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Abstract

I develop a five-type heterogeneous agent model that provides a framework to empirically investigate the

financial market described by De Long et al. (1990a,b). I show that it is feasible to construct a hetero-

geneous agent model where arbitrageurs can engage in momentum trading and noise traders leave the

market due to short-sale constraints. The empirical results provide evidence that supports the theoretical

framework by De Long et al. (1990a,b) in various respects. The analysis includes both simulation and

estimation and the results show that arbitrageurs who are herding can have either a dampening or a

destabilizing effect on asset prices. I find that a higher fraction of arbitrageurs that engage in momentum

trading results in a higher price deviation from fundamental value. Similarly, a higher fraction of noise

trader demand increases the misspricing and is associated with a more unstable market.
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1 Introduction

It is well-known that in financial markets assets are not always priced at their fundamental value.

Traditional economic theory, such as the efficient market hypothesis is however based on the

rationality assumption and hence does not allow for prices to deviate from this fundamental

value. Practice shows otherwise, as anomalies such as speculative prices, financial bubbles, and

other stylized facts of asset prices are common in markets. Hence, research has shifted economic

theory towards a broader and more social perspective which created amongst other things the

vast field of behavioral finance (Shiller, 2003; Subrahmanyam, 2007).

Outstanding papers in this field show that investors are not completely rational as they

can under- and overreact (Barberis et al., 1998; Daniel et al., 1998; Hong and Stein, 1999),

or be overconfident (Odean, 1998; Daniel et al., 2001; Kyle and Wang, 1997). De Long et al.

(1990a,b) present a heterogeneous market with noise traders and arbitrageurs and find that

unpredictability of noise traders can result in high price deviations from the fundamental value

(De Long et al., 1990a) and that the behavior of arbitrageurs can amplify this effect by trading

ahead of noise traders’ positive feedback strategies (De Long et al., 1990b). Their analyses provide

a popular view on a micromarket that explains speculative prices, but this view is not fully tested

empirically, however.

To this purpose, I model their dynamics using a heterogeneous agent model (Brock and

Hommes, 1997, 1998) and estimate it to real price data. The methodology of this thesis builds on

the asset pricing model by Boswijk et al. (2007). I refine their two-type HAM in order to include

the more sophisticated framework by De Long et al. (1990a,b). Heterogeneous agents, divided

into arbitrageurs and noise traders, switch between five different beliefs about next period’s price.

The market price is the weighted average of these five price expectations. The model follows De

Long et al. (1990b) as arbitrageurs can herd by “jumping on the bandwagon” and it follows Chen

et al. (2002) as noise traders do face short-sale constraints. As such, the model is used to further

investigate the market described by De Long et al. (1990a,b).
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I make two propositions, one that states that herding by arbitrageurs destabilizes the market

and a second that states that noise trader demand has the same effect on prices. Using simulations

I test whether the five-type model is able to give insight into these two statements. Next, I use

annual data on the S&P500 index from 1950 to 2014 to empirically investigate the propositions.

Consistent with the first prediction, I find that a higher fraction of arbitrageurs that engage in

momentum trading is associated with a higher deviation of the market price from the fundamental

value. In addition, the time series of the fractions of the estimations show that arbitrageurs set a

trend before noise traders do. The simulation results are mixed as the model considers both the

dampening as well as the extrapolating effects of rational speculators’ trading.

Consistent with the second proposition, I find that noise trader demand is associated with a

higher deviation from the fundamental value. The fractions show that noise traders are responsible

for a positive price shock. When dividing the time series using decile groups based on the fractions

of noise traders I find a remarkable U-shape in volatility and market activity. Both seem to be

higher when noise trader demand is at the extremes. This result and the graphs of the fractions

show that a market with a high or low fraction of noise traders is a relatively unstable market

according to the five-type model.

My analysis shows how heterogeneous agent models (in short HAMs) can be used to better

understand a mircomarket. In this case, I manage to investigate the market by De Long et al.

(1990a,b) using a five-type HAM. The simulation and estimations results provide better insights

into the market dynamics and confirm my expectations in various respects.

I contribute to the academic debate in two ways. First, I present a new HAM that refines

the simple two-type model by Boswijk et al. (2007). Most of the literature using HAMs does not

examine herd behavior in particular and most models cannot be estimated using data. I present

a model that is suitable for both purposes. Second, this HAM follows the market description

provided by De Long et al. (1990a,b). Hence it allows for investigation of the impact of positive

feedback trading by arbitrageurs and financial decisions by noise traders. As the model can also

be estimated to real data, it enables us to further investigate empirically the popular theoretical

framework of De Long et al. (1990a,b). In that sense, this thesis is an improvement on the

understanding of financial markets from a behavioral perspective.

This thesis proceeds as follows. Section 2 reviews the literature on behavioral finance and

herding in particular. Section 3 then explains the methodology and introduces the five-type model

and the two propositions. Section 4 shows the simulation and estimation results and Section 5

concludes.

2



2 Literature Review

This thesis refers to three main strands of literature. First is the strand of research that explains

how and why assumptions on rationality play a limited role in understanding behavioral issues in

finance theory. Traditional economic theory suggests that investors are fully rational and prices

reflect all obtainable information. This efficient market theory is a fertile medium for academics to

develop finance models using these rational expectations. The research by psychologists Tversky

and Kahneman (1973, 1974) shifted the academic discussion towards behavioral aspects of finance,

creating an alternative view of financial markets that allows for suboptimal behavior among

(groups of) investors. They explain how people rely on so-called heuristics that simplify decision

making, leading to unpredictable or even irrational financial decisions. Barberis and Thaler

(2003), Shiller (2003), and Subrahmanyam (2007) all review the growing amount of literature on

behavioral finance and conclude that further studies should bear the weaknesses of the efficient

markets theory in mind and focus on biases of agents and the effect on prices.

Examples that take this conclusion into account are Barberis et al. (1998), Daniel et al.

(1998), and Hong and Stein (1999). They use heuristics to explain how investors form beliefs

and relate it to empirical findings. Their main topic is the under- and overreaction of investors.

Barberis and Shleifer (2003) study an economy with switching investors between different in-

vestment styles, also relating it to the heuristics. Other examples are Odean (1998) and Daniel

et al. (2001) who argue that investors can be overconfident about the value of information and

their own abilities, which could be an explanation for under- and overreaction. Daniel et al.

(2001) conclude that so-called arbitrageurs can profit by trading against the mispricing caused

by overconfidence. Kyle and Wang (1997) test overconfidence using game theory. They conclude

that overconfidence indeed can exist in financial markets. Also asymmetric information among

investors is a counterargument to efficient markets. Hirshleifer et al. (1994) explain that markets

are not efficient as some investors receive information before others do. This leads to herding

as the lately informed investors follow the trading strategy by the short-term investors who are

informed first. Wang (1998) adds heterogeneity to the discussion, which they find in trader’s
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disagreement on the precision of an informed trader’s private signal. They show that their multi-

period trading model corresponds to observed volume patterns and price volatility. The main

objective of these papers is to find explanations for observed asset price anomalies that rational

financial theories fail to explain until now. Behavioral finance provides excellent guidance for

this search, as it has already discovered many new areas that could explain what is happening in

financial markets (Shiller, 2003). This thesis is an addition to that.

The second strand of literature I address is a behavioral concept called herd behavior. This

behavioral concept is among others described by Avery and Zemsky (1998) as “investors imitating

prior actions of others, or following the crowd.” These investors make their financial decisions

based on a specific piece of information, ignoring other relevant parts of the puzzle. Keynes (1930)

explains how agents rationally judge that the crowd is better informed, hence discount useful

private information in favor of the actions of others. Baddeley et al. (2007) and Baddeley (2010)

provide a more socio-psychological explanation for why people herd, relating it to the heuristics

presented by Tversky and Kahneman (1974). De Long et al. (1990b) show that herd behavior

can be rational as well as suboptimal behavior. They explain how rational speculators can follow

a positive feedback investment strategy and “jump on the bandwagon” to trade ahead of demand

by so-called noise traders. This herd behavior by rational investors can have a destabilizing

effect on prices and they argue that it provides an explanation for overreaction. This approach

is a different approach to market misvaluation as it focuses more on the consequences of trading

behavior instead of the updating of expectations. It might be a different approach to investigate

financial markets, but De Long et al. (1990b) provide a clear and popular framework that is used

to model this trading behavior and it is therefore used as a guideline for this thesis.

Besides theoretical papers on herding, there is also a large number of papers that empirically

investigate herd behavior. Two main approaches are statistical measures for herding and sequen-

tial trading models. As for the first approach, Lakonishok et al. (1992), Grinblatt et al. (1995),

and Wermers (1999) use statistical measures for herding and focus on trading behavior of mutual

funds. Popular is the measure by Lakonishok et al. (1992) that describes the “average tendency of

funds to buy or sell a particular stock during a period, relative to what could be expected if these

funds traded independently.” Some papers find significant clustering by fund managers. But

as Bikhchandani and Sharma (2000) and the previous mentioned authors themselves emphasize,

these statistical measures do not provide for a clear measure of herding and need to be further

refined.
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The second approach is a more abstract way to model herd behavior as it describes an envi-

ronment in which agents sequentially make decisions based on their private information and the

actions of others. Avery and Zemsky (1998) investigate herd behavior in financial markets study-

ing such a sequential trading financial market. They find that a sufficiently complex information

structure makes price bubbles possible. Park and Sabourian (2011) reconsider this conclusion.

They characterize different circumstances under which herding and contrarian behavior can occur

in markets with efficient prices and that are consistent with large price fluctuations. Cipriani and

Guarino (2014) also build upon the work of Avery and Zemsky (1998) by changing the model in

order to estimate it to transaction data of a NYSE stock. They provide a structural estimation

framework to investigate herding and find that herding is present during specific periods in a

trading day. The main drawback of these models is that high-frequency data is needed in order

to use these models for empirical analysis as trading signals play an important role.

Both empirical approaches have their cons and the main focus of these approaches is to find

evidence for herd behavior instead of relating the behavioral concept to observed price anomalies.

In this thesis a different approach is used, which is explained below.

The third strand of literature my work is related to is the literature on heterogeneous agent

models or HAMs. This approach is introduced by Brock and Hommes (1997, 1998) who describe

an asset pricing model with heterogeneous beliefs among agents who endogenously switch between

different heuristics. According to LeBaron (2006) these agent-based models are especially suitable

for verification of findings from behavioral finance. The following examples show that HAMs are

used widely for different purposes. Boswijk et al. (2007) use a HAM to investigate behavioral

heterogeneity and are the first to attempt to estimate a HAM to real market data. Similarly, De

Jong et al. (2009) use a HAM to investigate a behavior called shift-contagion. They find evidence

for a regime called the internationalist that allows to investigate the co-movement between home

and foreign markets. Social interactions are studied using HAMs by Chiarella et al. (2003) and

Chang (2007). Lux (1998), Lux and Marchesi (2000), Alfarano et al. (2005), and De Grauwe and

Grimaldi (2006) all us the HAM to give an explanation of market dynamics such as volatility

clustering, fat tails of the return distribution, and the exchange rate puzzle. The examples given

here show that HAMs are indeed suitable for the research of findings from behavioral finance,

hence the interest in this methodology.
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3 Methodology

I develop a heterogeneous agent model that is used for investigation of the market dynamics

described by De Long et al. (1990a,b). The heterogeneous agent model is introduced by Brock

and Hommes (1997, 1998) and reformulated by Boswijk et al. (2007). Their ideas are a starting

point for the model introduced in this section.

3.1 Heterogeneous Agent Models

Brock and Hommes (1998) present an asset pricing model with heterogeneous beliefs of the

future price of a risky asset with agents choosing from the finite set of beliefs based on the past

performance. They consider a model with one risky and one risk free asset with gross return

1 + r > 1. The dynamics of wealth Wt are described by:

Wt+1 = (1 + r)Wt + (Pt+1 + Yt+1 − (1 + r)Pt)zt , (1)

where Pt denotes the (ex-dividend) price of the risky asset at time t, Yt the stochastic cash flow

(e.g. dividend) process, and zt denotes the number of shares purchased at date t. The net cash

flow from the risky asset is defined as:

Rt+1 = Pt+1 + Yt+1 − (1 + r)Pt , (2)

meaning that I assume that agents borrow at the risk free rate r.

The market consists of H types of agents that follow a specific belief. As these beliefs are

different per type, the market is heterogeneous. The model determines the fraction of investors

per type (nh,t). How these investors behave will be explained in coming sections. But first I

discuss an essential assumption of the model by Brock and Hommes (1998), which is the type

of utility function. It is assumed that each agent of type h has a utility function that exhibits
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constant absolute risk aversion (CARA). This means that they adopt a mean-variance efficient

strategy. Eh,t(.) and Vh,t(.) denote the expectation of the conditional mean and variance operators

of the wealth in next period, hence each agent solves:

zh,t = max
zh,t

Eh,t(Wt+1)− (ah/2)Vh,t(Wt+1) , (3)

with risk aversion parameter ah. Given equation (3) and the net cash flow from the risky asset

(2), the mean-variance demand function of agent h is given by:

zh,t =
Eh,t(Rt+1)

ahVh,t(Rt+1)
. (4)

With zero net supply of the risky asset (Brock and Hommes, 1998) and assuming that all agents

have the same risk aversion parameter (i.e. ah = a) and homogeneous expectations about the

conditional variance (i.e. Vh,t(Rt+1) = Vt(Rt+1)), the market clearing equation is:

H∑
h=1

nh,t
Eh,t(Pt+1 + Yt+1)− (1 + r)Pt

aVt(Rt+1)
= 0 , (5)

where nh,t is the fraction of investors in the economy of type h at the beginning of period t, before

the actions of others are observed. The equilibrium pricing equation is now given by:

Pt =
1

1 + r

H∑
h=1

nh,tEh,t(Pt+1 + Yt+1) . (6)

The equilibrium pricing equation shows that the price at time t of the risky asset depends

on the weighted average of the beliefs about next period payoffs. In addition, it shows that the

equilibrium price will be high (low) when the fraction of investors expecting a high (low) next

period payoff is large. As Boswijk et al. (2007) notice, equation (6) can be reformulated to:

r =
H∑
h=1

nh,t
Eh,t(Pt+1 + Yt+1 − Pt)

Pt
, (7)

which shows that in equilibrium investors on average expect to earn the riskless discount rate r.
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3.2 Deviation from Fundamental Value

A variation of the method by Brock and Hommes (1998) is the reformulation by Boswijk et al.

