; and (ii) an approach where we directly model

the CET1 ratio as a mean reverting stochastic process, based on the framework of Cheridito and

Xu (2015). In both approaches, we use expressions for the risk-neutral survival probabilities to

calibrate the model parameters to market observed CDS spreads. For the calibration we further

use data on CET1 ratios, market value of equity, and stock volatility.

As case studies, we test both models on AT1 CoCo issues by Banco Popular and ING, both

from early 2015. We find that coupon cancel and extension risk have a significant impact on

CoCo prices, both in the AT1P and in the direct CET1 model. When the coupon cancel threshold

is set higher, coupons are canceled, significantly driving down CoCo prices. We find an effect

of the extension risk as well, be it less large. When the call threshold is set higher, the CoCo is

redeemed less often, which implies a larger probability of conversion, and stronger discounting

of a potential principal redemption. This effect is counteracted by the value of potential extra

coupon payments.
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While both models show comparable prices for equal levels of the thresholds, they show

large differences in the relative contribution of the three CoCo price components principal,

coupons, and stocks. In the direct CET1 model the conversion rate is very high, but the average

loss of value at conversion is low. In the AT1P model, the conversion rate is lower, but the

average loss of value at conversion is much higher. The behavior of the AT1P model seems

more realistic, as we expect conversion not to happen very often in reality, but with a large loss

of value. Furthermore, the dispersion of CoCo prices for different values of the thresholds show

more economical intuition in the AT1P model.

For both models, we need to set the call and coupon cancel thresholds unrealistically high

to match market observed CoCo prices. In other words, when setting the thresholds at eco-

nomically intuitive levels, both models overprice CoCos significantly. This may be caused by

a number of reasons: (i) the lack of extra downward pressure or shocks following announce-

ments of coupon cancellation, extension, or conversion; (ii) the lack of the uncertainty regarding

the power of the regulator to force conversion; (iii) the absence of the Bond-CDS basis in the

calibration procedure; (iv) the lack of an illiquidity premium.

6.1 Recommendations for further research

We outline here a number of recommendations for further research on AT1 CoCo prices. Firstly,

as noted in Section 5.5, a weakness of our models is that they are Gaussian based and their

parameters are fixed beforehand. An interesting extension would be to use more complex

stochastic processes for the CET1 ratio and the stock price, including jumps and possible shifts

of parameters following announcements of coupon cancellation, extension, and conversion. In

the direct CET1 model, these more complex features may be added straight to the processes for

the CET1 ratio and the stock price. In the AT1P model, these features may be added to the firm

value process, and to the translation of the firm value to the CET1 ratio.

Furthermore, in the AT1P model, an interesting opportunity for further research would be

to design a more dynamic link between the structural model and the CET1 ratio. A weakness

of our method is that it establishes the link at one point in time, while this link is likely to be

influenced strongly by the economic cycle. Making this link cyclical may result in better CoCo

pricing strength.

It may also be interesting to add regulatory forced conversions to the framework, for example

using a Parisian trigger feature as suggested by Leung and Kwok (2015). This Parisian trigger

feature adds one extra path dependent state variable in the pricing model of a CoCo.

Fourthly, it would be interesting to perform pricing analyses over longer horizons, to be

able to assess CoCo pricing strength during different economic circumstances and different

corresponding CDS curves. As introduced in Section 4.2.2, the direct CET1 model proposes

calibration problems when applied over a longer horizon. To overcome this issue, one may add

the level and/or the slope of the CDS curve to the calibration procedure. This may remove the

autocorrelation from the errors over long calibration horizons. Analysis of the exact implications

of this addition is left for further research.
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It may also be interesting to use term structures of bond prices or PECS for calibration and

hedging, instead of regular CDS rates. This includes the Bond-CDS basis to the framework.

Comparing both techniques in terms of their CoCo pricing strength can give important infor-

mation regarding which products are most appropriate to hedge CoCo exposure.

In general, it would also be interesting for further research to analyze the hedging perfor-

mance of both models. This hedging performance can be evaluated using the hedging portfolios

from Section 3.3.2 and Section 3.4.2 and a time series of CoCo prices. Such an analysis can give

important information on the effectiveness of using the proposed products, CDS contracts and

stocks, for CoCo hedging, and thus on the validity of our models.

