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Abstract

In this thesis we investigate the use of bootstrapping schemes to estimate the variance of

estimators from extreme value theory. We consider estimators for the extreme value index,

the central parameter in extreme value theory, and extreme quantiles for two fundamental ap-

proaches in extreme value theory. We analyse the Hill estimator for the extreme value index

and the Weissman estimator for extreme quantiles from the peaks over threshold approach

and the probability weighted moment estimators for the extreme value index and extreme

quantiles from the block maxima approach. We find the limiting distributions of a boot-

strapped sample and bootstrapped block maxima and subsequently determine the asymptotic

behaviour of the bootstrapped Hill estimator and the bootstrapped probability weighted mo-

ment estimators. For the latter estimators, we provide an heuristic argument to show that one

may use the sample variance of bootstrapped estimators to estimate the variance of the initial

estimator.

Keywords: Extreme value index, bootstrapping, Hill estimator, probability weighted moment

estimator, extreme quantile estimation.
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1 Introduction

Extreme value theory deals with extreme and rare events. Therefore, it comes as no surprise

that extreme value theory has received renewed interest in the past years due to the financial

crisis. This branch of statistics models for instance unusually negative stock returns and tries

to find the distribution of these very negative returns. However, extreme value theory is also

extensively used in insurance, hydrology and earth sciences to determine the probability of

default, extreme floods or earthquakes. In all of these cases, one is ultimately trying to determine

(properties of) the distribution of the extreme events, i.e. the events in the tails of the original,

underlying distribution. The challenge extreme value theory faces is the relative scarcity of

extreme events. Therefore, extreme value theory tries to extract as much information as possible

from the empirical distribution function.

The fundamental parameter in the distribution of the extreme events is the (first-order) ex-

treme value index. This parameter is used to parametrize the extreme value distribution and

to measure the heaviness of the tail of the original, underlying distribution. A positive extreme

value index suggests a rather heavy tail and the converse holds for a negative extreme value

index. In addition, the extreme value index has a substantial role in the estimation of extreme

quantiles and probabilities. Hence, the estimation of the extreme value index and its asymp-

totic variance is a topic of great interest. A variety of estimators for the extreme value index

is available. Most of them have explicit formulas for the asymptotic variance of the estimator.

An alternative way to estimate the asymptotic variance of such an estimator is by means of

bootstrapping. Particularly for estimators with an inexplicit variance the bootstrap procedure

could provide a solution. In general, the idea of using a bootstrap procedure for estimators of

the extreme value index and extreme quantiles is relatively unexplored and should provide new

insights.

Clearly, a mathematical proof is needed to justify the bootstrapping procedure to estimate

the variance of a particular estimator. In this thesis we aim to theoretically justify the use of

bootstrapping methods to estimate the asymptotic variance of two extreme value index estima-

tors and two associated extreme quantile estimators. We investigate the Hill estimator and the

probability weighted moment estimator for the extreme value index. The analysis for these two

estimators will be the core of this thesis and the study of the associated extreme quantile estima-

tors follows as a natural application. The Hill estimator and the probability weighted moment

estimator are both based on a number of extreme values from a random sample, however they

differ fundamentally on the procedure of determining these extreme values. The Hill estimator

is based on the largest values from a random sample corresponding to a peaks over threshold

approach, in contrast to the probability weighted moment estimator which is based on block

maxima of a random sample.

We mainly rely on theory presented in de Haan and Ferreira (2006) and this book acts as a

central reference in this thesis. In addition we use results from recent work by Chen Zhou and

Laurens de Haan. Often, a first step is to find a way to theoretically separate the randomness

in the bootstrapping procedure into two parts; A first part due to the fact that the empirical
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distribution function is random and a second part due to the randomness caused by resampling.

Resampling is defined as the act of drawing a bootstrap sample from a random sample. For a

random sample consisting of i.i.d. random variables this separation is available and it will be

the basis for the proofs.

Subsequently, we employ our theoretical results in a practical context by means of simula-

tions and a data analysis to demonstrate their practical use. We consider the daily returns of

several large stock market indices and estimate their extreme value indices and extreme quan-

tiles.

We find that the bootstrap procedure asymptotically gives the appropriate variance for the

Hill estimator and the probability weighted moment estimator as for their associated extreme

quantile estimators. The often used Hill estimator has a variance which is easy to calculate and

as a consequence the practical use of bootstrapping this estimator is limited. We do present the

proof for the Hill estimator because it is illustrative and insightful for future endeavours. On the

other hand, the variance of the probability weighted moment estimator is particularly involved

and the bootstrap procedure gives a computationally easy way to calculate it. Furthermore, sim-

ulations indicate that the bootstrapping procedure gives a reliable variance estimate for the Hill

estimator and probability weighted moment estimator even for a sample of 1000 observations.

2



2 Preliminaries

In this section we introduce concepts and theory needed for the proofs in Section 3 and Section 4.

Preliminary definitions are given in Section 2.1. Subsequently, we introduce the convergence of

random variables and corresponding notation in Section 2.2. We present basic extreme value

theory in Section 2.3 and state successive theorems concerning intermediate order statistics in

Section 2.4. Finally, we familiarize the reader with our bootstrapping schemes in Section 2.5.

2.1 Introductory definitions

We give the definitions of the standard Pareto distribution and standard Fréchet distribution, as

they are used extensively in the coming sections.

Definition 2.1. Suppose X is a random variable with a standard Pareto distribution. Then its

CDF FX(x) is given by

FX(x) = 1− 1
x

for x ≥ 1.

Definition 2.2. Suppose X is a random variable with a standard Fréchet distribution. Then its

CDF FX(x) is given by

FX(x) = exp(−1/x) for x > 0.

The standard Fréchet distribution is max stable, that is

max
j=1,...,m

Xj
d
= mX0

with Xj, j = 0, . . . , m i.i.d. random variables from a standard Fréchet distribution. The symbol
d
= means equality in cumulative distribution.

An arbitrary distribution function F does not need to allow an inverse because it might not

be injective on its domain. However we can always define its left-continuous inverse, which

approximates the inverse function and coincides with the inverse function in case of injectivity.

Definition 2.3. Let f : R → R be a non-decreasing function. Then its left-continuous inverse f←

is defined by

f←(x) = inf{y : f (y) ≥ x}.

This f← is left continuous, non-decreasing and has the following property

u ≤ f (x) ⇐⇒ f←(u) ≤ x

which is called the switching formula. Furthermore, because of its non-decreasing nature, the

left-continuous inverse does preserve order. In the presence of a sample we may define the

empirical distribution function.

Definition 2.4. Let X1, . . . , Xn be i.i.d. random variables with distribution function F. Then the

empirical cumulative distribution function Fn is defined by

Fn(x) =
1
n

n

∑
i=1

1Xi≤x

where 1 is the indicator function.
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2.2 Convergence of random variables

In a non-stochastic world the usual understanding, by means of a metric, of a limit suffices.

For stochastic variables their distance cannot be measured by just the absolute value of their

difference and the need arises to incorporate probability, which is exactly what the following

notions of stochastic convergence do. The following definitions can all be found in Serfling

(2008).

Definition 2.5. A sequence of random variables X1, X2, . . . is said to converge in distribution to a

random variable X, if

lim
n→∞

P(Xn ≤ x) = P(X ≤ x) (2.2.1)

for all x for which the function x 7→ P(X ≤ x) is continuous. Notation: Xn
d−→ X as n→ ∞.

Definition 2.6. Let X1, X2, . . . and X be random variables defined on the same probability space

(i.e. functions Ω 7→ R for a certain sample space Ω). The sequence {Xn}∞
n=1 is said to converge

in probability to X, if for any ε > 0

lim
n→∞

P (|Xn − X| > ε) = 0. (2.2.2)

Notation: Xn
P−→ X as n→ ∞. We note that Equation 2.2.2 is actually a shorter version of

lim
n→∞

P (ω ∈ Ω : |Xn(ω)− X(ω)| > ε) = 0 for any ε > 0.

Definition 2.7. Let X1, X2, . . . and X be random variables defined on the same probability space

(i.e. functions Ω 7→ R for a certain sample space Ω). The sequence {Xn}∞
n=1 is said to converge

almost surely to a random variable X if

P
(

lim
n→∞

Xn = X
)
= 1. (2.2.3)

Notation: Xn
a.s.−→ X as n→ ∞. Again, Equation 2.2.3 denotes a shorter version of

P
(

ω ∈ Ω : lim
n→∞

Xn(ω) = X(ω)
)
= 1.

Theorem 2.1. Assume X, X1, X2, . . . are random variables, then

(i) Xn
P−→ X implies Xn

d−→ X;

(ii) Xn
a.s.−→ X implies Xn

P−→ X.

A proof of this theorem can be found in any textbook on stochastic convergence. We refer

to Serfling (2008, Theorem 1.3.1) and Serfling (2008, Theorem 1.3.3). In addition, we introduce

stochastic small-o en big-O notation.

Definition 2.8. For a sequence of random variables X1, X2, . . . and a corresponding sequence of

constants a1, a2, . . .

(i) Xn = oP(an) is defined as Xn/an
P−→ 0 as n→ ∞.
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(ii) Xn = OP(an) means that for all ε > 0 there exists an M > 0 such that for all n we have

P(|Xn/an| > M) < ε.

We say that Xn/an is bounded in probability.

Obviously Xn = oP(an) implies Xn = OP(an). Often, it is more convenient to use small-o

notation in comparison to a statement about convergence in probability as it is an easy way to

give information about the speed of convergence. Going one step further, most of the random

variables we encounter will be a function of a real number s ∈ D ⊂ R which gives rise to the

notion of uniform convergence in probability.

Definition 2.9. Let X1(s), X2(s), . . . and X(s) be random variables defined for each s ∈ D on

the same probability space. The sequence {Xn(s)}∞
n=1 is said to converge uniformly in probability

for s ∈ D ⊂ R to X(s), if

sup
s∈D
|Xn(s)− X(s)| = oP(1). (2.2.4)

Regularly, we encounter a slight variation in the form of

sup
s∈D

c(s)−1 |Xn(s)− X(s)| = oP(1). (2.2.5)

with c(s) a non-stochastic function of s which is positive on D. In this case we also denote

Equation 2.2.5 as

Xn(s) = X(s) + c(s)oP(1) (2.2.6)

uniformly for s ∈ D. In the next lemma we show that addition works as one would expect with

respect to this notiation.

Lemma 2.1. Suppose X1(s), X2(s), . . . and Y1(s), Y2(s), . . . are both sequences of random variables

such that

Xn(s) = cx(s)oP(1) (2.2.7)

Yn(s) = cy(s)oP(1) (2.2.8)

both uniformly for s ∈ D with cx, cy positive on D. Then

Xn(s) + Yn(s) =
(
cx(s) + cy(s)

)
oP(1) (2.2.9)

uniformly for s ∈ D.

Proof.

0 ≤ sup
s∈D

|Xn(s) + Yn(s)|
cx(s) + cy(s)

≤ sup
s∈D

|Xn(s)|+ |Yn(s)|
cx(s) + cy(s)

≤ sup
s∈D

max
(
|Xn(s)|
cx(s)

,
|Yn(s)|
cy(s)

)
(2.2.10)

Here we use that for any a, b ∈ R≥0, c, d ∈ R>0 we have a+b
c+d ≤ max

(
a
c , b

d

)
. Furthermore, we

see that

sup
s∈D

max( f (x), g(x)) = max

(
sup
s∈D

f (x), sup
s∈D

g(x)

)
(2.2.11)
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for any real functions f , g with D a subset of their domain. Consequently

sup
s∈D

max
(
|Xn(s)|
cx(s)

,
|Yn(s)|
cy(s)

)
= max

(
sup
s∈D

|Xn(s)|
cx(s)

, sup
s∈D

|Yn(s)|
cy(s)

)
= oP(1). (2.2.12)

In the next lemma we deal with multiplication with respect to small-o notation.

Lemma 2.2. Suppose we have sequences of random variables (Wn(s))n≥0, (Xn(s))n≥0, (Yn(s))n≥0 and

(Zn(s))n≥0 such that

Wn(s) = Xn(s) + c1(s)oP(1)

Yn(s) = Zn(s) + c2(s)oP(1)

both uniformly for s ∈ D with c1, c2 positive on D. Furthermore, suppose

sup
s∈D

|Xn(s)|
c1(s)

= OP(1) and sup
s∈D

|Zn(s)|
c2(s)

= OP(1).

Then

Wn(s)Yn(s) = Xn(s)Zn(s) + c1(s)c2(s)oP(1)

uniformly for s ∈ D.

Proof. For the sake of readability we suppress the (s) in the random variables and ci. Notice

that

WnYn − XnZn = (Wn − Xn)(Yn − Zn) + WnZn + XnYn − 2XnZn

and therefore

sup
s∈D

|WnYn − XnZn|
c1c2

≤ sup
s∈D

|(Wn − Xn)(Yn − Zn)|
c1c2

+ sup
s∈D

|WnZn + XnYn − 2XnZn|
c1c2

:= ∆1 + ∆2.

First we deal with ∆1:

∆1 = sup
s∈D

|Wn − Xn|
c1

|Yn − Zn|
c2

≤
(

sup
s∈D

|Wn − Xn|
c1

)(
sup
s∈D

|Yn − Zn|
c2

)
= oP(1).

And subsequently we consider ∆2:

∆2 ≤ sup
s∈D

|WnZn − XnZn|
c1c2

+ sup
s∈D

|XnYn − XnZn|
c1c2

= sup
s∈D

|Zn|
c2

|Wn − Xn|
c1

+ sup
s∈D

|Xn|
c1

|Yn − Zn|
c2

≤
(

sup
s∈D

|Zn|
c2

)(
sup
s∈D

|Wn − Xn|
c1

)
+

(
sup
s∈D

|Xn|
c1

)(
sup
s∈D

|Yn − Zn|
c2

)
= Op(1)oP(1) + Op(1)oP(1)

= oP(1).
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2.3 Extreme value distributions

Let X1, X2, X3, . . . be independent and identically distributed random variables with distribu-

tion function F. The first step in extreme value theory is to investigate the distribution of

max(X1, . . . , Xn) as n → ∞. Note that the latter quantity will converge to the right endpoint

of the underlying distribution and therefore a normalization is required. Suppose there exist

sequences of constants (an)n∈Z≥1 and (bn)n∈Z≥1 with an > 0 such that

max(X1, . . . , Xn)− bn

an

has a non-degenerate limit distribution as n→ ∞, that is

lim
n→∞

Fn(anx + bn) = G(x) (2.3.1)

for every x where G is continuous, and G a non-degenerate distribution function. The Fisher-

Tippett-Gnedenko theorem states that the only distributions G that occur (for suitably chosen

an and bn) as the previous limit are of the form

Gγ(x) = exp
(
−(1 + γx)−1/γ

)
, 1 + γx > 0, (2.3.2)

with γ ∈ R. For γ = 0 we have Gγ(x) = exp(− exp(−x)). The distributions in Equation 2.3.2

are called the extreme value distributions and the parameter γ is called the (first-order) extreme

value index. Besides parametrizing the extreme value distributions, this extreme value index is

of importance in the approximation of extreme probabilities and extreme quantiles. If F satifies

Equation 2.3.1 we say that F is in the domain of attraction of Gγ i.e. F ∈ D(Gγ). This is well-

defined in the sense that F ∈ D(Gγ1) and F ∈ D(Gγ2) implies γ1 = γ2. Furthermore, first-order

conditions for F to be in the domain of attraction of Gγ are available: For every distribution

function F we may define the related function U :=
(

1
1−F

)←
. Then F ∈ Dγ if and only if there

is a positive function a such that for x > 0,

lim
t→∞

U(tx)−U(t)
a(t)

=
xγ − 1

γ
. (2.3.3)

In case γ = 0 the right-hand side is interpreted as limγ→0
xγ−1

γ = log x. For γ > 0 the relation

above is equivalent to

lim
t→∞

U(tx)
U(t)

= xγ for x > 0. (2.3.4)

The discussion above gave us information about the maximum of a sample. Often, however,

we are also interested in other statistics besides the maximum. Let us denote the n-th order

statistics by X1,n ≤ X2,n ≤ · · · ≤ Xn,n. The asymptotic properties of the Xn−k,n as n → ∞ are of

particular interest. Suppose we fix k ∈ Z>0 and let n tend to infinity, then one can show that

the Xn−k,n can be approximated by a Poisson point process. Another case, the so called central

order statistics, considers k(n)/n → p ∈ (0, 1) as n → ∞. In this thesis we study yet a third set

of order statistics Xn−k,n with k(n) → ∞ and k(n)/n → 0 as n → ∞ called the intermediate order

statistics.
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In the context of intermediate order statistics we often need a second-order condition to

ensure favourable behaviour of F. We state de Haan and Ferreira (2006, Definition 2.3.1) here.