(2007) of the pricing equation (6) in terms of price-to-cash-flow (PY) ratio, dt = Pt/Yt. This

resembles the ideas of Campbell and Shiller (1988a,b) on stock valuation ratios. With agents

having perfect knowledge of the underlying fundamental value, but heterogeneous beliefs about

asset prices, it is useful to express their beliefs as a function of the deviation from fundamental

value. This expression allows for a better interpretation of the model and a link to other research

on the effect of different beliefs on the persistence of the deviation from the fundamental value.

The deviation is often considered as it considers only the price changes not related to changes in

fundamental value. First, the cash flow process and the fundamental PY-ratio are defined and

then the model is specified in terms of deviation from this fundamental value.

Similar to Boswijk et al. (2007), I assume that the cash flow process follows a Gaussian

random walk with drift, which means that:

log Yt+1 = µ+ log Yt + νt+1, νt+1 ∼ i.i.d. N(0, σ2
ν) , (8)

which implies:

Yt+1

Yt
= eµ+νt+1 = eµ+(1/2)σ2

νeνt+1−(1/2)σ2
ν = (1 + g)εt+1 , (9)

where εt+1 = eνt+1−(1/2)σ2
ν , hence Et(εt+1) = 1. Here, g denotes the constant cash flow growth

rate. As all agents are assumed to have the same belief about the exogenously given stochastic

process of the cash flow, these beliefs are now given by:

Eh,t(Yt+1) = Et(Yt+1) = (1 + g)YtEt(εt+1) = (1 + g)Yt . (10)

In addition, the cash flow growth Yt+1/Yt is conditionally independent of dt+1 which implies:

Eh,t

(
Pt+1

Yt

)
= Eh,t

(
Yt+1

Yt

)
Eh,t(dt+1) = (1 + g)Eh,t(dt+1) . (11)

Using both two previous equations, the equilibrium pricing equation (6) can be reformulated in

terms of the PY-ratio as follows:
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Pt
Yt

=
1

1 + r

H∑
h=1

nh,t

{
(1 + g)Eh,t(dt+1) + (1 + g)

}
=

1

1 + r

H∑
h=1

nh,t(1 + g)
{
Eh,t(dt+1) + 1

}
, (12)

and as the fractions nh,t sum up to 1, the PY-ratio (dt) is equal to:

dt =
1

R∗

{
1 +

H∑
h=1

nh,tEh,t(dt+1)
}

, R∗ =
1 + r

1 + g
, (13)

with R∗ being the gross rate of return the equilibrium pricing equation.

I now specify the fundamental ratio. In contrast to the cash flows, prices are assumed to be

affected by expectations. These heterogeneous beliefs about next period’s PY-ratio ensure that

the ratio can deviate from the fundamental ratio, which is not observable in an efficient market.

Note that investors know the fundamental ratio (and price), but are unaware of the beliefs of

other investors and of the current fractions of beliefs nh,t. Hence, investors do not know the next

period’s deviation from the fundamental ratio. In case of a constant growth rate g the rational

expectations fundamental price of the risky asset is given by:

P ∗
t =

1 + g

r − g
Yt, r > g . (14)

This equation is in line with the static Gordon growth model (Gordon, 1962) defining the fun-

damental value based on cash flows that grow at a constant rate (i.e. 1 + g) in perpetuity. The

price-to-cash flow fundamental ratio now becomes:

d∗t =
P ∗
t

Yt
=

1 + g

r − g
. (15)

Using the fundamental PY-ratio and the assumption of heterogeneity in expectations, the

pricing equation can now be expressed as a function of the deviation from the fundamental ratio:

xt = dt − d∗t =
1

R∗

H∑
h=1

nh,tEh,t(xt+1) . (16)
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3.3 Heterogeneous Beliefs and Switching

The important part of the model is the way agents form their beliefs about next period’s PY-ratio,

Eh,t(xt+1). As explained, agents have different beliefs about the expected transitory deviation of

the (known) fundamental PY-ratio. First, the characteristics of belief functions are outlined and

then the way in which investors can switch between these functions is explained.

Beliefs are presented by fh,t(.), a function depending on L past deviations:

Eh,t(xt+1) = fh,t(xt−1, ..., xt−L) . (17)

Note that in this set up fh,t(.) represents the belief type at the beginning of period t. The

equilibrium adaptive belief system can now be described as:

xt =
1

R∗

H∑
h=1

nh,tfh,t(xt−1, ..., xt−L) =
1

R∗

H∑
h=1

nh,tfh,t . (18)

Next, one has to define the belief function(s). In their paper Brock and Hommes present

some simple belief types, all of the linear form:

fh,t = φhxt−1 + bh , (19)

where the beliefs are characterized by a trend (φ) and bias (b). Examples of types of investors

presented by the paper are:

• Rational agents with perfect foresight who know not only all past prices and cash flows,

but also the beliefs of other investors and the fractions. They are able to compute xt+1

perfectly, i.e. fh,t = xt+1.

• Fundamentalists who believe prices return to their fundamental solution i.e. xt+1 = 0 or

similar φh = bh = 0. They know all the past prices and cash flows, but do not know the

fractions nh,t of the other belief types. Note that the fundamental benchmark is a special

case when fh,t = 0 for all types h.

• Chartists who believe in a pure trend (without any bias) and extrapolate past deviations,

i.e. fh,t = φhxt−1 with φh > 1. Contrarian investors also look for a trend, but move against

it, hence φh < 1.

10



• Biased traders with a belief that has an upward (b > 0) or downward (b < 0) bias parameter.

Boswijk et al. (2007) estimate a simple two-type dynamic asset pricing model to annual

data of the S&P500 index from 1871 to 2003. They use a different definition than Brock and

Hommes (1998) as they call investors with φh < 1 fundamentalists and chartists or trend following

investors have a parameter φh > 1. I name their model the two-type HAM. In this thesis the

micromarket described by De Long et al. (1990a,b) is used as a guideline for the model explained

in next section.

There is sufficient proof that sentiment of investors varies over time (Boswijk et al., 2007). In

order to model this variation, investors can switch between the different belief heuristics, where

the choice of heuristic depends on a fitness function defined by the previous realized profits,

publicly available at the beginning of period t. The fitness function of type h at the end of period

t is denoted by:

πh,t = Rtzh,t−1 = Rt
Eh,t−1(Rt)

aVt−1(Rt)
, (20)

with zh,t−1 indicating the demand, formed in period t − 1 of the risky asset by belief type h.

As in Brock and Hommes (1998), previous realized profits can be taken into account by using

the function Πh,t = πh,t + αΠh,t−1. Based on the fitness (or so-called performance) of the belief,

an investor chooses between the different prediction strategies. The following discrete choice

probability expresses the updated fractions:

nh,t =
exp(βΠh,t−1)∑H
h=1 exp(βΠh,t−1)

, (21)

where parameter β is the intensity of choice measuring how fast agents switch between different

prediction strategies. The higher β, the more agents are willing to switch strategy. Hommes

(2011) describes switching by a discrete choice model with asynchronous updating, which means

that they add an additional parameter δ ∈ [0, 1] to equation (21) that measures the fraction of

investors who do not update their belief every period. This feature is consistent with experimental

data (Hommes, 2011) and therefore added to the model, hence:

nh,t = δnh,t−1 + (1− δ)
exp(βΠh,t−1)∑H
h=1 exp(βΠh,t−1)

. (22)
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The timing of the economy is important in this model. At time t the previous realization

(xt−1) and especially the realized performance Πh,t−1 are known. Then first, the fractions nh,t

are determined by the previous performance of each trading strategy h, like equation (21) or (22).

At the same time, traders revise their beliefs and based on the fractions and on the beliefs, xt

is determined. After this observation the realized profits for period t, Πh,t can be computed and

will be used in the subsequent period.

3.4 The Model

A HAM is characterized by the types of agents and corresponding belief functions and switching

mechanisms. In this section I define these characteristics of my model. The framework by De

Long et al. (1990a,b) is used, who describe a market with two agents: arbitrageurs and noise

traders. My HAM consists of five types of agents (hence I name it the five-type HAM). The five

different beliefs have the same function:

fh,t = φhxt−1, h = 1, . . . , 5 . (23)

First, the arbitrageurs (h = 1) are rational agents who normally follow a mean reverting

belief, i.e. φ1 < 1. These traders can both hold long as well as short positions and they and can

be thought of as hedge funds. As De Long et al. (1990a) explain arbitrageurs look at a stock’s

fundamental value and take the actions of noise traders into account and trade accordingly. Note

that the market settings are in line with Chen et al. (2002) who also assume that arbitrageurs

can take long and short positions. Most of the time, such investors stabilize the deviations

from fundamentals, but after a good news event they anticipate on the overreaction of positive

feedback traders by trading ahead of these investors. Arbitrageurs will buy (more) today, as

positive feedback traders will be buying tomorrow, destabilizing markets even more. This erratic

behavior by rational speculators that triggers positive feedback trading is called “jumping on the

bandwagon” (De Long et al., 1990b). It can be seen as herding as the investors defer their own

belief and start following the noise traders beliefs. The fraction of arbitrageurs trading on the

bandwagon is expressed as:

ζt =
exp(βΠbw,t−1)

exp(βΠbw,t−1) + exp(βΠ1,t−1)
, (24)
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where Πbw,t−1 is the average realized profit on the bandwagon. On the bandwagon, the arbi-

trageurs can choose between two types (h = 3 and h = 4), hence Πbw,t−1 is the average of these

realized profits (Π3,t−1 and Π4,t−1). This enables arbitrageurs to herd as they can follow another

belief that previously performed better. A situation in which this happens is when there is a

positive trend picked up by noise traders and arbitrageurs can extrapolate this trend by trigger-

ing positive feedback trading. They are better off following this trend (on the bandwagon), than

following their mean-reverting belief. Once on the bandwagon, the switching between the two

beliefs h = 3 and h = 4 is determined using the discrete choice probability function as in equation

(21):

ξh,t =
exp(βΠh,t−1)∑
h exp(βΠh,t−1)

, h = 3, 4 . (25)

Note that I have to specify a variable (ξh,t) that denotes the distribution between types 3 and 4

in order to make sure that the actual fractions nh,t sum up to one. In this case, the fractions n3,t

and n4,t are determined by:

nh,t = n1,t × ζt × ξh,t, h = 3, 4 . (26)

Also note that in equation (25) δ = 0 as all traders on the bandwagon are likely to update their

belief each time, in contrast to arbitrageurs not on bandwagon who are less likely to switch from

their fundamental belief to a noise trader belief. This switching mechanism is defined below.

The second type of traders are the noise traders (h = 2) who typically follow a trend (i.e.

φ2 > 1). These traders can be thought of as mutual funds who are less informed than the ar-

bitrageurs. These traders misperceive signals about future prices they get from stockbrokers,

technical analysts, or minor price movements, believing that they have special information. Irrel-

evant information about assets fundamentals is picked up as meaningful new information, leading

prices to drift away from their fundamental value. The main restriction of these traders is that

they cannot sell short (Chen et al., 2002), hence this feature is incorporated in the heterogeneous

agent model as follows:

λt = −min
{ f2,t−1 − xt−1

3 + |f2,t−1 − xt−1|
, 0
}
, (27)

where λt is the fraction of noise traders that leaves the market, which depends on the difference

between the aggregate noise trader belief and the current market value. When noise trader’s
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expectation about future prices is lower than current market price, part of the noise traders will

leave the market as they cannot sell short. The equation (27) is used as it fits the situation well

(a concave function between 0 and 1 that slowly converges to 1 if the belief f2,t−1 is lower than

the market value xt−1).

Finally, switching between arbitrageurs (h = 1) and noise traders (h = 2) is described by:

ξh,t = δξh,t−1 + (1− δ)
exp(βΠh,t−1)∑
h exp(βΠh,t−1)

, h = 1, 2 , (28)

where the δ is now expected to be positive as these types of investors are more likely to continue

following their own belief. Figure 1 summarizes the structure of the five-type HAM and gives an

overview of the realizations of the fractions.

Figure 1: Structure of Five-Type HAM

Structure of the five-type heterogeneous agent model. There are five types of agents active in the market, all with
different beliefs (fh,t = φhxt−1). The tree presents the way the fraction of each type (nh,t) is determined. Arbitrageurs
(h = 1) can jump on the bandwagon (and once on the bandwagon they can follow two types, h = 3 or h = 4). Noise
traders (h = 2) can leave the market (h = 5) if their belief is below the market value. Note that there are four switching
mechanisms, which are explained at the bottom. All equations are explained in the text
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3.5 The Propositions

In order to structure the approach, I establish two propositions that are investigated in this paper.

The first proposition considers the behavior of the arbitrageurs:

Proposition 1. Arbitrageurs jumping on the bandwagon destabilize the market by

strengthening positive feedback trading. An increase in the fraction of arbitrageurs on

the bandwagon leads to higher volatility and higher deviation of the market price from

the fundamental value.

Following, De Long et al. (1990b) it is expected that arbitrageurs on the bandwagon will further

destabilize the market. An increase in this fraction means that more arbitrageurs decided that

following the crowd would be a better investment strategy.

The second proposition considers the noise trader demand:

Proposition 2. Noise traders destabilize the market by their misperception of price

information. An increase in the fraction of noise traders leads to higher volatility and

higher deviation of the market price from the fundamental value.

Following De Long et al. (1990a,b) it is expected that noise trader demand creates instability in

the market. Note that the fraction of noise traders includes the traders that left the market.
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4 Empirical Results

In this section I discuss the empirical results of simulations as well as estimations. Especially, the

focus is on the propositions presented in previous section and on the comparison between both

the two-type HAM by Boswijk et al. (2007) and the five-type HAM established in this thesis.

