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1 Introduction

This thesis investigates the presence and behavior of stock market anomalies in emerging markets

and the objective is to answer two questions, both directly related to investing in anomalies and

(emerging market) stocks. The first question is, how do anomalies behave in emerging markets?

And the second, can anomalies be used effectively to forecast the stock returns? The first research

question is broad and is divided into three sub-questions to answer it. First, do anomalies have

significant influence on stock market returns in emerging markets? Second, is the effect of

anomalies in emerging markets constant or time variant? Third, do anomalies in emerging stock

markets differ from developed country stock markets?

In the last decades, many authors have attempted to forecast and explain asset returns. One

of the oldest examples is the Capital Asset Pricing Model (Sharpe, 1964) which explains asset

returns by their correlation to the market, β. The field of study has expanded much ever since,

and the number of factors that show significant effect in explaining asset returns has risen to 314

in 2012 (Harvey, Liu and Zhu, 2014). Not only are these factors able to explain the cross section

of stock returns in a fair extent, some are able to forecast the direction of stock returns. Some of

the most important factors are the value (Fama and French, 1993) and momentum (Jegadeesh

and Titman, 1993) factors. While factors should not be able to provide risk adjusted profits in

an efficient market but often are, they make research in this topic especially interesting.

Chordia, Subrahmanyam and Tong (2014) argue that the increase in liquidity, trading activity

and technological trading innovations in the United States have facilitated arbitrage which makes

markets more efficient and should have led to a decline in anomaly effect due to an increase in

market efficiency. The authors found that the anomaly effects have attenuated in the United

States. This raises the question if and how anomalies are present in emerging markets, as the

anomaly effects might differ from the United States.

The first (research) sub-question, how do anomalies behave in emerging markets, is answered

by an analysis which is similar to that of Chordia et al. (2014) who research capital market

anomalies in the United States. Hedge portfolios are formed based on the anomalies (stock
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characteristics) which are examined for significance of their returns. The anomaly effects are

moreover examined with a two stage approach (Fama-MacBeth style regressions), which enables

to draw conclusions about size and significance of the anomaly effects in the cross section of

stocks.

To answer the second sub-question, if the anomaly effects are constant or time varying, an

additional analysis is conducted based on Chordia et al. (2014). The authors research the hedge

portfolios returns and Fama-MacBeth coefficients for trends to draw conclusions about the time

(in)variance of anomaly returns. The original paper searches for accentuation or attenuation but

it is a distinct possibility that the effects are constant over time in emerging markets. They found

that the significance of most factors attenuated for US stocks over the last decades. To answer the

third sub-question, whether anomaly effects in emerging markets differ from developed markets,

a qualitative comparison to Chordia et al. (2014) (among other authors) is made.

To answer the second research question a selection of methods from Kim and Swanson (2014)

is used to model the return forecasts by implementing shrinkage methods. That paper states

a variety of models that can cope with a large number of explanatory variables to forecast

macroeconomic variables by using soft thresholding. Here, ridge regressions, LASSO and elastic

net models are used, the advantage over for example OLS is that these models add bias but

reduce variance so they are better in sense of mean squared error. To make answering this

question computationally feasible, a sub-sample of emerging market stocks is used: the MSCI

Emerging Markets (MSCI EM) index.

These methods will be supplemented by a dynamic factor model based on PCA which lacks

practical interpretation of coefficients but could add to a forecasting model as it is a method

of variable reduction. A last method of constructing forecasts is by augmented autoregressive

models, with the anomalies and PCA (on the anomalies).

These forecasts will be subsequently used to form mean-variance efficient portfolios, optimized

to satisfy an objective such as minimum variance or maximum diversification. To make sure the

covariance matrix of asset returns is invertible, the covariance matrix shrinkage method of Ledoit

and Wolf (2003b).
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The literature of anomalies (and factors) has grown exponentially, which makes it increasingly

difficult to define a selection of anomalies that is not attributable to data mining (see for example

Harvey et al., 2014). In this paper, the anomaly subset is based on Chordia et al. (2014) where

the authors define a selection of anomalies with good performance history and broad academic

support in the United States. That results in the following anomalies: asset growth, illiquidity,

issuance, idiosyncratic volatility, size, short-term reversal, momentum, value and turnover.

Anomalous returns are studied by many authors, often these papers are focused on one

anomaly. Most research is concentrated in financial markets of developed countries such as the

United States. So opportunities for further exploration lie within emerging markets, which have

inherently different characteristics in metrics such as variance and returns (Harvey, 1995).

Anomalous returns have been studied by many authors, often these papers are focused on

one anomaly and not on a broad selection of anomalies. Most research is concentrated in

financial markets of developed countries such as the United States. So opportunities for further

exploration lie in emerging markets, which have inherently different characteristics in metrics

such as variance and average returns (Harvey, 1995). Using these methods add to the literature

by the examination of this broad set of anomalies in a broad sample of emerging market stocks

(from various countries) and the analysis of the trend in these anomaly exposures.

Estimating the sensitivity of the stocks to their characteristics in order to make forecasts

creates a different framework than investing directly in hedge portfolios. Using robust estimation

techniques with stock specific (anomaly) characteristics this thesis adds to the literature by using

the anomalies in a way that closes the gap between asset pricing and econometric forecasting.

The formation of portfolios based on the forecasts for individual stocks adds to the literature

because taking the MSCI EM index as a benchmark and calculating the portfolio weights based

on shrinkage forecasts has not been done yet.

This paper finds that anomalies are still present in emerging markets when forming hedge

portfolios and in cross sectional characteristic premiums. This is reflected by significant results

on some of the hedge portfolios, even after trading costs. The characteristic premiums are

significant, and some have changed over time.
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Using the anomalies in forecasting stock returns is not a fruitful exposition. The anomaly

based models perform worst, but by using the principal components from the (stock specific)

anomalies as independent variables the accuracy is increased. The autoregressive specification

with and without principal components perform best and supersede the direct anomaly specific-

ations. All of the optimized portfolios based on forecasts struggle to beat the benchmark indices

based on return and Sharpe ratio. Volatility is lowered in most cases.

This paper proceeds as follows; the emerging markets data is described in Chapter 2 and the

methodology is stated in Chapter 3. The results from the analysis are reported in Chapter 4

and Chapter 5 discusses and concludes.
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2 Data

To specify a sample of emerging countries the 1998 World Bank definition is used which differen-

tiates between high (developed), middle and low (emerging) income countries (Griffin, Nardari

and Stulz (2007), among other authors use this definition). This results in a sample of 20 coun-

tries, i.e. Argentina, Brazil, Chile, China, Colombia, Czech Republic, Hungary, India, Indonesia,

Malaysia, Mexico, Peru, Philippines, Poland, Russia, South Africa, South Korea, Thailand, Tur-

key and Venezuela.

To keep the list of countries in line with the MSCI Emering Market index (’MEM sample’),

which will be used in this paper as a benchmark and baseline model to form portfolios, the fol-

lowing countries are added to the sample: Egypt, Hong Kong, Israel, Jordan, Morocco, Pakistan

and Taiwan. These countries are selected to have at least one stock listed in the MEM sample

(on average) over the sample period. The addition of these countries increases the total to 28

countries.

The data to construct the returns, and anomaly variables for the 28 countries is retrieved

from the Datastream database. The sample consists of listed and delisted stock to mitigate the

risk of survivorship bias. The number of securities in a first run selection was approximately

29,000, and after an extensive screening which made sure that only ordinary shares in their home

market are included and investment vehicles (REITs, investment trusts, and other non equity

traded products) are excluded. This screening process is based on the comprehensive process of

Griffin, Kelly and Nardari (2010), in which the authors want to use ordinary stock data for their

analysis. The constituents and their weights in the MSCI Emerging Markets index is retrieved

from Bloomberg from January 1995 until December 2014.

The final large sample consists of 23,644 stocks that had traded in the period from January

1994 to December 2014 (252 months). This sample gives a broad cross section to test the first

two hypotheses on. The MEM sample consists of a total of 1,026 stocks, which is a sample that

allows to fit a variety of models and optimize portfolios. Stock returns are available for 252

months as for the large sample. The constituents and weights for the MSCI Emerging Market
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index are available from January 1995 so this slightly shorter sample is used to form the portfolios

on.

To make sure the results are driven by stock returns instead of inflation, all prices are

converted to US Dollar before the calculation of the returns. In addition, an investor wants

to have exposure to stocks and usually not to emerging market currency risk. The summary

statistics for (the returns of) both samples are in Table 1.

The anomalies are based on the paper of Chordia et al. (2014), the authors use a list of 12

anomalies for their analysis in the United States and in this paper nine of the anomalies will

be analyzed. Investigating the anomalies and the Datastream database showed that for three1

balance sheet based anomalies insufficient data would be available (less than 3% data availability

per stock in traded months) from which the conclusion had to be drawn that these should be

set aside for this paper. This paper investigates nine stock market anomalies2 which are defined

as follows:

1. AG: Asset growth, as in Cooper, Gulen and Schill (2008) which is defined as the year-on-

year growth of total assets.

2. BM: Book equity divided by market equity, as defined in Fama and French (1993).

3. ILLIQ: A measure for illiquidity that follows Amihud (2002). It measures the impact of

absolute price changes per volume traded.

ILLIQd =
1

Dit

Dit∑
d=1

|Ritd|
DV OLitd

× 106 (1)

4. ISSUE: New issues, as defined by Pontiff and Woodgate (2008), defined as the logarithm

of number of shares divided by the number of shares eleven months ago.

5. IVOL: Idiosyncratic volatility, as proposed by Ang, Hodrick, Xing and Zhang (2006) who

define the variable as the standard deviation of the regression residuals of a factor model.