The function U (or the probability distribution connected to it) is said to satisfy the second-

order condition if for some positive function a and some positive or negative function A with

limt→∞ A(t) = 0,

lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A(t)
= Hγ,ρ(x), x > 0, (2.3.5)

where Hγ,ρ is some function that is not a multiple of the function xγ−1
γ . In particular Hγ,ρ should

not be identically zero. If U satisfies the second-order condition then a and A can be chosen

such that Hγ,ρ is of the following form

Hγ,ρ =
1
ρ

(
xγ+ρ − 1

γ + ρ
− xγ − 1

γ

)
. (2.3.6)

For γ = 0, ρ = 0 and/or γ + ρ = 0 Equation 2.3.6 is understood to be equal to the limit of

γ → 0, ρ → 0 and/or γ + ρ → 0. We also define the function Ψγ,ρ which is closely related to

the function Hγ,ρ. Actually, it is the result of the limit in Equation 2.3.5 for a different choice of

a and A and has the following definition

Ψγ,ρ(x) =



xγ+ρ−1
γ+ρ , γ + ρ 6= 0, ρ < 0,

log x, γ + ρ = 0, ρ < 0,
1
γ xγ log x, ρ = 0 6= γ,
1
2 (log x)2, ρ = 0 = γ.

(2.3.7)

Additionally we need, for positive γ, a slightly stronger version of the second-order condition.

For γ > 0 and ρ ≤ 0 the following condition implies the second order condition;

lim
t→∞

U(tx)
U(t) − xγ

A(t)
= xγ xρ − 1

γρ
for x > 0, (2.3.8)

with A a possibly different function than in Equation 2.3.5.

If F satisfies the second-order condition for some γ and ρ then it is clear that F also satisfies

the first-order condition (Equation 2.3.3) and therefore is in the domain of attraction of Gγ.

Finally we present a set of inequalities known as the Potter inequalities:

Theorem 2.2 (Potter, 1942). Suppose U satisfies Equation 2.3.4. For δ1, δ2 > 0, there exists t0 =

t0(δ1, δ2) such that for t ≥ t0, tx ≥ t0,

(1− δ1)xγ min
(

xδ2 , x−δ2
)
<

U(tx)
U(t)

< (1 + δ1)xγ max
(

xδ2 , x−δ2
)

. (2.3.9)

2.4 Intermediate order statistics

The proofs in Section 3 and Section 4 build on theorems from extreme value theory and in

particular on theorems involving approximations of the intermediate order statistics. We state

the most important theorems in this subsection in an attempt to clarify the proofs in the coming
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sections. We start with two theorems employed in Section 3 and introduce the following nota-

tion; denote the smallest integer greater or equal to x ∈ R by dxe and denote the largest integer

less or equal to x ∈ R by [x].

Theorem 2.3 (de Haan and Ferreira, 2006, Theorem 2.4.8). Assume X1, X2, . . . are i.i.d. random

variables with distribution function F and let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be its n-th order statistics.

Suppose that F satisfies the second-order condition for some γ > 0 and ρ ≤ 0 (Equation 2.3.8). Then there

exists a sequence of Brownian motions {Wn(s)}s≥0 and a function A0 such that, for ε > 0 sufficiently

small,

√
k

(
log Xn−[ks],n − log U( n

k )

γ
+ log s

)
=

Wn(s)
s

+
√

kA0

(n
k

) 1
γ

s−ρ − 1
ρ

+ s−1/2−εop (1) (2.4.1)

uniformly for s ∈ (0, 1] as n→ ∞, provided k = k(n)→ ∞, k(n)/n→ 0 and
√

kA0(n/k) = O(1).

Theorem 2.4 (de Haan and Ferreira, 2006, Lemma 2.4.10). Assume Y1, Y2, . . . are i.i.d. random

variables with a standard Pareto distribution and let Y1,n ≤ Y2,n ≤ . . . Yn,n be its n-th order statistics.

For each γ ∈ R there exists a sequence of Brownian motions {Wn(s)}s>0 such that for each ε > 0

sup
k−1≤s≤1

sγ+1/2+ε

∣∣∣∣∣∣∣
√

k


(

k
n Yn−[ks],n

)γ
− 1

γ
− s−γ − 1

γ

− s−γ−1Wn(s)

∣∣∣∣∣∣∣ = oP(1) (2.4.2)

as n→ ∞, provided k = k(n)→ ∞ and k/n→ 0.

The proofs of Theorem 2.3 and Theorem 2.4 can be found in de Haan and Ferreira (2006).

For our endeavours concerning the Hill estimator we need a corollary of Theorem 2.4.

Lemma 2.3. Assume Y1, Y2, . . . are i.i.d. random variables with a standard Pareto distribution and let

Y1,n ≤ Y2,n ≤ . . . Yn,n be its n-th order statistics. Then for each ξ ∈ R and ε > 0

sup
k−1≤s≤1

sξ+1/2+ε

∣∣∣∣∣
(

k
n

Yn−[ks],n

)ξ

− s−ξ

∣∣∣∣∣ = oP(1) (2.4.3)

as n→ ∞, provided k = k(n)→ ∞ and k/n→ 0.
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Proof.

sup
k−1≤s≤1

sξ+1/2+ε

∣∣∣∣∣
(

k
n

Yn−[ks],n

)ξ

− s−ξ

∣∣∣∣∣
=|ξ| sup

k−1≤s≤1
sξ+1/2+ε

∣∣∣∣∣∣∣
(

k
n Yn−[ks],n

)ξ
− 1

ξ
− s−ξ − 1

ξ

∣∣∣∣∣∣∣
=|ξ| sup

k−1≤s≤1
sξ+1/2+ε

∣∣∣∣∣∣∣
(

k
n Yn−[ks],n

)ξ
− 1

ξ
− s−ξ − 1

ξ
− s−ξ−1

k1/2 Wn(s) +
s−ξ−1

k1/2 Wn(s)

∣∣∣∣∣∣∣
≤|ξ| sup

k−1≤s≤1
sξ+1/2+ε

∣∣∣∣∣∣∣
(

k
n Yn−[ks],n

)ξ
− 1

ξ
− s−ξ − 1

ξ
− k−1/2s−ξ−1Wn(s)

∣∣∣∣∣∣∣
+ |ξ| sup

k−1≤s≤1
sξ+1/2+ε

∣∣∣k−1/2s−ξ−1Wn(s)
∣∣∣

:=|ξ| (∆1 + ∆2)

In the derivation above we take Wn(s) as in Theorem 2.4. By the same theorem we see that

∆1 = oP

(
1/
√

k
)

. For ∆2 we observe the following

∆2 = sup
k−1≤s≤1

k−1/2s−1/2+ε |Wn(s)|

≤
(

sup
k−1≤s≤1

k−1/2s−1/2+ε

)(
sup

k−1≤s≤1
|Wn(s)|

)
≤
(

k−1/2(k−1)−1/2+ε
)

OP(1)

=OP(k−ε)

We choose ε ≤ 1/2 such that the function s−1/2+ε is not increasing. In case ε > 1/2 the

latter function is increasing, consequently finding ∆2 = Op(k−1/2). By assumption k → ∞ and

therefore ∆2 = oP(1) (in both cases) which implies |ξ|(∆1 + ∆2) = oP(1).

In case of the probability weighted moment estimator we need a slightly different theorem

than Theorem 2.3 which is due to Drees (1998) and can also be found in de Haan and Ferreira

(2006) as Theorem 2.4.2.

Theorem 2.5 (Drees, 1998, Theorem 2.1). Assume X1, X2, . . . are i.i.d. random variables with distri-

bution function F and let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be its n-th order statistics. Suppose that F satisfies

the second-order condition for some γ ∈ R and ρ ≤ 0 (Equation 2.3.5). Then there exists a sequence of

Brownian motions {Wn(s)}s>0 such that for suitably chosen functions a0 and A0 and each ε > 0

√
k

(
Xn−[ks],n −U

( n
k
)

a0
( n

k
) − s−γ − 1

γ

)
= s−γ−1Wn (s) +

√
kA0

(n
k

)
Ψγ,ρ(s−1) + s−γ−1/2−εoP(1)

(2.4.4)

uniformly for s ∈ [k−1, 1] as n→ ∞, provided k = k(n)→ ∞, k/n→ 0 and
√

kA(n/k) = O(1).
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We need an extended version of the latter theorem in the form of the following result:

Theorem 2.6 (de Haan and Ferreira, 2006, Extension of Corollary 2.4.5). Define

B0

(n
k

)
:=

U
( n

k
)

if γ ≥ − 1
2

Xn,n +
a0( n

k )
γ if γ < − 1

2 .
(2.4.5)

Then, under the conditions of Theorem 2.5,

sup
0<s≤λ(n)

min
(

sγ+1/2+ε, sγ+ρ−ε
) ∣∣∣∣∣√k

(
Xn−[ks],n − B0

( n
k
)

a0
( n

k
) − s−γ − 1

γ

)

− s−γ−1Wn (s)−
√

kA0

(n
k

)
Ψγ,ρ(s−1)

∣∣∣∣∣ P−→ 0 (2.4.6)

as n → ∞, provided k = k(n) → ∞, k/n → 0 and
√

kA0(n/k) = O(1) and with λ(n) =

O
(
(n/k)1−τ

)
for τ > 0 such that τ > ε

ε+1/2 .

A proof of this theorem can be found in the appendix, where we extend the original proof

of de Haan and Ferreira (2006, Corollary 2.4.5).

Theorem 2.7 (Ferreira and de Haan, 2015, Lemma 4.1.3). Assume Z1, Z2, . . . , Zk are i.i.d. random

variables from a standard Fréchet distribution. In addition, assume that ν ∈ (0, 1/2) and ξ ∈ R, then

there exists an appropriate sequence of Brownian bridges (Ek)k≥1 such that

√
ks(− log s)1+ξ

Zξ
dkse,k − 1

ξ
− (− log s)−ξ − 1

ξ

− Ek(s) = (s(1− s))νoP (1) (2.4.7)

uniformly for s ∈ [1/(k + 1), k/(k + 1)] as k→ ∞.

2.5 Bootstrapping schemes

Bootstrapping is a way of acquiring information about the sampling distribution of a given

functional T, which is a function of the data. The bootstrap resamples from the given random

sample and by resampling finds new values for T which make up an approximate sampling

distribution for T. Bootstrapping was pioneered by Bradley Efron in Efron (1979) and Efron and

Tibshirani (1993).

Assume X1, X2, . . . , Xn are i.i.d. random variables from a distribution F. Then we are in-

terested in the sampling distribution of a functional T(X1, . . . , Xn, F). However, the random

sample gives just one value of T. By randomly picking an element from (X1, . . . , Xn) and re-

peating this n times we resample from the given random sample and generate a bootstrapped

sample X∗1 , . . . , X∗n. Note that this resampling is equivalent to drawing n times (independently)

from the empirical distribution function Fn. With this new bootstrapped sample X∗1 , . . . , X∗n and

Fn we may calculate T(X∗1 , . . . , X∗n, Fn). By repeating the resampling procedure we find m boot-

strapped values for T, from which we can build an approximate sampling distribution for T. In

this thesis we are only interested in an estimate for the variance of T for some specific T.
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The bootstrap procedure is useful in case the theoretical sampling distribution is not known

or hard to compute. In our case the theoretical variance of at least one estimator is cumbersome

to calculate. As bootstrapping is a computationally light procedure it could provide an estimator

for this variance which is easy to calculate.

We should formalise what it means for this bootstrapping procedure to work. Assume we

have bootstrapped T∗i := T
(

X∗,i1 , . . . , X∗,in , Fn

)
for i = 1, . . . , m with average T∗ and denote the

theoretical variance of T(X1, . . . , Xn, F) by var(T). Then, in case of the variance, we are looking

for a statement of the sort
1
m ∑m

i=1
(
T∗i − T∗

)2

Var(T)
P−→ 1 (2.5.1)

as m→ ∞ and n→ ∞. In this case the theoretical variance can be consistently estimated by the

sample variance of the bootstrapped functionals. As will become clear in the next sections it is

not trivial to rigorously prove this kind of statement in our extreme value theory context.

In applying the bootstrap procedure we allow for randomness in two ways. The first part

of the randomness is due to the fact that the empirical distribution function is random and the

second part is caused by the resampling. It will prove very convenient to split these two parts.

We start by defining the empirical equivalent of U:

Un =

(
1

1− Fn

)←
.

Suppose Y is standard Pareto distributed and independent from X1, X2, . . . , Xn, then we consider

the distribution of Un(Y):

P(Un(Y) ≤ x) = P
(

Y ≤
(

1
1− Fn

)
(x)
)

= P
(

Y ≤
(

1
1− Fn

)
(x)|Fn

)
= ΦPareto

(
1

1− Fn(x)

)
= Fn(x).

The first step is an application of the switching formula. As Y and Fn are independent, Y|Fn

is just Pareto distributed and the second step follows. We conclude that Un(Y)
d
= X∗ with X∗

drawn from the empirical distribution function and thus a bootstrap draw from the random

sample.

Therefore, we may draw from Fn by drawing Y∗ (independently) from a Pareto distribu-

tion and applying Un to Y∗. Consequently, if Y∗1 , . . . , Y∗n are i.i.d. random variables from

the standard Pareto distribution which are also independent from X1, X2, . . . , Xn, then X∗1 :=

Un(Y∗1 ), . . . , X∗n := Un(Y∗n ) are i.i.d. random variables from the empirical distribution function

by the independence between Y∗ and Fn. Additionally, X∗n−[kx],n = Un

(
Y∗n−[kx],n

)
for x ∈ [0, 1]

since Un preserves the ordering. Un captures the randomness in the empirical distribution

function and the Pareto draws capture the randomness due to the resampling.

In case the functional T depends directly on the data, i.e. no further operations on the data

are necessary to calculate T, the previous approach suffices. However, in our block maxima
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approach we encounter functionals T which depend on the block maxima of a data set. Assume

X̃1, . . . , X̃n are i.i.d. random variables from distribution F. Define the block maxima Xi for

i = 1, . . . , k by

Xi = max
(i−1)m<j≤im

X̃j

with n
k = m ∈ Z>0 the block length. For the bootstrapping of the block maxima we do not

resample from the block maxima, instead we resample from the entire random sample and

construct bootstrapped block maxima from there. We define a function V and its empirical

equivalent Vn as follows:

V(z) = F← (ΦFr(z)) and Vn(z) = F←n (ΦFr(z))

with ΦFr(z) = exp(−1/z) and Z follows a standard Fréchet distribution. Assume Z is indepen-

dent from X̃1, . . . , X̃n and consider Vn(Z)

P (Vn(Z) ≤ x) = P (F←n (ΦFr(Z)) ≤ x)

= P (ΦFr(Z) ≤ Fn (x))

= P
(

Z ≤ Φ−1
Fr (Fn (x)) |Fn

)
= ΦFr

(
Φ−1

Fr (Fn (x))
)

= Fn(x).