First, I analyze the models using simulations. For that purpose, I introduce eight parameter

sets and simulate 100 time series of 200 periods for both models across all sets. I first look at

typical outcomes of these simulations. Then I check whether the models are able to match stylized

facts of asset prices and compare this to the data. Finally, the simulated time series are divided

into ten deciles based on either the fraction of investors on the bandwagon or the fraction of noise

traders. Various metrics, such as the deviation from the fundamental value and volatility, are

presented for each decile group and the differences between these metrics can tell whether my

predictions in the propositions are supported by the simulations.

Second, I estimate the models using data on the S&P500 index. These estimation results are

analyzed first. In particular the dynamics of the fractions are analyzed. Finally, the estimation

results are analyzed using the decile group analysis.

4.1 Simulation Results

To run the simulations, I introduce stochastic disturbances to both models using the market

clearing equation:

xt =
1

R∗

H∑
h=1

nh,tfh,t + εt , (29)

where εt is iid with zero mean and standard deviation σε. These disturbances represent the

market uncertainty and random occasions that impact the aggregate belief.

I define eight parameter sets in order to investigate the impact of changes in (main) variables

of the models. Table 1 shows the parameter sets. It can be seen that the belief parameters
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(φh, h = 1, . . . , 4) can be strong or weak i.e. the mean-reverting belief parameter is equal to

0.75 or 0.95 respectively. The trend-following belief is strong when φh = 1.25 and weak when

the parameter is fixed at 1.05. In addition, the parameter sets define the tendency to switch

that is determined by β (the intensity of choice) and δ (the fraction of investors that update

their belief). Again, a strong and weak version is introduced. Fixed variables are σε = 2.5,

R∗ = 1.05, and d∗ = 25 the fundamental value. These variables only have a minor impact on

the simulation results. The simulations are initiated using x1 = x2 = x3 = 5. If the simulations

would be initiated with a specific trend in the deviations from fundamental value, the model

would extrapolate this trend. Hence, simulations are initiated with no trend and all xt’s are

equal to circa the average of the observed xt’s. In the first two periods, 50% of the agents are

arbitrageurs and 50% are noise traders. No investors are on the bandwagon or out of the market

initially. In addition, the cash flows are generated using a geometric Brownian motion with drift.

The expected return of the cash flow process is 1.75% per year and annual volatility is 16.25%.

Each simulation run consists of 100 samples of 200 periods for a specific parameter set.

Table 1: Parameter Sets

Parameter sets used for simulations. The beliefs parameters of investors on the bandwagon (φ3 and φ4) are equal to
the belief parameters of arbitrageurs (φ1) and noise traders (φ2) respectively. The tendency to switch is determined by
both β (the intensity of choice) and by δ (the fraction of investors that does not update beliefs each period)

Belief parameters Tendency to switch

φ1 = φ3 φ2 = φ4 β δ

Set 1 0.95 1.05 0.10 50%

Set 2 0.95 1.05 0.50 0%

Set 3 0.75 1.25 0.10 50%

Set 4 0.75 1.25 0.50 0%

Set 5 0.95 1.25 0.10 50%

Set 6 0.95 1.25 0.50 0%

Set 7 0.75 1.05 0.10 50%

Set 8 0.75 1.05 0.50 0%

The figures 4 to 11 in the Appendix show graphs of typical simulation outcome of one run

for each parameter set and for both models. These graphs show the dynamics of the fractions,

logarithm of the simulated prices, deviation from fundamental value, and a volatility measure

using the RiskMetrics approach1 where the decay parameter is equal to 0.95. Note that these are

1For RiskMetrics approach see Morgan and Reuters (1994)
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outcomes of one run, thus the graphs are not representative for all simulation samples. Table 2

shows the average fraction (and the average standard deviation of the fractions) of each investor

type for each simulation run. From the findings in Table 2 and from the graphs in the Appendix,

the following can be concluded.

First of all, when the noise traders have a strong belief parameter (i.e. φ2 = 1.25), the price

(Pt) easily explodes due to an extreme increase in the belief (xt). This especially happens if the

mean reverting belief parameter of the other investors is weak and/or the tendency to switch

is high (i.e. for S4, S5, and S6). This pattern can be seen in the simulated deviations from

fundamental value in Figures 6 and 10 in the Appendix. Also, the average fraction of investors

and standard deviations in Table 2 show the same pattern. It can be seen that the noise trader

fraction is high (e.g. see five-type model S5) and/or the standard deviation is relatively high.

There seems to be a critical value that makes a stable market unstable as price exploded. This

seems to happen with a belief parameter for noise traders that is higher than 1.15 and it is left

for future research to further investigate this characteristic of the HAM.

Second, the tendency to switch impacts the simulations as there are more and stronger

fluctuations in the fractions and prices when the tendency to switch is higher (i.e. β is high, δ low,

the even parameter sets). The impact is best shown by the graphs of the fractions. For example,

compare the graphs of the two-type model and parameter sets 1 and 2 (see Figure 4). Using the

first settings, the fraction of arbitrageurs does not exceeds 0.6 whereas in a market with a higher

tendency to switch this fraction reaches almost 1.0 at some points in time. The same characteristic

can also be observed from the standard deviations reported in Table 2. Higher standard deviations

appear in simulations with a higher tendency to switch (e.g. compare outcomes of odd and even

parameter sets). Note that the standard deviations of investor types 3, 4, and 5 are relatively

small due to small ranges of the fractions compared to types 1 and 2.

Third, the simulated prices of the five-type model explode less often than the two-type model.

The five-type model has a more detailed structure, as arbitrageurs can jump on the bandwagon

and noise traders can leave the market. When looking at the graphs in the Appendix and Table

2 it can be seen that the extension seems to have a dampening effect on the simulated prices.

The graphs in the Appendix show that the prices resulted from the two-type model explode more

easily. In Table 2 it is most apparent when comparing outcomes of the models for S6. Simulated

time series explode due to a high fraction of noise traders, hence the fraction for the two-type

model is extremely high (0.935), whereas the five-type model has an average noise trader fraction

of 0.452 for the same parameter set.
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Table 2: Average Simulated Fraction of Investor Type

Average of the simulated fraction per investor type for each parameter set (S1-S8) and both models. Average standard
deviation of the simulated fractions in parentheses. Refer to Table 1 for the parameter sets. Other variables: T = 200,
N = 100, σε = 2.5, R∗ = 1.05, d∗ = 25, initial observations x1 = x2 = x3 = 5, and initial fractions are n1 = n2 = 0.5,
n3 = n4 = n5 = 0

Five-type model

Arbitrageurs Noise traders
Mean-revert

on the bandwagon

Trend-following

on the bandwagon

Noise traders

that left the market

h = 1 h = 2 h = 3 h = 4 h = 5

S1 0.279 (0.084) 0.405 (0.110) 0.115 (0.030) 0.115 (0.039) 0.086 (0.105)

S2 0.315 (0.168) 0.388 (0.163) 0.118 (0.030) 0.107 (0.038) 0.073 (0.096)

S3 0.318 (0.221) 0.417 (0.150) 0.086 (0.059) 0.106 (0.091) 0.072 (0.098)

S4 0.414 (0.342) 0.377 (0.277) 0.074 (0.055) 0.070 (0.056) 0.065 (0.114)

S5 0.146 (0.178) 0.717 (0.230) 0.044 (0.050) 0.057 (0.076) 0.036 (0.071)

S6 0.357 (0.325) 0.452 (0.283) 0.066 (0.052) 0.063 (0.053) 0.062 (0.107)

S7 0.306 (0.145) 0.395 (0.116) 0.105 (0.047) 0.111 (0.065) 0.082 (0.101)

S8 0.371 (0.269) 0.372 (0.217) 0.100 (0.046) 0.091 (0.050) 0.066 (0.108)

Two-type model

Arbitrageurs Noise traders

h = 1 h = 2

S1 0.513 (0.026) 0.487 (0.026)

S2 0.549 (0.169) 0.451 (0.169)

S3 0.501 (0.116) 0.499 (0.116)

S4 0.200 (0.248) 0.800 (0.248)

S5 0.150 (0.217) 0.850 (0.217)

S6 0.065 (0.179) 0.935 (0.179)

S7 0.524 (0.046) 0.476 (0.046)

S8 0.569 (0.236) 0.431 (0.236)

4.2 Stylized Facts of Simulated Times Series

Next, I analyze the ability of the models to replicate empirical anomalies. The same simulations

as in previous section are used to investigate three observed statistical properties of asset prices:

non-normality of returns, the unit root property of asset prices, and volatility clustering.
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But first, I analyze the stylized facts contained in the data. Table 3 shows statistical prop-

erties of the annual S&P500 data from 1950 until 2014. It is well-known that returns in financial

markets are not normally distributed. Fat tails and excess kurtosis are a result of more extreme

(often negative) returns that are observed more often than implied by a (standard) normal dis-

tribution. This anomaly was first presented by Mandelbrot (1963). In particular, returns are

expected to have a kurtosis exceeding 3, reject the Jarque-Bera normality test, and have a Hill

index ranging between 2 and 5 (a measure of fat tails)2. In Table 3 it can be seen that the kurtosis

indeed exceeds 3 and that the normality test is rejected. The Hill indexes however are higher

than expected, indicating that the fat tail property does not appear in the data.

Another stylized fact is the unit root property of asset prices. This property means that

prices are non-stationary i.e. follow a random walk or martingale. This implies that the price

process Pt = ρPt−1 + εt has stationary increments εt and parameter ρ = 1 (Lux and Marchesi,

2000). This is tested using an augmented Dickey-Fuller test. Table 3 shows that ρ = 1.02 and

that the augmented Dickey-Fuller test is not rejected. This suggests the presence of a unit root

i.e. non-stationary prices.

Volatility clustering is the third stylized fact that is analyzed. As introduced by Mandelbrot

(1963), volatility clustering is the phenomenon that extreme and small stock returns seem to

cluster together, leading to significant autocorrelation in volatility. Volatility clustering is reflected

in significant, slowly declining autocorrelation in squared and absolute returns. Moreover, it can

be detected using a GARCH structure to show that there is time dependency in the volatility

of asset returns (Hommes, 2001; De Grauwe and Grimaldi, 2006). In Table 3 it can be seen

that the data shows no autocorrelation in squared and absolute returns, for all lags. The AR(1)

coefficient is slightly positive (0.02). Moreover, the GARCH(1,1) results show that the ARCH

term is not significant, but the GARCH term is significantly different from zero at 5% level.

Due to these results and due to the fact that the sum of the ARCH and GARCH terms is not

convincing enough close to one, I cannot conclude that there is evidence for volatility clustering

in the annual return data.

Overall, the annual prices seem to be non-normally distributed and non-stationary. However,

the tails are less fat than expected and volatility clustering seems not to appear in the data. I

now analyze the ability of the simulated time series to generate these stylized facts.

2The Hill index is a measure of the tail exponent: the lower it is, the fatter the tail of the distribution. Real
return data have a tail index ranging between 2 and 5. See De Grauwe and Grimaldi (2006)
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Table 3: Statistical Properties of Data

Statistical properties of annual price data of the S&P500 index from 1950-2014. Analysis on the stylized facts: non-
normality of returns, unit root property of asset prices, and volatility clustering. Multiple metrics are presented
(Kurtosis, Hill index estimates, ρ coming from the price process Pt = ρPt−1 + εt, AR(1) coefficient, and GARCH(1,1)
estimation results). In addition, multiple tests are performed (Jarque-Bera test for normality, augmented Dickey-Fuller
test for stationarity, and Ljung-Box Q-tests for serial correlation)

Metric/Test Value Rejection of test Test statistic

(at 5% level)

Kurtosis 3.71

Jarque-Bera test Yes 8.40

Hill index estimates

2.5% tail 11.54

5% tail 6.70

10% tail 6.66

ρ 1.02

Aug. Dickey-Fuller test No 0.89

AR(1) 0.02

Ljung-Box Q-test

Squared returns

Lag = 5 No 6.91

Lag = 10 No 8.31

Lag = 20 No 11.99

Absolute returns

Lag = 5 No 9.08

Lag = 10 No 10.61

Lag = 20 No 15.73

ARCH term (t-statistic) -0.16 (-1.47)

GARCH term (t-statistic) 1.10 (5.53)

Sum of terms 0.94

Non-Normality of Returns

Table 4 presents results on the kurtosis, Jarque-Bera test and Hill index estimates of the simulated

returns of both models. The simulated prices do not all meet this expectation as the median

kurtosis is in most cases around (and even lower than) 3 and the Jarque-Bera test is not rejected

(at maximum 49% of the 100 simulated samples). Comparing the two models, the five-type model

seems to better match the stylized fact. The same can be concluded when looking at the Hill

index estimates where three cut-off points of the tails are considered, 2.5%, 5%, and 10%. The

median tail index exceeds 5 in less than 50% of the simulations of the five-type model. Using the

other model, the tail index is even higher in most cases leading us to conclude that the simulated

return distribution is not fat tailed especially when using the two-type model. Key conclusion

is that both models do not consistently comply with the first stylized fact. But it can also be
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concluded that the five-type HAM better matches the non-normality of returns than the two-type

HAM and that both models match the observed outcomes of the annual price data regarding the

fat tails property.

Unit Root Property of Asset Prices

The ρ’s and the results of the augmented Dickey-Fuller tests are presented in Table 5. The

simulated ρ ranges between 0.91 and 1.51 for the five-type model and between 0.85 and 1.52 for

the two-type model. The Dickey-Fuller test should not be rejected, which is the case with the

data and in most simulations. The two-type model seems to meet expectations in more cases

than the five-type model. The conclusion is that both HAMs generate non-stationary prices.

Volatility Clustering

Table 6 shows the results of AR(1) model estimations and Ljung-Box Q-tests for serial correlation

in both squared and absolute returns. The simulated returns show similar statistics as the data:

no significant autocorrelations in squared and absolute returns in the majority of the cases. This

is shown by the test results, as the test for no serial correlation is rejected in only a few cases.

For the five-type model, if parameter set 4 is used there seems to be some autocorrelation in

squared and absolute returns (e.g. rejection in 42% and 38% of the simulated samples and 5 lags

respectively), but still not in the majority of simulated times series.