The variable is calculated as the standard deviation of the regression residual of a local

1Accounting accruals, profitability and standardized unexpected earnings
2Asset growth, book-to-market, idiosyncratic volatility, illiquidity, momentum, new issues, short term reversal,

size, and turnover

8



Captial Asset Pricing Model (Sharpe, 1964) within a month. Several authors (for example

Fama and French (1993)) have showed that R2 is high for the CAPM and for the purpose

of this analysis does not seem to be inferior to for example a Fama French model. Fur-

thermore, the return variance is higher in emerging markets Harvey (1995) which makes

the usage of the Fama French model unnecessary due to the inherent higher variance.

6. R1: The lagged one month return as in Jegadeesh (1990).

7. R212: The 11 month return lagged two months as in Jegadeesh and Titman (1993).

8. SIZE: Size as in Banz (1981), defined as the logarithm of the market value of a stock.

9. TURN: Turnover, measured as the logarithm of the trading volume divided by the number

of shares outstanding (as in Datar, Naik and Radcliffe, 1998).

The anomaly variables are winsorized at the 0.005 and 0.995 percentiles and set to those

levels, to limit the impact of extreme values on the results. Returns are truncated at the 0.01

and 0.99 percentile to make sure the results are not driven by extreme observations, following

Barry, Goldreyer, Lockwood and Rodriguez (2002). Stocks that have zero price, no volume data

or less than 5,000 shares outstanding are deleted on the related points in time. Only stocks that

traded in the 12 months before an observation are included in the analysis, as in Chordia et al.

(2014). In addition, at most three missing values are allowed to be interpolated from adjacent

data.

The average value, median and standard deviation of the stock characteristics are in Table 1.

The statistics are calculated as the time series means of the cross sectional statistics over the

full sample. The statistics in the large sample differ from the results of Chordia et al. (2014) (in

parenthesis), size is lower with 417 million USD (2580 million), asset growth, book-to-market,

turnover, idiosyncratic volatility, and issuance are higher with 0.2 (0.14), 1.1 (0.8), 0.2 (0.09),

0.08 (0.02), and 0.06 (0.02) respectively. Average reversal returns are lower for the emerging

markets sample, with R1 0.005 (0.012) and R212 0.09 (0.17). The difference in size suggests

that there are on average smaller firms in emerging markets than in the US. The effects of most
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other statistics are more pronounced and have higher variance than in the US which shows that

the sample is diverse and has different characteristics than a sample of US stocks. The statistics

for the MEM sample are more in line with the results from Chordia et al. (2014).

Panel A Returns

Mean 0.005

SD 0.161

Avg # 11191

Min # 5530

Max # 15415

Panel C Mean Median SD

AG 0.200 0.080 0.611

BM 1.076 0.752 1.941

ILLIQ 211.883 19.185 501.173

ISSUE 0.061 0.000 0.279

IVOL 0.084 0.037 0.098

R1 0.005 -0.003 0.161

R212 0.088 -0.034 0.563

SIZE.USD 417 39.156 1328

TURN 0.212 0.026 0.688

Panel B Returns

Mean 0.012

SD 0.121

Avg # 726

Min # 373

Max # 942

Panel D Mean Median SD

EM.AG 0.209 0.116 0.497

EM.BM 0.802 0.602 0.911

EM.ILLIQ 78.893 10.315 213.946

EM.ISSUE 0.088 0.000 0.302

EM.IVOL 0.072 0.028 0.085

EM.R1 0.012 0.004 0.121

EM.R212 0.173 0.060 0.503

SIZE.USD 2900 1327 3200

EM.TURN 0.204 0.053 0.607

Table 1: Panel A: The mean and standard deviation of the large sample, with the average,

minimum and maximum number of stocks per time period. Panel B: The mean and standard

deviation of the MEM sample, with the average, minimum and maximum number of stocks per

time period. Panel C: Gives the mean, median and standard deviation for the nine anomalies in

the large sample. Size is denoted in million US Dollar. Panel D: Gives the mean, median and

standard deviation for the nine anomalies in the MEM sample. Size is denoted in million US

Dollar.
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3 Methodology

This chapter introduces the methodology that is used in this thesis. The anomalies will be ana-

lyzed in the cross section which is explained in Section 3.1. Forecast models based on shrinkage

methods will be explained in Section 3.2 and the portfolio specifications will be explained in

Section 3.3.

3.1 Cross section

The cross section of emerging market stock will be researched by their anomaly return and risk

premium, with respectively the formation of hedge portfolios and Fama-MacBeth coefficients in

Section 3.1.1. To research the time variation of the anomaly returns and risk premia, hedge

portfolio returns and Fama-MacBeth coefficients are analyzed for a trend with an exponential

model in Section 3.1.2.

3.1.1 Hedge portfolios and Fama-MacBeth regressions

Hedge portfolios are formed based on the anomaly values which are long the high anomaly

value and short the low anomaly value. The methodology is based on Chordia et al. (2014)

but it is fairly common in practice, for example Fama and French (1993) and Jegadeesh and

Titman (1993) use a similar approach. By forming such a portfolio, market movements should

be averaged out and only the anomaly return should remain. The hedge portfolio returns are

calculated by taking long the 10% stocks with the highest anomaly value and short the 10%

with the lowest anomaly value. Following Chordia et al. (2014), the characteristics are lagged

two periods (except R212 which is already lagged two periods, and R1 that is already lagged one

period), to make sure they use only data that is available on the moment of investment. The

holding period of the portfolio is one month.

The methodology for the Fama-MacBeth regressions is based on Brennan, Chordia and Sub-

rahmanyam (1998). The authors adjust the model from Fama and MacBeth (1973) which is

based on risk factors to incorporate stock specific characteristics which should make it less sens-

itive to portfolio grouping approaches (Lo and MacKinlay, 1990). The model calculates risk
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adjusted returns based on five statistical factors in the first step, and regresses these returns

cross-sectionally on stock specific anomaly characteristics in the second step. The statistical

factors are the five factors that explain most of the variation in the returns, based on asymp-

totical principal component analysis as in Connor and Korajczyk (1988). The motivation of

this procedure is that as the number of assets N is larger than the number of time periods T ,

regular principal component analysis is not feasible. Therefor this procedure estimates PCA on

the (T ×T ) matrix Ω̂T , which is essentially a covariance matrix for time (instead of assets). This

method is showed to converge to the regular PCA estimates for large N . The asset returns are

then regressed on the factors, and the returns are scaled with the inverse of the residual standard

deviation to calculate a refined covariance matrix Ω̂∗T . The choice for five factors follows Brennan

et al. (1998).

Fama and MacBeth (1973) introduced a method to calculate the factor premium in a cross

section of stocks. The idea is that the stocks have constant sensitivity to the factors, but

that market wide influence of the characteristic can change over time. The first step in that

procedure calculates the time series coefficients on the relevant (risk) factors, and the second

step estimates the cross sectional risk premia from the first step coefficients on the returns. In

Fama and MacBeth (1973) the premium is expected to be constant and measurement errors in

the first step regressions do not influence the final estimates. These assumptions do not seem

feasible while the second step regressions are based on the regression estimates from the first

step, the approach of Brennan et al. (1998) solves this problem by making sure the second step

estimates are not driven by error in variable, due to the estimation uncertainty in the first step.

The method in this paper is based on a two step regression procedure: The first step calculates

the risk adjusted returns with regard to risk factors (FM,t) and the risk free rate, for each stock

n (in 1 to N). The sensitivity to the factors is calculated with a rolling window of at least 30 and

at most 60 observations. The sensitivity βm,n,t of the returns to the risk factors is estimated via

asymptotical PCA:

Rn,t = β1,n,tF1,t + ...+ βM,n,tFM,t + εt (2)

Where Rn,t is the excess return over the risk free rate (3 month T-bill rate). The risk adjusted
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returns are then calculated as:

R∗n,t = Rn,t −
M∑
m=1

β̂i,n,tFm,t (3)

The second step estimates the cross sectional premium on the stock specific anomalies in

each time period t (in 1 to T) by regressing the returns on the stock specific characteristics Zk,n

for each characteristic k in 1 to K and each stock n in 1 to N:

R∗n = c0,n + c1Z1,n + ...+ cKZK,n + εn (4)

The statistics are then calculated as the time series averages of the estimates ck, and the

standard errors as the sample standard deviation σ(ĉk)/
√
T . The coefficients in the second

stage regressions are standardized to have zero mean and unit standard deviation, in this way

the coefficients are interpretable as increases in returns per standard deviation increase. The

main advantage is that the coefficients from this analysis are directly interpretable as premia

and show what the compensation has been for each of the anomalies.

3.1.2 Time variation

To research the if the effect of anomaly returns and premia from section 3.1.1 changed over time,

these will be tested for an exponential trend. This approach is similar to Chordia et al. (2014).

This approach tests the following model:

yt = a exp(bt+ εt), (5)

with yt the time series of anomaly returns or premia, and t the equally spaced series on the

interval [−1, 1]. The trend is calculated and assessed on its significance. For the Fama-MacBeth

coefficients the trend is analyzed in the premia, after the second step regression.

3.2 Forecasts

Five models (based on the anomalies, Principal Components and Autoregressive lags, in various

specifications) are fitted using four estimation techniques (Ordinary Least Squares, Least Angle

Shrinkage and Selection Operator, Ridge Regressions and Elastic Net). The models will be
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used to forecast stock returns on a monthly basis, and the models are assessed based on their

Mean Squared Prediction Error, Mean Absolute Error and Root Mean Squared Error. Variable

selection would be possible using hard thresholding methods but the choice is made to implement

soft thresholding methods in this thesis, as the results (coefficient estimates) are expected to be

smoother. To test the forecasts on directional accuracy the Pesaran and Timmermann (1992)

(PT) statistic will be calculated, and to assess the forecast accuracy mutually the Diebold and

Mariano (1995) (DM) statistic will be calculated. The following will introduce the estimation

techniques and the statistics.