The second step is again an application of the switching formula and the third step is by the

independence of Fn and Z. It follows that X̃∗ d
= Vn(Z) with X̃∗ a draw from Fn. A bootstrapped

block maximum is of the form X∗ = max1≤j≤m X̃∗j . For such an X∗ we find the following:

X∗ = max
1≤j≤m

X̃∗j
d
= max

1≤j≤m
Vn(Zj) = Vn

(
max

1≤j≤m
Zj

)
d
= Vn (mZ0) . (2.5.2)

Here we use the fact that Vn is order preservering and the Fréchet distribution is max stable.

We conclude that X∗ d
= Vn(mZ). Hence, we may draw bootstrapped block maxima by drawing

Z∗ from a Fréchet distribution, multiplying by m and applying Vn. Thus, if Z∗1 , . . . , Z∗k are

i.i.d. random variables from the standard Fréchet distribution which are also independent from

X̃1, . . . , X̃n, then X∗1 := Vn(mZ∗1 ), . . . , X∗k := Vn(mZ∗k ) is a bootstrap sample of block maxima

with X∗dkse,k
d
= Vn

(
mZ∗dkse,k

)
for s ∈ (0, 1]. In this case the randomness inherent to the empirical

distribution function is captured by Vn and the randomness due to the resampling is caught by

the Fréchet draws.
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3 Bootstrapping the Hill estimator

This section is dedicated to bootstrapping the Hill estimator (Hill, 1975) for the extreme value

index. The goal is to determine the asymptotic behaviour of a bootstrapped Hill estimator.

From here, we show heuristically that the sample variance of bootstrapped Hill estimators is

a consistent estimator for the theoretical variance of the initial Hill estimator. In this case the

bootstrap procedure provides a reliable estimate for the Hill estimator’s variance. We start with

the definition of the Hill estimator in Section 3.1 and we prove the required result involving

the sample variance of the bootstrapped estimators in Section 3.2. Subsequently, we apply the

results from Section 3.2 in the context of the Weissman extreme quantile estimator in Section 3.3.

3.1 The Hill estimator

Suppose γ > 0 and F ∈ D(Gγ), then extreme value theory gives us that

lim
t→∞

∫ ∞
t (log u− log t)dF(u)

1− F(t)
= γ.

Now let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be the n-th order statistics from a random sample with

distribution function F. We replace t and F by their empirical variant, that is the intermediate

order statistic Xn−k,n and the empirical cumulative distribution function Fn and consequently

obtain the Hill estimator γ̂H ,

γ̂H :=

∫ ∞
Xn−k,n

(log u− log Xn−k,n)dFn(u)

1− Fn(Xn−k,n)
(3.1.1)

or equivalently,

γ̂H =
1
k

k−1

∑
i=0

log Xn−i,n − log Xn−k,n. (3.1.2)

The following theorem gives the limiting distribution of the Hill estimator.

Theorem 3.1 (de Haan and Ferreira, 2006, Theorem 3.2.5). Suppose F satisfies the second-order

condition for some γ > 0 and ρ ≤ 0 and limt→∞ A(t) = 0 (Equation 2.3.8). Then

√
k (γ̂H − γ)

d−→ N
(

λ

1− ρ
, γ2
)

(3.1.3)

with N normal, provided k(n)→ ∞, k(n)/n→ 0 as n→ ∞ and

lim
n→∞

√
kA
(n

k

)
= λ < ∞.

The latter theorem implies that γ̂H is a consistent estimator for γ and k · var (γ̂H)
d−→ γ2. As

a result, it is trivial to estimate the variance of an estimator γ̂H and the need for bootstrapping

the Hill estimator is minimal. However, the associated proof is illustrative and provides insight

and an appropriate start.
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3.2 Asymptotic sample variance of the bootstrapped Hill estimator

In this subsection we present the main result of Section 3 in the form of Theorem 3.3. The cru-

cial intermediate result concerning the limiting properties of bootstrapped intermediate order

statistics deserves its own theorem and can be found beneath.

Theorem 3.2. Suppose X1, X2, . . . , Xn are i.i.d. random variables from distribution F. Assume that F

satisfies the second-order condition for some γ > 0 and ρ ≤ 0 (Equation 2.3.8). Suppose X∗1 , X∗2 , . . . , X∗n
is a bootstrapped sample, that is a random sample from distribution Fn, then we may define independent

sequences of Brownian motions {Wn(s)}s≥0 and {W∗n (s)}≥0 such that for a suitable function A0,

log X∗n−[kx],n − log U( n
k )

γ
= − log(x) +

W∗n (x) + Wn(x)√
kx

+ A0

(n
k

) x−ρ − 1
γρ

+ c(x)op

(
1√
k

)
(3.2.1)

uniformly for x ∈ [k−1, 1] as n→ ∞, provided k(n)→ ∞, k/n→ 0 and
√

kA0
( n

k
)
= O(1) with c(x)

a non-stochastic function integrable on (0, 1].

Proof. We start by recalling the definition of U and Un

U =

(
1

1− F

)←
and Un =

(
1

1− Fn

)←
.

Remark that F←n (x) = Xdnxe,n and it follows that

Un

( n
kx

)
=

(
1

1− Fn

)← ( n
kx

)
= F←n

(
1− kx

n

)
= Xdn−kxe,n = Xn−[kx],n. (3.2.2)

We invoke Theorem 2.3 and Equation 3.2.2 to get that: There exists a sequence of Brownian

motions {Wn(s)}s≥0 and a function A0 such that, for ε > 0 sufficiently small,

log Un(
n
ks )− log U( n

k )

γ
= − log s +

Wn(s)√
ks

+ A0

(n
k

) 1
γ

s−ρ − 1
ρ

+ s−1/2−εop

(
1√
k

)
(3.2.3)

uniformly for s ∈ (0, 1] as n→ ∞, provided k(n)→ ∞, k(n)/n→ 0 and
√

kA0(n/k) = O(1).

In Equation 3.2.3 we would like to substitute s with s(x) = n
kY∗n−[kx],n

. In doing so we would

find, by the reasoning in Section 2.5,

Un

(
n

ks(x)

)
= Un

(
Y∗n−[kx],n

)
d
= X∗n−[kx],n.

We do have to justify this substitution as s(x) is no longer non-stochastic. Let us rewrite Equa-

tion 3.2.3: for all ε′ > 0

lim
n→∞

P

(∣∣∣∣∣ sup
s∈(0,1]

| f (s)|
c0(s)

∣∣∣∣∣ > ε′
)

= 0

with c0(s) = s−1/2−ε and

f (s) :=
√

k
(

log Un(
n
ks )− log U( n

k )

γ
+ log s

)
− Wn(s)

s
−
√

kA0

(n
k

) 1
γ

s−ρ − 1
ρ

.
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Note that f (s) actually depends on k and n. Now denote the event (∀x ∈ (0, 1] holds s(x) ∈ (0, 1])

by A. Hence follows by the law of total probability that

P

(∣∣∣∣∣ sup
x∈(0,1]

| f (s(x))|
c0(s(x))

∣∣∣∣∣ > ε′
)

= P

(∣∣∣∣∣ sup
x∈(0,1]

| f (s(x))|
c0(s(x))

∣∣∣∣∣ > ε′
⋂

A

)
+ P

(∣∣∣∣∣ sup
x∈(0,1]

| f (s(x))|
c0(s(x))

∣∣∣∣∣ > ε′
⋂

Ac

)

= P

(∣∣∣∣∣ sup
x∈(0,1]

| f (s(x))|
c0(s(x))

∣∣∣∣∣ > ε′|A
)

︸ ︷︷ ︸
Π

P(A) + P

(∣∣∣∣∣ sup
x∈(0,1]

| f (s(x))|
c0(s(x))

∣∣∣∣∣ > ε′|Ac

)
P(Ac).

By Equation 3.2.3, Π → 0 as n → ∞ and what remains to be shown is that P(A) → 1, or

equivalently P(Ac)→ 0, as n→ ∞. If this is the case we get that

lim
n→∞

P

(∣∣∣∣∣ sup
x∈(0,1]

| f (s(x))|
c0(s(x))

∣∣∣∣∣ > ε′
)

= 0

which implies that the substitution is justified. Suppose P(A) ≤ 1− δ with δ > 0 for a sequence

ni → ∞ as i→ ∞ . Then there exists an x0 ∈ (0, 1] such that s(x0) > 1 has a positive probability.

In particular this implies that for sufficiently small ε0

P
(∣∣∣∣s(x0)−

1
x0

∣∣∣∣ > ε0

)
> 0

for all ni. Note that this violates Lemma 2.3 at ξ = −1 and ε = 1/2. Therefore we conclude

P(A)→ 1 as n→ ∞. Consequently, we apply the substitution for x ∈ (0, 1] and find

log X∗n−[kx],n − log U( n
k )

γ
=

log
kY∗n−[kx],n

n︸ ︷︷ ︸
Λ.1

+

√
kY∗n−[kx],nWn (s(x))

n︸ ︷︷ ︸
Λ.2

+
1
γ

A0

(n
k

) s(x)−ρ − 1
ρ︸ ︷︷ ︸

Λ.3

+ s(x)−1/2−ε︸ ︷︷ ︸
Λ.4

op

(
1√
k

)
(3.2.4)

uniformly for x ∈ (0, 1]. We show that the following holds for the four parts:

Λ.1 = − log(x) +
W∗n (x)√

kx
+ c1(x)op

(
1√
k

)
Λ.2 =

Wn (x)√
kx

+ c2(x)oP

(
1√
k

)
Λ.3 = A

(n
k

) x−ρ − 1
ρ

+ c3(x)oP

(
1√
k

)
Λ.4 = x1/2+ε + c4(x)oP(1)

uniformly for x ∈ [k−1, 1] as n → ∞ with c1(x), c2(x), c3(x) and c4(x) integrable functions on

[0, 1] and {Wn(s)}s≥0, {W∗n (s)}≥0 independent sequences of Brownian motions.

We start with Λ.1. The function U related to the Pareto distribution is the identity function.

From here it is easy to show that its first-order extreme value index γ is equal to 1, simply take

a(t) = t in Equation 2.3.3. Strictly speaking the Pareto distribution does not satisfy the second-

order condition as the right-hand side of Equation 2.3.5 becomes zero, which is excluded from
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the definition. However, this indicates that the Pareto distribution behaves unusually good and

can be interpreted as ρ = −∞. By applying de Haan and Ferreira (2006, Theorem 2.4.8) to

the Pareto distribution, there exists a sequence of Brownian motions {W∗n (x)}x≥0 such that, for

ε1 > 0 sufficiently small,

log
kY∗n−[kx],n

n
= − log(x) +

W∗n (x)√
kx

+ x−1/2−ε1 op

(
1√
k

)
uniformly for x ∈ (0, 1] as n → ∞, provided k(n) → ∞ and k(n)/n → 0. Here we use that

limρ→−∞
s−ρ−1

ρ = 0 for |s| < 1 and as a result there is no bias for the Pareto distribution.

Furthermore, it is obvious that W∗n and Wn are independent and c1(x) = x−1/2−ε1 is integrable.

Now we focus on Λ.2. To continue our endeavours we need to work with the Brownian

motion in Λ.2 and need an extra tool here: the modulus of continuity of a Brownian motion.

Suppose W is Brownian motion, then almost surely,

lim
h↓0

sup
0≤t≤1−h

|W(t + h)−W(t)|√
2h log(1/h)

= 1.

This implies that the sample paths of the Brownian motion admit, with probability one, for δ

small enough and εw > 0 a non-stochastic modulus of continuity w(δ) defined as

w(δ) =
√

2δ log(1/δ)(1 + εw).

We note that for δ small enough

w(δ) < δ1/2−εw

By Lemma 2.3 at ξ = −1 and with τ > 0 we know that

n
kY∗n−[kx],n

= x + x1/2−τoP(1).

By the modulus of continuity of the Brownian motion we find the following identity almost

surely

sup
0≤x<1

∣∣∣∣∣Wn

(
n

kY∗n−[kx],n

)
−Wn (x)

∣∣∣∣∣ < (x1/2−τoP(1)
)1/2−εw

= x(1/2−τ)(1/2−εw)oP(1).

Hence we find, assuming τ ≤ 1/2, that uniformly for x ∈ (0, 1)

Wn

(
n

kY∗n−[kx],n

)
= Wn (x) + c21(x)oP(1). (3.2.5)

By Lemma 2.3 we have that uniformly for x ∈ [k−1, 1] we have

k
n

Y∗n−[kx],n = x−1 + c22(x) oP(1) (3.2.6)

with c22(x) = x−3/2−τ for τ > 0. Now we remark that

sup
k−1≤x≤1

|Wn(x)|
c21

= OP(1) and sup
k−1≤x≤1

∣∣x−1
∣∣

c22
= OP(1)
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as x−1 is not stochastic and the path of a Brownian motion is stochastically bounded. Hence, by

Lemma 2.2 we see that

k
n

Y∗n−[kx],nWn

(
n

kY∗n−[kx],n

)
= x−1Wn (x) + c2(x)oP(1)

with c2(x) = c21(x)c22(x), which is integrable. Subsequently, we find for Λ.2

√
k

n
Y∗n−[kx],nWn

(
n

kY∗n−[kx],n

)
=

Wn (x)√
kx

+ c2(x)oP

(
1√
k

)
(3.2.7)

uniformly for x ∈ [k−1, 1), as n→ ∞ with W∗n (s) and Wn(s) independent.

For Λ.3 we employ Lemma 2.3 again to see that the following holds uniformly for x ∈ [k−1, 1]

s(x)−ρ − 1
ρ

=
x−ρ − 1

ρ
+ c3(x)oP (1) . (3.2.8)

as n→ ∞, k(n)→ ∞ and k/n→ 0, with c3(x) = x−ρ−1/2−τ . Finally, we note that
√

kA0(n/k) =

O(1) and thus

√
kA0

(n
k

)( s(x)−ρ − 1
ρ

− x−ρ − 1
ρ

)
= O(1) · c3(x)oP(1) = c3(x)oP(1)

uniformly for x ∈ [k−1, 1] as n→ ∞, which implies

A0

(n
k

)( s(x)−ρ − 1
ρ

− x−ρ − 1
ρ

)
= c3(x)oP

(
1√
k

)
.

And hence we may state

A0

(n
k

) s(x)−ρ − 1
ρ

= A
(n

k

) x−ρ − 1
ρ

+ c3(x)oP

(
1√
k

)
. (3.2.9)

uniformly for x ∈ [k−1, 1] as n→ ∞. This result gives us the requested representation for Λ.3.

Finally considering Λ.4; in a very similar fashion as Λ.3 we find

s(x)−1/2−ε = x1/2+ε + c4(x)oP(1) (3.2.10)

uniformly for x ∈ [k−1, 1] as n → ∞, k(n) → ∞ and k/n → 0, where c4(x) is an integrable

function.

We combine the expressions for Λ.1, Λ.2, Λ.3 and Λ.4, implicitly using Lemma 2.1, and we

ultimately find

log X∗n−[kx],n − log U( n
k )

γ
= − log(x) +

W∗n (x) + Wn(x)√
kx

+ A0

(n
k

) x−ρ − 1
γρ

+ c(x)op

(
1√
k

)
(3.2.11)

with c(x) = c1(x) + c2(x) + c3(x) + x1/2+ε + c4(x), which is integrable.
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The limiting distribution of the bootstrapped intermediate order statistics closely resembles

that of the intermediate order statistics as presented in Theorem 2.3. The bootstrapping appar-

ently introduces an extra random term in the form of W∗n (x)√
kx

. This also hints towards greater

applicability of the latter theorem than just our purposes. As results based on Theorem 2.3

can often be adjusted without much effort to similar results in the bootstrap context by using

Theorem 3.2 instead of Theorem 2.3.

The following theorem is the main result of Section 3. In bootstrapping the Hill estimator we

bootstrap the entire sample and not just the highest order statistics the estimator is based on.

Theorem 3.3. Suppose X1, X2, . . . , Xn are i.i.d. random variables from distribution F. Assume that F

satisfies the second-order condition for some γ > 0 and ρ ≤ 0 (Equation 2.3.8). Let γ̂∗H be a bootstrapped

Hill estimator, then

γ̂∗H
γ

= 1 +
1√
k
(N∗ + N) + A0

(n
k

) 1
γ

1
1− ρ

+ op

(
1√
k

)
(3.2.12)

as n → ∞, provided k(n) → ∞ and k(n)/n → 0, with A0 from Theorem 3.2, N∗ and N independent

normal random variables with mean 0 and variance 1.