Table 7 reports the results of GARCH(1,1) model estimations of the simulated returns. It

can be observed that most of the ARCH terms are not significant and that most of the GARCH

terms are significantly different from zero at 5% level. In addition the sum of both terms is in

majority of the cases not close to one, which can also be observed from the median values ranging

from 0.671 to 0.929 for both models. These results do not lead to the conclusion that the models

are capable of reproducing clustering and persistence in volatility. The same appeared when

looking at the GARCH(1,1) results from the actual price data.

To summarize, both HAMs seem incapable of reproducing non-normal returns and clustering

volatility. They are however capable of reproducing the unit root property of prices. Notable,

is the fact that most results seem to match with the annual S&P500 data (all but the non-

normality of returns). This indicates that the models are able to simulate prices with observed

anomalies that appear in yearly data. This means that the models should be adjusted when one

tries to simulate data that matches periods of a lower frequency (e.g. daily or monthly). Here, I

am interested in simulated time series from annual data and the models apparently fit for that

purpose.
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Table 4: Non-normality of Simulated Returns

Analysis of 100 samples of simulated times series of 200 periods using the five-type model and the two-type model by
Boswijk et al. (2007). Refer to Table 1 for the parameter sets. Other variables: σε = 2.5, R∗ = 1.05, d∗ = 25, initial
observations x1 = x2 = x3 = 5, and initial fractions are n1 = n2 = 0.5, n3 = n4 = n5 = 0. Median (and range in
parentheses) of average Kurtosis, Jarque-Bera test results at 5% level, and Hill index estimates with 2.5%, 5%, and 10%
tail cut-off points

Kurtosis Jarque-Bera test Hill index estimates

(at 5% level) (median, range in parentheses)

Median, range

in parentheses

No. of

rejections

Median of test

statistic

2.5% tail 5% tail 10% tail

Five-type model

Set 1 2.97 11 1.25 8.31 5.23 3.53

(2.37-10.61) (3.30-28.23) (2.72-10.98) (2.32-6.31)

Set 2 3.09 19 1.59 7.74 5.28 3.55

(2.50-32.31) (2.45-48.45) (2.30-14.87) (2.41-5.56)

Set 3 3.30 36 2.62 6.12 4.41 3.43

(2.33-26.11) (1.87-33.16) (2.16-12.45) (2.23-8.10)

Set 4 3.51 49 5.02 5.12 4.24 3.19

(2.36-81.36) (1.32-47.71) (1.62-14.07) (1.41-9.40)

Set 5 3.16 25 2.12 9.48 6.48 4.77

(2.48-11.82) (2.35-36.80) (1.98-14.67) (2.09-8.18)

Set 6 3.34 40 3.13 6.35 4.74 3.46

(2.42-72.04) (1.25-24.04) (1.57-20.19) (1.43-7.08)

Set 7 3.04 7 1.42 8.38 5.41 3.79

(2.31-24.47) (2.24-37.28) (2.51-11.76) (1.73-6.42)

Set 8 3.07 12 1.51 7.41 5.24 3.62

(2.41-6.16) (3.36-41.75) (2.80-14.26) (2.52-6.05)

Two-type model

Set 1 3.07 17 1.76 7.30 5.29 3.75

(2.37-22.80) (1.31-48.38) (1.49-15.95) (2.07-6.41)

Set 2 3.09 18 1.65 8.23 5.19 3.52

(2.46-6.21) (2.42-28.85) (2.49-13.88) (2.41-6.19)

Set 3 3.02 22 1.43 7.13 5.15 3.65

(2.48-8.17) (2.36-22.15) (2.37-12.84) (2.33-6.96)

Set 4 3.03 17 1.41 10.37 7.38 5.32

(2.44-69.31) (1.51-77.17) (2.33-16.54) (2.45-10.36)

Set 5 2.94 8 1.67 10.75 8.09 5.81

(2.37-5.16) (4.54-70.02) (3.84-15.96) (3.19-10.00)

Set 6 3.04 10 1.22 11.58 7.45 5.89

(2.26-4.79) (3.83-72.98) (4.06-13.25) (4.04-9.39)

Set 7 3.00 7 1.13 7.87 5.54 3.71

(2.20-4.42) (2.39-55.84) (2.93-12.27) (2.28-6.60)

Set 8 2.99 7 1.51 7.82 5.43 3.56

(2.41-4.22) (3.00-92.75) (2.89-14.97) (2.38-9.45)
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Table 5: Unit Root Property of Simulated Prices

Analysis of 100 samples of simulated times series of 200 periods using the five-type model and the two-type model by
Boswijk et al. (2007). Refer to Table 1 for the parameter sets. Other variables: σε = 2.5, R∗ = 1.05, d∗ = 25, initial
observations x1 = x2 = x3 = 5, and initial fractions are n1 = n2 = 0.5, n3 = n4 = n5 = 0. Median (and range in
parentheses) of ρ coming from the price process Pt = ρPt−1 + εt and augmented Dickey-Fuller test results at 5% level

ρ Augmented Dickey-Fuller test

(at 5% level)

Median, range in

parentheses

No. of rejections Median of test

statistic

Five-type model

Set 1 0.983 17 -1.22

(0.94-1.03)

Set 2 0.983 12 -1.25

(0.91-1.04)

Set 3 0.984 7 -1.22

(0.95-1.22)

Set 4 0.983 8 -1.21

(0.96-1.15)

Set 5 1.165 2 14.86

(0.95-1.51)

Set 6 0.987 14 -0.94

(0.93-1.38)

Set 7 0.982 20 -1.33

(0.93-1.01)

Set 8 0.982 13 -1.28

(0.92-1.06)

Two-type model

Set 1 0.983 12 -1.33

(0.95-1.07)

Set 2 0.985 12 -1.15

(0.85-1.10)

Set 3 0.986 9 -1.06

(0.93-1.36)

Set 4 1.173 2 13.41

(0.97-1.44)

Set 5 1.181 0 15.63

(0.99-1.44)

Set 6 1.169 0 14.64

(1.03-1.52)

Set 7 0.983 8 -1.30

(0.92-1.07)

Set 8 0.983 12 -1.27

(0.93-1.13)
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Table 6: Serial Correlation in Simulated Returns

Analysis of 100 samples of simulated times series of 200 periods using the five-type model and the two-type model by
Boswijk et al. (2007). Refer to Table 1 for the parameter sets. Other variables: σε = 2.5, R∗ = 1.05, d∗ = 25, initial
observations x1 = x2 = x3 = 5, and initial fractions are n1 = n2 = 0.5, n3 = n4 = n5 = 0. Analysis on returns using
AR(1) estimates and Ljung-Box Q-tests at 5% level. Median of AR(1) coefficient and range of average in parentheses.
For the Ljung-Box Q-test the number of rejections and median of test stastics (parentheses) are reported.

Ljung-Box Q-test (at 5% level)

No. of rejections (median of test statistic in parentheses)

Squared returns Absolute returns

AR(1) Lag = 5 Lag = 10 Lag = 20 Lag = 5 Lag = 10 Lag = 20

Five-type model

Set 1 0.010 15 (4.43) 11 (9.63) 9 (19.30) 11 (4.37) 9 (9.28) 9 (20.18)

(-0.23-0.26)

Set 2 0.007 18 (5.83) 18 (11.16) 14 (21.00) 14 (5.34) 9 (10.32) 8 (21.07)

(-0.20-0.14)

Set 3 0.071 33 (6.26) 30 (12.44) 23 (21.31) 27 (6.32) 27 (12.08) 23 (21.02)

(-0.16-0.24)

Set 4 0.040 42 (8.83) 38 (13.81) 31 (22.41) 38 (6.66) 42 (13.22) 37 (24.96)

(-0.28-0.24)

Set 5 0.119 20 (4.68) 16 (9.58) 15 (19.98) 17 (4.77) 19 (10.03) 14 (21.26)

(-0.13-0.35)

Set 6 0.055 35 (6.88) 32 (13.38) 33 (23.62) 34 (7.07) 40 (15.32) 36 (27.39)

(-0.33-0.28)

Set 7 -0.023 13 (4.72) 9 (10.29) 9 (19.79) 9 (4.77) 10 (10.14) 6 (20.85)

(-0.17-0.23)

Set 8 -0.009 9 (4.36) 10 (9.19) 10 (18.26) 6 (4.38) 6 (9.60) 8 (19.41)

(-0.20-0.18)

Two-type model

Set 1 -0.006 16 (5.16) 19 (10.56) 21 (21.31) 10 (5.19) 13 (10.51) 14 (21.43)

(-0.26-0.14)

Set 2 -0.001 20 (4.66) 20 (8.87) 18 (20.42) 15 (5.04) 15 (10.18) 15 (19.43)

(-0.15-0.15)

Set 3 0.040 19 (4.67) 19 (10.35) 16 (20.79) 13 (4.62) 12 (9.97) 14 (19.95)

(-0.15-0.22)

Set 4 0.113 18 (5.14) 17 (9.91) 14 (19.60) 14 (5.04) 14 (10.96) 16 (20.17)

(-0.14-0.36)

Set 5 0.109 9 (4.44) 12 (10.10) 17 (21.87) 11 (4.81) 13 (10.17) 16 (22.03)

(-0.06-0.32)

Set 6 0.071 8 (4.58) 6 (9.61) 7 (19.18) 7 (4.80) 7 (9.94) 9 (19.85)

(-0.13-0.28)

Set 7 -0.015 5 (3.88) 2 (8.98) 3 (18.54) 3 (4.09) 2 (9.56) 3 (19.50)

(-0.20-0.17)

Set 8 0.004 10 (4.05) 7 (8.38) 10 (18.74) 5 (4.34) 7 (9.77) 8 (19.71)

(-0.18-0.20)
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Table 7: GARCH Results of Simulated Returns

Analysis of 100 samples of simulated times series of 200 periods using the five-type model and the two-type model by
Boswijk et al. (2007). Refer to Table 1 for the parameter sets. Other variables: σε = 2.5, R∗ = 1.05, d∗ = 25, initial
observations x1 = x2 = x3 = 5, and initial fractions are n1 = n2 = 0.5, n3 = n4 = n5 = 0. Analysis on returns using
GARCH(1,1) estimates. Median (range of average in parentheses) and number of significant estimates of ARCH and
GARCH term, and the median of the sum of the ARCH and GARCH term estimates.

ARCH term GARCH term Sum of terms

Median, range in
parentheses

No. of significant
estimates

Median, range in
parentheses

No. of significant
estimates

Median

Five-type model

Set 1 -0.023 28 0.723 56 0.711

(-0.13-0.26) (-0.98-1.05)

Set 2 -0.018 26 0.650 56 0.748

(-0.17-0.37) (-0.95-1.05)

Set 3 0.039 34 0.599 51 0.722

(-0.12-0.49) (-1.04-1.05)

Set 4 0.125 43 0.443 45 0.671

(-0.13-1.19) (-1.05-1.05)

Set 5 -0.009 28 0.830 64 0.866

(-0.12-0.30) (-0.97-1.05)

Set 6 0.078 38 0.600 59 0.792

(-0.14-0.92) (-1.05-1.04)

Set 7 -0.020 22 0.712 56 0.753

(-0.12-0.26) (-1.05-1.05)

Set 8 -0.033 31 0.711 51 0.755

(-0.12-0.26) (-1.05-1.05)

Two-type model

Set 1 -0.024 30 0.811 66 0.857

(-0.11-0.43) (-0.91-1.05)

Set 2 -0.008 27 0.731 58 0.804

(-0.18-0.33) (-1.05-1.05)

Set 3 -0.011 31 0.706 58 0.765

(-0.16-0.25) (-1.05-1.05)

Set 4 -0.037 20 0.867 67 0.899

(-0.13-0.48) (-0.92-1.05)

Set 5 -0.031 9 0.925 68 0.929

(-0.15-0.25) (-1.05-1.05)

Set 6 -0.046 29 0.910 73 0.916

(-0.16-0.23) (-1.04-1.05)

Set 7 -0.058 35 0.833 65 0.815

(-0.17-0.17) (-0.94-1.05)

Set 8 -0.034 26 0.754 58 0.756

(-0.14-0.18) (-1.05-1.05)
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4.3 Decile Group Analysis of Simulation Results

This section focuses on the two propositions presented in 3.5. These propositions provide a

guideline to further analyze the models and the desired behavior of the associated agents. For

each simulated sample, the fractions of the investor type(s) of interest are ranked in ascending

order and divided into ten decile groups. Per decile group, the average return, average absolute,

positive, and negative deviation from fundamental value, average volatility, and average of a

measure for market activity is calculated. This results in averages per decile group, per sample.

Then the median of these averages is calculated over the 100 samples per simulation setting.

I perform this analysis for each of the eight parameter sets. For the five-type model, both

propositions can be examined using these metrics per decile group. Only the effect of noise

traders can be investigated for the two-type model, as the model does not specify a bandwagon.

I introduce a measure for market activity in order to better understand how much switching

is taking place at each point in time. This measure is defined as the sum of the weighted average

absolute change in each fraction. The higher this measure, the more agents switched belief, the

higher the market activity. I expect this measure to be linked to volatility.

Table 8 reports the results of the decile groups based on the fraction of investors on the

bandwagon (i.e. n3,t+n4,t). The top panel presents the median of the fraction of investors on the

bandwagon per decile group. Not surprisingly the fraction increases each decile group. Note that

the difference between the tenth and first deciles is higher when the tendency to switch is lower

(compare results of odd and even parameter sets). This could be explained by more arbitrageurs

switching to noise trading once the upward trend is picked up, hence a lower percentage of

arbitrageurs on the bandwagon.

The second panel shows that returns are higher in periods with a lower bandwagon fraction.

It is expected that more investors on the bandwagon cause more positive feedback trading, hence

higher returns. The third, fourth, and fifth panel show mixed results when looking at the deviation

from fundamental value per decile group. The expectation is that a higher fraction of investors

on the bandwagon would lead to a higher deviation from fundamental value. Considering the

absolute value of it, this is only the case for 3 of the 8 parameter sets. Note that the positive

deviation from fundamental value is especially high for the lowest decile group and parameter set

5. Parameter set 5 is the odd one out which is caused by the fact that it has the strongest noise

trader belief, the weakest belief of arbitrageurs, and the lowest tendency to switch. This means

that the simulated xt easily explodes. It also means that the dampening effect of other traders
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is low as switching back is more limited, leading to the highest average fraction of noise traders

of all sets (see Table 2). Hence, in periods with the highest fraction of noise traders (and the

lowest fraction of traders on the bandwagon), the positive deviation is extremely high is some of

the simulated samples of parameter set 5.