Finally, an interesting extension to our framework would be to add a stochastic model for

the short rate. Our methods already provide the possibility to do so, and this may give some

extra understanding in what drives AT1 CoCo prices.
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Appendix A

List of banks used for cross-sectional

regression analysis

Table A.1: This table shows the banks we use for the cross-sectional analysis on the link between
asset/equity and CET1 ratio. All these banks are based in Europe and under supervision of the
European Banking Authority.

Name: Name: Name:

ABN AMRO Bank N.V. Commerzbank AG Mediobanca S.p.A.
Allied Irish Banks plc Rabobank B.A. MPCA Ronda
Alpha Bank Danske Bank National Bank of Greece
BMPS S.p.A. Deutsche Bank AG NCG Banco
Banca Popolare Di Milano DNB Bank Group Nordea Bank AB (publ)
Banco Bilbao Vizcaya Argen-
taria

DZ Bank AG Nykredit

Banco Comercial Português Erste Group Bank AG OP-Pohjola Group
Banco de Sabadell Eurobank Ergasias Piraeus Bank
Banco Financiero y de Ahorros Groupe BPCE Raiffeisen Zentralbank Österre-

ich AG
Banco Popolare - Società Coop-
erativa

Groupe Crédit Agricole Royal bank of Scotland Group
plc

Banco Popular Español Groupe Crédit Mutuel Skandinaviska Enskilda Banken
AB

Banco Santander HSBC Holdings plc SNS Bank N.V.
Barclays plc ING Bank N.V. Société Générale
Bayerische Landesbank Intesa Sanpaolo S.p.A. Svenska Handelsbanken AB
Belfius Banque SA KBC Group NV Swedbank AB
BNP Paribas Kutxabank Bank of Ireland
Caixa Geral de Depósitos La Banque Postale UniCredit S.p.A.
Caja de Ahorros y M.P. de
Zaragoza

Landesbank Berlin Holding AG UBI Banca

Caja de Ahorros y Pensiones de
Barcelona

Lloyds Banking Group plc WGZ Bank AG
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Appendix B

Numerical solution survival

probability direct CET1 model

We want to solve the PDE from (3.4.5), with boundary conditions from (3.4.6), for several ma-

turities T. We use the Crank-Nicolson method to do so. The Crank-Nicolson method is an

example of a finite difference method, and it is based on approximating the continuous deriva-

tives in (3.4.5) using divided differences defined on a discrete grid (see Richtmyer and Morton

(1967)).

Following Hull (2011) and Brandimarte (2006), where we adapt their methods to fit our

Exponential Ornstein-Uhlenbeck CET1 underlying, we set up a discrete grid with respect to

both time t and the logarithm of the CET1 ratio H. The maturity T is divided into P equally

spaced intervals of length δt = T/P. Furthermore, we specify Hmax to be the largest possible

log-CET1 ratio value. We set this maximum at a level where we can safely assume it would

never be reached in reality during the time to maturity. This is necessary, as for computational

purposes we need to set some limit to the underlying process.

Then we divide the range of possible values for H into Q equally spaced intervals, to obtain

δH = Hmax/Q. Now in grid notation gi,j = g(iδt, jδH) denotes the value of the function g at

the (i, j) point on the grid corresponding to time iδt and log-CET1 ratio jδH, for i = 0, 1, . . . , P,

j = 0, 1, . . . , Q. There are a total of (P + 1)× (Q + 1) points on this grid.

In order to construct the Crank-Nicolson method, we start by specifying the explicit method

for solving the PDE. The explicit method is based on expressing the value gi,j explicitly in terms

of the values for gi+1,j+1, gi+1,j, and gi+1,j−1. Using approximations based on Taylor expansions,

and noting that H = jδH, we can write the PDE from (3.4.5) explicitly as:

gi+1,j − gi,j

δt
+ κh̄

gi+1,j+1 − gi+1,j−1

2δH
− κ j

gi+1,j+1 − gi+1,j−1

2
+

1
2

η2 gi+1,j+1 − 2gi+1,j + gi+1,j−1

(δH)2 = 0,

(B.1)

for i = 0, 1, . . . , P− 1 and j = 0, 1, . . . , Q− 1. For details on how we arrive at this expression,

see e.g. Brandimarte (2006, Chapter 5 and 9), where we adapt his techniques to an Ornstein-
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Uhlenbeck underlying.