Proof. The bootstrapped Hill estimator γ̂∗H can be rewritten in the following way:

γ̂∗H
γ

=
1

γk

k−1

∑
i=0

log X∗n−i,n − log X∗n−k,n

=
∫ 1

0

log X∗n−[kx],n − log X∗n−k,n

γ
dx

=
∫ k−1

0

log X∗n−[kx],n − log X∗n−k,n

γ
dx +

∫ 1

k−1

log X∗n−[kx],n − log X∗n−k,n

γ
dx

:= ∆1 + ∆2.

Our aim is to show that ∆1 = oP

(
1√
k

)
and then use Theorem 3.2 to approximate ∆2. The

limiting distribution of γ̂∗H will therefore be determined by ∆2 as ∆1 becomes small. First we

remark that ∆1 can be written in the following way:

∆1 =
∫ k−1

0

log X∗n,n − log X∗n−k,n

γ
dx =

1
γk

(
log X∗n,n − log X∗n−k,n

)
By Equation 3.2.1 at x = 1 we see that | log X∗n−k,n − log U

( n
k
)
| P−→ 0. Now we wish to show that

1√
k

(
log X∗n,n − log U(n)

)
= oP(1).

First of all, notice that X∗n,n ≤ Xn,n. We may show, following an approach similar to the one

presented in Section 2.5, that Xn,n
d
= U (Yn,n) with Y1, . . . , Yn i.i.d. random variables from the

standard Pareto distribution. This entails in particular

X∗n,n

U(n)
≤ Xn,n

U(n)
d
=

U (Yn,n)

U(n)
.
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As U satisfies the first order condition with γ > 0 we may apply the Potter inequalities; for

δ1, δ2 > 0 there exists t0 = t0(δ1, δ2) such that for n ≥ t0 and Yn,n ≥ t0,

U (Yn,n)

U(n)
< (1 + δ1) ·

(
Yn,n

n

)γ

·max

((
Yn,n

n

)δ2

,
(

Yn,n

n

)−δ2
)

:= Ω (3.2.13)

and subsequently

log U (Yn,n)− log U(n) < log(Ω). (3.2.14)

Because Yn,n ≥ t0 almost surely as n→ ∞ the latter inequalities are applicable in our situation.

The standard Pareto distribution satisfies Equation 2.3.1 with an = bn = n and γ = 1 which

implies that Y∗n,n
n − 1 d→ G1, with Gγ the extreme value distribution with parameter γ from

Equation 2.3.2. As a result Ω follows a non-trivial distribution, as n → ∞, and the same holds

for log (Ω). Combining the latter with Equation 3.2.14 we find log U (Yn,n)− log U(n) = OP(1)

and consequently
1√
k

(
log X∗n,n − log U(n)

)
= op(1)

as n, k→ ∞. Using this information we may state

0 ≤ ∆1 =
1

γk

(
log X∗n,n − log U(n)− log X∗n−k,n + log U (n/k)

)
+

1
γk

(log U(n)− log U (n/k))

=oP

(
1√
k

)
+ oP

(
1
k

)
+

1
γk

log
(

U(n)
U (n/k)

)
=

1
γk

log
(

U(n)
U (n/k)

)
+ oP

(
1√
k

)
.

Again, by the Potter inequalities, we have for any ε, δ > 0

U (n)
U
( n

k
) < (1 + ε) · kγ+δ

as n, k→ ∞ in such a way that n/k→ ∞. Using the latter inequality we find for ∆1:

∆1 =
1

γk
log
(

U(n)
U (n/k)

)
+ oP

(
1√
k

)
<

1
γk

log
(
(1 + ε) · kγ+δ

)
+ oP

(
1√
k

)
=

γ + δ

γ
· log k

k
+

log(1 + ε)

γk
+ oP

(
1√
k

)
=oP

(
1√
k

)
.

Here, we use the fact that 1√
k

log k→ 0 as k→ ∞. This entails in particular

∆2 =
γ̂∗H
γ

+ op

(
1√
k

)
. (3.2.15)

For ∆2 we take Equation 3.2.1 and subtract the same equation at x = 1, which gives the following

uniform convergence on [k−1, 1]

log X∗n−[kx],n − log X∗n−k,n

γ
= − log(x) +

x−1W∗n (x)−W∗n (1)√
k

+
x−1Wn(x)−Wn(1)√

k

+ A0

(n
k

)( x−ρ − 1
γρ

)
+ c(x)op

(
1√
k

)
. (3.2.16)

20



We integrate both sides of this equation with respect to x from t = k−1 to t = 1. The uniform

convergence on this interval gives that the integral of the left-hand side and the right-hand side

of the previous equation are equal. We find

∆2 =
∫ 1

k−1
− log(x) +

x−1W∗n (x)−W∗n (1)√
k

+
x−1Wn(x)−Wn(1)√

k

+ A0

(n
k

)( x−ρ − 1
γρ

)
+ c(x)op

(
1√
k

)
dx

as n→ ∞, k(n)→ ∞ and k(n)/n→ 0. We focus on the integration of the latter integral. Remark

that, by the fundamental theorem of calculus,

lim
k→∞

∫ 1

k−1
− log(x) dx =

∫ 1

0
− log x dx = 1

and

lim
k→∞

∫ 1

k−1

x−ρ − 1
γρ

dx =
∫ 1

0

x−ρ − 1
γρ

dx =
1

γρ
·
(

x−ρ+1

−ρ + 1
− x
) ∣∣∣∣∣

1

0

=
1
γ

1
1− ρ

,

thus it remains to determine the stochastic part of the integral. We consider

lim
k→∞

∫ 1

k−1
x−1Wn(x)−Wn(1) dx =

∫ 1

0
x−1Wn(x)−Wn(1) dx

and show that this quantity follows a standard normal distribution. Viewed as a Riemann sum,

this integral is the limit of normally distributed random variables and therefore itself normally

distributed. As we may interchange the integral and the expectation operator the entire integral

has expectation 0. Now for the variance:

var
(∫ 1

0
x−1Wn(x)−Wn(1) dx

)
= E

[(∫ 1

0
x−1Wn(x) dx−Wn(1)

)(∫ 1

0
y−1Wn(y) dy−Wn(1)

)]
= E

[
W2

n(1)
]
+ 2

∫ 1

0

∫ 1

x
E[Wn(x)Wn(y)]

dy
y

dx
x
− 2

∫ 1

0
E [Wn(1)Wn(x)]

dx
x

= 1 + 2
∫ 1

0

∫ 1

x
x

dy
y

dx
x
− 2

∫ 1

0
x

dx
x

= 1 + 2
∫ 1

0
− log x dx− 2

= 1

Here we use ∫ 1

0

∫ 1

0
E [Wn(x)Wn(y)]

dy
y

dx
x

= 2
∫ 1

0

∫ 1

x
E [Wn(x)Wn(y)]

dy
y

dx
x

and

E [Wn(1)Wn(x)] = E [Wn(x)(Wn(x) + (Wn(1)−Wn(x)))] = E[Wn(x)2] = x.

We conclude that
∫ 1

0 x−1Wn(x) −Wn(1) dx and
∫ 1

0 x−1W∗n (x) −W∗n (1) dx are normally dis-

tributed random variables with mean 0 and variance 1. We remark that
∫ 1

0 c(x) dx · oP(1/
√

k) =
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oP(1/
√

k) as the integral is finite. Finally, we obtain by Equation 3.2.15

γ̂∗H
γ

= 1 +
1√
k
(N∗ + N) + A0

(n
k

) 1
γ

1
1− ρ

+ op

(
1√
k

)
(3.2.17)

as k(n) → ∞, k(n)/n → 0, n → ∞, with N∗ and N independent normal random variables with

mean 0 and variance 1.

As we showed in the previous theorem, a single bootstrapped estimator γ̂∗j,H can be approx-

imated using Equation 3.2.12. Assuming m bootstrapped estimators γ̂∗j,H , the following holds

for the average γ∗H √
k · γ∗H

γ
≈
√

k +
(

N∗ + N
)
+
√

kA0

(n
k

) 1
γ

1
1− ρ

with γ∗H = 1
m ∑m

j=1 γ̂∗j,H and N∗ = 1
m ∑m

j=1 N∗j . It follows that

√
k
(

γ̂∗j,H − γ∗H

)
≈ γ

(
N∗j − N∗

)
as n → ∞, k(n) → ∞ and k/n → 0. Finally, we are in the position to calculate the variance of

the bootstrapped Hill estimators:

k
m

m

∑
j=1

(
γ̂∗j,H − γ∗H

)2
≈ γ2 1

m

m

∑
j=1

(
N∗j − N∗

)2

By the law of large numbers 1
m ∑m

j=1

(
N∗j − N∗

)2 p−→ var(N∗j ) = 1 as m→ ∞ and therefore

k
m

m

∑
j=1

(
γ̂∗j,H − γ∗H

)2
≈ γ2 (3.2.18)

As m→ ∞, k→ ∞, n→ ∞.

Deliberately, we employ an heuristic argument here and do not proceed in the rigorous

way presented before. This is due to a caveat in the argument above. In order to substantiate

statements about the average γ∗H we actually need the result in Equation 3.2.12 to hold uniformly

for j = 1, . . . , m bootstrapped Hill estimators. This is actually the case but lies outside the scope

of this thesis.

3.3 The Weissman extreme quantile estimator

The result in the previous subsection has an elegant application in the context of extreme quan-

tile estimation. As one can imagine, estimators of extreme quantiles usually depend on the

extreme value index. The variance of such an extreme quantile estimator can often be linked to

the variance of the extreme value index estimator. Suppose we use the Hill estimator to estimate

the extreme value index, then we know we may employ bootstrapping methods to approximate

the variance of the Hill estimator. And subsequently we can deduce the variance of the extreme

quantile estimator from there.

We consider an extreme quantile estimator proposed in Weissman (1978) and since we wish

to use the Hill estimator we restrict ourselves to positive γ. We want to estimate the (1− p)-

quantile of F for p near 0, that is xp = F←(1− p) = U(1/p). This quantile should be an extreme
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quantile, in the sense that there should be very few observations to the right of this quantile.

To deduce asymptotic statements about such an estimator we require that n, the number of

observations, goes to infinity. If p would be fixed we would eventually find a numerous amount

of observations to the right of xp which is not desirable. Hence p should depend on n in such a

way that (at least) limn→∞ pn → 0.

Theorem 3.4 (de Haan and Ferreira, 2006, Theorem 4.3.8). Suppose X1, X2, . . . , Xn are i.i.d. random

variables from distribution F. Assume that F satisfies the second-order condition for some γ > 0 and

ρ ≤ 0 (Equation 2.3.8) such that A(t)→ 0, as n→ ∞. Additionally assume:

1. γ̂ is an estimator for the extreme value index and
√

k (γ̂− γ)
d−→ Γ as n → ∞ with Γ normally

distributed with known mean depending on γ and ρ and variance only depending on γ,

2. k→ ∞, k/n→ 0, and
√

kA(n/k)→ λ ∈ R, n→ ∞,

3. npn = o(k) and log npn = o
(√

k
)

, n→ ∞.

Let x̂pn be the Weissman extreme quantile estimator defined as

x̂pn = Xn−k,n

(
k

npn

)γ̂

and xpn = U
(

1
pn

)
.

Then as n→ ∞, √
k

log dn

(
x̂pn

xpn

− 1
)

d−→ Γ (3.3.1)

with dn = k/(npn).

The latter theorem particularly implies

k(
xpn log dn

)2 var
(
x̂pn

)
→ var (Γ) (3.3.2)

which gives a method of determining the variance of x̂pn assuming we know (an estimate of)

var (Γ). Suppose we use the Hill estimator as estimator for γ, which meets the requirements

for the extreme value estimator as stated above. Then, by bootstrapping the Hill estimator we

approximate var (Γ), from which we can deduce var
(
x̂pn

)
. Finally we notice that this procedure

is not restricted to the Hill estimator and has much wider applicability.
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4 Bootstrapping the probability weighted moment estimator

In Section 3 we considered the Hill estimator for the extreme value index based on the peaks

over threshold method. We will now investigate the properties of the bootstrapped probability

weighted moment (PWM) estimator for the extreme value index using a block maxima ap-

proach. When we refer to the PWM estimator we mean the PWM estimator for the extreme

value index. Again, our aim is to determine the asymptotic behaviour of a bootstrapped PWM

estimator. Subsequently, we set up an heuristic argument to show that the sample variance of

bootstrapped PWM estimators is a consistent estimator for the theoretical variance of the PWM

estimator. The theoretical variance of the PWM estimator is not easy to calculate as it involves

multiple stochastic integrals. Therefore, it would be of practical use to show that the sample

variance of the bootstrapped PWM estimators consistently estimates the theoretical variance as

this would give a straightforward way to approximate the variance of a PWM estimator. An

introduction to the PWM estimator follows in Section 4.1, followed by the proof in Section 4.2.

As in the previous section we conclude with a subsection on extreme quantile estimation in

Section 4.3.

4.1 The probability weighted moment estimator for block maxima

Assume X̃1, . . . , X̃n are i.i.d. random variables from distribution F. Define the block maxima Xi

for i = 1, . . . , k by

Xi = max
(i−1)m<j≤im

X̃j

with n
k = m ∈ Z>0 the block length. Let X1,k, . . . , Xk,k be its order statistics and define β0 =

1
k ∑k

i=1 Xi,k and

βr =
1
k

k

∑
i=1

(i− 1) . . . (i− r)
(k− 1) . . . (k− r)

Xi,k

for r ∈ Z>0, r < k. The PWM estimator (Hosking, Wallis, and Wood, 1985) for γ, denoted γ̂k,m,

is defined as the solution of
3γ̂k,m − 1
2γ̂k,m − 1

=
3β2 − β0

2β1 − β0
.

In addition we define estimators for the sequences an and bn from the first-order condition:

âk,m =
γ̂k,m

2γ̂k,m − 1
2β1 − β0

Γ (1− γ̂k,m)

b̂k,m = β0 + âk,m
1− Γ (1− γ̂k,m)

γ̂k,m
,

with Γ(x) the usual gamma function. The following theorem describes the asymptotic behaviour

of the three estimators defined above.

Theorem 4.1 (Ferreira and de Haan, 2015, Theorem 2.3). Assume F satisfies the second-order condi-

tion for γ < 1
2 and ρ ∈ R. Assume k(n)→ ∞ and m(n)→ ∞ as n→ ∞ such that

√
kA(m)→ λ ∈ R
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(with A(m) as in Equation 2.3.5) then

√
k (γ̂k,m − γ)

d−→ 1
Γ(1− γ)

(
log 3

1− 3−γ
− log 2

1− 2−γ

)−1 ( γ

3γ − 1
(Q2 −Q0)−

γ

2γ − 1
(Q1 −Q0)

)
:= ∆

(4.1.1)

√
k
(

âk,m

am
− 1
)

d−→ γ

(2γ − 1)Γ(1− γ)
(Q1 −Q0) + ∆

(
log 2

γ

(
−γ

1− 2−γ
+

1
log 2

)
+

Γ′(1− γ)

Γ(1− γ)

)
=: Λ

(4.1.2)

√
k

(
b̂k,m − bm

am

)
d−→ Q0 +

γΓ′(1− γ)− 1 + Γ(1− γ)

γ2 ∆ +
1− Γ(1− γ)

γ
Λ =: Ξ (4.1.3)

as n→ ∞. With

Qr = (r + 1)
∫ 1

0
sr−1(− log s)−1−γE(s)ds + λIr(γ, ρ),

E(s) a Brownian bridge and

Ir(γ, ρ) = (r + 1)
∫ 1

0
Hγ,ρ

(
1

− log s

)
sr ds.