3.2.1 Estimation

The first method is Ordinary Least Squares (OLS), this is one of the most widely used estimation

techniques. It is often used as a baseline for more advanced techniques as it gives unbiased

estimates if the data generating process is linear and allows for straight forward estimation.

Moreover, it has a closed form solution which makes it efficient to fit the coefficients. A general

linear model is used;

yt = α+ β1x1,t−K + . . .+ βPxP,t−K + εt (6)

In which, yt are the monthly stock returns, and xi,t−K (for each i in 1 to P) is the (K-

lagged) independent variable series. The coefficient estimates are calculated with the closed

form solution;

β̂OLS = (X ′X)−1X ′y (7)

The other three estimation techniques are all penalized regressions in order to implement vari-

able selection and shrinkage, while still being reasonably computationally efficient. All shrinkage

methods are based on coordinate descend, in which the objective function is univariately op-

timized one direction at a time. The models have the advantage over OLS that they reduce

the variance of the point estimate, but have the disadvantage that they introduce a bias. In

forecasting, high variance introduces much uncertainty so a trade-off between bias and variance

is important and relevant.
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The three techniques are the Least Angle Shrinkage and Selection Operator (Lasso), Ridge

regression and the Elastic Net. These add penalty terms to the OLS estimation objective, Ridge

and Lasso differ in penalty term, and Elastic Net combines the penalty terms of both.

A Ridge regression is in terms of objective function very similar to OLS but it introduces a

penalty term on the coefficients. It minimizes penalized sum of squares as with a penalty term

for βi estimates:

β̂ridge = arg min
β


N∑
i=1

(yi − β0 −
P∑
j=1

xijβj)
2 + λ

P∑
j=1

β2
i

 (8)

With P the number of explanatory variables andN the number of observations. The objective

function is similar to OLS if λ = 0, and β̂ridge = β̂OLS in which case the coefficients are

unrestricted. The penalty does not apply to the intercept of the regression model because doing

so would make the results dependent on the choice of origin. The input variables are standardized

and centered to make the model invariant to the scale of the variables. The model shrinks the

coefficient estimates of the variables with lowest variance to zero, it assumes variables with the

highest variance have the highest relevance in the model. This model has a closed form solution

(the variable matrix X is assumed to be standardized, this solution follows easily if the objective

formula is written in matrix form);

βridge = (X ′X + λIp)
−1X ′y (9)

Ridge regression adds a constant to the matrix X ′X before inversion, which makes it nonsin-

gular even if X ′X is not full rank. This property was the most important reason for introducing

ridge regressions in the statistical literature.

Least Angle Shrinkage and Selection Operator (Lasso), fits coefficients on the independent

variables that are the most correlated with the dependent variable. The model starts with all

coefficient estimates bi equal to zero and in each iteration in the algorithm adds the independent

variable that is most correlated to the dependent variable to the model. In comparison to

for example forward stagewise regressions the Lasso model moves the coefficient estimate for

a certain variable towards its least squares estimate until the correlation with the residuals is

equal to the next variable outside the active set its correlation with the residual. Then, the
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algorithm adds this variable to the active set and the algorithm continues. In the algorithm, the

coefficients that are zero are dropped from the active set and a new joint least squares estimate

is made on the new active set. It minimizes;

β̂lasso = arg min
β


N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

|βi|

 (10)

The objective function shows much resemblance with the ridge model, but it has a differently

shaped penalty area. The difference is best visualized with an illustration of a two-variable case.

An illustration of the two models is in Figure 1, the red ellipticals around the OLS coefficient

estimate β̂ gives the residual sum of squares and the blue areas define the constraint of both

penalty functions. The left figure shows a visualisation of the Lasso model, that is indifferentiable

in the corners there the coefficient is set zero.

Figure 1: The models with their constraints visualized for a two-variable case, the red ellipticals

give the residual sum of squares function around the OLS estimate β̂. The blue area is the model

specific constraint, which is defined by |β1| + |β2| ≤ t for Lasso (on the left) and β2
1 + β2

2 ≤ t2

for ridge (on the right). Source: Google.

The elastic net procedure combines the errors of the lasso and ridge regressions into the
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following specification;

β̂lasso = arg min
β


N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2 + λ

p∑
j=1

(α|βi|+ (1− α)β2
i )

 (11)

The advantage is that it selects variables as in Lasso, and shrinks the coefficients as in ridge.

While varieties of Lq (
∑p
j=1 |βi|q) norms (penalties) could result in the same penalty area, this

technique will not be able to set coefficients at exactly zero (as is possible when using a Lasso

penalty).

The shrinkage intensity for all three shrinkage methods is determined by using 10 fold cross

validation. This means that a leave one out estimator is calculated 10 times, each run leaving 10%

of the data out. The shrinkage intensity is then set as the value that minimizes the estimation

error.

3.2.2 Models

The four estimation techniques will be used with a selection of independent variables. The

base case is naturally the selection of 9 anomalies as described in Chapter 2. In addition to

the anomalies, an autoregressive model of order 12 (AR12) is added. This model is fairly large

but shrinkage is implemented by the penalized regression models. Nardi and Rinaldo (2011)

implement a lasso shrinkage on a large autogregressive model with good results. The OLS base

case will probably perform worse than the other three models, while no selection is based on

other statistics (e.g. significance of coefficients), for the AR model it should give reasonable

forecasts as it is often regarded as a base-line model and if the return series has autoregressive

properties this model will maintain the time series structure of the data.

The anomalies are substituted by the principal components that explain 95% of the variance

(from Principal Component Analysis (PCA) on the anomalies) as this is a straight forward

alternative to variable selection. PCA converts a set of correlated observations or variables to

an orthogonal set where the first principal component explains most variance, the second second

most etc. This method finds the factors in the variables that explain most of the common

variance and it is expected to improve forecasts by using the most important and disregarding

the least important principal components. The idea is similar to ridge as factors with high
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variance are expected to have higher explanatory power so should get (more) weight. For more

information about PCA, the reader is referred Jolliffe (2002). The PCA specification is set up to

incorporate a varying number of principal components, dependent on the proportion of variance

explained.

The first model is based on the lagged anomaly values, as described earlier. The variables

R1 and R212 are not lagged since these are lagged in construction:

Rt = α+ β1AGt−1 + β2BMt−1 + β3ILLIQt−1 + β4ISSUEt−1 + β5IV OLt−1

+β6R1t + β7R212t + β8SIZE.USD.logt−1 + β9TURNt−1 + εt (12)

The second model is an autoregressive model:

Rt = φ0 + φ1Rt−1 + . . .+ φ12Rt−12 + εt (13)

The third model is a combination of the first and the second, it includes the lagged anomalies

and autoregressive lags. Note how the first AR lag is not included since this is equal to the

variable R1.

Rt = α+ β1AGt−1 + β2BMt−1 + β3ILLIQt−1 + β4ISSUEt−1 + β5IV OLt−1

+β6R1t + β7R212t + β8SIZE.USD.logt−1 + β9TURNt−1

+φ1Rt−2 + . . .+ φ12Rt−12 + εt (14)

The fourth model is based on PCA and includes K PCs:

Rt = α+ β1PC
1
t−1 + . . .+ βKPC

K
t−1 + εt (15)

The fifth and last model is based on PCA and autoregressive lags:

Rt = α+ β1PC
1
t−1 + . . .+ βKPC

K
t−1 + φ1Rt−2 + . . .+ φ12Rt−12 + εt (16)

3.2.3 Statistics

The forecast accuracy is assessed with three statistics; the Mean Squared Prediction Error

(MSPE), the Mean Absolute Error (MAE) and the Root Mean Squared Error (RMSE).

MSPE =
1

N

N∑
i=1

(yi − ŷi)2 (17)
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MAE =
1

N

N∑
i=1

|yi − ŷi| (18)

RMSE =

√√√√ 1

N

N∑
i=1

(yi − ŷi)2 (=
√
MSPE) (19)

All three statistics quantify the accuracy of the model, a lower value means a better point

forecast. All statistics give a slightly different interpretation to the accuracy so they are stated

in this combination. The results are shown as average cross sectional statistics which makes it

in a sense additive to the analysis form Section 3.1.1. The purpose from this analysis is not to

assess the profitability of the forecasts, but to assess the accuracy of the various specifications

in forecasting returns. The profitability of the forecasts is researched in portfolio context.

To assess the forecasts on their directional accuracy, the statistic of Pesaran and Timmermann

(1992) (PT) statistic is calculated. This statistic measures the proportion that the forecast xt

has the same direction (sign) as the predicted variable yt:

Sn =
P̂ − P̂ ∗√

V̂ (P̂ )− V̂ (P̂ ∗)
, (20)

with:

P̂ =
1

n
Σnt=1I(ytxt)

P̂ ∗ = P̂xP̂y + (1− P̂x)(1− P̂y)

V̂ (P̂ ) =
1

n
P̂ ∗(1− P̂ ∗)

V̂ (P̂ ∗) =
1

n
(2P̂x − 1)2P̂y(1− P̂y) +

1

n
(2P̂y − 1)2P̂x(1− P̂x) +

4

n2
P̂xP̂y(1− P̂x)(1− P̂y),

and I(z) is an indicator for z > 0. The statistics P̂x and P̂y denote the proportions that

respectively x and y are larger than 0 (over n observations). All these formulae relate closely

to the distribution of binominal variables. Sn is standard normally distributed under the null-

hypothesis of no predictability.

The Diebold and Mariano (1995) statistic compares two forecasts in their forecast accuracy.

The statistic quantifies the difference in forecast accuracy. It is based on the two series of (here,
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squared) forecast errors g(eit) = e2ij of the respective models which form the loss differential

dt = g(e1t)− g(e2t). The null-hypothesis of equal forecast accuracy (E(dt) = 0) is tested.