The last two panels show the volatility and the median of the market activity measure

per decile group. I see that in most cases volatility is lower when there are more investors on

the bandwagon. Moreover, the market activity measure shows more or less the same pattern,

i.e. when market activity is high, volatility is high and vice versa. The results go against my

prediction in proposition 1, where I stated that volatility would be higher when more traders are

on the bandwagon triggering positive feedback trading. However, I remark that these results on

the volatility are not that strong, as the difference between the decile groups is relatively small.

The key conclusion from the simulated time series of investors on the bandwagon is that

the findings show mixed results regarding the statement of the first proposition. The question

remains whether arbitrageurs extrapolate or dampen price fluctuations. Note that this is however

in line with the literature that finds evidence for both sides (De Long et al., 1990a,b).

In Table 9 the groups are based on the total fraction of noise traders (i.e. n2,t + n5,t). The

results are more conclusive and support proposition 2. In the top panel of Table 9 it can be seen

that parameter sets with a strong tendency to switch have a higher difference between the tenth

and first decile, as the fraction reaches the maximum in some simulated samples. For parameter

sets with a low tendency to switch, the difference between the median average fraction in d10

and d1 can be small (e.g. see results of parameter set 1).

The second panel shows the median of the average returns per decile group. For all but

parameter set 5, it can be concluded that more noise trader demand leads to lower returns. De

Long et al. (1990a) state that noise traders earning higher returns as they are compensated for

taking more risk. Here, the opposite seems to be true, however note that I report the average

market return and not the noise traders’ return alone. In that sense, the results show that returns

are lower when noise trader demand is higher which could be caused by arbitrageurs earning lower

returns in a more risky market created by noise trader demand.

Again, parameter set 5 is the odd one out. Following the same reasoning, the high returns

are caused by the result that noise traders are predominant during high positive return periods

and that these periods frequently appear in the simulated samples of parameter set 5.
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The three panels on the deviation all show a similar pattern: when there are more noise

traders in the market the deviation from the fundamental is higher, both positive as well as

negative. This is also the case when the noise trader belief is relatively weak. It indicates that

noise trader demand causes destabilization of the market, in line with the second proposition and

literature.

The sixth panel shows that volatility is slightly lower when more agents are noise traders.

The difference between the median volatility of decile groups is actually quite low as they range

between 18% and 22%. This is a remarkable finding, given the other results presented by Table 9.

It contradicts the statement of proposition 2 as higher volatility would be associated with higher

noise trader demand. Due to the use of continuously compounded returns of log prices, the returns

do not fluctuate more during period characterized by steeply increasing prices compared to other

periods. Moreover, if I consider the market activity measure it can be seen that it shows a similar

pattern as the median volatility. Remarkable is the U-shaped pattern: high volatility periods

appear when the noise trader demand is at the extreme decile groups (see differences between

the highest, middle, and lowest decile groups). Noise trader demand is high during a bullish

period, and low during periods when strong mean-reversion takes place. This could explain the

U-shaped pattern, as an average fraction of noise traders depicts a relatively stable market period

in time. Apparently, the downward periods are associated with even higher volatility (and market

activity) than the upward periods. For some parameter sets, the U-shape pattern also appears

in the deviation from fundamental value.

Table 14 in the Appendix shows the results of the simulated noise trader fractions of the

two-type model. The same can be concluded about noise trader demand for this model.

Key conclusion is that the simulation results support the second proposition, as there is

a strong indication that noise traders destabilize the market, which is mainly apparent in the

higher deviation from fundamental value. This corresponds with the market view by De Long

et al. (1990a,b). Moreover, the extreme fractions of noise traders are associated with higher

volatility (and market activity). However, volatility in the lowest decile groups is the highest.

Overall, the HAMs show simulated results consistent with the second proposition on noise

trader demand. In addition, the simulated results on the fraction of investors on the bandwagon

are less conclusive. These investors seem both to dampen as well as to destabilize markets. This

inconclusive result is supported by literature as there is evidence for both sides.
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Table 8: Decile Group Analysis of Simulated Times Series - Fraction on the Bandwagon

Analysis of 100 samples of simulated times series of 200 periods using the five-type HAM. Refer to Table 1 for the
parameter sets. Other variables: σε = 2.5, R∗ = 1.05, d∗ = 25, initial observations x1 = x2 = x3 = 5, and initial
fractions are n1 = n2 = 0.5, n3 = n4 = n5 = 0. Based on the fraction of arbitrageurs on the bandwagon (i.e. n3,t+n4,t)
the simulated times series are divided into ten decile groups, for each of the 8 parameter sets (S1-S8). Some decile
groups are combined into one group (e.g. the fourth, fifth, sixth, and seventh decile groups are combined in group
d4/7). For each group I calculate the median of the average fraction in that group, the median of the average return,
the median of the absolute, positive, and negative deviation from fundamental (i.e. xt), the median of the average
volatility, and the median of the average market activity. The volatility is computed using the RiskMetrics approach
(where λ = 0.95). The market activity measure is the fraction weighted average change in fractions. I compare the
decile groups by the difference between the highest and lowest, highest and middle, and middle and lowest fraction
groups (i.e. d10-d1, d10-d4/7, d4/7-d1). “high” means that the deviation from fundamental value is higher than 1,000

(1) Median of average fraction

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.08 0.19 0.24 0.27 0.33 0.25 0.09 0.17

S2 0.10 0.21 0.25 0.25 0.25 0.15 0.00 0.14

S3 0.00 0.03 0.21 0.34 0.43 0.43 0.22 0.21

S4 0.00 0.03 0.17 0.24 0.25 0.25 0.08 0.17

S5 0.00 0.00 0.04 0.19 0.37 0.37 0.33 0.04

S6 0.00 0.03 0.17 0.24 0.25 0.25 0.08 0.17

S7 0.01 0.11 0.23 0.30 0.39 0.38 0.16 0.22

S8 0.02 0.12 0.22 0.25 0.25 0.23 0.03 0.21

(2) Median of average return

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.04 0.02 0.00 -0.01 -0.03 -0.07 -0.03 -0.04

S2 0.02 0.01 0.01 0.00 0.00 -0.02 0.00 -0.02

S3 0.03 0.01 0.01 -0.01 -0.02 -0.05 -0.03 -0.02

S4 0.02 0.00 0.00 0.00 0.00 -0.02 0.00 -0.02

S5 0.10 0.05 0.09 0.03 0.02 -0.08 -0.07 -0.01

S6 -0.01 0.00 0.01 0.01 0.02 0.03 0.01 0.02

S7 0.02 0.01 0.00 -0.01 -0.02 -0.05 -0.02 -0.03

S8 0.03 0.00 0.00 0.00 0.00 -0.03 -0.01 -0.02

(3) Median of average absolute deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 4.19 3.66 3.26 4.42 6.31 2.12 3.06 -0.94

S2 5.68 5.22 4.06 3.46 3.12 -2.57 -0.94 -1.62

S3 5.16 3.95 3.97 6.17 6.19 1.03 2.22 -1.19

S4 6.05 5.22 4.07 3.30 3.15 -2.90 -0.91 -1.98

S5 77.30 30.85 high 14.91 11.59 -65.71 n.a. n.a.

S6 9.13 8.01 6.24 4.76 3.87 -5.27 -2.37 -2.90

S7 3.21 2.87 2.89 3.54 4.67 1.47 1.78 -0.31

S8 3.77 3.57 3.30 3.00 2.76 -1.01 -0.55 -0.46

30



Table 8 continued

(4) Median of average positive deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 4.15 3.51 3.23 3.91 5.23 1.08 2.00 -0.92

S2 3.90 3.22 3.24 2.96 2.71 -1.19 -0.53 -0.66

S3 5.77 4.45 4.33 5.91 6.03 0.26 1.70 -1.44

S4 3.78 4.01 3.54 3.14 3.07 -0.71 -0.48 -0.23

S5 110.51 39.30 high 17.19 12.76 -97.76 n.a. n.a.

S6 7.07 6.17 5.67 4.82 4.18 -2.89 -1.50 -1.39

S7 3.32 2.64 2.67 3.04 3.69 0.38 1.03 -0.65

S8 3.36 2.71 2.73 2.67 2.66 -0.70 -0.07 -0.63

(5) Median of average negative deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 -4.20 -3.69 -3.40 -4.63 -7.53 -3.33 -4.13 0.80

S2 -6.67 -6.11 -4.45 -3.72 -3.37 3.30 1.08 2.23

S3 -3.54 -2.93 -3.35 -5.51 -5.88 -2.34 -2.53 0.20

S4 -6.29 -5.91 -4.41 -3.37 -3.09 3.21 1.32 1.89

S5 -5.35 -4.77 -3.91 -4.60 -7.20 -1.85 -3.29 1.44

S6 -8.56 -8.35 -6.14 -4.28 -3.25 5.32 2.89 2.42

S7 -2.97 -3.03 -3.07 -3.79 -5.59 -2.63 -2.53 -0.10

S8 -4.17 -4.14 -3.65 -3.12 -2.85 1.32 0.80 0.52

(6) Median of average volatility

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.19 0.19 0.19 0.19 0.19 0.00 0.00 0.00

S2 0.20 0.20 0.19 0.19 0.19 -0.01 0.00 -0.01

S3 0.20 0.19 0.19 0.19 0.19 -0.01 0.00 -0.01

S4 0.23 0.21 0.20 0.20 0.20 -0.03 0.00 -0.03

S5 0.21 0.20 0.20 0.19 0.18 -0.03 -0.02 -0.01

S6 0.22 0.20 0.20 0.19 0.19 -0.03 -0.01 -0.02

S7 0.18 0.19 0.18 0.19 0.19 0.01 0.01 0.00

S8 0.19 0.19 0.19 0.19 0.19 -0.01 0.00 0.00

(7) Median of average market activity

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.11 0.09 0.06 0.08 0.14 0.03 0.07 -0.05

S2 0.27 0.18 0.11 0.09 0.08 -0.19 -0.03 -0.16

S3 0.20 0.16 0.11 0.12 0.20 0.00 0.09 -0.09

S4 0.32 0.39 0.28 0.18 0.16 -0.16 -0.12 -0.04

S5 0.14 0.13 0.06 0.10 0.14 0.00 0.07 -0.07

S6 0.38 0.38 0.27 0.17 0.14 -0.24 -0.13 -0.11

S7 0.17 0.13 0.08 0.11 0.18 0.02 0.10 -0.08

S8 0.38 0.34 0.19 0.13 0.12 -0.26 -0.07 -0.19
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Table 9: Decile Group Analysis of Simulated Time Series - Fraction of Noise Traders

Analysis of 100 samples of simulated times series of 200 periods using the five-type HAM. Refer to Table 1 for the
parameter sets. Other variables: σε = 2.5, R∗ = 1.05, d∗ = 25, initial observations x1 = x2 = x3 = 5, and initial
fractions are n1 = n2 = 0.5, n3 = n4 = n5 = 0. Based on the fraction of noise traders (i.e. n2,t + n5,t) the simulated
times series are divided into ten decile groups, for each of the 8 parameter sets (S1-S8). Some decile groups are combined
into one group (e.g. the fourth, fifth, sixth, and seventh decile groups are combined in group d4/7). For each group I
calculate the median of the average fraction in that group, the median of the average return, the median of the absolute,
positive, and negative deviation from fundamental (i.e. xt), the median of the average volatility, and the median of
the average market activity. The volatility is computed using the RiskMetrics approach (where λ = 0.95). The market
activity measure is the fraction weighted average change in fractions. I compare the decile groups by the difference
between the highest and lowest, highest and middle, and middle and lowest fraction groups (i.e. d10-d1, d10-d4/7,
d4/7-d1). “high” means that the deviation from fundamental value is higher than 1,000

(1) Median of average fraction

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.45 0.48 0.49 0.50 0.52 0.07 0.02 0.05

S2 0.17 0.37 0.48 0.55 0.68 0.52 0.20 0.32

S3 0.25 0.40 0.48 0.52 0.61 0.36 0.14 0.23

S4 0.00 0.09 0.43 0.73 0.96 0.96 0.53 0.43

S5 0.39 0.50 0.90 1.00 1.00 0.61 0.10 0.51

S6 0.00 0.12 0.44 0.74 0.96 0.96 0.52 0.44

S7 0.38 0.45 0.49 0.51 0.54 0.16 0.05 0.11

S8 0.03 0.22 0.46 0.61 0.85 0.82 0.38 0.43

(2) Median of average return

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.03 0.01 0.00 -0.01 -0.01 -0.04 -0.01 -0.02

S2 0.04 0.02 0.01 -0.01 -0.03 -0.07 -0.04 -0.03

S3 0.00 0.01 0.01 -0.01 -0.02 -0.02 -0.03 0.01

S4 0.05 0.01 0.01 -0.01 -0.06 -0.11 -0.07 -0.05

S5 0.03 0.05 0.04 0.00 0.07 0.04 0.03 0.00

S6 0.02 0.02 0.01 -0.01 -0.07 -0.09 -0.08 -0.01

S7 0.02 0.00 0.00 -0.01 -0.01 -0.03 -0.01 -0.02

S8 0.03 0.02 0.00 -0.01 -0.03 -0.07 -0.04 -0.03

(3) Median of average absolute deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 3.80 3.42 3.32 4.44 7.38 3.58 4.05 -0.48

S2 4.85 3.81 3.37 4.56 7.34 2.49 3.97 -1.48

S3 4.15 3.55 3.45 5.25 10.64 6.49 7.20 -0.70

S4 4.31 3.16 3.19 4.87 8.83 4.52 5.64 -1.12

S5 7.90 9.45 20.33 11.63 14.88 6.98 -5.45 12.43

S6 8.13 5.59 4.29 6.90 12.02 3.89 7.73 -3.84

S7 2.79 2.72 2.84 3.69 5.65 2.87 2.82 0.05

S8 3.02 2.86 2.95 3.50 5.17 2.15 2.22 -0.07
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Table 9 continued