From this theorem we can deduce that the estimator γ̂k,m is biased due to the (non-stochastic)

factor λIr(γ, ρ). Note that Qi is stochastic and quite involved and it is its presence that makes

the theoretical variance hard to calculate.

4.2 Asymptotic sample variance of the bootstrapped PWM estimator

The following theorem is the crucial stochastic approximation which enables us to prove the

main theorem of Section 4.2 in Theorem 4.3. The structure of this proof displays similarities

with the proof presented in the previous section and we attempt to let the structures align

as much as possible. In addition, we recall the definition of a bootstrapped sample of block

maxima. We construct a bootstrapped sample of block maxima by resampling from the entire

random sample and then calculating the associated block maxima.

In the following proof there is a subtlety related to whether γ ≥ − 1
2 . In case γ ≥ − 1

2 we are

in the relatively favorable situation. By introducing the B0 term from Theorem 2.6 we are also

able to handle γ < − 1
2 .

Theorem 4.2. Let X̃1, X̃2, . . . , X̃n be i.i.d. random variables from distribution F with block maxima

X1, . . . , Xk and block length m := n
k . Assume that F satisfies the second-order condition for some

γ ∈ R and ρ ≤ 0. Suppose X∗1 , X∗2 , . . . , X∗k is a bootstrapped sample of block maxima, then we may

define a sequence of Brownian motions {Wn(s)}s≥0 and a sequence of Brownian bridges {E∗k (s)}s≥0,

independent from the Brownian motions, such that for suitable functions a0 and A0,

√
k

(
X∗dkse,k − B0(m)

a0(m)
− (− log s)−γ − 1

γ

)

=
E∗k (s)

s(− log s)1+γ
+

Wn (− log s)
(− log s)1+γ

+
√

kA0(m)Ψγ,ρ

(
1

− log s

)
+ c(s)oP (1) (4.2.1)
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uniformly for s ∈ [1/(k + 1), k/(k + 1)] as n → ∞, provided k(n) → ∞, n ≥ k(n)
2−τ
1−τ for each n with

τ ∈
(

1
2 , 1
)

,
√

kA0
( n

k
)
= O(1) with c(s) non-stochastic and integrable on [0, 1] and B0 as defined in

Theorem 2.6.

Proof. We start by invoking Theorem 2.6; We may define a sequence of Brownian motions

{Wn}s≥0 such that for suitably chosen functions a0 and A0 and each ε ∈ (0, 1/2),

√
k

 X̃n−[ n
m ·x],n

− B0 (m)

a0 (m)
− x−γ − 1

γ

 = x−γ−1Wn (x) +
√

kA0 (m)Ψγ,ρ(x−1) + h(x)−1oP(1)

(4.2.2)

uniformly for x ∈ (0, λ(n)] as n → ∞, provided k = k(n) → ∞, k/n → 0,
√

kA(m) = O(1) and

with λ(n) = O
(
(n/k)1−τ

)
for τ > 0 such that τ > ε

ε+1/2 , with h(x) defined as follows:

h(x) := min
(

xγ+1/2+ε, xγ+ρ−ε
)

.

Also note that for positive x the multiplicative inverse of h(x) is given by

h(x)−1 = max
(

x−γ−1/2−ε, x−γ−ρ+ε
)

.

As we wish to gain information about the limiting distribution of bootstrapped block maxima,

the need arises to substitute x in Equation 4.2.2 with a suitably chosen function. First we

motivate our substitution function after which we justify the substitution.

By definition of the function Vn (see Section 2.5) we obtain Vn(z) = X̃dnΦ(z)e,n and conse-

quently

Vn(mz) = X̃dnΦ(mz)e,n = X̃n−[ n
m m(1−Φ(mz))],n. (4.2.3)

Subsequently, assume Z∗i , for i = 1, . . . , k to be a random sample from the standard Fréchet

distribution, then we know by the reasoning in Section 2.5 that

Vn

(
mZ∗dkse,k

)
d
= X∗dkse,k, for s ∈ (0, 1]. (4.2.4)

Hence we aim to substitute x with x(z(s)) = m (1−Φ(mz(s))) with z(s) = Z∗dkse,k for s ∈ (0, 1],

resulting in

X̃n−[ n
m ·x(z(s))],n

= X̃n−[ n
m m(1−Φ(mz(s)))],n = Vn

(
mZ∗dkse,k

)
d
= X∗dkse,k for s ∈ (0, 1] (4.2.5)

with X∗dkse,k the order statistics of bootstrapped block maxima.

For the justification we expand Φ(mz) around 1
mz = 0, yielding

Φ(mz) = exp
(
− 1

mx

)
= 1− 1

mz
+

1
2m2z2 + . . . ,

and therefore

m (1−Φ(mz)) =
1
z
− 1

2mz2 + . . . .

Assuming 1
z ≤ O

(
(n/k)1−τ

)
with τ ∈ (1/2, 1) we see that x(z) = m (1−Φ(mz)) → 1

z since
1

mz2 → 0. The assumption that 1
z ≤ O

(
(n/k)1−τ

)
is also required in the next step of the proof.

Hence the only new requirement is that τ must be in (1/2, 1).
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By the continuity of the functions xγ, Wn(x) and Ψγ,ρ(x) we henceforth find

√
k
(

Vn(mz)− B0 (m)

a0 (m)
− zγ − 1

γ

)
= zγ+1Wn

(
1
z

)
+
√

kA0 (m)Ψγ,ρ(z) + h(z−1)−1oP(1) (4.2.6)

uniformly for 1/z ∈ (0, λ(n)] as n → ∞ and with λ(n) = O
(
(n/k)1−τ

)
. In particular, notice

that

0 <
1
z
≤ O

(
(n/k)1−τ

)
⇐⇒ O

(
(k/n)1−τ

)
≤ z < ∞. (4.2.7)

Now we wish to substitute z with z(s) = Z∗dkse,k for s ∈ (0, 1] with Z∗ standard Fréchet dis-

tributed. In doing so we need to satisfy Equation 4.2.7, which restricts the speed of which Z1,k

may go to zero and therefore the growth of k. We require P
(

Z∗1,k > M (k/n)1−τ
)
= 1 for fixed

M > 0 as k, n→ ∞. Consider the following:

P
(

Z∗1,k ≤
M
k

)
= P

(
−max (−Z∗1 , . . . ,−Z∗k ) ≤

M
k

)
= 1− P

(
max (−Z∗1 , . . . ,−Z∗k ) ≤ −

M
k

)
= 1− P

(
−Z∗ ≤ −M

k

)k

= 1−
(

1− exp
(
− k

M

))k
.

For M > 0 we see that

lim
k→∞

(
1− exp

(
− k

M

))k
= 1. (4.2.8)

Hence follows that P
(

Z∗1,k ≤
M
k

)
→ 0 as k → ∞ and consequently P

(
Z∗1,k >

M
k

)
→ 1. Thus it

suffices to have 1
k ≥ (k/n)1−τ , which may be achieved by assuming n ≥ k(n)

2−τ
1−τ . We apply the

substitution in order to find

√
k

(
X∗dkse,k − B0(m)

a0(m)

)
=

√
k

(
Z∗dkse,k

)γ
− 1

γ︸ ︷︷ ︸
Λ.1

+
(

Z∗dkse,k

)γ+1
Wn

(
1

Z∗dkse,k

)
︸ ︷︷ ︸

Λ.2

+
√

kA0(m)Ψγ,ρ

(
Z∗dkse,k

)
︸ ︷︷ ︸

Λ.3

+ h
(

z(s)−1
)−1

︸ ︷︷ ︸
Λ.4

oP (1) .

(4.2.9)

uniformly for s ∈ (0, 1] as n→ ∞. We show that the following holds

Λ.1 =
√

k
(− log s)−γ − 1

γ
+

E∗k (s)
s(− log s)1+γ

+ c1(s)oP (1)

Λ.2 =
Wn (− log s)
(− log s)γ+1 + c2(s)oP(1)

Λ.3 =
√

kA0(m)Ψγ,ρ

(
1

− log s

)
+ c3(s)oP (1)

Λ.4 = h (− log s)−1 + c4(s)oP (1)
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uniformly for s ∈ [1/(k + 1), k/(k + 1)] as n → ∞, with the functions ci(s) positive and inte-

grable on [0, 1] and {E∗k (s)}s≥0 a sequence of Brownian bridges, independent from the sequence

{Wn(s)}s≥0.

We start with Λ.1.; By Theorem 2.7 there exists, for ν ∈ (0, 1/2), an appropriate sequence of

Brownian bridges
(
E∗k
)

k≥1 such that

√
k

(
Z∗dkse,k

)γ
− 1

γ
=
√

k
(− log s)−γ − 1

γ
+

E∗k (s)
s(− log s)1+γ

+ c1(s)oP (1) (4.2.10)

uniformly for s ∈ [1/(k + 1), k/(k + 1)] as k→ ∞ with c1(s) =
(s(1−s))ν

s(− log s)1+γ .

For the remaining approximations we need an intermediate result. Again, we start with the

statement from Theorem 2.7; for ξ ∈ R we have

sup
1/(k+1)≤s≤k/(k+1)

(s(1− s))−ν

∣∣∣∣∣∣s(− log s)1+ξ

Zξ
dkse,k − 1

ξ
− (− log s)−ξ − 1

ξ

− Ek(s)√
k

∣∣∣∣∣∣ = oP

(
1√
k

)
. (4.2.11)

We see that

sup
1/(k+1)≤s≤k/(k+1)

(s(1− s))−ν

∣∣∣∣Ek(s)√
k

∣∣∣∣ ≤ sup
s

(
1

k + 1
· k

k + 1

)−ν ∣∣∣∣Ek(s)√
k

∣∣∣∣
= sup

s
(k + 1)ν · k−1/2 ·

(
k

k + 1

)−ν

|Ek(s)|

= oP(1).

In the last line we use that limk→∞(k+ 1)ν · k−1/2 = 0 for ν ∈ (0, 1/2). Therefore, Equation 4.2.11

implies

sup
1/(k+1)≤s≤k/(k+1)

(s(1− s))−ν

∣∣∣∣∣∣s(− log s)1+ξ

Zξ
dkse,k − 1

ξ
− (− log s)−ξ − 1

ξ

∣∣∣∣∣∣ = oP (1) .

Hence we find for ξ ∈ R and ν ∈ (0, 1/2)

Zξ
dkse,k = (− log s)−ξ + cz,ξ · oP(1) (4.2.12)

uniformly for s ∈ [1/(k + 1), k/(k + 1)] as k→ ∞ with cz,ξ = (s(1−s))ν

s(− log s)1+ξ .

Now we use Equation 4.2.12 at ξ = −1 and, as in the proof of Theorem 3.2, we employ the

modulus of continuity of the Brownian motion to see that

Wn

(
1

Z∗dkse,k

)
= Wn (− log s) + c22(s)oP(1). (4.2.13)

We combine Equation 4.2.12 at ξ = γ + 1 and Equation 4.2.13 via Lemma 2.2 to find for ∆.2(
Z∗dkse,k

)γ+1
Wn

(
1

Z∗dkse,k

)
=

(
1

− log s

)γ+1
Wn (− log s) + c2(s)oP(1) (4.2.14)
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uniformly for s ∈ [1/(k + 1), k/(k + 1)] with c2(s) = c22(s)cz,γ+1(s), which is positive and

integrable since both c22(s) and cz,γ+1(s) are.

For Λ.3 we recall the definition of Ψγ,ρ(x):

Ψγ,ρ(x) =



xγ+ρ−1
γ+ρ , γ + ρ 6= 0, ρ < 0,

log x, γ + ρ = 0, ρ < 0,
1
γ xγ log x, ρ = 0 6= γ,
1
2 (log x)2, ρ = 0 = γ.

(4.2.15)

Our aim is to show that

Ψγ,ρ

(
Z∗dkse,k

)
= Ψγ,ρ

(
1

− log s

)
+ c3(s)oP(1) (4.2.16)

uniformly for s ∈ [1/(k + 1), k/(k + 1)]. The first case of Equation 4.2.15 is already done as it is

an implication of Equation 4.2.12. For the second case we employ the Taylor expansion of log x

at x = 1, which is given by

log x = (x− 1)− 1
2
(x− 1)2 + O(x3).

Subsequently we define

Υ := sup
1/(k+1)≤s≤k/(k+1)

cz,1(s)−1

(− log s)

∣∣∣∣log
(

Z∗dkse,k

)
− log

(
1

− log(s)

)∣∣∣∣ .

Then we see the following for Υ by using the Taylor expansion of log x

Υ = sup
1/(k+1)≤s≤k/(k+1)

cz(s)−1

(− log s)

∣∣∣log
(
(− log s)Z∗dkse,k

)∣∣∣
= sup

1/(k+1)≤s≤k/(k+1)

cz(s)−1

(− log s)

∣∣∣((− log s)Z∗dkse,k − 1
)
+ . . .

∣∣∣
= oP(1)

which means that

log
(

Z∗dkse,k

)
= log

(
1

− log(s)

)
+ (− log s)cz,1(s)oP(1) (4.2.17)

uniformly for s ∈ [1/(k + 1), k/(k + 1)]. The other two cases of Equation 4.2.15 can be deduced

from the first two cases by means of Lemma 2.2. This shows Equation 4.2.16 with c3(s) positive,

integrable and depending on ρ and γ. Since
√

kA0(n/k) = O(1) we find

√
kA0(n/k)Ψγ,ρ

(
Z∗dkse,k

)
=
√

kA0(n/k)Ψγ,ρ

(
1

− log s

)
+ c3(s)oP (1) (4.2.18)

uniformly for s ∈ [1/(k + 1), k/(k + 1)] as n→ ∞, k→ ∞ and k(n)/n→ 0.

Finally, for Λ.4 we notice that

h
(

z(s)−1
)−1

= max
(

z(s)γ+1/2+ε, z(s)γ+ρ−ε
)

(4.2.19)
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and hence Equation 4.2.12 implies the requested identity. By the expressions for Λ.1, Λ.2, Λ.3

and Λ.4 we find, implicitly using Lemma 2.1,

√
k

X∗dkse,k − B0(m)

a0(m)
=

√
k
(− log s)−γ − 1

γ
+

E∗k (s)
s(− log s)1+γ

+
Wn (− log s)

(− log s)γ+1 +
√

kA0(m)Ψγ,ρ

(
1

− log s

)
+ c(s)oP (1)

(4.2.20)

uniformly for 1/k ≤ s ≤ k/(k + 1) as n→ ∞, k→ ∞ and k(n)/n→ 0 with

c(s) = c1(s) + c2(s) + c3(s) + h (− log s)−1 + c4(s).

Before continuing we clarify the meaning of a bootstrapped PWM estimator, denoted by

γ̂∗k,m. Suppose X∗1 , X∗2 , . . . , X∗k is a bootstrapped sample of block maxima then we may define β∗r
for r ∈ Z≥0 by β∗0 = 1

k ∑k
i=1 X∗i,k and

β∗r =
1
k

k

∑
i=1

(i− 1) . . . (i− r)
(k− 1) . . . (k− r)

X∗i,k

for r ∈ Z>0, r < k. Then γ̂∗k,m is defined as the solution of

3γ̂∗k,m − 1

2γ̂∗k,m − 1
=

3β∗2 − β∗0
2β∗1 − β∗0

.

Theorem 4.3. Suppose X̃1, X̃2, . . . , X̃n are i.i.d. random variables from distribution F with block maxima

X1, . . . , Xk and block length m. Assume that F satisfies the second-order condition for some γ < 1
2 and

ρ ≤ 0 and
√

kA(m) → λ ∈ R (with A(m) as in Equation 2.3.5). Let γ̂∗k,m be a bootstrapped PWM

estimator, then

√
k
(

γ̂∗k,m − γ
)
= c2(γ)(Q∗2 −Q∗0)− c1(γ)(Q∗1 −Q∗0) + oP(1) (4.2.21)

as n→ ∞, provided k(n)→ ∞, n ≥ k(n)
2−τ
1−τ for each n with τ ∈ (1/2, 1) and with

ci(γ) =
1

Γ(1− γ)

(
log 3

1− 3−γ
− log 2

1− 2−γ

)−1 ( γ

(i + 1)γ − 1

)
i = 1, 2,

Q∗r = (r + 1)
∫ 1

0
sr

(
E∗k (s)

s(− log s)1+γ
+

Wn (− log s)

(− log s)γ+1

)
ds + λI∗r (γ, ρ)

and

I∗r (γ, ρ) = (r + 1)
∫ 1

0
Ψγ,ρ

(
1

− log s

)
sr ds.