DM =
d√

[γ̂d(0) + 2Σh−1k=1 γ̂d(k)]/T
(21)

Where γ̂d(i) is the covariance cov(dt, dt−i) for each i in 0 to h − 1 lags. The statistic is

asymptotically standard normal under the null hypothesis of equal predictability. The DM

statistic often does not reject the null hypothesis in small samples.

3.3 Portfolio formation

This section will explain the portfolio formation procedure. Portfolios are formed based on

optimization, value weighing and 1/N.

The trade-off between economic and statistical considerations results in a moving window

of 60 observations. And no missing values in this window are allowed. This slightly lowers the

sample size in the period between 1994 and 2000. Including missing values or interpolating

returns would bias the sample so this is not desirable. Furthermore, the optimization procedure

will not work with missing values in the data.

3.3.1 Non-optimized portfolios

In this chapter six models are compared, two varieties of the value weighed market index (MSCI

EM), an equal weight portfolio and three mean-variance optimal portfolios based on diversifica-

tion, minimum variance and Sharpe ratio.

This section will introduce the three non-optimized portfolios; the value weighed indices and

the equal weight portfolio. The first value weighed index is the MSCI Emerging Markets index,

calculated as the weighed average of the returns its constituents. The second value weighed index

takes into account the 60 month return requirement and no missing values in the sample. This

results in a slightly smaller sample than in the usual value weighed index. The third method

is the equal weighed method, based on the filtered stock sample. The last two methods are

included because the optimized portfolios will be based on the sample sample of stocks so it
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makes them comparable.

In addition to these three portfolios, three optimized portfolios are calculated which will be

introduced in the following section.

3.3.2 Optimized portfolios

A mean-variance efficient portfolio maximizes the expected return for a risky asset given level

of volatility. The most widely known portfolio is the minimum variance portfolio, in which the

investor constructs a portfolio that has the lowest possible variance. In that case, the investor

optimizes the weight in order to minimize the portfolio volatility:

σ2∗ = min
w
w′Σ̂w (22)

Where w = [w1..wN ] is the vector of portfolio weights for assets i = 1, .., N and Σ̂ is an

estimate of the covariance matrix. The sample covariance matrix is a noisy estimate of the real

covariance matrix if the number of assets is greater than the number of observations (N > T )

(Ledoit and Wolf, 2003a), to mitigate this problem covariance matrix shrinkage is applied. The

details of this solution are covered in Section 3.3.3.

A second optimization objective is the diversification ratio, as defined by Choueifaty and

Coignard (2008). The authors define the ratio by:

DR∗ = max
w

w′v̂√
w′Σ̂w

(23)

In this formula, v̂ = [σ1 ... σN ]′ denotes the vector of volatilities for asset i = 1, .., N

(which is equivalent to the square root of the diagonal entries of the covariance matrix). This

ratio divides the volatility of the portfolio assuming zero correlations between stocks by the

diversified portfolio volatility (with consideration of correlations). Therefor it measures the

amount of diversification, given that nonzero correlations between assets will lower the portfolio

variance.

The third optimization is based on the Sharpe ratio. Maximum return is often a wish of an

investor but high returns often go hand in hand with high volatility. In this case, the investor

might not be compensated in the sense of returns based on the risk of the portfolio. The same
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logic applies reversely, many investors wish to have very low variances but in that case the

return might be too low based on the risk-return profile. The Sharpe ratio solves this problem

measuring the compensation for risk with regard to a benchmark.

SR∗ = max
w

w′E(r)− rB√
w′Σ̂w

= max
w

E(rP )− rB
σP

(24)

The last part of this objective is the classic Sharpe ratio, and in the remainder of this

paper the risk free rate rf will be used as the benchmark rB . The expected portfolio return

(E(rP ) = w′E(r), with E(r) the (1 × N) vector of expected asset returns) and the portfolio

volatility (σP ) are based on the efficient frontier.

3.3.3 Covariance matrix

It is obvious from the previous formulas that the covariance matrix has to be estimated to

optimize the portfolios. Many authors have found that the sample covariance matrix is a noisy

estimate of the real covariance matrix (among other authors Ledoit and Wolf, 2003a and Pafka

and Kondor, 2002). In a setting where the number of assets is large relative to the number

of observations, the sample covariance matrix gets increasingly noisy due to the small number

of observations that are available to calculate the covariates. When the number of assets gets

larger than the number of observations (N > T ) the sample covariance matrix has rank smaller

than N so it is not invertible. In calculating the mean variance efficient portfolio this is a

huge problem. In addition, Ledoit and Wolf (2003a) have found that implementing alternative

methods to estimate the covariance matrix yields better results. The methods include but are

not limited to factor model covariance estimation, Asymptotic Principal Component Analysis

and various covariance matrix shrinkage procedures such as constant correlation shrinkage.

While there are many methods to estimate the covariance matrix that overcome the problems

that were described earlier, the choice is made to only use the procedure of Ledoit and Wolf

(2003b). The implementation of an estimator for the covariance matrix other than the sample

covariance matrix is important but not one of the main goals of this paper. Other research might

explore this topic further and compare various models, specifications and performance.
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In the following portfolio optimizations, the constant covariance shrinkage methodology of

Ledoit and Wolf (2003b) is used. In the shrinkage target, this procedure imposes constant

correlations across all assets and keeps the variances equal to the sample variance per asset. The

shrinkage target F looks like:

F =



s11 f12 . . . f1N

f21 s22
...

...
. . .

...

fN1 . . . . . . sNN


With sii the ith entry of the diagonal of the sample covariance matrix S, and fij = ρ

√
siisjj

with ρ the average sample correlation.

The method finds the optimal δ̂∗, such that the Frobenius norm of the shrinkage estimator

(Σ̂LW ) and the true covariance matrix is minimal.

L(δ) = ||δF + (1− δ)S − Σ||2 (25)

While the true covariance matrix is unobserved and unknown, the authors derive a consistent

estimator for the optimal shrinkage constant δ̂∗ such that;

Σ̂LW = δ̂∗F + (1− δ̂∗)S (26)

Ledoit and Wolf (2003b) prove that the optimal value δ̂∗ behaves like a constant over T

for large T . Moreover the authors show that the optimality still holds in finite samples. The

constant is formulated as:

κ =
π − ρ
γ

(27)

In formula 27, π is the sum of the asymptotic variances of the elements of the sample covari-

ance matrix scaled by
√
T . Then, ρ denotes the sum of asymptotic covariances of the elements of

the shrinkage target with the elements of the covariance matrix scaled by
√
T . Last, γ measures

the misspecification of the shrinkage target. The authors derive consistent estimators for each

of the parts from κ: π̂, ρ̂, and γ̂.

The definition for π is (where AsyVar stands for asymptotic variance):

π = ΣNi=1ΣNj=1AsyV ar(
√
Tsij) (28)
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And a consistent estimator is:

π̂ =
1

T
ΣTt=1[(yit − yi)(yjt − yj)− sij ]2 (29)

3.3.4 Expected returns

The mean-variance efficient portfolio is based on the covariance matrix and the expected returns.

To compare models, two specifications will be examined. In the first specification, the average

(historical) returns are used as a proxy for expected returns and in the second specification a

selection of forecasts from the previous chapter is used. In that second specification the models

from the last chapter can be assessed on their ability to proxy expected returns, although the

shrinkage models are expected to be biased. The models that show the most directional accuracy

in the sense of Pesaran and Timmermann (1992) are expected to provide the best portfolio

returns. These models can determine best which stocks will have negative or positive results, a

trait that improves the portfolio optimization.
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4 Results

This chapter will present the results for the analysis. As introduced in the previous chapter

the following will start with the results for the hedge portfolios and Fama and MacBeth (1973)

(FMB) style analysis in Section 4.1, then the results for the stock forecasts in Section 4.2 and

finally the results for the portfolio procedure in Section 4.3.

4.1 Hedge portfolios and Fama MacBeth regressions

Only stocks are included that are traded for at least 12 months preceding the ’current’ month.

This filter is included to assure that the results are not driven by changes in listing. The

formation of portfolios is based on two-period lagged variables and the return for the ’next’

period is calculated in the hedge portfolios.

4.1.1 Hedge portfolios and Fama-MacBeth coefficients

The returns for the hedge portfolios and the FMB style analysis are stated in Table 2, and the

results for the portfolios with regard to trading costs can be found in Section A.1 (Table 10).

Eight out of nine anomaly hedge portfolios show (highly) significant returns. These returns are

analyzed gross, and with regard to trading costs which are assumed to be 1%3. After adjusting

returns for trading costs, some hedge portfolio returns are still highly significant. This is probably

due to the large number of observations (249) which makes the denominator in the calculation

of the t-statistic small and results in higher t-statistics. The coefficients on the FMB analysis

show highly significant results for all anomalies. The following paragraphs will go into detail on

the results for the hedge portfolios and FMB regressions.

Unreported analysis showed that the hedge portfolio returns are extremely high if the returns

are only winsorized at the 0.005 and 0.995 percentile. Therefor, in each month returns are

truncated on the 1% and 99% percentile, following Barry et al. (2002). This results in less

extreme returns and t values for asset growth and book-to-market. In addition, more hedge

3Assuming trading costs are 1%, and that these can be subtracted from the gross returns net returns can be

approximated by: rnet = rgross − (1% × turnover).
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portfolios show significant results due the deletion of extreme values.

The average hedge portfolio return for value (book-to-market) is highly significant with 2.1%

(t=9.2) and still highly significant after regarding trading costs 1.9% (t=8.5). The FMB analysis

shows that the value premium is also highly significant and positive in the cross section. These

results confirm the findings of for example Fama and French (1993), Chordia et al. (2014) and

Brennan et al. (1998) among many others, these authors have all found significant value premia

in developed markets. The size of the returns is roughly in line with Barry et al. (2002) in which

the authors find a highly significant value effect in emerging markets of 2.9% with extreme

returns, and 1.5% without extreme returns. Unreported analysis shows that calculating the

returns of this anomaly portfolio in smaller subsamples leads to less extreme t-statistics. The

size of the returns is driven by the significant results for both the long and the short leg which

are significantly positive and negative respectively (see Section A.1).