Contrary to the explicit method lies the implicit method, which is based on expressing the

value gi+1,j implicitly in terms of the values for gi,j+1, gi,j, and gi,j−1. Again using approxima-

tions based on Taylor expansions, and noting that H = jδH, we can write the PDE from (3.4.5)

implicitly as:

gi+1,j − gi,j

δt
+ κh̄

gi,j+1 − gi,j−1

2δH
− κ j

gi,j+1 − gi,j−1

2
+

1
2

η2 gi,j+1 − 2gi,j + gi,j−1

(δH)2 = 0, (B.2)

for i = 0, 1, . . . , P− 1 and j = 0, 1, . . . , Q− 1.

Finally, the Crank-Nicolson method is given by the average of the explicit and the implicit

methods defined above. It has a higher accuracy and stability than the purely implicit or explicit

methods, but requires a higher computation time (see Strauss (2008, Chapter 8)). However,

for our purpose the computation time remains within reasonable bounds, making the Crank-

Nicolson method the preferable alternative. When we take the average of (B.1) and (B.2) we

obtain:

gi+1,j − gi,j

δt
+

κh̄
4δH

(gi,j+1 − gi,j−1) +
κh̄

4δH
(gi+1,j+1 − gi+1,j−1)−

κ j
4
(gi,j+1 − gi,j−1)

−κ j
4
(gi+1,j+1 − gi+1,j−1) +

η2

4(δH)2 (gi,j+1 − 2gi,j + gi,j−1)

+
η2

4(δH)2 (gi+1,j+1 − 2gi+1,j + gi+1,j−1) = 0 ⇐⇒

gi,j−1δt
4

(
κh̄
δH
− κ j− η2

(δH)2

)
+ gi,j

(
1 +

δtη2

2(δH)2

)
+

gi,j+1δt
4

(
− κh̄

δH
+ κ j− η2

(δH)2

)
=

gi+1,j−1δt
4

(
− κh̄

δH
+ κ j +

η2

(δH)2

)
+ gi+1,j

(
1− δtη2

2(δH)2

)
+

gi+1,j+1δt
4

(
κh̄
δH
− κ j +

η2

(δH)2

)
⇐⇒

−αjgi,j−1 + (1− β j)gi,j − γgi,j+1 = αjgi+1,j−1 + (1 + β j)gi+1,j + γjgi+1,j+1,

(B.3)

where:

αj =
δt
4

(
η2

(δH)2 + κ j− κh̄
δH

)
,

β j = −
δt
2

(
η2

(δH)2

)
, and

γj =
δt
4

(
η2

(δH)2 − κ j +
κh̄
δH

)
,

for i = 0, 1, . . . , P− 1 and j = 0, 1, . . . , Q− 1.

Now, we note that we only need to consider values of the CET1 ratio larger than 4.5, as

the survival probability is zero by definition for CET1 ratio values lower than or equal to 4.5

(see Section 4.2). We hence set Hmin to be the minimum value of the log-CET1 ratio, which in

this case is equal to the default barrier log (cτ) = hτ = log (4.5). We only need to consider the

domain Hmin ≤ H ≤ Hmax. Now on the boundaries of the grid we determine the corresponding
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function values. We obtain, using the boundary conditions from (3.4.6):

g(t, Hmin) = 0, for 0 ≤ t ≤ T, (B.4)

gT,H = I{H>hτ}, for Hmin ≤ H ≤ Hmax, (B.5)

gt,Hmax = 1, for 0 ≤ t ≤ T. (B.6)

The intuition behind these conditions is as follows: (B.4) for a CET1 ratio of 4.5, at any time

point, the survival probability is 0, as the company is by assumption in default here; (B.5) at

maturity, the survival probability is 1 when the CET1 ratio is larger than 4.5, and zero otherwise;

and (B.6) at the largest log-CET1 ratio value Hmax, the survival probability is 1 at any point in

time, as we can say (almost) surely that the ratio will not drop to the default barrier once it has

reached this high level.