Proof. We are now in a position to invoke Theorem 4.2 and note the resemblance between this

theorem and Ferreira and de Haan (2015, Theorem 2.1). The idea is to use the arguments made

in Ferreira and de Haan (2015) to formulate analogous corollaries, with respect to Ferreira and
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de Haan (2015, Theorem 2.1), of Theorem 4.2. Although the similarities between the theorems

are great, we focus on the differences and their consequences for the analogous corollaries.

First of all, Ferreira and de Haan (2015, Theorem 2.1) assumes that
√

kA(m) → λ ∈ R. For

us it is also necessary to make this assumption as it limits growth of the number of blocks k(n).

Next we find a Ψγ,ρ in our theorem where the original theorem shows a Hγ,ρ. This gives a

slightly different definition of Ir(γ, ρ) compared to the original proof. Subsequently, the use of

B0(m) in our theorem in comparison to the use of bm in the original theorem does give an extra

term Π(m) in the approximation of β∗r due to the difference B0(m)− bm.

Finally, the most striking difference is the additional term Wn(− log s)
(− log s)γ+1 due to the random-

ness introduced by the bootstrapping procedure. Considering all this, the analogous version of

Ferreira and de Haan (2015, Theorem 2.2) is
√

k
(
(r + 1)β∗r − bm

am
− Dr(γ)

)
= Q∗r +

√
kΠ(m) + oP(1)

as n → ∞, jointly for r = 0, 1, 2, . . . with Π(m) = B0(m)−bm
am

, B0 as defined in Theorem 2.6 and

am, bm as defined in Ferreira and de Haan (2015, Theorem 2.1). The β∗r denotes the bootstrapped

version of βr with

Dr(ξ) =
(r + 1)ξ Γ(1− ξ)− 1

ξ
, ξ < 1

and Γ(x) the usual gamma function. For the interested reader we added the proof of the latter

statement in the appendix, Theorem A.5. This proof is a copy of the proof presented in Ferreira

and de Haan (2015) adjusted to fit our situation and therefore we do not present it to be our

proof. The extra factor
√

kΠ(m) drops out at the next step of the proof as we are interested in

the following quantities:

√
k
(

2β∗1 − β∗0
am

− 2γ − 1
γ

Γ(1− γ)

)
= Q∗1 −Q∗0 + oP(1)

and √
k
(

3β∗2 − β∗0
am

− 3γ − 1
γ

Γ(1− γ)

)
= Q∗2 −Q∗0 + oP(1).

Following the exact lines of the proof for Ferreira and de Haan (2015, Theorem 2.3) we find

for the bootstrapped PWM estimator γ̂∗k,m that
√

k
(

γ̂∗k,m − γ
)
= c2(γ)(Q∗2 −Q∗0)− c1(γ)(Q∗1 −Q∗0) + oP(1) (4.2.22)

as n→ ∞, provided k(n)→ ∞, n ≥ k(n)
2−τ
1−τ for each n with τ ∈ (1/2, 1).

As for the Hill estimator, we explain heuristically why the bootstrap enables us to estimate

the variance of the PWM estimator. Let γ̂∗,lk,m be bootstrapped PWM estimators for l = 1, . . . , t,

and define γ∗k,m = 1
t ∑t

l=1 γ̂∗,lk,m. For the average γ∗k,m we find
√

k
(

γ∗k,m − γ
)
≈ a0(γ)Q

∗
0 + a1(γ)Q

∗
1 + a2(γ)Q

∗
2

with a0(γ) = c1(γ)− c2(γ), a1(γ) = c1(γ), a2(γ) = c2(γ) and

Q∗r = (r + 1)
∫ 1

0
sr

(
E∗k (s)

s(− log s)1+γ
+

Wn (− log s)

(− log s)γ+1

)
ds + λI∗r (γ, ρ).
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We may state the latter result because Wn(− log(s)) and I∗r (γ, ρ) do not depend on a particular

bootstrap draw and thus we do not need to take the average over this part. As a result

√
k(γ̂∗,lk,m − γ∗k,m) ≈ a0(γ)Q

†,∗
0 + a1(γ)Q

†,∗
1 + a2(γ)Q

†,∗
2

with

Q†,∗
r := Q∗r −Q∗r = (r + 1)

∫ 1

0
sr−1

(
E∗k (s)− E∗k (s)
(− log s)1+γ

)
ds.

A Brownian bridge has mean zero and therefore E∗k (s)
p−→ 0 as t→ ∞. As a consequence

Q†,∗
r = Q∗r −Q∗r

P−→ (r + 1)
∫ 1

0
sr−1 Ek(s)

(− log s)1+γ
ds (4.2.23)

= Qr − E[Qr] (4.2.24)

for r = 0, 1, 2 as t→ ∞ with

E[Qr] = E
[
(r + 1)

∫ 1

0
sr−1 Ek(s)

(− log s)1+γ
ds + λIr(γ, ρ)

]
= λIr(γ, ρ).

Define Q†
i := Qi − E[Qi], then we may conclude

k · 1
t

t

∑
l=1

(
γ̂∗,lk,m − γ∗k,m

)2
≈ E

[(
a0(γ)Q

†,∗
0 + a1(γ)Q

†,∗
1 + a2(γ)Q

†,∗
2

)2
]

P−→ E
[(

a0(γ)Q†
0 + a1(γ)Q†

1 + a2(γ)Q†
2

)2
]

d−→ var
(√

k(γ̂k,m − γ)
)

= k · var(γ̂k,m).

It follows that
1
t

t

∑
l=1

(
γ̂∗,lk,m − γ∗k,m

)2
≈ var(γ̂k,m) (4.2.25)

as t→ ∞, n→ ∞, k(n)→ ∞, n ≥ k(n)
2−τ
1−τ .

4.3 The probability weighted moment extreme quantile estimator for block
maxima

As for the Hill estimator, the blockmaxima and PWM context provides an estimator for extreme

quantiles. For a quantile xpn = F← (1− pn) with pn small, the PWM extreme quantile estimator

is given by

x̂pn ,k,m = b̂k,m + âk,m
(mpn)

−γ̂k,m − 1
γ̂k,m

with γ̂k,m, b̂k,m and âk,m as defined in Section 4.1. The following theorem gives the limiting

distribution of x̂pn ,k,m.
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Theorem 4.4 (Ferreira and de Haan, 2015, Theorem 2.4). Assume the conditions of Theorem 4.1 with

ρ < 0 or ρ = 0 and γ < 0. In addition, suppose that the probabilities pn satisfy

lim
n→∞

mpn = 0 and lim
n→∞

log(mpn)√
k

= 0.

Then
√

k

(
x̂pn ,k,m − xpn

)
amqγ(1/(mpn))

d−→ ∆ + (γ−)
2 Ξ− γ−Λ− λ

γ−
γ− + ρ

(4.3.1)

as n→ ∞ with γ− = min(0, γ) and qγ(t) =
∫ t

1 s−γ−1 log s ds and ∆, Ξ as in Theorem 4.1.

As in the proof of Theorem 4.3 in the previous subsection we may formulate bootstrap

variants of Equation 4.1.2 and Equation 4.1.3, replacing âk,m, b̂k,m and the Qi by their bootstrap

equivalents â∗k,m, b̂∗k,m and the Q∗i . Additionally, the need arise to introduce a stochastic function

gq(k, m). Consequently we find for a bootstrapped PWM extreme quantile estimator x̂∗pn ,k,m that

√
k

(
x̂∗pn ,k,m − xpn

)
amqγ(1/(mpn))

= ∆∗ + (γ−)
2 Ξ∗ − γ−Λ∗ − λ

γ−
γ− + ρ

+ gq(k, m) + oP(1) (4.3.2)

as n → ∞ with gq(k, m) stochastic but not depending on a bootstrap draw. The important

observation here is that the right-hand side of the latter equation is linear in the Q∗i . Hence by the

argument for the PWM estimator on the previous page we find that bootstrapping also works

for this estimator; Let x̂∗,lpn ,k,m be bootstrapped PWM extreme quantile estimators for l = 1, . . . , t,

then
1
t

t

∑
l=1

(
x̂∗,lpn ,k,m − x∗pn ,k,m

)2
≈ var

(
x̂pn ,k,m

)
(4.3.3)

as t→ ∞, n→ ∞, k(n)→ ∞, n ≥ k(n)
2−τ
1−τ with x∗pn ,k,m = 1

t ∑t
l=1 x̂∗,lpn ,k,m.
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5 Simulation Results

In this section we demonstrate the presented theorems in a simulation exercise. We show by

means of simulation that our bootstrapping schemes actually provide reliable estimates and

compare the peaks over threshold method with the block maxima approach. Section 5.1 dis-

cusses the choice for the underlying distribution and Section 5.2 provides the results and inter-

pretation.

5.1 Burr distribution

To ensure comparability between the peaks over threshold method and the block maxima ap-

proach we need to start with the same sample for both methods. This places restrictions on the

underlying distribution. To use our bootstrapping theorems concerning the Hill estimator and

successive Weissman estimator we need γ > 0 and ρ ≤ 0 to hold for the underlying distribution.

On the other hand we need γ < 1
2 and ρ < 0 or γ < 0 and ρ = 0 to satisfy the conditions of

the block maxima bootstrapping theorems. Hence the underlying distribution needs to satisfy

γ ∈ (0, 1/2) and ρ < 0. To meet these specific restrictions we choose to sample from the Burr

distribution. The CDF of the Burr distribution has parameters β > 0, λ > 0, τ > 0 and has the

following definition

F(x) = 1−
(

1 +
xτ

β

)−λ

, for x > 0. (5.1.1)

The related function U =
(

1
1−F

)←
has the following form

U(x) = β
1
τ

(
x

1
λ − 1

) 1
τ , for x > 0, (5.1.2)

and subsequently we find for the Burr(β, λ, τ) distribution

γ =
1

λτ
and ρ = − 1

λ
. (5.1.3)

Hence we take (β, λ, τ) = (1, 1, 4) for the Burr distribution in order to have γ = 1
4 and ρ = −1

and meet our conditions.

5.2 Results

Initially we produce a sample of n independent draws from the Burr(1, 1, 4) distribution and

fix k. This allows us to calculate the Hill estimator and the PWM estimator for the extreme

value index. For the block maxima approach we use block length m = n/k to get a sample of k

block maxima. In this way, both the Hill estimator and the PWM estimator are calculated using

k extreme observations. Consecutively we fix p = 1/n and calculate the Weissman estimator

(based on the Hill estimator) and the PWM extreme quantile estimator. In order for the quantile

to be “extreme” we need to choose p this small, which guarantees that there will be only a few

observations near the quantile xp and we are (almost) outside the range of the data. For both the

extreme value index γ and the extreme quantile xp we have the theoretical value en we report
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Table 1: Ratio of the estimator to its true value for different values of n and k, with n the total

sample size and k the amount of extreme data points used to calculate the extreme value index

estimators. For the Hill estimator and the PWM estimator the ratio γ̂/γ is presented and for the

Weissman estimator and the PWM extreme quantile estimator the table depicts the value x̂p/xp,

with p = 1/n.

Estimator ratios

(n,k) Hill est. Weissman est. PWM est. PWM quant. est

(1000,50) 1.12 1.06 0.82 0.94

(1000,100) 1.08 1.02 1.17 0.99

(1000,150) 0.98 0.93 1.20 1.00

(5000,100) 0.92 0.87 0.74 0.78

(5000,200) 0.97 0.91 0.71 0.78

(5000,500) 0.99 0.93 0.76 0.80

(10000,200) 0.98 0.94 1.14 0.97

(10000,500) 0.98 0.94 0.94 0.90

the ratios of the estimator to the true value: γ̂/γ and x̂p/xp. The results can be found in Table 1.

We see that both the Hill estimator and the PWM estimator provide accurate estimates for the

extreme value index, even for a sample of size n = 1000. However, the PWM estimator appears

more sensitive to the choice of k than the Hill estimator. Additionally, both extreme quantile

estimators seem to perform well.

Subsequently we apply t bootstrap procedures. For each bootstrap procedure we calculate

the Hill estimator and both the PWM estimators. The empirical variance of the bootstrapped Hill

estimators gives an estimate for the variance of the original Hill estimator. From this estimate for

the variance of the Hill estimator we may deduce an estimate for the variance of the Weissman

estimator x̂p via:

var
(
x̂p
)
≈ var (γ̂H)

(
xp log dn

)2

k
with dn = k/(np). We use the empirical variance of the bootstrapped Hill estimators (follow-

ing Equation 3.2.18) as proxy for var (γ̂H) and use the Weissman estimator as proxy for xp to

produce an estimate for var
(

x̂p
)
. For the PWM estimators we take the empirical variance of the

bootstrapped estimators as an estimate for var (γ̂k,m) and var
(

x̂p,k,m

)
. In all of these cases we

denote the estimate of the variance (of a particular estimator) by v̂ar (·) to distinguish from the

theoretical variance, denoted by var (·).
The next step is compare the estimate for a particular variance to the theoretical value. For

the Hill estimator and the Weissman estimator (asymptotic) theoretical values are available as

presented in Theorem 3.1 and Theorem 3.4. For the PWM estimators these are not available

and therefore we employ a pre-simulation. We produce 10 000 samples, each sample consisting

of n independent draws from the Burr(1, 1, 4) distribution, and for each of these samples we

calculate both PWM estimators with the corresponding parameters k and p. Subsequently, for
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Table 2: Ratio of the variance estimated by bootstrapping to the theoretical variance, that is

v̂ar
(
Θ̂
)

/var
(
Θ̂
)
, for the four estimators Θ̂ for different triples (n, k, t). With n the total sample

size, k the amount of extreme data points used to calculate the extreme value index estimators

and t the amount of bootstrapping procedures. For the extreme quantile estimators we use

p = 1/n.

Variance ratios

(n,k,t) Hill est. Weissman est. PWM est. PWM quant. est

(1000,50,1000) 1.13 1.27 0.54 0.23

(1000,50,5000) 1.08 1.21 0.53 0.22

(1000,100,1000) 1.23 1.28 0.34 0.31

(1000,150,1000) 1.18 1.03 0.34 0.39

(5000,100,1000) 0.68 0.51 1.24 0.39

(5000,100,5000) 0.70 0.52 1.23 0.39

(5000,100,10000) 0.71 0.53 1.19 0.39

(5000,200,1000) 0.82 0.68 0.90 0.36

(5000,500,1000) 0.92 0.80 0.69 0.40

(10000,200,1000) 0.88 0.77 0.79 0.58

(10000,200,5000) 0.93 0.81 0.82 0.61

(10000,200,10000) 0.92 0.81 0.82 0.61

(10000,500,1000) 1.00 0.88 0.83 0.63

both PWM estimators, we determine the empirical variance of these 10 000 estimators and treat

this empirical variance as the true variance. Hence we have produced for all four estimators a

theoretical value of the variance. In Table 2 we depict the ratio of the estimated variance to the

theoretical variance for the four estimators for different triples (n, k, t). The first observation we

make is that the estimates for the variance hardly depend on the amount of bootstrap proce-

dures. Even for a larger sample of 10000 observations the improvement in the estimate caused

by increasing the amount of bootstrap procedures from 1000 to 10000 is minimal. This indicates

that even for larger samples a relatively modest amount of bootstrapping procedures may be

used. We do notice large differences in performance between different estimators. In general,

we see two things; The estimated variances of the extreme value index estimators seem to be

more accurate then the estimated variances of the extreme quantile estimators and the variances

of the peaks over threshold estimators appear to be estimated more accurately than for the block

maxima estimators under consideration. The accuracy of the variance estimates for the PWM

estimators appears to improve relatively much by increasing n. This might indicate that for

the PWM estimators the sample sizes presented here are actually too small to let the bootstrap

perform optimally. Across the board, the bootstrapping procedure seems to provide estimates

of the variance that are rather good (provided n is large enough), especially for the peaks over

threshold estimators under consideration.
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6 Empirical application

In this section we employ our bootstrapping methods in the context of financial data and in

particular estimate the value at risk for a small number of stock exchange indices and estimate

the corresponding variance.