The observation that both analyses show significant results in emerging market stocks assures

that the value anomaly is still in the market. Stocks with higher book-to-market value tend to

perform better than low book-to-market stocks, so the stocks that have high market prices

and little assets (low book-to-market value) tend to drift away from the inherent value tend to

perform worse. Emerging markets have more uncertainty and volatility so investors prefer value

stocks which are showed to be attractively priced.

The size effect is insignificant in the hedge portfolio analysis. The FMB analysis shows that

size has positive significant explanatory power for returns in the cross-section. This confirms

the results from Barry et al. (2002) where the authors research value and size effect in emerging

markets, and find no significant results if extreme observations are removed.

The size effect is commonly explained in the literature as an investment in small stocks that

should get higher returns due to the risk return trade-off (small stocks are argued to be more

risky). The results from the FMB analysis shows a risk premium that is positive and significant,

which confirms the cross-sectional findings of Chordia et al. (2014), Fama and French (1993) and

Barry et al. (2002) (among many other authors). In combination with the last paragraph, this

paragraph finishes the analysis of the Fama and French (1993) anomalies which are confirmed
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in various levels of conclusiveness.

Panel A Panel B

r (%) SD (%) TO (%) t-stat Sign. Coef SE t-stat Sign.

Intercept 1.33 0.06 20.80 ***

AG 2.09 2.73 14.9 11.79 *** 0.55 0.04 15.50 ***

BM 2.06 3.55 15.1 9.19 *** -0.56 0.05 -11.30 ***

ILLIQ -0.91 6.38 50.9 -2.23 ** 0.11 0.05 2.22 **

ISSUE -0.53 2.32 15.0 -3.49 *** -0.10 0.02 -4.18 ***

IVOL -0.88 5.10 58.6 -2.72 *** 0.85 0.13 6.47 ***

R1 0.94 4.93 84.3 3.01 *** -0.71 0.09 -8.26 ***

R212 1.18 5.93 30.7 3.06 *** -0.33 0.08 -4.04 ***

SIZE 0.39 4.86 15.4 1.27 0.57 0.10 5.45 ***

TURN 0.71 5.76 37.7 1.96 * 1.53 0.07 22.11 ***

Table 2: Panel A: This table gives the monthly average raw returns (r), standard deviation (SD)

and turnover (TO) of the long-short decile hedge portfolios. Significance for a two sided test with

the null hypothesis that individual returns are zero at the 10%, 5% and 1% level is indicated by

*, **, and *** respectively. To calculate the t-statistic, T = 249 is used. Panel B: This table

gives the FMB coefficients and their standard errors (SE), multiplied by 100 for readability. The

regressions follow the empirical methodology of Brennan, Chordia and Subrahmanyam (1998).

Significance at the 10%, 5% and 1% level is indicated by *, **, and *** respectively.

The hedge portfolio return for idiosyncratic volatility is significant with a mean of (-)0.88%.

This result is driven by the observation that the high idiosyncratic volatility part (the long part)

of the hedge portfolio gets a (insignificant) negative return and the short part a positive signific-

ant return, these results are in Section A.1. The portfolio turnover is 59% which diminishes the

significance, both statistically and economically (the mean would be -0.30% with t = −0.92).

The FMB coefficient that implies that a one standard deviation increase of idiosyncratic volatility

increases the return by 0.85%.

The hedge portfolio results confirm Ang et al. (2006) and Ang, Hodrick, Xing and Zhang

(2009) who found that stocks with higher idiosyncratic volatility earn lower returns. These

results are furthermore in line with the results from for example Blitz, Pang and Van Vliet
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(2013) that researched stocks with low volatility and found that the relation between risk and

return is declining or flat, and Baker and Haugen (2012) and Blitz and Van Vliet (2007) that

research low volatility stocks in developed markets which yield similar results. Recent studies

have showed that these results might not be as strong as perceived earlier for example Li, Sullivan

and Garcia-Feijóo (2014) show that an equally weighed long short portfolio on volatility does

not get anomalous returns.

The positive FMB coefficient implies that higher idiosyncratic volatility is related to higher

returns, which would fit in the efficient market hypothesis but is in contradiction to the literature.

These results might be driven by investors that expect emerging markets (EM) to be increasingly

risky, so in addition to demanding a premium for holding any emerging market EM stock the

investor could demand a premium for risky EM stocks. In addition, emerging markets are showed

to be more volatile than developed markets and these results could imply that stocks with high

idiosyncratic volatility in the long run do show positive returns and the risk is compensated.

But it also raises the question if idiosyncratic volatility is measured correctly and whether the

relation between volatility and returns is linear.

Momentum hedge portfolio shows significant returns of 1.2% (t=3.0), and these returns as

robust to trading costs: 0.9% (t=2.3). These results are in line with the literature, for example

Jegadeesh (1990) and many other authors. Momentum is unexpectedly negative and significant

in the Fama and MacBeth (1973) analysis, which means that a one standard deviation increase

in the momentum returns leads to a monthly extra return of -0.33%. These results show that

more momentum cross-sectionally leads to smaller returns, a form of reversal. And it is possible

to capitalize on the winners by forming hedge portfolios.

The hedge portfolio return on asset growth is significant with 2.1% and the turnover of the

portfolio is only 14.9% which translates to net returns of 1.9% (t=11.1), but its sign is different

than expected. Cooper et al. (2008) show and argue that stock with high asset growth will have

low returns, and the same holds vice versa. The positive sign on the estimated hedge portfolio

is therefor unexpected, and this result is driven by small but significant returns on the low asset

growth portfolio (see Section A.1) and the negative significant returns on the high asset growth
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portfolio. The FMB coefficient is highly significant and shows that an increase asset growth of

one standard deviation leads to an increase of 0.55% of returns.

These results could arise from inherently different characteristics of emerging and developed

markets. In developed markets, high asset growth leads to lower returns and Cooper et al. (2008)

argue that this result is driven by overreaction of investors to past performance. In that case

investments in asset base decrease the profit for the share holders which lowers the returns. The

results in in emerging markets in this paper show that stocks with high asset growth earn higher

returns. This indicates that investors see the additional investments made by asset growth will

lead to higher growth and increasing prices.

The issuance anomaly, as reported by Pontiff and Woodgate (2008) is significant in this data

set for the hedge portfolio returns and earns (-)0.5% per month (t=3.5) and the returns are

robust to trading costs: -0.4% (t=-2.5). The FMB coefficient is also significant. The sign and

impact of the hedge portfolio return is comparable to Chordia et al. (2014), which makes the

cross sectional significance is not surprising while Pontiff and Woodgate (2008) finds fairly strong

significant results in FMB cross sectional regressions in most periods. The effect confirms the

usual interpretation of the anomaly, firms are reckoned to use the ability to repurchase and issue

shares in order to react opportunistically to changes in expected returns. Section 4.1.2 will show

if and how this effect has changed during the sample period.

Liquidity has significant results in the hedge portfolio with an average return of (-)0.9%

(t=2.2). This portfolio shows one of the highest turnover in comparison to the other portfolios

and the portfolio does not show significant returns after trading costs: -0.4% (t=-1.0). The

FMB analysis shows a positive significant coefficient which means that more illiquidity leads to

higher returns. Therefor a liquidity premium is present in this sample. The results from the

hedge portfolios in turn show that the most liquid stocks (the short leg of the hedge portfolio,

the lowest illiquidity stocks) earn positive significant returns. These results fit well in the results

from Chuhan (1994) that shows that low liquidity is a major concern for institutional investors

in the choice of investing in emerging markets. In that light, more liquid stocks are more in

favor of institutional investors which drives demand and has a positive influence on returns.
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The coefficients on short term reversal (R1) are significant for the hedge portfolio, but not

robust to trading costs (then the average return is 0.10% (t=0.3)). The explanation of the

anomaly is given by the overreaction of investors (high R1) which is followed by lower returns.

The FMB coefficient is negative and significant which confirms the results from Chordia et al.

(2014) and the existing literature on this topic. Jegadeesh (1990) has stated that stock returns

do not follow a random walk and this analysis confirms that finding.

Turnover is significant in its hedge portfolio with an average return of 0.71% (t=2.0) which

is not robust to trading costs 0.34% (t=0.93). This (non-)result is similar to the findings of

Bekaert, Harvey and Lundblad (2007) who test this measure against other stock specific charac-

teristics. The characteristic premium from the FMB analysis is positive and significant, which

is unexpected from Chordia et al. (2014). The turnover variable is introduced as a measure for

liquidity in response to the Amihud and Mendelson (1986) paper. The estimates were expec-

ted to have the opposite sign, now the results are interpreted as a reverse liquidity premium.

Higher turnover leads to higher returns. These results might be driven by herding investors in

popular stock. In that case, the turnover of a stock will be very high and prices will rise, leaving

the less popular stock (with lower turnover) out of their portfolios. While the variables in this

analysis might have measurement error, it remains extremely difficult to distinguish between

measurement error and inherently different characteristics of emerging market stock.

4.1.2 Trend in coefficients

The hedge portfolio returns and FMB coefficients are researched for an exponential trend as

explained in Chapter 3 and follows the methodology of Chordia et al. (2014). The model that

is tested is:

yt = a exp(bt+ εt) (30)

The results from this analysis are stated in Table 3. The analysis for the trend in the hedge

portfolio returns shows significant change in anomaly returns for the book-to-market, illiquidity

and idiosyncratic volatility portfolios. These results are in contrast with the results from Chordia

et al. (2014) in which all anomaly returns are found to have attenuated in the United States.
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This indicates the possibility to invest based on the significant results stated in the last section.