(4) Median of average positive deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 3.35 3.21 3.27 4.22 5.83 2.47 2.56 -0.09

S2 3.03 2.91 3.11 3.63 4.26 1.23 1.15 0.07

S3 4.78 4.02 3.67 5.26 9.57 4.79 5.91 -1.11

S4 3.06 2.97 3.19 4.12 5.67 2.60 2.48 0.13

S5 9.13 11.54 23.96 12.94 15.58 6.45 -8.37 14.82

S6 7.63 5.44 4.44 6.02 8.60 0.96 4.16 -3.20

S7 2.42 2.58 2.63 3.36 4.12 1.70 1.49 0.21

S8 2.37 2.56 2.83 2.66 3.44 1.06 0.61 0.45

(5) Median of average negative deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 -3.92 -3.46 -3.27 -4.61 -8.63 -4.71 -5.36 0.65

S2 -5.51 -4.14 -3.58 -5.18 -8.66 -3.16 -5.09 1.93

S3 -3.07 -3.01 -3.02 -4.92 -10.69 -7.62 -7.67 0.05

S4 -4.70 -3.26 -3.05 -5.20 -10.82 -6.12 -7.77 1.65

S5 -3.94 -4.00 -4.97 -8.59 -12.50 -8.56 -7.53 -1.03

S6 -7.49 -4.95 -4.09 -7.32 -13.52 -6.03 -9.43 3.40

S7 -2.82 -2.73 -2.98 -3.82 -6.62 -3.81 -3.64 -0.17

S8 -3.48 -2.98 -3.05 -4.02 -6.25 -2.77 -3.20 0.43

(6) Median of average volatility

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.20 0.19 0.19 0.18 0.19 -0.01 0.00 -0.01

S2 0.21 0.19 0.19 0.19 0.20 -0.01 0.01 -0.02

S3 0.20 0.19 0.19 0.19 0.19 -0.01 0.00 -0.01

S4 0.22 0.21 0.20 0.20 0.21 -0.01 0.01 -0.02

S5 0.18 0.19 0.20 0.20 0.20 0.01 0.00 0.01

S6 0.21 0.20 0.20 0.20 0.21 0.00 0.01 -0.02

S7 0.20 0.19 0.18 0.18 0.19 -0.01 0.01 -0.01

S8 0.20 0.19 0.19 0.19 0.19 -0.01 0.01 -0.01

(7) Median of average market activity

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.11 0.09 0.08 0.08 0.09 -0.01 0.02 -0.03

S2 0.27 0.13 0.09 0.12 0.24 -0.04 0.15 -0.19

S3 0.14 0.18 0.13 0.12 0.13 -0.01 0.00 -0.01

S4 0.35 0.37 0.18 0.27 0.40 0.05 0.22 -0.17

S5 0.14 0.12 0.10 0.11 0.10 -0.04 0.00 -0.04

S6 0.40 0.34 0.17 0.26 0.38 -0.02 0.21 -0.23

S7 0.15 0.14 0.10 0.09 0.13 -0.02 0.03 -0.05

S8 0.43 0.26 0.13 0.19 0.37 -0.06 0.24 -0.30
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4.4 Estimation Results

Next, I estimate the models using S&P500 data, which is also done by Boswijk et al. (2007).

First, the data is explained and then the estimation results are presented.

The dataset described in Shiller (1989) is used. It consists of annual data of the S&P500

index. I use annual data as it the most used data frequency in behavioral finance (Barberis and

Thaler, 2003). A lower data frequency would be more affected by other effects than behavioral

effects. As in Boswijk et al. (2007), both dividends and earnings are used as a measure of cash

flow, but in this analysis I use the sample period 1950 to 2014. The constant growth rate g is the

average growth rate of real cash flows and discount rate r is the sum of the average cash flow yield

and g. Using these rates, the gross return R∗ and fundamental PY-ratio d∗t can be determined, see

equations (13) and (15) respectively. Table 10 summarizes the values used for the fundamental

process and reports a fundamental value for the PY-ratio of 29.98 when using dividends and 15.91

using earnings. Refer to Boswijk et al. (2007) for a more detailed explanation. Figure 2 shows

the log of the stock price, the fundamental price, the PY-ratio, and fundamental ratio using the

values of Table 10. The graphs show there is a spike in the PY-ratio around 2000 and that my

sample also includes the drop in PY-ratio afterwards.

Table 10: Fundamental Value

Values used to determine the fundamental value (for the price-to-dividends and price-to-earnings ratio). S&P500 data
from 1950-2014. cpi is the average inflation rate which is used to deflate nominal variables. y/p is the average cash
flow yield (i.e. Yt/Pt−1), g is the average growth rate of real cash flows (earnings are smoothed using 10-years moving-
average), the discount rate is r = y/p + g, the gross rate of return is determined by R∗ = (1 + r)/(1 + g), and
d∗ = (1 + g)/(r− g) is the price-to-cash flow fundamental ratio. All numbers are expressed as percents, except R∗ and
the fundamental ratio d∗

Cash flows cpi y/p g r R∗ d∗

Dividends 3.61 3.40 1.97 5.37 1.033 29.98

Earnings 3.61 6.44 2.50 8.95 1.063 15.91

The belief parameters φh and the β are estimated using the annual data of the S&P500

index. Note that the δ is fixed at 0% and 50%, similar to the parameter sets. As with the

simulation, equation (29) is used and the parameters are estimated by nonlinear least squares.

Table 11 reports the estimation output for both models. The results of the two-type model

are similar to the results presented by Boswijk et al. (2007). The belief coefficients indicate that

arbitrageurs follow a mean-reverting strategy (between 0.649 and 0.825) and that noise traders

are trend followers (between 1.123 and 1.225). All estimated belief parameters are strongly

significant, at a 1% level. The introduction of the δ is the main difference with the model by
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Figure 2: Price and Fundamental Value

(left) Graphs of the log of the stock price of the S&P500 and of the fundamental value, and (right) the real and
fundamental price-to-cash flow ratio. Dividends are used to measure cash flows for the top two graphs. The bottom
two graphs use earnings as cash flows. Values of Table 10 are used to calculate the fundamental values

Boswijk et al. (2007). It makes sense that the beliefs are stronger and that β is higher when the

δ is higher, as investors switch beliefs less often. Once they update their (strong) beliefs, they

are more likely to switch. The β ranges from 0.154 to 0.214 and is not significantly different

from zero. Boswijk et al. (2007) emphasize that this is a common result, as large changes in β

cause only small variation of the fraction, hence β has a large standard deviation. In addition

I report the R2 of the regression, the Akaike selection criterion (AIC) value and corresponding

log likelihood, the estimated coefficient of the AR(1) model, and the AIC and log likelihood of

this AR(1) model. The two-type model achieves a lower AIC value than the linear AR(1) model,

indicating that the model captures nonlinearity in the data. So far, I find no surprising results.

All results of the five-type model (except the results of the dividends with δ = 0) show that

also in this model the arbitrageurs can be classified as investors with a mean-reverting belief (φ1

between 0.551 and 0.721) and that the noise traders are trend-following (φ2 between 1.425 and

1.504). The beliefs are all significant and seem to be stronger than the estimated beliefs of the

two-type model. This could be caused by the fact that investors have more options to choose (e.g.

jump on the bandwagon), hence once following a belief that belief is strong. The β ranges from

0.002 to 0.023 and is again not significant and higher for the estimates with δ fixed to 50%. Note
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that the AIC values of the estimated HAM are now higher than the values of an AR(1) model.

Only the estimated HAM in the third column has a log likelihood lower than the log likelihood

of the AR(1) model. These results indicate that I did not gain explanatory power by adding

complexity. And it also indicates that the model does not capture nonlinearity in the data. But,

as the values are not that far apart (on average AIC is 6% higher than the AICAR(1)) and the

structured, more complex model allows us to better understand the micromarket than a reduced

form AR(1) model, I draw no further conclusions from the reported AIC values.

Note that the results of the estimated model to data using dividends as cash flows and with

δ = 0 are not considered here, as the β has a relatively high negative value that indicates that

agents prefer to switch to a strategy that performs worse.

Figure 3 shows the fractions of the model estimated using earnings and δ = 50%. It can

be seen that the fraction of the arbitrageurs and noise traders fluctuate over time, ranging from

0% to 80%. The fractions of investors on the bandwagon ranges between 0% and 20% and the

percentage of noise traders that are out of the market is not higher than 32%. The pattern of

the fraction is especially interesting in combination with the time series of the deviation from the

fundamental value (see Figure 2). During a period with increasing deviation from fundamental

(1995-2000), it can be seen that the fraction of noise traders increases to almost 60% just before

the spike in 2000, with not many noise traders leaving the market. The increased fraction of

noise traders is a pattern that complies with the proposition that noise traders’ misperceptions

can drive up prices leading to divergence of market prices and fundamental values. From Figure

3 it can be seen that arbitrageurs act in opposite direction of the noise traders (also concluded

from estimated belief parameters). During the period 1995-2000 the fraction of arbitrageurs

decreases and the fraction of investors on the bandwagon increases. Especially the fraction of

trend-following investors on the bandwagon (with φ4 = 1.359) increases during this period. This

could be explained by arbitrageurs detecting the upward trend caused by noise traders and that

they decide to start herding, which in this case refers to trading ahead of the noise traders.

Another interesting dynamic is that during the drop in fundamental value (2000-2003),

noise trading decreases and more arbitrageurs jump off the bandwagon (or join the market).

Here, betting against the noise traders seems to pay-off, hence the increase in arbitrageurs. Note

that when analyzing the fractions, it is almost impossible to conclude which type of investor is

leading, but the reasoning of De Long et al. (1990b) can be applied as the agents behavior is in

line with their reasoning (arbitrageurs following noise traders). Other estimation results show

similar dynamics in fractions.
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Table 11: Estimation Results

Estimation results of the five-type and two-type model. Estimated to annual data of the S&P500 index (1950-2014)
using dividends and earnings as measure for cash flows, two different values for δ (0% and 50%), and using nonlinear
least squared method. Estimated parameters of the beliefs parameters (φ′s) and the intensity of choice (β). * p < 0.10,
** p < 0.05, *** p < 0.01. Standard errors in parentheses. Reported statistics are the R2, the Akaike information
criterion (AIC), the associated value of the log likelihood, AR(1) coefficient fitted to the data, the AIC of the linear
AR(1) model, and the log likelihood value

Five-type Model

Dividends Earnings

δ 0% 50% 0% 50%

φ1 0.955*** 0.551*** 0.668*** 0.721***

(0.078) (0.254) (0.130) (0.209)

φ2 0.970*** 1.504*** 1.425*** 1.425***

(0.037) (0.192) (0.089) (0.102)

φ3 1.096 0.599 -0.286 0.726

(1.067) (4.716) (0.890) (1.022)

φ4 0.530 0.796 1.738*** 1.359

(2.108) (4.149) (0.789) (0.976)

β -5.609 0.002 0.023 0.020

(33.283) (0.003) (0.027) (0.066)

R2 0.83 0.84 0.85 0.82

AIC 4.00 3.97 2.23 2.41

LogL 3.85 3.82 2.08 2.26

AR(1) 0.92 0.92 0.91 0.91

AICAR(1) 3.71 3.71 2.22 2.22

LogLAR(1) 3.65 3.65 2.16 2.16

Two-type Model

φ1 0.825*** 0.737*** 0.709*** 0.649***

(0.066) (0.094) (0.093) (0.162)

φ2 1.123*** 1.157*** 1.218*** 1.225***

(0.065) (0.083) (0.091) (0.154)

β 0.176 0.214 0.163 0.154

(0.388) (0.983) (0.188) (0.298)

R2 0.88 0.88 0.87 0.86

AIC 3.60 3.61 2.05 2.15

LogL 3.51 3.52 1.96 2.05

AR(1) 0.92 0.92 0.91 0.91

AICAR(1) 3.71 3.71 2.22 2.22

LogLAR(1) 3.65 3.65 2.16 2.16
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Figure 3: Resulted Fractions of Estimated Five-Type Model

Resulted fractions of the estimated five-type HAM (using earnings as cash flows and δ = 50%). Top Figure shows the
times series of the fraction of arbitrageurs (n1,t) and the fraction of noise traders in the market (n2,t). The Figure in
the middle shows the fractions of the arbitrageurs on the bandwagon (both n3,t and n4,t). The bottom Figure shows
the fraction of noise traders that left the market (n5,t). See Table 11 (fourth column) for the estimates of the model

As a brief aside regarding the dynamics of the PY-ratio, I estimate the models to monthly

data of the interesting period between January 1990 and December 2014. These monthly results

show that I can use the HAM to understand the market, also at a higher frequency. Tables 15

and 16 in the Appendix report the statistics and the estimation results of the monthly analysis.

The estimated belief parameters are less strong in this case. Moreover, in the models of the first

three columns, the arbitrageurs are trend-following instead of mean-reverting as φ1 > 1 and even

larger than φ2. But, as the fourth column of Table 16 shows estimation results that meet my

expectation, I investigate these outcomes in more detail. Figure 13 in the Appendix shows the

dynamics of the fractions of the five-type model estimated using earnings as cash flows and with

δ = 50%. Again, I find similar patterns as in the dynamics of the fractions when using annual

data. That is to say, before the spike in 2000 noise trader demand increases and after the spike

arbitrageurs take over the market. Moreover, the fraction of trend-following arbitrageurs on the
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bandwagon also spikes during the upward trend.

Key conclusion here is that the estimation results and especially the fractions support the

statements in both proposition 1 and 2. As a final analysis, the estimation results will be divided

in decile groups similar to the analysis on the simulation results.

4.5 Decile Group Analysis of Estimation Results

Table 12 reports the statistics per decile group of investors on the bandwagon. It can be seen

that investors on the bandwagon are mainly present during periods with high returns and high

positive deviations from fundamental value. This is already confirmed by the previous analysis on

the fractions. In addition to this, I find a U-shaped pattern in the deviations from fundamental

value. Again, this supports the idea that an equal distribution of the fractions over the different

investors type depicts a stable period. Moreover, once more traders are on the bandwagon, the

market activity seems to be lower. Note that the estimation results using earnings as cash flows

are similar at some points, which is caused by the fact that the estimation results where δ = 50%

are an extrapolated version of the estimation results where δ = 0%. Also note that in some cases

medians are not available in the highest or lowest decile. This happens when the fraction is at a

maximum or minimum for more than 1/10 of the periods or if the metric is not observed in the

decile group (e.g. negative deviations from fundamental value). In the simulated time series I

excluded these observations, but here I only have one time series.