The data consists of daily returns quoted as a percentage for several large stock exchange

indices. This dataset is extracted from Bloomberg and the specific ticker names can be found in

Table 3 along with their start date and end date.

Table 3: Daily return series quoted as a percentage for which we bootstrap estimators for the

extreme value index and extreme quantiles.

Index (Bloomberg ticker) start date end date number of obs.

AEX Index (AEX) 4-1-1983 31-8-2015 8304

DAX Index (DAX) 2-10-1959 31-8-2015 14058

Nikkei 225 (NKY) 6-1-1970 31-8-2015 11260

Shanghai Stock Exch. Composite Index 20-12-1990 31-8-2015 6041

(SHCOMP)

S&P 500 Index (SPX) 3-1-1950 31-8-2015 16523

FTSE 100 Index (UKX) 4-1-1984 28-8-2015 8015

For each stock exchange index i we implicitly assume their daily returns are i.i.d. draws

from a distribution Fi satisfying the second order extreme value condition with γ ∈ (0, 1/2) and

ρ < 0. We fix k = 200 and calculate the Hill estimator and PWM estimator, for each index i, to

measure the tail heaviness of the underlying distribution Fi. The simulations indicate that the

estimates are not sensitive to the choice of k and that k = 200 seems an appropriate choice for

a sample of 5000 observations as well as for a sample of 10 000 observations. Therefore we use

k = 200 for all indices. Furthermore, we produce for each stock exchange index i estimates for

an extreme quantile. We choose p = 0.0001 ≈ 1/n and estimate xp,i = F←i (1− p) by means of

the Weissman estimator and the PWM extreme quantile estimator. In other words, we estimate

the daily return that is exceeded only by a chance of p. As for the simulations, this choice of p

guarantees that the quantile is (almost) outside the scope of the data. Subsequently we employ

5000 bootstrap procedures and with each bootstrap procedure we calculate the Hill estimator

and PWM estimators. We finally find an estimate for the variances of all four estimators as we

did for the simulations.

We report the values of the Hill estimator and the PWM estimator along with the square root

of the estimated variance in Table 4. We notice large differences between the indices with respect

to their extreme value index. The Shanghai Stock Exchange composite index (SHCOMP) has the

heaviest tail as opposed to the Nikkei 225 index. We also note substantial differences between

the Hill estimator and PWM estimator, where the PWM estimator usually gives a lower estimate.

On the other hand, the variance of the PWM estimator is always higher than the variance of the

Hill estimator. The PWM estimate for the SHCOMP is near 0.5, which is close to our theoretical
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Table 4: Values of the Hill estimator and PWM estimator for the stock exchange indices with

corresponding square root of the estimated variance denoted by Boot. Std. For every estimator,

5000 bootstrap sequences are used.

Hill estimator PWM estimator

Index estimate Boot. Std. estimate Boot. Std.

AEX 0.356 0.024 0.316 0.041

DAX 0.323 0.022 0.279 0.050

NKY 0.282 0.020 0.166 0.066

SHCOMP 0.483 0.034 0.497 0.106

SPX 0.323 0.020 0.216 0.065

UKX 0.318 0.023 0.263 0.057

Table 5: Quantile estimates of the daily returns distribution at p = 0.0001 for the stock indices

based on the Weissman estimator and the PWM extreme quantile estimator with corresponding

square root of the estimated variance denoted by Boot. Std. For every estimator, 5000 bootstrap

sequences are used.

Weissman estimator PWM quantile estimator

Index estimate (%) Boot. Std. (%) estimate (%) Boot. Std. (%)

AEX 18.38 2.54 14.15 1.54

DAX 14.41 1.63 11.96 1.23

NKY 12.65 1.31 11.36 1.67

SHCOMP 61.14 12.11 56.92 22.19

SPX 11.36 1.25 8.05 1.07

UKX 12.31 1.53 9.76 1.43

boundary. Hence the associated variance might not be accurate.

We report the values of the Weissman estimator and the PWM extreme quantile estimator

along with the square root of the estimated variance in Table 5. We note that the Weissman

estimates are higher than the PWM extreme quantile estimates, perhaps due to the higher Hill

estimates relative to the PWM estimates. The estimated variances of the Weissman estimates are

also higher, except for the SHCOMP and Nikkei 225 index. In alignment with our findings on

the extreme value index we see that the extreme quantile for the SHCOMP is by far the largest.

So far we have investigated the properties of the right tail of Fi, the tail associated with

high returns. However, economic theory suggests that we fear downside risk more than we

appreciate upside potential. Hence the left tail and the Value at Risk (VaR) are of particular

financial interest. To determine a VaR we wish to estimate F←(p) for p very small. This presents

us with a challenge as both of the extreme quantile estimators can only deal with quantiles of

the form U (1/p) = F←(1− p). To solve this we propose to flip the sign of the entire dataset and
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Table 6: 1 day 0.01% Value at Risk estimates for the indices based on the Weissman estimator and

the PWM extreme quantile estimator with corresponding square root of the estimated variance

denoted by Boot. Std. For every estimator, 5000 bootstrap sequences are used.

Weissman estimator PWM quantile estimator

Index estimate (%) Boot. Std. (%) estimate (%) Boot. Std. (%)

AEX -20.92 3.01 -11.10 1.18

DAX -14.88 1.70 -10.73 0.93

NKY -14.52 1.62 -12.13 1.65

SHCOMP -35.55 5.57 -19.93 1.67

SPX -11.11 1.19 -10.07 1.80

UKX -13.36 1.69 -9.78 1.75

then construct for this flipped dataset the estimates for the quantile F←(1− p) which coincides

(up to a sign change) with the requested F←(p) quantile of the untouched dataset. In doing so

we also have to re-estimate the extreme value index. For p = 0.0001, the calculated quantity

can be interpreted as a 1 day 0.01% Value At Risk for the particular index. Table 6 contains the

results of this procedure. We note some remarkable differences, primarily for the SHCOMP. The

absolute values of the quantiles for the SHCOMP are much lower than the values presented in

Table 5, indicating substantial differences between the extreme negative and extreme positive

returns on this index. In particular there should be more extreme positive returns than negative

ones. This is substantiated by lower estimates for the extreme value index for the flipped dataset.

For the other indices the VaR values are in accordance with the results presented in Table 5,

signalling similarities between the (extreme) left tail and (extreme) right tail of their underlying

distribution.
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7 Concluding remarks

This study investigates the use of bootstrapping schemes to estimate the variance of estimators

from extreme value theory. The core of this thesis is devoted to the analysis of the bootstapped

Hill estimator and the bootstrapped probability weighted moment estimator for the extreme

value index. This analysis finds a natural application in extreme quantile estimation, and more

specifically in the Weissman estimator and the probability weighted moment estimator for ex-

treme quantiles.

The first step is to split the randomness in the bootstrapping procedure into two parts; one

part due to the randomness of the empirical distribution function and one part due to resam-

pling. Consecutively, we investigate the limiting distribution of the intermediate order statistics

of a bootstrapped sample and bootstrapped block maxima. By employing this information about

a bootstrapped sample, we show heuristically that the sample variance of bootstrapped Hill es-

timators is a consistent estimator for the theoretical variance of the original Hill estimator. It is

worth noting that this statement about the limiting distribution of a bootstrapped sample has

greater applicability because it indicates that the differences in the limiting distribution between

a random sample and a corresponding bootstrapped sample are small. Corollaries based on

the limiting distribution of a random sample can therefore often be adjusted to fit the bootstrap

framework.

We follow exactly this reasoning for the PWM estimator. The theorem concerning the lim-

iting distribution of the PWM estimator is based on a statement about the intermediate order

statistics of block maxima. We prove a very similar statement about the intermediate order statis-

tics of bootstrapped block maxima and then follow the lines of the original proof to construct

the limiting distribution of a bootstrapped PWM estimator. From here we show heuristically

that the sample variance of bootstrapped PWM estimators provides a consistent estimator for

the theoretical variance of the original PWM estimator for the extreme value index.

Additionally, we expand our scope towards extreme quantile estimation. We may base the

Weissman estimator on the Hill estimator. In this context is the variance of the Weissman

estimator a function of the variance of the Hill estimator. Hence, by bootstrapping the Hill

estimator we may estimate the variance of the Weissman estimator. The theory behind the

limiting distribution of the PWM estimator for extreme quantiles is very similar to that of the

PWM estimator for the extreme value index. Hence, we employ a very similar argument as for

the PWM estimator for the extreme value index to find that bootstrapping the PWM extreme

quantile estimator also provides the correct variance.

Finally, we perform a simulation exercise and a data analysis to review the practical use of

our theory. The simulation exercise indicates that our bootstrapping schemes allow for accu-

rate estimation of the variance of these estimators even for a relatively small sample of 1000

observations. Signalling that our bootstrapping schemes are applicable for real datasets.

Naturally, in both the peaks over threshold and block maxima context, there exist more

estimators for the extreme value index and extreme quantiles than the ones considered in this

thesis. Armed with our theorems concerning the limiting distribution of the intermediate order
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statistics of a bootstrapped sample and bootstrapped block maxima it would be reasonable to

investigate whether bootstrapping also works to estimate their variance.

Furthermore, we showed heuristically that our bootstrapping schemes worked for our four

estimators. In order to make such an argument completely rigorous we need the limiting distri-

bution of a bootstrapped estimator uniform for any number of these bootstrapped estimators.

To extend the presented theorems in such a way would present a substantial challenge and

would pose an apparent subject for future research.
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Appendices

A Additional proofs

In the next theorems we extend results presented in de Haan and Ferreira (2006). The first four

theorems all work towards an extension of de Haan and Ferreira (2006, Corollary 2.4.5) which

is essential in Section 4. The proofs and their structure presented here rely heavily on the work

of Laurens de Haan.

Theorem A.1 (de Haan and Ferreira, 2006, Extension of Lemma 2.4.10). Assume Y1, Y2, . . . are

i.i.d. random variables with a standard Pareto distribution and let Y1,n ≤ Y2,n ≤ . . . Yn,n be its n-th order

statistics. For each γ ∈ R we may define a sequence of Brownian motions {Wn(s)}s>0 such that for each

ε ∈ (0, 1/2),

sup
k−1≤s≤λ(n)

sγ+1/2+ε

∣∣∣∣∣∣∣
√

k


(

k
n Yn−[ks],n

)γ
− 1

γ
− s−γ − 1

γ

− s−γ−1Wn(s)

∣∣∣∣∣∣∣ = oP(1) (A.0.1)

as n→ ∞, k(n)→ ∞ and k/n→ 0 and with λ(n) = O
(
(n/k)1−τ

)
for τ > 0 such that τ > ε

ε+1/2 .

Proof. The sequence Yγ
1 −1
γ , Yγ

2 −1
γ , . . . has distribution function F(x) = 1− (1 + γx)−

1
γ for which

the conditions of de Haan and Ferreira (2006, Proposition 2.4.9) hold.

In general, let f (x) = F′(x) and Q(t) = F←(t). Suppose the conditions of de Haan and

Ferreira (2006, Proposition 2.4.9) hold, then for 0 ≤ ε < 1
2 we may define a sequence of Brownian

bridges {Bn(t)} such that

sup
1/(n+1)≤t≤n/(n+1)

nεtε−1/2(1− t)ε−1/2
∣∣∣√n f (Q(t))

(
Q(t)− Xdnte,n

)
− Bn(t)

∣∣∣ = OP(1) (A.0.2)

as n→ ∞ and X1, X2, . . . i.i.d. random variables from distribution F.

In our case

F(x) = 1− (1 + γx)−
1
γ

f (x) = (1 + γx)−
γ+1

γ

Q(t) =
(1− t)−γ − 1

γ
.

By Equation A.0.2

sup
1/(n+1)≤t≤n/(n+1)

nεtε−1/2(1− t)ε−1/2

∣∣∣∣∣√n(1− t)γ+1

(
Yγ
dnte,n − 1

γ
− (1− t)γ − 1

γ

)
− Bn(t)

∣∣∣∣∣ = OP(1). (A.0.3)

We interchanged Q(t) and Xdnte,n. This is justified as Bn(t) and −Bn(t) have the same prob-

ability. Now we wish to substitute t with t(s) = 1− ks
n . The boundaries of t(s) are given by
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1/(n + 1) ≤ t(s) ≤ n/(n + 1). This entails for s:

1/(n + 1) ≤ 1− ks
n
≤ n/(n + 1) (A.0.4)

1− 1/(n + 1) ≥ ks
n
≥ 1− (n/n + 1) (A.0.5)

n
k

n
n + 1

≥ s ≥ n
k

1
n + 1

(A.0.6)

The following restrictions imply the latter restrictions and are therefore sufficient:

1
k
≤ s ≤ n

k
n

n + 1
. (A.0.7)

Additionally, we wish to have the following for ε ∈ (0, 1/2)

sup
1/k≤s≤λ(n)

(
1− ks

n

)ε−1/2
− 1→ 0 (A.0.8)

as n → ∞. For ks
n < 1, which should be the case by the previous restrictions, the supremum is

achieved at s = λ(n). Hence it is necessary and sufficient to have λ(n) · k
n → 0 as n→ ∞. Which

is the case for λ(n) = O
(
(n/k)1−τ

)
.

After some rearrangements we get

sup
k−1≤s≤λ(n)

kε

∣∣∣∣∣
(

k
n

)γ

sγ+1/2+ε
√

k

Yγ
n−[ks],n − 1

γ
−

(
ks
n

)−γ
− 1

γ


−
(

k
n

)−1/2
sε−1/2Bn

(
1− ks

n

) ∣∣∣∣∣ = Op(1) (A.0.9)

Now we follow the proof as given in de Haan and Ferreira (2006). The only additional result we

need is

sup
k−1≤s≤λ(n)

∣∣∣∣∣
(

ks
n

)1/2
sε Wn(1)

∣∣∣∣∣ = op(1). (A.0.10)

For this to hold, it suffices to have(
k
n

)1/2
λ(n)ε+1/2 → 0 as n→ ∞. (A.0.11)

For λ(n) = O
(
(n/k)1−τ

)
there exists M > 0 and m0 ∈ Z>0 such that

λ(n) ≤ M · (n/k)1−τ for n > m0. (A.0.12)

Hence follows (
k
n

)1/2
λ(n)ε+1/2 ≤

(
k
n

)1/2
Mε+1/2 ·

(
(n/k)1−τ

)ε+1/2
(A.0.13)

=

(
k
n

)1/2
Mε+1/2 ·

(
k
n

)−1/2−ε+τ(ε+1/2)
(A.0.14)

=

(
k
n

)−ε+τ(ε+1/2)
Mε+1/2. (A.0.15)

Hence it suffices to have −ε + τ(ε + 1/2) > 0 or equivalently τ > ε
ε+1/2 .
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Theorem A.2 (de Haan and Ferreira, 2006, Extension of Lemma 2.4.11). Let X1, X2, . . . be i.i.d.

random variables with distribution function F. Suppose U = (1/(1− F))← satisfies von Mises’ second

order condition of de Haan and Ferreira, 2006, Theorem 2.3.12 for some γ ∈ R and ρ ≤ 0. Then we may

define a sequence of Brownian motions {Wn(s)}s>0 such that for suitably chosen functions a0 and A0

and each ε ∈ (0, 1/2),

sup
k−1≤s≤λ(n)

min
(

sγ+1/2+ε, sγ+ρ−ε
) ∣∣∣∣∣√k

(
Xn−[ks],n −U

( n
k
)

a0
( n

k
) − s−γ − 1

γ

)

− s−γ−1Wn (s)−
√

kA0

(n
k

)
Ψγ,ρ(s−1)

∣∣∣∣∣ P−→ 0 (A.0.16)

as n → ∞, provided k = k(n) → ∞, k/n → 0,
√

kA0(n/k) = O(1) and with λ(n) = O
(
(n/k)1−τ

)
for τ > 0 such that τ > ε

ε+1/2 .