The analysis of the trend in the characteristic premia shows that other premia have changed

over time than for the hedge portfolio returns.

The hedge portfolio returns have attenuated significantly for the book-to-market portfolio,

which means that the positive effect from the last paragraph has become less pronounced over

the last decades. The hedge portfolios for illiquidity and volatility have accentuated significantly,

which means that the return on stock with those characteristics has rose. That indicates that

investors have been rewarded for taking on risk more in the last years.

The asset growth premium shows a significant attenuation, while it is still positive and

significant (as seen in the last section). This means that the anomaly premium has become

weaker over the last decades, with a rate of -0.15% per month. Stocks with high asset growth

value have earned higher premium a decade ago than now. With regard to increased market

liquidity and transparency in (emerging) markets this result is logical while anomalous returns

should be impossible.

Analysis of the trend in the characteristic premium for ILLIQ shows that it accentuated

in the sample period. This indicates that the premium for owning illiquid stocks has become

higher, which contradicts the assumption of increased market efficiency. This observation is best

explained in the light of increased market wide liberalization in emerging markets (Bekaert et al.

(2007)), while most of the stocks get increasingly liquid an investor demands a higher premium

for an illiquid stock. The negative characteristic premium from the analysis in the last section

is thus accompanied by an increasing premium which could indicate that more of an illiquidity

premium is present in emerging markets in the end of the sample period than at the beginning.

Momentum premia show a positive significant trend which does not fit in the results from

Chordia et al. (2014) and general asset pricing theory. Since the discovery of the anomaly in

Jegadeesh and Titman (1993) market participants have had time to capitalize on this anomaly.

As it grows older the premium is expected to become less pronounced from an efficient market

point of view. From an behavioural finance point of view the anomaly can exist as one could

argue that it is self-containing as investors are irrational.
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The characteristic premium on size shows a negative and significant trend. This implies that

the characteristic premium has declined in the last decades. While the sign of the coefficient

in Table 2 is not in line with the literature, this result shows that it is moving towards the

expected sign. The significant trend could indicate that the anomaly is self enforcing as market

participants have expected it to be present in (small) emerging markets and consequently buying

these stocks so driving up the price (and returns).

Panel A Panel B

b t-stat Sign. b t-stat Sign.

AG -3.84 -1.29 -1.48 -2.45 **

BM -6.43 -1.68 * 0.23 0.30

ILLIQ 15.81 2.19 ** 0.26 0.41

ISSUE 2.01 0.77 -0.22 -0.58

IVOL 22.20 3.98 *** 0.92 1.17

R1 -0.63 -0.12 0.24 0.17

R212 -3.92 -0.58 6.12 4.54 ***

SIZE -7.50 -1.38 -4.24 -2.81 ***

TURN -2.35 -0.36 1.64 1.28

Table 3: This table states the coefficients for the exponential trend model (×1000). Panel A:

Trend in hedge portfolio returns. Panel B: Trend in FMB coefficients (×1000.

Analysis of the hedge portfolios showed that various anomalies are present in emerging market

stocks and significant returns can be obtained if such strategies are implemented. The analysis of

the trend in the hedge portfolio returns shows that there has been little significant attenuation or

accentuation of these anomalies so even now these returns are capitalizable. All FMB coefficients

show significant results. Various characteristic premiums have showed to have undergone a

change in the last decades. With these conclusions, the large sample research questions are

answered and the following section will state the results on the forecast models in the MSCI EM

sample.
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4.2 Forecasts

4.2.1 Accuracy

The results for the five models each with four estimation techniques are stated in Table 4. These

models all use in sample (1 . . . T ) observations to estimate the coefficients to forecast the out of

sample (T + 1) return:

ŷT+1 = α+XT β̂T , (31)

with XT the vector of variables for each model, and β̂ the vector of coefficient estimates for

each method (estimated over the in sample period). Panel A and B show that the models

that include the anomalies in the forecasts have in general high statistics (so low accuracy) in

comparison to the other three models. The model that includes only the anomalies shows very

high statistics (compared to the other specifications) for all four models which shows that there

is much error in the forecasts. The addition of 12 autoregressive lags improves the forecasts in

the sense of the regarded statistics. The conclusion can be drawn that including the anomalies

in forecasting stock returns does not yield accurate forecasts, while there is much error and the

lagged values do not directly forecast returns efficiently. The shrinkage models in the anomaly

plus autoregressive specification do not improve much overall over the anomaly specification,

compared to the models in Panels C to E.

The autoregressive specification (Panel C) improves much over the models in Panels A and

B. The forecast errors are lowest for all models, even when the models in Panel D and E are

analyzed. OLS has highest errors compared to the shrinkage methods but as a baseline model,

the autoregressive specification is hard to beat.

PCA is used as a method to summarize the information in the anomaly variables, and select

the most important PC’s accordingly. The PCA model in Panel D estimated with OLS results

in higher statistics than for the AR model (in Panel C), but still much lower than for the models

in panel A and B. The shrinkage methods show that for the PCA model, the errors lie very

close to the AR model and are much improved over the anomaly models in Panel A and B. The

PCA model is based on the anomalies in the model in Panel A, but the forecasts are much more
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accurate. Even the ridge model in Panel A, which follows an approach close to PCA due to the

singular value decomposition of the explanatory variables performs much worse than the OLS

model in the PCA model. The PCA model does show overall slightly less accurate forecasts

than the AR model.

While the inclusion of autoregressive terms as in Panel E is expected to add to the accuracy

of the model because both the PCA model and autoregressive model perform well, the accuracy

is not improved much for the shrinkage methods. The OLS model does not perform well and

does not give a good baseline model, but this is intuitively correct because adding twelve more

variables in OLS increases the chance of overfitting and the in-sample fit might be high but the

out of sample accuracy is disregarded. The shrinkage methods rely heavily on the correlation of

the independent variables, and PCA will probably have higher correlation with returns than the

AR lags. Therefor it might have happened that the PC’s get higher coefficients than the AR

lags.

The shrinkage methods add to the accuracy of the forecasts for all models, with large dif-

ferences in the improvement for these techniques. So using continuous variable selection in

forecasting stock returns does improve over OLS. Ridge shows that for each specification it gives

the most accurate forecasts, and OLS in generally the least accurate.

Although even the relatively most accurate forecasts (AR12 and PCA) show much improve-

ment over the other three specifications, the errors are still too large to use effectively in fore-

casting. The lowest MAE is 8.3% which makes it improbable that a forecast will be close to

the realized value or even have the same sign. To formalize this statement, the forecasts are ex-

amined on their directional accuracy. Moreover, the models will be compared mutually to assess

which models are best in the sense of accuracy. To explore the question whether the forecasts

have value in aggregate, an analysis in portfolio context will be conducted in Section 4.3.
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Model MSPE MAE RMSE

A 9 Anomalies OLS 17886.522 1.314 9.655

LASSO 1041.300 0.221 1.571

Ridge 555.067 0.264 1.622

ElNet 662.733 0.197 1.295

B 9 Anomalies + AR12 OLS 12369.311 1.139 7.569

LASSO 583.981 0.176 1.078

Ridge 128.240 0.172 0.834

ElNet 402.604 0.162 0.919

C AR12 OLS 0.020 0.101 0.133

LASSO 0.016 0.089 0.119

Ridge 0.016 0.089 0.118

ElNet 0.016 0.089 0.119

D PCA OLS 0.525 0.119 0.246

LASSO 0.044 0.091 0.132

Ridge 0.015 0.088 0.116

ElNet 0.033 0.090 0.126

E PCA + AR12 OLS 12.642 0.169 0.543

LASSO 0.015 0.087 0.116

Ridge 0.015 0.087 0.115

ElNet 0.015 0.087 0.116

Table 4: This table summarizes the accuracy of the forecast models. Each panel corresponds to a

model specification, and in these panels four models are estimated on the variables. The reported

measures are the Mean Squared Prediction Error (MSPE), Mean Absolute Error (MAE) and

the Root Mean Squared Error (RMSE). Lower values imply higher accuracy, higher values imply

lower accuracy.

4.2.2 Directional accuracy

The directional accuracy of the models is assessed by the Pesaran and Timmermann (1992)

statistic, which are stated in Table 5. That statistic is usually regarded with an one-sided test,

where the null hypothesis is that of better accuracy than a random guess based on the sample

proportion of the occurrence of positive and negative returns. As the statistics are not at all

positive, the choice is made to state the models with a two-sided test. The significance of the
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PT statistic is not calculated for the average of all models (Panel A), as it only summarizes the

remainder of the table.

Table 5 shows that only the 9 anomaly, 9 anomaly with AR, and the PCA models (Panels A,

B, D) estimated with OLS have insignificant PT statistics. All other models show (highly) signi-

ficant negative PT statistics, which means that the models are significantly worse in forecasting

the sign of future returns than the sample average. This shows that the models cannot forecast

the sign well and the significance is in a sense even special as the models are significantly worse

than a guess.
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% p<0.05 % p<0.1 PT Sign.