The findings in Table 13 show that noise trader demand increases the returns, increases the

(positive) deviation from fundamental value, and decreases volatility and market activity. Again,

a clear U-shaped pattern is present in the deviations from fundamental value. In opposite of the

simulated results, I find that when noise trader dominate, they earn a higher return which better

corresponds to the findings of De Long et al. (1990a). For the simple two-type model, the noise

trader demand is also examined. The results are reported in Table 17 in the Appendix and the

same can be concluded as with noise traders in the five-type HAM.

The main difference with the simulated times series is that I find more conclusive evidence

for the first proposition and that for both fractions I find that the return is higher in the highest

decile group (d10-d1 is positive for all estimation results). The fractions in Figure 3 give an

explanation for this. Both the bandwagon fraction as well as noise trader demand is high during

the steep price increase just before the year 2000. As a result of this data the returns in the tenth

fraction deciles are the highest.
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The estimation results show that the both models are able to find particular behavior for the

types of traders examined by De Long et al. (1990a,b). I find that higher fractions of traders on

the bandwagon and noise traders are associated with more unstable markets. Thus, the results

of the decile group analysis of estimations are consistent with the predictions of propositions 1

and 2.
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Table 12: Decile Group Analysis of Estimated Time Series - Fraction on the Bandwagon

Analysis of estimated times series using the five-type HAM. The belief parameters and β are estimated using both
dividends (D) and earnings (E) as a proxy for cash flows. The δ is fixed at 0% or 50%. Table 11 shows the estimation
results of each of the four combinations. Based on the fraction of arbitrageurs on the bandwagon (i.e. n3,t + n4,t) the
times series are divided into ten decile groups. Some decile groups are combined into one group (e.g. the fourth, fifth,
sixth, and seventh decile groups are combined in group d4/7). For each group I calculate the median of the average
fraction in that group, the median of the average return, the median of the absolute, positive, and negative deviation
from fundamental (i.e. xt), the median of the average volatility, and the median of the average market activity. The
volatility is computed using the RiskMetrics approach (where λ = 0.95). The market activity measure is the weighted
average change in fractions. I compare the decile groups by the difference between the highest and lowest, highest and
middle, and middle and lowest fraction groups (i.e. d10-d1, d10-d4/7, d4/7-d1). “high” means that the deviation from
fundamental value is higher than 1,000. “n.a.” if the fraction is at a maximum or minimum for more than 1/10 of the
periods or if observed metric does not exist in the decile group (e.g. negative deviations from fundamental value)

(1) Median of average fraction

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.00 0.18 0.63 1.00 1.00 1.00 0.37 0.63

D (50%) 0.00 0.00 0.37 0.82 1.00 1.00 0.63 0.37

E (0%) 0.05 0.33 0.47 0.58 0.85 0.80 0.38 0.42

E (50%) 0.00 0.03 0.38 0.83 0.99 0.99 0.62 0.38

(2) Median of average return

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.09 0.09 0.02 0.03 n.a. n.a. n.a. -0.08

D (50%) -0.06 0.03 0.02 0.09 0.09 0.15 0.08 0.07

E (0%) -0.06 0.09 -0.01 0.06 0.13 0.19 0.14 0.05

E (50%) -0.06 0.09 -0.01 0.06 0.13 0.19 0.14 0.05

(3) Median of average absolute deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 38.75 8.28 5.06 11.07 n.a. n.a. n.a. -33.69

D (50%) 23.48 11.07 5.06 8.28 38.75 15.27 33.69 -18.42

E (0%) 6.94 4.55 4.09 6.74 14.23 7.29 10.14 -2.85

E (50%) 6.94 4.55 4.09 6.74 14.23 7.29 10.14 -2.85

(4) Median of average positive deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 38.75 9.39 4.53 19.18 n.a. n.a. n.a. -34.22

D (50%) 23.48 19.18 4.53 9.39 38.75 15.27 34.22 -18.95

E (0%) 6.94 5.04 3.46 8.05 14.23 7.29 10.77 -3.48

E (50%) 6.94 5.04 3.46 8.05 14.23 7.29 10.77 -3.48

(5) Median of average negative deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) n.a. -6.99 -5.68 -6.00 n.a. n.a. n.a. n.a.

D (50%) n.a. -6.00 -5.68 -6.99 n.a. n.a. n.a. n.a.

E (0%) n.a. -3.98 -4.83 -3.80 n.a. n.a. n.a. n.a.

E (50%) n.a. -3.98 -4.83 -3.80 n.a. n.a. n.a. n.a.
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Table 12 continued

(6) Median of average volatility

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.16 0.16 0.15 0.16 n.a. n.a. n.a. -0.01

D (50%) 0.17 0.16 0.15 0.16 0.16 0.00 0.01 -0.01

E (0%) 0.16 0.16 0.15 0.16 0.16 0.00 0.01 -0.01

E (50%) 0.16 0.16 0.15 0.16 0.16 0.00 0.01 -0.01

(7) Median of average market activity

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.48 0.36 0.21 0.29 n.a. n.a. n.a. -0.27

D (50%) 0.13 0.14 0.14 0.20 0.15 0.02 0.01 0.00

E (0%) 0.24 0.09 0.09 0.12 0.18 -0.06 0.10 -0.16

E (50%) 0.21 0.15 0.13 0.14 0.17 -0.04 0.04 -0.07
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Table 13: Decile Group Analysis of Estimated Time Series - Fraction of Noise Traders

Analysis of estimated times series using the five-type HAM. The belief parameters and β are estimated using both
dividends (D) and earnings (E) as a proxy for cash flows. The δ is fixed at 0% or 50%. Table 11 shows the estimation
results of each of the four combinations. Based on the fraction of noise traders (i.e. n2,t + n5,t) the times series are
divided into ten decile groups. Some decile groups are combined into one group (e.g. the fourth, fifth, sixth, and seventh
decile groups are combined in group d4/7). For each group I calculate the median of the average fraction in that group,
the median of the average return, the median of the absolute, positive, and negative deviation from fundamental (i.e.
xt), the median of the average volatility, and the median of the average market activity. The volatility is computed
using the RiskMetrics approach (where λ = 0.95). The market activity measure is the weighted average change in
fractions. I compare the decile groups by the difference between the highest and lowest, highest and middle, and middle
and lowest fraction groups (i.e. d10-d1, d10-d4/7, d4/7-d1). “high” means that the deviation from fundamental value is
higher than 1,000. “n.a.” if the fraction is at a maximum or minimum for more than 1/10 of the periods or if observed
metric does not exist in the decile group (e.g. negative deviations from fundamental value)

(1) Median of average fraction

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.01 0.30 0.59 0.97 1.00 0.99 0.41 0.58

D (50%) 0.40 0.48 0.50 0.50 0.53 0.13 0.03 0.10

E (0%) 0.18 0.45 0.49 0.52 0.64 0.46 0.15 0.32

E (50%) 0.31 0.46 0.49 0.51 0.56 0.25 0.07 0.18

(2) Median of average return

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.10 0.08 0.02 0.03 n.a. n.a. n.a. -0.08

D (50%) -0.03 0.04 0.04 0.02 0.13 0.16 0.09 0.07

E (0%) -0.06 0.09 0.00 0.05 0.14 0.20 0.14 0.06

E (50%) 0.01 0.01 0.03 0.05 0.12 0.11 0.09 0.02

(3) Median of average absolute deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 35.94 7.87 6.21 11.07 n.a. n.a. n.a. -29.73

D (50%) 22.55 11.03 6.17 7.78 35.74 13.19 29.57 -16.38

E (0%) 6.94 4.55 4.08 5.91 14.51 7.57 10.43 -2.86

E (50%) 9.35 3.70 4.05 4.81 16.13 6.78 12.08 -5.30

(4) Median of average positive deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 41.32 8.68 4.60 19.18 n.a. n.a. n.a. -36.72

D (50%) 22.55 21.96 6.38 6.76 39.08 16.53 32.70 -16.17

E (0%) 6.94 5.04 3.46 7.03 14.51 7.57 11.05 -3.48

E (50%) 9.35 3.78 3.96 4.18 16.13 6.78 12.17 -5.39

(5) Median of average negative deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) -9.01 -6.58 -7.60 -6.00 n.a. n.a. n.a. 1.42

D (50%) n.a. -6.17 -5.89 -8.67 -15.30 n.a. -9.41 n.a.

E (0%) n.a. -3.98 -4.69 -4.12 n.a. n.a. n.a. n.a.

E (50%) n.a. -3.58 -4.17 -5.21 n.a. n.a. n.a. n.a.
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Table 13 continued

(6) Median of average volatility

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.16 0.16 0.15 0.16 n.a. n.a. n.a. -0.01

D (50%) 0.16 0.16 0.15 0.16 0.16 0.00 0.01 -0.01

E (0%) 0.16 0.16 0.15 0.16 0.16 0.00 0.01 -0.01

E (50%) 0.17 0.16 0.16 0.15 0.16 -0.01 0.00 -0.01

(7) Median of average market activity

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.49 0.31 0.18 0.29 n.a. n.a. n.a. -0.30

D (50%) 0.10 0.11 0.18 0.15 0.12 0.02 -0.06 0.08

E (0%) 0.24 0.09 0.08 0.10 0.18 -0.07 0.10 -0.16

E (50%) 0.23 0.10 0.16 0.11 0.12 -0.11 -0.04 -0.08
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5 Conclusion

I develop a heterogeneous agent model that describes the market behavior of arbitrageurs and

noise traders (De Long et al., 1990a,b). I show that the widely used theoretical framework

introduced by these academics can be empirically investigated using the five-type model. The

model is a refined version of the two-type HAM by Boswijk et al. (2007), in which arbitrageurs

amplify mispricing rather than correct it and noise traders face short-sale constraints (Chen et al.,

2002). I use the outcomes of simulations and estimations to examine the model dynamics and

in particular I focus on two propositions of both types of investors. The two statements are

supported by the main findings, as such the five-type model provides empirical evidence for the

theoretical framework introduced by De Long et al. (1990a,b).

Consistent with the first proposition, I find that arbitrageurs can cause the market price

to deviate further from the fundamental value. This is mainly shown by the decile analysis on

the estimation results. The estimation results show that arbitrageurs are mean-reverting, in a

normal situation. From the dynamics of the fractions, it can be seen that they jump on the

bandwagon if there is a pronounced trend set by noise traders. This result supports the idea

that arbitrageurs destabilize markets by triggering positive feedback strategies (De Long et al.,

1990b). The simulation results are mixed as they also emphasize the mean-reverting effects of

arbitrageurs.

Consistent with the second proposition, I report evidence that noise traders destabilize

markets. From the simulation and estimation results it can be seen that the deviation from

fundamental value is higher when the fraction of noise traders is higher. I find a U-shape pattern

when looking at the volatility (and market activity) across deciles. Overall, this leads to the

conclusion that indeed strong noise trader demand can be associated with a more unstable market.

This thesis shows how we can better understand micromarket dynamics using heterogeneous

agent models. These models can specify a wide range of different agents and associated behavior.

In addition, HAMs can be estimated to real data allowing for an empirical analysis of the proposed

market dynamics. The model presented here is obviously relatively complex and stylized. The
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inputs and assumptions can be debated. Besides, many aspects impact asset prices and sure

not all are take into account in my analyses. However I present a HAM that provides insightful

findings from a behavioral finance perspective. As such, it is a step forward.

A suggestion for future research is to use the established five-type model for more detailed

investigation of financial markets. For instance, one could focus on the critical value of the belief

parameters that creates an unstable market. Or one could estimate the HAM to a different data

set, focusing on different markets or specific time periods. A second suggestion is that one could

use the insights of this thesis to extend or develop a different HAM. This methodology provides

a flexible framework in which one can define countless market dynamics. Moreover, the model

can be simulated and estimated and can empirically investigate financial markets and improve

our understanding of them.
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Figure 4: Simulated Fractions - Two-type model

Typical outcome of simulation for each of the 8 parameter sets defined in Table 1 using the two-type model
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Figure 5: Simulated Log Price - Two-type model

Typical outcome of simulation for each of the 8 parameter sets defined in Table 1 using the two-type model
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Figure 6: Simulated Deviation from Fundamental - Two-type model

Typical outcome of simulation for each of the 8 parameter sets defined in Table 1 using the two-type model
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Figure 7: Simulated Volatility - Two-type model

Typical outcome of simulation for each of the 8 parameter sets defined in Table 1 using the two-type model. Volatility
is computed following the RiskMetrics approach
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Figure 8: Simulated Fractions - Five-type model

Typical outcome of simulation for each of the 8 parameter sets defined in Table 1 using the five-type model
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Figure 9: Simulated Log Price - Five-type model

Typical outcome of simulation for each of the 8 parameter sets defined in Table 1 using the five-type model
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Figure 10: Simulated Deviation from Fundamental - Five-type model

Typical outcome of simulation for each of the 8 parameter sets defined in Table 1 using the five-type model

58



Figure 11: Simulated Volatility - Five-type model

Typical outcome of simulation for each of the 8 parameter sets defined in Table 1 using the five-type model. Volatility
is computed following the RiskMetrics approach
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Table 14: Decile Group Analysis of Simulated Returns - Fraction of Noise Traders (Two-
Type Model)