Taking these boundary conditions into account, we can express the system of equations from

(B.3) in matrix notation as a tridiagonal system:



1− β1 −γ1

−α2 1− β2 −γ2 0
−α3 1− β3 −γ3

. . . . . . . . .

0 −αQ−2 1− βQ−2 −γQ−2

−αQ−1 1− βQ−1





gi,1

gi,2

gi,3
...

gi,Q−2

gi,Q−1


=



1 + β1 γ1

α2 1 + β2 γ2 0
α3 1 + β3 γ3

. . . . . . . . .

0 αQ−2 1 + βQ−2 γQ−2

αQ−1 1 + βQ−1





gi+1,1

gi+1,2

gi+1,3
...

gi+1,Q−2

gi+1,Q−1


. (B.7)

This system, combined with the boundary conditions in (B.4)-(B.6), can be solved using the

iterative Tridiagonal Matrix Algorithm (TDMA, Thomas (1949)). This enable us to fill in the

values at every point in the grid. The risk-neutral survival probability QCET1
t (τ > T) for a given

starting value for the log-CET1 ratio can then be read from the grid at i = 0. For a starting value

of the log-CET1 ratio that is not in the grid Hmin, Hmin + δH, . . . , QδH ≡ Hmax, we use linear

interpolation to determine the risk-neutral survival probability.
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Appendix C

Stability calibration CET1 model
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(a) Stability of η and κ for fixed Ht and h̄.
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(b) Stability of Ht and h̄ for fixed η and κ.

Figure C.1: Value of the logarithm of objective function (4.2.1) for varying values of pairs of
parameters, keeping the parameters not considered equal to their optimal calibrated values.
We use the calibration results for ING on June 30, 2015, where we have as calibrated optimal
parameters Ht = 2.5657, κ = 0.9430, η = 0.4666, and h̄ = 2.3893.
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(a) Stability of Ht and η for fixed h̄ and κ.

Ht

1.6 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

5

0

0.5

1

1.5

2

2.5

3

3.5

4

Lo
g 

of
 o

bj
ec

tiv
e 

fu
nc

tio
n

-2

0

2

4

6

8

10

(b) Stability of Ht and κ for fixed h̄ and η.

Figure C.2: Value of the logarithm of objective function (4.2.1) for varying values of pairs of
parameters, keeping the parameters not considered equal to their optimal calibrated values.
We use the calibration results for ING on June 30, 2015, where we have as calibrated optimal
parameters Ht = 2.5657, κ = 0.9430, η = 0.4666, and h̄ = 2.3893.
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Appendix D

Analytical expression survival

probability AT1P model

We are proposed with the task of finding an expression for Qt(τ > T) under the model of

(3.3.4) and (3.3.6), for different values for T. We note that the risk-neutral survival probability

can be interpreted as a European down-and-out binary call option on an underlying with time-

dependent parameters. That is, the pay-off is one if the underlying stays above the barrier level

up to maturity (survival) and pay-off is zero when the underlying hits the barrier at any time

before or at maturity (default). For this reason, we can adapt techniques from barrier option

pricing as to arrive at our result. We note however that the presence of time-dependent pa-

rameters excludes us from using simple analytical expressions for pricing standard flat-barrier

options. This is one of the reasons the AT1P model does not contain a flat barrier, but a specifi-

cally curved one, as in (3.3.6).

As put forward by Brigo and Tarenghi (2004), the default probabilities implied by the model

of (3.3.4) and (3.3.6), are the same as the default probabilities implied by the ‘shadow’-model

specified as:

‘Firm value’: dA∗t = (r(t)− q∗(t))A∗t dt + σA(t)A∗t dWQ
t (D.1)

‘Default barrier’: H∗t = H exp
(
−
∫ T

t

(
r(u)− q∗(u)− Lσ2

A(u)
)

du
)

, (D.2)

when q∗(t) = r(t)− Lσ2
A(t) and A∗0 = A0. This can be seen by noting that:

Ĥt = H exp
(
−
∫ t

0
(q(u)− q∗(u))du

)
.