Proof. The function F satisfies the conditions of de Haan and Ferreira (2006, Proposition 2.4.9) for

the right tail. We employ this proposition and use the same λ(n), that is λ(n) = O
(
(n/k)1−τ

)
,

as in the previous proof to find

sup
k−1≤s≤λ(n)

s1/2+ε

∣∣∣∣∣√k
Xn−[ks],n −U

( n
ks
)

a
( n

ks
) − Wn(s)

s

∣∣∣∣∣ = op(1) (A.0.17)

as n → ∞ and with a(t) = tU′(t). We take a0 ∼ a with a0 from de Haan and Ferreira (2006,

Proposition 2.3.6).

For s ∈ [k−1, 1] the result is already proved in de Haan and Ferreira (2006), hence we proceed

for s ∈ (1, λ(n)]. Note that for s > 1

min
(

sγ+1/2+ε, sγ+ρ−ε
)
= sγ+ρ−ε (A.0.18)

because γ + ρ− ε < γ + 1
2 + ε. The expression from the theorem becomes

sγ+ρ−ε

{
√

k

(
Xn−[ks],n −U

( n
k
)

a0
( n

k
) − s−γ − 1

γ

)

− s−γ−1
√

n
k

Wn

(
ks
n

)
−
√

kA0

(n
k

)
Ψγ,ρ

(
s−1
)}

(A.0.19)

which can be rewritten towards

d
=sγ+ρ−ε

{
√

k

(
U
( n

ks
)
−U

( n
k
)

a0
( n

k
) − s−γ − 1

γ

)
−
√

kA0

(n
k

)
Ψγ,ρ

(
s−1
)}

(A.0.20)

+ sγ+ρ−1/2−2ε a0
( n

ks
)

a0
( n

k
) {s1/2+ε

(
√

k
Xn−[ks],n −U

( n
ks
)

a
( n

ks
) − Wn(s)

s

)}
(A.0.21)

+ sγ+ρ−ε

(
a0
( n

ks
)

a0
( n

k
) − s−γ

)
Wn(s)

s
(A.0.22)

where we use the identity

Xn−[ks],n −U
( n

k
)

a0
( n

k
) =

U
( n

ks
)
−U

( n
k
)

a0
( n

k
) +

a0
( n

ks
)

a0
( n

k
) (Xn−[ks],n −U

( n
ks
)

a0
( n

ks
) )

. (A.0.23)
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By de Haan and Ferreira (2006, Proposition 2.3.6) we see that for every ε′, δ > 0 the absolute

value of Equation A.0.20 is bounded by:

sγ+ρ−ε
√

k · A0

(n
k

)
ε′s−γ−ρ max

(
sδ, s−δ

)
. (A.0.24)

Here, we implicitly use that s ≤ λ(n) = O
(
(n/k)1−τ

)
. Without loss of generality we drop

√
kA0

( n
k
)

from the latter equation, as this term is bounded and such a bound can easily be

incorporated by suitable choice of ε′. Now notice that

max
(

sδ, s−δ
)
=

sδ if s > 1,

s−δ if s ≤ 1.
(A.0.25)

Hence for s > 1 the upper bound is given by

ε′ · s−ε+δ, (A.0.26)

subsequently choosing δ = ε gives that Equation A.0.20 converges uniformly to zero for s ∈
(1, λ(n)]. Now we consider Equation A.0.21 and immediately use Potter’s inequality. For

δ1, δ2 > 0

sγ+ρ−1/2−2ε ·
a0
( n

ks
)

a0
( n

k
) < sγ+ρ−1/2−2ε · (1 + δ1)s−α max

(
sδ2 , s−δ2

)
(A.0.27)

with a0 ∈ RVα. Here, we implicitly use that s ≤ λ(n) = O
(
(n/k)1−τ

)
. By theory on regular

variation we know that α = γ. Hence we find

sγ+ρ−1/2−2ε a0
( n

ks
)

a0
( n

k
) < c0 · sρ−1/2−2ε+δ2 (A.0.28)

with c0 a constant. Therefore, the latter quantity is bounded. By using Theorem A.1 it follows

that Equation A.0.21 converges uniformly to zero for s ∈ (1, λ(n)]. For Equation A.0.22 we

employ de Haan and Ferreira (2006, Proposition 2.3.6) to find(
sγ a0

( n
ks
)

a0
( n

k
) − 1

)
< A0

(n
k

)( s−ρ − 1
ρ

+ ε′s−ρ max
(

sδ, s−δ
))

. (A.0.29)

Hence we find for s > 1

sρ−ε ·
(

sγ a0
( n

ks
)

a0
( n

k
) − 1

)
< sρ−ε · A0

(n
k

)( s−ρ − 1
ρ

+ ε′s−ρ+δ

)
(A.0.30)

= A0

(n
k

)( s−ε − sρ−ε

ρ
+ ε′sδ−ε

)
. (A.0.31)

As A0
( n

k
)
= o(1) and

(
s−ε−sρ−ε

ρ + ε′sδ−ε
)

is bounded (by suitable choice of δ) for s > 1 we see

that

sρ−ε ·
(

sγ a0
( n

ks
)

a0
( n

k
) − 1

)
= o(1). (A.0.32)

Finally, the paths of a Brownian motion are stochastically bounded and in particular

sup
1<s≤λ(n)

Wn(s)
s

< ∞ almost surely. (A.0.33)

Therefore Equation A.0.22 also converges to zero for s ∈ (1, λ(n)].
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Theorem A.3 (Drees, 1998, Extension of Theorem 2.1). Assume X1, X2, . . . are i.i.d. random vari-

ables with distribution function F and let X1,n ≤ X2,n ≤ · · · ≤ Xn,n be its n-th order statistics. Suppose

that F satisfies the second-order condition for some γ ∈ R and ρ ≤ 0 (de Haan and Ferreira, 2006,

(2.3.21)). Then we may define a sequence of Brownian motions {Wn(s)}s>0 such that for suitably chosen

functions a0 and A0 and each ε ∈ (0, 1/2),

sup
k−1≤s≤λ(n)

min
(

sγ+1/2+ε, sγ+ρ−ε
) ∣∣∣∣∣√k

(
Xn−[ks],n −U

( n
k
)

a0
( n

k
) − s−γ − 1

γ

)

− s−γ−1Wn (s)−
√

kA0

(n
k

)
Ψγ,ρ(s−1)

∣∣∣∣∣ P−→ 0 (A.0.34)

as n → ∞, provided k = k(n) → ∞, k/n → 0,
√

kA0(n/k) = O(1) and with λ(n) = O
(
(n/k)1−τ

)
for τ > 0 such that τ > ε

ε+1/2 .

Proof. We may follow the exact lines of the proof presented in de Haan and Ferreira (2006).

Instead of using de Haan and Ferreira (2006, Lemma 2.4.10) and de Haan and Ferreira (2006,

Lemma 2.4.11) we need to employ Theorem A.1 and Theorem A.2.

Theorem A.4 (de Haan and Ferreira, 2006, Extension of Corollary 2.4.5). Define

B0

(n
k

)
:=

U
( n

k
)

if γ ≥ − 1
2

Xn,n +
a0( n

k )
γ if γ < − 1

2 .
(A.0.35)

Then, under the conditions of Theorem A.3,

sup
0<s≤λ(n)

min
(

sγ+1/2+ε, sγ+ρ−ε
) ∣∣∣∣∣√k

(
Xn−[ks],n − B0

( n
k
)

a0
( n

k
) − s−γ − 1

γ

)

− s−γ−1Wn (s)−
√

kA0

(n
k

)
Ψγ,ρ(s−1)

∣∣∣∣∣ P−→ 0 (A.0.36)

as n → ∞ provided k = k(n) → ∞, k/n → 0 and
√

kA0(n/k) = O(1) and with λ(n) =

O
(
(n/k)1−τ

)
for τ > 0 such that τ > ε

ε+1/2 .

Proof. For γ ≥ − 1
2 we combine the original statement of de Haan and Ferreira (2006, Corollary

2.4.5) with Theorem A.3 to find the requested result. For γ < − 1
2 the original theorem deals

with s ∈ (0, 1] and we only need to prove the statement for s ∈ (1, λ(n)]. Hence, by Theorem A.3

it suffices to show that

sup
1<s≤λ(n)

sγ+ρ−ε
√

k

∣∣∣∣∣Xn,n −U
( n

k
)

a0
( n

k
) +

1
γ

∣∣∣∣∣ P−→ 0. (A.0.37)

As γ + ρ− ε < 0 it follows that

sup
1<s≤λ(n)

sγ+ρ−ε
√

k

∣∣∣∣∣Xn,n −U
( n

k
)

a0
( n

k
) +

1
γ

∣∣∣∣∣ ≤ 1 ·
√

k

∣∣∣∣∣Xn,n −U
( n

k
)

a0
( n

k
) +

1
γ

∣∣∣∣∣ (A.0.38)

≤ k−(γ+1/2+ε) ·
√

k

∣∣∣∣∣Xn,n −U
( n

k
)

a0
( n

k
) +

1
γ

∣∣∣∣∣ := ∆. (A.0.39)
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The original proof of de Haan and Ferreira (2006, Corollary 2.4.5) shows that ∆ P−→ 0 and hence

we are done.

The following theorem and proof are entirely due to Ana Ferreira and Laurens de Haan. We

merely adjusted it to fit our bootstrap approach.

Theorem A.5 (Bootstrap version of Ferreira and de Haan, 2015, Theorem 2.2.). Suppose X̃1, X̃2, . . . , X̃n

are i.i.d. random variables from distribution F with block maxima X1, . . . , Xk and block length m. As-

sume that F satisfies the second-order condition for some γ < 1
2 and ρ ≤ 0 and

√
kA(m) → λ ∈ R

(with A(m) as in Equation 2.3.5). For r = 0, 1, 2, . . . let β∗r be a bootstrapped version of βr, that is

β∗0 = ∑k
i=1 X∗i,k and for r ∈ Z>0, r < k

β∗r =
1
k

k

∑
i=1

(i− 1) . . . (i− r)
(k− 1) . . . (k− r)

X∗i,k

with X∗1,k, . . . , X∗k,k bootstrapped block maxima. Then

√
k
(
(r + 1)β∗r − bm

am
− Dr(γ)

)
d−→ Q∗r +

√
kΠ(m)

as n → ∞, k(n) → ∞, n ≥ k(n)3, jointly for r = 0, 1, 2, . . . with Q∗r as in Theorem 4.3, Π(m) =
B0(m)−bm

am
and

Dr(ξ) =
(r + 1)ξΓ(1− ξ)− 1

ξ
, ξ < 1.

Proof. Let, for r = 0, 1, 2, 3, . . . ,

J(r)k (s) =
(dkse − 1) . . . (dkse − r)

(k− 1) . . . (k− r)
, s ∈ [0, 1].

Note that J(r)k (s)→ sr, as k→ ∞, uniformly for in s ∈ [0, 1], and,

1
k

k

∑
i=1

(i− 1) . . . (i− r)
(k− 1) . . . (k− r)

=
∫ 1

0
J(r)k (s) ds =

1
r + 1

=
∫ 1

0
sr ds.

Moreover, note that

(r + 1)
∫ 1

0
sr (− log s)−ξ − 1

ξ
ds =

(r + 1)ξΓ(1− ξ)− 1
ξ

, ξ < 1.
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Then,
√

k
(
(r + 1)β∗r − bm

am
− (r + 1)γΓ(1− γ)− 1

γ

)

=
√

k

 (r + 1)
∫ 1

0 X∗dkse,k J(r)k (s) ds− bm

am
− (r + 1)

∫ 1

0

(− log s)−γ − 1
γ

sr ds


=
√

k(r + 1)
∫ 1

0

(
X∗dkse,k − bm

am
− (− log s)−γ − 1

γ

)
J(r)k (s)ds

−
√

k(r + 1)
∫ 1

0

(− log s)−γ − 1
γ

(
sr − J(r)k (s)

)
ds

=
√

k(r + 1)
∫ 1/(k+1)

0

(
X∗dkse,k − bm

am
− (− log s)−γ − 1

γ

)
J(r)k (s)ds

√
k(r + 1)

∫ k/(k+1)

1/(k+1)

(
X∗dkse,k − bm

am
− (− log s)−γ − 1

γ

)
J(r)k (s)ds

√
k(r + 1)

∫ 1

k/(k+1)

(
X∗dkse,k − bm

am
− (− log s)−γ − 1

γ

)
J(r)k (s)ds

−
√

k(r + 1)
∫ 1

0

(− log s)−γ − 1
γ

(
sr − J(r)k (s)

)
ds

:= I1 + I2 + I3 + I4

For I4: Since
(

sr − J(r)k (s)
)
= Op (1/k) uniformly in s, I4 = Op

(
1/
√

k
)

.

For I1, we first define I1,1 and I1,2:

√
k
∫ 1/(k+1)

0

X∗dkse,k − bm

am
srds =

√
k
∫ 1/(k+1)

0

Xdkse,k − bm

am
srds +

√
k
∫ 1/(k+1)

0

X∗dkse,k − Xdkse,k

am
srds

:= I1,1 + I1,2.

The original proof gives that I1,1 = oP(1). For I1,2 we notice that

I1,2 =
1

(r + 1)

√
k

(k + 1)r+1

X∗1,k − X1,k

am
.

Now we take Equation 4.2.1 at sk = 1/(k + 1) and subtract the equation in Ferreira and de Haan

(2015, Theorem 2.1) at sk = 1/(k + 1) to find

I1,2 =
1

(r + 1)
1

(k + 1)r+1

(
√

k
bm − B0(m)

am
+

E∗k (sk)

sk(− log sk)1+γ
− Ek (sk)

sk(− log sk)1+γ
+

Wn (− log sk)

(− log sk)1+γ

−
√

kA0(m)Hγ,ρ

(
1

− log sk

)
+
√

kA0(m)Ψγ,ρ

(
1

− log sk

))
+ oP(1).

Since r ≥ 0, all the components on the right-hand side will vanish when multiplied by the term
1

(k+1)r+1 and therefore I1,2 = oP(1). We conclude I1,1 + I1,2 = oP(1) and thus I1 = oP(1).

Again we define∫ 1

k/(k+1)

X∗dkse,k − bm

am
J(r)k (s)ds =

∫ 1

k/(k+1)

Xdkse,k − bm

am
J(r)k (s)ds +

∫ 1

k/(k+1)

X∗dkse,k − Xdkse,k

am
J(r)k (s)ds

:= I3,1 + I3,2
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The original proof shows that I3,1 = oP(1). In this part of the proof the fact that γ < 1/2 is

needed.

For I3,2 we see

I3,2 =
X∗dkse,k − Xdkse,k

am
.

Now we use similar reasoning as for I1,2 to show that I3,2 = oP(1) by taking sk = k/(k + 1). As

a result I3 = oP(1).

Finally, I2 has the same asymptotic behaviour as

(r + 1)
∫ k/(k+1)

1/k

√
k

(
X∗dkse,k − bm

am
− (− log s)−γ − 1

γ

)
srds

which by Theorem 4.2 tends to

(r + 1)
∫ 1

0
sr
(

E∗k (s)
s(− log s)1+γ

+
Wn (− log s)
(− log x)1+γ

)
ds

+ (r + 1)λ
∫ 1

0
Ψγ,ρ

(
1

− log s

)
sr ds + (r + 1)

√
k
∫ 1

0
sr B0(m)− bm

am
ds.

Hence we ultimately find

√
k
(
(r + 1)β∗r − bm

am
− (r + 1)γΓ(1− γ)− 1

γ

)
d−→ Q∗r +

√
k

B0(m)− bm

am
(A.0.40)
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