A Average 4.78 9.25

B 9 Anomalies OLS 6.16 12.30 -0.08

LASSO 6.27 10.70 -2.15 **

Ridge 5.45 10.00 -3.50 ***

ElNet 5.42 10.30 -2.05 **

C 9 Anomalies + AR12 OLS 5.50 10.20 -1.40

LASSO 5.22 9.16 -3.73 ***

Ridge 3.66 7.45 -5.36 ***

ElNet 4.25 7.72 -3.58 ***

D AR12 OLS 4.41 8.36 -3.25 ***

LASSO 3.32 8.35 -4.16 ***

Ridge 3.85 7.82 -5.34 ***

ElNet 4.70 8.16 -4.64 ***

E PCA OLS 5.62 10.30 -0.48

LASSO 4.23 10.60 -2.09 **

Ridge 5.17 7.82 -3.83 ***

ElNet 4.02 9.03 -2.81 ***

F PCA + AR12 OLS 4.35 9.57 -2.27 **

LASSO 4.53 9.07 -3.14 ***

Ridge 5.01 9.50 -2.74 ***

ElNet 4.46 8.53 -4.58 ***

Table 5: This table states the result for the directional accuracy of the forecast models. Panel

A reports the average over all statistics from Panel B to F, and each Panel B to F reports the

directional accuracy for the forecast models in all specifications. The first two columns state

the proportion of significant results in the individual tests, and the third and most important

column states the joint PT statistic for all forecasts. Significance at the 10%, 5% and 1% level

for a two sided test is indicated by *, **, and *** respectively.

4.2.3 Diebold Mariano statistics

To examine the forecasts, and draw conclusions about which model works best in forecasting

returns the Diebold and Mariano (1995) statistics are calculated for all forecasts mutually. This

means that for each model i, the average loss differential is compared against model j for all
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i, j = 1, . . . , N and i 6= j. The models that are tested are in the columns, the models that they

are tested against are in the rows. Therefor a positive significant statistic means that the model

in the column is significantly more accurate than the model in the row. The models are tested

one-sided, while also testing on significantly worse accuracy would clutter the table (and the

table is symmetric so a positive significant result for model A against model B would imply a

significant negative result for model B against model A in a two-sided test). Many coefficients

that compare a certain model with much error with a model with little error lie very close to

each other which is due to the large forecast error of the former.

The results for the comparison of the accuracy of the models is stated in Table 6 and Table 7.

The results show that almost all models (and specifications) significantly outperform the 9

anomaly model estimated with OLS. The same holds for the model that includes the anomalies

and 12 autoregressive lags. For those two models the shrinkage methods are not able to beat

any of the remaining specifications based on AR12 and PCA.

The AR12 model is significantly better than the PCA and AR with PCA model in every

specification. This conclusion follows from the highly significant statistics in that part of the

table. The AR model overall improves over the two models based on the anomalies and the

anomalies and autoregressive lags but not significantly like the PCA based models. Only the

autoregressive model estimated with OLS performs somewhat worse with less convincing results

than the shrinkage forecasts.

The PCA specification improves significantly over the autoregressive with PCA specification,

and the autoregressive with PCA specification improves only over the some OLS estimates.

The results in the DM tables have showed that the anomaly based models do not perform well

compared to the other models. If PCA is applied to the anomaly data these forecasts improve

but the forecasts still struggle to beat the autoregressive forecasts. Including autoregressive lags

in the PCA model does not improve over the specification that includes only PCs. Thus, the

autoregressive model is the most accurate model to forecast the returns with in this spectrum

of models, and including shrinkage methods leads to significant improvements over the PCA

models although the improvements are not significant for the autoregressive models.
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Concluding, the AR variable combined with shrinkage methods performs best in compared

to the other models. These results are striking because the model that includes AR lags and

PCA contains more information but lacks to perform. The AR model with LASSO shrinkage has

been tested by Nardi and Rinaldo (2011) and showed positive results. The analysis in this paper

confirms and extends the results from Nardi and Rinaldo (2011) while other methods shrinkage

methods tend to perform well (in comparison to the models that are considered here).
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Table 6: This table gives the DM statistics for all models against each other. Significance means

that the model in the column is better than the model in the row, with regard to forecast error.

Significance on a one-sided test is denoted by *, ** and *** on the 10%, 5% and 1% level

respectively.
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Table 7: This table gives the remainder of the results from Table 6.
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4.3 Portfolios

The results for the optimized portfolios are stated in Table 8. The portfolios are optimized with

a weight restriction that makes sure that at least 25% of the investable universe of that period

is included in the portfolio and the expected returns come form the forecast models in the last

section. The covariance matrix is estimated by the shrinkage methodology of Ledoit and Wolf

(2003a). Three benchmark indices are stated: ”Index”, ”Index**” and equal weight (1/N). The

statistics for Index are the statistics for the MSCI Emerging Markets Index, the statistics for

Index** are the same value weighed index results, but with a trading filter as in the portfolio

optimization procedure (see Chapter 3), and the equal weight portfolio is the portfolio that

weighs all stocks that passed the trading filter equally. In addition, three optimized benchmark

portfolios are stated which use the average return over the estimation period as a proxy for

future returns.

The statistics for the benchmark portfolios show that the returns, volatility and Sharpe

Ratio are high. The returns on the the three benchmark portfolios are highest for all regarded

portfolios. The benchmark models in addition have high volatility and fairly high SRs compared

to the optimized portfolios.

The model that uses the 9 anomalies to forecast returns was one of the worst performing

models from the last section. The returns on the portfolios lag in compared to the benchmark

portfolios. The portfolio that optimizes diversification based on elastic net forecasts performs

best with a Sharpe Ratio of 0.7. The optimization for maximum SR gets the highest return with

Ridge forecasts, but it does not get the highest SR.

Forecasting returns by using 9 anomalies and 12 AR lags showed to have limited power in the

last section. The model performed better than the model that included only 9 anomalies, with

Ridge forecasts. These forecasts have high SR and returns, and the returns for these portfolios

lie very close together in comparison to the other forecast techniques in this model. The anomaly

based optimizations show again that the forecasts did not perform well in the sense of accuracy,

the returns are overall much lower than for the benchmarks.
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Inspecting the forecast statistics in the last section led to the conclusion that the AR model

performed best in the sense of accuracy both in a relative and an absolute perspective. This

variable specification has the highest SRs across all portfolios for the minimum variance and

maximum diversification portfolios. The maximum SR portfolio has the lowest SRs in this

variable specification due to high volatility.

The PCA forecast specification performed well in the sense of accuracy although it was not

better than the AR specification. The results from the portfolio optimizations show that OLS

has very low returns and SR which is expected as OLS gave inaccurate forecasts. The ridge

forecast performs best but it still does not come close to the benchmark indices. It does improve

the returns and SR of the maximum SR benchmark portfolio.

Using 12 AR lags and PCA in a forecast model has showed to yield forecasts that are

comparable to the AR and PCA specifications separately, although it is significantly worse than

both models in the Diebold-Mariano test. The SR on the minimum variance portfolios for each

model except OLS is high compared to the other models and the same holds for the maximum

SR portfolio. Only the returns are lagging. The OLS model gives low returns (but also low

volatility).

The benchmark portfolios are very hard to beat in the sense of return and Sharpe Ratio.

Only the portfolios based on average returns s a proxy for future returns and the AR12 models

get double digits returns for all three portfolios. The same holds for the Sharpe Ratios which

are all pretty much all consistently above 0.6. The AR PCA model (with all estimation methods

but OLS) also does fairly well in the sense of return and Sharpe Ratio. But the AR model shows

the best statistics for all portfolios, it earns some of the highest returns and SR.

The optimized portfolios generally have lower volatility in absolute terms, but the portfolios

with the lowest volatility generally show lowest returns (for example PCA-AR OLS, PCA OLS,

9 Anomalies LASSO and Ridge). This result is not restricted to the minimum variance portfolios

but often occurs in the minimum variance portfolio and the maximum diversification portfolio.

The maximum SR portfolio is not often able to maximize the SR out of sample. The maximum

diversification portfolio is often close to the minimum variance portfolio.
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These results show that low volatility investing does not always result in anomalous returns,

the situation in which lower volatility does not translate automatically to lower returns. But

these results can be driven by poor forecasting quality. The AR and historical average models

show that the minimum variance portfolio can lower volatility and increase SR, which makes a

case for low volatility investing.

The conclusion can be drawn that including including autoregressive lags is very important

in forecasting returns compared to other forecast models. Even more, the sad conclusion must be

drawn that advanced forecast models do not outperform a simple historical average as a proxy

for future returns. Implementing covariance matrix shrinkage, and optimizing portfolios based

on returns forecasts does not improve over a benchmark index.
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Index Index** 1/N Min var Max div Max Sh
Average return r (%) 14.21 15.15 16.19 12.49 13.59 13.40