Now by integrating A∗ and A we see that the first time A∗t hits H∗t = H is the same as the first

time At hits Ĥt. Hence it suffices to find the risk-neutral survival probabilities from the model

of (D.1) and (D.2) for different values of T. This equivalence serves us nicely, as Rapisarda (2005)

shows a way to derive the risk-neutral survival probability for this system.
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Finding these survival probabilities starts at the famous Black-Scholes PDE that has to be

satisfied for any derivative Π(t, A∗) on an underlying A∗ following a GBM:

∂Π
∂t

(A∗, t) + (r(t)− q∗(t))A∗
∂Π
∂s

(A∗, t) +
1
2

σ2
A(t)(A∗)2 ∂2Π

∂(A∗)2 (A∗, t)− r(t)Π(A∗, t) = 0. (D.3)

Rapisarda (2005) attacks this PDE with tools stemming from physics, as he rewrites (D.3) to be-

come a one-dimensional diffusion equation. This is a well-known PDE from physics describing

a material undergoing diffusion. Rapisarda then writes the solution of the PDE as a so-called

Green’s function, and he shows that only for a barrier of the form of (D.2) it is possible to find

the Green’s function that solves the PDE with the relevant boundary conditions corresponding

to a barrier option. His derivation makes use of the method of images, widely used in the world

of physics.

Rapisarda (2005) then proceeds with specifying for what value of L the barrier becomes as

flat as possible, as to be able to accurately approximate the price of barrier options with a fixed

barrier using this method. This value L∗ is shown to be:

L∗ =
1
2
+

∫ T
0

[∫ T
t

(
r(u)− q∗(u)− 1

2 σ2
A(u)

)
du
] (∫ T

t σ2
A(u)du

)
dt∫ T

0

(∫ T
t σ2

A(u)du
)2

dt
,

which reduces to L∗ = 1
2 + (r− q∗ − 1

2 σ2
A)/(σ

2
A) for the easy case of constant parameters, where

we correspondingly find H∗t = H. Going back to the general case L, the risk-neutral survival

probability using this methodology is derived to be:

Qt(τ > T) = Φ

 log
(

Vt
H

)
+
∫ T

t

(
r(u)− q∗(u)− 1

2 σ2
A(u)

)
du√∫ T

t σ2
A(u)du



−
(

H∗t
Vt

)2L−1
Φ

 log
(
(H∗t )

2

Vt H

)
+
∫ T

t

(
r(u)− q∗(u)− 1

2 σ2
A(u)

)
du√∫ T

t σ2
A(u)du

 ,

(D.4)

where Φ(·) denotes the cumulative distribution function of the standard Gaussian distribution.

Now plugging in q∗(t) = r(t)− Lσ2
A(t) in (D.4) we arrive at our final expression:

QAT1P
t (τ > T) = Φ

 log
(

Vt
H

)
+ 2L−1

2

∫ T
t σ2

A(u)du√∫ T
t σ2

A(u)du

−(H
Vt

)2L−1
Φ

 log
(

H
Vt

)
+ 2L−1

2

∫ T
t σ2

A(u)du√∫ T
t σ2

A(u)du

 ,

(D.5)

denoting the risk-neutral survival probability for maturity T within the model of (3.3.4) and

(3.3.6).
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Appendix E

Analytical expression equity value

AT1P model

The expression for the equity value is found in a way remarkably similar to the derivation of

the risk-neutral survival probabilities from Appendix D. As suggested in Section 3.3, the equity

value can be interpreted as a European down-and-out call option on an underlying with time-

dependent parameters, allowing us again to use techniques from barrier option pricing as to

arrive at our result. This derivation is again based on the equivalence between the model of

(3.3.4) and (3.3.6) and that of (D.1), (D.2) from Appendix D. We employ results of the latter

model to infer the expression for the equity value in the former model.

In this framework we can again specify (D.3) as the relevant PDE that has to be satisfied by

our solution. Note that the characteristics of the derivative that we want to price only occur

in the boundary conditions and not in the PDE itself, making the PDE for both the survival

probabilities and the equity value equal.