Analysis of 100 samples of simulated times series of 200 periods using the two-type HAM. Refer to Table 1 for the
parameter sets. Other variables: σε = 2.5, R∗ = 1.05, d∗ = 25, initial observations x1 = x2 = x3 = 5, and initial
fractions are n1 = n2 = 0.5, n3 = n4 = n5 = 0. Based on the fraction of noise traders (i.e. n2,t) the simulated times
series are divided into ten decile groups, for each of the 8 parameter sets (S1-S8). Some decile groups are combined
into one group (e.g. the fourth, fifth, sixth, and seventh decile groups are combined in group d4/7). For each group I
calculate the median of the average fraction in that group, the median of the average return, the median of the absolute,
positive, and negative deviation from fundamental (i.e. xt), the median of the average volatility, and the median of
the average market activity. The volatility is computed using the RiskMetrics approach (where λ = 0.95). The market
activity measure is the fraction weighted average change in fractions. I compare the decile groups by the difference
between the highest and lowest, highest and middle, and middle and lowest fraction groups (i.e. d10-d1, d10-d4/7,
d4/7-d1). “high” means that the deviation from fundamental value is higher than 1,000. “n.a.” if the fraction is at a
maximum or minimum for more than 1/10 of the periods or if observed metric does not exist in the decile group (e.g.
negative deviations from fundamental value)

(1) Median of average fraction

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.43 0.47 0.49 0.50 0.52 0.09 0.03 0.06

S2 0.12 0.32 0.48 0.57 0.73 0.61 0.25 0.36

S3 0.25 0.39 0.47 0.52 0.61 0.36 0.14 0.22

S4 0.17 0.75 1.00 1.00 1.00 0.83 0.00 0.83

S5 0.41 0.71 1.00 1.00 1.00 0.59 0.00 0.59

S6 0.54 0.98 1.00 1.00 1.00 0.46 0.00 0.46

S7 0.37 0.45 0.48 0.51 0.54 0.17 0.06 0.11

S8 0.02 0.20 0.46 0.61 0.84 0.82 0.39 0.44

(2) Median of average return

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.00

S2 0.01 0.00 0.00 0.00 0.01 -0.01 0.01 -0.01

S3 0.00 0.01 0.00 0.01 0.00 0.00 -0.01 0.01

S4 0.03 0.03 0.02 -0.02 0.02 -0.01 0.00 -0.01

S5 0.00 0.08 0.12 0.05 0.04 0.04 -0.07 0.11

S6 0.04 0.10 0.03 n.a. n.a. n.a. n.a. -0.01

S7 0.00 0.00 0.00 0.01 0.02 0.02 0.02 0.00

S8 0.02 0.00 0.00 0.00 0.00 -0.02 0.00 -0.02

(3) Median of average absolute deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 6.84 5.34 4.37 6.06 10.56 3.72 6.19 -2.47

S2 7.14 5.38 4.37 6.23 10.45 3.31 6.08 -2.77

S3 5.25 4.59 4.01 5.97 10.94 5.69 6.94 -1.24

S4 4.96 4.27 8.13 5.61 11.33 6.36 3.20 3.17

S5 12.71 61.53 high 13.27 19.98 7.27 n.a. n.a.

S6 12.01 high 23.15 n.a. n.a. n.a. n.a. 11.14

S7 3.26 3.20 3.12 4.07 6.54 3.28 3.42 -0.14

S8 3.42 3.00 3.03 3.96 6.63 3.22 3.61 -0.39
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Table 14 continued

(4) Median of average positive deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 5.95 4.93 4.48 5.71 10.27 4.32 5.79 -1.47

S2 7.28 5.55 4.37 6.04 10.20 2.93 5.84 -2.91

S3 5.23 4.55 3.99 5.77 10.49 5.27 6.50 -1.24

S4 5.04 4.66 10.72 5.85 12.55 7.51 1.84 5.68

S5 12.90 62.34 high 13.27 19.89 7.00 n.a. n.a.

S6 12.12 high 23.15 n.a. n.a. n.a. n.a. 11.02

S7 3.14 3.06 3.06 4.02 6.11 2.97 3.05 -0.08

S8 3.12 2.88 3.04 3.99 6.30 3.18 3.26 -0.08

(5) Median of average negative deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 -6.26 -5.16 -3.99 -5.78 -9.97 -3.71 -5.98 2.27

S2 -6.22 -4.83 -4.16 -6.04 -9.59 -3.37 -5.43 2.06

S3 -4.62 -4.01 -3.73 -5.80 -10.49 -5.87 -6.76 0.90

S4 -2.80 -2.84 -3.68 -5.44 -10.38 -7.58 -6.70 -0.88

S5 -2.34 -2.45 -3.38 -10.23 -14.73 -12.39 -11.35 -1.04

S6 -1.76 -2.50 -4.90 n.a. n.a. n.a. n.a. -3.13

S7 -3.21 -3.14 -3.06 -3.97 -6.34 -3.13 -3.29 0.15

S8 -3.26 -2.98 -2.92 -3.83 -6.32 -3.06 -3.40 0.35

(6) Median of average volatility

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.20 0.19 0.19 0.19 0.19 -0.01 0.00 -0.01

S2 0.19 0.19 0.19 0.19 0.19 0.00 0.00 -0.01

S3 0.19 0.19 0.18 0.19 0.19 0.00 0.00 -0.01

S4 0.18 0.18 0.18 0.18 0.19 0.01 0.01 0.00

S5 0.16 0.18 0.19 0.20 0.19 0.04 0.01 0.03

S6 0.17 0.20 0.18 n.a. n.a. n.a. n.a. 0.01

S7 0.20 0.19 0.19 0.18 0.19 -0.01 0.00 -0.01

S8 0.19 0.18 0.18 0.18 0.19 0.00 0.01 -0.01

(7) Median of average market activity

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

S1 0.04 0.02 0.01 0.01 0.03 -0.01 0.01 -0.03

S2 0.27 0.18 0.09 0.14 0.33 0.06 0.24 -0.18

S3 0.10 0.09 0.04 0.05 0.09 -0.01 0.05 -0.06

S4 0.21 0.24 0.23 0.35 0.42 0.21 0.19 0.02

S5 0.07 0.04 0.03 0.04 0.10 0.04 0.07 -0.03

S6 0.18 0.12 0.24 n.a. n.a. n.a. n.a. 0.06

S7 0.07 0.04 0.02 0.02 0.05 -0.03 0.03 -0.05

S8 0.29 0.27 0.15 0.22 0.45 0.16 0.30 -0.14
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Figure 12: Deviation from Fundamental PY-Ratio (Monthly Data)

Graph of the deviation from fundamental PY-ratio of the monthly data from January 1990 to December 2014, using
earnings as cash flows. Earnings are smoothed using 10 years moving-average.

Table 15: Fundamental Value (Monthly Data)

Values used to determine the fundamental value (for the price-to-dividends and price-to-earnings ratio). Monthly
S&P500 data from January 1990 until December 2014. cpi is the average inflation rate which is used to deflate nominal
variables. y/p is the average cash flow yield (i.e. Yt/Pt−1), g is the average growth rate of real cash flows (earnings are
smoothed using 10 years moving-average), the discount rate is r = y/p + g, the gross rate of return is determined by
R∗ = (1 + r)/(1 + g), and d∗ = (1 + g)/(r − g) is the price-to-cash flow fundamental ratio. All numbers are expressed
as percents, except R∗ and the fundamental ratio d∗

Cash flows cpi y/p g r R∗ d∗

Dividends 0.21 2.10 0.22 2.32 1.021 47.84

Earnings 0.21 4.23 0.25 4.48 1.042 23.68
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Table 16: Estimation Results (Monthly Data)

Estimation results of the five-type and two-type model using monthly data. Estimated to monthly data of the S&P500
index (1990-2014) using dividends and earnings as measure for cash flows, two different values for δ (0% and 50%), and
using nonlinear least squared method. Estimated parameters of the beliefs parameters (φ′s) and the intensity of choice
(β). * p < 0.10, ** p < 0.05, *** p < 0.01. Standard errors in parentheses. Reported statistics are the R2, the Akaike
information criterion (AIC), the associated value of the log likelihood, AR(1) coefficient fitted to the data, the AIC of
the linear AR(1) model, and the log likelihood value. More details on model and data in the text

Five-type Model

Dividends Earnings

δ 0% 50% 0% 50%

φ1 1.138*** 1.015*** 1.133*** 0.993***

(0.023) (0.022) (0.038) (0.075)

φ2 1.012*** 0.996*** 1.025*** 1.154***

(0.006) (0.008) (0.012) (0.015)

φ3 0.566*** 0.693*** 1.966*** 0.988***

(0.332) (0.367) (0.820) (0.154)

φ4 1.720*** 1.889*** 0.367 1.055***

(0.336) (0.384) (0.826) (0.099)

β 0.026 0.011 0.035 1.324

(0.032) (0.017) (0.077) (1.108)

R2 0.98 0.98 0.98 0.98

AIC 1.51 1.49 -0.12 -0.01

LogL 1.48 1.46 -0.15 -0.04

AR(1) 0.99 0.99 0.99 0.99

AICAR(1) 1.36 1.36 -0.16 -0.16

LogL 1.34 1.34 -0.17 -0.17

Two-type Model

φ1 0.988*** 0.978*** 1.017*** 1.002***

(0.013) (0.021) (0.011) (0.017)

φ2 1.038*** 1.050*** 1.056*** 1.079***

(0.015) (0.024) (0.016) (0.026)

β 1.602 0.926 13.227 4.186

(2.796) (1.876) (34.632) (9.106)

R2 0.98 0.98 0.98 0.98

AIC 1.34 1.35 -0.17 -0.17

LogL 1.32 1.33 -0.19 -0.19

AR(1) 0.99 0.99 0.99 0.99

AICAR(1) 1.36 1.36 -0.16 -0.16

LogL 1.34 1.34 -0.17 -0.17
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Figure 13: Resulted Fractions of Estimated Five-Type Model (Monthly Data)

Resulted fractions of the estimated five-type HAM (using earnings as cash flows and δ = 50%). See Figure 12 for the
time series of the deviation from fundamental value. The top Figure shows the times series of the fraction of arbitrageurs
(n1,t), the second Figure considers the fraction of noise traders in the market (n2,t). The third and fourth Figures show
the fractions of the arbitrageurs on the bandwagon (both n3,t and n4,t). The bottom Figure shows the fraction of noise
traders that left the market (n5,t). The red line shows the 6 months moving-average. See Table 16 (fourth column) for
the estimates of the model
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Table 17: Decile Group Analysis of Estimated Time Series - Fraction of Noise Traders
(Two-Type Model)

Analysis of estimated times series using the two-type HAM. The belief parameters and β are estimated using both
dividends (D) and earnings (E) as a proxy for cash flows (CF). The δ is fixed at 0% of 50%. Table 11 shows the
estimation results of each of the four combinations. Based on the fraction of noise traders (i.e. n2,t) the times series
are divided into ten decile groups. Some decile groups are combined into one group (e.g. the fourth, fifth, sixth, and
seventh decile groups are combined in group d4/7). For each group I calculate the median of the average fraction in that
group, the median of the average return, the median of the absolute, positive, and negative deviation from fundamental
(i.e. xt), the median of the average volatility, and the median of the average market activity. The volatility is computed
using the RiskMetrics approach (where λ = 0.95). The market activity measure is the fraction weighted average change
in fractions. I compare the decile groups by the difference between the highest and lowest, highest and middle, and
middle and lowest fraction groups (i.e. d10-d1, d10-d4/7, d4/7-d1). “high” means that the deviation from fundamental
value is higher than 1,000. “n.a.” if the fraction is at a maximum or minimum for more than 1/10 of the periods or if
observed metric does not exist in the decile group (e.g. negative deviations from fundamental value)

(1) Median of average fraction

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.00 0.08 0.44 0.64 0.98 0.98 0.54 0.44

D (50%) 0.09 0.21 0.44 0.55 0.81 0.72 0.38 0.35

E (0%) 0.03 0.27 0.46 0.60 0.88 0.85 0.41 0.44

E (50%) 0.20 0.35 0.45 0.54 0.72 0.52 0.26 0.26

(2) Median of average return

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) -0.06 0.03 0.02 0.08 0.11 0.16 0.08 0.08

D (50%) 0.02 0.01 0.04 0.02 0.12 0.10 0.08 0.02

E (0%) -0.06 0.09 -0.01 0.06 0.14 0.20 0.15 0.06

E (50%) -0.07 0.06 0.03 0.03 0.12 0.18 0.09 0.10

(3) Median of average absolute deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 23.48 11.07 6.21 7.87 34.50 11.02 28.29 -17.26

D (50%) 13.79 13.14 8.43 6.87 32.59 18.80 24.16 -5.36

E (0%) 6.94 4.55 4.12 5.82 14.51 7.57 10.39 -2.81

E (50%) 4.12 4.94 4.40 5.29 16.13 12.01 11.73 0.28

(4) Median of average positive deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 23.48 19.18 4.60 8.68 38.75 15.27 34.15 -18.88

D (50%) 18.81 19.97 9.46 7.67 41.72 22.91 32.26 -9.35

E (0%) 6.94 5.04 3.40 6.72 14.51 7.57 11.11 -3.54

E (50%) 4.55 5.35 4.64 5.20 16.13 11.58 11.49 0.09

(5) Median of average negative deviation

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) n.a. -6.00 -7.60 -6.58 -9.01 n.a. -1.42 n.a.

D (50%) -3.75 -7.29 -7.55 -4.20 -9.75 -6.00 -2.20 -3.80

E (0%) n.a. -3.98 -4.74 -3.80 n.a. n.a. n.a. n.a.

E (50%) -1.99 -4.47 -4.13 -5.44 n.a. n.a. n.a. -2.14
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Table 17 continued

(6) Median of average volatility

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.17 0.16 0.15 0.16 0.16 0.00 0.01 -0.01

D (50%) 0.16 0.16 0.15 0.16 0.16 -0.01 0.01 -0.01

E (0%) 0.16 0.16 0.15 0.16 0.16 0.00 0.01 -0.01

E (50%) 0.16 0.16 0.15 0.16 0.16 -0.01 0.00 -0.01

(7) Median of average market activity

d1 d2/3 d4/7 d8/9 d10 d10-d1 d10-d4/7 d4/7-d1

D (0%) 0.28 0.31 0.14 0.30 0.49 0.21 0.35 -0.15

D (50%) 0.08 0.18 0.15 0.12 0.16 0.08 0.01 0.08

E (0%) 0.27 0.21 0.12 0.22 0.46 0.20 0.34 -0.15

E (50%) 0.14 0.11 0.07 0.11 0.11 -0.04 0.04 -0.07
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