vol (%) 20.49 21.23 22.09 11.81 14.10 16.43
SR 0.56 0.59 0.61 0.83 0.78 0.65

9 Anom. OLS r (%) 11.73 10.02 11.91
vol (%) 13.25 12.08 18.87
SR 0.69 0.61 0.49

9 Anom.LASSO r (%) 8.57 7.02 11.60
vol (%) 13.29 12.12 19.01
SR 0.45 0.36 0.47

9 Anom. Ridge r (%) 9.42 5.37 13.44
vol (%) 13.09 10.85 15.57
SR 0.52 0.25 0.69

9 Anom. ElNet r (%) 8.22 10.50 8.85
vol (%) 13.41 11.25 18.84
SR 0.42 0.70 0.33

9 Anom.-AR12 OLS r (%) 5.82 3.64 9.43
vol (%) 12.79 11.77 18.14
SR 0.25 0.09 0.37

9 Anom.-AR12 LASSO r (%) 8.41 5.64 12.29
vol (%) 11.54 11.20 16.20
SR 0.50 0.27 0.60

9 Anom.-AR12 Ridge r (%) 12.19 11.50 13.46
vol (%) 13.42 11.23 14.92
SR 0.71 0.79 0.73

9 Anom.-AR12 ElNet r (%) 8.12 8.75 11.15
vol (%) 11.49 10.64 17.69
SR 0.48 0.57 0.48

AR12 OLS r (%) 12.18 9.98 12.10
vol (%) 14.94 15.32 19.77
SR 0.64 0.48 0.48

AR12 LASSO r (%) 11.14 8.95 11.70
vol (%) 14.74 14.80 19.89
SR 0.58 0.43 0.46

AR12 Ridge r (%) 12.01 10.89 11.51
vol (%) 14.96 15.72 19.67
SR 0.63 0.52 0.45

AR12 ElNet r (%) 11.51 8.72 12.11
vol (%) 15.80 13.40 17.28
SR 0.56 0.45 0.55

PCA OLS r (%) 11.37 9.44 13.21
vol (%) 14.91 13.91 17.10
SR 0.59 0.49 0.62

PCA LASSO r (%) 5.41 5.32 6.39
vol (%) 11.49 11.91 15.18
SR 0.24 0.23 0.25

PCA Ridge r (%) 11.91 11.05 12.97
vol (%) 15.08 14.32 16.86
SR 0.61 0.59 0.61

PCA ElNet r (%) 12.11 9.32 12.54
vol (%) 14.94 16.74 19.27
SR 0.63 0.40 0.51

PCA-AR12 OLS r (%) 9.75 7.09 10.08
vol (%) 12.66 11.28 18.16
SR 0.56 0.39 0.41

PCA-AR12 LASSO r (%) 9.53 6.40 10.66
vol (%) 13.10 11.55 18.90
SR 0.53 0.33 0.42

PCA-AR12 Ridge r (%) 8.49 7.18 5.90
vol (%) 12.85 11.87 15.20
SR 0.46 0.38 0.21

PCA-AR12 ElNet r (%) 12.12 12.69 13.81
vol (%) 13.74 12.92 19.28
SR 0.69 0.78 0.58

Table 8: This table summarizes the annualized return, volatility, and Sharpe Ratio for all models

and all specifications (25 in total). In addition, the index return for the sample (”Index”), the

index return with the trading filters (”Index**”), and an equal weight (1/N) strategy.
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5 Concluding remarks

5.1 Discussion

The results from the last chapter have showed that there are still stock market anomalies in

emerging markets, which is showed by an analysis of hedge portfolios and two step analysis.

The formation of hedge portfolios is often considered beneficial as it corrects for market wide

movements and has zero setup costs (when disregarding trading costs), and the results in this

paper are sometimes mentioned in a long and a short leg. This is not entirely fair to other

research, but it points into a direction of the source of an anomaly. Further research might

focus on the exploration of optimal hedge portfolio specifications, in the sense that non-equal

weighing schemes might be used or the portfolios could be based on other quantiles than the

decile. Analyzing the hedge portfolio returns can add to the pronunciation of the results.

The two step analysis is based on the empirical methodology of Brennan et al. (1998) and

Chordia et al. (2014), the authors adjust the stock returns for risk in the first step and regress

the stock specific characteristics on the risk adjusted returns in the second step. This overcomes

the problem of error in variable which is inherent to the original Fama and MacBeth (1973)

approach in a large cross section. The usage of five principal components is based on literature

but further research might implement a method to calculate emerging market wide Fama-French

factors, or use a dynamic factor selection approach like Bai and Ng (2008).

The examination of the trend in the hedge portfolio returns yielded significant results for only

three out of nine portfolios, and these returns might be undone by a risk adjusted approach. No

significant attenuation in the returns seems infeasible because then the returns are persistent and

robust to trading costs. Further research can adjust the holding period to assess the long-term

profitability of the hedge portfolios. In the two step procedure a significant trend was hardly

found, and not always with the expected direction. In this large cross section, the risk of poor

data is always inherent and while all analyses are conducted with care and thought data quality

is always a big risk in emerging markets.

Forecasting the returns with the regression and shrinkage methods has not yielded very good
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results. Forecasting returns is always difficult and further research might focus on in sample

optimization of these models. The results have showed promising possibilities for shrinkage

methods, which is an addition to the results from Nardi and Rinaldo (2011) and an opening for

further research. The sample frequency might be one of the factors driving the results, perhaps

changing to weekly observations forms a good trade-off between daily and monthly observations.

Stock returns can also be researched on lower frequency with the usage of macroeconomic vari-

ables, this could open possibilities for the shrinkage methods to estimate such models robustly.

The portfolio optimization showed that it is very difficult to improve over the benchmark

indices and the benchmark portfolios which are based on average historical returns. The imple-

mentation of forecast models and covariance matrix shrinkage seems to have introduced much

uncertainty in the portfolios which translate to undesirable properties in comparison to the

benchmark indices. It is nice to have a minimum variance portfolio but no investor will invest

in a minimum variance emerging markets portfolio, while still the portfolio is expected to have

much more risk (Bekaert et al., 2007). Implementing different covariance estimation techniques

could perhaps improve the portfolios.

5.2 Conclusion

Based on the results in Section 4 the conclusion can be drawn that anomalies still have signi-

ficant influence in emerging markets. Hedge portfolios based on asset growth, book-to-market

value, illiquidity, issuance, idiosyncratic volatility, short-term reversal, momentum and turnover

anomalies showed significant returns. Only the asset growth, book-to-market value, issuance and

momentum portfolios show significant results after considering turnover and trading costs. An

analysis of the trend in the book-to-market value portfolio shows that it has attenuated, and for

the illiquidity and idiosyncratic volatility portfolio that it has accentuated in the sample period.

The two step approach yielded highly significant characteristic premiums for all anomalies.

The trend in the characteristic premiums was only significant for the asset growth, momentum

and size premium. These results imply that the effect of the characteristics often has not changed

which implies that these premia are still priced in the market. Emerging markets show effects in
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the characteristics premiums that are not comparable to and explainable from developed market

research. The inherently different characteristics of emerging markets will stay an interesting

field of study for some time.

Some of the anomaly effects are showed to have accentuated or attenuated over time, while

attenuation is expected from the literature accentuation is not. Positive significant hedge port-

folio returns are still possible which would be impossible from an efficient market stance. These

results show that emerging markets have included more information and have become more

efficient in some aspects but progress is to be made.

The results form the forecasts of individual stocks have showed that the anomaly variable

specifications perform worst of all variable specifications. An improvement is made when model

is estimated with the principal components from the anomaly variable matrix but the largest

improvement comes from including autoregressive lags. The autoregressive, PCA, and autore-

gressive plus PCA specifications perform best in the sense of accuracy based on MSPE, MAE

and RMSE. The autoregressive model forecasts based on shrinkage methods are significantly

more accurate while considering the Diebold-Mariano test. All models perform worse than a

random guess in the Pesaran-Timmerman test for directional accuracy.

Aggregating the information in the anomalies into a selection of PCs seems to reduce estim-

ation error in the forecast models. Which makes sense as only the most important drivers in

changes in the variable are included.

Including the individual stock forecasts in optimized portfolios does not yield improved port-

folios when regarding returns, volatility or Sharpe ratio. Even more, the portfolios based on

forecasts are often superseded by portfolios based on average returns. That being said, the op-

timized portfolios were generally not able to improve the benchmark indices on return, volatility

or Sharpe ratio. Optimizing portfolios for out of sample performance is still not easy as many

parameters have to be estimated which increases uncertainty.
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A Appendix

A.1 Hedge portfolios

Panel A Panel B

r (%) SD (%) TO (%) t-stat r (%) SD (%) TO (%) t-stat

AG 0.85 6.25 17.2 2.11 ** -1.23 6.32 12.7 -3.01 ***

BM 1.20 6.36 16.5 2.98 *** -0.86 5.57 13.8 -2.45 **

ILLIQ -0.17 7.73 56.9 -0.35 0.81 6.01 44.9 2.12 **

ISSUE -0.27 5.91 14.4 -0.71 0.25 5.58 15.7 0.70

IVOL -0.50 7.07 54.2 -1.11 0.39 3.65 63.2 1.70 *

R1 0.29 6.53 85.1 0.71 -0.65 7.19 84.5 -1.42

R212 0.61 5.97 29.4 1.57 -0.57 7.60 31.9 -1.16

SIZE 0.36 5.47 8.1 1.05 -0.03 4.97 22.7 -0.09

TURN 0.66 7.40 32.3 1.41 -0.05 3.94 43.2 -0.21

Table 9: SD denotes standard deviation, TO denotes portfolio turnover. Panel A: This panel

gives the monthly average raw returns of the long anomaly decile portfolios. Significance for a

two sided test with the null hypothesis that individual returns are zero at the 10%, 5% and 1%

level is indicated by *, **, and *** respectively. Panel B: This panel gives the monthly average

raw returns of the short anomaly decile portfolios. Significance for a two sided test with the null

hypothesis that individual returns are zero at the 10%, 5% and 1% level is indicated by *, **,

and *** respectively.
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Mean SD(mean) T-stat

AG 1.94 0.18 10.95

BM 1.91 0.22 8.51

ILLIQ -0.40 0.41 -0.98

ISSUE -0.38 0.15 -2.50

IVOL -0.30 0.32 -0.92

R1 0.10 0.31 0.32

R212 0.87 0.38 2.27

SIZE 0.24 0.31 0.77

TURN 0.34 0.36 0.93

Table 10: This table states the mean returns with consideration of portfolio turnover and trading

costs. SD(mean) is calculated by dividing the standard deviation by the square root of T (with

T = 249).

Panel A Panel B

b t-stat b t-stat

AG 10.72 1.50 16.08 2.21 **

BM 7.12 1.00 14.29 2.19 **

ILLIQ 20.63 2.34 ** 5.42 0.80

ISSUE 11.20 1.64 9.41 1.48

IVOL 26.59 3.39 *** 4.70 1.13

R1 15.14 2.05 ** 17.46 2.13 **

R212 9.26 1.36 15.88 1.86 *

SIZE 7.65 1.21 15.62 2.89 ***

TURN 6.92 0.81 9.55 2.16 **

Table 11: This table states the coefficients for the exponential trend model. Panel A: Trend in

HPf returns long leg. Panel B: Trend in HPf returns short leg.
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