We again use the results from Rapisarda (2005) to derive the analytical expression for the

equity value Et at any t < T. He derives for the value of a European down-and-out call option

at time t, DOCt:

DOCt = e−
∫ T

t r(u)du

{
A∗t exp

[∫ T

t

(
v(u) +

1
2

σ2
A(u)

)
du
]
(1−Φ(d1))− H∗T(1−Φ(d2))

− H∗t

(
H∗t
At

)2L
exp

[∫ T

t

(
v(u) +

1
2

σ2
A(u)

)
du
]
(1−Φ(d3)) + H∗T

(
H∗t
At

)2L−1
(1−Φ(d4))

}
,

(E.1)

where:

v(t) = r(t)− q∗(t)− 1
2

σ2
A(t),
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d1 =
log
[

H∗T
H

]
− log

[
A∗t
H

]
−
∫ T

t
(
v(u) + σ2

A(u)
)

du√∫ T
t σ2

A(u)du
,

d2 =
log
[

H∗T
H

]
− log

[
A∗t
H

]
−
∫ T

t v(u)du√∫ T
t σ2

A(u)du
,

d3 =
log
[

H∗T
H

]
− log

[
(H∗t )

2

HA∗t

]
−
∫ T

t
(
v(u) + σ2

A(u)
)

du√∫ T
t σ2

A(u)du
,

d4 =
log
[

H∗T
H

]
− log

[
(H∗t )

2

HA∗t

]
−
∫ T

t v(u)du√∫ T
t σ2

A(u)du
.

Now plugging in q∗(t) = r(t)− Lσ2
A(t) in (E.1) we arrive at an expression for the equity value

Et in the model of (3.3.4) and (3.3.6). As put forward in Brigo et al. (2013, Chapter 8), in the

special case when L = 0, this expression remarkably reduces to that of a forward contract in the

region where the ‘option’ is in the money. However, for L 6= 0, we still need the expression in

(E.1) to evaluate the equity value.

As the expression above is cumbersome to implement in MATLAB R2015a, we opt to turn

to the numerical method set out in Appendix B to approximate accurately the equity value in

the model of (3.3.4) and (3.3.6). This again reduces to solving the PDE similar to the one from

Appendix D:

∂Π
∂t

(A, t) + (r(t)− q(t))A
∂Π
∂s

(A, t) +
1
2

σ2
A(t)(A)2 ∂2Π

∂(A)2 (A, t)− r(t)Π(A, t) = 0. (E.2)

Along the lines of Appendix B, however with a GBM underlying instead of a Ornstein-

Uhlenbeck underlying, and with time-dependent volatility, we find the Crank-Nicolson param-

eters:

αj =
δt
4

(
σ2

A(j)j2 − rj
)

,

β j = −
δt
2

(
σ2

A(j)j2 + r
)

, and

γj =
δt
4

(
σ2

A(j)j2 + rj
)

,

for i = 0, 1, . . . , P− 1 and j = 0, 1, . . . , Q− 1.

Now, we note that we only need to consider values of the asset value larger than the starting

default barrier H, as the equity value is zero by definition for lower asset values. We hence

set Amin to be the minimum value of the asset value, which in this case is equal to the starting

default barrier H. We only need to consider the domain Amin ≤ A ≤ Amax. Now on the

boundaries of the grid we determine the corresponding derivative values. We obtain, using the

boundary conditions for a European down-and-out call option:

Π(t, Amin) = max {Amin − Ĥte−rt, 0}, for 0 ≤ t ≤ T, (E.3)
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Π(T, A) = max {AT − ĤT , 0}, for Amin ≤ A ≤ Amax, (E.4)

Π(t, Amax) = Amax − Ĥte−rt, for 0 ≤ t ≤ T. (E.5)

The intuition behind these conditions is as follows: (E.3) for an asset value of H, at any time

point, the equity value is determined by the shape of the default barrier. For an upward sloping

barrier, the equity value is zero, as the asset value will always be lower than the default barrier

in this case. For a downward sloping barrier, the equity value can still be somewhat above

zero; (E.4) at maturity, the equity value is (AT − ĤT) when the asset value is higher than the

default barrier, and zero otherwise; and (E.5) at the largest asset value Amax, the equity value

is at any point in time is equal to the difference between the asset value and the discounted

default barrier, as we can say (almost) surely that the asset value will not drop to the default

barrier once it has reached this high level.

Now using the Crank-Nicolson parameters along with the boundary conditions (E.3), (E.4),

and (E.5), we can determine the equity value EAT1P
t as explained in Appendix B.
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